CABEZON COMMUNITIES PHASE 2 DRAINAGE MANAGEMENT PLAN UNIT 16

August 2004

PREPARED FOR:

Curb North Inc. 5160 San Francisco NE Albuquerque, New Mexico 87109

SUBMITTED TO:

City Of Rio Rancho &
Southern Sandoval County Arroyo Flood Control
Authority

PREPARED BY:

Wilson & Company, Engineers & Architects 2600 American Rd. SE, Suite 100 Rio Rancho, NM 87124

WCEA File No. X4-218-012

CABEZON COMMUNITIES PHASE 2 DRAINAGE MANAGEMENT PLAN UNIT 16

August 2004

I, Daniel S. Aguirre, do hereby certify that this report was prepared by me or under my direction and that I am a duly registered Professional Engineer under the laws of the State of New Mexico.

Daniel S. Aguirre, P.E. NM No. 11955

14141.110.11755

Date

CABEZON COMMUNITIES PHASE 2

DRAINAGE MANAGEMENT PLAN UNIT 16

By: Bo Johnson, P.E. Curb North Inc., Executive Vice Presi	Date: 9/29/07
By: Kenneth W. Curtis III, P.E. City of Rio Rancho, City Engineer	Date: 1/30/04
By: David Stoliker, P.E. SSCAFCA Executive Director	Date: 9-27-09
By: William C Marbrough SSCAFCA Chairman	Date: 9-23-04
By: John Kelly, P.E. AMAFCA Executive Engineer	Date: /1-/1-04

Table of Contents

Introduction1Drainage Constraints1Hydrology Methodology3Existing Condition Hydrology3Proposed Conditions Hydrology4Hydraulics8Water Quality Structure Maintenance and Operation11Conclusion12
List of Tables
<u>List of Tables</u>
Table 1: Historic, Existing, and Fully Developed Flows at Key Locations
List of Figures
Figure 1: Cabezon Vicinity Map
Figure 2: BLWMP Sub-basins That Overlap Cabezon
Figure 3: Proposed Improvements
Figure 4: Existing Flows & FEMA Flood Plains
Figure 5A and 5B: Proposed Conditions Hydrologic Routing
Figure 6: Phase 2 Basin & Peak Flow Locations Figure 7: Black Dam Current Topography
Figure 8: Phase 2 Storm Drain - STA 10+00 to STA 34+06.11
Figure 9: Phase 2 Storm Drain - STA 10+00 to STA 23+67.59
Figure 10: Black Dam Water Quality Structure
Figure 11: Water Quality Structure - STA 10+00 to STA 31+45.48

List of Appendices

Figure 12: Black Arroyo East Branch Typical Channel Section

Appendix A: Hydrology Appendix B: Hydraulics

DRAINAGE MANAGEMENT PLAN - CABEZON PHASE 2 DEVELOPMENT

Introduction

This report is based on the drainage section of the approved Cabezon Communities Master Plan (Master Plan), 2003, and specifically outlines the drainage plan for Phase 2 of Cabezon development. It addresses requirements of the Master Plan and is consistent with both the Black Arroyo Drainage Management Plan (BLWMP) (ASCG, 2002) and the Cabezon Phase 1 Drainage Management Plan. A Drainage Implementation Plan, detailing the major infrastructure proposed for the development and identifying its phasing, has also been submitted.

Although the Master Plan for the 912 acre community scheduled three phases of development, Phases 2 and 3 will now be combined into Phase 2. Phase 2 comprises approximately 625 acres of the Cabezon Communities Development. *Figure 1* shows the entire Cabezon Community Development, with Phase 2 development in green. Phase 1 development is in yellow, while an alternate area, in orange, is not currently part of Cabezon but could be included in the future. Finally, the two large tracts in the southwest corner of Unit 16, uncolored in *figure 1*, are not part of the Cabezon development.

Drainage Constraints

Drainage conditions placed on Cabezon come from two sources. First, although the Southern Sandoval County Arroyo Flood Control Authority (SSCAFCA) Board of Directors approved the Master Plan, they left two items for discussion. Second, the BLWMP, which has been approved by SSCAFCA, the Albuquerque Metropolitan Arroyo Flood Control Authority (AMAFCA), and the City of Rio Rancho (CORR), governs how drainage within the Black Arroyo Watershed will be managed. Therefore, new development must address BLWMP requirements, and any changes to it must be approved by all three entities.

The two discussion items the SSCAFCA Board left from the Master Plan were proposed improvements for the East Branch of the Black Arroyo, and conveyance of flows through the project from the West Branch of Black Arroyo. This DMP proceeds with the assumption that a hard-lined channel capable of conveying the 100-year, 24-hour storm on the East Branch is acceptable. Further, it assumes that the Modified BLWMP Ultimate Conditions Model approved for use in the Phase 1 DMP is also valid for this Phase 2 DMP. The Phase 1 DMP altered the percent land treatment types for BLWMP sub-basin 211 (*figure 2*), and also modeled several off-site commercial basins within Unit 16 with ponds that limit runoff to historic levels. These basins were 211B (Southern Plaza), Off_1A, Off_1B, Off_2A, and Off_2B. This was only done for properties where field investigation verified the existence of the detention facilities. Photographic documentation and a map are provided in the Phase 1 DMP.

The West Branch briefly crosses Cabezon, before entering the off-site southwest corner of Unit 16 (shown uncolored in *figure 2*). The Cabezon developers have agreed to provide a means of insuring the safety of this crossing. Two options are available. One is to build a structure with the capacity to convey the ultimate conditions flow downstream of Unser Boulevard. The other is to provide an upstream means of attenuating peak flows before they reach this point, most likely by expanding or creating a detention facility. The decision on how to proceed will be made during later discussions with SSCAFCA and CORR.

Finally, the BLWMP places two drainage constraints on Cabezon development. First is that the Black Dam shall not, in the present nor under assumed ultimate build-out conditions, be permitted to overtop its emergency spillway in a 100-year 24-hour storm event. This means that the amount of runoff that may be directed to the Black Dam, owned by AMAFCA, must not exceed available storage capacity. This criterion must be met not only at the conclusion of total build-out of the Cabezon Community, but also at any time during construction. The other requirement is that the "first flush" (initial 0.25 inches of runoff) be treated to the maximum extent practicable to remove floatables and sediment.

Hydrology Methodology

Hydrologic Analysis for Phase 2 conforms to Section 22.2, Hydrology, of the Development Process Manual, Volume 2, Design Criteria for the City of Albuquerque, New Mexico, January 1993 (COA DPM), and to the BLWMP. Hydrologic modeling was performed using the Arid-lands Hydrologic Model (AHYMO_97), distributed by Anderson Hydro. The 100-year 24-hour return frequency storm was used as the basis of this analysis. Assumptions regarding land treatments, storm duration and intensity, and water quality requirements established in the BLWMP were followed in this analysis. The sediment bulk rate and routing method differed from the BLWMP, and are discussed further in the *Proposed Conditions Hydrology* section below.

Existing Conditions Hydrology

Existing conditions are taken from the the FEMA floodplain mapping study (RTI, 1994). The original AHYMO files created for that study were used as a foundation for further detailed analysis by the BLWMP, which modeled developed existing conditions. Developed existing conditions assume full development, but with existing platting and facilities. A summary of the FEMA floodplains and key flowrates from RTI's FIS model for the area are shown in *figure 4*. *Table 1* compares historic, developed existing, and fully developed flows for key locations in the area.

Table 1: Historic, Developed Existing, and Fully Developed Flows at Key Locations

Location	Historic Conditions from FIS	Devex Conditions from BLWMP, Aug 02	Fully Developed Conditions from Cabezon model
West Branch at Unser	2687	5105	5004
West Branch at Dam/ Westside Boulevard	2986	5934	5991
East Branch at Southern Blvd.	1406	2137	2252
East Branch at Dam/ Westside Boulevard	1876	3160	3733

Figure 7 is the Black Dam's current topography. The corresponding table in this figure shows the stage-storage relationship of the facility. Of note is that the existing storage in the Dam, 294 AF, is only slightly less than the State Engineer's permitted storage volume

of 304 AF, which was used in the Modified BLWMP Ultimate Conditions Model.

Proposed Conditions Hydrology

The Modified BLWMP Ultimate Conditions Model, dated January 20, 2004, provides the basis for the Cabezon Phase 2 Model. The Modified BLWMP is based on the FEMA study, but adjusts routing and land treatment types of some sub-basins to represent managed full development in the Black Arroyo Watershed. In an attempt to assess the effect that Cabezon development will have on the Black Dam, both Phase 1 and 2 development were added to the Modified BLWMP model. *Appendix A* contains a printout of the Cabezon Phase 2 Model summary output file, as well the electronic file on diskette.

The Phase 1 DMP described other changes made to the Modified BLWMP Model in Phase 1 to reflect fully developed, current conditions in the watershed. For Phase 2, BLWMP sub-basins 160, 161, 218A, 218B, 219, 220, 253, 255, 256, and 620 were removed to account for the insertion of Phase 2 development. Also, parts of BLWMP sub-basins 550 and 650, which overlap Cabezon at its southern border, were removed to match proposed boundaries. *Figure* \$\mathbb{L}\$ shows overlapping Cabezon and BLWMP sub-basin boundaries. *Figures 5A* and 5B are routing schematics for the Cabezon Phase 2 Model, including the Modified BLWMP Model, with the portions pasted in for Phase 1 and 2 circled in *figure 5B*.

The initial Cabezon Phase 2 DMP, submitted May 2004, asked for approval of two methodology differences from the Modified BLWMP. These were a reduced sediment bulk rate, and use of the Muskingum-Cunge, rather than the Variable Storage Coefficient (VSC), routing method. Discussion with SSCAFCA and CORR on July 22, 2004, determined what would be used in Cabezon's final hydrology.

As a result of that discussion, two changes to the BLWMP were agreed upon for Cabezon

modeling. First, sediment bulk rates for the Cabezon model will be set to 6% to represent fully developed conditions with paved roads. This differs from the Modified BLWMP, which uses sediment bulk rates of 6% and 18%.

Second, all flow routing in the Cabezon Phase 2 Model uses the *ROUTE MCUNGE* command in AHYMO. In the Modified BLWMP, the two commands *COMPUTE TRAVEL TIME* and then *ROUTE* are used almost exclusively. At the July meeting, Clifford Anderson—developer of AHYMO_97—presented results from a report he prepared at SSCAFCA's request comparing the two methods. Following Mr. Anderson's suggestion, the Cabezon model uses the *ROUTE MCUNGE* command, but decreases the time step from 0.05 hr (3 minutes) to 0.01 hr (36 seconds) for obtaining peak flows.

This change should more accurately catch peak flow for a given hydrograph. This is because many reach lengths are short, while flow velocity is high. Therefore, flow may leave some reaches in less than three minutes, and hence those peak flows will not be accurately represented using the three minute time step. Because AHYMO_97 can only store 600 points for each hydrograph, however, this model does not accurately depict runoff volume, which is important in assessing Cabezon's effect on the Black Dam.

Therefore, two models were developed for Cabezon design. The two are identical in all ways, except that the first, QP72204.txt, uses a time step of 0.01 hours while the second, VOL72204.txt, uses a time step of 0.05 hours. The first was used to characterize peak flow within the watershed, while the second was used to assess runoff volume. The AHYMO summary output files for both models are in *Appendix A*.

These changes affect flow throughout the entire model, not only within Cabezon. *Table 2* presents the differences for locations discussed in an April 9, 2004, meeting between SSCAFCA, ASCG, and Wilson & Company representatives.

Table 2: Comparison of BLWMP and Cabezon Off-site Flows

	BLWMP	Cab Ph 2 Flow,cfs	Cab Ph 2 Flow,cfs		
Location	Flow, cfs	dt = 0.05 hr	dt = 0.01 hr		
East Branch South of Southern	2167	2099	2252		
Golf Course Rd SD North	75	75	77		
Golf Course Rd SD South	77	81	83		
23rd Avenue Ponds North	50	53	54		
24th Avenue Ponds South	48	48	48		
West Branch at Unser	4978	4210	5004		
Gateway at Unser	656	600	604		
West Branch at Dam	5879	5097	5991		
East Branch at Dam	5194	3485	3748		

Flow on the West Branch is more strongly influenced by the lower sediment bulk rate, which can reduce peaks by as much as 12%. On the East Branch, however, the routing method is primarily responsible for the change in peak flows. Most East Branch subbasins upstream from Cabezon are developed, so sediment bulking rates in the Modified BLWMP were already 6%.

The results of the hydrologic analysis are presented below. The allowable discharge from each Phase 2 tract is given, as well as modeling parameters and assumptions used to derive that discharge. Currently undeveloped or partially developed sub-basins were modeled for developed conditions following methodology established in the BLWMP, as indicated in the final column of *Table 3*.

Table 3. Cabezon Drainage Basins-Phase 2

					Land Tre	eatments		Q _{peak}	Volume	
Sub-basin	Acres	DUs/Acre	Tp	Α	В	С	D	(cfs)	(ac-ft)	Methodology/Notes
5B	12.5	6.00	0.13	0.0	28.1	15.0	56.9	46	1.9	D per DPM; B & C per SSCAFCA
5C	18.5	6.00	0.13	0.0	28.1	15.0	56.9	67	2.8	"
7D	50.8	5.20	0.13	0.0	31.9	17.1	51.0	178	5.9	0
1	71.5	4.00	0.13	0	30.0	28.0	42.0	242	9.0	U
2	20.6	4.00	0.13	0	30.0	28.0	42.0	70	3.0	"
6	61.2	6.00	0.13	0.0	28.1	15.0	56.9	222	9.3	"
8	19.0	6.06	0.13	0.0	27.8	14.9	57.3	69	2.9	ll ll
9	28.7	6.18	0.13	0.0	27.2	14.6	58.2	105	4.4	"
10	83.1	6.00	0.13	0.0	28.1	15.0	56.9	301	126	II
12	9.7	Commercial	0.13	0	0	15	85	43	1.9	Free Discharge Allowed
13	50.5	Off-site Commercial	0.13	0	0	15	85	218	10.0	BLWMP
14	58.2	Offsite	0.13	0	10	10	80	231	10.9	BLWMP
15	14.7	Mixed Use	0.13	0	10	10	80	61	2.8	BLWMP
16	19.8	School	0.13	0	25	25	50	70	2.8	Free Discharge Allowed
18	5.0	Park	0.13	0.0	85.0	0.0	15.0	13	0.4	SSCAFCA
19	5.0	Park	0.13	0.0	85.0	0.0	15.0	13	0.4	SSCAFCA
20	5.0	Park !	0.13	0	85	0	15	13	0.4	SSCAFCA
21	15.0	WWTP	0.13	0	10	10	80	62	2.8	Wastewater Treatment Plant
OFF_4	31.9	Off-site	0.13	1	29	28	42	108	4.2	BLWMP
OFF_5	16.3	Off-site	0.13	3	20	25	52	58	2.4	BLWMP
OFF_6	16.8	Off-site	0.13	1	29	28	42	57	2.2	BLWMP
OFF_7	6.8	Off-site	0.13	1	29	28	42	23	0.9	BLWMP
OFF_8	9.6	School	0.13	1	29	28	42	32	1.3	BLWMP
A_1	20.3	Arroyo/Channel	0.13	0	20	30	50	73	2.9	Based on arroyo cross-section
A_2	5.2	Arroyo/Channel	0.13	0	20	30	50	19	0.8	"
A_3	5.1	Arroyo/Channel	0.13	0	20	30	50	18	0.7	"
A_4	4.0	Arroyo/Channel	0.13	0	20	30	50	14	0.6	"
A_5	7.7	Arroyo/Channel	0.13	0	20	30	50	28	1.1	"
A_6	29.6	Arroyo/Channel	0.13	0	20	30	50	107	4.3	"
R_4	6.3	Roadway	0.13	0	5	29	66	26	1.1	Based on roadway cross-section
R_5	4.9	Roadway	0.13	0	5	29	66	19	0.8	"
R_7	1.1	Roadway	0.13	0	3	17	80	5	0.2	U
R_8	7.6	Roadway	0.13	0	4	22	74	31	1.4	"
R_9	9.9	Roadway	0.13	0	4	22	74	41	1.8	"

Peak flow directions and quantities for both on and off-site sub-basins used in the hydrologic modeling are presented graphically in *figure 6*. The major off-site flow entering Phase 2 is in the East Branch of Black Arroyo, crossing Southern Boulevard and entering north of off-site sub-basin 6 (Off_6 in *figure 6*). As this modeling is intended to represent conditions with the Cabezon development, flows listed coorespond to fully developed conditions.

Phase 2 of Cabezon contains only one commercially zoned tract, Tract 12. One other change from the initial submission of the Phase 2 DMP is that it erroneously held commercial properties to historic discharge. This is not required by CORR, and the sole commercial tract in Phase 2, Tract 12, is therefore allowed free discharge.

Hydraulics

Phase 2 has several significant hydraulic features, including two storm drains. Haested Methods' StormCAD v5.5 was used to perform a hydraulic grade line analysis. Friction losses were calculated using Manning's equation, while junction and bend losses were calculated using StormCAD's Standard Method, which multiplies a user-input loss coefficient by the velocity head. Loss coefficients were determined using the COA DPM procedure.

The main Phase 2 storm drain connects to an existing 60 inch RCP, which carries Phase 1 outflow from the pond in Tract 17. Prior to Phase 2 construction, this outflow will be released into Tributary B near the southwest corner of Tract 15 (*figure 3*). In Phase 2, 66 to 72 inch RCP will connect to two 40" x 65" RCP arch pipes approximately 200 feet before flow is released to the to the East Branch Channel (*figure 8*). The of the storm drain line varies between 1.9% and 2.8%. This storm drain, in the Trail Side Road R-O-W and an easement between tracts, will also collect flow from Tracts 7C, 7D, 15, 16, 18, and 8. It will enter the East Branch Channel between Tracts 8 and 9. *Figure 3* shows the location of these facilities, and *figure 8* is a plan and profile of the line.

The other storm drain consists of 36 inch RCP that follows the Cabezon Boulevard R-O-W. It will begin near the southern-most corner of Tract 5C, and convey flows to the release point in the East Branch Channel as it crosses Cabezon Boulevard. The slope of the storm drain line is initially 2.1%, and then approximately 3% to its terminus. Flow from Tract 5C and Cabezon Boulevard is collected in this line. Again, refer to *figure 3* for locations. *Figure 9* is a plan and profile of the storm drain. *Appendix B* contains further design details for both storm drain lines.

For subdivision design, allowable peak flowrates and their entrance locations into the storm drain network are shown in *figure 6*. Each subdivision is permitted free discharge to the major drainage network. If a subdivision drainage plan should call for a higher discharge rate than identified in this plan, the subdivision plan must receive approval

from CORR, SSCAFCA, and AMAFCA for this excess discharge, or else use on-site detention. In the former case, the subdivision drainage plan must show that downstream systems can safely convey this additional flow, and also that the water surface elevation at Black Dam will not be increased. The latter case requires meeting the drainage policies of the CORR and SSCAFCA.

Most of the off-site flows that enter Cabezon Phase 2 are conveyed to the Black Dam in the East Branch Channel. The largest flow, 2252 cfs, is in the East Branch Channel itself, entering Cabezon on the north, near 27th Street. The other East Branch flows enter Cabezon along its eastern edge, and cross one of its sub-basins before entering the East Branch (*figure 6*). The *Golf Course Road Improvements Final Drainage Report* (Wilson & Company, February 2002) was consulted to insure that Cabezon improvements would enhance previously constructed facilities.

As mentioned previously, the East Branch, which carries these flows, will be improved per the discussion surrounding the approval of the Cabezon Master Plan. The proposed trapezoidal channel will be concrete, with a 10 foot bottom, 2:1 side slopes, and a total width between 28 and 34 feet. A multi-use trail will be constructed in the channel R-O-W. The channel was designed to convey the 100 year, 24 hour storm, while the overbank area will provide the necessary freeboard. *Figure 12* shows a typical cross-section.

Based on BLWMP requirements, a structure will be incorporated into Phase 2 to both improve water quality and detain runoff, reducing peak flow into the Black Dam. The Water Quality Structure will be off-site, immediately upstream of the Black Dam, and will treat flow from the entire Black Arroyo Watershed. The structure is designed to remove both floatables and sediment.

Water Quality facilities are generally designed to treat what is called the "first flush" of a storm. The first flush is considered to be the initial ¼" of runoff. As the Cabezon Development encompasses approximately 900 acres, the volume of runoff that must be treated can be quantified in this way:

WQ Volumetric Runoff (acre-ft) =
$$\frac{\frac{1}{4} \text{ in}}{12 \text{ in/ft}}$$
 x 900 acres = 18.75 AF

The approved Cabezon Master Plan calls for 43.3 AF of water quality. Water quality features were originally master-planned in three possible locations: 1) 2 AF adjacent to Tract 19, 2) 7 AF within Tract 17, and 3) 25 AF immediately upstream of Black Dam within AMAFCA right-of-way.

Aggressive interest from homebuilders has accelerated the development schedule from 7 years to 3-4 years. This unforeseen market demand influenced the final locations of the water quality structures. First, Tract 17, originally planned to treat 7 AF, has been designed and approved for 26.5 AF as part of Phase 1 construction. Second, a preliminary drainage study of the 2 AF structure adjacent to Tract 19 showed it was not cost effective and it will not be constructed. Finally, the water quality structure upstream of the Black Dam will remain, and will provide a minimum of 25 AF (*figure 10*).

The total volumetric runoff to be treated within Cabezon when it is fully developed is approximately 50 AF. That number exceeds both the initial volume from the Cabezon Master Plan and also the first flush from the Cabezon Development.

The Water Quality Structure in Phase 2, near the Black Dam, is designed to treat runoff from both the West and East Branch (*figure 10*). The structure will detain a volume of +/- 25 AF using a +/- 350-foot long, stepped weir, 15 feet wide at its top (*Appendix B*). It will be constructed of soil cement. Again, the majority of floatables and sediment will be held behind the weir, and can later be removed from the WQ structure.

In addition, this structure will also increase both detention time and storage volume, serving multiple purposes. The increased detention time again gives opportunity for natural processes to treat runoff to the maximum extent practicable. Also, the volume of runoff entering the Black Dam is reduced for several reasons. Initial abstractions will increase, and the structure also serves as a settling pond, reducing the sediment load that

reaches the Black Dam. More importantly, the structure increases available detention storage. This is because, when the water surface rises above the top of the stepped weir, both the WQ Structure and the Black Dam act to detain stormwater in a single, larger dam.

For this reason, the stage-storage-discharge curve for the Black Dam was adjusted in the Cabezon Phase 2 Model. A 20" x 28" arch pipe allows low flows to exit the new structure and enter the Black Dam relatively unaffected by the WQ Structure. As the water surface rises above the pipe, the WQ Structure will detain water to the top of its weir, 5165'. However, once the water surface elevation overtops the weir, the weir no longer affects the Black Dam hydraulically, and the WQ Structure acts to enlarge storage behind the Black Dam.

Also of note is that the Black Dam stage elevations, originally given in NGVD29, were adjusted to NAVD88, which is used in all work within Cabezon. Using the more current NAVD88 vertical datum adjusts NGVD29 elevations up by 2.8 feet in this geographic area. Current survey data can be reviewed in *figure 7*. Further details can be found in the AHYMO model on diskette in *Appendix A*.

Water Quality Structure Maintenance and Operation

While the Cabezon Development is located within Sandoval County, some of its infrastructure is in Bernalillo County. For example, the Black Dam—to which the East Branch Channel drains—is in Bernalillo County and hence owned by AMAFCA. The proposed +/- 25 AF Water Quality Structure will be located within AMAFCA right-of-way. AMAFCA will own the structure and will be responsible for the structural inspection and maintenance, as well as sediment monitoring and removal.

The East Branch Channel is in Sandoval County, and therefore SSCAFCA and CORR will most likely maintain it, to include trash and debris removal within the channel reach.

The developer, Curb North LLC, is working closely with all agencies in preparation for a turnkey agreement that will outline the details of design, construction, ownership, and M&O of the proposed facility. Final responsibilities for the Water Quality Structure are contingent upon the final agreement.

Conclusion

One of the most important objectives of the Cabezon Communities' Drainage Management Plan is minimizing impact on the Black Dam, both currently and in the BLWMP ultimate build-out scenario. The Black Dam is near its permitted volume when the Modified BLWMP is used to model ultimate conditions. As large portions of the watershed remain undeveloped, however, the Dam it not at risk under current conditions. To help minimize Cabezon's impact, Phase 1 provided 25 AF of detention in Tract 17.

The true measure of impact on the Black Dam is the water surface elevation at the Dam, as predicted for the 100 year, 24 hour storm. *Table 4* compares this water surface elevation as predicted by the Modified BLWMP Ultimate Conditions Model and both the Cabezon Phase 1 and Phase 2 Models. Note that the elevation listed for full development of Cabezon is from the AHYMO model using the 0.05 hour time step (VOL72204.txt). Also, the vertical datum used below is NAVD88, which differs from that used in the Modified BLWMP (NGVD29). The Modified BLWMP Ultimate Conditions Model—essentially the standard—places it at 5167.02 feet, 1.53 feet below the emergency spillway.

Table 4 - Comparison of Water Surface Elevations at Black Dam

Emergency Spillway Elevation	5168.55	Remaining Storage
NOTE: All elevations in NAVD88		Depth Prior to
MAX. WATER SURFACE ELEVATION for:	Elevation	Overflow
	(ft)	(ft)
BLWMP Ultimate Conditions Model	5167.02	1.53
Cabezon Model (Mod. BLWMP w/Ph 1 only)	5167.81	0.74
Cabezon Model (Mod. BLWMP w/Ph 1 and 2)	5165.13	3.42

The Cabezon Model (Phase 1) shows a water surface elevation of 5167.81 feet, an increase of 0.79 feet, leaving 0.74 feet of freeboard. Finally, the Cabezon Phase 2 Model has a water surface elevation of 5165.13 feet. This lowers the water surface by 1.89 feet, as compared to the Modified BLWMP Model.

This is accomplished by the addition of the two large detention ponds, the Phase 1 pond in Tract 17 and the Water Quality Structure adjacent to the Black Dam. Together, these facilities increase storage in the watershed by approximately 50 AF. Just as with the Tract 17 pond, the Office of the State Engineer must also approve the facility, and preliminary contact has already been made.

Together, these facilities should not only improve the quality of runoff from the Black Arroyo Watershed, but also increase the capacity of the Black Dam. This will result in a lower water surface elevation at the Dam. Therefore, the improvements outlined in this document will protect the Cabezon Communities from flooding and erosion damage, and will further safeguard the entire watershed.

LEGEND

SPECIAL FLOOD HAZARD AREAS
INUNDATED BY 100-YEAR FLOOD (ZONE AE)
AS DEFINED BY FEMA

OTHER FLOOD AREAS (AREAS OF 500 YEAR FLOOD)

NOTE: TAKEN FROM FLOOD INSURANCE RATE MAP (FIRM)
MAP NUMBER: 35043C0894 C
EFFECTIVE DATE: JULY 16, 1996

NOTE

EXISTING FLOWS BASED ON FLOOD INSURANCE STUDY PERFORMED BY RESOURCE TECHNOLOGY INC., 1994

CITY OF RIO RANCHO

WILSON &COMPANY

2600 THE AMERICAN ROAD S.E. SUITE 100 RIO RANCHO, NEW MEXICO 87124 (505) 898-8021

FIGURE 4 CABEZON - PHASE 2 DRAINAGE MANAGEMENT PLAN

EXISTING FLOWS & FEMA FLOOD PLAINS

T: \Projects\X4218012\M\Exhibits\8412FIG04.dwg 9/17/2004 11:21:54 AM MDT

cts\X4218012\M\Exhibits\8412F1006.dwg 9/17/2004 11:34:59 AM MDT

STORAGE RATING CURVE TABLE

Elevation (feet)	Incremental Volume (cubic feet)	Cumulative Volume (cubic feet)	Acre-Feet (feet)	SurfaceArea (square feet)
5148.00	2902.10	2902.10	0.10	8935.60
5149.00	207701.40	210603.50	4.80	205637.90
5150.00	220139.60	430743.10	9.90	319357.00
5151.00	393872.70	824615.70	18.90	451569.50
5152.00	406166.30	1230782.00	28.30	494995.40
5153.00	451813.90	1682595.80	38.60	530895.70
5154.00	500511.30	2183107.10	50.10	572649.40
5155.00	543290.50	2726397.60	62.60	603091.20
5156.00	581581.60	3307979.20	75.90	633021.10
5157.00	617944.30	3925923.60	90.10	670280.10
5158.00	655630.60	4581554.10	105.20	712476.40
5159.00	693088.10	5274642.20	121.10	752977.90
5160.00	723941.80	5998584.00	137.70	771818.90
5161.00	747001.30	6745585.30	154.90	788731.90
5162.00	767851.00	7513436.30	172.50	808768.80
5163.00	788759.50	8302195.80	190.60	828446.70
5164.00	811694.80	9113890.60	209.20	857403.10
5165.00	832995.70	9946886.30	228.30	889818.60
5166.00	853634.40	10800520.80	247.90	914272.00
5167.00	876263.40	11676784.10	268.10	936044.60
5168.00	896379.80	12573163.90	288.60	952232.30
5168.25	226971.30	12800135.30	293.90	956111.60

*ELEVATIONS IN NAVD88

CITY OF RIO RANCHO

2600 THE AMERICAN ROAD S.E. SUITE 100
RIO RANCHO, NEW MEXICO 87124
(505) 898-8021

FIGURE 7 CABEZON - PHASE 2 DRAINAGE MANAGEMENT PLAN

BLACK DAM CURRENT TOPOGRAPHY

STORAGE RATING CURVE TABLE

Elevation	Incremental Volume	Cumulative Volume	Acre-Feet	SurfaceArea
(feet)	(cubic feet)	(cubic feet)	(feet)	(square feet)
5148.00	2902.10	2902.10	0.10	8935.60
5149.00	207701.40	210603.50	4.80	205637.90
5150.00	220139.60	430743.10	9.90	319357.00
5151.00	393872.70	824615.70	18.90	451569.50
5152.00	406166.30	1230782.00	28.30	494995.40
5153.00	451813.90	1682595.80	38.60	530895.70
5154.00	500511.30	2183107.10	50.10	572649.40
5155.00	543290.50	2726397.60	62.60	603091.20
5156.00	581581.60	3307979.20	75.90	633021.10
5157.00	617944.30	3925923.60	90.10	670280.10
5158.00	655630.60	4581554.10	105.20	712476.40
5159.00	693088.10	5274642.20	121.10	752977.90
5160.00	723941.80	5998584.00	137.70	771818.90
5161.00	747001.30	6745585.30	154.90	788731.90
5162.00	767851.00	7513436.30	172.50	808768.80
5163.00	788759.50	8302195.80	190.60	828446.70
5164.00	811694.80	9113890.60	209.20	857403.10
5165.00	832995.70	9946886.30	228.30	889818.60
5166.00	853634.40	10800520.80	247.90	914272.00
5167.00	876263.40	11676784.10	268.10	936044.60
5168.00	896379.80	12573163.90	288.60	952232.30
5168.25	226971.30	12800135.30	293.90	956111.60

*ELEVATIONS IN NAVD88

SPILLWAY

CITY OF RIO RANCHO

2600 THE AMERICAN ROAD S.E. SUITE 100
RIO RANCHO, NEW MEXICO 87124
(505) 898-8021

FIGURE 10 CABEZON - PHASE 2 DRAINAGE MANAGEMENT PLAN **BLACK DAM**

PROPOSED WATER QUALITY STRUCTURE

CITY OF RIO RANCHO

&COMPANY
2600 THE AMERICAN ROAD S.E.
SUITE 100
RIO RANCHO, NEW MEXICO
87124
(505) 898-8021

FIGURE 12 CABEZON - PHASE 2 DRAINAGE MANAGEMENT PLAN

BLACK ARROYO EAST BRANCH
TYPICAL CHANNEL SECTION

APPENDIX A Hydrology

-	
2	Ŀ
-	3
7.0	į
U	2
5	
č	
č	
602)
č	
160	
160	
28160	
28160	
160	

D(\$16.66H						
PROGRAM SUMMARY TABLE (AHYMO_97) - FILE = T:\Projects\x4218012\Eng\aHYMO\rev_dmp\QP81604.txt	.02c	RUN DATE	(MON/DAY/YR) =09/08/2004 AHYMO-I-9702a01000C05-AH	(R) =09/0 02a01000	18/2004 0C05-AH	
FROM TO PEAK RUNOFF COMMAND IDENTIFICATION NO. NO. (SQ MI) (CFS) (AC-FT)	RUNOFF (INCHES)	TIME TO PEAK (HOURS)	CFS PER ACRE	PAGE =	H	
ART 7/22/04				TIME=	00.	
WILSON & CO.'S CABEZON COMMUNITIES DRAINAGE MASTER PLAN, PHASE 2 OF DEVELOPMENT: THIS MODEL TAKES BOTH CABEZON PHASE 1 AND 2 INTO THE MODIFIED BLWMP MODEL DEVELOPED BY ASCG (1/20/04) TO ASSESS CABEZON'S SEDIMENT BLUMP MODEL DEVELOPED CONDITIONS IN ALL SUBBASINS; SEDIMENT BULKING ADJUSTED TO 6% REFLECT THIS; ALSO, MUSKINGHAM CUNGE STEDIMENT BULKING ADJUSTED TO 6% REFLECT THIS; ALSO, MUSKINGHAM CUNGE STEDIMENT BOUTH CONDITIONS (COMMAND: ROUTE MCUNGE) CONSISTENTLY USED WITH A TIME STEDIMENT TO THIS MODEL FROW THE BLWMP COUNTING OF STREETS IN LAND TREATMENT REMOVED SUB-BASIN 211 ROUTED ADJUSTED TO EXISTING FIELD CONDITIONS (XING SOUTHERN) NOTHING ELSE HAS BEEN ADJUSTED TO EXISTING FIELD CONDITIONS (XING SOUTHERN) RESPONSIBILITY FOR CHECKING IT FOR ACCURACY PRIOR TO USE * * * * * * * * * * * * * * * * * *			<u>~</u>	RAIN24=	2.703	
COMPUTE NM HYD 101.00 - 1 .33970 545.73 24.330 ROUTE MCUNGE 101.90 1 2 .33970 545.79 24.322 COMPUTE NM HYD 102.00 - 1 .25390 348.10 13.951 ADD HYD 102.10 18, 2 3 .59360 891.45 38.273	1.34290 1.34249 1.03023 1.20892	1.590	2.510 P 2.510 C 2.142 P	PK BF = PER IMP= CCODE = PER IMP=	1.06 48.00 26.00	
APUTE NM HYD 103.90 3 4 .59360 891.59 38 APUTE NM HYD 103A - 1 .18030 275.69 10	1.20826	1.610	347	CCODE = PER IMP=	28.00	
TULIP AND INFLOW TO DAM * * * * * * * * * * * * * * * * * * *	1,18579	1 600	338			
KOUIE 103A.90 HKU LISBON @ TULIF TE RESERVOIR TULIS.DAM 3 **************DIVIDE HYD TO UNRULK	.03281	5.990	.008	AC-FT=	47.588	
VIDE HYD UNBULK 4 75068 SEDIMENT and 51 .02322 ROUTE IN PIPE TO LISBON CHANNEL	.03281	5.990	.008			
	.03243	5.990	008 0	CCODE =	.2	
"S START OF LISBON CHANNEL AT TULIP "S * * * * * * * * * * * * * * * * * * *						
SEDIMENT BULK COMPUTE NM HYD **S ADD 103B TO PREVIOUS HYDROGRAPHS FOR TOTAL Q IN LISBON CHANNEL AT **S DOWNSTREAM END OF BASIN 103B	1.11274	1.520	2.893 P	PK BF = PER IMP=	1.06	
Page 1						

		uzā.na		5.25	Version 1		G _ ^	_	4.521
.2	o _N	1.06 33.00 45.00	18.814	1.06	1.06	.2		45.00	.1.
= CCODE =	PAGE = NOTATION	PK BF = PER IMP= CCODE = PER IMP=	AC-FT=	CCODE = PK BF = PER IMP=	CCODE = PK BF = PER IMP=	CCODE =	PE	PER IMP= CCODE = PER IMP=	CCODE = PER IMP=
.308	CFS PER ACRE	2.340 2.339 3.269 2.731	.022	3.263	321.321.	. 548	99.	2.747 2.682 2.682 2.084 2.595	95.
1.520	TIME TO PEAK (HOURS)	1.570 1.600 1.520 1.540	3.570	3.650 1.520 1.520	1.520 1.560 1.620	1.580		1.570	1.570 1.600 1.520
.14751	RUNOFF (INCHES)	1.12758 1.12660 1.33762 1.25560	.09419	.09202 1.33768 .22746	.16978 .16861 1.37411	.30667	1.12830	1.24418 1.24413 1.19735	.48757 .48702 1.43071
6.610	RUNOFF VOLUME (AC-FT)	7.012 7.006 13.084 20.090	* * 1.507 1.462 .045	1.428 2.533 3.961	10.564 10.491 11.059	21.550 21.524 * * * *	* * * * * * * * * * * * * * * * * * * *	10.944 * * * * * 19.122 106C) 19.117 2.372 2.372 2.372	* * * * 42.96 42.96 * 2.73 * * * * *
QP81604.SUM 165.89 165.68 * * * * * * * * *	PEAK DISCHARGE (CFS)		DAM	104B	23 23 23		31.9	* * * * * * * * * * * * * * * * * * *	100 100 100 100 100 100
.84018	AREA (SQ MI)	.11660 .11660 .18160 .30000	@ TULIP POND/ * * * * * * * * * .30000 3% ************************************	.29100 .03550 .32650 .900000000000000000000000000000000000	1.16668	1.31758	3590	* * * * * * * * * * * * * * * * * * *	TH SUC * * * * * * * * * * * * * * * * * * *
1& 3 3 1038.90 3 * * * *	FROM TO ID NO. NO.	* 4844*	2287 *ET	W 42-	1W4 H	74	* - * * *	* * * ru II H m ri	FLUENCE W 5& 4 5 5 5 5 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1
103B.10 3.10 THRU 104B TO 103B.90	HYDROGRAPH IDENTIFICATION	START OF SUNSET CHANNEL * * * * * * * * * * * * * * * * * * *	U4.10 THRC * * * * * * RVOIR T ******DIVI	. 9	ADD HYD 104.30 5& 4 ROUTE MCUNGE 104.90 3 SEDIMENT BULK 105.00 - COMPUTE NM HYD 105.00 - *\$ LISBON CHANNEL AFTER SUR-RASIN 10		* * * *	CHANNEL INCLUD CHANNEL INCLUD TTE 106B.10 TO 1 UNGE NM HYD TO 10	ANNEL AFTER 106.2 106.2 106.3 106.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4 107.4
ADD HYD *S ROUTE 1036 ROUTE MCUNGE *S * * * * *	COMMAND		*S ROUTE T *S * * * * * * * * * * * * * * * * * *	ROUTE MCUNGE SEDIMENT BULK COMPUTE NM HYD ADD HYD *S LISBON CHAN	ADD HYD ROUTE MCUNGE SEDIMENT BULK COMPUTE NM HYD *S LISBON CHAN	ADD HYD ROUTE M *S * * *S STAR	** * * * * * * * * * * * * * * * * * *	*S * * * * * * * * * * * * * * * * * *	- 4 5 5 5 7 4 7 4

49.00	ж 20	46.00	59.00		54.00			1.06		1.06	41.00	52.00	57.00
PER IMP=	PAGE =	PER IMP=	CCODE = PER IMP=		CCODE = PER IMP=		CCODE =	PK BF = PER IMP=		PK BF =	PER IMP= CCODE =	PER IMP=	PER IMP=
2.648	CFS PER ACRE	2.970	2.724 2.724 3.026	2.819	1.185 1.184 2.891	1.276	1.275	3.703			2.840	2.750	3.527
1.590	TIME TO PEAK (HOURS)	1.550	1.580 1.590 1.570	1.580	1.590 1.610 1.570	1.610	1.620	1.520			1.560	1.600	1.520
.50702	RUNOFF (INCHES)	1.38444	1.40799 1.40739 1.54624	1.45302	.60914 .60839 1.47330	.65826	.65766	1.57953		* *	H.3	1.46049	1.52010
QP81604.SUM 107.10 1& 2 5 1.68988 1068.93 45.696 **********************************	HYDROGRAPH ID ID AREA DISCHARGE VOLUME F IDENTIFICATION NO. NO. (SQ MI) (CFS) (1	HYD 110.00 - 3 .05090 96.74 3.758 * * * * * * * * * * * * * * * * * * *	110.10 1& 3 6 .13730 239.38 10.310 110.90 6 2 .13730 239.35 10.306	AP 108.91 * * * * * * * * * * * * * * * * * * *	# # # # # # # # # # # # # # # # # # #	"S LISBON CHANNEL DISCHARGE @ SOUTHERN BLVD *S * * * * * * * * * * * * * * * * * *	# # # # # # # # # # # # # # # # # # #	116.00 - 116.10 1&	END LISBON CHANNEL AND LISBON ARROYO WATERSHED * * * * * * * * * * * * * * * * * * *	BULK PECOS/RODEO CHANNEL * * * * * * *	114.00 - 1 .06980 126.88 4.917 * * * * * * * * * * * * * * * * * * *	115.00 - 1 .12520	CHANNEL * * * * * * * * * * * * * * * * * * *
ADD HYD COMPUTE NM HYD *S * * * * * * *S BALTIC CHAR *S FLOW AT CAR *S * * * * * *	COMMAND	COMPUTE NM *S * * * * * * * * * * * * * * * * * *	TH TE *		*S * * * * * * * * * * * * * * * * * *	*S * * * * * * * * * * * * * * * * * *	*S * * * * * * * * * * * * * * * * * *	PUTE HYD	* * * * * * * * * * * * * * * * * * *	SEDIMENT *S * * *	COMPUTE NM HYD ROUTE MCUNGE **S * * * * * * * * * * * * * * * * * *	*S * * * * * * * * * * * * * * * * * *	* 19

1.580 2.780	.590 2.	TIME TO CFS PAGE = 4 PEAK PER NOTATION (HOURS) ACRE NOTATION	2.826	1.600 2.825 CCODE = .2 PK BF = 1.06 1.520 3.308 PER IMP= 46.00 1.570 2.793	1.610 1.538 1.520 3.150 PER IMP= 38.00 1.530 3.145 CCODE = 2	.600 1.602	1.610 1.601 CCODE = .2	1.540 2.657 PER IMP= 28.00 1.610 1.621 1.520 3.238 PER IMP= 39.00 1.630 1.620 CCODE = .2	530 3.	1.550 3.192 PER IMP= 57.00
1.43168	.4651	RUNOFF (INCHES)		1.43813 1.35757 1.41519	.80433 1.25507 1.25431	833	.83320	1.10943 .84189 1.29385 .84127 .85508	1.25511 1.25378 1.29383 1.28075	1.53839
PUR * * * 6	NGE 113.90 6 2 HYD 112.00 – 1 ** * * * * * * * * * * * * * * * *	COMMAND IDENTIFICATION NO. NO. (SQ MI) (CFS) (AC-FT)	**************************************	INFOIT BULK 117.00 - 1 .125 APUTE NM HYD	* * * CONFLUENCE OF IVORY AND LISBON ARROYOS IN PARK	118A.10 - 5 2 5 2.6570 2724.19 118A.10 - 5 5 2.6570 2724.19 118	** * * * * * * * * * * * * * * * * * *	11 11 * * * * 12C * * * * * * *	118B - 1 .06200 124.61 4.15 118B.90 1 2 .06200 124.42 4.14 120A.10 2& 1 3 .12780 264.93 8.81 120A.10 2& 1 5 .18980 382.53 12.96 LUENCE OF TRIBUTARY "C" WITH WEST BRANCH ARROYO * * * * * * * * * * * * * * * * * *	18 5 1 12450 254.3 18 5 9 3.14480 3479.7 3.1480 3479.7 3.1480 CHANNEL, NORTH Pag

# * * * * * * * * * * * * * * * * * * *		
P. * * * * * * * * * * * * * * * * * * *	56.00	
P + * * * * * * * * * * * * * * * * * *	CCODE = CCODE = PER IMP=	
P * * * * * * * * * * * * * * * * * * *	.53	1.
E COMPUTED WITH ORIGINAL TP's FROM 226.79 12.818 1.65 3 14830 226.79 12.818 1.65 3 14830 226.79 12.818 1.65 3 14830 226.79 12.818 1.65 3 15.99 1.56 1 00730 315.94 19.717 1.65 3 10.0030 106.23 1.85 4 20.00410		
E COMPUTED WITH ORIGINAL TP'S FROM 2	81.90	0
P * * * * * * * * * * * * * * * * * * *	∞.H.o.	
E COMPUTED WITH ORI 1 14830 2 14830 3 14830 3 14830 3 14830 10 00730 11 0 00730 11 0 00730 12 12830 13 10 00730 14 1 00730 15 11350 16 11350 17 10 14930 18 11350 19 11350 10 11350 11 11350	23.48	
* 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.04750 .01450 .06200	1
	784	Ŷ
SOUTH 0 * * * * * * * * * * * * * * * * * *	3 2& 3	n l
N AND * * * * * * * * * * * * * * * * * * *	350.91 360.00 360.10	
*S * * * SOUTHERN AND SOUTH OF TULITY *S * * * * * * * * * * * * * * * * * *	ROUTE MCUNGE COMPUTE NM HYD ADD HYD	

1.774 1.774 ccode = .0	CCODE = .	.77	040	CFS PAGE = 6 PER NOTATION	1.789		.043 PER IMP= 38.	.912 PER IMP= 3	.344 PER IMP= 32.	2.963 PER IMP= 34.00 2.959 CCODE = 1	.609 .607 CCODE =	2.367		.010 AC-FT= 35.841	.010	2.550 PER IMP= 29.00	.712 .711 CCODE =	7 PER IMP= 67.		1.621	1.621		
1.620	1.630	.71	1.630	TIME TO PEAK (HOURS)	1.620					1.530 1.530		1.580		2.990	0.0	0.5	1.550	5.5		1.610	1.610		
1.64483	1.64377	1.63899	6611	RUNOFF (INCHES)	1.06548					1.20217		1.19115		.03963	03	03	.34060	43		.95469	.95469		
9P81604.SUM SOUTHERN TO THE THE WEST ************************************		5 50.1	71 73.	RUNOFF VOLUME (AC-FT)	17 226.004	* * * * * *	57 9.	33.0	17. 17.	91.303 88 9.701 57 9.699	54 27.204 23 27.198	37.075	* * * * * * * * * * * * * * * * * * * *	58 1.233	10	13.0	73 14.263 31 14.231	84 19.5 * * * *	*****	3.86 245.537 AND SEND TO	THROUGH TIMING. 3.86 245.537 160 ARE REMOVED	BRANCH) EAST	ge 6
OF OF NINEL		650	1086 * * * * * ARROYO	PEAK DISCHARGE (CFS)	4*	* * * * *	5151	110	744	286.88 286.57	727	* * *	* * * *	3.	3.	357.	357.	479.	*	04	ZOM	E	ш.
E NORTH S ROM THE I HE UNSER 0 *****0	.57	742	* * * * * * * * * * * * * * * * * * *	AREA (SQ MI)	3.97714	* * * * * *	.14660	.08730	.28570	.15130	43700	.58360	M * * * * * *	3% ********		.21910	.78519	.845 NCH	MP AP 159.20 **	4.82233 "FIRST FLUSI	LLY UUI UP IHE SYSTE 4.82230 50 ; BLWMP SUBBASINS 25	TRACT 12 (DRA N TRACT 17 WH	
ET AT T ECTION ERN TO AP 360. 2	UNSER CHANNEL 2 5 ER CHANNEL	5 -	1& 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	FROM TO ID NO. NO.	* * 2 * * 2 * * 2	* * * *	, Н	, H	18, 2	1	2& 3 6 6	4& 2 6 * * * * *	* * * * * * *	2 LK BY	54		1& 6 6 6 2	H	BLWMP	TO DELETE	SENITA 5 N HERE	CIAL T	
*S ADD THE TOTAL FLOW IN 20TH STRE *S TOTAL FLOW ROUTED TO THE INTERS *S THIS FLOW IS ROUTED UNDER SOUTH *S ***********************************	ROUTE MCUNGE 360,91 2 *S EARTH LINED PORTION OF UNSER CH	SEDIMENT BULK COMPUTE NM HYD 121.00	ADD HYD *S * * * * * * * * * * * * * * * * * *	HYDROGRAPH COMMAND IDENTIFICATION	D HYD 121.20	"S " " START OF TRIBUTARY " A " " " " " " " " " " " " " " " " "	ROUTE MW HYD 153.00 ROUTE MCUNGE 153.90	ROUTE MCUNGE 150.90	ADDI HYD 152.10 ROUTE MCUNGE 152 90	COMPUTE NM HYD 151.00 ROUTE MCUNGE 151.90	ADD HYD ROUTE MCUNGE 152,91 *< ***********************************	ADD HYD 153.10	ROUTE HYD. THROUGH TRIB	ROUTE RESERVOIR TRIBA.DAM 6 *S ************DIVIDE HYD TO UNBU	DIVIDE HYD SEDIMENT	NM HYD	ROUTE MCUNGE 154.10	ADD HYD 159.10 *S * * CONFLUENCE OF TRIB. *	BLACK AKKOYO @ UNSEK BLV ***********************************	ADD HYD *S DUNCH AND ADJUST HYDROGRAPH TO *S MATCH AND ADJUST HYDROGRAPH TO *S MATCH AND ADJUST HYDROGRAPH TO	ALL	<pre>*S 253 REPLACED BY CABEZON COMMER *S AND 7A, 7B, 7C (ALL DRAIN TO P</pre>	

	85.00	36.00	77.00	10.452	.2	ION		.2	1.06	85.00	80.00	1.	00.6	50.00					1.06	85.00
	21 PER IMP= 25 25 CCODE =	184 PER IMP= 174 CCODE = 269 PER IMP= 172	26 PER IMP= 26 CCODE = 06	46 AC-FT=	46 46 CCODE =	PAGE		47 48 CCODE =	PK BF =	313 PER IMP= 660	974 PER IMP=	75 CCODE =	704 PER IMP= 675	605 PER IMP=	62		Y		PK BF =	324 PER IMP=
	4.32	www.		1.9	1.94	CFS PER ACRE		1.64		1.6	3.9		2.7	3.6	1.67					4.3
	1.510 1.610 1.630	1.520	in min	1.670	1.670 1.670 1.690	TIME TO PEAK (HOURS)		1,630		1.510	1.520		1.520	1.510	1.640					1.510
	1.91297 .95779 .95691	1.25499 1.25357 1.35868		1.37641	1.37641 1.37641 1.37585	RUNOFF (INCHES)		.99508		1.91294	1.82276	.0213	1.02079	1.46839	1.02450					1.91298
ω	1.592 247.129 246.904	15.354 15.337 13.688 29.025	0770	36.697	35.596 1.101 35.581 REMOVED	RUNOFF VOLUME (AC-FT)	14	282.486		8.050	8.837	119	1.866	3.618	304.677	*				.551
QP81604.SUM	43.14 5032.68 5031.78	467.47 465.95 395.16 849.19	2000	****	603.94 18.68 603.98 ASINS 620,161	PEAK DISCHARGE (CFS)	OFFSITE TRACT O REMOVED	5612.00 5613.00		217.79 5738.23	231.21	87.2	64.55 5928.51	106	5991.48	* * * * * * *	N HILLS SD	TRACTS 4A,4B; BY 17,7A,7C	Subbasin 3A	14.95 Page 7
BY A_6	.01560 4.83790 4.83790	.22940 .22940 .18890 .41830	.08160 .08160 .49990	*	.48490 .01500 .48490 ; BLWMP SUBB	AREA (SQ MI)	REPLACED BY LWMP 650 ALSC	5.32280		.07890	0.4	5.49260 t overlaps	.03730 5.52990 SOUTH ERON WE	.04620	5.57610	* * * * * * * * * * * * * * * * * * * *	BRANCH East Branch REVISIONS DRAIN TO WESTERN	TED BY REPLACED	P	.00540
EPLACED	192	1719	031	3 B	3 2 BEL	OL TO NO.	13, 161 RT OF B	2 6		2	12	2 that i	127	T T N	11 RPANCE)	O EAST E NG OF EC ASE 1 RE THAT DE	,254 REMOV 3; 252 REP L,7A; 254	r of c	н
~	18, 5	1 1		6 UNBULK	and 3 RES	FROM ID NO.	<	5& 2 6	~	1& 5	1& 5	5 area	18 2 13 AND	NCH)	10 H	- " (RROYO EA inning o N PHASE SINS THA	250,25 A,3B; B,11,7		ı
*S BRANCH); 160 IS WEST BRANCH,	COMMERCIAL UNIT MPUTE NM HYD D HYD UTE MCUNGE BIWMP FTIF RESIN		COMPUTE NM HYD 158.00 ROUTE MCUNGE 158.90 ADD HYD 158.10 **S INCERPORTED AN TANK	S ONSER GALEWAI DAM ROUTE RESERVOIR #S ************************************	DIVIDE HYD SEDIMENT ROUTE MCUNGE 158.91 *S CABEZON REVISIONS PHASE 2	HYDROGRAPH COMMAND IDENTIFICATION	*S 620 REPLACED BY OFFSITE TRACT *S (ALL DRAIN TO WEST BRANCH); P.	ADD HYD ROUTE MCUNGE *S ADJUST SEDIMENT BULK	SEDIMENT BULK *S COMPUTE CABEZON SUBBASIN 13	COMPUTE NM HYD 13.00 ADD HYD 13.10 *S COMPUTE CABEZON SUBBASIN 14	COMPUTE NM HYD 14.00	ROUTE MCUNGE 14.90 **S Area of 650 is reduced by **s CAREZON basins	COMPUTE NM HYD 650.00 ADD HYD 650.91 *S WEST BRANCH ARROYO BETWEEN	COMPUTE NM HYD A_6	ADD HYD 650.99 18. *S END OF THE BLACK'S ARROYD WES.	2	*S BEGINING OF THE BLACK'S ARROY *S End of West Branch - Beginni *S THE FOLLOWING ARE CABEZON PH *S BEGIN WITH CABEZON SUBBASINS *S WHICH REPLACE TRRITARY R AN	*S BLWMP SUBBASINS 251,252,250, *S 251 REPLACED BY TRACTS 3A,38 *S 250 REPLACED BY TRACTS 3B,11	SEDIMENT BULK *S Following is the Northwest cor *S It will be held on TD=4	COMPUTE NM HYD OFF_1A

4.

	.201	٢	34.30	90.00	85.00		.212		80	NO	27.00	90.00	85.00		.163	.2	55.40	85.00	27.00	00.06	85.00	
	AC-FT=	1000	ER	PER IMP=	CCODE = PER IMP=		AC-FT=		PAGE =	NOTATION	CCODE = PER IMP=	PER IMP=	CCODE = PER IMP=		AC-FT=	CCODE =	PER IMP=	PER IMP=	CCODE = PER IMP=	PER IMP=	CCODE = PER IMP= CCODE =	
	1.501	1.501	300	44	4.0		1.469	1.469	CFS	ACRE	1.469	.42	.32		1.629	1.629 1.629 1.998 1.999	2.177 3.605 2.767	4.322	w oi r	. 4 a	3.799 4.322 4.320	
	1.800	1.800					1.820	1.820	TIME TO PEAK	(HOURS)	1.840				1.760	1.760 1.760 1.540 1.600	1.610 1.510 1.530	1.510			1.560	
	1.91268	1.91266	i N N	0,0	0.0		1.91279	1.91277	UNOF	(INCHES)	1.91282	9658	.5776		1.91284	1.91282 1.91282 1.67445 1.67014	1.64154 1.49678 1.54519	1.91297	9112	9658	1.60898 1.91297 1.91227	
.sum	.551	.534	361	.105	. 571		.571	.554	RUNOFF	(AC-FT)	.554	10 m	93		.479	.465 .014 1.401 1.398	2.393 4.343 6.735	.898 there is	9VV	14	1.416 1.214 1.214	
QP81604	5.19	70 .70	22	8.08	5.0		×.2	5.11	PEAK DISCHARGE	CFS	8.90	5.88	ωO.		4.90	4.75 .15 20.06 20.08	38.07 125.52 144.75	24.34 _3c although	4.3	0.0	.91	Page 8
low assumed to	.00540	.000	.00540	.00100	.00560	0.22 ac-ft evel	0 ***	.000	AREA	(80	.00543			0.18 ac-ft vel	.00470	.00456 .00014 .01569	.02733 .05440 .08173	.00880 f_3A thru off	.00880	.00140	.01650 .01190 .01190	
ig pond and outflow a ment level	17 RY 3		17	171	n H pd	11.	17 BY	17 57	OT OI	NO.	212	17	177	me =	17 BY 3	17 58 11	1 1 4	1 te Off	212	17	2 1 2	
ting po ume and lopment	5	17 17 and 56 17 2	1& 2	18,2	2 - ting po	al volu velopme	1 UNBULK		FROM	ON	17	1& 2	2 - ting po	al volu	2 UNBULK	17 and 1&17 2	18 3 18 2	to project 3Aion to rout	1 - 18 2	1& 2	7 - 7	
ROUTE OFF_1A through existing p Pond Exists in field; Volume an limit flowrate to predevelopmen	P.Out	UNBULK SEDIMENT OFF_1A.9	0ff_1c 0ff1c.1	21ST 21ST.1	off_18 through exis	Pond Exists in field; Total vol limited flowrate to predevelopm	P.Out DIVIDE HYD TO	UNBULK	HYDROGRAPH	IDENTIFICATION	0ff_18.9 0ff_1D 0ff1D.1	22ND 22ND.1	22ND.9 Off_28	in field; Tot rate to prede	P.Out DIVIDE HYD TO	SEDIMENT OFF28.1 OFF28.9	0ff28.91 3A 3A.1	NM HYD Odf_3A roadway cross-section	OFF3A.9 OFF_3C OFF_3C	24th 24TH.1	24TH.9 Off_3B Off_3B.9	
*S ROUTE OFF_1A *S Pond Exists *S limit flowra *s	ROUTE RESERVOIR *S ***********************************	DIVIDE HYD ROUTE MCUNGE	COMPUTE NM HYD ADD HYD	ADD HYD	4	*S Pond Exists *S limited flow *S	ROUTE RESERVOIR *S ***********************************	DIVIDE HYD		COMMAND ID	ROUTE MCUNGE COMPUTE NM HYD ADD HYD	COMPUTE NM HYD ADD HYD	ROUTE MCUNGE COMPUTE NM HYD *S ROUTE OFF 2R	*S Pond Exists *S limited flow	ROUTE RESERVOIR P.Out 2' *S *********************************	ADD HYD SEDIMENT AND 58 ADD HYD OFF28.1 18.17 2 ROUTE MCUNGE OFF28.9 2 1 **S AND 316.7 2 1	ADD HYD COMPUTE NM HYD ADD HYD **C	Area MPUTE USe	TE MC	COMPUTE NM HYD ADD HYD	ROUTE MCUNGE COMPUTE NM HYD ROUTE MCUNGE	

	27.00	00.06	.2		23.90			73 00				00.	85.00			1.540	6	z		00.06			85.00		27.00	90.00	2		.2	C	56.10		00.	85.00		
	PER IMP=	PER IMP=	CCODE =	-	PEK IMP			0	CCODE =			PER IMP=	PER IMP=			AC-FT=	PAGE =	NOTATION		PER IMP=		CODE	PER IMP=	200	PER IMP=	PER IMP=	CCODE =	1	CCODE =	L	PER IMP=		PER IMP=	PER IMP=		
	2.962	.41	90.	.93	.57			30	2.889			1.406	4.272			1.389	CFS	ACRE	.38	.35	2.581	.55	.32	.53	.95	41	49	45	.45	.67	3.620	7.	1,434	4.321		
1	1.520	NI	ان	J.	500			57	1.740		- 1	1.530	1.510			1.840	TIME TO PEAK	UR	84	. 51	1.740	74	51	74	. 52	.51	75	58	25.	.56	1.510	90.	1.530	1.510		
1	1.11395	.9658	7629	1685/	. 5518			7388	1.68822			.46846	1.91280			1.91258	RUNOFF	(INCHES)	.9125	9656	1.73275	7389	9129	7441	.1139	.9658	.7296	6744	.0/41	6433	1.50563	. 0223	.46846	1.91297		
7	1.398	.14	54	66	.62			2.9	12.533		1	176.	3.744			3.744	KUNOFF	(AC-FT)	3.631	110	16.154	6.6	.571	S	17.544	, ,	17.683	4.4	4.	32.036	41		.390	1.592		
99	38.78	61	10	35.8	210.6		*******	94.4	257.35	tion	,	23.03	100.35			32.62	PEAK	(CFS)	31.64	14.4	288.69	94.2	0.4	2	שית	3.9	100	28.9	7.07	25.	280	termine	14.32	43.14		Page 9
01000	.01500	.00140	.01640	05950	.09210		*******	.139	.13920	etention/retenti	02500	0,000.	.03670	other	evel	.03670	AREA	(SQ MI)	.03560	.00520	.17480	.18000	.00500	18560	.19030	.00140	.19170	.27343	6+617.	.36553	0621	ot (11) to	.01560	be required		
+	17	7	11	1	9		4444	2 2/	$\overline{}$	ve d	-		H	the	ent 1	17 BY	O O	NO.	17			7	15	7	77	10	11	7 "	1 4A	25	Нα	rcial 1	-	1.1.W	lev	
	1& 2	18		TO	18 2		Modif	1	2	exten			L DO	as de	evelop	1 UNBUI	T D I	0	17 and		1/8 28	П.	Г	5	1& 2	1 %	7 7 7	18, 4	ubbasi	3& 6	1 %	comme	1	ığ tha	opme	
off 3n	OFF3D.1	25th 25TH.1	25TH.9	4A	HYD 4A.1 18 2	STORM DRAIN MAIN LINE	SUBBASIN 211 from RIWMP (Modifia	211A	211.90	igation shows	2110	condition of 211B	UTE NM HYD 211B - ROUTE 211R through EXISTING BOND	Southern Plaza has ponds, as do	flowrate to predevelopme	P.Out *DIVIDE HYD TO	HYDROGRAPH	IDENTIFICATION	SEDIMENT	211C	211.10	211.91	OFF2A.9	211.92	OFF2C.1	23RD 23RD 1	23RD.9	23RD.91	e Flow from Su	23RD.93 23RD.94	38 38 1	Run a predevelopment for commerci	11.00	ROUTE Unit 11 through pond that	ate to predeve	
COMPLITE NM HVD			ROUTE MCUNGE ADD HYD	COMPUTE NM HYD	ADD HYD			COMPUTE NM HYD	*C Dun predevel	*S Field investigation shows extensive	"S on this site	*S Current cond	A P	*S Southern Pla *S individual		ROUTE RESERVOIR P.Out 1 *S **********************************			DIVIDE HYD	COMPUTE NM HYD	ADD HYD	ROUTE MCUNGE		ADD HYD		COMPUTE NM HYD	CUNGE	ADD HYD ROUTE MCUNGE	th		COMPUTE NM HYD ADD HYD	a prede	MPUTE NM HYD Real Unit 1	Δ.	*S ITMIT TIOWER	

age 9

.616	66.00	80.00	53.20	53.20		53.20		10 NC	54.70	54.70	54.70		54.70			50.20	50.20	
AC-FT=	CCODE = PER IMP=	PER IMP=	PER IM	PER IMP=		PER IMP=		PAGE = NOTATION	PER IMP=	PER IMP=	PER IMP=		PER IMP=			PER IMP=	PER IMP=	
1.418	1.418 1.418 3.990			3.514	3.514	3.515	2.692	CFS PER ACRE	3.548	3.545	3.547	3.546	3.546	3.546	3.546	3.452	3.455	
1.820	1.820 1.820 1.840 1.510			1.520	1.520	1.520	1.570	TIME TO PEAK (HOURS)	1.520	1.520	1.520	1.520	1.520	1.520	1.520	1.520	1.520	
1.91293	1.91293 1.91293 1.91285 1.69262	636	1.46814	1.46812	1,46813	1.46813	1.62452	RUNOFF (INCHES)	1.48753	1.48752	1.48753	1,48752	1.48752	1.48752	1.48752	1.42964	1.42965	
I, 592	1.544 .048 1.544 .605		*	1.179	.712	* 1	42.130	RUNOFF VOLUME (AC-FT)	. 523	1.191	.591	1.782	1.004	2.786	3.309	.963	.454	
QP81604.SUM 14.16	* * * * * * * * * * * * * * * * * * *	769.72 17.82 785.36 780.51	15.30	33.87	49.17	18.76 ************************************	837.67	PEAK DISCHARGE (CFS)	14.96	34.06	16.91	50.97	28.73	79.70	94.66	27.90	13.18	OT aped
.01560	.01513 .00047 .01513 .00670	.44946 .00660 .45606	*****	*******	AND B .02186	.00834 ************************************	.48626	AREA (SQ MI)	,00659	,01501	*****	AND F	.01266	, F, AND G .03512	,E,F,AND G .04171	.01263	,00596	AND I
T N	SEDIMENT AND S SEDIMENT AND S 11.90 17 2 R_2 1 18 2 2	38.2 2& 3 R_1	ROLOGY BASINA – 3 *************	BASINB 4	ADD BASINS A .B 3& 4 5	BASINC 6 ***********************************	_	FROM TO HYDROGRAPH ID ID ID ID NO. NO.	BASIND - 1	BASINE 2	BASINF - 3	ADD BASINS E E.F 2& 3 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	BASING - 3	ADD BASINS E .F.G 3& 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4	SON	BASINH - 3	4	ADD BASINS H
ROUTE RESERVOIR *C ***********************************	DIVIDE HYD ROUTE MCUNGE COMPUTE NM HYD ADD HYD	ADD HYD COMPUTE NM HYD ADD HYD ROUTE MCUNGE	"S INSERT BHI HYDROLOGY COMPUTE NM HYD BASINA - *S***********************************	*S BASIN B COMPUTE NM HYD BASINB - *S**********************************	*5 ADD HYD *S***********************************	#SSIN C COMPUTE NM HYD	*S ADD 3B.9 AND IN ADD HYD *S	COMMAND IDEN	COMPUTE NM HYD BASIND + S***********************************	*S BASIN E COMPUTE NM HYD BASINE - *S**********************************	*S BASIN F COMPUTE NM HYD BASINF - *S**********************************	*S ADD HYD E.F 2& 3 **********************************	*S BASIN G COMPUTE NM HYD BASING - *S**********************************	*S ADD BASIN ADD HYD E.F.G 3& 2 *S**********************************	*S ADD HYD	*S BASIN H COMPUTE NM HYD BASINH - *S**********************************	BASIN I COMPUTE NM HYD BASINI *S*********************************	S

Page 10

3.453	3.528 PER IMP= 53.20	3.459	3.518	2.509 PER IMP= 15.00		3.584 CCODE = .2 3.991 PER IMP= 66.00	3.616 3.620 PER IMP= 56.10	3.614 3.603 CCODE = .2		1.132 AC-FT= 20.297	CFS PAGE = 11 PER NOTATION	1.132 1.132	1.130 CCODE = .2	.152 PER IMP= 80.		1.244 CCODE = .2 2.511 PER IMP= 15.00		1.332 CCODE = .2 3.645 PER IMP= 57.30 1.400
1.520	1.520	1.520	1.520	1.560	.510	1.530	1.530	1.520 1.530 1.550		1.900	TIME TO PEAK (HOURS)	1.900	1.960	1.510		1.520		1.570 1.510 1.560
1.42964	1.46819	1.43287	1.46964		$-\infty$	1.48669	1.50679	1.50636 1.50559 1.56833		1.55038	RUNOFF (INCHES)	1.55038	1.54850	1.82340		1.50889		1,49977 1,52115 1,50056
1.417	.133	1,551	4.860	46.990 1.110 48.099	3.81	3.814	4.283	6.797 6.793 54.893		54.264	RUNOFF VOLUME (AC-FT)	52.636	52.572	53.399	100	0 0	222	62.198 2.410 64.607
QP81604.SUM 41.08	3.84	44.92	J (INTO MH 18) 139.58	962.16 37.57 996.91	57.0	110.33	- 7	0	ie1d	475.42	PEAK DISCHARGE (CFS)	461.15 14.26	460.35	61.11 475.98	2/100	750	200	662.80 69.29 723.38 Page 11
.01859	.00170	I AND 3 .02029 ********	E, F, G AND H, I,06200 SINS OMITTED**	.02340		.04810	.05330 .03130		h 7 ac-ft of nder of park/fi	3% **********	AREA (SQ MI)	.63657 .01969 east end of 15	3657 PMENT Y 8,9,1	02300	.07932	.00780	.03090 .77759 anch	. 02970
3	H**	SINS H,			1 f Cabez	1	17	1172	in onit des with gremaind	2 BY	OT ON NO.	2 51 17 to	1 PHASE 2 10B REMC 256 REP	777	122		1 2 ast Br	12
1& 3	BASIN J	ADD BASI .J 1& 3	ADD BASI 2& 3 OWING WC	2& 7 2& 7 1& 2	o noi		1& 2	18 2 18 3	in gra	1 UNBU	FROM ID NO.	and low at	2 SEGIN 540,53 5,16;	18 2	18 2	18.2	1000	2 3& 1
ADD HYD KS************************************	BASINJ	-*	EFG.HIJ IYDROLOGY, FOLLC	00 HYD 78.91 28.7 2 2 3 3 3 17.10 18.2 3	4B of the Intersect	Road Section 3	ADD HYD 4B.91 1& 2 COMPUTE NM HYD 5A - *S Add 4B.91 and 5A at Intersection	5A.1 5A.1 5A.9 POND.IN	*S Pool Based on Final design grade *S low storage/WQ and then filling *S graded at 2%	**DIVIDE HYD TO	HYDROGRAPH IDENTIFICATION	DIVIDE HYD P.Out.3 2 SEDIMENT and *S Route unbulked pond outflow at *S through a 60" pine	SULTE MCUSIGN DE POUT.9 2 1 .6 S END OF CABEZON PHASE 1, BEGIN PHASE 2 DEVELO S BLWMP SUBBASINS 255,256,540,530B REMOVED; S 255 REPLACED BY 10.20: 530R REPLACED BY 10.20: 530R REPLACED BY 10.20: 530R REPLACED BY 10.20:	15.00	70.1	70.91 18.00 18.10	MPUTE NM HYD 16.00 D HYD 18.20 1 Route combined flow at 18 t	/8 plpe 18.90 8.00 8.10
ADD HYD	COMPUTE NM HYD	7.5 ADD HYD *S***********************************	*S END BHI H	ADD HYD COMPUTE NM HYD ADD HYD	COMPUTE NM HYD *S Route 48 to	ROUTE MCUNGE COMPUTE NM HYD *S Add 4B and Road	COMPUTE NM HYD	ADD HYD ROUTE MCUNGE ADD HYD *S ROUTE ELOW	*S Pond Based *S low storag *S graded at	ROUTE RESERVOI	COMMAND	DIVIDE HYD *S Route unbu	ROUTE MCUGE *S END OF CAB *S BLWMP SUBB *S 255 REPLAC *S 540 REPLAC	COMPUTE NM HYD ADD HYD ROUTE MCUNGE	COMPUTE NM HYD	COMPUTE NM HYD ADD HYD	COMPUTE NM HYD ADD HYD *S Route comb	COMPUTE NOTE COMPUTE NM HYD ADD HYD

		•	54.	65.	57.		.69	62.		62.	65.		59.	. /6		= 12	NOI		.09		26.	36.			
		L	PK BF = PER IMP= CCODE =	PER IMP=	PER IMP=	CCODE =	Σ	Σ		CCODE = PER IMP=	ER	CCODE =	A II I	TEK LIMPII		PAGĘ :	NOTATION		PER IMP=		PER IMP=	CCODE = PER IMP=			
			0.0	78	2.794	1.0	3.005		.86	2.796	.88	880	2.599	. 20		CFS	ACRE	2	2.413	.46	2.662	1.731 2.001	1.920	2.523	
			1.550	5.5	1.590	25	1.600	9.		1.640			1.630			TIME TO	(HOURS)	2	1.670	.67	1.640	1.690	1.660	1.640	
			1.48017	.48	1.51440	494	1.68166	. 582	545	1.54325	. 549	. 559	1.54100		1	HOND	(INCHES)	5319	1.55347	. 5369	1.55179	1.05223	1.15782	1.47924	
	* *	* * * * * * *		1.303 20.901	7.382	.283		4 *	15.6	moo	Simil	ייי	15.689			RUNOFF	(AC-FT)	* * *	9.130	32.	94.167	3.738	15.857	**************************************	
QP8160	**********	*	492.25	3.8	163.45 **	684.2	238	89.3	325.61	952.98	29.6	26.7	318.1	16.1		PEAK DISCHARGE	(CFS)	4 4 4 4 4 4 4 4 4 4 4 4 7 1 . 7	170.19	626.1	1938.16 73.79	73.79 243.63	315.58 *	********** 2251.93 EAST BRANCH	
TRIBUTARY B	* *		.24840	.26340	.09140	.35480	.12390	(EAST BRANCH)	.17780	.53260	.10800	.74010	19090	9	DR.	AREA	(SQ MI)	* 875	.11020	977	1.13780		.25	COURSE RD. 217.20 ***** 1.39460 W; FLOW FROM	DIVAINCE
VIA	* * *		17	-1·0	1	22	H 4 :	RROYO	νv	711	νH4	4	121	21	NICKLAUS	10	NO.	* * 9 *	Ηm	70	SYNT	1 m	RAL	SAP 5 AP BELO	
BRANC	****		ı	1& 2		5& 1 5	٦,	K'S A	4& 1 5& 2	2	7 T	58 4		AND	OF NI	FROM	NO.	1& 2	-	6& 3	6& 4 Tur	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	nm ±	M. OF BLWMF 5& 1 RESUME	
*S ABOVE IS ALL FLOW TO EAST I	D &	*S % % % START OF LEMA CHANNEL SEDIMENT BULK		ADD HYD 204.00 *S * * START OF SNEAD CHANNE	PUTE NM HYD 205.00 ** * * CONFLUENCE OF LEMA A	205.10		*S WESTERN HILLS DR. @ BLAC *S * * * AP 203.10 * * * * *	203.10 3 HYD 203.20	COMPUTE NM HYD 212.00	NM HYD	Z13.20 Z13.20 RT OF NICKLAUS CH	APUTE NM HYD 214.00 JTE MCUNGE 214.90 APUTE NM HYD 216.00	*S COMBINE HYD.'S 214.9	*S CASPER DR. @ 150 FT. W.	HYDROGRAPH	MMAND IDENTIFICATION	" * * AP 216.10 * * * * 216.10	TE MCUNGE 215.90	ZID.20 * * * AFTER SNEAD AND NICKL	MPUTE NM HYD 216.30 2178 ROUTE 2178 DOWN SOUTHERN TO	217B.90 217A 217A	* * * EAST BRANCH CROSSING	SOUTHERN BLVD. (* ZIOU FI. ************************************	1
* * *	7 7 7	. 0)	OR	* > <	U *	AR	0 12 (* *	d d	E U <		4	OEO	* *	24			» Q	0 12	A * *	40*	E U*	4 4 4	A A A A A	

59.00 1. 57.00

1.06 54.00 65.00

57.00

69.00

62.00

65.00

Page 12

36.00

26.00

60.00

	1.06	42.00	, ,	42.00	56.90 15.00	1.06	00.09	.2	42.00	42.00	50.00	13	NO	56.90	20.00	42.00	42.00	68.00	-	7.
	2.523 CCODE =	.38	.489 CCODE =	244	ER IM	PK BF =	3.223 PER IMP=	3.223 CCODE =	3.290 2.426 3.385 PER IMP=	3.387 CCODE = 3.384 PER IMP= 3.267	.40	FS PAGE =	E NOTATI	2.402 CCODE = 3.637 PER IMP= 2.393	3.608 PER IMP= 2.389	2.390 CCODE = 3.393 PER IMP=	.39	3.894 PER IMP=	930 000	. 323 CCOD
	1.660	.66	655	689	1.510 1.520 1.510		1.560	1.600	1.530 1.690 1.510	1.560	.69 .51	TIME TO PEAK	(HOURS)	1.700 1.510 1.700	1.510	1.710	.51	1.520	9	
	1.47877	457 741 697	4741	4711	1.51585 1.88924 1.46863		1.58042	1.57762	1.49058 1.47229 1.34574	1.34353 1.34573 1.34482	.4683 .4683	RUNOFF	NC.HE	1.46938 1.51588 1.46991	1.46840	1.46923	.34	1.68464	4357	
×	109.989 (EMOVED; 19,1; (CHANNEL);	3.574 113.564 1.991	وتمت	000	7.737	t	2,200	2.196	10.303 127.645		$\infty \infty \omega$	RUNOFF	(AC-FT)	131.884 1.585 133.468	.634	134.041 2.317	8.03	1.186	17	1
QP81604.SUM	2251,58 219,220 R 3Y TRACTS DFF_8,A_1(8.08	441	4.6	222.48 12.54 234.96	S UPSTREAM OF	COURSE 53.84	53.83	272.92 2523.49 22.96	32.	2553.4 73.1 2587.7 END OF 5	PEAK	CFS)	2586.90 45.62 2607.48		300	242.4	32.89 275.29 76.81	RANCH 76.7	age
CHANNE	1.39460 BASINS 218A,218B, ; 218B REPLACED E F_4,0FF_6,0FF_7,0	040	1.46980	1.49600	.09570 .00780 .10350	WITH TWO OUTFALL	ERN A	.02610	.12960 1.62560 .01060	,	1.65120 .03170 1.68290 ICH) TO SOUTHERN	AREA	SQ MI	1.68290 .01960 1.70250	ABEZON	1.71060 1.71060 .03220	ubbasir	ב	CTION	
*S SEDIMENT BULK AT 6% FOR CABEZON LINED SFDIMENT RILLK	CUNGE 217.90 5 2 EZON PHASE 2 REVISIONS: BLWMP SUB A REPLACED BY OFF_4, OFF_5, TRACT 6 REPLACED BY TRACTS 54,58,5C,2,0F	COMPUTE NM HYD 0FF_4 - 1 ADD HYD 0FF_4.10 2& 1 2 COMPUTE NM HYD 0FF_5 - 1	2& 1 1	off_6.10 2& 1 off_6.90 2	19.00 - 19.10 3& 2	SEDIMENT BULK *S GOLF COURSE CHANNEL *S GOLF COURSE ROAD STORM DRAIN SYSTEM WI	IN 500, SW CORNER OF SOU 500.00 3	00.90 3 4 00.90 AT 19.20	0 HYD 19.20 48.2 0 HYD 19.30 28.1 NPUE NM HYD 0FF 8 to the	Off_7.90 1 3 Off_8.1 1& 1	HTD 19.40 $2 \propto 1$ and HYD A_{-1} A_{-1} . HYD 19.50 $2 \propto 1$ SOUTE UNBULKED THROUGH A_{-2} (EAST B	FROM TO HYDROGRAPH ID ID	TOEN THICALION NO.	ROUTE MCUNGE 19.90 2 4 COMPUTE NM HYD 5B.10 1 ADD HYD 5B.10 4& 1 2 *\$ PORTION OF EAST BRANCH WITHIN CAREZON	HYD 58.20 2& 1 3 58.20 2& 1 3 3 20 TO FAST REANCH CROSSING	17TE MCUNGE 58.90 3 2 2.00 - 1 1 5 1 2 2 1 5 1 5 1 5 1 5 1 5 1 5 1 5	NM HYD 1.00 - 1 A is small area between Cabezon S	APUTE NM HYD 510.00 - 1	N TYPICAL ROADWAY CROSS-SE 510.90 1 2	

ADD HYD 2.20 COMPLITE NM HYD 5CC	3& 2 4& 5	481	165	4 8 4 L	12.347 148.704	.3970	27.7	31.		
E MCUNGE UTE NM HYD HYD	18 2	1244	02890.	67.16 25.27 91.93	2.336 2.334 3.228	1.51456	1.510	3.637	PER IMP= CCODE = PER IMP=	56.90
ADD HYD 2.40 COMPUTE NM HYD A.3 ADD HYD 2.50	3& 1		947	2868.96	1.0	4629	157	.609.	PER IMP=	50.00
COMPUTE NM HYD ADD HYD *S ROUTE R_5.10 TO R_5.90 VIA EAST B	2& 1 A EAST B	1 2 RANCH	.007 .962 osep	2885.9	53.2	.6926 .4638	121	.298	PER IMP=	00.99
TO DOWNSTREAM END OF SUBBATE MCUNGE CONFLUENCE OF TRIBUTARY F	SASIN 8) 2 R AND FA	1 ST RRAN	1.9629	2885.87	153.212	1.46351	1.720	2.297	= GCODE =	.2
ADD HYD 8.20 *S ROUTE 8 20 TO END OF SIBE		2 2 2	2.77019	3487.16	217.819	1.47431	1.710	1,967		
ROUTE MCUNGE 8.90 2 COMPUTE NM HYD A.4 -	ASIN 9	FA	2.77019 .00620	3486.92 14.32	17.7	.4738	.51	96.	CCODE = PER IMP=	50.00
NM HYD	2& 1 2& 1	177	2.82119	3492.66 105.06 3535.08	218.234 3.662 221.896	1.53279 1.47475	1.730 1.510 1.730	1.966 3.664 1.958	R IM	
JNGE JNGE JM HYD	a or CAB 1 - 7& 1	SUBBAS 2 1 2	Z	RRANCH) 3533.75 62.17	NNO	740	.51	61.0	CCODE = PER IMP=	80.00
COMPUTE NM HYD 20.00	1 1 7	ı-lm-	.12980	301.44	10.4	1.51583	1.510	3.629	PER IMP=	56.90
NM HYD	18 3 - 28 1	717	2.98219 01180	3678.33	∞ \circ \sim	803 770 810	.74	2001	F	
NM HYD R_8 e combined flows	28.3	do lo	2	35.70	1.288	.8484 .7895	.512.	17.1	PER IMP=	80.00
R Z	3& 2 1& 3 INS WEST	3 2 3 9 0F GOL	.01350 .01350 .01540 .02890 3.01109 F COURSE, IN	32.64 32.64 40.58 72.01 3711.14 UNIT 16 BUT	1.285 1.285 1.463 2.747 237.673	1.78408 1.78105 1.78247 1.47999	1.550 1.510 1.530 1.740	3.778 4.117 3.893 1.926	PER IMP=	74.00
NOT PAKE OF CABEZON REMAINDER OF GOLF COURSE ROAD STO	ROAD STO	NRM DRAIN	N SYSTEM							
HYDROGRAPH COMMAND IDENTIFICATION	FROM ID NO.	NO .	AREA (SQ MI)	PEAK DISCHARGE (CFS)	RUNOFF VOLUME (AC-FT)	RUNOFF (INCHES)	TIME TO PEAK (HOURS)	CFS PER ACRE	PAGE = NOTATION	14 ON
К УD 0 ТО 530С	- 06	Н	.04090	84.56	2.923	1.34014	1.520	3.230	PK BF = PER IMP=	1.06
ROUTE MCUNGE 520.90 COMPUTE NM HYD SS ************** A	AP 1	3 0A.90 (.04090 .14730 .0PP.IN) **	82.67 298.97 *******	2.912	1.33507	1.570	3.158	CCODE = PER IMP=	41.00
KOUTE 530A THROUGH 20TH AVENUE PY BASED ON FIELD INVESTIGATION BUT THIS POND HAS AN OVERFLOW ON THE	TIGATION BUT	TWO	SIZE AND A COMPREHE S ON THE S	VOLUME ARE ASSUM NSIVE SURVEY. OUTH EDGE AND	IMED					
RESERVOIR 53	O UNBULK	7 7 TO 3%	0	61.60	10.476	1,33349	1,980	.653	AC-FT=	5.400
DIVIDE HYD UNBULK SEDIMENT *S ***********************************	7 and ** AP 20	57 PP.0	***	1.8	10.162	1.33349	1.980	.653		
				7						

Page 14

	.2		.2	35.00	00.				9.389	.2		50.00	.2	13.00		15 ON						
	CCODE =		CCODE =	PER IMP=	PER IMP=				AC-FT=	CCODE =		PER IMP=	CCODE =	PER IMP=		PAGE =						
ė.	.653	1.186	1.185	3.179	2.539	2.998	1.382		.341	.341		1.803 3.606 1.802	1.799	2.754 1.791 1.645		CFS PER ACRE		3.489	2.355	3.006	1.676	
	2.030	1.580	1.610	1.520	1.520	1.520	1.580		3.380	3,410		1,740	1.780	1,520 1,780 1,650		TIME TO PEAK (HOURS)		1.550	1.500	1.550	1.640	
	1.33153	1.33232	1.33110	1.25071	.83155	1.13196	1.29902		.87759	.87178		1.43874 1.46840 1.43885	1,43714	.97797 1.43327 1.17560		RUNOFF (INCHES)		1.57209	1.38518	1.50012	1,19548	
M	3731EM. 10.147 :L	13.059	13.047	1.688	.443	2,131	15.178		10.254	10.186 REPLACED BY		247.859 .948 248.807	248.512	1.440 249.952 554.629 POOL	* * * * e density. t 1 Plan.	RUNOFF VOLUME (AC-FT)		31.937	17.620	49.556	603,502	
QP81604.5	59.75 DESIGN MODE	TO GCR SYSTEM 139.51	139.39	51.48	16.25	67.72	193,84	FOOT POND FOR	47.87	47.87 550 IS		3728.28 27.93 3739.07	3733.05	48.65 3747.95 9313.70 VS TO THE DAM	/02 * * * * * * * ark Hill(DB2) R-1, 5 du/acre en Mcmahon and Ridgeview Unit	PEAK DISCHARGE (CFS)	tracts and	850.60	359.51	1191.72 FOTAL INTO BLACK	10152.29	1
TION OF NEVADO MOOTS	ROAD STORM	OUTFALL 18378		.02530	.01000	.03530	2 .21908 AP 530.90 (GC.OUT) AVENUE PONDS	AS ONE TEN ACRE	.21908	.21908 OF BLWMP SUBBASIN	FLOW:	3.23017 .01210 3.24227	3.24227 it overlaps	.02760 3.26987 8.84598 COUNTY SUBDIVISIONS WS DRAIN DIRECTLY T	OM MODEL RECEIVED 1/9/02 * * * * * * * uenos(DB3), and the Park Hill(DB2) ed discharge based on R-1, 5 du/acre s east of Unser between Mcmahon and ed to historic as per Ridgeview Unit	AREA (SQ MI)	the residential	.38090 RECEIVED 1/15/02		98 .61940 F BRANCH FLOWS FOR	9.46538	
	COU	STORM 3 3	3 7 2	530C - 1	HYD 530C - 3	300.10 1& 3 3	0D.20 2& 3 2 ******** AP 5 THROUGH 23RD AVE		530.90 2 3	30.91 3 2 UMES BELOW: PART	WITH EAST BRANCH	NN	20.90 1 2 ced by area that	UTE NM HYD 550.00 - 1 HYD EAST 2& 1 1 HYD DAM.10 1&11 97 RECALL HYDROGRAPHS FROM BERNALILLO COUNTY THESE ARE PUNCH HYDROGRAPHS AND FLOWS DRA	T TAKEN FROM MOD B4), Los Suenos(ee developed dis rcial sites east s restricted to	GRAPH ID ID ATION NO. NO.	from * **	18 ODEL	o,	PIPE 18&19 98 EAST AND WEST BR	98&97 RUCTURE	בייים עס
330A.90 "UNBUIL	OUTFALL PIPE IS 48" CMP. JTE MCUNGE 530A.91 7 PUNCH HYDROGRAPH FOR FOR GOLF COL	*S COMBINE 530A.91 AND 520.90 AT ADD HYD 530A.10 99& *S ROUTE COMBINED HYDROGRAPHS IN	VGE 530C	1 HYD 5300 23RD AV	TE NM HYD ADD 530D TO 530C	*S ADD ROUTED 520 AND 5	HYD 5300.20 2& 3 **********************************	PONDS ARE COMBINITHIS MODEL.	SERVOIR NOT UI	ROUTE MCUNGE 330.91 3 *S CABEZON PHASE 2 RESUMES BELOW *S TRACT 21 AND A 5 (WEST RRANCH)	COMBINE ROUTED FLOW WITH EAST	Topo by	550 is rec	UTE NM HYD 550.00 - HYD EAST 2& 1 HYD DAM.10 1&11 RECALL HYDROGRAPHS FROM BERNALII THESE PUNCH HYDROGRAPHS AND	TEXT TAKEN FROM Ridgeview Village(DB4), Los Suen Subdivisions have free developed Flow from some commercial sites e Black Arroyo Blvd. is restricted	HYDROGRAPH IDENTIFICATION	<pre>*S Developed flow is accommodated *S other commercial tracts, * * *</pre>	ALL HYD APS - STONEBRIDGE SUBDIVISON FROM MODE	CALL HYDROGRAI	DIRECT CALL HYDS TO	HYD ROUTE FLOWS THROUGH WQ ST	
*S ROUTE 5	*S OUTFALL PO ROUTE MCUNGE *S PUNCH HYDE	ADD HYD	*S COMPUTE 5	*S COMPUTE NM	COMPUTE NM HYD	*S ADD ROU	ADD HYD *S ****** *S ROUTE C	*S THE PON *S FOR THI	*S THIS RESERVOIR	*S CABEZO	0	ADD HYD COMPUTE NM HYD ADD HYD *S ROUTE IN E	5	¥00	*S Ridgev *S Subdivi *S Flow fr	COMMAND	*S Develop	*S STONEB	*S ADD RE	*S ADD RE	ADD HYD *S ROUTE *S BEFORE	

	30.908				296.979	
	1.674 AC-FT=	1.674			.412 AC-FT= 296.979	
В	1.640	1.640			2.320	
	1.15372	1.15371			1.15366	
Σ	582.419	564.946 17.473		ZON MODEL:	564.920	
*S	RVOIR P.Out	DIVIDE HYD P.OUT.3 98 98 9.18141 9838.34 SEDIMENT and 51 .28396 304.28 *S ROUTE FLOWS THROUGH BLACK DAM RATING CURVE TAKEN FROM BLACK DAM	*S FILING SHEEL RECURD DRAWINGS - BLARD-51 Stamp dated 9/14/91 *S Record Dwg Stamp 11/9/92 AMAFCA Ref # NW-04-114 Calabacillas *S THIS IS THE FUTURE CONDITIONS RATING CURVE	*S 5/04/04 BLACK DAM RATING CURVE ADJUSTED FOR CABEZON MODEL: *S ELEVATIONS CONVERTED TO NAVD88 FROM NGVD29; ALSO STORAGE INCREASED TO REFIFET WO STRICTLIDE NO. 2	ROUTE RESERVOIR DAM.R 98 91 9.18141 2419.22 *S EMERGENCY SPILLWAY CREST IS AT ELEV 5168.55 FT (NAVD88) FINISH	П(s10н

MINOT PROCESSAN SIMWARY TALE CANADA	MCs16.66H				
Time	PROGRAM SUMMARY TABLE (AHYMO_97) - FILE = T:\Projects\X4218012\Eng\AHYMO\rev_dmp\VOL72204.txt	1997.02c	DATE NO.=	(MON/DAY/YR) = AHYMO-I-9702a0	08/16/2004 1000c05-AH
TABLESON & CO. 'S CAREZON COMMUNITIES DEALINGE MASTER PLAN, PHASE 2 OF GENERAL STREAM CANGE AND ELECTRON RECORDED BY CACC (1/20/04) OF ASSESS CAREZON'S STREAM CANGE THIS WORDEL TAKES BOTH CAREZON'S STREAM CANGE THIS WORDEL TAKES BOTH CACC (1/20/04) OF ASSESS CAREZON'S STREAM CANGE THIS WORDEL AND ELECTRON RATE OF WORDER COMPLETELY HE ASSESS CAREZON'S STREAM CANGE CANNING STREAM CANGE COMPLETELY HE ASSESS CAREZON'S STREAM CANGE CANNING STREAM CANGE CANNING STREAM CANGE CANNING STREAM CANGE THE CANNING STREAM CANGE THE CANNING STREAM CANGE THE CANNING STREAM CANGE CANNING STREAM CANGE CANNING STREAM CANGE CANGE THE STREAM CANGE CANGE T	HYDROGRAPH ID ID AREA DISCHARGE LIDENTIFICATION NO. NO. (SQ MI) (CFS)		TIME PEA (HOUR		I NOIL
DEVELOPMENT: THIS MODEL TAKES BOTH CAGEZON PARKEE I AND 2 THAT THE WINDSTEED BLAND VOLUSTED BLAND WOODEL DEVELOPED TO GONDITIONS IN THE WINDSTEED BLAND WOODEL DEVELOPED TO GONDITIONS IN THE BUTTER 24 IN THE WOODEL TAKES BOTH CAGEZON STRENT LAST ALL SUBBASINS: WHATCH ON BLACK DAM. IT MODELS DEVELOPED TO GONDITIONS IN THE BUTTER 24 IN THAT THE WOODE AS IN THAT THAT THE WOODE AS IN THAT THAT THE WOODE AS IN THAT THE WOODE AS IN THAT THAT THE WOODE AS IN THAT THE WOODE AS IN THAT THAT THAT THAT THAT THAT THAT THA	7/22/04			TIM	
/20/20d ADJUSTMENTS TO THIS MODE, FROM THE BLWWN REASIN SIZE ADJUSTMENTS TO THIS MODE FROM THE BLWWN REASIN SIZE ADJUSTED PREAZING FIELD CONDITIONS (CRING SOUTHERN) REASIN 211 ROUTED ADJUSTED THE ADJUSTED THE MODEL AFTER ACCEPTS THIS WORLE. AS IS AND TAKES THE FOUND THOS WORLE. A LITERANTE BLACK RACCHAGE THE WORLE. A STEEP SLICE # * * * * * * * * * * * * * * * * * *	WILSON & CO.'S CABEZON COMMUNITIES DRAINAGE MASTER PLAN, P DEVELOPMENT: THIS MODEL TAKES BOTH CABEZON PHASE I AND 2 I MODIFIED BLWMP MODEL DEVELOPED BY ASCG (1/20/04) TO ASSESS IMPACT ON BLACK DAM. IT MODELS DEVELOPED CONDITIONS IN ALL SEDIMENT BULKING ADJUSTED TO 6% REFLECT THIS; ALSO, MUSKIN ROUTING (COMMAND: ROUTE MCUNGE) CONSISTENTLY USED THIS MODEL USES A STEP OF 0.05 HR (3 MIN) SO THAT THE ENTI HYDROGRAPH IS CAPTURED AND VOLUMETRIC RUNOFF IS MORE COMPL				
** UNSER GATTEMAY DAM, AND WATER QUALITY DIVERSIONS ARE ** * * * * * * * * * * * * * * * * *	THE SUBJECT OF THE STANDEL FROM THE BLWMP OUBLE" COUNTING OF STREETS IN LAND TREATMENT REMOVED BE BASIN 211 ROUTED ADJUSTED TO EXISTING FIELD CONDITIONS (XING SOUTHERN THING ELSE HAS BEEN ADJUSTED - USER ACCEPTS THIS MODEL AS IS AND TAKES SPONSIBILITY FOR CHECKING IT FOR ACCURACY PRIOR TO USE ** FUTURE CONDITIONS MODEL - ALTERNATE B ** * * * * * * * * * * * * * * * * *	* # *			
RAIN24= RAI	* UNSER GATEWAY DAM, AND WATER QUALITY DIVERSIONS * * * * * * * * * * * * * * * * * * *	** 0			
THE MANNEL MORTH OF TULIP THE LISSON CHANNEL NORTH OF TULIP THE LISSON CHANNEL NORTH OF TULIP THE LISSON CHANNEL NORTH OF TULIP THE MCUNGE 101.00 102.00	KAINFALL	* * *		RAINZ	= 2.70
The match of the property of	"S LISBON CHANNEL NORTH OF TULIP S + + + + + + + + + + + + + + + + + + +	*		9	
THE MCUNGE 102.90 3.4.834 4.1814 1.41508 1.51600 2.727 1.6100 2.727 2.60DE 1.6100 2.727 1.6100 2.727 2.60DE 1.6100 2.727 2.6115 1.6100 2.727 2.6115 1.6100 2.727 2.6115 1.6100 2.727 2.6115 1.6100 2.727 2.6115 1.6115 2.72843 1.6115 1.6115 2.72843 1.6115	101.00 - 1 .33970 533.20 101.90 1 2 .33970 531.48 102.00 - 1 .25390 342.13 102.10 18.2 3 59360	nnar	नंनं _{नं}	PK B PER CCOD PER	0 0
START OF LISBON CHANNEL AT TULIP AND INFLOW TO DAM ** * * * * * * * * * * * * * * * * *	TE MCUNGE 102.90 3 4 59360 864.33 44.821 PUTE NM HYD 103A 1 18030 273.36 12.146 12.46	*	iii	CCOD PER	= 28
TE RESERVOIR TULIS.DAM 3	START OF LISBON CHANNEL AT TULIP AND INFLOW TO DAM * * * * * * * * * * * * * * * * * * *	i		2.263	
IDE HYD UNBULK 4 4 7 75068 1.12 2.2843 20.750 0.008 ROUTE IN PIPE TO LISBON CHANNEL ** * * AP=TULIS.90 ** * * * * * * * * * * * * * * * * *	TERSERVOIR TULISSON FIGURE 10 PAM/ PUND TERSERVOIR TULISSON FIGURE NO STATEMENT STATEMENT TO STATEMENT STA	.22843		AC-FT	
* * * * * AP=TULIS.90 * * * * * * * * * * * * * * * * * * *	VIDE HYD UNBULK 4 75068 4.00 9 ROUTE IN PIPE TO LISBON CHANNEL	4 4	20.7	.008	
* * * * * * * * * * * * * * * * * * *	* * * * * AP=TULIS.90 * * * * * * * * * * * * * * * * * * *	* .2280			
	* * * * * * * * * * * * * * * * * * *			10	= 28

		2 0N	0.		33.00		18.802			1.06		1.06	.2	33.00		43.00		22.00	49.00
		PAGE = NOTATION	CCODE =	PK BF =	PER IMP= CCODE = PER IMP=		AC-FT=		3DE	PK BF = PER IMP=	CCODE	PK BF = PER IMP=	CCODE =	PER IMP=		LINE THE		CCODE = PER IMP=	CCODE = PER IMP=
	.303	CFS PER ACRE	.303		2.312 2.301 3.211 2.637		.022	.022	.022	3.203	.316	2.421	.553	2.582	177 6	7.	2,628	2.628 2.040 2.543	.897
	1,500	TIME TO PEAK (HOURS)	1.500		1.550 1.500 1.500		3.600	3.600	3.650	1.500	1.500	1.600	1.600	1.500			1.550	1.550 1.550 1.550	1.600 1.600 1.500
	.33831	RUNOFF (INCHES)	.33831	,	1.30471 1.30509 1.57974 1.47299		.57141	.57141	.56960	1.57974	.43256	1,61284	.56774	1.30471	1 50175	1	1.45634	1.45634 1.03493 1.39573	.73591 .73483 1.69355
Wn	15.160	RUNOFF VOLUME (AC-FT)	15.160	* *		* +	6	8.868	8.840	2.991	26.991 26.915	12.980	39.895	* * * *	* * * * 17 921	* 4	22.377	22.377 22.377 2.672 25.049 * * * * * *	
VOL81604.SUM	163.13	PEAK DISCHARGE (CFS)	163.13	* * * * * * * * * * * * * * * * * * * *	171.74 376.90 506.36	* *	4.27	4.14	4.14	72.78	22.	233.80	466.65	224.60	* * * * * * * 765.08	* *	484.54	50GAR CHLS) 484.54 63.20 547.74 * * * * *	
AL Q IN LISBON	.84018	AREA (SQ MI)	.84018	*	.11660 .18340 .30000	* 1	.30000	.29100	.29100	.03550 .32650	1.16668 1.16668	.15090	1.31758	.13590	* * * * * *	* * ALI *	.28810	.28810 .04840 .33650 * * * * * *	* HH *
FOR TOTAL	3 90	OLI ON O.	4 * *	*	, ; HMHH;	_, @, *, *	3%	52	3	1 5 FI CONE	5	T 2	~ 4 ×		*	* * * * * E WITH B	LIENC	* * * * * * * * * * * * * * * * * * *	H# #
S.	mm	FROM ID NO.	* * *	* *	38 1	N * N *	Ž		2	1& 3 T CHANN	5& 4 3	ASIN 10		* * * * * * * * * * * * * * * * * * *	* * 1	CONFLUENC	1& 3	18 3	5& 4 5 * * * * * * * * * * * * * * * * * * *
*S ADD 103B TO PREVIOUS HYDROGRAP! *S DOWNSTREAM FND OF RASIN 103R	ADD HYD 103B.10 1HRU 104B TO 103	HYDROGRAPH IDENTIFICATION	ROUTE MCUNGE 103B.90 *S * * * * * * * * * * * * * * * * * *	* * * * * * *	106A.90 104A 104A 104.10	*S ROUTE 104.10 THROUGH PROPOSED *S * * * * * * * * * * * * * * * * * *	ROUTE RESERVOIR TUSUN.DAM 1 *S ****************DIVIDE HYD TO UNBI	SEDIMENT STAF TO LITSBON CH	TUSUN, 90 2	COMPUTE NM HYD 1048 – ADD HYD 104.20 1& 3 ** LISBON CHANNEL AFTER SINSET CHANNEL	104.30 104.90	COMPUTE NM HYD 105.00 - *S LISBON CHANNEL AFTER SUB-BASIN	ADD HYD 105.10 18 ROUTE MCUNGE 105.90 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	* AT	HANNEL * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	1068,10 1068,10 TO 106C,90	E MCUNGE 106B.90 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ANNEL AFTER CC * * * * * * * * * * * * * * * * * * *
*S ADD 103B	ADD HYD *S ROUTE 10	COMMAND	ROUTE MCUNGE	*SEDIMENT BULK	ROUTE MCUNGE COMPUTE NM HYD ADD HYD *S * * * * * *	*S ROUTE 10.	ROUTE RESER	DIVIDE HYD *S ROUTE IN PIPE IO	ROUTE MCUNGE SEDIMENT BULK	COMPUTE NM HYD ADD HYD *S LISBON CHAN	ADD HYD ROUTE MCUNGE SEDIMENT BULK	COMPUTE NM HYD *S LISBON CHAN	ADD HYD ROUTE MCUNG!		BALI C	*S * * * * * * * * * * * * * * * * * *	ADD HYD *S ROUTE 1	ROUTE MCUNGE COMPUTE NM HYD ADD HYD *S * * * * AP 106.90	*S LISBON CF *S * * * * * * * * * * * * * * * * * *

600 .928 600 2.598 PER IMP= 49.00	TO CFS PAGE = 3 AK PER NOTATION RS) ACRE NOTATION	2.908 PER	550 2.691 550 2.669 CCODE = .2 550 2.992 PER IMP= 59.00	550 2.775	600 1.119 650 1.105 CCODE = .2 550 2.861 PER IMP= 54.00	600 1.193	1.191 CCODE = .1 PK BF = 1.06 1.203 PER IMP= 61.00		PK BF = 1.	00 2.786 CCODE = 41.00	600 2.651 PER IMP= 52.00 600 2.699
.75514 1.6 .68735 1.6	TIME TO RUNOFF PEAK (HOURS)		.66696 1.5 66707 1.5 86551 1.5	.73227 1.5	86062 1. 86022 1. 76575 1.	91243 1.6	91145 1.6 90729 1.5 92701 1.6		* 54175	54123 1.6	74233 1. 67034 1.
*S LISBON CHANNEL AFTER ADDING SUB-BASIN 107 *S * * * * * * * * * * * * * * * * * *	COMMAND IDENTIFICATION NO. (SQ MI) (CFS) (AC-FT) (IN	# # # # # # # # # # # # # # # # # # #	1.13730 236.46 12.207 1.207 2.36.46 12.207 1.3730 234.54 12.207 1.3730 234.54 12.207 1.3730 1.28.69 6.686 1.207 1.3730 1.28.69 6.686 1.3730 1.38.69 6.686 1.3730 1.38.69 6.686 1.3730 1.38.69 6.686 1.3730 1.38.69 6.686 1.3730 1.38.69 6.686 1.3730 1.	LISBON AVE. @ 250 FT. N. OF HOOD RD. "HYD "HYD "A * * A A P 108.91 * * * * * * * * * * * * * * * * * * *	108.20 5& 6 5 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	# # # # # # # # # # # # # # # # # # #	TE MCUNGE 111.90 5 2 2.01028 1532.02 97.721 IMENT BULK 116.00 - 1 .03190 74.06 3.245 1 HYD 116.10 1& 2 5 2.04218 1572.19 100.966	* END LISBON CHANNEL AND LISBON ARROYO WATERSHED * * * * * * * * * * * * * * * * * * *	IMENT BULK * * PECOS/RODEO CHANNEL * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	1.8.2 6 11.634 11.634 1.834 1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.8

Page 3

3.457 PER IMP= 57.00 2.729 3.038 PER IMP= 52.00	CFS PAGE = 4 PER NOTATION	300E == 1	IMP= 46.	1.398 3.096 PER IMP= 38.00 3.032 CCODE = ,2	1.427 1.427 CCODE = .1	.567 PER IMP= 28.0 .436 .177 PER IMP= 39.0 .433 CCODE =	3.085 PER IMP= 38.00 3.048 CCODE = .1 3.178 PER IMP= 39.00 2.796	1.446 PK BF = 1.06 3.129 PER IMP= 57.00 1.463
1.500 1.550 1.550	TIME TO PEAK (HOURS)	1.550	1.550	1.650 1.500 1.500	1.650 1.650 1.650	1.550 1.550 1.700 1.700	1.500 1.500 1.500	1.700 1.550 1.700
1.82682 1.70110 1.70120 1.74541	RUNOFF (INCHES)	1.71148	1.60507	1.06127 1.45944 1.45961	1.08725	1.26018 1.09185 1.50305 1.09123	1.45944 1.45717 1.50305 1.48806	1.12795
UM	RUNO VOLU (AC-	* * * * * * * * * * * * * * * * * * *	10.777 39.653 * * * * * * * * * *	140.619 13.489 13.491 *********	154.110 END TO GH TIMING. 154.110 153.987	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * 181.693 12.257 193.950
VOL81604.5 * * * * * * * 105.53 * * * * * * 423.95 420.47 143.11 * * * * * *	PEAK DISCHARGE (CFS)	* * * * * * * * * * * * * * * * * * *	* *	2223. 343. 336.	2427.60 RUNOFF AND S SYSTEM THROU 2427.60 2425.84	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	, 7
* * * * * * * * * * * * * * * * * * *	AREA (SQ MI) S LP.	* * * * * * * * * * * * * * * * * * *	. ×.	2.48438 .17330 .17330	2.65768 FIRST FLUSH" Y OUT OF THE 2.65770 2.65770	* * 010010	* * * * .0620 .0620 .1278 .1898 * * * *	* 0
* * * * * * * * * * * * * * * * * * *	FROM T ID I NO. N	* * * * * Z	1 * 6 * 8 ISBON A	5 1 2 ******	5 ELETE ENTIAL 5	* 0 * * * * * * * * * * * * * * * * * *	* * * * * * 1	* * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * *	HYDROGRAPH D IDENTIFICATION SOUTHERN BLYD, @ 1900 FT	** ** ** ** ** ** ** ** ** ** ** ** **	117.00 * * * * * * * * JENCE OF IVORY * * * * * * *	117.20 5& 6 118A - 118A.90 1 ******** AP 118A.10	ADD HYD *S PUNCH AND ADJUST HYDROGRAPH TO DI *S WATER QUALITY PONDS WHICH IS ESSI RECALL HYD ROUTE MCUNGE 118.91 5	** STAT OF WEST BRANCH ARROY** ** ** * * * * * * * * * * * * * * *	OF TRIBUTARY * * * * * * * * * 118E .9(118B .9(120A .11 * * * * * * * 1	* * * * * * * * * * * * * * * * * * *
*S * * * * * * * * * * * * * * * * * *	Z *	**************************************	COMPUTE NM HYD ADD HYD *S * * * * * * * * * * * * * * * * * *	ADD HYD COMPUTE NM HYD ROUTE MCUNGE *S ***********************************	ADD HYD **S PUNCH AND **S WATER QUA RECALL HYD ROUTE MCUNGE	**************************************	PUTE N TE MCL PUTE N PUTE N * * * *	*S * * * * * * * * * * * * * * * * * *

			3
	*	*	A 40 40 40
	*	*	*
	*	2	7
Ξ	*		,
n	*	-	3
ţ	*	9	
VOLOTOU4.SUM	*	H	
0	*	- K	
5	×	Z	
^	*		
	4	П	
	×	Z	
	*	H.	
	*	0	
	*	NO	
	*	SE	
	*		
	*	HC.	
	×	_	
	20	ST	
	×	E	-
	×	~	=
	×	SE	F
	4	Z	L
	×	-	,
	×	0	Ē
1	×	15	C
i	×	KE	0
1	×	_	Z
	25	KE/	
Ġ	×	A	DA
	×	Z	ž
		* * URBAN AREA WEST OF UNSER, EAST OF LISBON CHANNEL, NORTH OF * * * *	
	26	5	ŭ
,	7	×	2
	*	*	74

	1.06	65.00 .1 .1 64.00	. 2 ON	57.00	. 00	11.270			-i-i	64.00	85.00	67.00	64.00	57.00	2.5	58.00	. 2.	85.00	H.
	PK BF =	PER IMP= CCODE = CCODE = PER IMP=	PAGE = NOTATION	PER IMP=	PER IMP=	AC-FT=			CCODE =	PER IMP=	CCODE = PER IMP=	PER IMP=	ER IM	PER IMP=	CCODE =	PER IMP= CCODE =	и ши	ı Eu	
		2.364 2.363 2.362 3.688 2.021	CFS PER ACRE	2.737 2.312 7.736	0.05	.732	.732	45	71	200	179	34	40.	.54	. 76	1.416 3.562 7.725	.790	314	.291
		1.650 1.750 1.500 1.500	TIME TO PEAK (HOURS)	1.550	15.00	2.200	2.200									1.500			
		1.97855 1.97807 1.97737 1.96228	RUNOFF (INCHES)	1.81771 1.81770 1.81770	. 9346 . 8295 . 9196	1.91966	1.91965									1.84923 1.80734			
* * *	* *		RUNOFF VOLUME (AC-FT)	7.455 6.871 584 6.856	30.868 .181 31.050 ******	31.050 **********	30.118	30.047	* *	mm	33.884	900			12.015	1.045 1.045 1.581 579		54.041 6.005 5.996	
VOL81604. * * * * * * * EL, NORTH OF	Z	224.36 224.29 224.15 188.80 295.33	PEAK DISCHARGE (CFS)	234	393.79 6.55 396.57 D********	**************************************	137.79 4.26	135.00		75.		35.	98	03.		239			00.
* * * * * * * * * * * * * * * * * * *	TED WITH O	.14830 .14830 .14830 .08000	AREA (SQ MI)	.07690 .07087 .00603	. 29917 . 00410 . 30327 NTO WEXFORD	.30327 .BIVIDE) **	.29418 .00910	.29348	.29348	.33048	.33048	.06330	0458 1091	.00440	11350	.01060	.01663	.04750	.04750
AST 0	COMP	NWNW4	OH ON	10 111 3	MO	E	Hmv	Hm	979	m 4	287	200	Н4	74	32	2225	428	32	2
# H #	AR :	_ 2 _ 3 2& 3	FROM ID NO.	and 10	H 3		1 _	and L	18 %	68 3	4 28 3	2 2	1& 3	2& 4	3 3 2 4 4	111	5& 2 4 2	3&10	m
WEST OF	ERIES BA	300.00 300.90 300.91 310.00 310.10	HYDROGRAPH IDENTIFICATION	320.00 - 320.80 2 320.81 and 320.90 10	320.10 4 400.00 400.10 4 00.30 *******	400.90 ***** AP 400.	SEDIMENT S	400.81 400.82 and	400.90 400.91 400.20	410.00	410.90 420.00 420.10							350.00 350.00	350.91
*S * * * * * * * * * * * * * * * * * *	SEDIMENT BULK *S ALL 300 AND 400 S *S THE FEMA PESTINY	COMPUTE NM HYD ROUTE MCUNGE ROUTE MCUNGE COMPUTE NM HYD ADD HYD	COMMAND IDE	COMPUTE NM HYD DIVIDE HYD ROUTE MCUNGE	ADD HYD 320.10 4& 3 COMPUTE NM HYD 400.00 - ADD HYD 400.10 4& 2 *S **********************************	SOUTE RESERVOIR 400.90 4 *S **********************************	DIVIDE HYD *S DIVIDE INTO PIPE	DIVIDE HYD	ROUTE MCUNGE ROUTE MCUNGE ADD HYD	COMPUTE NM HYD ADD HYD	ROUTE MCUNGE COMPUTE NM HYD ADD HYD	COMPUTE NM HYD ROUTE MCUNGE		COMPUTE NM HYD ADD HYD	ROUTE MCUNGE ROUTE MCUNGE ADD HYD	COMPUTE NM HYD ROUTE MCUNGE ROUTE MCUNGE	ADD HYD ROUTE MCUNGE ROUTE MCUNGE	ADD HYD COMPUTE NM HYD ROUTE MCUNGE	ROUTE MCUNGE
	47.00				4.00									7					

56.00	0.	.2		70.00	9 %		38.00	7 .	34.00	0.		36.532	29.00	67.00			
IMP=	DE =	DE =	DE =	5	PAGE = NOTATION		IMP=	I W I	DE = IMP= DE =	DE =		= 1	DE = IMP=	DE = IMP=			
PER	CCOD	CCOD	000	A H			CCOD		CCOD PER CCOD	000		AC-	CCOD PER	CCOD PER			
3.466	$\frac{1.560}{1.560}$	1.555	1.554	3.244	CFS PER ACRE	1.518			2.464 2.908 2.908		2.335	.010	.010 .010 .010 2.506	. 700 . 692 3.738 878	1.364	1.364	
1.500	1.650	1.650	1.750	1.550	TIME TO PEAK (HOURS)	1.700	994	יייייי	1.500		1.550	14.700	14.700 14.700 14.800 1.550			1.650	
1.80748	2.00578	2.00584	2.00652	2.08916	RUNOFF (INCHES)	1,33965	4715	3257	1.32227 1.38513 1.38513	.3440	1.37606	.26977	.26977 .26977 .26907 1.27655	. 55020 . 54967 2.01732 . 65386	1.21945	1.21945	
4	*					*				**	3.	*					
1.398 7.384 THE	61.4	61.427	61.448	28.758 90.206	RUNOFF VOLUME (AC-FT)	* * * * 284.1 * * * *	* 11.	6.120	20.148 11.177 11.177	31.325	42.830	8.397	00 00 4	23.041 23.019 6.455 29.474	* * M	TIMING. 313.629 REMOVED	
4.SUM N TO EST				*		* * *	*			****	*	*			* *	SEN	9
VOL81604. 32.16 114.63 SOUTHERN VD THE WES	73.1	571.28	571.07	35.81 81.89 * * *	PEAK ISCHARGE (CFS)	53.44	90.73 90.73 59.64	93.	450.53 281.60 281.60	713.84	72	3.65	3.54 3.54 51.39	351.73 347.55 143.53 474.68	v .v ~	10FF AND SEN 17EM THROUGH 4210.18 253,160 ARE	Page
A AN		ш,	Δ,	ν *	PE DISC	* * * *			7,717	*****	*	* * * *			Y0 ******	SYSTE 47 INS 25	
01450 06200 TH SIDE OF HE NORTH A SER CHANNE		420	420	5810 3230 * * *	AREA	ANCH * * 710 *		730 840 570	28570 15130 15130	7	*	* * * *	56609 01751 56609 21910	519 000 519	4 ARROYO ***** 229	IRST FLUSH" R OUT OF THE S 4.82230 LWMP SUBBASIN	
		.57	.57	* 88.2	(SQ	F* 6* +		0.12	211	*****	*	* * * *	25.05	28.	WEST BRANCH BRANCH) WP AP 159.20 5 4.822		
£ 200	NEI O	S NEI		*		ITH WE				10		* * %			VEST SRANC AP	R 7	
- Z	THAN THAN	ANNE	2	*57	200	Z* LO* 3		219	216		4 =	1	249		IH3	DELETE SENTIAL 5 N HERE	
2& 3 1 STREET NTERSECT SOUTHERN	4&14 5 INSER	Z Z ER CH	2	18 2	FROM ID NO.	CHANNEL * * * * * * * * * * * * * * * * * * *		18 2	9 - 1	2& 3 6 4 AP	4 × ×	* * * * * * * * * * * * * * * * * * *	and 2	1& 6 18 2	VD. (WE	IS ESS	
APUTE NM HYD 360.00 – 360.10 2& 3 ADD THE TOTAL FLOW IN 20TH STREET TOTAL FLOW IS ROUTED TO THE INTERSECTION IS ROUTED UNDER SOUTHER!	ADD HYD SOUTE MCUNGE SOUTE MCUNGE SOUTE MCUNGE SOUTH MCUNGEN CITTLE SOUTH MCENTER CITTLE SOUTH MCENTER SOUTH MCENTER CITTLE SOUTH M	360.91 2 0F UNSER CHAN	360.92	121.00 121.10 , * * *	RAPH	N + O + +	3.00	0.90 2.00 2.10	1.00	2.91	153.10	* * * * * * * * * * * * * * * * * * *	UNBULK DIMENT 153.91 154.00	154.10 159.00 159.10	* * CONFLUENCE OF TRIB. "A" V BLACK ARROYO @ UNSER BLVD. (V ***********************************	"S FUNCH AND ADJUST WARROGRAPH TO DE *S MATER QUALITY PONDS WHICH IS ESSE RECALL HYD 159.20 - 159.20 - *S CABEZON REVISIONS PHASE 2 BEGIN	
36 36 36 36 36 36 36 36 36 36 36 36 36 3	36 36	36 10N 0	36	125 * * * *	HYDROGRAPH TIFICATION	O TH	1512	122	1125	15 ****	15: * * * * *	* * * * * TRIBA.DAM	SEDIMENT 153.91	1222	OF T UNSE	NDS W 15	
AL FLOOUTE	G C C	PORT		*	HYDROGRAPH IDENTIFICATION	* * * * * * * * * * * * * * * * * * *				计作作计计	* -	. * * " R **DIV			JENCE DYO @	TY PO	
NM HYD THE TOTA FLOW IS	IGE TE LT!	UTE MCUNGE EARTH LINED PORTION	NGE	4 HYD	1.0	CONFLUENCE * * * * * * * * * * * * * * START OF TH	I HYD	NGE N HYD	IGE I HYD IGE	GE c****	* UNH	ERVOIR	VGE 1 HYD	JGE 1 HYD	* * CONFLUENCE BLACK ARROYO @ ************************************	ONCH AND ADJUST H ATER QUALITY POND LL HYD CABEZON REVISIONS	
TE NN YD YD THE TAL P	YD MCUN	MCUN RTH L	MCUN	TE NM YD *	Q	** ***	TE NACUA	MCU YD N	MCUN MCUN	MCUN ****	HYD * *	RESER	DIVIDE HYD ROUTE MCUNGE COMPUTE NM HYD	N E W	BLACK ******	TER O	
COMPUTE *S ADD *S TOTAI *S THIS *S THIS	ADD F ROUTE	*S EARTH LIN	ROUTE MCUNGE SEDIMENT BULK	COMPUTE NM HYD ADD HYD *S * * * * *	COMMAND	* * S * * * * * * * * * * * * * * * * *	COMPL ROUTE COMPU	COMPL ADD H	ROUTE MCUNGE 152.90 COMPUTE NM HYD 151.00 ROUTE MCUNGE 151.90	ROUTE	ADD HYD	*S * * * * * * * * * * * * * * * * * *	DIVIDE HYD ROUTE MCUNGE COMPUTE NM H	무를 다	*S * * *S *** ADD HYD	*S WA RECAL	

—

	= 85.00	= 36.00 = 45.00 = 77.00	10.383	= 7 TION	.2	0.	H 0		.00.00	00.6	= 50.00				1.06
	209 PER IMP 367 366 CCODE =	126 PER IMP 109 CCODE = 209 PER IMP 941 PER IMP 905 CCODE = 167	935 AC-FT=	CFS PAGE = PER ACRE NOTATION	935 935 934 CCODE =	.416416416		423 FEN 1997	.892 PER IMP= .430 CCODE =	.654 PER IMP=	522 PER IMP=	428			PK BF =
	1.500 4. 1.650 1.	11.5500 11.5500 11.5500 11.5000 1.500	1.650 1.	TIME TO CF PEAK PE (HOURS) AC	1.650 1. 1.650 1. 1.650 1.	1.700 1. 1.700 1.	500	700 1	1.500 3. 1.700 1.	1.500 2.	1.500 3.	1.700 1.			
	2.37033 1.22316 1.22257	1.44807 1.60081 1.51729 2.19867 2.19876	1.62853	RUNOFF (INCHES) (1.62853 1.62853 1.62863	1.25956		1.27578	2.25374 1.29197 1.29197	.98475	1.73643	1.29360			
JM CH)	1.972 315.601 315.448	17.717 17.722 16.128 33.850 9.569 9.569 43.419	43.419	RUNOFF VOLUME (AC-FT)	42.116 1.303 42.119 REMOVED	357.567		367.541	10.926 378.467 378.467	1.959	4.279	384.705	*		
VOL81604.SUM TO WEST BRANCH) GOES TO EAST	42.02 4232.10 4228.84	458.88 456.44 387.95 811.07 205.84 203.95 1013.35	619.15	PEAK DISCHARGE (CFS)	.48490 600.58 .01500 18.57 .48490 600.32 ; BLWMP SUBBASINS 620,161 FREPLACED BY OFFSITE TRACT	4824.85	-	4917.75	226.41 5025.36 5025.36	63.36 5052.43	104.14	5097.04	* * * * * * HILLS SD	TRACTS 4A,4B; BY 17,7A,7C	basin 3A
12 (DRAINS CT 17 WHICH A_6	.01560 4.83790 4.83790	.22940 .22940 .18890 .41830 .08160	.49990	AREA (SQ MI)	3 .48490 5 .01500 2 .48490 BELOW; BLWMP SUBBAS 161 REPLACED BY OF OF BLWMP 650 ALSO R	5.32280		5.40170	.09090 5.49260 5.49260 overlaps	5.52990 5.52990	.04620	5.57610	* * TERN	D ACED BY TRACT EPLACED BY 17	offsites and subbasin
HERCIAL TRACT 12 POND IN TRACT REPLACED BY A	5 1 6 5 6	6 8 3 1 6 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1	6 3 IBULK BY 3%	FROM TO ID NO. NO.	ELOW; 161 F F BLV	6 5		2 2	5 5 2 a that it	1 5 7 7 7 7	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 11 F BRANCH	* * * * * * * * * * * * * * * * * * *),254 REMOVE B; 252 REPL 1,7A; 254 R	ner of
*S 253 REPLACED BY CABEZON COMME *S AND 74, 78, 7C (ALL DRAIN TO *S AND 74); 160 IS WEST BRANCH, ** Commonsist 1.11 1	MPUTE NM HYD 12.00 - 1	COMPUTE NM HYD 156.00 - COMPUTE NM HYD 156.00 - COMPUTE NM HYD 157.00 - COMPUTE NM HYD 157.00 - COMPUTE NM HYD 158.00 - COMPUTE NM HYD 158.00 - COMPUTE MCUNGE 158.00 - COMPUTE MCUNGE 158.00 - COMPUTE MCUNGE 158.10 38.40 - COMPUTE MCUNGE 158.40 - COMPUT	ROUTE RESERVOIR GATE.POND 6 *S **********************************	FR HYDROGRAPH I COMMAND IDENTIFICATION N	DIVIDE HYD ROUTE MCUNGE *S CABEZON REVISIONS PHASE 2 RESUME BI *S 620 REPLACED BY OFFSITE TRACT 13, *S GALL DRAIN TO WEST BRANCH); PART OF STAKES WALL TO FAME BI *S THIS TAKES WEST BRANCH TO FAME	ADD HYD ROUTE MCUNGE 12.99 6.50 8.5 ADJUST SEDIMENT BULK	UTE CABEZON SUBBASIN 13 NM HYD 13.00	EZON SUBI	COMPUTE NM HYD 14.00 - ADD HYD 14.10 1& ROUTE MCUNGE 14.90 5 *S Area of 650 is reduced by are *S CABEZON basins	COMPUTE NM HYD 650.00 - ADD HYD 650.91 1& ** S WEST BRANCH ARROYD RETWEEN 13		ADD HYD 650.99 18 *S END OF THE BLACK'S ARROYO WE	*S * * * * * * * * * * * * * * * * * *	"S BLWMP SUBBASINS 251,252,250,254 REMOVED "S 251 REPLACED BY TRACTS 3A,3B; 252 REPLACED BY "S 250 REPLACED BY TRACTS 3B,11,7A; 254 REPLACED	SEDIMENT BULK *S Following is the Northwest cor

Page 7

85.00	.200	34.30	90.00	85.00	8 NO.	.211	27.00	90.00	85.00	.160	į.	55.40	85.00	27.00 90.00
PER IMP=	AC-FT=	CCODE = PER IMP=	PER IMP=	CCODE = PER IMP=	PAGE =	AC-FT=	CCODE = PER IMP=	PER IMP=	CCODE = PER IMP=	AC-FT=	CCODE =	PER IMP=	PER IMP=	CCODE = PER IMP= CCODE =
4.211	1.499	1.499	30.	.21	CFS PER ACRE	1.467	1.467 1.467 1.467 2.911	.30	.02	1.623	1.623 1.623 1.866 1.837	1.910 3.528 2.426	4.210	4.182 2.909 3.517 4.297 3.531 3.498
1.500	1.800	1.800	vvv		TIME TO PEAK (HOURS)	1.800	1.800 1.900 1.500	vivi	55.50	1.800	1.800 1.800 1.550	1.500	1.500	1.550 1.550 1.550 1.550 1.550
2.37034	2.36893	2.36891 2.36892 2.36826 1.43633	450	370	RUNOFF (INCHES)	2.37246	2.37245 2.37245 2.37182 1.25884	4501	9090	2.37213	2.37212 2.37212 2.04352 2.04142	1.99788 1.79465 1.86261	2.37034	2.36943 1.25884 1.90601 2.45015 1.95216
SUM .683	.682	.662 .020 .662 .414	1.206		RUNOFF VOLUME (AC-FT)	602.		133	13	. 595	.577 .018 1.710 1.708	2.912 5.207 8.119	1.112 there is	1.112 1.535 1.535 1.718 1.718
VOL81604.	to 5.18	10.	2.7	40	PEAK DISCHARGE (CFS)	5.2		27.7	4.0	4.8	. 4. 18.	33.41 122.81 126.90	23.71 _3c although	23.75 111.75 33.98 33.85 37.29 9869
.00540		.00524 .00016 .00524 .00540	.00100	.01164 .00560 = 0.22 ac-ft level	AREA (SQ MI)	***				= 0.18 ac-ft level .00470 3% ********	.00456 .00014 .01569	.02733 .05440 .08173	.00880 off_3a thru off	.00880 .00630 .01510 .0140 .01650
nd h	ou 1e L7	56			N TO NO.	17 II K RY	57	7 1 2	1 2 2	olume oment	588	3 2 2 1 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	te 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
sting	elopm elopm 1	and 17 17		sting tal ve evelop	FROM ID NO.	1 O UNBI	and 17	1 1 2	2 -	eveloge	and 1&1.	18 18	project n to rou	1 1& 2 1 & 2 2
t will be held on ID=4 UTE NM HYD Off_1A - ROUTE OFF_1A through existing po	*S Pond Exists in field; Volume and *S limit flowrate to predevelopment *S ROUTE RESERVOIR *S ***********************************	UNBULK SEDIMENT OFF 1A.9 OFF 1C.1	21ST 21ST.1	TE MCUNGE 21ST.9 2 3 OUTE NM HYD 0ff_1B - 1 ROUTE OFF_1B through existing pond Pond Exists in field; Total volume limited flowrate to predevelopment	HYDROGRAPH IDENTIFICATION	ROUTE RESERVOIR *S ***************DIVIDE HYD TO	IVIDE HYD UNBULK 17 17 17 17 17 17 17 17 17 17 17 17 17	22ND 22ND 22ND.1	22ND.9 Off_28 through exi	*S Pond Exists in field; Total Volu *S limited flowrate to predevelopme ROUTE RESERVOIR P.OUT 2 *S ***********************************	SEDIMENT SEDIMENT OFF2B.9	0ff28.91 3A.1	Area coming down 24th to project UTE NM HYD Off_3A - USe roadway cross-section to rou	0FF3A.9 0FF_3C 0FF_3C 0FF3C.1 24th 24th.1 24TH.1
*S It will be held COMPUTE NM HYD *S ROUTE OFF 1A t	Pond Exists Timit flowr: FE RESERVOIR	DIVIDE HYD ROUTE MCUNGE COMPUTE NM HYD ADD HYD	COMPUTE NM HYD ADD HYD	ROUTE MCUNGE COMPUTE NM HYD *S ROUTE OFF_1E *S Pond Exists *S limited flov *S	COMMAND	E RESERVOIR	DIVIDE HYD ROUTE MCUNGE COMPUTE NM HYD	COMPUTE NM HYD	ROUTE MCUNGE COMPUTE NM HYD *S ROUTE OFF 2E	Pond Exists limited flow E RESERVOIR	DIVIDE HYD ADD HYD ROUTE MCUNGE *S ADD 21st and	ADD HYD COMPUTE NM HYD ADD HYD **e	*S Area Coming COMPUTE NM HYD *S Use roadway	ROUTE MCUNGE COMPUTE NM HYD ADD HYD COMPUTE NM HYD ADD HYD ROUTE MCUNGE

											-
85.00 27.02 90.00 .2	73.00	6 NC	1.535	90.00	85.00	~	00.06	.0	00.	85.00	
PER IMP= CCODE = PER IMP= PER IMP= CCODE =	CCODE = CCODE = PER IMP=	PAGE = NOTATION	AC-FT=	PER IMP=	CCODE = PER IMP= CCODE =	ER IMP	PER IMP= CCODE =	CCODE = CCODE = PER IMP=	PER IMP=	~	
4.209 4.201 2.913 3.935 3.935 3.154 3.077	3.267 3.172 1.373 4.176	CFS PER ACRE	.387	1.387 4.253 2.797 2.781	.78	.91	247	124. 184.	.40	4.209	
111111111111111111111111111111111111111	1.550 1.650 1.500	TIME TO PEAK (HOURS)	∞ ∞	1.800 1.500 1.650	0000	0200	.000	0 0000		1.500	
2.37034 2.37036 1.25884 2.14074 2.16713 2.16814 2.05798 1.76716	2.13414 2.12959 .46598 2.37034	RUNOFF (INCHES)	.3687	2.45015 2.17829 2.18615	3703	.1917	1707	.0786 .0230 .0230 .8072	.465	2.37033	
1.504 1.505 1.708 1.713 1.836 1.896 3.611 5.580	15.844 15.810 .912	RUNOFF VOLUME (AC-FT)	63	20.307 20.307 20.987	0.98	3100	22.193 22.193 30.312	0.31 9.50 5.98 5.98	.38	1.972	
VOL81604.SUM 32.06 31.99 37.77 3.85 41.68 41.28 66.41 132.50 181.37 ************************************	291.02 282.57 tion 32.25 98.08	PEAK DISCHARGE (CFS)	32.57		20.4 15.0 14.7	2848	336.29 336.29 422.98	22.9 888.8 80.6 80.7 97.1	ermine 14.0	42.02	Page 9
.01190 .01190 .01190 .01500 .0140 .01640 .01640 .03290 .03290		AREA (SQ MI) evel	.03670		000	.19030	.19170 .19170 .27343	.36	lot (11) to det .01560	.01560 be required	
* * * * * * *	4 9/2 2 2 19 19 ve d 1 1		17 BY 17 17	18211	7150	1121	212	m 4∨w1w	flow 1	1 Will	
18 2 18 2 18 2 18 5 18 5 18 5	******* Nodifie 2 Extensi - NG PONE as do	FROM ID NO.	1 UNBULK 17 and	17&19 2&18	78.7 7.8.7	18 2	1& 2 2 1& 4	2 3& 6 2 - 1& 3	commerc ond out	- that	
PUTE NM HYD OFF_3B - 1	*S STORM DRAIN MAIN LINE *S **********************************	FROM TO HYDROGRAPH ID ID IAND IDENTIFICATION NO. NO Limited flowrate to predevelopment	*S **S *****************************	211.10 211.10 211.20				L3RD.92 2 he Flow from Subbasin 23RD.93 3& 6 23RD.94 2 3B.1 1& 3	elopment for permissible p 11.00	NOTE NM HYD 11.00 - ROUTE Unit 11 through pond that	
COMPUTE NM HYD ROUTE MCUNGE COMPUTE NM HYD ADD HYD COMPUTE NM HYD ADD HYD ROUTE MCUNGE ADD HYD COMPUTE NM HYD ADD HYD	*S STORM DRAIN *S S.W.*********************************	COMMAND *S Limited FT	*S ROUTE RESERVOI *S ********** DIVIDE HYD	COMPUTE NM HYD ADD HYD ADD HYD ADD HYD BOILTE MCINICE	COMPUTE NM HYD ROUTE MCUNGE ADD HYD	COMPUTE NM HYD ADD HYD COMPUTE NM HYD	ADD HYD ROUTE MCUNGE ADD HYD	2 2 5 5 0	*S Run a predev *S the maximum COMPUTE NM HYD *S Real Unit 11	N N	

	. 614	= .1 P= 66.00	MP= 80.00	0.	MP= 53.20	P= 53.20		P= 53.20		PAGE = 10		P= 54.70	MP= 54.70	P= 54.70		P= 54.70			P= 50.20	P= 50.20
	416 AC-FT=	416 415 415 CCODE = 890 PER IMP	506 111 PER I	521 CCODE	447 PER IN	445 PER IMP	445	446 PER IMP	446	(ii)	554	478 PER IMP	475 PER IM	477 PER IMP	476	476 PER IMP	476	476	385 PER IMP	387 PER IMP
	800 1.	HHHM.	5500 2	'n	500 3.	500 3.	500 3.	500 3.	00 3.	TO CFS (K PER (S) ACRE	50 2.	500 3.4	500 3.4	500 3.4	500 3.4	500 3.4	500 3.4	500 3.4	500 3.	3.3
	ij.	नंतंनंत	أجأجأ	-ii	3 1.5	3 1.5	H.	3 1.5	1.5	TIME TO PEAK (HOURS)	3 1.5	2 1.5	1:	2 1.5	ij	Ĥ	ij.	i	÷.	ij
	2.35714	2.35714 2.35714 2.35483 2.04713	2.0047	2.00868	1.7542	1.7542	1.75421	1.7542	1.75420	RUNOFF (INCHES)	1.99288	1.7817	1.78172	1.7817	1.78170	1.78172	1.78170	1.78170	1.69956	1.69956
SUM	1.961			000	.636	1.409	2.045	.780	2.825	RUNOFF VOLUME (AC-FT)	51.683	.626	1.426	.70	2.134	1.203	3.337	3.963	1.145	.540
VOL81604.9	14.14	13.72 13.71 16.68	720.80		15.00	33.20	48.20	18.40	MH	PEAK DISCHARGE (CFS)	794.88	14.67	33.39	16.58	9.97	8.16	78.13	92.79	27.36	12.92 Page 10
re1	*	.01513 .00047 .01513 .00670	.00660	.45606	.00680	.01506	AND B .02186	化作作作作	, B, AND C (IN .03020	AREA (SQ MI)	.48626	************	.01501	.00745	AND F .02246	50	,F,AND G.03512	,E,F,AND G .04171	53	96500.
ent lev	~	~			3	4 * 4	H	C 6	INS 7	M TO NO.	7 7	1 ******	E 2	***	INS 2	****	INS 2	INS	****	н Т
e to predevelopmen	P.Out 1 IVIDE HYD TO UNBUL	JNBULK JI.90 11.90 R_2	38.2 2& 3 R_1 - 38.3 1& 2	38.9	BASINA -	BASINB - ************	ADD BAS A.B 3& 4	BASINC BASINC + *******	ADD BAS A.B.C 5& 6	FROM HYDROGRAPH ID ID ID	AND BHI A.B.C 78.9 1& 7 RASIN D	BASIND	BASINE BASINE ************************************	BASINF - **********	ADD BAS ####################################	BASING - A********	ADD B E.F.G 3&	ADD B D.G 2&	BASINH BASINH - BASINH	BASINI BASIN I
*S limit flowrate	ROUTE RESERVOIR *S ***********DIVIDE	DIVIDE HYD ROUTE MCUNGE COMPUTE NM HYD ADD HYD	ADD HYD COMPUTE NM HYD ADD HYD	ROUTE MCUNGE *S INSERT BHI HYDROLOGY	COMPUTE NM HYD BASINA - *S**********************************	*S BASIN B COMPUTE NM HYD BASINB - *S**********************************	*S ADD BAS ADD HYD *********************************	*S BASIN C COMPUTE NM HYD BASINC - **S*********************************	*S ADD HYD *S***********************************	COMMAND IDE	*S ADD 3B.9 AND ADD HYD *S	COMPUTE NM HYD BASIND **S**********************************	*S BASIN E COMPUTE NM HYD BASINE - *S**********************************	*S COMPUTE NM HYD BASINF *S***********************************	*S ADD BAS ADD HYD *********************************	*S BASIN G COMPUTE NM HYD BASING - *S**********************************	*S ADD BASINS ADD HYD E.F.G 3& 2 2 x x x x x x x x x x x x x x x x x	*S ADD BAS ADD HYD *S***********************************	*S BASIN H COMPUTE NM HYD BASINH - *S***********************************	*S COMPUTE NM HYD

.386 .458 PER IMP= 53.20 .392	.460 PER IMP= 15.00 .596 .513 PER IMP= 54.70 .481 CCODE = .2	521 541 PER IMP= 56. 529 466 CCODE =	S PAGE = 11 IR NOTATION	130 AC-FT= 20.179 130 130	130 CCODE = .0	132 CCODE =0 138 PER IMP= 51.00 241 CCODE =0 241 CCODE =0 251 CCODE =0 251 CCODE =0 251 CCODE =0 251 CCODE =0 251 CCODE =0 251 CCODE =0	328 CCODE = .0
1.500 3. 1.500 3. 1.500 3.	1.550 1.550 1.550 2.1500 1.500 3.1500	.500 .500 .500 .500 .550	TIME TO CFS PEAK PER (HOURS) ACRE	1.900 1. 1.900 1.	1.900 1.	1.500 1.800 1.500 1.550 1.550 1.550 1.500 1.500 1.500 1.500	1.500 1.
1.69952 1.75423 1.70409 1.75630	1.96613 1.96836 1.92528 1.78172 1.78180 2.04713	1.80767 1.80728 1.80752 1.80756 1.91010	RUNOFF (INCHES)	1.90115 1.90115 1.90115	1.90115	2.25374 1.90312 1.71412 1.88283 1.88283 1.8728 1.7196 1.7196	1.86717
#*************************************	57.491 1.209 58.699 4.571 4.571 568	5.139 3.017 8.156 8.156 66.855	RUNOFF VOLUME (AC-FT)	66.541 64.545 1.996	64.545	2.765 66.947 66.947 7.1251 74.198 74.601 2.834 77.435	77.435
VOL81604.5UM ************************************	916.39 36.85 949.67 108.15 e 107.17	120.12 70.94 70.94 191.06 1131.32	PEAK DISCHARGE (CFS)	474.74 ********* 460.50 14.24	460.50	59.57 477.95 477.95 1747.95 1747.95 586.79 12.29 597.90 68.82 660.77	660.77 Page 11
H AND I .01859	8.9 .54826 .02340 .57166 .04810 n and Trailsid .00520	.05330 .03130 .03130 .08460 .08460 .65626 t 17 .65626 th 7 ac-ft of		. 55626 . 3% ***********************************	.63657 2 DEVELOPMENT 30VED; PLACED BY 8,9,18 BY 10.20	. 02300 . 05957 . 65957 . 07932 . 73889 . 00780 . 74669 . 03090 . 77759	65777.
*S\$***********************************		AS Add 48.91 and 5A at Intersection of COMPUTE NM HYD *S Add 48.91 and 5A at Intersection of C SA.1 1& 2 2 ROUTE MCUNGE *S ROUTE FLOWS THROUGH Pond/Park in Unit *S Pond Based on final design grades wit *S Iow storage/WQ and then filling remai	COMMAND IDENTIFICATION NO. NO. *S graded at 2%	SOUTE RESERVOIR *S **********************************	LUNGE 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	TD 15.00 - 15.10 1& 2 15.10 1& 2 15.10 1& 2 15.10 1& 2 15.10 1& 2 18.10 1& 2	ROUTE MCUNGE 18.90 2 3

57.30	1.06 54.00 .1 65.00	57.00 69.00 62.00	62.00	59.00	57.00	60.00	26.00	36.00		
PER IMP=	PK BF = PER IMP= CCODE = PER IMP=	CCODE = PER IMP= CCODE = PER IMP= PER IMP=	CCODE = PER IMP= PER IMP= CCODE =	PER IMP= PAGE =	CCODE = 5	PER IMP= CCODE =	PER IMP=	CCODE = PER IMP=		
3.566	3.032 3.009 3.710 2.983	2.731 2.918 2.886 2.950 2.904 2.547	2.563 2.425 2.814 2.847 2.847 2.847	2.585 CFS PER	K 1000	2.609 2.402 2.402 2.448	2.452	1.712	1.905	2.351
1.500	1.550 1.600 1.500 1.600	1.600 1.600 1.600 1.800 1.600	1.800 1.650 1.650 1.600 1.600	1.600 TIME TO PEAK	1.650	1.600 1.650 1.700 1.650	1.650	1.700	1.650	1,650
1.86578	1.77184 1.77071 1.97855 1.78254	1.82377 1.79316 1.79098 2.05625 2.05086 1.92050	2.01133 1.86454 1.86528 1.91744 1.97548 1.97548	1.86246 RUNOFF	1.86284	1.85074 1.88180 1.88297 1.85966	1.87833	1.19562	1.34053	1.77930
SUM 2.898 80.332 REA ************************************	44700*	* * 8.890 33.931 13.588 13.588 5.521	10.01 522.90 522.90 10.10 11.3 11.3 74.5	18.962 RUNOFF VOLUME (AC-ET)	94	28.378 11.060 11.067 39.445	113.982	4.247	18.360	132.342
VOL81604.S 67.78 728.54 CONTRIBUTING AR	82.0 78.4 35.6 02.8	159.75 662.59 655.44 233.94 230.31 87.87	291.61 829.79 826.49 179.17 982.05 196.80 1162.70	SLS.82 PEAK DISCHARGE (CFS)	16.3	* * * * * * 480.08 169.42 169.40 623.04	17	72.96 240.60	313.07 *	********** 2098.80 Page 12
.02970 .80729 .TRIBUTARY B (.24840 .24840 .01500 .26340	.09140 .35480 .35480 .12390 .12390 .05390 .6537 .8878,480		AREA (SQ MI)		DR. * * * * * * * * * * * * * * * * * * *	1.13780 .06660 CHANNEL	(0	.25680 D.	JOLF COURSE RD. AP 217.20 ******5 1.39460
1 12 ICH VIA ******	1 2 1 2 18 2 5 EL	1 5 2 1 4 4 ARROYO	5 2 1 1 2 4 EL	FROM TO ID NO. NO.	1 2 - 1 AND 216	% % % % % % % % % % % % % % % % % % %	PLAY	A	HERI	. W. OF GOLF * BLWMP AP 2 5& 1 5
# HYD	201.00 201.90 204.00 204.10 SNEAD CHANN	MA A A A A A A A A A A A A A A A A A A	203.10 203.20 203.20 203.91 212.00 213.00 213.90 213.20 NICKLAUS CH	HYDROGRAPH IDENTIFICATION	214.90 216.00 's 214.9	DR. @ 150 FT. W. OF D 216.10 18 2 215.00 - 215.00 - 215.90 1 215.90 1 215.90 1 215.90 215.90 1 216.20 6& S R SNEAD AND NICKLAUS	216.30 217B SOUTHERN TO	217B.90 217A 'S 217A AND	CH CROSSING	217.20
COMPUTE NM HYD 8.00 - 8.10 3& 1 8.10	SEDIMENI BULK COMPUTE NM HYD 201.00 ROUTE MCUNGE 201.90 COMPUTE NM HYD 204.00 ADD HYD 204.10 *S ** * * START OF SNEAD CHANNEL	*S * * * CONFLUENCE OF LE AD HYD ROUTE MCUNGE COMPUTE NM HYD SOS COMPUTE MCUNGE COMPUTE MCUNGE COMPUTE MCUNGE SOS *S * * * AP 203.10 * * * *	ADD HYD ADD HYD COMPUTE MCUNGE COMPUTE NM HYD COMPUTE NM HYD COMPUTE NM HYD COMPUTE NM HYD COMPUTE NCUNGE ADD HYD SAB HYB SAB	IDEN	ROUTE MCUNGE COMPUTE NM HYD *S COMBINE HYD.'S	*S CASPER DR. @ 150 FT. W. OI *S * * * * AP 216.10 * * * * * * * * * * * * * * * * * * *	ADD HYD 216.30 6& 4 COMPUTE NM HYD 217B - *S ROUTE 217B DOWN SOUTHERN TO THE	COMPUTE NM HYD 2178.90 2 COMPUTE NM HYD 217A - **S COMBINE HYD.'S 217A AND 217B	ADD HYD 217A.10 1& 3 1 ** S ** * EAST BRANCH CROSSING SOUTHERN BLVD # 2100 FT ** OF CR	#S ************************************

90	T.00.	42.00	52.00	42.00	56.90 15.00	1.06	60.00	.2	42.00	42.00	= 13	NO.	50.00	56.90	50.00	42.00	42.00	68.00	51,00
<u>п</u>	CCODE	PER IMP=	PER IMP=	CCODE = PER IMP=	CCODE = PER IMP= PER IMP=	PK BF =	PER IMP=	CCODE =	PER IMP=	CCODE = PER IMP=	PAGE =	NOTATION	PER IMP=	CCODE = PER IMP=	PER IMP=	CCODE = PER IMP=	PER IMP=	PER IMP=	PER IMP=
	2.351				2.304 3.554 2.462 3.472		3.172	3.161	3.238 2.283 3.313	3.241 3.313 2.552	CFS		2.285 3.522 2.277	2.272 3.558 2.263	3.524 2.259	3.321	.31	3.811	
	1.650				1.500		1.550	1.600	1.500 1.650 1.500	1.650	TIME TO PEAK	(HOURS)	1.650 1.500 1.650	1.700	1.500	1.700		1.500	
	1.77930	.570	.748	1.77164	1.76780 1.82184 .96836 1.75752		1,90437	1.90565	1.78734 1.76935 1.57058	1.56759 1.57059 1.56930	RUNOFF	2	1.76625 1.73643 1.76569	1.76558 1.82184 1.76623	1.73643	1.57390	.5739	2.05017	7138
SUM NORTH OF	132.342 OVED; ,1; ANNEL);		38.	138.877 2.195	141.047 9.299 .403 * * * * * *		2.651	2.653	12.354 153.401 .888	.886 1.256 2.143	RUNOFF	(AC-FT)	155.543 2.936 158.479	158.469 1.904 160.374	.750 161.124	161.133 2.703 163.836	37	1.443	.72
VOL81604.S EAST BRANCH NC	2098.80 132.3 88,219,220 REMOVED; D BY TRACTS 19,1; 7,0FF_8,A_1(CHANNEL);	105.55	56.89 2185.06	2182.75 55.54 2212.28	2205.75 217.66 12.29 229.95	LS UPSTREAM OF	COURSE 52.98	52.79	268.57 2375.40 22.48	21.99 31.80 41.81	PEAK DISCHARGE	(CFS)	2414 71 2452 END OF	7 7	18.27 2473.65	2 2	237.2	32.19	75.9 Page
FLOW FROM RANCH JANNEL	1.39460 BASINS 218A,218B, ; 218B REPLACED E F_4,0FF_6,0FF_7,0	.04980	1.46980	1.46980 .02620 1.49600	1.49600 .09570 .00780 .10350	WITH TWO OUTFALL	N AND GOLF	.02610	1.62560 1.62560 01060		AREA	(50	1.65120 .03170 1.68290 H) TO SOUTHERN	1.68290 .01960 1.70250	T. J.	1.71060 .03220 1.74280	asir	.01320	.04080
BEL(EAS' INED	WMP SUBB TRACT 6; 5C,2,0FF				1 3 2 NEL	STEM	OF SOUTHER 3 ROSS-SECTIO	40		пна	200	NO.	2 1 2 T BRANCH)	00	1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	215	1	10m	Н
ONS RESUN IMPROVI CABEZON	D)	2& 1	28	28	2 - 3& 2 E CHANNE	>	2	3 AT 19	48 2 28 1	1 1& 3	TH Z		28 28 6	48 HIN	0	3 2&	ab	1& 2	I .
CABEZON PHASE 2 REVISIONS RESUME SOUTHERN BLVD ROUTED IN IMPROVED EDIMENT BULK AT 6% FOR CABEZON L.	E MCUNGE CABEZON PHASE 2 REVISIONS: B 218A REPLACED BY OFF—4,0FF—5 219 REPLACED BY TRACTS 54,5B 220 REPLACED BY TRACTS 8,2	0ff_4 0ff_4,10	off_5.10	off_6.10	Off_6.90 6.00 19.00 19.10 OF GOLF COURSE	ROAD STORM DR	*S BLWMP SUBBASIN 500, SW CORNER COMPUTE NM HYD *S ROUTE 500 IN TYPICAL ROADWAY C	19.10 AND 500.90	19.20 19.30 0ff_7 , through off_8 t	Off_7.90 Off_8 Off_8.1	HYDROGRAPH	JEN I TETCAL TON	19.40 A 1 19.50 ED THROUGH A	ROUTE MCUNGE 19.90 COMPUTE NM HYD 5B - AADD HYD 5B.10 4& AS PORTION OF EAST BRANCH WITHIN	A_Z 5B.20 FO EAST BRANCH	58.90 2.00 2.10	1.00 - Il area between C	510A 1.10	210.00
CABEZON PHASE 2 SOUTHERN BLVD RC SEDIMENT BULK AT	KOUTE MCUNGE *S CABEZON PHA *S 218A REPLACE *S 219 REPLACE *S 220 REPLACE	ITE NM HYD	ADD HYD	COMPUTE NM HYD	ROUTE MCUNGE COMPUTE NM HYD COMPUTE NM HYD ADD HYD *S * * * START	LF COURSE	LWMP SUBBA TE NM HYD UTE 500 IN	ROUTE MCUNGE *S COMBINE 19.	21	ROUTE MCUNGE COMPUTE NM HYD ADD HYD			YD TE NM HYD YD UTE UNBULKE	MCUNGE TE NM HYD YD RTION OF EA	COMPUTE NM HYD ADD HYD *S ROUTE 58.20 TO EAST	ROUTE MCUNGE COMPUTE NM HYD ADD HYD	COMPUTE NM HYD *S 510A is small area *S BLWMP Subbasin 510-	COMPUTE NM HYD	IE NM HYD
* * S SE SEDIM	*S 2 2 * * * * * * * * * * * * * * * * *	ADD HYD	ADD HYD	COMPUTE ADD HYD	ROUTE M COMPUTE COMPUTE ADD HYD	*SEDIN *S GG	*S B COMPU	*S C	ADD HYD ADD HYD COMPUTE *S ROUT	ROUTE M COMPUTE ADD HYD	COMMAND		ADD HYD COMPUTE ADD HYD *S ROUTE	ROUTE COMPU ADD H	COMPUTE ADD HYD *S ROUT	COMPUTE ADD HYD	*S S	¥ 0 5	COMPU

	.1	9	90.99	50.00	4	5	H.		0.00	8.20	.2		5.00	4.00	4.00	14			1.06		.377	
	= GCODE =	ER IM	PER IMP= 6	PER TMP= 5	TWD		CCODE =		CCODE = 5	PER IMP= 5	CCODE = 8		PER IMP= 5 PER IMP= 1	PER IMP= 7 PER IMP= 8	PER IMP= 7	PAGE =	NOTATION		PK BF = 4	ODE =	AC-FT= 5	
	. 85	3.557	1000	.17	.17	.17	2,166	1.868	. 52	3.584	.84	84	24.	1.808 4.013 4.027	3.736 4.013 3.810	CFS	ACRE	1.805	3.169	. 09	.653	.653
		1.700					1.750	1.750	15.7	1.500	. ω.r.			1.500	1.550	TIME TO	(HOURS)	1.800	1.500	1.550	1.950	1.950
	.7105	1.75246	0471	.7549	.7549	.7560	1,75599	1.78798	7879	1.84577	7886	7924	9683	1.79158 2.17883 2.27858 2.19135	2.19140 2.17882 2.18467	RIINOFF	(INCHES)	1.79536	1.57126	1.56905	1.55444	1.55444
NUS.	3.72	2000	888	82.26	3.00	183.837	183.831	264.163	64.1	264.737 4.410 269.147	60		, m =	1.371 1.371 1.578	1. 3.	RUNOFF	(AC-FT)	288.319	3.427	3.423 12.212 ******	12.212	11.845
VOL81604	74.6 287.1	26/2.22 65.80 64.44	24.6	713.8	721.5	7.6	2721.59	NE			3335.7 3335.7 60.6			30.31 30.31 4.48 34.79	32.2 39.5 39.5 70.4	PEAK	(CFS)	3477.62 IN UNIT 16 BUT	82,95	30 291.77 30 291.77 30 ************************************	61.	59.7 Page
1	. 16570	.02890 .02890	.03880	1.94730	1.95530	1.96290 PROPOSED C	1.96290	2.77019 AST BRANCH CH	2.77019		BASI	2.84459	.00780	. 01180 . 01180 . 00170 . 01350)	AREA	(SQ MI)	3.01109 GOLF COURSE, :		.04090 .14730 (20PP.IN) ND SIZE AND N A COMPREHE STS ON THE S	.147	.14288
	2 4 2 2	212	2			BR	A H	VIA	_	171	CAB	Н	α +	1264		OT TO	Z	ST OF	1	30A. ARK NOT	A A	7
* S POLITE 510 IN TRACT IN THE STATE OF	TE MCUNGE 510.90 HYD 7.20 HYD 7.30 HYD 7.30	NM HYD 5C.9 -	NM HYD R_4.9	ADD HYD 2.40 3& COMPUTE NM HYD	NM HYD	*ADD HYD **S.10 2& 1 **S.10 2& 1 **S.10 2& 1 **S.10 10**S.90 VIA EAST **S TO DOWNSTREAM FND OF SURRACIN \$	ROUTE MCUNGE R.5.90 2 ** S CONFLUENCE OF TRIBUTARY B AND	ADD HYD *S ROUTE 8.20 TO END OF SUBBASIN 9	ROUTE MCUNGE 8.90 2 COMPUTE NM HYD A_4 - ADD HYD 8.93 28.1	9.00	CUNGE 9.90 (DS end CUNGE 9.90 21.00	COMPUTE NM HYD 10.00 -	NM HYD	NM HYD R_7 NM HYD R_7 te combined flows at B	R_8.90 R_9.10	HYDROGRAPH	COMMAND IDENTIFICATION NO.	ADD HYD *S RESUME BLWMP WITH SUBBASINS WE: *S NOT PART OF CABEZON *S REMAINDER OF GOLF COURSE ROAD ST	1		"S IS MODELED WITH THE PROPOSED EXP. ROUTE RESERVOIR 530A,90 2 *S***********************************	DIVIDE HYD UNBULK 7

.653	.653 CCODE = .2	1.171	1.160 CCODE = .1	3.118 PER IMP= 35.00	2.493 PER IMP= .00	2.941	1.243	.341 AC-FT= 9.382	.341 CCODE = .2	.691 .524 PER IMP= 50.00 .689	1.675 CCODE = .2	2.704 PER IMP= 13.00 1.665 1.482	CFS PAGE = 15 PER NOTATION		.489	.355	900.	494
1,950	2.000	1.550	1.650	1.500	1.500	1.500	1.600	3.400	3.450	1.800 1.500 1.800	1.850 1	1.500 2 1.850 1 1.750 1	TIME TO C PEAK P (HOURS) A		1.550 3	1.500 2	1.550 3	1.700 1
1.55444	1.55398	1.55733	1.55574	1.43793	.82952	1.26557	1.50898	1.50686	1.50678	1.77578 1.73643 1.77564	1.77522	1.04601 1.76907 1.46935	RUNOFF (INCHES)		1.57209	1.38518	1.50012	1.47136
.UM .**** SYSTEM.	11.842 L	15.264	15.249	1.940	.442	2.383	17.631	17.607	7 17.606 REPLACED BY	305.925 1.121 307.045	306.973	1.540 308.513 693.218 POOL * * * *	RUNOFF VOLUME (AC-FT)	e density. t 1 Plan.	31.937	17.620		742.774
VOL81604.S 1.85 ************************************	59.73 N DESIGN MODEL	7	136.48	50.49	15.95	66.44	174.23 ************************************	47.77	47.7 550 IS	3495.49 27.29 3503.88	3474.91	47.77 484.61 392.24 THE DAM	PEAK DISCHARGE (CFS)	and the Park Hill(DB2) based on R-1, 5 du/acre iser between Mcmahon and ic as per Ridgeview Unit	850.60	359.51	1191.72 TAL INTO BLACK	9047.84 Page 15
ORM DR	ROAD STORM DR	0		.02530	00010.	03530	1908 .OUT) ACRE F	.21908		3.23017 3.23017 3.24227	3.24227 t it overlaps	1 .02760 1 3.26987 3 97 8.84598 8 LO COUNTY SUBDIVISIONS FLOWS DRAIN DIRECTLY TO		(DB3), and the Pacharge based on or of Unser betwee historic as per the residential	8 .38090 RECEIVED 1/15/02		98 .61940 BRANCH FLOWS FOR TOT	9.46538
20 3.H	TTE MCUNGE 5304.91 7 PUNCH HYDROGRAPH FOR FOR GOLF COMMETNE 5304 91 AND 620 00 AT 6	NYD 530A.10 99& 3 ROUTE COMBINED HYDROGRAPHS IN P	7	COMPUTE NM HYD 530C - 1 *S COMPUTE 530D 23RD AVE, POND BASIN	COMPUTE NM HYD 530D - 3 *S ADD 530D TO 530C	ADD HYD	305.20 28 3 2 ******* AP / THROUGH 23RD AV	ROUTE RESERVOIR NOT UNBULKED	CH)	*S COMBINE ROUTED FLOW WITH EAST BRANCH *S ADD 20.30 and 530.91 At 20.40 ADD HYD 20.40 9& 2 1 COMPUTE NM HYD A_S - 2 ADD HYD 20.50 1& 2 1 *S ROUTE IN EAST BRANCH TO BLACK DAM	T.	MPUTE NM HYD 550.00 - 1 HYD EAST 2& 1 EAST 2& 1 O HYD DAM.10 1&11 RECALL HYDROGRAPHS FROM BERNALIL THESE ARE PUNCH HYDROGRAPHS AND VIA PIPES.	FROM TO HYDROGRAPH ID ID COMMAND IDENTIFICATION NO. NO	iew Village(DB4), Los sions have free devel om some commercial si rroyo Blvd. is restri ed flow is accommodate	AP5 - 1 RIDGE SUBDIVISON FROM MODEL	ALL HYD ADD RECALL HYDROGRAPHS ADD RECALL HYDROGRAPHS	HYD DIRECT.PIPE 18&19 ADD RECALL HYDS TO EAST AND WEST	ADD HYD DAM.IN 98&97 99

7
\vec{v}

	1.544 AC-FT= 30.625	1.544			.430 AC-FT= 314.594	
	1.700 1.	1.700			1.50933 2.400	
	1.51015	1.51015			1.50933	
*S ROUTE FLOWS THROUGH WQ STRUCTURE NO. 2 *S BEFORE ENTERING BLACK DAM *S *S	RVOIR	DIVIDE HYD P.OUT.3 98 98 9.18141 9071.53 739.484 SEDIMENT and 51 .28396 280.56 22.871 **S ROUTE FLOWS THROUGH BLACK DAM RATING CURVE TAKEN FROM BLACK DAM	*S FILING SHEET RECORD DRAWINGS - BLARD-51 Stamp dated 9/14/91 *S Record Dwg Stamp 11/9/92 AMAFCA Ref # Nw-04-114 Calabacillas *S THIS IS THE FUTURE CONDITIONS RATING CURVE	*S 5/04/04 BLACK DAM RATING CURVE ADJUSTED FOR CABEZON MODEL: *S ELEVATIONS CONVERTED TO NAVD88 FROM NGVD99; ALSO *S STORAGE INCREASED TO DEFINE TWO STRUKENS FOR THE STORAGE TO STORAGE	ROUTE RESERVOIR DAM.R. 98 91 918141 2524.35 739.084 ETATEUR ROUTE RESERVOIR PARTIE TATEUR PROPERTY SPILLWAY CREST IS AT ELEV 5168.55 FT (NAVD88)	0(\$104

VOL81604.SUM

APPENDIX B Hydraulics

Pipe Report

nnings n	0.013	0.013	0.013	0.013	0.013	0.013	0.013
t Mai	- 10						-
Gravity Elemen Headlos (ft)	6.76	7.07	5.28	10.48	13.30	2.97	5.84
Upstream Gravity I Ground Element Elevation Headloss (ft) (ft)	5,270.00	5,263.63	5,253.00	5,251.09	5,239.55	5,229.75	5,228.75
Downstream Ground Elevation (ft)	5,263.63 5,270.00	5,253.00 5,263.63	5,251.09 5,253.00	5,239.55 5,251.09	5,229.75 5,239.55	5,228.75 5,229.75	5,217.00 5,228.75
Downstream DownstreamUpstream Gravity Mannings Invert Ground Ground Element n Elevation Elevation Headloss (ft) (ft) (ft)	5,252.73	5,240.00	5,234.29	5,220.58	5,209.80	5,208.00	5,204.50
Average Total Depth Depth Hydraulid Hydraulid Upstream Velocity System In Out Grade Grade Invert (ft/s) Flow (ft) (ft) Line In Line Out Elevation (ft) (ft) (ft)	5,259.50	5,252.23	5,240.00	5,234.29	5,220.58	5,209.80	5,208.00
ydraulicHydraulic Grade Grade Line In Line Out (ft) (ft)	5,258.29	5,251.12	5,244.60	5,233.17	5,219.59	5,216.51	5,208.50
Hydraulid Grade Line In (ft)	5.56 5,265.05 5,258.29	5.96 11.12 5,258.19 5,251.12	9.88 10.31 5,249.88 5,244.60	9.36 12.59 5,243.65 5,233.17	9.79 5,232.90 5,219.59	8.51 5,219.48 5,216.51	4.00 5,214.34 5,208.50
Oepth Out (ft)	5.56	11.12	10.31	12.59	9.79	8.51	4.00
Depth In (ft)	5.55	5.96	9.88	9.36	12.32	9.68	6.34
Total System Flow (cfs)	21.21 504.00	25.78 504.00	21.68 613.00	21.68 613.00	24.37 689.00 12.32	26.77 757.00	23.66 757.00
Average Total Velocity System (ft/s) Flow (cfs)	21.21	25.78	21.68	21.68	24.37	26.77	23.66
Bend Angle degrees)	00.00	64.00	26.00	1.00	00.00	0.00	0.00
Label Length Section Constructed (ft) Size Slope (ft/ft) (300.00 66 inch 0.022567	0.024460	252.00 72 inch 0.022659	500.00 72 inch 0.027420	0.021453	93.00 72 inch 0.019355	P-7 200.00 8 x 4 ft 0.017500
Section	66 inch	500.00 72 inch	72 inch	72 inch	P-5 502.50 72 inch (72 inch	8 x 4 ft
Length (ft)	300.00		252.00	500.00	502.50	93.00	200.00
Label	P-1	P-2	P-3	P-4	P-5	P-6	P-7

Scenario: Base

Junction Report

Label	Ground Elevation (ft)	Rim Elevation (ft)			Diameter	Headloss Coefficient		Depth In (ft)	Depth Out (ft)
J-1	5,251.09	5,251.09	5,244.60	5,243.65	4.00	0.13	Standard	10.31	9.36
J-2	5,263.63	5,263.63	5,258.29	5,258.19	4.00	0.02	Standard	6.06	5.96
J-3	5,228.75	5,228.75	5,216.51	5,214.34	4.00	0.25	Standard	8.51	6.34

Scenario: Base

Inlet Report

Label	Ground Elevation (ft)		Hydraulid Grade Line In (ft)		Elevation			Headloss Coefficient		Depth Out (ft)
I- 4	5,229.75	5,229.75	5,219.59	5,219.48	5,209.80	757.00	Standard	0.01	9.79	9.68
1-3	5,239.55	5,239.55	5,233.17	5,232.90	5,220.58	689.00	Standard	0.03	12.59	12.32
			5,251.12						11.12	9.88
1-1	5,270.00	5,270.00	5,265.40	5,265.05	5,259.50	504.00	Standard	0.05	5.90	5.55

Pipe Report

nings 1	0.013	0.013	5.013	0.013	0.013
Manr				7	
Gravity Element Headloss (ft)	10.79	9.94	10.79	12.48	3.68
rUpstream Gravity I Ground Element Elevation Headloss (ft) (ft)	5,287.08	5,279.54	5,268.62	5,260.36	5,253.09
DownstreamUpstream Gravity Mannings Ground Ground Element n Elevation Elevation Headloss (ft) (ft)	5,279.54 5,287.08	5,268.62 5,279.54	5,260.36 5,268.62	5,253.09 5,260.36	5,248.00 5,253.09
Downstream Invert Elevation (ft)	5,271.71	5,261.56	5,250.56	5,237.80	5,234.94
Average Total Depth Depth Hydraulid Upstream Velocity System In Out Grade Grade Invert (ft/s) Flow (ft) (ft) Line In Line Out Elevation (cfs) (ft) (ft) (ft) (ft)	5,282.58	5,271.71	5,261.56	5,250.56	5,237.80
ydraulicHydraulic Grade Grade Line In Line Out (ft) (ft)	5,274.63	5,264.61	5,253.61	5,240.92	5,236.96
Hydraulic Grade Line In (ft)	2.84 2.92 5,285.42 5,274.63	3.05 5,274.55 5,264.61	3.05 5,264.40 5,253.61	3.12 5,253.40 5,240.92	2.02 5,240.64 5,236.96
Depth Out (ft)	2.92	3.05	3.05	3.12	2.02
Depth In (ft)	2.84	2.84	2.84	2.84	2.84
verage Total felocity System (ff/s) Flow (cfs)	17.78 89.04	89.04	89.04	89.04	20.97 89.04
Average Velocity (ft/s)		17.79	20.97	20.97	1.0
Bend Angle degrees	2.00	3.00	10.00	17.00	0.00
abel Length SectionConstructed (ft) Size Slope (ft/ft) (P-1 375.00 36 inch 0.028987	350.00 36 inch 0.029000	P-3 250.00 36 inch 0.044000	P-4 290.00 36 inch 0.044000	65.00 36 inch 0.044000
Section	36 inch	36 inch	36 inch	36 inch	36 inch
Length (ft)	375.00	350.00	250.00	290.00	65.00
Labe	P-1	P-2	P-3	P-4	P-5

Scenario: Base

Inlet Report

Labe	Ground Elevation (ft)		Grade		Elevation			Headloss Coefficient		Depth Out (ft)
I-1	5,287.08	5,287.08	5,285.45	5,285.42	5,282.58	89.04	Standard	0.01	2.87	2.84

Scenario: Base

Junction Report

	Ground Elevation (ft)	Rim Elevation (ft)	Hydraulid Grade Line In (ft)	Hydraulid Grade Line Out (ft)	Diameter	Headloss Coefficient	Headloss Method	Depth In (ft)	Depth Out (ft)
J-4	5,253.09	5,253.09	5,240.92	5,240.64	4.00	0.11	Standard	3.12	2.84
J-3	5,260.36	5,260.36	5,253.61	5,253.40	4.00	0.08	Standard	3.05	2.84
J-2	5,268.62	5,268.62	5,264.61	5,264.40	4.00	0.08	Standard	3.05	2.84
J-1	5,279.54	5,279.54	5,274.63	5,274.55	4.00	0.03	Standard	2.92	2.84

10.848 156.00 3.80 66.00	Procedu	Procedure for determing "Broad Crested Recta	g "Broad C		ngular Weir" discharge	(Q)		
C	Q = C, C	_d 2/3 [2/3 g] ^{1/2} L	H ^{3/2}				(EQ. 2.47)	
1,10 2, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	Given:	" " " "		0.84	- 8		(assumed) (Figure 2.25	(p))
Heil (H) = 1		I (ft) = L (ft) = H _{up} EI. (ft) =		350.C 5168.8	0 0 0			
b. Shape-Summap-linearing and suppresside and suppressi		H _{dn} El. (ft) = H (ft) = Upstream Inv P (ft) =	. El. (ft) =		0000			
Hela Singenth According Contention of According According to Contention of According According to Contention of According Acco	Find:	a. Determine b. Stage-Stor	if weir is "b rage-Discha	-s	sharp"			
Broad Crested Area (acre) Area	Soln:	a. Sharp, Bro	oad, or Shar	p Crested?			(see Figure	2.25)
Annea (acre) Storage (acre-ft) Anh(ft) 4 9376 0.0000 0 4 932 0.984 0 4 932 0.984 0 4 936 1.973 0 4 956 1.973 0 4 956 2.966 0 4 956 2.966 0 5 020 2.966 0 5 020 4.965 0 5 020 4.966 0 5 020 4.966 0 5 020 4.966 0 5 020 4.966 0 5 020 4.966 0 5 020 4.966 0 5 030 10.040 0 5 086 7.987 0 5 106 11.068 0 5 240 15.225 0 5 240 15.226 0 5 240 15.226 0 5 240 15.226 0 5 240 12.041 0			0	0.2533333 Broad Crested Equation 2.47 to solv	3 e for Q			
4970 0.0000 4976 0.0000 4976 1.973 4976 2.966 6020 2.966 6020 4.400 6020 2.025 6020 2.026 6020 2.026 6020 2.026 6020 2.026		b. Stage-Stor Elevation (ft)	rage Discha Stage (ff)	rge Area (acre)	[0]	ΔH(ft)	Q (ff³/s)	
0.40 4.954 1.973 0.0 0.80 4.966 3.963 0 0.80 4.966 3.963 0 1.00 5.022 4.965 0 1.20 5.042 5.971 0 1.20 5.042 5.971 0 1.20 5.046 5.966 0 0 1.80 5.064 6.982 0 0 1.80 5.066 7.397 0 0 2.00 5.108 9.016 0 0 2.00 5.108 7.397 0 0 2.00 5.108 7.397 0 0 2.00 5.108 7.397 0 0 2.00 5.108 7.109 0 0 2.00 5.108 7.240 0 0 2.00 5.226 7.254 0 0 2.00 5.246 7.254 0 0 3.00		5160.20	0.20	4.910	0.000	0 0	0 0	
080 4976 2.986 0 080 4998 3.983 0 1100 5.020 4.986 0 1120 5.042 5.941 0 1140 5.042 5.947 0 1140 5.048 5.947 0 1140 5.048 5.947 0 1180 5.048 7.997 0 1180 5.130 10.040 0 220 5.130 10.040 0 280 5.130 10.040 0 280 5.130 11.088 0 380 5.146 12.101 0 440 5.240 15.255 0 440 5.248 14.179 0 520 5.246 14.179 0 440 5.249 14.179 0 520 5.240 25.249 0 440 5.248 24.848 0 520		5160.40	0.40	4.954	1.973	0	0	
1,00 5,00 4,966 0 1,10 5,00 4,966 0 1,10 5,00 5,90 0 1,10 5,00 5,90 0 1,10 5,00 7,997 0 1,10 5,00 7,997 0 2,00 5,10 7,997 0 2,00 5,130 10,040 0 2,00 5,130 10,040 0 2,00 5,130 10,040 0 2,00 5,130 10,040 0 2,00 5,130 10,040 0 2,00 5,130 11,049 0 2,00 5,140 12,101 0 3,00 5,240 14,173 0 4,00 5,240 14,173 0 4,00 5,382 21,525 0 5,00 5,360 14,173 0 4,00 5,360 20,524 0 5,00 </td <td></td> <td>5160.60</td> <td>09.0</td> <td>4.976</td> <td>2.966</td> <td>0 0</td> <td>0 0</td> <td></td>		5160.60	09.0	4.976	2.966	0 0	0 0	
1,20 5,042 6,982 0 1,40 5,086 6,982 0 1,40 5,086 7,987 0 1,180 5,108 9,016 0 2,00 5,130 10,040 0 2,20 5,130 10,040 0 2,40 5,174 12,101 0 2,40 5,138 10,133 0 2,80 5,148 12,104 0 3,00 5,249 13,138 0 3,00 5,249 14,179 0 4,00 5,249 14,179 0 4,00 5,249 14,179 0 4,00 5,249 14,179 0 4,00 5,380 14,435 0 5,240 14,179 0 0 4,00 5,380 1,1334 0 5,240 2,448 14,49 0 5,00 0,000 26,487 24,48		5161.00	1.00	5.020	4.965	0 0	0 0	
1.40 5.084 6.982 0 1.40 5.086 7.997 0 1.80 5.108 7.997 0 2.20 5.132 10.040 0 2.40 5.132 11.088 0 2.40 5.134 12.101 0 2.60 5.148 12.101 0 2.60 5.186 13.138 0 2.60 5.218 14.179 0 3.00 5.248 14.179 0 3.40 5.284 15.225 0 4.00 5.248 14.179 0 3.40 5.284 14.179 0 4.00 5.249 14.05 0 4.00 5.340 25.848 0 4.00 5.340 25.848 0 4.00 5.340 25.848 0 5.00 5.426 25.448 0 6.00 5.400 25.448 0		5161.20	1.20	5.042	5.971	0	0	
1.60 5.086 7.997 0 1.80 5.086 7.997 0 1.80 5.130 9.016 0 2.20 5.132 10.040 0 2.20 5.152 11.068 0 2.20 5.152 11.068 0 2.20 5.152 11.068 0 2.20 5.152 11.068 0 2.20 5.152 11.068 0 2.20 5.174 12.101 0 2.20 5.264 13.138 0 3.20 5.264 14.179 0 3.20 5.264 15.255 0 4.00 5.284 15.255 0 4.00 5.380 23.541 0 4.20 5.380 23.541 0 5.20 0.000 26.487 0 6.20 0.000 26.487 1.40 6.20 0.000 26.487 1.40		5161.40	1.40	5.064	6.982	0	0	
2.20 5.130 10.040 0 2.20 5.132 11.068 0 2.40 5.174 12.101 0 2.40 5.174 12.101 0 2.60 5.186 13.138 0 2.80 5.240 15.225 0 3.40 5.284 15.225 0 3.40 5.286 15.249 0 3.40 5.286 15.256 0 4.00 5.386 15.391 0 4.00 5.386 15.369 0 4.00 5.346 16.275 0 4.00 5.346 16.275 0 4.00 5.346 25.567 0 4.00 5.346 25.567 0 5.40 5.426 25.567 0 5.40 5.448 24.848 0 6.00 0.000 26.447 25.940 0 6.20 0.000 26.448 1.40		5161.60	1.60	5.086	7.997	0 0	0 0	
2.20 5.152 11.068 0 2.40 5.174 12.101 0 2.60 5.136 13.138 0 2.80 5.240 15.225 0 3.20 5.264 16.275 0 3.20 5.264 16.275 0 3.40 5.288 17.331 0 3.40 5.264 16.275 0 3.40 5.382 17.331 0 3.40 5.386 17.331 0 4.00 5.382 21.599 0 4.00 5.382 21.599 0 4.40 5.360 22.678 0 4.40 5.382 21.599 0 5.40 0.000 26.849 0 5.40 0.000 26.849 0 5.40 0.000 26.849 0 6.40 0.000 27.609 1.60 6.40 0.000 28.446 0		5162.00	2.00	5.130	10.040	0	0 0	
2.40 5.174 12.101 0 2.60 5.196 13.138 0 2.80 5.240 14.179 0 3.20 5.240 15.225 0 3.20 5.284 16.275 0 3.40 5.288 17.331 0 3.40 5.288 17.331 0 3.40 5.288 17.331 0 3.40 5.382 18.391 0 4.00 5.382 21.599 0 4.00 5.382 21.599 0 4.40 5.382 21.599 0 4.40 5.404 22.648 0 5.20 0.000 26.487 0 5.40 0.000 26.487 0 5.40 0.000 26.487 0 6.40 0.000 26.487 0 6.40 0.000 26.487 0 6.40 0.000 26.487 0		5162.20	2.20	5.152	11.068	0	0	
2.60 5.196 13.138 0 2.80 5.240 15.255 0 3.20 5.284 15.255 0 3.40 5.284 16.275 0 3.40 5.284 16.275 0 3.40 5.382 17.331 0 3.80 5.382 19.455 0 4.00 5.386 17.331 0 4.00 5.382 19.455 0 4.00 5.382 19.455 0 4.00 5.382 19.455 0 4.00 5.382 19.455 0 4.00 5.382 21.589 0 4.40 5.448 24.484 0 5.40 5.448 24.484 0 6.00 0.000 26.487 0 6.00 0.000 26.487 0 6.00 0.000 26.487 0 6.00 0.000 27.405 1.40		5162.40	2.40	5.174	12.101	0	0	
3.00 5.240 15.225 0 3.20 5.284 16.275 0 3.40 5.286 17.331 0 3.40 5.386 17.331 0 3.80 5.386 19.455 0 4.00 5.386 20.525 0 4.00 5.382 21.599 0 4.20 5.404 22.678 0 4.40 5.404 22.678 0 4.40 5.404 22.678 0 5.40 0.000 26.487 0 5.40 0.000 26.487 0 5.40 0.000 26.487 0 5.40 0.000 26.487 0 6.40 0.000 26.489 0 6.40 0.000 26.489 0 6.40 0.000 26.489 0 6.40 0.000 27.405 1.40 6.50 0.000 28.413 2.40 <		5162.60	2.60	5.196	13.138	0 0	0 0	
3.20 5.264 16.275 0 3.40 5.288 17.331 0 3.60 5.312 18.391 0 3.80 5.336 19.455 0 4.00 5.380 20.525 0 4.20 5.382 21.599 0 4.40 5.404 22.678 0 4.40 5.448 24.848 0 5.40 5.448 24.848 0 5.40 0.000 25.449 0 5.40 0.000 26.614 0 5.40 0.000 26.614 0 5.40 0.000 26.614 0 6.00 0.000 26.614 0 6.00 0.000 26.614 0 6.00 0.000 26.614 0 6.00 0.000 26.614 0 6.00 0.000 27.405 1 6.00 0.000 28.413 1		5163.00	3.00	5.240	15.225	0	0	
3.40 5.288 17.331 0 3.80 5.312 18.391 0 3.80 5.312 18.391 0 3.80 5.380 19.455 0 4.00 5.360 20.525 0 4.20 5.382 21.599 0 4.20 5.426 22.678 0 4.60 5.426 22.678 0 4.60 5.426 22.678 0 4.60 5.426 22.678 0 5.40 5.426 23.761 0 5.40 5.436 24.848 0 5.40 0.000 26.843 0 6.20 0.000 26.843 1.40 6.20 0.000 26.843 1.80 6.80 0.000 28.413 2.80 6.80 0.000 28.413 2.80 7.40 0.000 28.73 2.80 8.00 0.000 29.466 3.80 8.20 0.000 29.466 3.80 8.80		5163.20	3.20	5.264	16.275	0	0	
3.80 5.312 18.391 0 3.80 5.336 19.455 0 4.00 5.360 20.525 0 4.00 5.360 20.525 0 4.40 5.404 22.678 0 4.60 5.426 23.761 0 4.60 5.426 23.761 0 5.00 5.478 24.848 0 5.00 5.478 25.940 0 5.00 5.479 25.940 0 6.00 5.470 26.869 0 6.00 0.000 26.869 0.80 6.00 0.000 26.869 0.80 6.00 0.000 26.869 0.80 6.00 0.000 27.201 1.40 6.00 0.000 27.813 1.80 7.00 0.000 28.413 2.40 7.00 0.000 28.763 2.80 8.00 0.000 29.466 3.60 8.40 0.000 29.466 3.80 8.80 <td></td> <td>5163.40</td> <td>3.40</td> <td>5.288</td> <td>17.331</td> <td>0</td> <td>0</td> <td></td>		5163.40	3.40	5.288	17.331	0	0	
4.00 5.360 20.525 0 4.20 5.382 21.599 0 4.40 5.404 22.678 0 4.60 5.404 22.678 0 4.80 5.426 23.761 0 5.00 5.476 25.940 0 5.20 0.000 26.487 0 5.20 0.000 26.847 0 5.40 0.000 26.847 0 6.20 0.000 26.847 0 6.20 0.000 26.847 0 6.40 0.000 26.847 0 6.40 0.000 26.847 0 6.40 0.000 27.405 1.40 6.40 0.000 27.843 1.80 7.40 0.000 28.413 2.40 7.40 0.000 28.413 2.40 7.40 0.000 28.403 2.80 8.00 0.000 29.486 3.60 8.40 0.000 29.486 3.60 8.80		5163.60	3.60	5.312	18.391	0 0	0 0	
4.20 5.382 21.599 0 4.40 5.404 22.678 0 4.60 5.426 22.678 0 4.80 5.448 24.848 0 5.00 5.470 25.940 0 5.20 0.000 26.487 0 5.20 0.000 26.487 0.20 5.50 0.000 26.487 0.20 6.00 0.000 26.487 0.20 6.00 0.000 26.843 1.00 6.00 0.000 27.201 1.20 6.00 0.000 27.201 1.20 7.40 0.000 28.413 1.80 7.40 0.000 28.413 2.40 7.40 0.000 28.413 2.40 8.00 0.000 28.603 3.00 8.40 0.000 29.83 3.00 8.40 0.000 29.845 3.80 8.80 0.000 29.845 3.80 9.00 0.000 29.824 4.00		5164.00	4.00	5.360	20.525	0	0	
4.40 5.404 22.678 0 4.60 5.426 23.761 0 4.80 5.448 24.848 0 5.00 5.470 25.940 0 5.20 0.000 26.847 0 5.40 0.000 26.847 0 5.40 0.000 26.847 0 5.80 0.000 26.869 0 6.20 0.000 27.201 1.20 6.80 0.000 27.201 1.20 6.80 0.000 27.813 1.80 7.20 0.000 28.215 2.20 7.40 0.000 28.215 2.20 7.80 0.000 28.413 2.80 8.70 0.000 28.793 2.80 8.40 0.000 29.466 3.60 8.80 0.000 29.466 3.60 8.80 0.000 29.645 3.80 9.00 0.000 29.824 4.00 9.20 0.000 30.314 4.40 <td></td> <td>5164.20</td> <td>4.20</td> <td>5.382</td> <td>21.599</td> <td>0</td> <td>0</td> <td></td>		5164.20	4.20	5.382	21.599	0	0	
4.80 5.448 24.848 0 4.80 5.448 24.848 0 5.00 5.470 25.940 0 5.20 0.000 26.487 0.20 5.40 0.000 26.8742 0.20 5.60 0.000 26.869 0.80 6.40 0.000 27.809 1.00 6.80 0.000 27.813 1.80 6.80 0.000 27.813 1.80 7.00 0.000 27.813 1.80 7.20 0.000 28.215 2.20 7.40 0.000 28.215 2.20 7.80 0.000 28.733 2.80 8.70 0.000 28.733 2.80 8.70 0.000 29.466 3.60 8.80 0.000 29.846 3.60 8.80 0.000 29.824 4.00 9.00 0.000 30.314 4.40		5164.40	4.40	5.404	22.678	0 0	0 (
5.00 5.470 25.940 0 5.20 0.000 26.487 0.20 5.40 0.000 26.487 0.20 5.60 0.000 26.814 0.40 5.80 0.000 26.869 0.60 6.00 0.000 26.869 0.80 6.40 0.000 27.405 1.40 6.80 0.000 27.405 1.40 6.80 0.000 27.405 1.40 7.00 0.000 27.813 1.80 7.20 0.000 28.413 2.40 7.40 0.000 28.413 2.40 7.80 0.000 28.413 2.80 8.20 0.000 28.433 2.80 8.20 0.000 29.466 3.60 8.60 0.000 29.466 3.60 8.80 0.000 29.824 4.00 9.00 0.000 29.824 4.00 9.40 0.000 3		5164.80	4.80	5.426	24.848	0 0	0 0	
5.20 0.000 26.487 0.20 5.40 0.000 26.814 0.40 5.60 0.000 26.742 0.60 5.80 0.000 26.869 0.80 6.00 0.000 26.997 1.00 6.20 0.000 27.201 1.20 6.80 0.000 27.405 1.40 6.80 0.000 27.813 1.80 7.00 0.000 28.017 2.00 7.40 0.000 28.413 2.40 7.80 0.000 28.413 2.40 8.00 0.000 28.433 2.80 8.00 0.000 28.983 3.00 8.00 0.000 29.135 3.20 8.00 0.000 29.466 3.60 8.80 0.000 29.845 3.80 9.00 0.000 29.824 4.00 9.40 0.000 30.314 4.40		5165.00	5.00	5.470	25.940	0	0	
5.40 0.000 26.614 0.40 5.60 0.000 26.742 0.60 5.80 0.000 26.869 0.80 6.00 0.000 27.201 1.00 6.40 0.000 27.405 1.40 6.80 0.000 27.405 1.40 7.40 0.000 28.017 2.00 7.40 0.000 28.413 2.40 7.40 0.000 28.413 2.40 7.50 0.000 28.793 2.80 8.70 0.000 29.135 3.20 8.70 0.000 29.135 3.40 8.60 0.000 29.466 3.60 9.00 0.000 29.845 3.80 9.00 0.000 29.824 4.00 9.40 0.000 30.314 4.40		5165.20	5.20	0.000	26.487	0.20	81.99737	
5.60 0.000 26.869 0.60 5.80 0.000 26.869 0.80 6.00 0.000 26.869 0.80 6.20 0.000 27.201 1.20 6.40 0.000 27.405 1.40 6.80 0.000 27.813 1.80 7.40 0.000 28.017 2.00 7.40 0.000 28.413 2.40 7.80 0.000 28.793 2.80 8.00 0.000 28.793 2.80 8.20 0.000 29.135 3.20 8.40 0.000 29.135 3.20 8.80 0.000 29.846 3.80 9.00 0.000 29.824 4.00 9.20 0.000 29.824 4.00 9.40 0.000 30.314 4.40		5165.40	5.40	0.000	26.614	0.40	231.9236	
6.20 0.000 26.997 1.00 6.20 0.000 27.201 1.20 6.40 0.000 27.405 1.40 6.60 0.000 27.609 1.60 6.80 0.000 28.017 2.00 7.40 0.000 28.413 2.40 7.80 0.000 28.793 2.60 8.00 0.000 28.793 2.80 8.20 0.000 29.135 3.20 8.40 0.000 29.466 3.60 8.80 0.000 29.824 4.00 9.00 0.000 29.824 4.00 9.40 0.000 30.314 4.40		5165.60	5.80	0.000	26.742	0.60	426.0708	
6.20 0.0000 27.201 1.20 6.40 0.000 27.405 1.40 6.60 0.000 27.609 1.60 7.00 0.000 28.017 2.00 7.40 0.000 28.413 2.40 7.40 0.000 28.413 2.40 7.80 0.000 28.793 2.80 8.20 0.000 28.793 2.80 8.20 0.000 29.135 3.20 8.20 0.000 29.466 3.60 8.80 0.000 29.847 3.80 9.00 0.000 29.824 4.00 9.20 0.000 29.824 4.00 9.40 0.000 30.314 4.40		5166.00	00.9	0.000	26.997	1.00	916.7585	
6.40 0.000 27.405 1.40 6.60 0.000 27.813 1.80 6.80 0.000 27.813 1.80 7.20 0.000 28.017 2.00 7.40 0.000 28.413 2.40 7.80 0.000 28.603 2.60 8.00 0.000 28.793 2.60 8.40 0.000 29.135 3.20 8.60 0.000 29.287 3.40 8.80 0.000 29.466 3.60 9.00 0.000 29.824 4.00 9.40 0.000 30.314 4.40		5166.20	6.20	0.000	27.201	1.20	1205.11	
6.60 0.000 27.813 1.80 6.80 0.000 27.813 1.80 7.00 0.000 28.215 2.20 7.40 0.000 28.413 2.40 7.80 0.000 28.603 2.60 8.00 0.000 28.793 2.60 8.20 0.000 28.983 3.00 8.40 0.000 29.135 3.20 8.60 0.000 29.466 3.60 8.80 0.000 29.824 4.00 9.00 0.000 29.824 4.00 9.40 0.000 30.314 4.40		5166.40	6.40	0.000	27.405	1.40	1518.613	
7.00 0.000 28.017 2.00 7.20 0.000 28.215 2.20 7.40 0.000 28.413 2.40 7.60 0.000 28.603 2.60 8.00 0.000 28.983 2.60 8.20 0.000 29.135 3.20 8.40 0.000 29.287 3.40 8.60 0.000 29.466 3.60 9.00 0.000 29.824 4.00 9.00 0.000 30.069 4.20 9.40 0.000 30.314 4.40		5166.80	6.80	0.000	27.609	1.80	1855.389	
7.20 0.0000 28.215 2.20 7.40 0.000 28.413 2.40 7.60 0.000 28.603 2.60 8.00 0.000 28.793 2.60 8.20 0.000 28.983 3.00 8.40 0.000 29.135 3.20 8.60 0.000 29.287 3.40 8.80 0.000 29.466 3.60 9.00 0.000 29.824 4.00 9.40 0.000 30.314 4.40		5167.00	7.00	0.000	28.017	2.00	2592.985	
7.40 0.000 28.413 2.40 7.60 0.000 28.603 2.60 7.80 0.000 28.793 2.80 8.00 0.000 28.983 3.00 8.20 0.000 29.135 3.20 8.40 0.000 29.287 3.40 8.60 0.000 29.466 3.60 9.00 0.000 29.824 4.00 9.40 0.000 30.069 4.20 9.40 0.000 30.314 4.40		5167.20	7.20	0.000	28.215	2.20	2991.5	
7.80 0.000 28.793 2.00 8.00 0.000 28.983 2.80 8.20 0.000 29.135 3.20 8.40 0.000 29.287 3.40 8.60 0.000 29.466 3.60 8.80 0.000 29.824 4.00 9.00 0.000 30.069 4.20 9.40 0.000 30.314 4.40		5167.40	7.40	0.000	28.413	2.40	3408.567	
8.00 0.000 28.983 3.00 8.20 0.000 29.135 3.20 8.40 0.000 29.287 3.40 8.60 0.000 29.466 3.60 8.80 0.000 29.845 3.80 9.00 0.000 29.824 4.00 9.20 0.000 30.069 4.20 9.40 0.000 30.314 4.40		5167.80	7.80	0.000	28.793	2.80	4295.285	
8.20 0.000 29.135 3.20 8.40 0.000 29.287 3.40 8.60 0.000 29.466 3.60 8.80 0.000 29.824 4.00 9.00 0.000 30.069 4.20 9.40 0.000 30.314 4.40		5168.00	8.00	0.000	28.983	3.00	4763.617	
8.60 0.000 29.287 3.40 8.60 0.000 29.466 3.60 9.00 0.000 29.824 4.00 9.20 0.000 30.069 4.20 9.40 0.000 30.314 4.40		5168.20	8.20	0.000	29.135	3.20	5247.832	
8.80 0.000 29.645 3.80 9.00 0.000 29.824 4.00 9.20 0.000 30.069 4.20 9.40 0.000 30.314 4.40		5168.40	8.60	0.000	29.287	3.60	5747.425	
9.00 0.000 29.824 4.00 9.20 0.000 30.069 4.20 9.40 0.000 30.314 4.40		5168.80	8.80	0.000	29.645	3.80	6790.947	
9.20 0.000 30.069 4.20 9.40 0.000 30.314 4.40		5169.00	9.00	0.000	29.824	4.00	7334.068	
0.00		5169.20	9.20	0.000	30.069	4.20	7890.943	
5169.60 9.60 0.000 30.559 4.60 9044.648		0109.40	9.40	0,000	30.314	4.40	8461.239	