CITY OF ALBUQUERQUE

Planning Department David Campbell, Director

Mayor Timothy M. Keller

June 14, 2018

Diane Hoelzer, P.E. Mark Goodwin & Associates PO Box 90606 Albuquerque, NM, 87199

RE: Anasazi Ridge Unit 3 Drainage Report, Engineer's Stamp Date: 05/09/18 Supplemental Rundown Calculations, Engineer's Stamp Date: 05/09/18 Grading and Drainage Plan, Engineer's Stamp Date: 05/09/18 Hydrology File: A10D002G

Dear Ms. Hoelzer:

Sincerely,

PO Box1293Based upon the information provided in your submittal received 05/14/18, the Drainage Report,
Supplemental Rundown Calculations, and Grading and Drainage Plan which were originally
approved on March 12, 2015 is re-approved for action by the DRB on the Preliminary Plat.

If you have any questions, please contact me at 924-3995 or <u>rbrissette@cabq.gov</u>.

www.cabq.gov

NM 87103

Renée C. Brissette

Renée C. Brissette, P.E. CFM Senior Engineer, Hydrology Planning Department Anasazi Ridge Unit 3 Subdivision

Supplemental Information To Drainage Management Plan (dated 1-12-15)

- Revised Spillway Design - Revised Drainage Easements

Prepared by

Mark Goodwin & Associates, PA

February 2015

- D. MARK GOODWIN & ASSOCIATES

D. Mark Goodwin & Associates, P.A. Consulting Engineers

P.O. BOX 90606, ALBUQUERQUE,NM 87199 (505) 828-2200 FAX 797-9539

> ~ 2012 ACEC/NM Award Winner for Engineering Excellence ~ ~ 2008 ACEC/NM Award Winner for Engineering Excellence ~

February 3, 2015

Ms. Lynn Mazurl AMAFCA 2600 Prospect NE Albuquerque, NM 87107

Re: Anasazi Ridge Unit 3 – Revised Drainage Management Plan (2-2-15)

Dear Ms. Mazur:

A supplemental Information report and revised grading plan have been submitted to City hydrology. Accompanying this letter is a copy of what is being submitted to the City. Below is the response to your earlier comment letter dated October 28, 2014:

- 1. Agreed. There is a triangular parcel of property at the southeast corner of McMahon Blvd. and Kayenta Bvld. that is owned by someone other than AMAFCA. The proposed rundown improvements will remain outside this parcel of property and remain within the public McMahon Blvd. right of way as shown on the revised grading plan.
- 2. The temporary 10' wide channel rundown has been added to the city infrastructure list. Whoever is maintaining the existing temporary asphalt rundown should maintain the concrete rundown. I assume this is and will be the City of Albuquerque.
- 3. The proposed channel is entirely within the McMahon Blvd right of way, so a license should not be necessary.
- 4. Ok.
- 5. Ok.
- 6. Ok. These details can be worked out during DRC approval process.

Sincerely, MARK GOODWIN & ASSOCIATES, PA

Diane Hoelzer, PE **C** Senior Project Engineer

DLH/dlh

F:\1-Projects\2013\A13039 - Anasazi Ridge, Unit 3\L.Mazur Letter.docx

Ronald D. Brown, Chair Danny Hernandez, Vice Chair Bruce M. Thomson P.E., Secretary-Treasurer Tim Eichenberg, Assistant Secretary-Treasurer Daniel F. Lyon, Director

> Jerry M. Lovato, P.E. Executive Engineer

October 28, 2014

Ms. Diane Hoelzer, P.E. D. Mark Goodwin & Associates, P.A. P.O. Box 90606 Albuquerque, NM 87199

Albuquerque

Metropolitan

Website: www.amafca.org

2600 Prospect N.E., Albuquerque, NM 87107 Phone: (505) 884-2215 Fax: (505) 884-0214

Arroyo

Control Authority

Flood

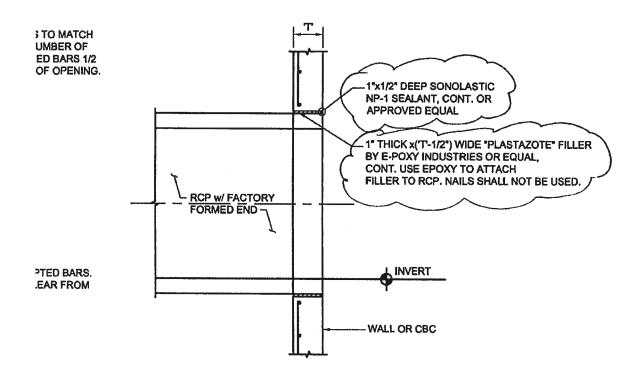
Via: Electronic Mail

Re: Anasazi Ridge Unit 3 Drainage Report, Engineer's Stamp Dated 10/24/14

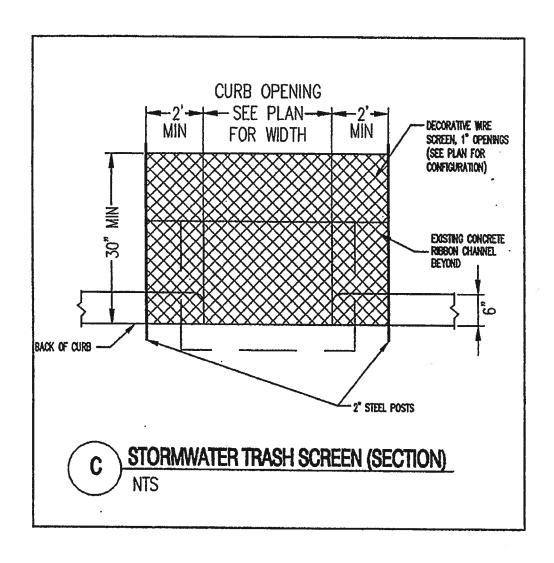
Dear Ms. Hoelzer:

I have reviewed the referenced report and approve the drainage concept. I have the following comments on the drainage rundown connection to the Calabacillas Arroyo.

- 1. The Bernalillo County Assessor's Office shows AMAFCA ownership of the tract at the southeast corner of McMahon and Kayenta. That is incorrect. The plat for Saltillo Unit 1 Subdivision granted a blanket drainage easement to AMAFCA with future dedication of fee right-of-way to City Open Space. I'm not sure who owns it.
- 2. I don't see the temporary 10-foot wide channel rundown connection from the McMahon/Kayenta intersection to the Calabacillas Arroyo on the Infrastructure List. Who will maintain the facility?
- 3. If the rundown is maintained by the City, AMAFCA will prepare a license with the City for the facility in AMAFCA's easement.
- 4. AMAFCA will require a Temporary Construction and Access License with the owner and the owner's contractor for work in AMAFCA's easement.
- 5. The expansion joint on the Drainage Channel Connection Detail is not approved by AMAFCA. The connection will be similar to AMAFCA's standard detail for a pipe penetration through a wall. See attached detail. The Plastazote filler will run the entire length of the connection with NP-1 sealant at both ends.
- 6. AMAFCA will require a removable trash screen close to the removable bollards to collect large debris before it flows into the arroyo. See attached detail.


If you have any questions, please call me at 884-2215.

Sincerely, AMAFCA


Xam W (. mayon


Lynn M. Mazur, P.E., C.F.M. Development Review Engineer

C: Rita Harmon, City Hydrology

PIPE PENETRATION SECTION A-A

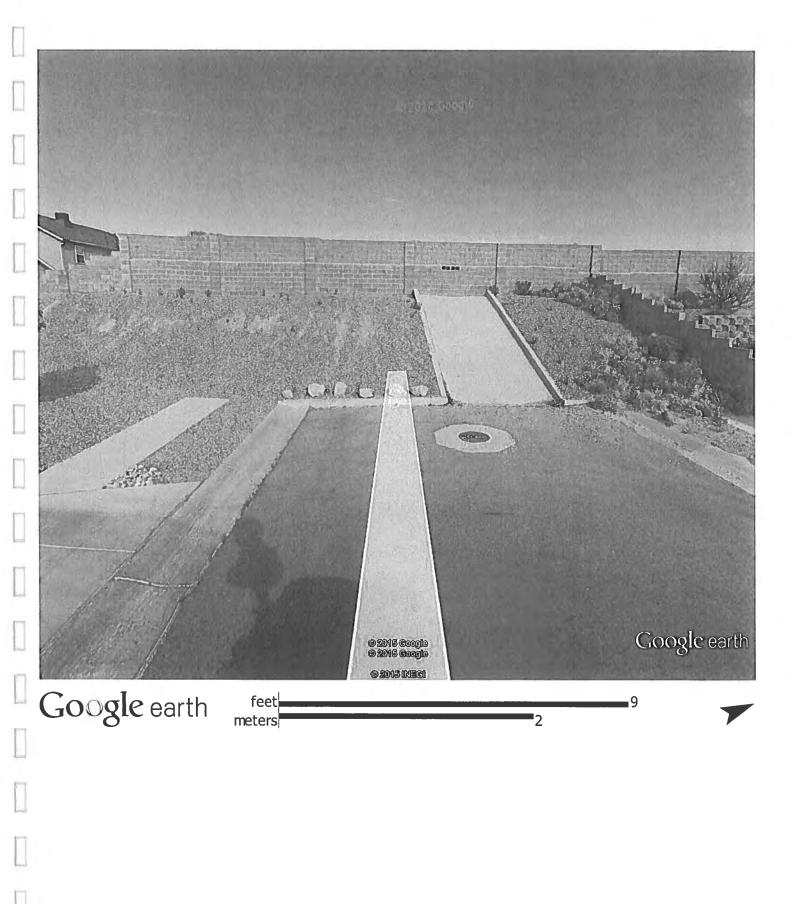
Anasazi Ridge Unit 3

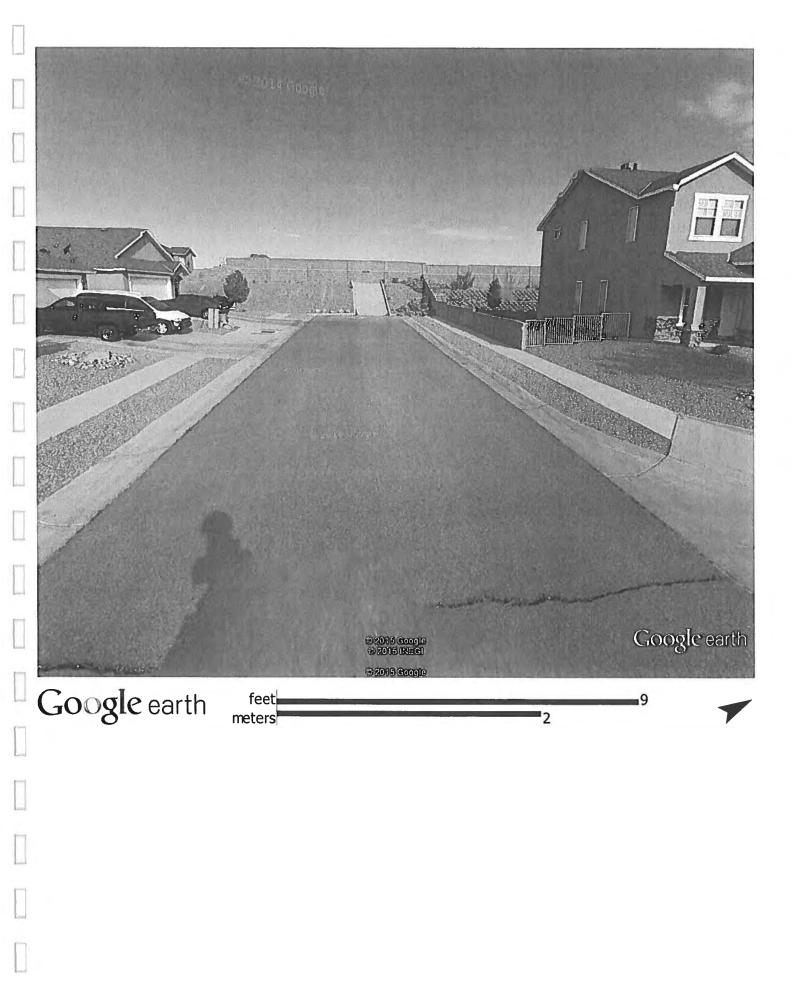
Hydraulic Analysis of the Spillway to Vizcaya Road Transition

A HEC-2 model was developed from the top of the overflow spillway to approximately 100 feet down Vizcaya Road. The 8 ft. wide channel spillway at a slope of 3:1 (0.3%) transitions to an 28' FF Vizcaya Road that is at an existing slope of 2.0%.

The flow regime in the spillway is supercritical and the flow regime in Vizcaya Road is also supercritical at a Q=10.87 cfs. Within the section of this analysis subcritical flow never occurs, so there should be no hydraulic jump.

The results of the HEC-2 analysis indicate that the WSEL in Vizcaya immediately downstream will be between 0.34' to 0.39'. While this is above the top of curb height for mountable curb. It is within the maximum 0.53' height that would typically exist at the property line.


RECOMMENDATION:


It is proposed that the 8' wide channel be constructed to line up with the flow along the north side of Vizcaya Road and that the landscape rock along this side of the road be replaced with 4" concrete section from the spillway channel all the way to the intersection of Calle Gandia Road, which is a distance of approximately 80 lineal feet. This should provide adequate protection against any flow that may top the curb in this area.

Because the channel is being constructed away from the homes located on the south side of Vizcaya Road, and there will be some distance downstream before the spread of runoff would extend all the way to the south side of the road, it should not be necessary to replace the landscape rock on the south side.

See attached HEC-2 output, plan and profile exhibit and google earth photos of the existing field conditions.

It is also recommended that the first flush ponds and swales on Lots 23 and 16 be lined with landscape rock.

<pre>************************************</pre>	Supercriticel Plow Regime Q = 1087CfS					0	0	0	0 24.5	0 24.5	0 24.5	0
* *	No.	c	0				0	0	0 81.695	0 81.275	0 0 80.915	0
* * * * *	XXXXX X X XXXXXX X				e	8.2	0 8.2	0 8.2	0 12.5 49	0 0 12.5 49	0 12.5 49	0
		c	0 7		68	0 90.25	20 82.85	25 82.75	46 0 81.455 81.86	67 0 81.035 81.44	85 0 80.675 81.08	125
	XXXXX X X X X X X X X X X X X		O		4	08.1	20 8.1	25 8.1	46 0 11.47 39.13	67 0 11.47 39.13	85 0 11.47 39.13	125
		CRC	0		26	.3 0 89.25	20 81.85	25 81.75	46 0 81.33 81.66	67 0 80.91 81.24	85 0 80.55 80.88	125
* * * * * * * * * * * * * * * * * *	SUPEVCVIT	STREET CAPACITY CALCULATIONS CURB AND GUTTER WITH CROWN	O	H	7	г. 8.2 .1	8.2 .1	8.2 .1	49 0 37.53	49 0 37.53	49 0 37.53	49
* * * * * * * * * * * * * * * * * * *	16:00:33 *********************************			VARIABLE CODES FOR SUMMARY PRINTOUT	1	.017 0 89.25	0 81.85	0 81.75	24.5 0 81.66 81.33	24.5 0 81.24 80.91	24.5 0 80.88 80.55	24.5
1*************************************	THIS RUN EXECUTED 21JAN15 16:00:33 *********************************	5 - 5	C Z	CODES FOR SUR	43	.017 10.87 4 0	4 0	4 0	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 96.50 36.5	9 9 9 9 9	6
**************************************	IIS RUN EXECUT ************************************		O	VARIABLE (38	.017 1 1 90.25	2 82.85	3 82.75	4 10 81.86 81.455	5 10 81.444 81.035	6 10 81.08 80.675	٢
ж ч ч к * * * + * * * * * * * * * * * * * * *	THIS ***' HEC Vei	17 13 13	ΤD	J.3		NC X1 GR	X1 GR	X1 GR	X1 X3 GR	X1 GR GR	X1 X3 GR GR	τx

0 80.115	L-BANK ELEV R-BANK ELEV SSTA ENDST		90.25 90.25 06 8.14				82.85 82.85 .09 8.11				82.75 82.75 .08 8.12	L-BANK ELEV R-BANK ELEV SSTA ENDST
0 12.5 49	OLOSS TWA ELMIN TOPWID		.00 .0 89.25 8.08	l.			.70 .0 81.85 8.01				1.90 .0 81.75 8.04	OLOSS TWA ELMIN TOPWID
0 79.875 80.28	HL VOL WTN CORAR		000 · 000 ·			19.45	0000 0000 0000			.18	4.42 .0 .000	HL VOL WTN CORAR
0 11.47 39.13	HV AROB XNR ICONT		.19 .000.			KRATIO =	7.20 .0 000			KRATIO =	.87 .0 000.000	HV AROB XNR ICONT
0 79.75 80.08	EG ACH XNCH IDC		89.83 3.1 017 14			BLE RANGE,	89.13 .5 .017 5			BLE RANGE ,	82.80 1.4 017 23	EG ACH XNCH IDC
9.87 37.53	WSELK ALOB XNL ITRIAL		0000			OF ACCEPTABLE	000. 8			OF ACCEPTABLE	. 000 0.000	WSELK ALOB XNL ITRIAL
	CRIWS QROB VROB XLOBR	MIN USED	89.63 .00 .00	.40		OUTSIDE	82.23 .0 .00			OUTSIDE	82.13 .0 .00. 20.	CRIWS QROB VROB XLOBR
0 80.08 5 79.75	CWSEL QCH VCH XLCH	*PROF 1 CCHV= .100 CEHV= .300 *SECNO 1.000 2006 WSEL NOT GIVEN, AVG OF MAX,	3.53 10.9 3.53 0.	EXCEEDS	THAN HVINS	NCE CHANGE	81.92 10.9 21.55 0.		THAN HVINS	EYANCE CHANGE	81.93 10.9 7.50 20.	CWSEL QCH XLCH
36.5	DEPTH QLOB VLOB XLOBL	.100 CEHV= 00 NOT GIVEN, A	. 00. 0. 0.	O 2.000 SLOPE TOO STEEP, EXCEEDS	HV CHANGED MORE T	: CONVEYANCE	.07 .00 .00		CHANGED MORE T	CONV	.18 .0 20.	DEPTH QLOB VLOB XLOBL
10 80.28 79.875	SECNO Q SLOPE	*PROF 1 *CCHV=1 *SECNO 1.000 2096 WSEL NO	3/20 CKIILCAL DEFIN ASSUMED 1.000 .38 89 10.9 .0 1.00 .00 3 .006556 0.	*SECNO 2.000 3235 SLOPE T	301 HV CHANG	02 WARNING:	2.000 10.9 .00 2.480134	*SECNO 3.000	ΛH	3302 WARNING:	3.000 10.9 .00 .076381	SECNO Q TIME SLOPE
X 3 GR GR		4 U 8 0 6	n	* S] 320	33(3302		*S!	3301	33(

.....

24.5

*SECNO 4.000

3301 HV CHANGED MORE THAN HVINS

3685 20 TRIALS ATTEMPTED WSEL, CWSEL 3710 WSEL ASSUMED BASED ON MIN DIFF

3495 OVERBANK AREA	4	SSUMED NON-EFFECTIVE,	SFFECTIVE,	ELLEA=	81.69	ELREA=	81.86			
4.000 10.9 .00 .011919	.37 5.7 2.72 25.	81.70 5.1 2.43 25.	81.72 .0 .25.	.00 2.1 017 20	81.80 2.1 .017 20	.10 .000	.61 .000	.20 .0 81.33 32.77	81.69 81.86 8.12 40.88	
*SECNO 5.000 3685 20 TRIALS ATTER 3693 PROBABLE MINIM 3720 CRITICAL DEPTH	S ATTEMPT MINIMUM DEPTH AS	10 5.000 20 TRIALS ATTEMPTED WSEL, CWSEL PROBABLE MINIMUM SPECIFIC ENERGY CRITICAL DEPTH ASSUMED	VSEL ENERGY							
3495 OVERBANK	AREA ASSI	OVERBANK AREA ASSUMED NON-EFFECTIVE,	EFFECTIVE,	ELLEA=	81.28	ELREA=	81.44			
5.000 10.9 .01 .07737	.39 5.7 2.33 46.	81.30 5.1 2.08 46.	81.30 .0 .46.	.00 2.5 017 20	81.37 2.5 .017 8	80. 0.00.	.44 .000 .000	.72 .1 80.91 34.83	81.28 81.44 7.09 41.91	
*SECNO 6.000 3685 20 TRIALS ATTEMPTED WSEL,CWSEL 3693 PROBABLE MINIMUM SPECIFIC ENER 3720 CRITICAL DEPTH ASSUMED	S ATTEMPT MINIMUM : DEPTH AS	O 6.000 20 TRIALS ATTEMPTED WSEL, CWSEL PROBABLE MINIMUM SPECIFIC ENERGY CRITICAL DEPTH ASSUMED	ISEL NERGY							
3495 OVERBANK AREA	AREA ASSI	ASSUMED NON-EFFECTIVE,	FFECTIVE,	ELLEA=	80.92	ELREA=	81.08			
6.000 10.9 .02 .007396	.39 5.7 2.29 67.	80.94 5.1 2.05 67.	80.94 .0 .00 67.	.00 2.5 .017 20	81.01 2.5 .017 5	. 07 . 000 000	.51 .000.	.78 .1 80.55 35.06	80.92 81.08 6.97 42.03	
*SECNO 7.000 3685 20 TRIALS ATTEM	S ATTEMPTI	PTED WSEL, CWSEL	SEL							
SECNO Q TIME SLOPE	DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH	CRIWS QROB VROB XLOBR	WSELK ALOB XNL ITRIAL	EG ACH XNCH IDC	HV AROB XNR ICONT	HL VOL WTN CORAR	OLOSS TWA ELMIN TOPWID	L-BANK ELEV R-BANK ELEV SSTA ENDST	
3710 WSEL ASSU	ASSUMED BASED	ON MIN DIFF	IFF							
3495 OVERBANK AREA A	AREA ASSI	SSUMED NON-EFFECTIVE,		ELLEA=	80.11	ELREA=	80.28			
7.000 10.9 .03 .010680	.37 5.7 2.62 85.	80.12 5.1 2.34 85.	80.14 .0 85.	.00 2.2 017 20	80.22 2.2 .017 5	. 10 . 000 000	. 75 000 000.	.63 .2 33.27	80.11 80.28 7.87 41.13	
THIS RUN EXECUTED 21JANI5 16:00:33 *********************************	ED 21JAN1 ************************************	NI5 16:00:33 *********************************	0:33 ****							

HEC-2 WATER SURFACE PROFILES

NOTE- ASTERISK (*) AT LEFT OF CROSS-SECTION NUMBER INDICATES MESSAGE IN SUMMARY OF ERRORS LIST

	Row	k							
	((CLANNEL Spillway		81.86	81.44	SI.0S	8029	PAGE 6
	Depth	0.38) LO.0	0.18	0.37	0.39	0.39	0.37	
	ហ្វ ឆ	89.83	89.13	82.80	81.80	81.37	81.01	80.22	
	FRCH	1.01	15.15	3.12	1.19	.98	.96	1.13	
	TOPWID	8.08	8.01	8.04	32.77	34.83	35.06	33.27	
	VCH	3.53	21.55	7.50	2.43	2.08	2.05	2.34	
	CRIWS	89.63	82.23	82.13	81.72	81.30	80.94	80.14	
	CWSEL	89.63	81.92	81.93	81.70	81.30	80.94	80.12	
Т	ø	10.87	10.87	10.87	10.87	10.87	10.87	10.87	16:00:33
SUMMARY PRINTOUT	SECNO	1.000	2.000	3.000	4.000	5.000	6.000	7.000	21JAN15
SUMM2		*	*	*	*	*	*	*	ц 21

VIZCAYA AVENUE

SUMMARY OF ERRORS AND SPECIAL NOTES

TEEP CHANGE OUTSIDE ACCEPTABLE RANGE	CHANGE OUTSIDE ACCEPTABLE RANGE	D BASED ON MIN DIFF TTEMPTED TO BALANCE WSEL	PTH ASSUMED NIMUM SPECIFIC ENERGY TTEMPTED TO BALANCE WSEL	PTH ASSUMED NIMUM SPECIFIC ENERGY TTEMPTED TO BALANCE WSEL	WSEL ASSUMED BASED ON MIN DIFF 20 TRIALS ATTEMPTED TO BALANCE WSEL
CONVEYANCE	ONVEYANCE	ISEL ASSUME O TRIALS A	RITICAL DE ROBABLE MI O TRIALS A	RITICAL DE ROBABLE MII 0 TRIALS A'	ISEL ASSUME 0 TRIALS A
о 0 н н	ы		ппп	м н н	ч н З 01
PROFILE= PROFILE=	PROFILE=	PROFILE= PROFILE=	PROFILE= PROFILE= PROFILE=	PROFILE= PROFILE= PROFILE=	PROFILE= PROFILE=
2.000	3.000	4.000 4.000	5.000 5.000 5.000	6.000 6.000 6.000	7.000
CAUTION SECNO= WARNING SECNO=	WARNING SECNO=	CAUTION SECNO= CAUTION SECNO=	CAUTION SECNO= CAUTION SECNO= CAUTION SECNO=	CAUTION SECNO= CAUTION SECNO= CAUTION SECNO=	CAUTION SECNO= CAUTION SECNO=
	2.000 2.000	2.000 PROFILE= 1 2.000 PROFILE= 1 3.000 PROFILE= 1	SECNO= 2.000 PROFILE= 1 SECNO= 2.000 PROFILE= 1 SECNO= 3.000 PROFILE= 1 SECNO= 4.000 PROFILE= 1	SECNO= 2.000 PROFILE= 1 SECNO= 2.000 PROFILE= 1 SECNO= 3.000 PROFILE= 1 SECNO= 4.000 PROFILE= 1 SECNO= 4.000 PROFILE= 1 SECNO= 5.000 PROFILE= 1 SECNO= 5.000 PROFILE= 1	SECNO= 2.000 PROFILE= 1 SECNO= 2.000 PROFILE= 1 SECNO= 3.000 PROFILE= 1 SECNO= 3.000 PROFILE= 1 SECNO= 4.000 PROFILE= 1 SECNO= 4.000 PROFILE= 1 SECNO= 5.000 PROFILE= 1 SECNO= 5.000 PROFILE= 1 SECNO= 6.000 PROFILE= 1 SECNO= 6.000 PROFILE= 1

	<pre>************************************</pre>	Supercritical Row Vizrave Rood	Q= 11.87 cfs	S= 2.0%				24.5	SV SV				
	* U.S. ARMY (+ HYDROLOGIC * 609 SECOND * DAVIS, CALI * (9:	2	,	FQ	0			0 365	L-BANK ELEV R-BANK ELEV SSTA ENDST				.53 .53 9.24 39.76
and a		XXXXX X X X X X XXXXXX X X X XXXXXX X X		MSEL	0		ю	0 12.5 49	OLOSS TWA ELMIN TOPWID				.00 .0 .00 28.29
				Ø	0		68	0 .53	HL VOL WTN CORAR				000. 000.
		XXXXX X X X X X X X X X X X X X X X		SNIVH	0		4	0 11.47 39.13	HV AROB XNR ICONT				.15 .0 .7
		XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX	CALCULATIONS WITH CROWN	METRIC	0			т. оот.	EG ACH XNCH IDC				.49 3.5 14
	* * * * * * * * * * * * * * * * *	x x x x x x x x x x x x x x x x x x x	CITY CALCUI JTTER WITH	STRT	. 02		26	.1 49 37.53	WSELK ALOB XNL ITRIAL				000. 000.
	* 0 *	13:52:12 * * * * * * * * * * * * * * * * * * *	SEVILLE UNIT 7 - STREET CAPACITY 49'ROW 28'F-F MTB CURB AND GUTTER VIZCAYA AVENUE	IDIR	1	SUMMARY PRINTOUT	2	.017 .33 .33 .37 .0 .37 .0 .37	CRIWS QROB VROB XLOBR		.300 AVG OF MAX, MIN USED		.39 .00 .00 .00
	CE PROFILE' CE PROFILE' May 1991 L5 TIME	JJAN15 13 ************************************	NIT 7 - SJ 3'F-F MTB (AVENUE	NINV	0	DR SUMMARY	1	·	CWSEL QCH VCH XLCH		.300 AVG OF MAX		.34 10.9 3.08 0.
	1*************************************	THIS RUN EXECUTED 20JANI5 13:52:12 ***********************************	SEVILLE UNIT 7 49'ROW 28'F-F VIZCAYA AVENUE	ŽNI	7	E CODES FOR	43	.01 10.8 36.	DEPTH QLOB VLOB XLOBL) CEHV= GIVEN,	D FLOW	.34 .00 .00
	*********** HEC-2 WA' Version RUN DATE	IS RUN EXE ***********************************		I ICHECK	0	3 VARIABLE	38	017 1 1 1 1 1 1 1 23 23 23	SECNO Q SLOPE	* PROF 1	CCHV= .100 *SECNO 1.000 2096 WSEL NOT	3265 DIVIDED FLOW	1.000 10.9 .00 .0084
	* * * * * * * H	「[HJ] ** イン* *	ТТ Т2 Т3	JJ		J.3		NC CK CK CK CK CK CK CK CK CK CK CK CK CK		Ц *	0 0 0 0 * 0	32	

THIS RUN EXECUTED 20JANI5 13:52:12 ***********************************	HEC-2 WATER SURFACE PROFILES Version 4.6.2; May 1991	****

NOTE- ASTERISK (*) AT LEFT OF CROSS-SECTION NUMBER INDICATES MESSAGE IN SUMMARY OF ERRORS LIST

VIZCAYA AVENUE

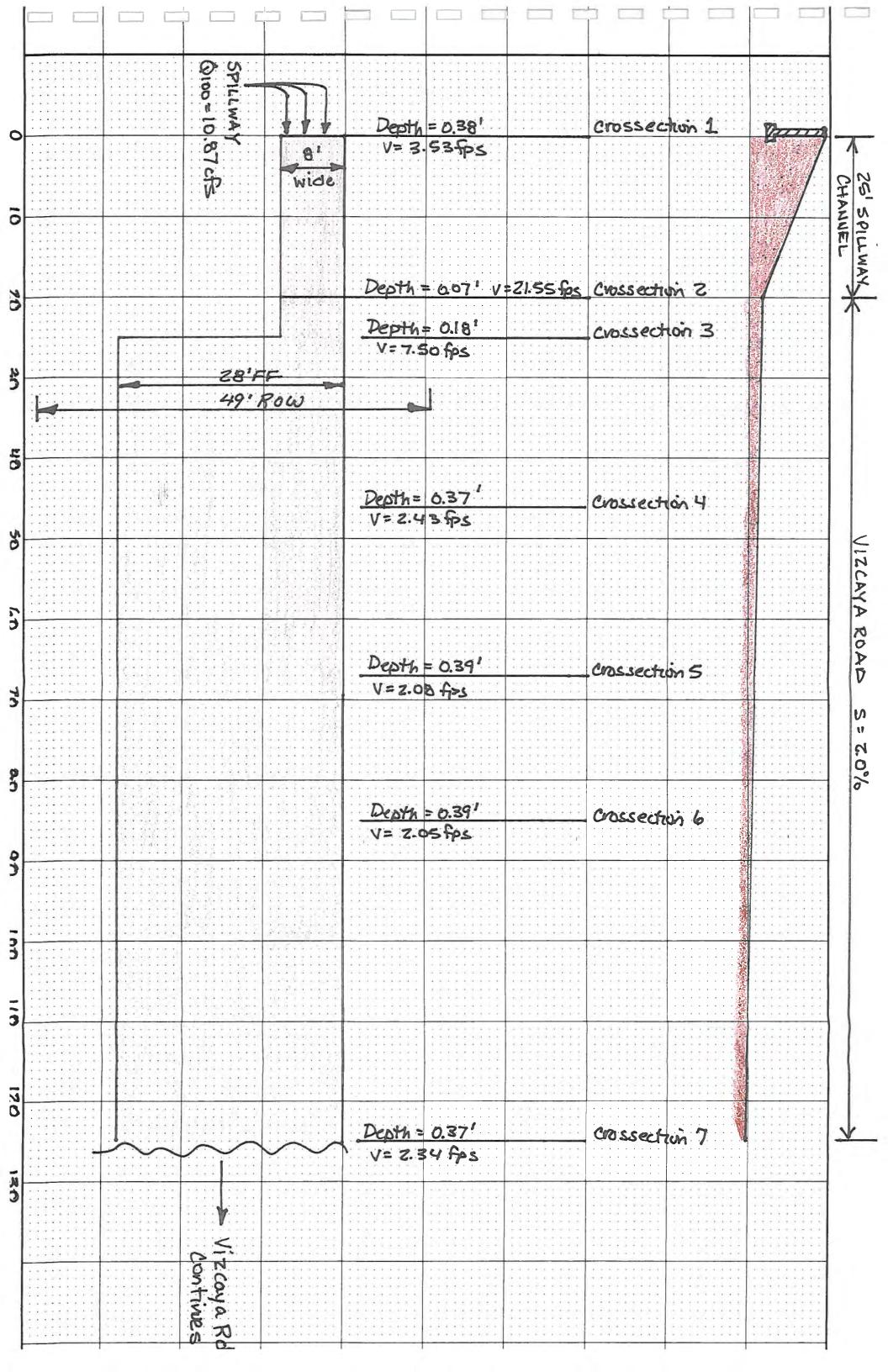
SUMMARY PRINTOUT

	RESULTS:	WSEL= 0.34	V= 3.08 fps	EG = 0.49'
5 E C	.49			
FRCH	1.60			
TOPWID	28.29			
VCH	3.08			
CRIWS	.39	ES		
CWSEL	.34	PECIAL NOT		
Ø	10.87	RORS AND S		
SECNO	1.000	SUMMARY OF ERRORS AND SPECIAL NOTES		

The energy grade line below assist property line Conclusion: The water surface oil above top of curb.

1004245 and/or in the review of the construction drawings, if the DRC Chair determines that appurtenant items and/or unforeseen items have not been included in the infrastructure listing, the DRC Chair may include those items City Cnst Engineer in the listing and related financial guarantee. Likewise, if the DRC Chair determines that appurtenant or non-essential items can be deleted from the listing, those items may be deleted as well as the related portions of the financial guarantees. All such revisions require approval by the DRC Chair, the User Department and agent/owner. If such approvals are obtained, these revisions to the listing will be incorporated administratively. In addition, any unforeseen items which arise during construction which are necessary to complete the project and which normally are the Subdivider's responsibility will be required as a condition of project acceptance Following is a summary of PUBLIC/PRIVATE Infrastructure required to be constructed or financially guaranteed for the above development. This Listing is not necessarily a complete listing. During the SIA process -cb-1! Inspector Citv Date Site Plan Approved: Date Pretiminary Plat Approved: Date Preliminary Plat Expires: DRB Application No. DRB Project No.: Inspector Private e Sub McMahon sidewalk Sipapu Drive NW Sipapu Drive NW McMahon Blvd East Prop.Line End Culdesac (Lot 16) (Lot 16) ۴ Portions of Lot 3, 4-9, Blk 7, Lots 9-13 Blk 8, Lot 12, Block 9, and Lots 2-10, Blk DEVELOPMENT REVIEW BOARD (D.R.B.) REQUIRED INFRASTRUCTURE LIST Sipapu culdesac West prop. Line Westside Blvd Westside Blvd End culdesac End culdesac PROPOSED NAME OF PLAT AND/OR SITE DEVELOPMENT PLAN (Tract C) (Tract C) sidewalk EXISTING LEGAL DESCRIPTION PRIOR TO PLATTING ACTION (Lot 10) From TO SUBDIVISION IMPROVEMENTS AGREEMENT McMahon Blvd ROW Anasazi Ridge Unit 3 INFRASTRUCTURE LIST Sipapu Drive NW Atlati Drive NW McMahon Blvd. Westside Blvd 3E 12 EXHIBIT "A" Location Canty Ct Sidewalk (North Side) (1) Sidewalk (both sides) (1) Sidewalk (both side) (1) Type of Improvement 6' Sidewalk (Southside) Sidewalk (both sides) Sidewalk Connection C&G (both sides) C&G (both sides) C&G (both sides) C&G (both sides) C&G (Southside) Median C&G Perm Pvmt Perm Pvmt Perm Pvmt Perm Pvmt Perm Pvmt PAVING 32' FF 32' FF 28' FF 28' FF 4 4 28' FF 4 4 4 Size COA DRC Project # and close out by the City Project Number Sequence SIA Currei

Page 1 of 3


	1		I			I		1		1	 I		
	~	1	1	1	1	-	1	`	1	1	1	1	1
	_	_	_	_	_	_	_	_		_	_	_	_
	-	_	_	_	_		_	/		_	/		
	Exist. 12" WL McMahon Blvd	Sipapu Drive NW	Exist. 12" WL McMahon Blvd	Sipapu Drive NW	East P.L. (Lot 16)	Sipapu Drive NW	End culdesac	(Lot 16) Sipapu Drive NW	Exist. 8" SAS Calle Vizcaya	Calle Vizcaya ROW	McMahan	Calle Vizcaya Ave.	AMAFCA ROW Calabacillas Arroyo
(2-2-15)	Westside Blvd	South P.L. Parsons Row	Westside Blvd	Cul-de-Sac	Atlatl Drive NW	Lot 24 /Parson Blvd	Westside Blvd	End Culdesac (Lot 10)	Sipapu Drive NW	Sipapu Dr. NW	Sipapu Dr. NW	Tract A	Kayenta Blvd.
DRB 1004245	Atlatl Drive NW	Westside Blvd	Sipapu Drive NW	Canty Ct.	McMahon Blvd	Westside Blvd	Sipapu Drive NW	Canty Ct.	20 ft. Public sanitary sewer easement	Tract A	Lot 16	Calle Vizcaya ROW	McMahon Blvd ROW
Anasazi Ridge Unit 3	WATER Waterline	Waterline	Waterline	Waterline	Waterline	SANITARY SEWER Sanitary Sewer	Sanitary Sewer	Sanitary Sewer	Sanitary Sewer	DRAINAGE Channel / swales & ponds	Sidewalk culverts / channel / shallow pond	Concrete rundow / spilway	Concrete rundown
	ō	σ	۵	ô.	12"	õ	ά	φ	Ω.	Per design	Per design	Per design	Per design

L

L

The items listed below are on the CCIP and approved for Impact Fee credits. Signatures from the Impact Fee Administrator and the City User Department is required prior to DRB approval of	To Construction Certification Private City Cnst Inspector P.E. Engineer	s: Approval of Creditable Items:	nature Date City User Dept. Signature Date		Grading Plan	IOVALS	PARKS & GENERAL SERVICES - date	AMAFCA - date	- date	- date		AGENT /OWNER
Iministrator and the City User Dep	From	Approval of Creditable Items:	Impact Fee Admistrator Signature		Grading & Drainage Certification required per DPM (Prior to release of Financial Guaranty) to includeretaining walls as defined on the approved Grading Plan SAS Infrastructure include manholes and service connections.	DEVELOPMENT REVIEW BOARD MEMBER APPROVALS	PARKS & GEN	AN			EVISIONS	USER DEPARTMENT
natures from the Impact Fee Ac	Location			fire hydrants	ancial Guaranty) to includeretaini	DEVELOPMEN'	DRB CHAIR - date	TRANSPORTATION DEVELOPMENT - date	' DEVELOPMENT - date	Y ENGINEER - date	ESIGN REVIEW COMMITTEE REVISIONS	USERD
oved for Impact Fee credits. Sig	Type of Improvement			Deferred sidewalk to comply with approved sidewalk exhibit Waterline Infrastructure to include valves, fittings, service connections and	Grading & Drainage Certification required per DPM (Prior to release of Fir SAS Infrastructure include manholes and service connections.				עדונודע	СІТҮ	DE	DRC CHAIR
ne CCIP and appre	Size			comply with appro	Certification require clude manholes an		Ē	1011ES		NNSTRUCT T A DRB		DATE
ted below are on th	Constructed Under DRC #			Deferred sidewalk to comply with approved sidewalk exhibit Waterline Infrastructure to include valves, fittings, service or	årading & Drainage (SAS Infrastructure in	AGENT / OWNER	Diane Hoelzer, PE NAME (print)	MARK GUODWIN & ASSOCIATES	SIGNATURE- date	MAXIMUM TIME ALLOWED TO CONSTRUCT THE IMPROVEMENTS WITHOUT A DRB EXTENSION: <u>NA</u>		REVISION
The items list	Financially Guaranteed DRC #			□ > (10 mg		MAXIMUM T THE IMPR EXTENSI		

Page 3 of 3

Anasazi Ridge Unit 3 Subdivision

Drainage Management Plan

Prepared by Mark Goodwin & Associates, P.A.

January 2015

D. MARK GOODWIN & ASSOCIATES ·

Anasazi Ridge Unit 3

Table of Contents

- I. PROJECT DESCRIPTION
- II DESIGN CRITERIA AND PREVIOUS REPORTS AND DEVELOPMENT
- III. EXISTING DRAINAGE CONDITIONS
- IV. DEVELOPED DRAINAGE CONDITIONS a. Onsite Drainage
 - b. McMahon Blvd. Drainage
 - FIGURE 1Vicinity MapFIGURE 2Aerial Google Earth MapFIGURE 3Preliminary PlatFIGURE 4Infrastructure List
 - APPENDIX A HYDROLOGY Sub Basin Boundary Exhibit AHYMO output file 10 year storm AHYMO output file 100 year storm
 - APPENDIX B HYDRAULICS Summary of channels, swales, spillway HEC-2 printouts
 - APPENDIX C FIRST FLUSH PONDS
 - APPENDIX D Approved Seville Unit 7 Drainage Plan (Wilson & Co.)
 - APPENDIX E Google earth photos of McMahon Blvd and Calabacillas Arroyo-Existing conditions
- POCKET 1GRADING AND DRAINAGE PLANPOCKET 2PRELIMINARY PLAT

I. PROJECT DESCRIPTION

Anasazi Ridge Unit 3 covers an area of approximately 6.76 acres. This project involves the construction of supporting infrastructure to develop 24 single family residential lots. The project site is bounded by McMahon Blvd. to the north, Seville Unit 7 subdivision to the east and an open tract of land to the south and west. The north half of McMahon Blvd. is complete. This project will construct the south half of McMahon Blvd. connecting to the existing pavement at the east end and ending at the west property line, thus covering their frontage.

II. DESIGN CRITERIA AND PREVIOUS REPORTS AND DEVELOPMENT

The design criteria used in this report was in accordance with Section 22.2 Hydrology of the Development Process Manual, Volume 2, Design Criteria, January 1993 edition. The 100-year 24-hour storm event was analyzed to determine street capacities and sizing of the storm drain system using P(1 hr)=1.72", P(6 hr)=2.25" and P(24 hr)=2.59". The onsite Land Treatment values used were based on Table A-5, in the DPM.

A previous approved drainage plan was prepared for the adjacent Seville Unit 7 subdivision (Wilson & Co.). Appendix D shows the existing conditions sub basin boundary map and the proposed sub basin boundary map from the Seville Unit 7 drainage report. As indicated on these exhibits, a portion of this project site drains to the north towards McMahon Blvd. and the southern portion flows to the east towards Seville Unit 7 subdivision. The developed conditions map indicates that Seville Unit 7 was designed to accept an allowable peak discharge (100 year) of 10.87 cfs from our project site. This project was graded so that this allowable discharge would spill to the east into Calle Vizcaya Avenue. The remainder of the site will drain north and into McMahon Blvd.(Q(design)=6.57 cfs, from the Wilson Report). Thus, the Anasazi Ridge Unit 3 drainage management plan will be in substantial conformance with the previously approved Seville Unit 7 drainage management plan.

III. EXISTING DRAINAGE CONDITIONS

Under existing drainage conditions, most of the project site drains towards McMahon Blvd. to the north. There is a 3 to 6 foot bluff along the south to southwest boundary of the project site that prevents any cross boundary drainage onto or from our site. The vacant land to the south drains primarily in an east to southeast direction. Along the northern boundary is the McMahon Blvd. and the drainage in this area continues eastward crossing through Kayenta Blvd. intersection to a temporary asphalt rundown that spills into the Calabacillas Arroyo. Appendix E has aerial photos of the Kayenta / McMahon intersection that shows the existing asphalt rundown. From these photos it is evident that the rundown is only a temporary drainage solution until the east side of Kayenta and the south side of McMahon Blvd. are widened.

IV. DEVELOPED DRAINAGE CONDITIONS

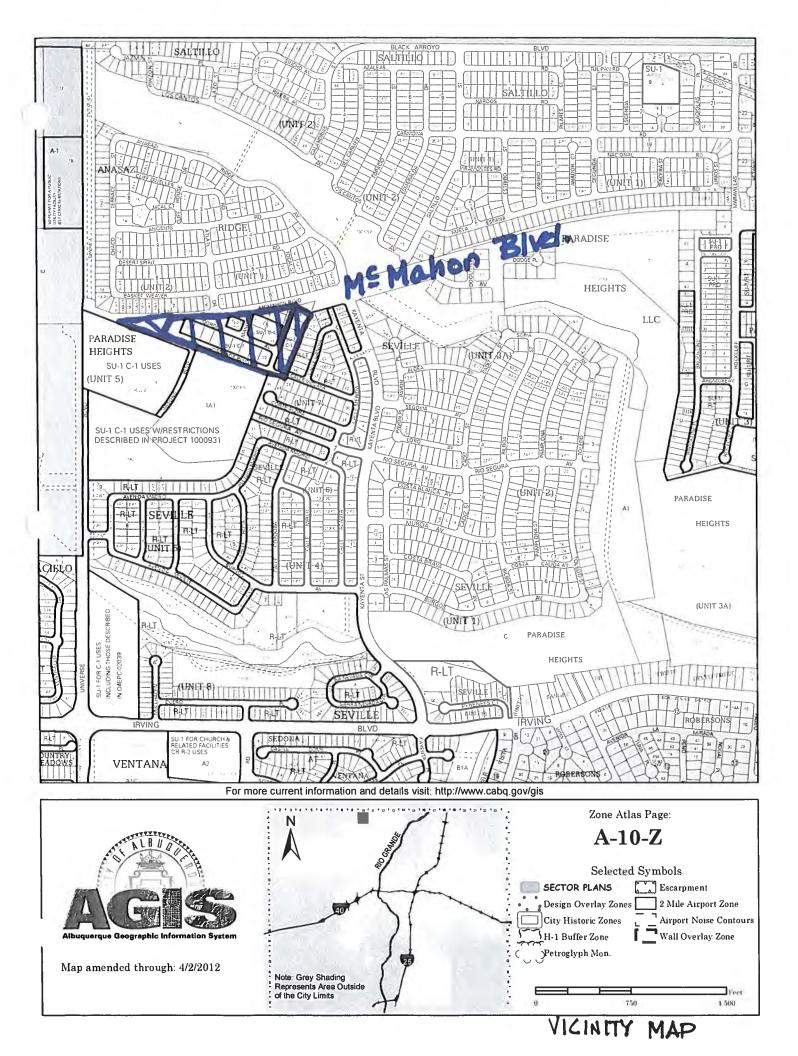
A. Onsite Drainage

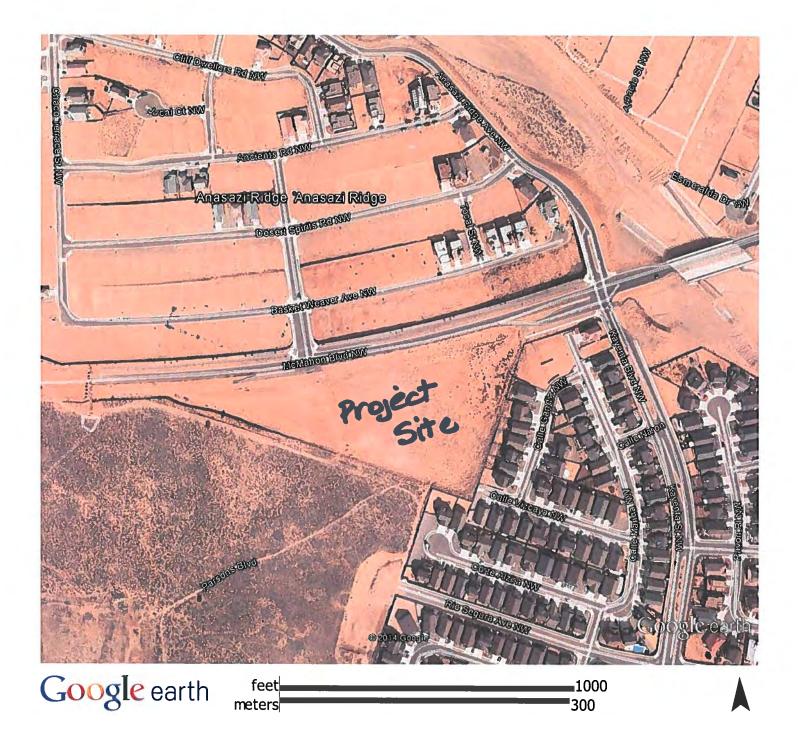
Under developed conditions, the majority of the site (Q=10.80 cfs) drains to Tract A via a series of (4) 24" wide sidewalk culverts (@ 1% slope) and then passes through a meandering channel / shallow pond area before spilling over a vertical drop into an 8' wide concrete channel in the Seville Unit 7 subdivision and then eastward into Calle Vizcaya Avenue. The intent of the shallow ponding area will be to capture the first flush up to 6-8 inches deep as shown on the grading plan and shown in more detail in Appendix C. The velocities through this area are low so only minor landscape rock protection is being proposed.

Much of the kinetic velocity energy from the vertical drop spillway will be dissipated once the runoff hits the 8' wide concrete channel below and is redirected to the east into Calle Vizcaya Avenue. The high retaining sidewalls along the channel adjacent to the spillway drop will contain splash and facilitate in the transition back to normal depth flow when it reaches Calle Vizcaya Avenue. Refer to the conceptual design of this structure in Appendix C.

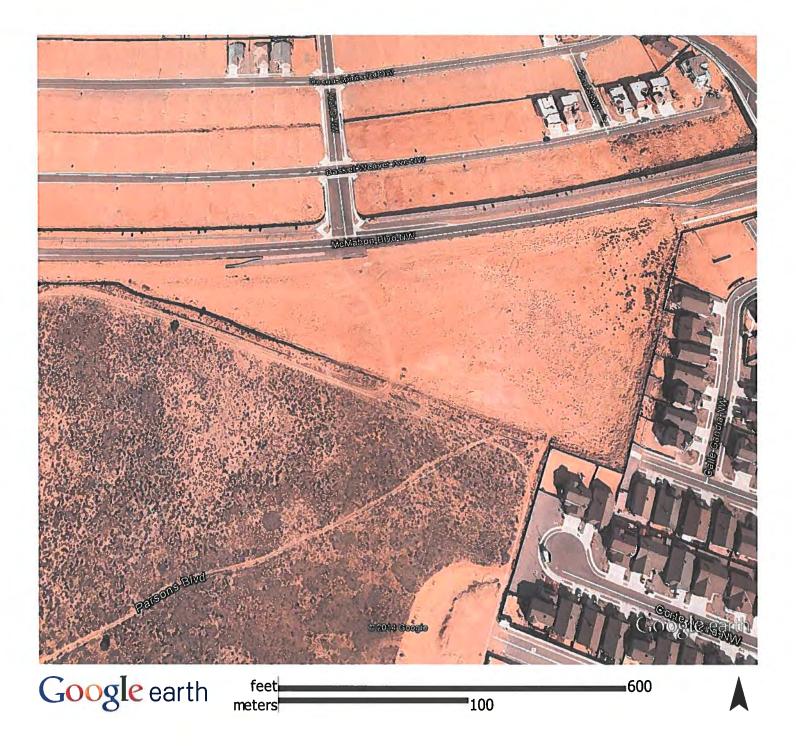
As previously discussed in the approved Seville Unit 7 drainage management plan, the allowable discharge from our project site is 10.87 cfs for the 100 year storm event.

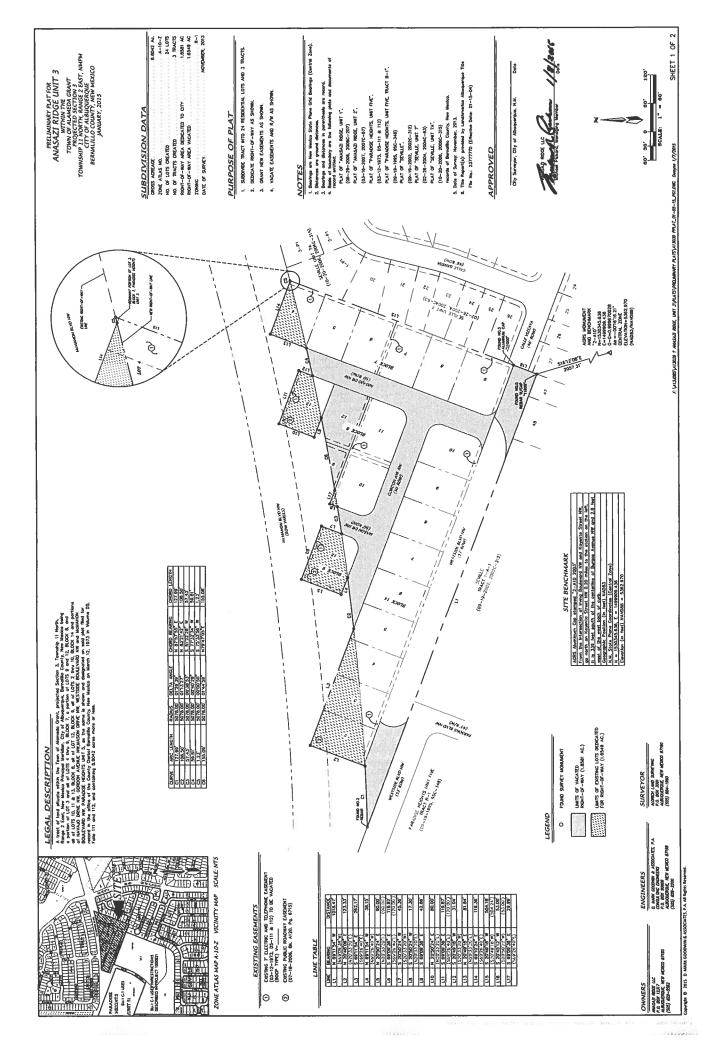
B. McMahon Blvd. Drainage

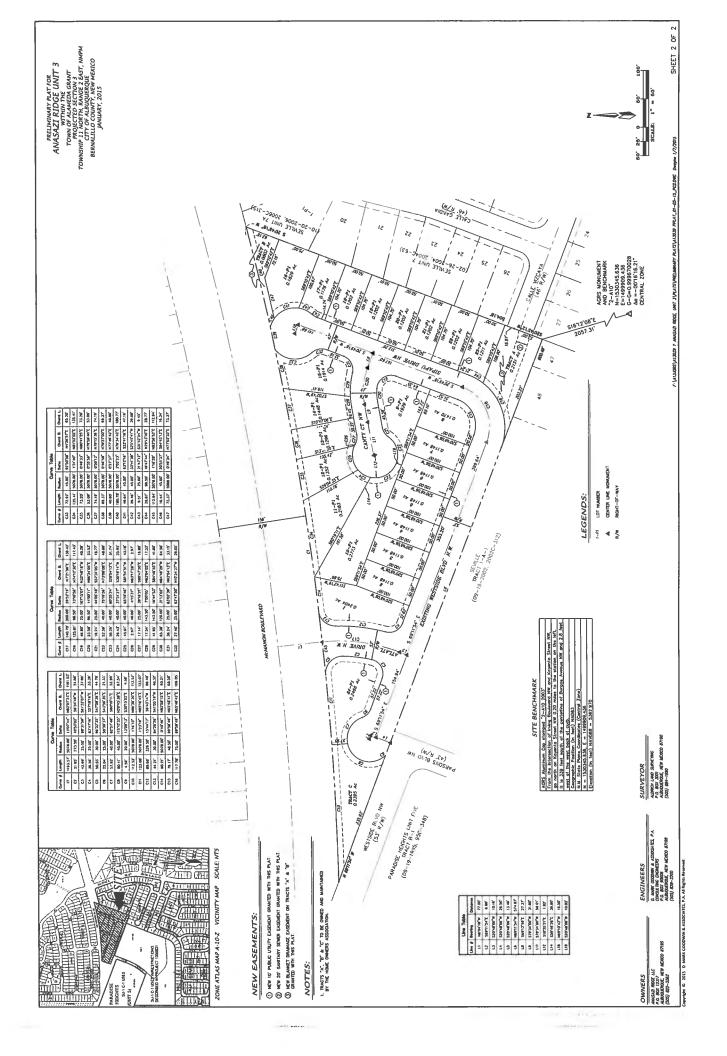

A total of 7.19 cfs will flow from the project site into McMahon Blvd. At the west end, 1.02 cfs will flow from Atlatl Drive and through a couple of wall blocks turned on their side to allow a small amount of discharge to flow into the landscape ROW area from the back yards. At the east end, 5.69 cfs will be conveyed down Canty Court to Sipapu Drive to a drainage swale adjacent to McMahon Blvd and into a shallow pond that will serve to intercept the first flush of runoff before spilling through a couple of sidewalk culverts into McMahon Blvd. This shallow pond is designed to retain no more than 6 inches of runoff before spilling into the sidewalk culverts. A 24" wide sidewalk culvert at a 1.4% slope will carry 5.69 cfs at a depth of 0.55'. It is proposed to add an additional 12" wide sidewalk culvert as a safety factor. A drainage easement will be dedicated on the plat and will be maintained by the H.O.A for Tracts A, B and C. It is proposed that Tract A and C will be protected with landscape rock and or seeded.


Developed conditions runoff within the future fully developed McMahon Blvd., were taken from the McMahon Boulevard Extension Drainage Report, July 2009, prepared by URS Corporation. Their calculated runoff flow rates within the future McMahon Blvd. is 48.32 cfs (Q100) and 29.95 cfs (Q10) for the combined north and south lanes. These flow rates have been reduced and incorporated into the current analysis to determine the McMahon Blvd. street flow capacity so the dry lane width for the 10 year storm event could be determined. The calculated discharge of 10.83 cfs (10 year storm) at a slope of 0.50% at the flattest section, resulted in dry lane width of 10.12 feet assuming a 32' FF half section roadway width.

The off-site runoff is conveyed via surface flow on McMahon Blvd. to the southeast corner of the McMahon Blvd. and Kayenta Blvd. intersection. It is propose that the existing curb cut be widened to 26 ft. with removable bollards in place and connected to a temporary 10' wide asphalt channel. The proposed channel conveys runoff towards the Calabacillas Arroyo and is proposed to end at the right of way line where the channel will end at a wired enclosed rip rap blanket.


As shown and calculated in Figure 4 (Appendix E) the 100-year flow rate at the McMahon Blvd. / Kayenta Blvd. intersection is 18.13 cfs. This flow is for the south half of McMahon Blvd. only and the valley gutter in this section is at 0.45% slope. Because this area from survey information indicates such a flat longitudinal slope as well as as a cross section slope, the runoff spread may be up to 55' wide as indicated on the HEC-2 output analysis. The spread has been sketched on the topographic survey exhibit in Appendix E.


According to the URS McMahon Blvd. Extension Report the flow from McMahon Blvd ultimate section is supposed to be intercepted by inlets located east of Calabacillas Arroyo bridge as indicated in excerpts from the report in Appendix E.



· · · ·

Project Number: Current DRC

FIGURE 12

16-Dec-14 Date Site Plan Approved: Date Preliminary Plat Approved: Date Preliminary Plat Expires: DRB Project No.: Date Submitted:

1004245

DRB Application No.:

INFRASTRUCTURE LIST

EXHIBIT "A"

TO SUBDIVISION IMPROVEMENTS AGREEMENT

DEVELOPMENT REVIEW BOARD (D.R.B.) REQUIRED INFRASTRUCTURE LIST

Anasazi Ridge Unit 3

PROPOSED NAME OF PLAT AND/OR SITE DEVELOPMENT PLAN

Portions of Lot 3, 4-9, Blk 7, Lots 9-13 Blk 8, Lot 12, Block 9, and Lots 2-10, Blk

EXISTING LEGAL DESCRIPTION PRIOR TO PLATTING ACTION

and/or in the review of the construction drawings, if the DRC Chair determines that appurtenant items and/or unforeseen items have not been included in the infrastructure listing, the DRC Chair may include those items in the listing and related from the listing, those items well as the related portions of the financial guarantees. All such revisions require approval by the DRC Chair, the User Department and agent/owner. If such approvals are obtained, these revisions to the listing will be incorporated administratively. In addition, any unforeseen items which arise during construction which are necessary to complete the project and which normally are the Subdivider's responsibility will be required as a condition of project acceptance Following is a summary of PUBLIC/PRIVATE Infrastructure required to be constructed or financially guaranteed for the above development. This Listing is not necessarily a complete listing. During the SIA process and close out by the City.

City Cnst Engineer /		` `	` `	`
City Inspector				
Private Inspector				
To McMahon Bivd	Sipapu Drive NW	End Culdesac (Lot 16)	Sipapu Drive NW	East Prop.Line (Lot 16)
From Westside Blvd	End culdesac (Tract E)	Westside Blvd	End culdesac (Lot 10)	West prop. Line (Tract E)
Location Atlatt Drive NW	Westside Blvd	Sipapu Drive NW	Canty Ct.	McMahon Blvd.
Type of Improvement PAVING Perm Pvmt C&G (both sides) Sidewalk (both sides)	Perm Pvmt C&G (both sides) Sidewalk (North Side) (1)	Perm Pvmt C&G (both sides) Sidewalk (both sides) (1)	Perm Pvmt C&G (both sides) Sidewalk (both side) (1)	Perm Pvmt C&G (Southside) Median C&G 6' Sidewalk (Southside)
Size 32' FF 4'	28' FF 4'	28' FF 4'	28' FF 4'	32' FF
COA DRC Project #				
SIA Sequence #				

~	-	1	1	1	Ţ	1	1	1	1	1	1
_	_	_	,	,	_	_	_	_	_	_	1
	_		/	/	_	_	_	~	_	_	1
Exist. 12" WL McMahon Blvd	Sipapu Drive NW	Exist. 12" WL McMahon Blvd	Sipapu Drive NW	East P.L. (Lot 16)	Sipapu Drive NW	End culdesac	(Lot 1b) Sipapu Drive NW	Exist. 8" SAS Calle Vizcaya	Calle Vizcaya Snillway	McMahan	
Westside Blvd	South P.L. Parsons Row	Westside Blvd	Cul-de-Sac	Atlatl Drive NW	South P.L.	Westside Blvd	End Culdesac (Lot 10)	Sipapu Drive NW	Sipapu Dr. NW	Sipapu Dr. NW	
Atlati Drive NW	Westside Blvd	Sipapu Drive NW	Canty Ct.	McMahon Blvd	Westside Blvd	Sipapu Drive NW	Canty Ct.	20 ft. Public sanitary sewer easement	Tract A	Lot 16	Calle Vizcaya
WATER Waterline	Waterline	Waterline	Waterline	Waterline	SANITARY SEWER Sanitary Sewer	Sanitary Sewer	Sanitary Sewer	Sanitary Sewer	DRAINAGE Sidewalk culverts / meadering channel	Sidewalk culverts / channel / shallow pond	Concrete rundow / spillway
δ.	δ	ΰ	0	12"	œ	8	ο	α,	Per design	Per design	Per design

F

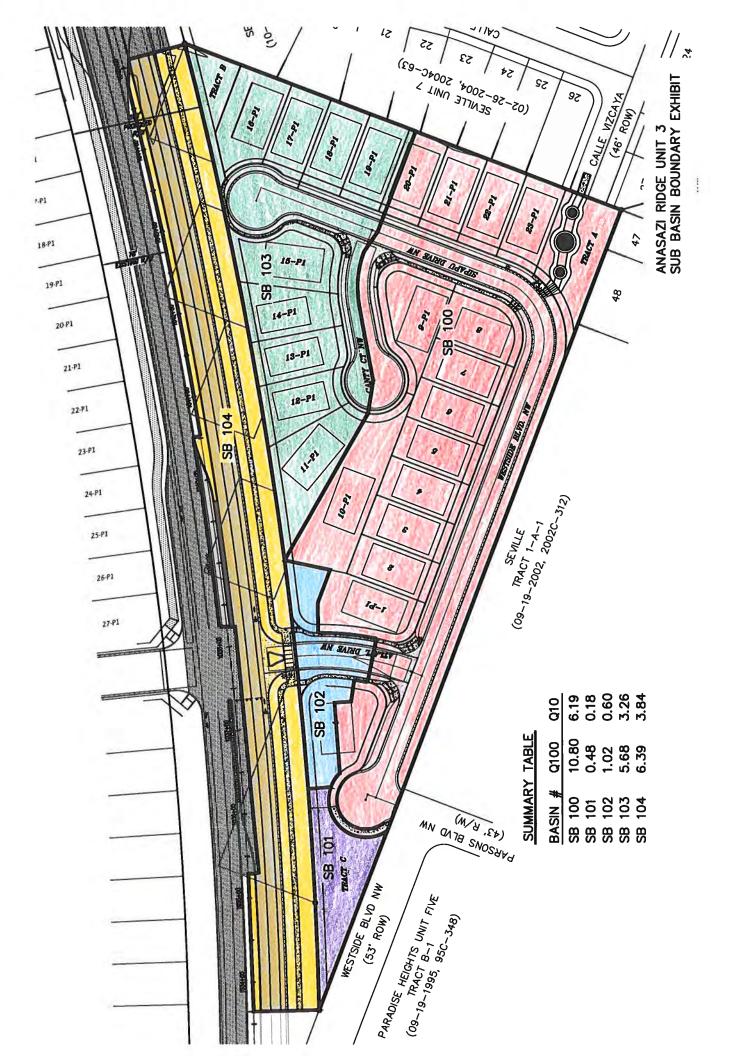
Anasazi Ridge Unit 3 DRB 1004245 (12-16-14)

1

Page 2 of 3

Anasazi Ridge Unit 3 DRB 1004245 (12-16-14)

ival of	Certification	City Cnst	Engineer	1 1	1 1	ole Items:	Inature Date												
d prior to DRB appro	Construction Certification	Private	Inspector P.E.	<i>i</i>	1	Approval of Creditable Items:	City User Dept. Signature									S - date	1		
The items listed below are on the CCIP and approved for Impact Fee credits. Signatures from the Impact Fee Administrator and the City User Department is required prior to DRB approval of		From To	2			Approval of Creditable Items:	Impact Fee Admistrator Signature Date				Grading & Drainage Certification required per DPM (Prior to release of Financial Guaranty) to includeretaining walls as defined on the approved Grading Plan			DEVELOPMENT REVIEW BOARD MEMBER APPROVALS		PARKS & GENERAL SERVICES - date	AMAFCA - date	- date	- date
s from the Impact Fee Adminis	•	Location							drants		Guaranty) to includeretaining wall			DEVELOPMENT REV		DRB CHAIR - date	NSPORTATION DEVELOPMENT - date	UTILITY DEVELOPMENT - date	CITY ENGINEER - date
ed for Impact Fee credits. Signatures		Type of Improvement						ed sidewalk exhibit	Waterline Infrastructure to include valves, fittings, service connections and fire hydrants	tholes and inlets	t per DPM (Prior to release of Financial C	SAS Infrastructure include manholes and service connections.				DRB C	TRANSPORTATION		CITY ENG
e CCIP and approv		Size						comply with approv	ure to include valves	cture to include mar	Certification required	clude manholes and			Ļ		12-16-14		DNSTRUCT T A DRB
ted below are on th	Constructed	Under	DRC #					Deferred sidewalk to comply with anoroved sidewalk exhibit	Naterline Infrastructu	Storm Drain Infrastructure to include manholes and inlets	Grading & Drainage	SAS Infrastructure in		AGENT / OWNER	Diane Hoelzer, PF	NAME (print)	MAHK GOUDWIN & ASSOCIATES	SIGNATUBE - date	MAXIMUM TIME ALLOWED TO CONSTRUCT THE IMPROVEMENTS WITHOUT A DRB
The items list	Einencially	Guaranteed	DRC #					-	- 0	ო ო	4	'	9					AV B VA	MAXIMUM THE IMP


AGENT /OWNER USER DEPARTMENT DRC CHAIR DATE REVISION

DESIGN REVIEW COMMITTEE REVISIONS

EXTENSION: N/A

APPENDIX A - HYDROLOGY

Sub Basin Boundary Exhibit AHYMO Output

AHYMO PROGRAM (AHYMO 97) - RIN DATE (MON/DAV/YR)	PROGRAM (AHYMO_97) - RIN DATE (MON/DAY/YR) = 01/09/2015	- Version: 1997.02d
START TIN INPUT FII	START TIME (HR:MIN:SEC) = 09:22:04 INPUT FILE = AR3_R3.DAT	USER NO.= AHYMO-I-9702dGoodwinM-AH
************	***************************************	******
* ۵		
\$ \$	ANASAZI RIDGE UNIT 3	
* N	100 YEAR 24 HOUR STORM EVENT	VENT
\$ \$		
*s	FILE: AR3 R3.DAT	
* N	LAST REVISED: 1-8-15	
* ۵	NOAA ATLAS 2, VOL IV ZONE: A 10	E: A 10
START	TIME=0.0 HR PUNCH CODE=0 PRINT LINES=-6	PRINT LINES=-6
LOCATION	NEW MEXICO	
State of New	Mexico soil infiltration va	State of New Mexico soil infiltration values (LAND FACTORS) used for computations.
Land Treatment	it Initial Abstr. (in)	Unif. Infilt.(in/hour)
A	0.65	1.67
ф	0.50	1.25
υ	0.35	0.83
A	0.10	0.04
DATNRALL.	TVDE-2 DAIN OUBBTER-0 0	8
	RAIN ONE=1.72 IN RAIN SIX=2.25 IN	X=2.25 IN
	RAIN DAY=2.59 IN DT=0.0333 HRS	33 HRS
CO	APUTED 24-HOUR RAINFALL DIST	BAS
DT =	.033300 HOURS	END TIME = 19.946700 HOURS

•																												
H OO	.0279	.0654	.1107	.1685	.2259	.8223	1.5173	٢.	1.9315	6.	ი.	٩.	٩.	°.	°.	4	2.1254	Ч.	۲.	2.1726	г.	9	2.2140	2.2269	2	2.2508	2.2576	
94	.0230	59	103	59	214	59	68	.751	.925	.963	.994	.021	.045	.066	.086	.105	.123	.139	.155	.170	84	.198	.212	.225	37	.249	ŝ	
TME =	18	.0540	96	50	209	28	415	.718	18	.958	.990	.017	.041	.063	.084	.102	.120	.137	153	.168	.182	.196	.210	223	.235	.248	55	
E ND T	ŝ	.0485	1060.	.1417	204	.4261	.356	.682	.893	.953	.985	.013	.038	.060	.081	.100	.118	.135	.151	.166	0	.194	.208	.221	.234	φ	.254	
IOURS	08	.0432	83	133	199	48	.290	.645	.868	.948	.981	.010	.035	.057	.078	.097	.115	.132	.148	.164	.178	.192	.206	ō٦,	.232	.244	.253	
, н бо	.004	.0380	077	125	188	91	.212	. 605	.841	.942	.977	.006	.031	.054	.075	.094	.113	.130	.146	.162	.176	.190	.204		.230	.242	.252	
DT = .	00	.0329	71	18	78	51	21	62	.813	.937	.972	.002	.028	.051	.072	.092	.110	.127	.144	.159	.174	.188	.202	15	.228	.241	.251	

2.2643 2.2709	277. 282	.290	.296	.302	.314	.319	.325	.331	.336	4 C C C C C C C C C C C C C C C C C C C	.353	.358	.363	0000.	.378	.383	.388	.393	. 398	- 403 - 707	412.	.417	.421	.426	.430	424.0420	.443.	.447	.451	.456	460.464	468	.472	.476	.480	4 0 4 4 α 4	164	495	.499	. 502	.506	510	5 T L	.521
2.2634 2.2699	.276 282	.289	.295	105.	.313	.319	.324	.330	.336	145. 747	.352	.357	.362	2000.000	.378	.383	.388	.392	.397	402	114.	416	.420	.425	.429	424. 428	.442	.447	.451	4 .	404. 46.4	.467	.471	.475	479.	ν 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	164	494	.498	. 502	.506	.509	ή ř 1 ľ	.520
2.2624 2.2690	.275	288	.294	008.	.312	.318	.324	.329	. 335	. 34U 246	.351	.356	.362	100.0	.377	.382	.387	.392	.397	104.	411	.415	.420	.424	.429	254.	.442	.446	.450	454	.458 463	.467	.471	.475	479	486	490	494	.498	.501	. 505	509.	212	.520
2.2614 2.2681	.274 281	.287	.293	.299	CUS.	.317	.323	.328	.334	. 34U 74E	. 350	.356	.361	0000.	.376	.381	.386	.391	.396	104.	.410	415	.419	.424	.428	754.	.441	.445	.450	.454	408 403	.466	.470	.474	.478	486	490	493	.497	.501	.505	.508	112	.519
2.2605 2.2671	273	.286	.292	.298	.310	.316	.322	.328	. 333	777. 777.	.350	.355	.360	000.	.376	.381	.385	.390	.395	.4004.	409	414	418	.423	.427	424.	.440	.445	.449	. 4 U U	194.	.465	.469	.473	.477	4 α 4 α 1 α	- 60 - 60 - 60 - 60 - 60 - 60 - 60 - 60	493	497	. 500	.504	508		, 519.
2.2595 2.2662	.272	.285	.291	297	202. 209.	.315	.321	.327	. 332	8777. 8776	. 349.	.354	.359	0000.	.375	.380	.385	.390	.394	.399	404	.413	.418	.422	.427	124.	.440	.444	.448	.453	194.	.465	.469	.473	477	- 4 0 7 0 7 0 7 0 7 0	1884	492	.496	.500	.504	.507		.518
2.2586 2.2652	172.	.284	.290	.297	505. 209	.314	.320	.326	. 332	155.	.348.	.353	.359	405. 2046	.374	.379	.384	.389	.394	.399	408	.413	.417	.422	.426	154.	1924.	.444	.448	452	450	.464	.468	.472	.476	480	1 8 8 4	.492	.496	.499	. 503	.507	010	.518

2.5281 2.5315 2.5246 2.5276 2.5311 2.5241 2.5271 2.5306 2.5236 2.5340 2.5231 2.5266 2.5301 2.5335 2.5261 2.5296 2.5330 2.5226 2.5220 2.5256 2.5291 2.5325 ****************** 2.5215 2.5251 2.5320 2.5286

TOTAL SITE ა თ ა თ

DEVELOPED CONDITIONS

*** *********** *** **********

*** SUB BASIN 100

*** AREA = 3.522 ACRES *** PROJECT SITE

*** ************ COMPUTE NM HYD

ID=1 HYD NO=100. AREA= 0.00550 SQ MI PER A=0 PER B=28.5 PER C=28.5 PER D=43. TP=-.1333 HR MASS RAIN=-1 SHAPE CONSTANT, N = 7.106420 P60 = 1.7200.04000 INCHES PER HOUR AREA = .002365 SQ MI IA = .10000 INCHES INF = .04000 INCHES FER HC RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .033300 526.28 ш Д .545000 .9982 K/TP RATIO = CFS UNIT VOLUME = 2 MI IA = 10000 .133300HR .002365 SQ MI 1P = 9.3371 .072649HR UNIT PEAK = н Ж

996 SHAPE CONSTANT, N = 3.975497 B = 353.53 P60 = 1.7200 B = 353.53 P60 = 1.7200 INF = 1.04000 INCHES PER HOUR .033300 RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .891996 .9989 .133300HR K/TP RATIO = .42500 INCHES AR TP = .133500mm 8.3145 CFS UNIT VOLUME = 8.3145 CFS UNIT VOLUME = 42500 .003135 SQ MI .118903HR UNIT PEAK = AREA = = %

ID=1 CODE=1 PRINT HYD PARTIAL HYDROGRAPH 100.00

.0055 SQ. MI. BASIN AREA = .4164 ACRE-FEET 1.499 HOURS 10.80 CFS AT Ш 1.41951 INCHES PEAK DISCHARGE RATE = RUNOFF VOLUME =

ELEV (FT) 89.00 89.85 CODE=5 89.25 89.45 89.65 OUTFLOW ID=12 HYD=POND.12 INFLOW=1 STORAGE (ACFT) * 0.000000 0.011015 * * 0.010023 0.010170 0.010501 * VOLUME * * OUTFLOW (CFS) *S* ROUTE THRU FIRST FLUSH POND + ELEV * 11.15 00.00 6.07 0.01 2.15 *************** * INFLOW * * ROUTE RESERVOIR * * * TIME *

(CFS)

(AC-FT)

(FEET)

(CFS)

(HRS)

<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	иин и и и и и и и и и и и и и и и и и и	400. 400. 400. 400. 400. 400.
H00000000	010 010 010 010 010 010 010 010 010 010	
	ឆ្ងឺឆ្នាំឆ្នាំឆ្នាំឆ្នាំឆ្នាំឆ្នាំឆ្នាំគឺឆ្នាំឆ្នាំឆ្នាំឆ្នាំឆ្នាំឆ្នាំឆ្នាំឆ្នាំ	, , , , , , , , , , , , , , , , , , ,
0000000mm		400. 400. 400. 400. 400. 400.
0.4.6.6.6.6.6.6		

.04	OUTFLOW (CFS)		.04		.04	.04	.03	.03	.03	. 03 03	.03 .03	.03	.03	.03	.03	.03	.03	60.	. 03	. 03	.03	.03	.03	. 03 03	.03 50	. 03	. 03	.03	.03 50	50.	50.	.03	.03	.03	50. CO		50.	60. 60	.03	.03	.03	.03		. 02
010. 010.	VOLUME (AC-FT)	-T O	010.	0	0	.010	0	.010	010.	010.	010.	.010	.010	.010	.010	.010	010.		010.	0	.010	.010	010.	010.	010.	010.	010.	010.	.010	010.	010.	.010	.010	.010	010	010.	010	010	010.	.010	.010	el.	H 1	.010
89.25 89.25	ELEV (FEET)	9.2	2	9.2	9.2	9.2	2	5	6	0 0	89.25	9.2	9.2	9.2	9.2	9.2	89.25 00 7F	, o	10	9.2	9.2	?	6.0	ი ი ი	89.25 89.25	10	9.2	9.2	6 6 6	89.25 70		9.2	9.2	0,0	62.28 ac ao		07.00 50			89.25	89.25	89.25	6	89.25 89.25
.04 .04	INFLOW (CFS)		.04			.04	.03		.03	.03	.03	.03	.03	.03	.03	.03	£0. C0		£0.	.03	.03	.03	. 03	. 03 0	E0.	. 03	.03	.03	.03	50.	60. 80.	.03	.03	.03	.03		50. 50	60. 60	.03	.03	.03	.03		.02
8.99 9.16	TIME (HRS)	<u> </u>	4.	9.	8	9.9	ч.	10.32	4.	9.0 0.0	10.99	- -	н.	Ч.	÷		i.		 	2	~				13.49 13.65	 				4.4		9.4	10	ຕ໌ ທ່າ	15.48 15 65	o o n u) -) v				16.82	6.9	17.15 17.32

		1.50 ME=
		HOUR TAL TI
. 02 . 02 . 02 . 02 . 02 . 02 . 02 . 02	OUTFLOW (CFS) .02 .02 .02 .02 .02 .02	.010 .02 PEAK OCCURS AT HOUR 1 89.838 T INCREMENTAL TIME= T
010. 010. 010. 010. 010. 010.	VOLUME (AC-FT) .010 .010 .010 .010 .010 .010	н РС-г РС-г НС-
89.25 89.25 89.25 89.25 89.25 89.25 89.25	ELEV (FEET) 89.25 89.25 89.25 89.25 89.25 89.25	89.25 10.845 C ELEVATION .0110
.02 .02 .02 .02 .02	INFLOW (CFS) .02 .02 .02 .02 .02 .02	.02 CHARGE = WATER SURFACE STORAGE =
17.48 17.65 17.82 17.98 18.15 18.32 18.48	TIME (HRS) 18.65 18.81 18.81 19.15 19.15 19.48 19.48	19.81 FEAK DISCHARGE MAXIMUM WATER (MAXIMUM STORAG)

ID=12 CODE=50 PRINT HYD

HYDROGRAPH FROM AREA POND.12

.033300HRS

HWT.I.		LIME	FLOW	TIME	FLOW	TIME	FLOW
CFS		HRS	CFS	HRS	CFS	HRS	CFS
г.	.~	7.992	0.	11.988	0.	15.984	°.
г.	ω	3.658	0.	12.654	0.	16.650	°.
.1	J	9.324	0.	13.320	0.	17.316	
.1	01	066.6	0.	13.986	0.	17.982	
0.	10	10.656	0.	14.652	0.	18.648	
٥.	11	L.322	0.	15.318	0.	19.314	•
534 INCHES = 10.84 CFS AT 1.	.499 HOU	= .4064 ACRE-FEET T 1.499 HOURS BASIN ARI	ke-feet Basin Area =	.0055 SQ. MI.			

*** SUB BASIN 101

*** AREA = .24367 ACRES

ID=1 HYD NO=101. AREA= 0.0003807 SQ MI PER A=0 PER B=100 PER C=0 PER D=0 TP=-.1333 HR MASS RAIN=-1

K = .133631HR TP = .133300HR K/TP RATIO = 1.002485 SHAPE CONSTANT, N = 3.521459 UNIT PEAK = .91931 CFS UNIT VOLUME = .9852 B = 321.89 P60 = 1.7200 AREA = .000381 SQ MI IA = .50000 INCHES INF = 1.25000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .033300

PRINT HYD

ID=1 CODE=1

PARTIAL HYDROGRAPH 101.00

.0004 SQ. MI. BASIN AREA = .0129 ACRE-FEET 1.499 HOURS NCHES = .48 CFS AT .63581 INCHES PEAK DISCHARGE RATE = RUNOFF VOLUME =

SHAPE CONSTANT, N = 7.106420 526.28 P60 = 1.7200 .04000 INCHES PER HOUR .033300 RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = B = . INF = . .545000 VOLUME = .9880 .10000 INCHES K/TP RATIO = .97517 CFS UNIT VOLUME = 000247 SQ MI IA = .10000 1 .133300HR .000247 SQ MI TP = .072649HR UNIT PEAK = AREA = н Х

SHAPE CONSTANT, N = 3.975497 B = 353.53 P60 = 1.7200 INF = 1.04000 INCHES PER HOUR .033300 RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .891996 .9792 .133300HR K/TP RATIO = CFS UNIT VOLUME = .9792 .42500 INCHES IA = .000247 SQ MI TP = .65508 .118903HR K = .118903 UNIT PEAK = AREA =

PRINT HYD ID=1 CODE=1

PARTIAL HYDROGRAPH 102.00

.0005 SQ. MI. 1.499 HOURS BASIN AREA = .0402 ACRE-FEET INCHES = 1.02 CFS AT 1.52481 INCHES PEAK DISCHARGE RATE = RUNOFF VOLUME =

SHAPE CONSTANT, N = 7.106420 P60 = 1.7200.04000 INCHES PER HOUR .033300 RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = 526.28 B = . INF = . .545000 .9969 HR TP = .133300HR K/TP RATIO = 4.9654 CFS UNIT VOLUME = .9969 001258 SQ MI IA = .10000 INCHES .001258 SQ MI K = .072649HR UNIT PEAK = AREA =

~

 K =
 .118903HR
 TP =
 .133300HR
 K/TP RATIO =
 .891996
 SHAFE CONSTANT, N =
 3.975497

 UNIT
 PEAK =
 4.2973
 CFS
 UNIT VOLUME =
 .9975
 B =
 353.53
 P60 =
 1.7200

 AREA =
 .001620
 R
 IA =
 .42500
 INCHES
 INF =
 1.04000
 INCHES
 PER HOUR

 RUNOFF
 COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT =
 .033300

PRINT HYD ID=1 CODE=1

PARTIAL HYDROGRAPH 103.00

RUNOFF VOLUME = 1.43004 INCHES = .2195 ACRE-FEET PEAK DISCHARGE RATE = 5.68 CFS AT 1.499 HOURS BASIN AREA = .0029 SQ. MI.

86.0	86.5	87.0
.009617	.022792	.040087
0.01	5.69	5.70
	.009617	0.01 .009617 86.0 5.69 .022792 86.5

*

* * *

* * *

*

* * *

* * * *

*

OUTFLOW (CFS)	00.000 000.000 000.000.000 000.000000	
VOLUME (AC-FT)	.000 .000 .000 .000 .001 .001 .001 .011 .011 .010 .010 .010 .010 .010	
ELEV (FEET)	88 88 88 88 88 88 88 88 88 88	0.0
INFLOW (CFS)	н 2 с н н 0 с с с с с с с с с с с с с с с с с с с	.04
TIME (HRS)	о о о о о о о о о о о о о о	. ~.

0.0.0.0.0.0.0.0 4.4.4.4.4.4.4.4.4.4.4.4.		OUTFLOW (CFS) (CFS) . 02 . 02 . 02 . 02 . 02 . 02 . 02 . 02
010. 010. 010. 010. 010. 010. 010. 010.	010 010 010 010 010 010 010 010 010 010	VOLUME (AC-FT) .010 .010 .010 .010 .010 .010 .010 .01
		BLET (FELT) (FELT) 86.000 86.000 86.000 86.000 86.000 86.0000 86.0000 86.000000 86.000000000000000000000000000000000000
0		INFLOW (CFS) . 02 . 02 . 02 . 02 . 02 . 02 . 02 . 02
4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	и и и и и и и и и и и и и и и и и и и	TIME (HRS) (HRS) (HRS) (HRS) (HRS) 9.95.99.99.99.99.99.99.99.99.99.99.99.99

	.033300HRS
	2 1.53 TIME=
017FLOW CCS (CFS) (CFS) (CFS) (CFS) (CFS) (CFS) (CFS) (CFS) (CFS) (CFS) (CFS) (CFS) (CFS) (CFS) (CFS) (CFS) (CFS)	.01 .01 .01 .01 .01 .01 .01 .01 .01 .01
.010 .010 .010 .010 .010 .010 .010 .010	.010 .010 .010 .010 .010 .010 .010 .010
 第1) 第2) 第3) 第4) 第5) 第5) 第5) 第6) 第6) 第6) 第7) 11) 12) 12)<td>86.00 86.00 86.00 86.00 86.00 86.00 86.00 86.00 86.00 86.00 86.00 5:465 CF ELEVATION 0223</td>	86.00 86.00 86.00 86.00 86.00 86.00 86.00 86.00 86.00 86.00 86.00 5:465 CF ELEVATION 0223
.02 .02 .02 .02 .02 .02 .02 .02 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01	.01 .01 .01 .01 .01 .01 .01 .01 .01 .01
HI 8825882588258825882588258825867878787878787878787878787878787878787	18.65 18.81 18.81 18.98 19.15 19.31 19.48 19.65 19.81 PEAK DISCHARGE MAXIMUM WATER S MAXIMUM STORAGE PRINT HYD

m
н
1
E
1
2
щ
AREA
FROM
YDROGRAPH
Ξ

FLOW	CFS	0.	0.	0.	0.	0.	٥.	
TIME	HRS	15.984	16.650	17.316	17.982	18.648	19.314	
FLOW	CFS	0.	0.	0.	0.	0.	0.	
TIME	HRS	11.988	12.654	13.320	13.986	14.652	15.318	.0029 SQ. MI.
FLOW	CFS	0.	0.	0.	0.	0.	0.	ke-feet Basin area =
TIME	HRS	7.992	8.658	9.324	066.6	10.656	11.322	.2099 ACRE-FEET 1.532 HOURS BASIN
FLOW	CFS	•	°.	0.	0.	0.	0.	= AT
						6.660		1.36736 INCHES = 5.47 CFS
FLOW	CFS	0.	0.	۰. ۱	1.1	.1	0.	RATE
TIME	HRS	.000	.666	1.332	1.998	2.664	3.330	RUNOFF VOLUME = PEAK DISCHARGE]

*** **********

*** SUB BASIN 104

*** AREA = 5.6738 ACRES

*** MCMAHON BLVD NEW PAVEMENT

*** **********

COMPUTE NM HYD ID=1 HYD NO=104. AFEA= 0.003012 SQ MI PER A=0 PER B=20 PER C=023.5 PER D=56.5 TP=-.1333 HR MASS RAIN=-1

 K =
 .072649HR
 TP =
 .133300HR
 K/TP RATIO =
 .545000
 SHAPE CONSTANT, N =
 7.106420

 UNIT
 PEAK =
 6.7187
 CFS
 UNIT VOLUME =
 .9975
 B =
 526.28
 P60 =
 1.7200

 AREA =
 .001702
 SQ MI
 IA =
 .10000
 INCHES
 INF =
 .04000
 INCHES
 PER HOUR

 RUNOFF
 COMPUTED
 BY INITIAL ABSTRACTION/INFILITRATION NUMBER METHOD - DT =
 .033300

.883106 SHAPE CONSTANT, N = 4.018318 B = 356.39 P60 = 1.7200 INF = 1.02310 INCHES PER HOUR .033300 RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .9967 .133300HR K/TP RATIO =

PRINT HYD ID=1 CODE=1

PARTIAL HYDROGRAPH 104.00

.0030 SQ. MI. 1.499 HOURS BASIN AREA = .2615 ACRE-FEET INCHES = 6.39 CFS AT RUNUER VOLUME = 1.62763 INCHES PEAK DISCHARGE RATE = 6.39 CF

FINISH

NORMAL PROGRAM FINISH END TIME (HR:MIN:SEC) = 09:22:04

11

- Version: 1997.02d USER NO.= AHYMO-I-9702dGoodwinM-AH	ANASAZI RIDGE UNIT 3 ANASAZI RIDGE UNIT 3 10 YEAR 6 HOUR STORM EVENT FILE: AR3_R1.DAT LAST REVISED: 1-8-15 NOAA ATLAS 2, VOL IV ZONE: A 10 TIME=0.0 HR PUNCH CODE=0 PRINT LINES=-6 NOAA ATLAS 2, VOL IV ZONE: A 10 TIME=0.0 HR PUNCH CODE=0 PRINT LINES=-6 NEW MEXICO TIME=0.0 HR PUNCH CODE=0 PRINT LINES=-6 NEW MEXICO TIME=0.0 IN PUNCH CODE=0 PRINT LINES=-6 NEW MEXICO TIME=0.0 HR PUNCH CODE=0 PRINT LINES=-6 TIME PUNCH CODE=0 PRINTE LINES	TYPE=1 RAIN QUARTER=0.0 RAIN ONE=1.147 IN RAIN SIX=1.500 IN RAIN DAY=1.728 IN DT=0.0333 HRS COMPUTED 6-HOUR RAINFALL DISTRIBUTION BASED ON NOAA ATLAS 2 - PEAK AT 1.40 HR. DT =033300 HOURS END TIME = 5.994000 HOURS
AHYMO PROGRAM (AHYMO_97) - RUN DATE (MON/DAY/YR) = 01/09/2015 START TIME (HR:MIN:SEC) = 09:32:17 INPUT FILE = AR3_R10.DAT	<pre>************************************</pre>	TYPE=1 RAIN QUARTER=0.0 RAIN ONE=1.147 IN RAIN SIX=1.500 IN RAIN DAY=1.728 IN DT=0.0333 HRS COMPUTED 6-HOUR RAINFALL DISTRIBUTION BASI DT = .033300 HOURS END TIME =
AHYMO PROC RUN DA START INPUT	*S************************************	RAINFALL

- 1																											
2																											
ATLAS	HOURS	.0185		.0737	.1121	.1503	.5480	.0115	.1887	.2877	.3121	.3323	.3498	.3655	.3798	.3931	.4054	.4170	.4280	.4384	.4484	.4580	.4672	.4760	4846	.4929	
AA A	00	•	•	•		•	·	H	н.	н.				н.		Ч.	ч.	H	ч.	Ч.	н.		н.	Ч.	÷	н.	
BASED ON NOAA	0	.0153	σ		.1059	.1429	.4394	.9788	1.1676	1.2837	.308	.329	1.3474	1.3634	1.3779	1.3912	1.4037	1.4154	1.4265	1.4370	1.4470	1.4566	1.4659	1.4748	1.4834	1.4917	1.4998
	TIME =	12	.0359	.0644	.1000	99	.3522		1.1453	78	is O	.326	45	1.3612	1.3759	1.3894	1.4020	1.4138	1.4249	4	1.4456	1.4553	4	1.4735	1.4822	1.4905	1.4987
DISTRIBUTION	E UN3	60	.0323	.0600	.0943	.1359	.2839	.9043	1.1218	2	1.3023	4	3	1.3590	1.3739	1.3875	1.4002	1.4121	1.4234	1.4340	1.4442	1.4539	m	1.4723	1.4810	1.4894	1.4975
RAINFALL	HOURS		œ	.0557	.0888	Ñ	.2319	.8603	1.0968	1.2456	œ	m,	0	1.3567	1.3718	1.3856	.398	1.4105	.421	1.4325	1.4428	1.4526	4	1.4710	1.4797	1.4882	1.4964
6-HOUR F	.033300 F	2	.0253		.0836		.1939		1.0702	5	.295	1.3182	.337	1.3545	.369	1.3837	1.3967	1.4088	1.4202	1.4310	1.4413	1.4512	1.4607	1.4697	1.4785	1.4870	1.4952
COMPUTED	0T = .	ō	.0219	5	.0785		.1675	.6807	1.0419	œ	.291	.31	.334	1.3522	1.3676	1.3818	.394	1.4071	.418	1.4295	σ	1.4498	1.4593	1.4685	1.4773	1.4858	1.4941

ID VEAR STORM

ID=1 HYD NO=100. AREA= 0.00550 SQ MI PER A=0 PER B=28.5 PER D=43. TP=-.1333 HR MASS RAIN=-1 法法法 法法法法法法法法法法法法法法法法法法法 长长长 法法法法法法法法法法法法法法法法法法法法 *************** *** AREA = 3.522 ACRES *** SUB BASIN 100 *** PROJECT SITE COMPUTE NM HYD TOTAL SITE ŝ

SHAPE CONSTANT, N = 7.106420 526.28 P60 = 1.1470 .04000 INCHES PER HOUR .0333300 RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = н 29 .545000 INF = .9982 .133300HR K/TP RATIO = .10000 INCHES CFS UNIT VOLUME = MI IA = .10000 UNIT PEAK = 9.3371 CF AREA = .002365 SQ MI TP = .072649HR = X

SHAPE CONSTANT, N = 3.728417 B = 336.64 P60 = 1.1470 INF = 1.04000 INCHES PER HOUR

 K =
 .126379HR
 TP =
 .133300HR
 K/TP RATIO =
 .948077
 SHAPE CONSTANT, N

 UNIT PEAK =
 7.9172
 CFS
 UNIT VOLUME =
 .9985
 B =
 336.64
 P60 =

 AREA =
 .003135
 SQ MI
 IA =
 .42500
 INCHES
 INF =
 1.04000
 INCHES
 PER HC

 RUNOFF
 COMPUTED BY
 INITIAL
 ABSTRACTION/INFILTRATION
 NUMBER
 DT =
 .033300

ID=1 CODE=1 PRINT HYD

PARTIAL HYDROGRAPH 100.00

.0055 SQ. MI BASIN AREA = .2093 ACRE-FEET 1.499 HOURS 6.19 CFS AT II .71342 INCHES PEAK DISCHARGE RATE = RUNOFF VOLUME =

ELEV (FT) 89.00 89.85 89.45 89.25 89.65 * OUTFLOW (CFS) * STORAGE (ACFT) 0.011015 0.000000 * * VOLUME (AC-FT) 0.010170 0.010023 0.010501 * * OUTFLOW (CFS) *S* ROUTE THRU FIRST FLUSH POND * ELEV (FEET) * 11.15 0.00 0.01 2.15 6.07 * ***************** * INFLOW (CFS) * * * * * (HRS) TIME *

0000 000. 89.00 89.00 89.00 8 8 8 8 .00 .17 .33

000000	6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	OUTFLOW (CFS)
00004			000000000000000000000000000000000000000	6 0 0 . 6 0 0 0 . 6 0 0 0 . 7 0 0 0 . 7 0 0 0 . 7 0 0 0 0 . 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VOLUME (AC-FT)
000000	8 8 8 8 8 8 8 8 8 8 8 8 8 8	, , , , , , , , , , , , , , , , , , ,			ELEV (FEET)
00440	о м н н 4 . 7 . 4 . 7 . 6 . 6 . 6 4 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 .	то 1990	000000000000000	00000000000000000000000000000000000000	INFLOW (CFS)
. 67 . 83 . 1. 1. 00 . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	1.50 1.67 2.16 2.50 2.50 2.50 3.00 2.50 3.00 2.50 3.00 2.50 3.00 2.50 3.00 2.50 3.00 2.50 3.00 2.50 3.00 5.50 5.50 5.50 5.50 5.50 5.50 5		0 0 0 1 n 4 0 0 0 1 n 4 0	7.83 .99 .16 .99 .16 .99 .16	TIME (HRS)

	TIME HRS 15.984 16.650 17.316 17.982 18.648 19.314
	FLOW CFS - 0 - 0 - 0 - 0 - 0 - 0 - 0
	TIME HRS 11.988 12.654 13.320 13.986 13.986 14.652 15.318
50 . 033300HRS	FLOW CFS - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0
HOUR 1. NTAL TIME= FROM AREA	TIME HRS 7.992 8.658 9.324 9.324 9.990 11.322
а а а с с с с с с с с с с с с с с с с с	FLOW CFS - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0
	TIME HRS 3.996 4.662 5.328 5.328 5.994 6.660
LD . 00 . 00	FLOW CFS C 0 .0 1.0 1.0 .1
9.32	TIME HRS .000 .666 1.332 1.998 3.330

		.0055 SQ. MI.	ke-feet Basin area =	= .2060 ACRE-FEET AT 1.499 HOURS BASIN ARE		.70220 INCHES = 6.83 CFS	RUNOFF VOLUME = PEAK DISCHARGE RATE	RUNOFF VOLUME = PEAK DISCHARGE F
19.	0.	15.318	0.	11.322	°.		°.	3.330
18.	0.	14.652	0.	10.656	0.	6.660	г .	2.664
17.	0.	13.986		9.990	°.		1.0	1.998
17.	0.	13.320		9.324	•.		0.	1.332
16.	0.	12.654		8.658	°.		0.	.666
15.	0.	11.988		7.992	°.		0.	000.
ц	CFS	HRS		HRS	CFS		CFS	HRS
					EC.			

FLOW CFS .0 .0 .0 .0 .0 .0

*** AREA = .24367 ACRES

*** TRACT E

法决论 使的名词复数的现在分词的名词复数的名词复数

COMPUTE NM HYD ID=1 HYD NO=101. AREA= 0.0003807 SQ MI PER A=0 PER B=100 PER C=0 PER D=0 TP=-.1333 HR MASS RAIN=-1

SHAPE CONSTANT, N = 3.276560 B = 303.64 P60 = 1.1470 INF = 1.25000 INCHES PER HOUR .033300 RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = 14HR TP = .133300HR K/TP RATIO = 1.078121 .86720 CFS UNIT VOLUME = .9837 B = .000381 SQ MI IA = .50000 INCHES INF = .143714HR UNIT PEAK = AREA = н Н

PRINT HYD ID=1 CODE=1

PARTIAL HYDROGRAPH 101.00

.0004 SQ. MI. .0045 ACRE-FEET 1.532 HOURS BASIN AREA = NCHES = . .18 CFS AT .21940 INCHES PEAK DISCHARGE RATE = RUNOFF VOLUME =

女女女 女女女女女女女女女女女女女女女女女

*** SUB BASIN 102

*** AREA = 0.3162 ACRES

*** PROJECT SITE ENTRANCE ROAD

ID=1 HYD NO=102 AREA= 0.000494 SQ MI PER A=0 PER B=25 PER C=25 PER D=50 TP=-.1333 HR MASS RAIN=-1 SHAPE CONSTANT, N = 7.106420 526.28 P60 = 1.1470 .04000 INCHES PER HOUR .033300 RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = B = INF = MFr .545000 OLUME = .9880 .10000 INCHES .133300HR K/TP RATIO = .97517 CFS UNIT VOLUME = .000247 SQ MI IA = .10000 TP = .97517 .072649HR UNIT PEAK = AREA = = Ж

SHAPE CONSTANT, N = 3.728417 B = 336.64 P60 = 1.1470 INF = 1.04000 INCHES PER HOUR .0333300 RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .948077 .9789 .133300HR K/TP RATIO = .42500 INCHES CFS UNIT VOLUME = MI IA = .42500 .000247 SQ MI TP = .62378 .126379HR UNIT PEAK = AREA = н Н

PRINT HYD ID=1 CODE=1

PARTIAL HYDROGRAPH 102.00

.0005 SQ. MI BASIN AREA = .0205 ACRE-FEET 1.499 HOURS AT = .60 CFS .77980 INCHES PEAK DISCHARGE RATE = RUNOFF VOLUME =

SHAPE CONSTANT, N = 7.106420 526.28 P60 = 1.1470 .04000 INCHES PER HOUR .033300 RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = B = . INF = . .545000 VOLUME = .9969 K/TP RATIO = 4.9654 CFS UNIT VOLUME = 001258 SQ MI IA = 10000 1 .133300HR .001258 SQ MI TP = .072649HR UNIT PEAK = AREA = н Ж

SHAPE CONSTANT, N = 3.728417 B = 336.64 P60 = 1.1470 INF = 1.04000 INCHES PER HOUR .033300 RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .948077 .9968 .133300HR K/TP RATIO = .42500 INCHES CFS UNIT VOLUME = IA = .001620 SQ MI TP = 4.0920 .126379HR UNIT PEAK = AREA = = ×

PRINT HYD ID=1 CODE=1

PARTIAL HYDROGRAPH 103.00

.0029 SQ. MI. 1.499 HOURS BASIN AREA = .1105 ACRE-FEET INCHES = 3.26 CFS AT .72006 INCHES PEAK DISCHARGE RATE = 11 RUNOFF VOLUME

ELEV (FT) 85.5 86.0 86.5 87.0 CODE=5 OUTFLOW ID=13 HYD=POND.13 INFLOW=1 (CFS) STORAGE (ACFT) * * .000000 .009617 .022792 .040087 * .000 .000 .000 .000 .000 .000 (AC-FT) * VOLUME * * OUTFLOW (CFS) *s* ROUTE THRU FIRST FLUSH POND 85.50 85.50 85.50 85.50 85.50 85.50 85.52 85.58 (FEET) ELEV 0.00 0.01 5.69 5.70 **************** ÷ INFLOW (CFS) * * ROUTE RESERVOIR * .00 .17 .33 .50 .50 .67 .83 .83 1.17 * (HRS) TIME * *

10. 88	à	, ń	.64		.16	01.	. 06		. 03				. 02					.02	. 02	20.				.03	10.	10.	10.	10.	10.	.01	0	0	10.		10.	.01	.01	10.	0	.01		OUTFLOW	(CFS)	0	-01	0
.005 016	.014	.012	110.	.010	010.	010.	010.	010.	010.	.010	.010	010.	010.	010.	oto.	.010	.010	010.	010.	010.	010.	.010	.010	.010	010.	010.	600 ·	600.	.009	.009	600.	600.	600.	800	8	00	8	õ	8	.008	2	VOLUME	(AC-FT)	.007	.007	100.
85.78 86.25	6	0.0	6.0	0.9	0.9	0.0	86.00 86.00	6.0	6.0	6.0	6.0	0	86.00 86.00	, c	? ?	.0	6.0	0 · 0	86.00 86.00	5 u		9.0	6.0	•	ن	0.0 0.1	85.99 85.99	, ດ , ທ	б. С		ი. ი	പ്പെ പ	85.94 05.04	n or n ur	6. 6.	9.0	ъ. 9	5.9	б. С	85.90	α	ELEV	(FEET)	С	85.88	
.67 3 26	ហ	õ		2		60.	- 06 04	. 03	. 02	.02	.02	. 02	.02	* 6	.02	. 02	. 02	. 02	.02	10.	. 02	. 02	.03	.03	.01	00.	00.	00.	00.		0	00.	00.	00.	00.		0	00.	.00	00.		INFLOW	(CFS)	00.	00.	00.
1.33 1.50	e و	00	٩.	÷.	<u>م</u> ا	<u>ر</u> ،	2.66 2.83	Ō	2 7	۳.	Ľ.	9.	3.83		4.10 4.33	4.50	4.66	4.83	5.00	10	. 4		∞.	ტ.	-	6.33	6.49 6.66		6	7.16		4	7.66	66.7	÷ Ĥ	8.33		9.	80	8.99	-	TIME	(HRS)	۳.		۰.

		.033300HRS
	1.53	ME=
	S AT HOUR	INCREMENTAL TIME=
	EAK OC	
88888888888888888888888888888888888888	L28 CF ATION	.0168 AC-FT ID=13 CODE=50
° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °		II
4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ro	MAXIMUM STORAGE PRINT HYD

HYDROGRAPH FROM AREA POND.13

DW TIME FS HRS .0 11.988 .0 12.654 .0 13.320 .0 13.320 .0 13.656 .0 13.656 .0 13.320 .0 14.655 .0 15.318	
DW TIME FS HRS .0 11.988 .0 12.654 .0 13.320 .0 13.320 .0 13.320 .0 13.5318 .0 15.318	
DW TIME FS HRS .0 11.988 .0 12.654 .0 13.320 .0 13.655 .0 13.328 .0 14.655 .0 15.318	
CFS CFS 0 	.0029 SQ. MI.
н Ц Ц Ц	BASIN AREA =
TIME FL HRS C 7.992 8.658 9.324 9.324 9.324 9.324 11.322 11.322 11.322 .1075 ACRE-FEET	532 HOURS BA
FLOW 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	AT 1
TIME HRS 3.996 4.662 5.328 5.328 5.328 5.328 5.328 7.328 7.326 7.326 7.326	3.13 CFS
FLOW CFS - 0 - 0 - 6 1 1 LUME =	HARGE RATE =
TIME FLC HRS CE .000 .666 1.332 1.998 2.664 3.330 8.330 RUNOFF VOLUME	PEAK DISCHARGE

*** MCMAHON BLVD NEW PAVEMENT *** *********************

COMPUTE NM HYD ID=1 HYD NO=104. AREA= 0.003012 SQ MI PER A=0 PER B=20 PER C=023.5 PER D=56.5 TP=-.1333 HR MASS RAIN=-1 SHAPE CONSTANT, N = 7.106420 526.28 P60 = 1.1470 .04000 INCHES PER HOUR AREA = .001702 SQ MI IA = .10000 INCHES INF = .04000 INCHES FER HC RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .033300 B = INF = .545000 K = .072649HR TP = .133300HR K/TP RATIO = UNIT PEAK = 6.7187 CFS UNIT VOLUME = .9975 AREA = .001702 SQ MI IA = .10000 INCHES

.937613 SHAPE CONSTANT, N = 3.771697 B = 339.65 P60 = 1.1470 INF = 1.02310 INCHES PER HOUR .033300 RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .937613 DLUME = .9961 .41897 INCHES

 K =
 .124984HR
 TP =
 .133300HR
 K/TP
 RATIO =

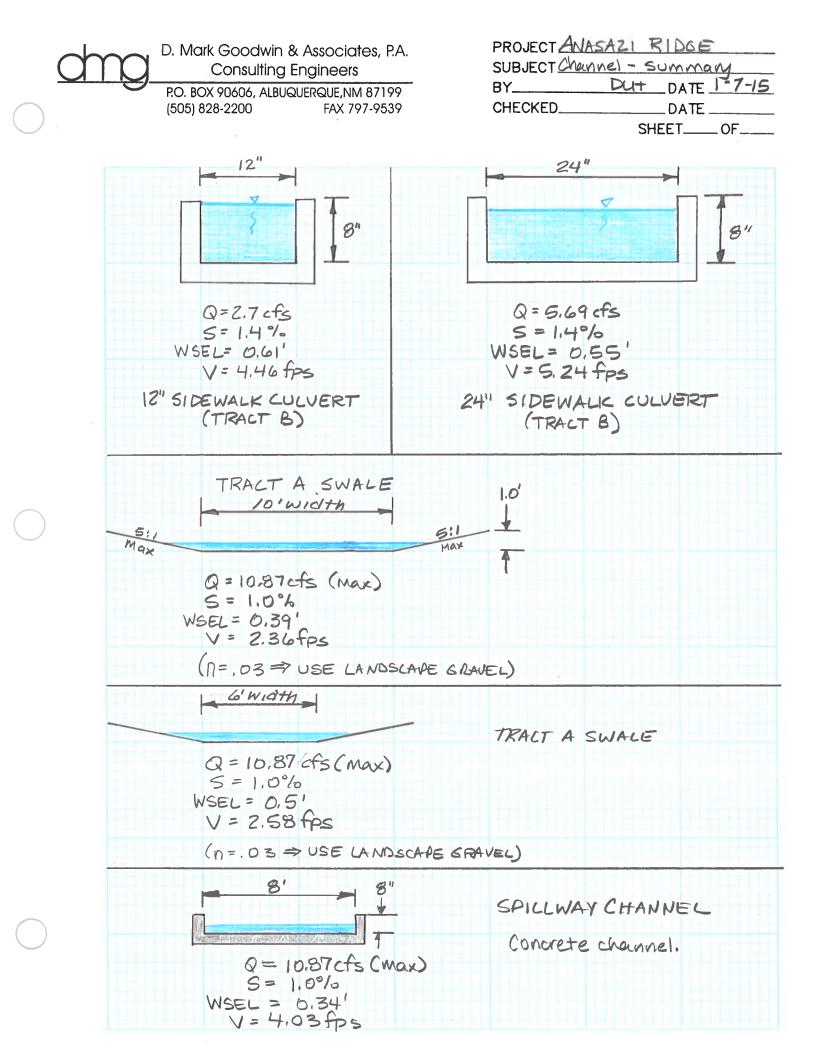
 UNIT
 PEAK =
 3.3385
 CFS
 UNIT
 VOLUME =
 .9961

 AREA =
 .001310
 SQ
 MI
 IA =
 .41897
 INCHES

PRINT HYD ID=1 CODE=1

PARTIAL HYDROGRAPH 104.00

.0030 SQ. MI. 1.499 HOURS BASIN AREA = .1357 ACRE-FEET INCHES = 3.84 CFS AT .84479 INCHES PEAK DISCHARGE RATE = RUNOFF VOLUME =


FINISH

NORMAL PROGRAM FINISH END TIME (HR:MIN:SEC) = 09:32:17

APPENDIX B – HYDRAULICS

Channel Summary Exhibit

HEC-2 Printouts

* U.S. ARMY CORPS OF ENGINEERS * * HYDROLOGIC ENGINEERING CENTER * * 609 SECOND STREET, SUITE D * * DAVIS, CALIFORNIA 95616-4687 * * (916) 756-1104 *							o			
* U.S. ARMY CORPS OI * HYDROLOGIC ENGINEI * 609 SECOND STREET * DAVIS, CALIFORNIA * (916) 756			FQ	0			o	L-BANK ELEV R-BANK ELEV SSTA ENDST		.67
	XXXXX X X X XXXXX X X X XXXXXX X X X X		MSEL	0		£	0 1.1	OLOSS TWA ELMIN TOPWID		00.
	XXXXX		ø	0		68	0 .67	HL VOL WTN CORAR		00
	XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXX		SNIVH	0			0 1.	HV AROB XNR ICONT		.31
	XXXXXXXX X XXXXX X XXXXX X XXXXXXXX	H CAPTURE	METRIC	0		4	m. 00	EG ACH XNCH IDC		.92
* * * * * *	X X X X X X X X X X X X X X X X X X X	FIRST FLUSH CAPTURE	STRT	.014		26	г. г. г.	WSELK ALOB XNL ITRIAL		00.
. SUKFACE FRUFILLES .6.2; May 1991 15DEC14 TIME 15:46:07 *	* * * *0 * **0 * * *0		IDIR	н	RINTOUT	3		CRIWS QROB VROB XLOBR		MIN USED .63
.E FROFILES May 1991 L4 TIME	14 15:46:07 ************************************	PACITY CAL DGE SHALLOW (NIN	0	SUMMARY PRINTOUT	1	.017 0 0	CWSEL QCH VCH XLCH		.300 AVG OF MAX, MIN USED .61 .63
HEC-2 WATER SURFACE PROFILES Version 4.6.2; May 1991 RUN DATE 15DEC14 TIME ************************************	THIS RUN EXECUTED 15DEC14 15:46:07 ************************************	CHANNEL CAPACITY CALCULATIONS ANASAZI RIDGE 1 FOOT WIDE SHALLOW CHANNEL -	ŎNI	N	CODES FOR	43	.017 2.70 4	DEPTH QLOB VLOB XLOBL		
* HEC-2 WAIEK * Version 4 * RUN DATE	LIS RUN EXECU ************************************		ICHECK	0	VARIABLE	38	.017 1 1 1 .67	SECNO Q SLOPE	OF 1	0 1.0 WSEL] 1.000
* * * * * * * *	THIS * * * * * * * * *	77 73 73	Ľ		J3		N Q X Q Y Q Y Q Y Q Y Q Y Q Y Q Y Q Y Q Y		* PROF	CCHV= *SECN 2096

.67	.01	1.09
0.	00.	1.08
0.	.000	00.
0.	.000	ហ
.6	.017	14
0.	.000	0
0.	00.	.0
2.7	4.46	.0
0.	00.	.0
2.7	.00	.013992

NOTE- ASTERISK (*) AT LEFT OF CROSS-SECTION NUMBER INDICATES MESSAGE IN SUMMARY OF ERRORS LIST

1 FOOT WIDE SHALLOW

SUMMARY PRINTOUT

EG	.92
FRCH	1.05
TOPWID	1.08
VCH	4.46
CRIWS	.63
CWSEL	.61
Ø	2.70
SECNO	1.000

**************************************							o			
**************************************			FQ	0			o	L-BANK ELEV R-BANK ELEV SSTA ENDST		.67
	XXXXXX X X X X X X XXXXXXX X X X XXXXXX		MSEL	0		ю	2.1	OLOSS TWA ELMIN TOPWID		00.
	XXXXXX		ø	0		68	0.67	HL VOL WTN CORAR		00·
	XXXXX X		SNIVH	0		4	0	HV AROB XNR ICONT		.43 .0
	XXXXXXXX XXXXXXXX XXXXXXXXX XXXXXXXXXX	SH CAPTURE	METRIC	0			m. 00	EG ACH XNCH IDC		.97 1.1
* * * * * * * *	× × × × × × × × × × × × × × × × × × ×	FIRST FLUSH CAPTURE	STRT	.014		26		WSELK ALOB XNL ITRIAL		00.
.********** 15:47:31	13 ************************************	CULATIONS CHANNEL -	IDIR	Ч	RINTOUT	7	0 0	CRIWS QROB VROB XLOBR		MIN USED .64 .0
**************************************	14 15:4 ************************************	PACITY CAI DGE)E SHALLOW	NNIN	0	SUMMARY I	1	.017	CWSEL QCH VCH XLCH	.300	.VG OF MAX, .55 5.7
<pre>:************************************</pre>	:CUTED 15DEC14 ************************************	CHANNEL CAPACITY CALCULATIONS ANASAZI RIDGE 2 FOOT WIDE SHALLOW CHANNEL -	ZNI	0	VARIABLE CODES FOR SUMMARY PRINTOUT	43	.017 5.69 4	DEPTH QLOB VLOB XLOBL	.100 CEHV= 00	T GIVEN, A .55 .0
1*************************************	THIS RUN EXECUTED 15DEC14 15:47:31 ************************************	T1 T2 T3	J1 ICHECK	0	J3 VARIABLE	38	NC .017 QT 1 X1 1 GR .67	SECNO Q SLOPE	* PROF 1 CCHV= .1(*SECNO 1.000	2096 WSEL NOT GIVEN, AVG OF MAX, 1.000 .55 .55 5.7 .0 5.7
-	Г									

.013978	.00 .0	5.24 0.	.00 .0	000.	.017 14	• 000 5	000.	.00 2.06	.02 2.08
IIS RUN EXECUTED 15DEC14 15:47:31	D 15DEC14	15:47:31							

THIS

NOTE- ASTERISK (*) AT LEFT OF CROSS-SECTION NUMBER INDICATES MESSAGE IN SUMMARY OF ERRORS LIST

2 FOOT WIDE SHALLOW

SUMMARY PRINTOUT

Ю Н	.97
FRCH	1.27
TOPWID	2.06
VCH	5.24
CRIWS	.64
CWSEL	. 55
Ø	5.69
SECNO	1.000

<pre>************************************</pre>							o			
**************************************			FQ	0			D	L-BANK ELEV R-BANK ELEV SSTA ENDST		1.00
	XXXXXX X X X X X X XXXXXX X X X XXXXXX X		WSEL	0		m	20.	OLOSS TWA ELMIN TOPWID		00.
	XXXXX		ø	0		68	0 1.	HL VOL WTN CORAR		00.
	XXXXXX X X X X X X X X X X X X X X X X	53	SNIVH	0		4	0 15.	HV AROB XNR ICONT		60 ·
	XXXXXXXX XXXXXXXX XXXXXXXXX XXXXXXXXX	FIRST FLUSH CAPTURE	METRIC	0			m. 00	EG ACH XNCH IDC		4. 6.
* * * * * * *	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		STRT	10.		26	.1 20. 5.	WSELK ALOB XNL ITRIAL		00.
**************************************	* * 0* * 0* *	CULATIONS CHANNEL -	IDIR	0	RINTOUT	7		CRIWS QROB VROB XLOBR		00. 00.
1*************************************	HIS RUN EXECUTED 15DEC14 16:38:40 ************************************	CHANNEL CAPACITY CALCULATIONS ANASAZI RIDGE 10 FOOT WIDE SHALLOW CHANNEL	NINV	0	VARIABLE CODES FOR SUMMARY PRINTOUT	ч	o	CWSEL QCH VCH XLCH		.300 AVG OF MAX, MIN USED .39 .00 10.9 .0
<pre>************************************</pre>	THIS RUN EXECUTED 15DEC14 1 ***********************************	CHANNEL CA ANASAZI RI 10 FOOT WI	DNI	5	CODES FOR	43	.03 10.87 4	DEPTH QLOB VLOB XLOBL		.100 CEHV= 00 NOT GIVEN, A .39 .0
**************************************	IIS RUN EXEC *************** HEC-2 WATER Version 4	_ • •	ICHECK	o	VARIABLE	38	.03 1 1.	SECNO Q TIME SLOPE	* PROF 1	0 1.0 WSEL 1.000 1.000
* * * * * * * * * * * * * H	21HT *** N	111 121 121 121	Ľ		J3		NC X1 GR GR		* PF	CCHV= *SECN

00.	00.	2.36	.00	.000	.030	.000	. 000	00.	3.07
.009939	0.	0.	.0	0	0	Ś	00.	13.86	16.93
THIS RUN EXECUTED 15DEC14 16:38:40	ED 15DEC14	16:38:40	0						
*************************************	*******	*****	**						
HEC-2 WATER SURFACE PROFILES	URFACE PROF	TLES							
Version 4.6.2; May 1991 **********************************	.2; May 19 *********	91 ********	*						

NOTE- ASTERISK (*) AT LEFT OF CROSS-SECTION NUMBER INDICATES MESSAGE IN SUMMARY OF ERRORS LIST

10 FOOT WIDE SHALLOW

SUMMARY PRINTOUT

Э Э	.47
FRCH	.72
TOPWID	13.86
NCH	2.36
CRIWS	00.
CWSEL	.39
ø	10.87
SECNO	1.000

x x x x x x x x x <th>X X<th>* HEC-2 WATER SURFACE PROFILES * Version 4.6.2; May 1991 * RUN DATE 15DEC14 TIME 16:38:25 ************************************</th><th>· * * * * * * · · · * · · · · ·</th><th>* * * * * *</th><th>XXXXX</th><th>XXXXX</th><th></th><th>XXXX</th><th>**************************************</th><th>Y CORPS OF ENGINEERS Y CORPS OF ENGINEERS IC ENGINEERING CENTE ND STREET, SUITE D ALIFORNIA 95616-4687 (916) 756-1104 ************************************</th></th>	X X <th>* HEC-2 WATER SURFACE PROFILES * Version 4.6.2; May 1991 * RUN DATE 15DEC14 TIME 16:38:25 ************************************</th> <th>· * * * * * * · · · * · · · · ·</th> <th>* * * * * *</th> <th>XXXXX</th> <th>XXXXX</th> <th></th> <th>XXXX</th> <th>**************************************</th> <th>Y CORPS OF ENGINEERS Y CORPS OF ENGINEERS IC ENGINEERING CENTE ND STREET, SUITE D ALIFORNIA 95616-4687 (916) 756-1104 ************************************</th>	* HEC-2 WATER SURFACE PROFILES * Version 4.6.2; May 1991 * RUN DATE 15DEC14 TIME 16:38:25 ************************************	· * * * * * * · · · * · · · · ·	* * * * * *	XXXXX	XXXXX		XXXX	**************************************	Y CORPS OF ENGINEERS Y CORPS OF ENGINEERS IC ENGINEERING CENTE ND STREET, SUITE D ALIFORNIA 95616-4687 (916) 756-1104 ************************************
FIRST FLUCHCAPTURESTRTMETRICHVINSQWSELFQSTR1METRICHVINSQWSELFQJ01000000J1.3.1.11.1.16.J1.3.1.11.16.0J2011.1.1.16.0J3.1.1.116.16.J4MSELKEGHVHLCLOSSL-BANKMSELKEGHVWINWINSTANXNLXNLXNRWNNTOPMIDSSTA	FIRST FLUCH CAPTURE STRT METRIC HVINS Q WSEL FQ STRT METRIC HVINS Q WSEL FQ .01 0 0 0 0 0 0 .11 .3 26 4 68 3 .1 .3 .1 .1 .16 0 0 11. 11 1. 16 16 0 5. 0 11. 1. 1. 16 16 0 11. 10 10 16 116 116 116 0 .00 110 100 100 1100 0 .00 1.00 100 100 100 1100 0 .00 0.00 100 100 100 1100 0 .00 0.00 100 100 100 100 0	THIS RUN EXECUTED 15DEC14 16:38:25 ************************************		XXXXX						
STRTMETRICHVINSQWSELFQ.0100000264683.3.3.3.3.3.3.3.3.1.1.3.3.3.3.3.3.3.3.3.3.1.1.3.1.1.3<	STRTMETRICHVINSQWSELFQ.01000000.11.3.3.1.3.1.1.3.3.1.1.1.0.1.3.1.1.1.1.16.1.3.1.1.116016.011.1.116.1.3.11.1.116.1.11.1.1160.11.XNLXNRWTNELMINXNLXNRWTNELMINSSTAXNLXNR.00.00.00.000.00.00.00.100.000.000.00.00.100	CHANNEL CAPACITY CALCULATIONS ANASAZI RIDGE 6 FOOT WIDE SHALLOW CHANNEL -		IRST FLUSH	I CAPTURE					
.01 0 0 0 0 0 0 0 26 26 4 68 3 .3 .3 .3 .3 .3 .3 .4 68 3 .3 .3 .4 68 3 .3 .4 68 3 .3 .4 .68 3 .4 .64 3 .4	.01 0 0 0 0 0 0 0 26 4 68 3 3 3 3 3 .1 .3 .3 .1 .1 .3 1 <td< td=""><td>NINV IDIR</td><td></td><td>STRT</td><td>METRIC</td><td>SNIVH</td><td>Ø</td><td>WSEL</td><td>FQ</td><td></td></td<>	NINV IDIR		STRT	METRIC	SNIVH	Ø	WSEL	FQ	
26 4 68 3 .3 .3 .3 0 0 0 0 0 0 0 11. 1. 16. MSELK EG HV HL OLOSS L-BANK ELEV ALOB ACH AROB VOL TWA R-BANK ELEV XNL XNCH XNR WTN ELMIN SSTA TYRIAL IDC ICONT CORAR TOPWID ENDST	26 4 68 3 .3 .3 .3 .3 .3 .0 11. 1. 16. 0 .0 11. 1. 16. 0 .0 11. 1. 16. 0 .0 11. 1. 16. 0 .00 11. 10. 0 .000 10.00 0 .00 100 100 100 100 0 .00 100 0 .00 2.52	0		10.	0	0	0	0	o	
26 4 68 3 .3 .3 .3 0 0 0 0 0 0 0 11. 1. 16. MSELK EG HV HL OLOSS L-BANK ELEV ALOB ACH AROB VOL TWA R-BANK ELEV XNL XNCH XNR WTN ELMIN SSTA TTRIAL IDC ICONT CORAR TOPWID ENDST	26 4 68 3 .3 .3 .3 0 11. 1. 1. 16. 0 11. 1. 16. MSELK EG HV HL OLOSS L-BANK ELEV MNL XNCH XNR WTN ELMIN SSTA ALOB XCH XNR WTN ELMIN SSTA XNL XNCH XNR WTN ELMIN SSTA TRIAL IDC ICONT CORAR TOPWID ENDST .00 .000 1.00 .00 2.52	CODES FOR SUMMARY PRINTOUT								
.3 0 0 0 0 0 0 0 11. 1. 16. WSELK EG HV HL OLOSS L-BANK ELEV ALOB ACH AROB VOL TWA R-BANK ELEV XNL XNCH XNR WTN ELMIN SSTA ITRIAL IDC ICONT CORAR TOPWID ENDST	.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 2		26	4		œ	м		
C EG HV HL OLOSS L-BANK ACH AROB VOL TWA R-BANK XNCH XNR WTN ELMIN SSTA AL IDC ICONT CORAR TOPWID ENDST	C EG HV HL OLOSS L-BANK ACH AROB VOL TWA R-BANK XNCH XNR WTN ELMIN SSTA L IDC ICONT CORAR TOPWID ENDST 00 .60 .10 .00 1.00 1.00 0.0 2.52	г е оо		. 1 	m. 00	0.11.	0 1.	0 16.	o	o
	.00 .60 .10 .00 .00 .0 4.2 .0 .0 .00 .00 .030 .000 .000 .00	CWSEL CRIWS QCH QROB VCH VROB XLCH XLOBR		WSELK ALOB XNL ITRIAL	EG ACH XNCH IDC	HV AROB XNR I CONT	HL VOL WTN CORAR	OLOSS TWA ELMIN TOPWID	XX L	
		.300 AVG OF MAX, MIN USED .50 10.9 2.58 .00		0000.	. 60 . 4. 2 . 030	000 0. 0.	000. 00.	00.00.	1.00 2.52	

13.48 10.96 00. m 0 0 0 0 . 0 .009857

NOTE- ASTERISK (*) AT LEFT OF CROSS-SECTION NUMBER INDICATES MESSAGE IN SUMMARY OF ERRORS LIST

6 FOOT WIDE SHALLOW

SUMMARY PRINTOUT

.60 Ю Ш . 73 FRCH 10.96 TOPWID 2.58 VCH 00. CRIWS . 50 CWSEL 10.87 ø 1.000 SECNO

<pre>************************************</pre>			5 C	٥			0	L-BANK ELEV R-BANK ELEV SSTA ENDST		1.00 1.00	
	XXXXXX X X X X XXXXXXX X X X XXXXXXX X X		WSEL	0		m	0 16.	OLOSS TWA ELMIN TOPWID		00.	
	XXXXX		Ø	0		68	л. 1	HL VOL WTN CORAR		00.	
	XXXXX X XXXXX X X X XXXX X X X XXXXX X X X XXXXX		SNIVH	0		4	0.11.	HV AROB XNR ICONT		11.	
	XXXXXXXX XXXXXXXX XXXXXXXXXXXXXXXXXXXX	FIRST FLUSH CAPTURE	METRIC	0			м. 00	EG ACH XNCH IDC		. 6 . 5	
* * * * * * * *	X X X X X X X X X X X X X X X X X X X	FIRST FLUS	STRT	TO.		26	.1 16. 5.	WSELK ALOB XNL ITRIAL		0 0 0 ·	
	15:15:57 ******** ********	CULATIONS	IDIR	0	RINTOUT	2	. 03 . 87 0	CRIWS QROB VROB XLOBR		MIN USED .00	
:********** :E PROFILES May 1991 .4 TIME	14 15:: ********* ROFILES * 1991	CHANNEL CAPACITY CALCULATIONS ANASAZI RIDGE 6 FOOT WIDE SHALLOW CHANNEL -	NINV	0	SUMMARY PRINTOUT	Ч	11	CWSEL QCH VCH XLCH		.300 .VG OF MAX, .52 11.9	
.*************************************	UTED 10DEC *************** SURFACE F *6.2, May	CHANNEL CA ANASAZI RI 6 FOOT WID	DNI	N	CODES FOR	43	.03 11.87 4	DEPTH QLOB VLOB XLOBL		.100 CEHV= 00 NOT GIVEN, A .52 .0	
1*************************************	THIS RUN EXECUTED 10DEC14 15:15:57 ***********************************	71 72 73	J1 ICHECK	0	J3 VARIABLE	38	NC .03 QT .2 X1 .1 GR 1.	SECNO Q TIME SLOPE	* PROF 1	CCHV= .100 CEHV= .300 *SECNO 1.000 2096 WSEL NOT GIVEN, AVG OF MAX, 1.000 .52 .52 11.9 .0 11.9	

.00 2.41 11.18 13.59		el FQ		IM ITRACE	0	OLOSS L-BANK ELEV TWA R-BANK ELEV ELMIN SSTA TOPWID ENDST				.00 1.00			10.35 13.17	RUN EXECUTED 10DEC14 15:15:57	JRS LIST		
.000 000.		Q WSEL		IBW CHNIM	0	HL OLOS VOL TWA WTN ELMI CORAR TOPM				00.	0.		00.	THIS RI	TE PROFILES TE PROFILES MAY 1991 THEFT OF CROSS-SECTION NUMBER INDICATES MESSAGE IN SUMMARY OF ERRORS LIST		
000. S		SNINH		ALLDC	0	HV AROB XNR I CONT				.17	°.	.000	ហ		AESSAGE IN 1		
030.		METRIC		FN	0	EG ACH XNCH IDC				.61	3.6	.030	11		INDICATES N		
000.		STRT	10.	XSECH	0	WSELK ALOB XNL ITRIAL				00.	0.	000.	0		ON NUMBER		
00.		IDIR	1	XSECV	0	CRIWS QROB VROB XLOBR			OF MAX, MIN USED ED	.43	0.	.00	0.	* * *	**************************************		
2.66 0.		NIN	0	PRFVS	-1	CWSEL QCH VCH XLCH		.300	AVG OF MAX ASSUMED	.43	11.9	3.34	0.	****	PROFILES PROFILES PV 1991	MO	
.00 .0		ÕNI	m	TOIGI	o	DEPTH QLOB VLOB XLOBL		.100 CEHV=	JU VOT GIVEN, PAL DEPTH 2	.43		00.	.0		**************************************	FOOT WIDE SHALLOW	
00 [.]	11 12 13	JI ICHECK	0	J2 NPROF	2	SECNO Q SLOPE SLOPE	* PROF 2	CCHV=	*SECNU 1.000 2096 WSEL NOT GIVEN, AVG OF 3720 CRITICAL DEPTH ASSUMED	1.000	11.9	00.	.019115		**************************************	6 FOOT	

SUMMARY PRINTOUT

	SECNO	Ø	CWSEL	CRIWS	VCH	TOPWID	FRCH	БG
	1.000	11.87	.52	00.	2.66	11.18	.74	.63
*	1.000	11.87	.43	.43	3.34	10.35	1.00	.61
ML LO			SEACH ITLEES ON SECOND AVAILUS	ų				

SUMMARY OF ERRORS AND SPECIAL NOTES

1.000 PROFILE= 2 CRITICAL DEPTH ASSUMED CAUTION SECNO=

* * * * * * * * * * * * * * * * * * * *										
<pre>************************************</pre>							O			
<pre>************************************</pre>							o	C ELEV		
* * * * * * * * * * * * * * * * * * *			FQ	0				L-BANK R-BANK SSTA ENDST		1.00 1.00 2.97
	XXXXXX X X X X X X X X X X X X X X X X		MSEL	0		m	0 20.	OLOSS TWA ELMIN TOPWID		0000
	Z XXXXXX		O	0		68	0 1.	HL VOL WTN CORAR		0000
	XXXXX X X X X X X X		SNIVH	0			0 15.	HV AROB XNR ICONT		60 · · · ·
	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	FIRST FLUSH CAPTURE	METRIC	0		4	m. 00	EG ACH XNCH IDC		. 50 4.9 030
* * * * * * *	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	- FIRST FLU	STRT	10.		26	.1 20.	WSELK ALOB XNL ITRIAL		0000. 000.
**************************************	15:14:11 ******** SS ********	CHANNEL CAPACITY CALCULATIONS ANASAZI RIDGE 10 FOOT WIDE SHALLOW CHANNEL -	IDIR	0	PRINTOUT	0		CRIWS QROB VROB XLOBR		MIN USED .00 .00
**************************************	114 15: ************************************	CAPACITY CALCULATION RIDGE WIDE SHALLOW CHANNEL	NIN	0	SUMMARY PRINTOUT	ч	11	CWSEL QCH VCH XLCH		.300 .VG OF MAX, .41 11.9 2.43
********** ER SURFACE 4.6.2; M 10DEC14 ********	CUTED 10DEC14 ************************************	CHANNEL CA ANASAZI RI 10 FOOT WI	DNI	0	CODES FOR	43	.03 11.87 4	DEPTH QLOB VLOB XLOBL		.100 CEHV= 00 NOT GIVEN, A .0 .0
*********** HEC-2 WAT Version RUN DATE	THIS RUN EXECUTED 10DEC14 15:14:11 *********************************		ICHECK	0	VARIABLE	38	.03 2 1.	SECNO Q TIME SLOPE	* PROF 1	0 1.0 WSEL 1.000 11.9
* * * * * * * * * * H	THIS *** ∀E * **	11 12 12	Ľ		J3		NC X1 GR		* PR	+ SECN 2096

														, , , , ,	TT: #T:CT							
17.03		PQ		ITRACE	o	L-BANK ELEV R-BANK ELEV SSTA ENDST					1.00	1.00	3.34	16.66	EXECUTED LUDECT4			ст	*			
14.06		MSEL		CHINIM	0	OLOSS TWA ELMIN TOPWID					00.	0.	00.		NNY STHI			CROSS-SECTION NUMBER INDICATES MESSAGE IN SUMMARY OF ERRORS LIST				
00.		Ø		IBW	0	HL VOL WTN CORAR					00.	0.	.000	00.				SUMMARY OF		Ð	.50	
Ŋ		SNIVH		ALLDC	0	HV AROB XNR I CONT					.15	°.	.000	S				SSAGE IN		FRCH	.73 1.01	
0		METRIC		FN	0	EG ACH XNCH IDC					.48	а. 6 С	.030	14				NDICATES MI		TOPWID	14.06 13.31	
0		STRT	10.	XSECH	0	WSELK ALOB XNL ITRIAL					00.	0.	000.	0				U NITMERE TI		NCH	2.43 3.07	
0.		IDIR	г	XSECV	0	CRIWS QROB VROB XLOBR			MAX, MIN USED		.33	0.	00.	0.	****		*	DSS-SECTION		CRIWS	.00 .33	DTES
.0		ANTN	0	PRFVS	-1	CWSEL QCH VCH XLCH		0000	VG OF MAX,		.33	11.9	3.07	.0	******	ROFILES	1991		MO	CWSEL	.41 .33	SPECIAL NO
0.		ONI	m	IPLOT	0	DEPTH QLOB VLOB XLOBL		.100 CERVE	r given, avg of	DEPTH AS	.33	0.	00.	.0	******	SURFACE PI	4.6.2; May 1991	ста (*) AT 1	10 FOOT WIDE SHALLOW	Ø	11.87 11.87	ERRORS AND
.009965	T1 T2 T3	JI ICHECK	0	J2 NPROF	7	SECNO Q SLOPE	* PROF 2	*SECNO 1 000	2096 WSEL NOT	3720 CRITICAL DEPTH ASSUMED	1.000	11.9	.00	.020179	******************	HEC-2 WATER SURFACE PROFILES	Version 4.6.2; May 1991	NOTE- ASTERISK (*) AT LEFT OF	SUMMARY PRINTOUT	SECNO	1.000 *	SUMMARY OF ERRORS AND SPECIAL NOTES

CAUTION SECNO= 1.000 PROFILE= 2 CRITICAL DEPTH ASSUMED

4.************************************	4.0.2) May 1991 * 000 SECOND SIREEL, * DAVIS, CALIFORNIA 9 * (916) 756-1 *************************	THIS RUN EXECUTED 06JAN15 09:34:49 HEC-2 WATER SURPACE PROFILES Version 4.6.2; May 1991	TI SEVILLE UNIT 7 - STREET CAPACITY CALCULATIONS T2 49'ROW 28'F-F MTB CURB AND GUTTER WITH CROWN T3 VIZCAYA AVENUE	SCK INQ NINV IDIR STRT METRIC HVINS Q WSEL FQ	0 2 0 1 .02 0 0 0 0 0	VARIABLE CODES FOR SUMMARY PRINTOUT	43 1 2 26 4 68 3	.017 .017 .017 .1 .3 1 11.9 0 49 0 0 0 0 1 9 0 49 0 11.47 .125 .365 24.5 .125 36.5 0 37.53 .33 39.13 .53 49	10 DEPTH CWSEL CRIWS WSELK EG HV HL OLOSS L-BANK ELEV QLOB QCH QROB ALOB ACH AROB VOL TWA R-BANK ELEV VLDB VCH VROB XNL XNCH XNR WTN ELMIN SSTA DE XLOBL XLCH XLOBR ITRIAL IDC ICONT CORAR TOPWID ENDST		.100 CEHV= .300
************ WATER SURF	п 4.0.2; ТЕ 06JA ********	KECUTED 066 ***********************************	********* SEVILLE 49'ROW VIZCAYA		0	SLE CODES	43		DEPTH QLOB VLOB XLOBL		.100 CEHV=
L*************************************	* VEISION * RUN DATE **********	THIS RUN EX1 ************************************	**************************************	JI ICHECK	0	J3 VARIABI	38	NC .017 QT 21 X1 1 X1 1 X1 2 GR .55 GR .125	SECNO Q SLOPE	* PROF 1	CCHV= .1(

3265 DIVIDED FLOW

				09:34:49
.53	.53	8.77	40.23	EXECUTED 06JAN15
00.	0.	00.	30.17	THIS RUN E
00.	0.	.000	00.	
.15	0.	.000	7	
.50	3.8	.017	14	
00.	0.	.000	0	
.40	0.	00.	0.	*
.35	11.9	3.13	0.	*****
.35	0.	00.	.0	*******
1.000	11.9	00.	.020385	******************************

NOTE- ASTERISK (*) AT LEFT OF CROSS-SECTION NUMBER INDICATES MESSAGE IN SUMMARY OF ERRORS LIST

VIZCAYA AVENUE

SUMMARY PRINTOUT

ВЭ	. 50
FRCH	1.59
TOPWID	30.17
VCH	3.13
CRIWS	.40
CWSEL	.35
Ø	11.90
SECNO	1.000

* * * * * * * * * * * * * * * * * * * *										
**************************************							0 9 9			
**************************************			FQ	o			0 0.725	L-BANK ELEV R-BANK ELEV SSTA ENDST		1.39
	XXXXXX X X X X X X XXXXXX X X XXXXXXX X		MSEL	0		e	0 38.0	OLOSS TWA ELMIN TOPWID		00.
	XXXXX	YR-6HR ST	Ø	0		68	0 0.125	HL VOL WTN CORAR		00.
	XXXXXX X X X X X X X X X X X X X X X X	ATIONS 10	SNIVH	0		4	36.0	HV AROB XNR ICONT		.08
	XXXXXXXX XXXXXXXXX XXXXXXXXXXXXXXXXXXX	ITY CALCUI	METRIC	0		v	m. 00	EG ACH XNCH IDC		.63
* * * * * * * * *	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	STREET CAPACITY CALCULATIONS 10YR-6HR ST	STRT	.005		26	г. г. <i>е</i> .	WSELK ALOB XNL ITRIAL		00.
********** ***************************	* * * * * * * *	I.	IDIR	0	RINTOUT	0		CRIWS QROB VROB XLOBR		MIN USED
**************************************	L5 14:14:24 **************** R0FILES 1991	dge Subdiv SCTION VD.	ANIN	0	SUMMARY PI	ч	.01 16.3 .6	CWSEL QCH VCH XLCH		.300 /G OF MAX, .55
1*************************************	THIS RUN EXECUTED 09JAN15 14:14:24 ***********************************	Anasazi Ridge Subdivision 32' HALF SECTION MCMAHON BLVD.	ŽNI	N	VARIABLE CODES FOR SUMMARY PRINTOUT	43	.017 12.64 6 0 68.1	DEPTH QLOB VLOB XLOBL		CCHV= .100 CEHV= .300 *SECNO 1.000 2096 WSEL NOT GIVEN, AVG OF MAX, MIN USED 1.000 .55 .55 .00
HEC-2 WATE HEC-2 WATE Version RUN DATE	IIS RUN EXECU ************************************	N, 17) Z,	ICHECK	0	VARIABLE	38	.017 2 1 1.39 1.395	SECNO Q SLOPE	OF 1	CCHV= .10 *SECNO 1.000 2096 WSEL NOT 1.000
* * * * * * * H	THT * * * 日 日 日 日 日 日 日 日 日 日 日 日 1 日 1 日 1 日	T1 T2 T3	Ľ		J3		NC X1 GR GR		* PROF	CCHV= * SECN

1.39 35.92 59.12				ACE		ANK ELEV ANK ELEV A				סג נ	1.39	16	61.57									
н н 9 9		FQ		ITRACE	0	L - BANK R - BANK SSTA ENDST						35.91	61.				IST					
.0 .00 23.20		MSEL		CHNIM	0	OLOSS TWA ELMIN TOPWID				00		00.	25.66				ERRORS L.					
000. 000.		Ø		IBW	0	HL VOL WTN CORAR				00		000.	.00				SUMMARY OF			С Ш	.63	
. 000 000		SNINH		ALLDC	0	HV AROB XNR I CONT				90		000.	ហ				ISSAGE IN			FRCH	.84 05	
5.5 017 0		METRIC		FN	0	EG ACH XNCH IDC				59	6.7	.017	0				DICATES ME			TOPWID	23.20 25 66	00.07
0. 000.		STRT	.005	XSECH	0	WSELK ALOB XNL ITRIAL				00	0.	.000	0				NOTE- ASTERISK (*) AT LEFT OF CROSS-SECTION NUMBER INDICATES MESSAGE IN SUMMARY OF ERRORS LIST			NCH	2.32	04.4
0. 00.		IDIR	0	XSECV	0	CRIWS QROB VROB XLOBR			UTNI ITCED	00	0.	00.	.0	14:14:24	****	* * *	SS-SECTION			CRIWS	00.	
12.6 2.32 0.		ANIN	o	PRFVS	-1	CWSEL QCH VCH XLCH		.300	A KM BC R		16.4	2.46	. 0	N15 14:	*********	JF LLES 1991 *******	SFT OF CRO			CMSEL	.55	
00. 00.		ŌNI	м	IPLOT	0	DEPTH QLOB VLOB XLOBL		.100 CEHV=	*SECNO 1.000 2006 MGET NOT CITTEN ANG OF MAY MINITGED	09	0.	00.	.0	THIS RUN EXECUTED 09JAN15	***************************************	ngc-z waiek sukrace krofiles Version 4.6.2; May 1991 **********************************	(*) AT LI	νD.	TD	Ø	12.64	- n - D -
12.6 .00 .004986		ICHECK	0	NPROF	7	SECNO Q SLOPE	F 2	- -	*SECNO 1.000	1 000	±.000	00.	.004926	S RUN EXEC	**************************************	HEC-2 WAIER S Version 4.6 ***********	- ASTERISK	MCMAHON BLVD.	SUMMARY PRINTOUT	SECNO	1.000	· · · ·
	Т1 Т2 Т3	τŗ		J2 J2			* PROF 2	CCHV=		0			•	THT	****	Ner ***	NOTE	-	MMUS			

SUMMARY OF ERRORS AND SPECIAL NOTES

,

**************************************							0 68.			
<pre>************************************</pre>			FQ	o			0 0.725	L-BANK ELEV R-BANK ELEV SSTA ENDST		1.39 1.39
	XXXXXX X X X XXXXX X X X X X X X X X X		MSEL	0		m	38.0	OLOSS TWA ELMIN TOPWID		00.
	XXXXX	YR-6HR ST	Ø	0		68	0 0.125	HL VOL WTN CORAR		00.
	XXXXX X X X X X X X X X X X X	LATIONS 10	SNIVH	ο		4	36.0	HV AROB XNR ICONT		60 0.
	XXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	ITY CALCUI	METRIC	0		4	m. 00	EG ACH XNCH IDC		. 63 5 . 3
* * * * * * * * * * *	X X X X X X X X X X X X X X X X X X X X	STREET CAPACITY CALCULATIONS 10YR-6HR ST	STRT	.0054		26	68.1 35.9 9	WSELK ALOB XNL ITRIAL		00 ·
	13:56:21 ****** 55 ******	1	IDIR	0	RINTOUT	7		CRIWS QROB VROB XLOBR		MIN USED .00
********** PROFILES (ay 1991 TIME **********	9JANIS 13:5 ************************************	dge Subdiv ECTION VD.	NIN	0	SUMMARY F	ч	.01 16.3 .6	CWSEL QCH VCH XLCH		.300 VG OF MAX, .54 12.6
<pre>1************************************</pre>	THIS RUN EXECUTED 09JAN15 13:56:21 ************************************	Anasazi Ridge Subdivision 32' HALF SECTION MCMAHON BLVD.	ŎNI	5	VARIABLE CODES FOR SUMMARY PRINTOUT	43	.017 12.64 6 0 68.1	DEPTH QLOB XLOBL XLOBL		CCHV= .100 CEHV= .300 *SECNO 1.000 2096 WSEL NOT GIVEN, AVG OF MAX, 1.000 .54 .54 12.6 .0 12.6
********** HEC-2 WAT Version RUN DATE **********	IS RUN EXEC ***********************************		ICHECK	0	VARIABLE	38	.017 2 1 1.39 1.395	SECNO Q TIME SLOPE	*PROF 1	CCHV= .1(*SECNO 1.000 2096 WSEL NO' 1.000 12.6
* * * * * * * * * H	1 + H A + H	11 12 13	ľ		J3		N Q X Q R F L X R F L X R R X R		Ч 4	5 × C

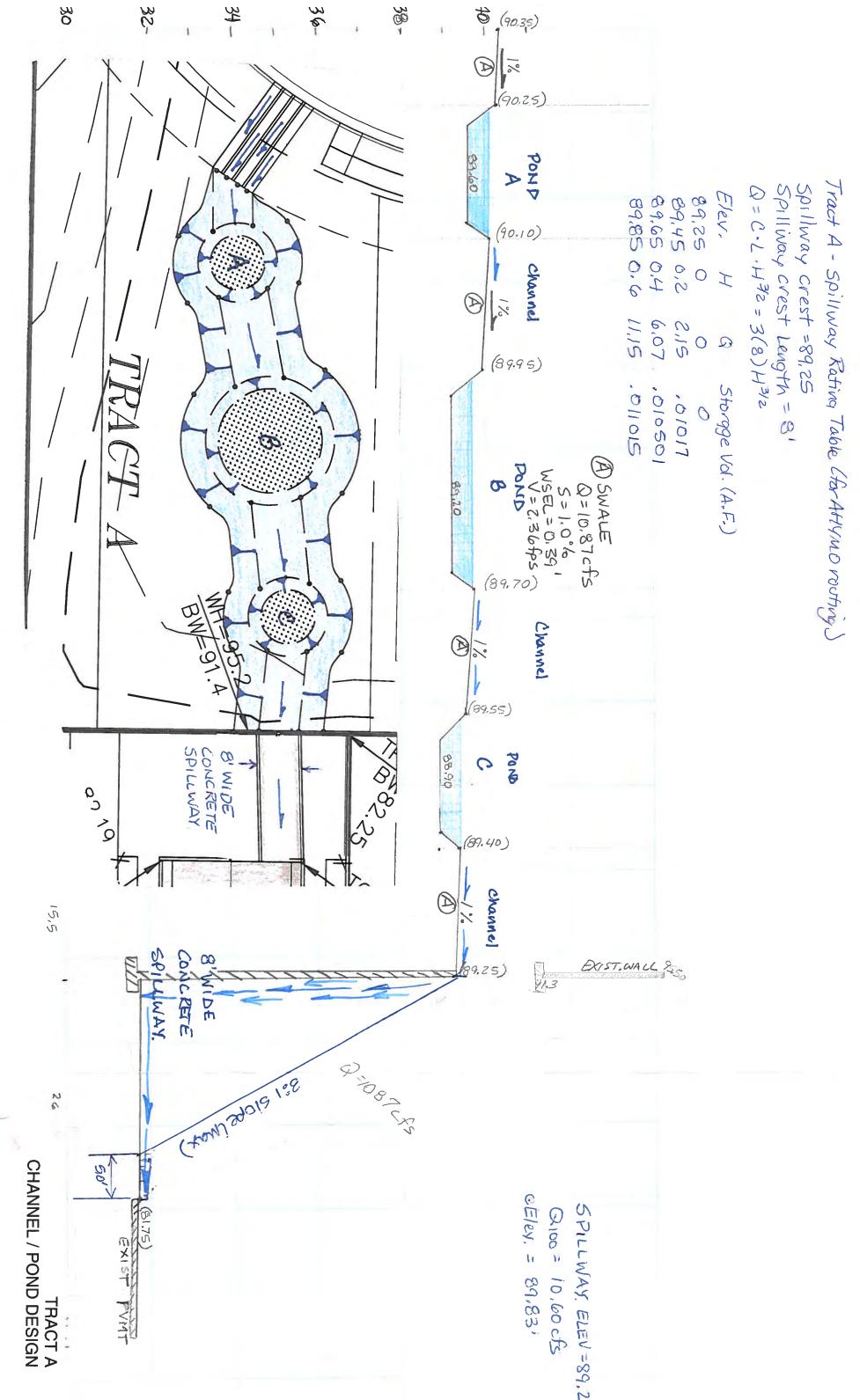
35.92 58.78	FQ	ITRACE 0	L-BANK ELEV R-BANK ELEV SSTA ENDST	н 35.13 61.22 1.22 22	
.00 22.86	MSEL	CHNIM 0	OLOSS TWA ELMIN TOPWID	CEHV= .300 IVEN, AVG OF MAX, MIN USED .59 .59 .00 .00 .00 .00 .00 .00 .00 .0 16.4 .0 .0 .00 .017 .000 .000 .00 .0 2.53 .00 .017 .000 .000 .00 .0 25.31 RFACE PROFILES 2: May 1991 **********************************	
000.	ø	IBW 0	HL VOL WTN CORAR	- 00 - 00 - 000 -	.69
.000	SNIVH	ALLDC	HV AROB XNR ICONT	.10 .000 .000	. 88
,017 0	METRIC	6 N	EG ACH XNCH IDC	.69 .617 .017 .017 DICATES ME TOPWID	25.31
000.	STRT .0054	XSECH	WSELK ALOB XNL ITRIAL	.00 .00 .000 .000 .000 .000 .000 .000	2.53
00.	IDIR 0	XSECV	CRIWS QROB VROB XLOBR	MIN USED .00 .00 .00 .00 .00 .00 .21 .**** SSS-SECTION SSS-SECTION CRIWS	00.
2.39 0.	0 0	PRFVS - 1	CWSEL QCH VCH XLCH	<pre>) CEHV= .300 GIVEN, AVG OF MAX, MIN .59 .59 .00 .59 .00 0.0 .00 0.0 .25 May 1931 ***********************************</pre>	ι.
. o . o	3 3	TOLUI	DEPTH QLOB VLOB XLOBL	00 CEHV= .300 r GIVEN, AVG OF M .5 .00 .0 .016. .016. .00 .16. .00 .16. .00 .16. .16.	16.37
.00 .005381 T1 T2	T3 J1 ICHECK 0	J2 NPROF	SECNO Q TIME SLOPE		1.000

**************************************						0 68 .			
**************************************		FQ	o			0 0.725	L-BANK ELEV R-BANK ELEV SSTA ENDST		1.39 1.39 35.92
XXXXX X		MSEL	0		m	0 38.0	OLOSS TWA ELMIN TOPWID		00. 00.
XXXXX	(R-6HR ST	ø	0		68	0 0.125	HL VOL WTN CORAR		000 000 000
XXXXXX XXXXXX X X X XXXXX X X X X X X	STREET CAPACITY CALCULATIONS 10YR-6HR ST	SNIVH	0		4	36.0	HV AROB XNR ICONT		. 0000.
XXXXXXXX XXXXXXXXX X X X X X X X X X X	CALCUI	METRIC	0		7	m. 00	EG ACH XNCH IDC		.63 4.9 017
× × × × × × × × × × × × × × × × × × ×	FREET CAPA(STRT	.0065		26	.1 68.1 35.9	WSELK ALOB XNL ITRIAL		000000000000000000000000000000000000000
:LES LES ME 14:09:33 :ME 14:09:33 :**********************************	I.	IDIR	0	RINTOUT	5	ω m	CRIWS QROB VROB XLOBR		MIN USED .00 .00
<pre>>:***********************************</pre>	dge Subdiv sECTION VD.	NINV	0	SUMMARY I	г	16.	CWSEL QCH XLCH XLCH		.300 VG OF MAX, .52 12.6 2.56
<pre>1************************************</pre>	Anasazi Ridge Subdivision 32' HALF SECTION MCMAHON BLVD.	ŌNI	7	VARIABLE CODES FOR SUMMARY PRINTOUT	43	.017 12.64 6 0 68.1	DEPTH QLOB VLOB XLOBL		CCHV= .100 CEHV= .300 *SECNO 1.000 2096 WSEL NOT GIVEN, AVG OF MAX, 1.000 .52 .52 12.6 .0 12.6 .00 2.56
<pre>************************************</pre>		ICHECK	0		38	.017 2 1 1.39 1.395	SECNO Q TIME SLOPE	* PROF 1	CCHV=
* * * H*H>* **** H* H	71 72 73	τŗ		J3		NC X D X 2 X 2 X 2 X 2 X 2 X 2 X 2 X 2 X 2		ф *	0 8 C 7 * C

58.00		FQ		ITRACE	o	L-BANK ELEV R-BANK ELEV SSTA ENDST		1.39 1.39 35.91 60.26 50.26
22.08		MSEL		CHNIM	0	OLOSS TWA ELMIN TOPWID		CEHV= .300 IVEN, AVG OF MAX, MIN USED .57 .57 .00 .00 .00 .00 .00 .00 .00 .0 16.4 .0 .0 .0 .017 .000 .000 .00 .0 0. 0. 0 0. 24.35 .2. May 1991
00.		Q		IBW	0	HL VOL WTN CORAR		.000 .000 .000 .000 .000 .000
Q		SNIVH		ALLDC	0	HV AROB XNR ICONT		.12 .000 6 MESSAGE IN
0		METRIC		NÆ	0	EG ACH XNCH IDC		.69 6.0 0 0 17 10 17
O		STRT	.0065	XSECH	0	WSELK ALOB XNL ITRIAL		. 00. . 000. . 0000 . 00000 . 00000 . 00000 . 0000 . 0000 . 0000 . 0000 . 0000 . 0000
.0		IDIR	0	XSECV	0	CRIWS QROB VROB XLOBR		0 MAX, MIN USED 57 .00 73 .00 0. 14:09:33 0. 14:09:33 ********
.0		ANIN	0	PRFVS	Ч Ч	CWSEL QCH VCH XLCH		.300 AVG OF MAX, .57 .57 16.4 2.73 0. 14:05 14:05 14:05 14:05 14:05 14:05 14:05 14:05 14:05 14:05 14:05 12:10 12:10 12:10 12:10 12:10 14:1
.0		ŌNI	m	IPLOT	0	DEPTH QLOB VLOB XLOBL		
.006463	L O B	JI ICHECK	0	J2 NPROF	0	SECNO Q SLOPE	* PROF 2	CCHV= .100 CEHV= .300 *SECNO 1.000 2096 WSEL NOT GIVEN, AVG OF MAX, MIN 1.000 .57 .57 16.4 .00 2.73 .006492 0. 2.73 *006492 0. 2.73 THIS RUN EXECUTED 09JANIS 14:09:33 ***********************************
	71 72 73	ŋ		IJ			*	U*0 H* ž H

SUMMARY PRINTOUT

ВG	.63
FRCH	.95
TOPWID	22.08 24.35
VCH	2.56 2.73
CRIWS	00.
CWSEL	.52
Q	12.64 16.37
SECNO	1.000 1.000



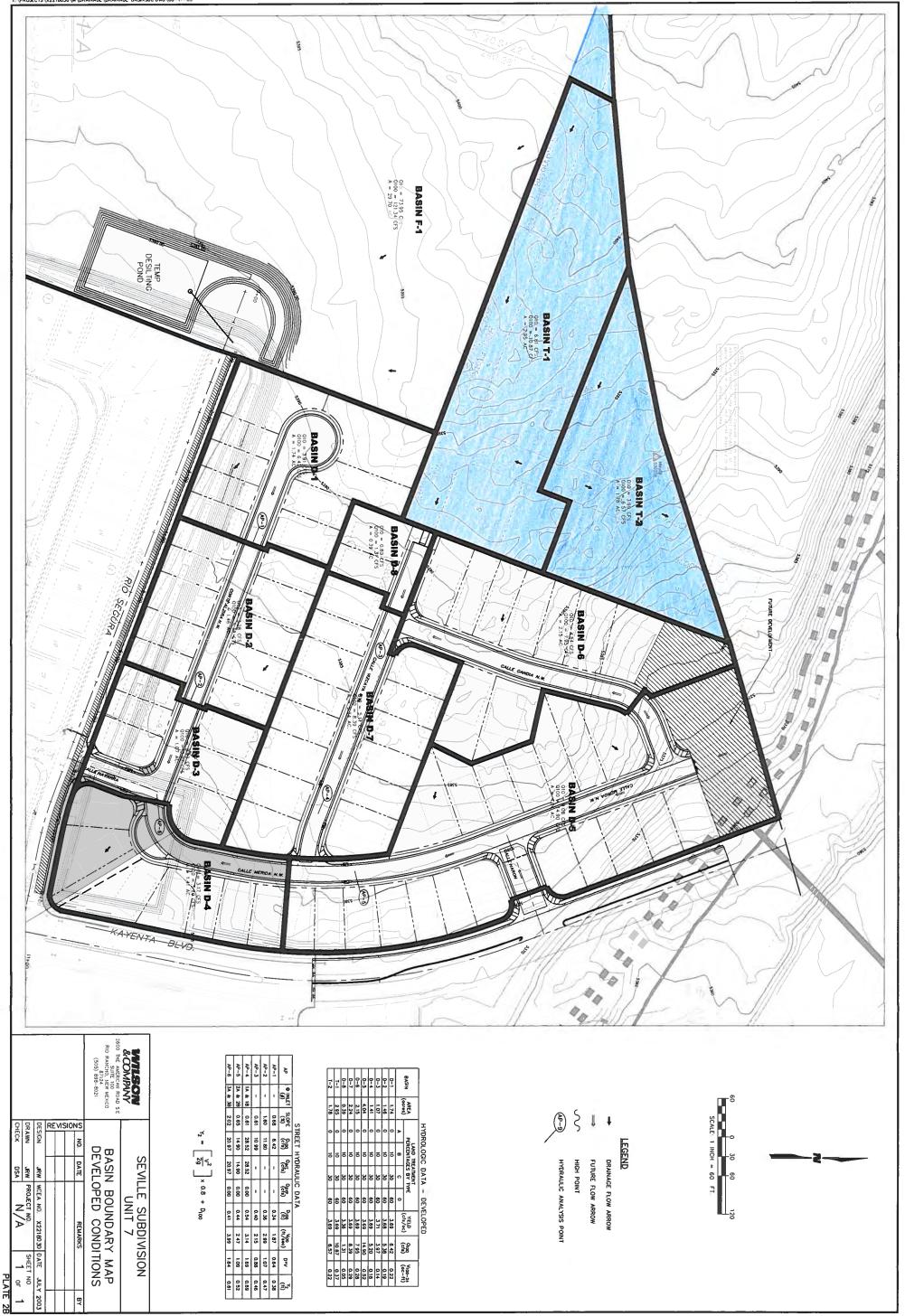
<pre>************************************</pre>							o			
<pre>************************************</pre>			FQ	0			o	L-BANK ELEV R-BANK ELEV SSTA ENDST		.67
	XXXXXX X X X X X X X X X X X X X X X X		WSEL	0		ß	8	OLOSS TWA ELMIN TOPWID		00.
	XXXXX		ø	0		68	0.67	HL VOL WTN CORAR		00.
	XXXXXX X X X X X X X X X X X X X X X X		SNIVH	0		4	0 8.1	HV AROB XNR ICONT		.19
	XXXXXXX XXXXXXXX XXXXXXXXXXXXXXXXXXXXX		METRIC	0		•	m. 00	EG ACH XNCH IDC		8 5
* * * * * * *	X X	SPILLWAY	STRT	10.		26	г. 8 2.1	WSELK ALOB XNL ITRIAL		00.
1*************************************	14:07:08 ************************************	CULATIONS CHANNEL -	IDIR	0	RINTOUT	7		CRIWS QROB VROB XLOBR		MIN USED
.*********** SE PROFILES May 1991 .5 TIME .5 TIME	* 년 * * 기 : * 1 : * 1 :	CHANNEL CAPACITY CALCULATIONS ANASAZI RIDGE 8 FOOT WIDE SHALLOW CHANNEL -	NIN	0	CODES FOR SUMMARY PRINTOUT	1	.017 10.87 0	CWSEL QCH XLCH XLCH		CCHV= .100 CEHV= .300 *SECNO 1.000 2096 WSEL NOT GIVEN, AVG OF MAX, MIN USED 3720 CRITICAL DEPTH ASSUMED 1.000 .38 .38 .38
<pre>************************************</pre>	THIS RUN EXECUTED 06JAN15 1. ************************************	CHANNEL CAFAC ANASAZI RIDGE 8 FOOT WIDE S	ŎNI	М	CODES FOR	43	.017 10.87 4	DEPTH QLOB VLOB XLOBL		CCHV= .100 CEHV= .3 *SECNO 1.000 2096 WSEL NOT GIVEN, AVG OF 3720 CRITICAL DEPTH ASSUMED 1.000 .38
HEC-2 WATH HEC-2 WATH Version RUN DATE	IS RUN EXECU ************************************		ICHECK	0	VARIABLE	38	.017 2 1 .67	SECNO Q SLOPE	OF 1	CCHV= .10 *SECNO 1.000 2096 WSEL NOT 3720 CRITICAL 1.000
* * * * + -	THIS *** HE * * *	T1 T2 T3	11		J3		NC CX CA		* PROF	CCHV= *SECN 2096 3720

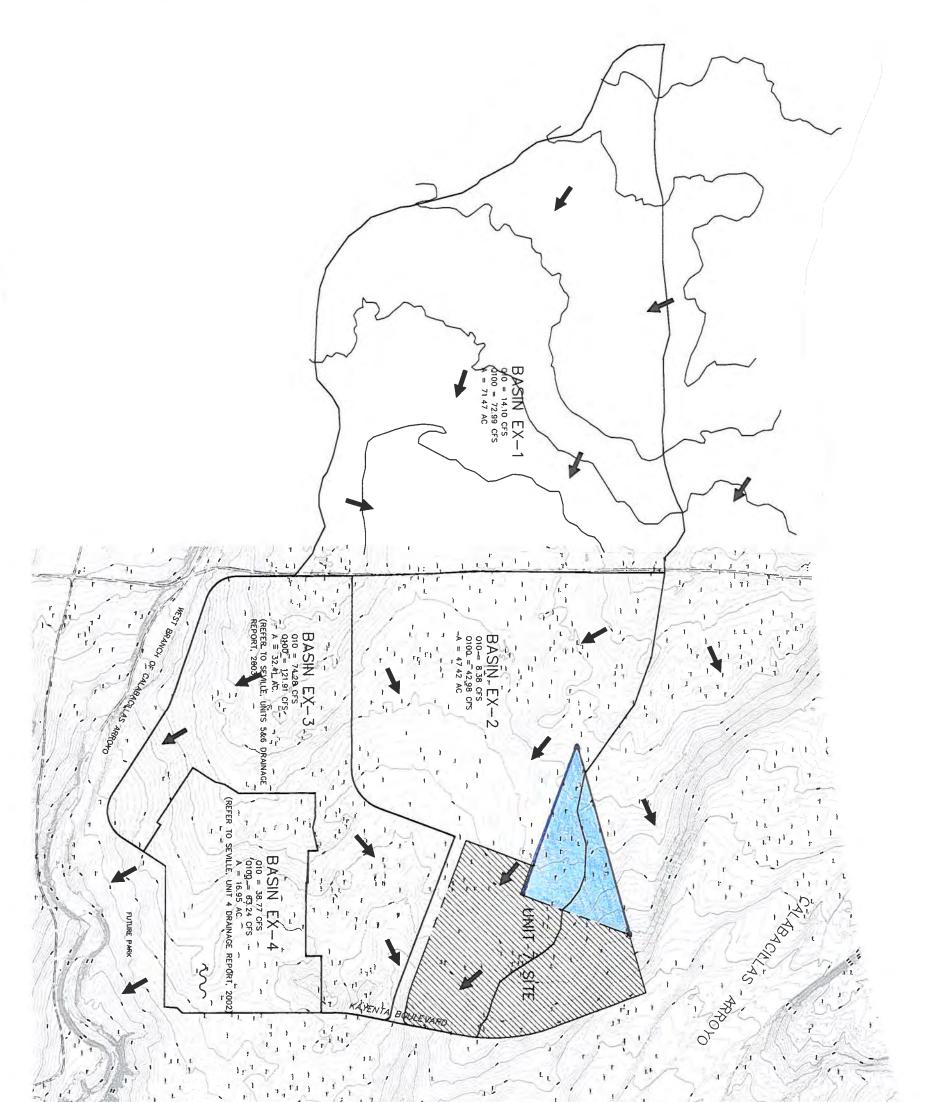
.67 .04 8.16		FQ		ITRACE	0	L-BANK ELEV R-BANK ELEV SSTA ENDST				.67	.67	.05	8.15								
.00 .00 8.11		WSEL		CHNIM	0	OLOSS TWA ELMIN TOPWID				00.	0.	00.	8.10				ERRORS LIST				
000 ·		Ø		IBW	0	HL VOL WTN CORAR				00.	0.	.000	00.				UMMARY OF			EG	. 58 . 59
000 ·		SNIVH		ALLDC	0	HV AROB XNR ICONT				.25	0	. 000	0				SSAGE IN S			FRCH	1.00 1.23
3.1 .017 7		METRIC		FN	0	EG ACH XNCH IDC				.59	2.7	.017	7				DICATES ME			TOPWID	8.11 8.10
000 ·		STRT	IO.	XSECH	0	WSELK ALOB XNL ITRIAL				00.	0.	. 000	0				NUMBER IN			VCH	3.51 4.03
0. 0.		IDIR	ч	XSECV	0	CRIWS QROB VROB XLOBR			MTN HIGH	38	0	00.	.0	08		+	CROSS-SECTION NUMBER INDICATES MESSAGE IN SUMMARY OF			CRIWS	. 38 . 38
10.9 3.51 0.		NIN	0	PRFVS	-1	CWSEL QCH VCH XLCH		.300	AVM AO	34	10.9	4.03	0.	14:07:08	FILES	991 *******	FT OF CROS			CWSEL	.38 .34
0 0 · 0 · 0		INQ	m	IPLOT	0	DEPTH QLOB VLOB XLOBL		CEHV=	UNV NAVID		0	00.	.0	ED 06JAN15 14:07:08	HEC-2 WATER SURFACE PROFILES	.2; May 1991 ***********************	(*) AT LEFT	E SHALLOW	Ľ	Ø	10.87 10.87
10.9 .00 .006474	SPILLWAY 8' WIDE	ICHECK	0	NPROF	N	SECNO Q TIME SLOPE	2	100	*SECNU L.UUU		10.9	00.	.010100	ECUT	2 WATER SI	Version 4.6		8 FOOT WIDI	SUMMARY PRINTOUT	SECNO	1.000 1.000
	T1 T2 SF T3 8'	Ι		J2 N		0 G H 0	* PROF	CCHV=	*SECN	0			0.	THIS F	HEC-	Vers	NOTE -	æ	SUMMA		*

APPENDIX C – STORMWATER MANAGEMENT DESIGN

Tract A Pond / Channel Spillway /Channel Vizcaya Avenue

- D. MARK GOODWIN & ASSOCIATES -




SPILLWAY ELEV = 89.25

APPENDIX D

Seville Unit 7 Drainage Plan (Wilson & Co.) - Existing Sub Basin exhibit - Developed Sub Basin exhibit

RECOMPANY SECONE AND FROM PER PARTIEND - FROM	BASN 05508 рПОМ EF-1 UN0541.0FD EF-2 UN0541.0FD EF-3 SYNLE UNT 5 & 6 Er-4 SEYNLE UNT 4	ξ ι		
SEVILLE SUBDIVISION UNIT 7 BASIN BOUNDARY MAP EXISTING CONDITIONS SI 0 DATE REMARKS SI 0 DATE REMARKS SI 0 DATE NO X2218030 DATE JULY 2003 DESIGN JRW WELTA NO X2218030 DATE JULY 2003 DESIGN JRW PROJECT NO 1 OF 1	HOROLOGIC DATA – EXISTING NEA INTREATING NEA INTREATING ABEA INTREATING Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" ABEA INTREATING Colspan="2">Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2"			

APPENDIX E

McMahon Blvd. Extension Report Excerpts McMahon Blvd. Hydrology Calculations and Analysis Google Earth Photos

MCMAHON BOULEVARD EXTENSION

PRELIMINARY DRAINAGE REPORT

July 2009

Prepared for: City of Albuquerque Department of Municipal Development Transportation Division One Civic Plaza Albuquerque, New Mexico 87102

Prepared by:

URS Corporation One Park Square 6501 Americas Parkway NE, Suite 900 Albuquerque, NM 87110

URS Project Number: 24343019

DRAINAGE REPORT

1. INTRODUCTION

This drainage report is for the two lane extension of McMahon Boulevard to Universe Boulevard and the extension of Universe Boulevard to McMahon Boulevard. Both streets will eventually be median-divided, four lane roads with two lanes in each direction. However, this project is providing construction plans for just the west half of Universe Boulevard and the north half of McMahon Boulevard. The purpose of this drainage report is to allow phased construction to proceed. This project is located on City of Albuquerque Zone Atlas page A-10. The project limits are shown on Figure 1 below.

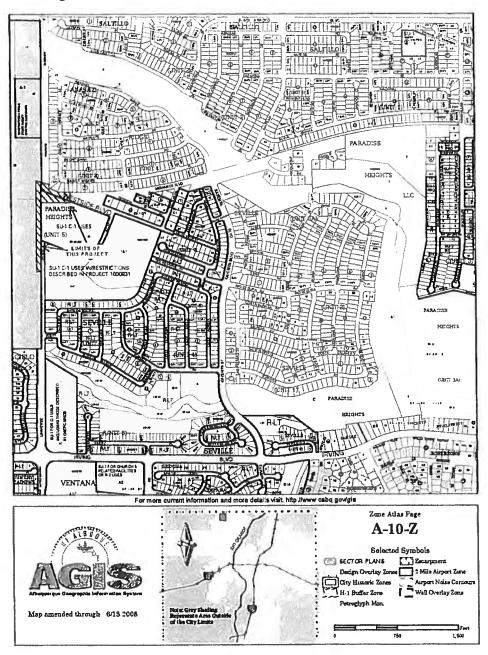


Figure 1 - Vicinity Map

DRAINAGE REPORT

			171-30-01	17-17-	1970	MARINE	PT-MENT		And A MARTIN		2 Marin	
BASIN ID	AF	REA	LAND T	REAT	MENT	(%)	tρ	PEAK 100-	YR FLOW ⁽²⁾			
DASINID	(AC)	(SQ MI)	Α	В	С	D	(HR)	Inc. (cfs)	Cum (cfs)	Inc. (cfs)	Cum (cfs)	
				KISTIN	IG CO	NDITI		ee Figure 2)				
RW-1	3.7	0.0058	25	0	75	0	0.13	10.15	199.80	4.62	102.32	
OS-1	29.9	0.0467	100	0	0	0	0.22	28.90		5.58		
RW-2	5.0	0.0078	85	0	15	0	0.13	8.50	35.67	2.13	7.32	
B-3	47.7	0.0745	25	5	30	40	0.13	159.12	189.65	86.79	92.80	
OS-1A	12.1	0.0189	90	0	10	0	0.13	19.72		4.61		
OS-1B	3.8	0.0059	90	0	10	0	0.13	6.16		1.44		
RW-1C	11.6	0.0181	20	0	55	25	0.13	37.42	43.58	19.80	21.24	
Subtotal	113.8	0.1777			なるが	電源	的感动	的原则的	「「小田菜大田」」		てた目ののです。	
				VELO			-	(See Figure			T	
RW-1	3.7	0.0058	0	0	87	13	0.13	(12.71)	202.36	7.00	99.80	
OS-1	29.9	0.0467	100	0	0	0	0.22	28.90		5.58		
RW-2	5.0	0.0078	85	0	15	0	0.13	8.50	35.67	2.13	7.32	
B-3	47.7	0.0745	25	5	30	40	0.13	159.12	189.65	86.79	92.80	
OS-1A	12.1	0.0189	90	0	10	0	0.13	19.72		4.61		
OS-1B	3.8	0.0059	90	0	10	0	0.13	6.16		1.44		
RW-1C	11.6	0.0181	20	0	50	30	0.13	38.36	44.52	20.70	22.14	
Subtotal	113.8	0.1777					取影。		ALC: NO.	1	Section 24	
				UTUF		-		ee Figure 5				
RW-1.1	0.38	0.0005	0	0	33	67	0.13	1.39		0.87		
RW-1.2	0.38	0.0005	0	0	33	67	0.13	1.39		0.87		
RW-1.3A	1.64	0.0027	0	0	100	0	0.13	5.56		2.92		
RW-1.3B	0.51	0.0011	0	0	33	67	0.13	2.89		1.82		
RW-1.4	0.50	0.0011	0	0	33	67	0.13	2.89		1.82		
				FUTUI	RE CO	NDITI		ee Figure 4				
RW-1	3.7	0.0058	0	0	74	26	0.13	13.48	163.97	7.72	101.62	
OS-1	29.9	0.0467	100(1)	0	0	0	0.22	28.90		5.58		
RW-2	5.0	0.0078	0	0	40	60	0.13	20.83	45.64	12.91	16.80	
B-3	35.5	0.0555	0	10	20	70	0.13	150.49	163.97	93.90	101.62	
OS-1A	12.1	0.0189	75	0	20	5	0.13	23.49		7.54		
OS-1B	3.8	0.0059	75	0	20	5	0.13	7.35		2.36		
RW-1C	11.6	0.0181	0	0	40	60	0.13	48.32	55.67	29.95	32.31	
Subtotal	113.8	0.1777	and the	24					Section &	S LATY COL	1. A.	

Table 1 - Summary of Hydrology

Notes:

in.

Future conditions OS-1 will be limited to historic runoff rate. Thus Group A is appropriate for Existing, Developed, and Future Conditions.

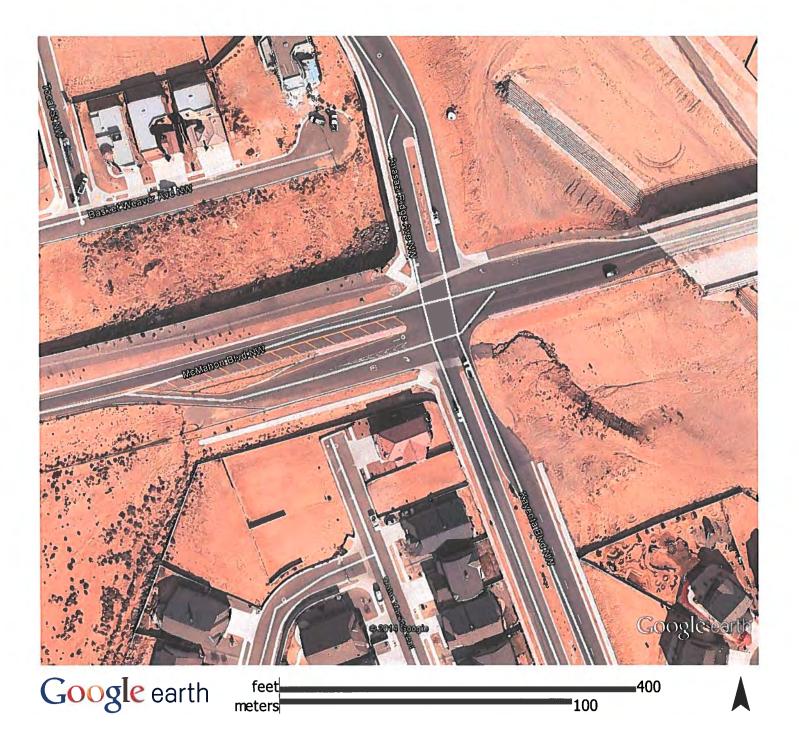
(2) All flow rates are bulked by a factor of 1.10 for 10% sediment by volume.

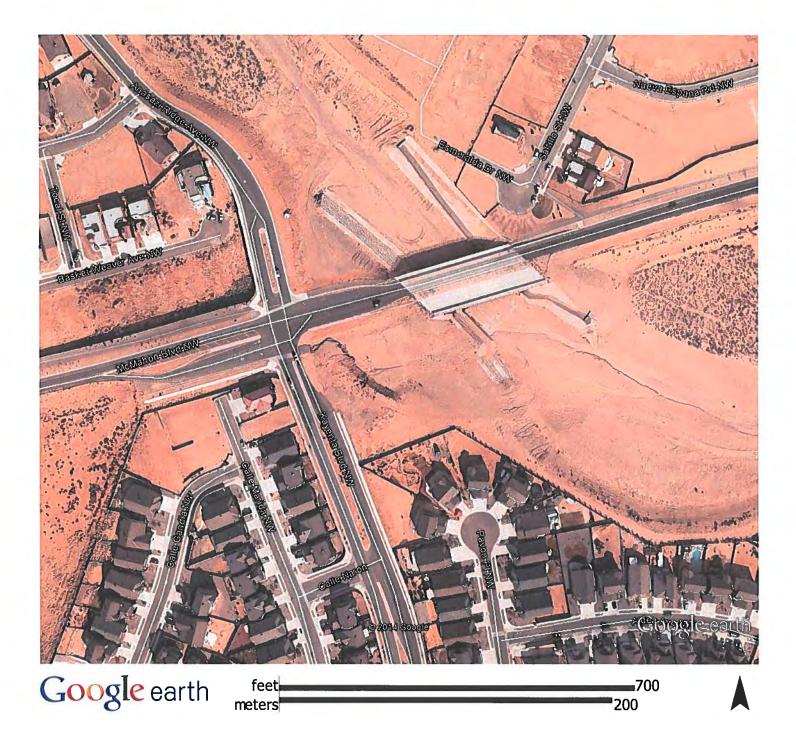
7. Hydraulic Calculation Procedures

The City's DPM Section 22 is used to establish the drainage design criteria for this project. It requires that the 10-YR water spread will allow for one lane to remain open in both directions. In order to keep one lane open, the allowable depths may not exceed 0.33 foot for 10-YR flows on

OS-1 to the existing historic rate. Since the Rio Rancho annexation, increased flows from the TVI MDP offsite basins are no longer expected.

The Albuquerque Technical Vocational Institute West Side Campus Phase 2 construction plans, dated 11-17-2005, were prepared by Van H. Gilbert Architect, and the associated Drainage Report, dated 11-18-2005, was prepared by Jeff Mulberry, PE, of Bohannan Huston, Inc. (see Appendix E). The report deviated significantly from the 2001 TVI MDP in that it did not include the second entrance on McMahon Boulevard and it did not provide for construction of any of the frontage improvements.

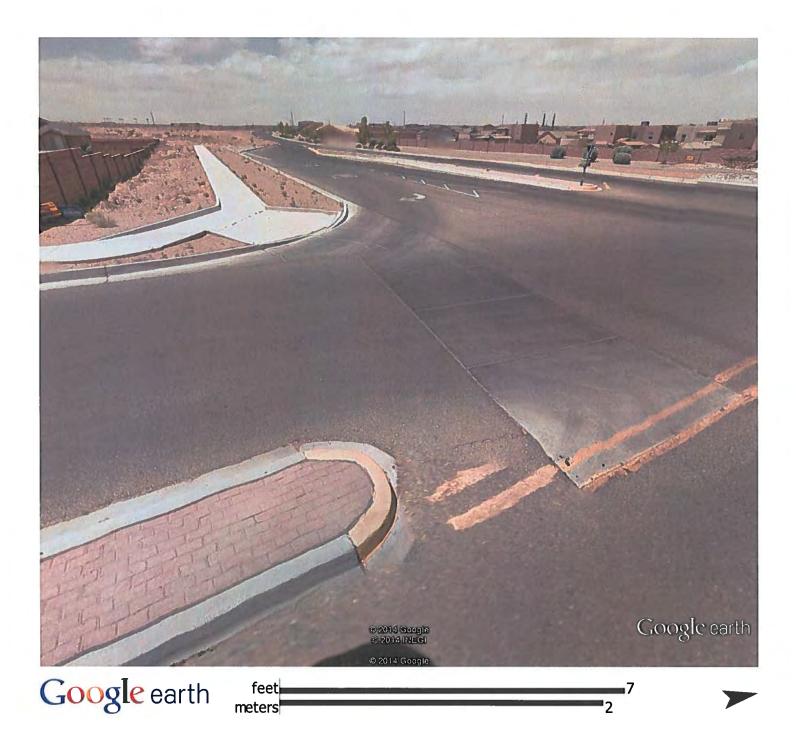

The McMahon Blvd Inlet Calculations Affecting both Saltillo and Anasazi Subdivisions, dated April 21, 2006, prepared by James D. Hughes, PE of Mark Goodwin and Associates, showed a high spot on McMahon Boulevard about 800 feet west of Universe Boulevard (see Appendix F). This implied that Basin OS-1 from the TVI MDP would drain along its historic path through the TVI campus instead of the Master Planned route east in McMahon Boulevard to Universe Boulevard and south in Universe Boulevard to the West Branch of the Calabacillas Arroyo. These calculations served as the basis for constructing the north half of McMahon Boulevard from the current west end of the pavement to the next high point which is located about 4,700 feet east of Universe Boulevard at Rockcliff Drive with very little storm sewer in McMahon Boulevard. The calculations demonstrated that McMahon Boulevard has adequate street drainage capacity in accordance with Section 22 of the City of Albuquerque Development Process Manual (DPM). These calculations have been verified as accurate for this design.

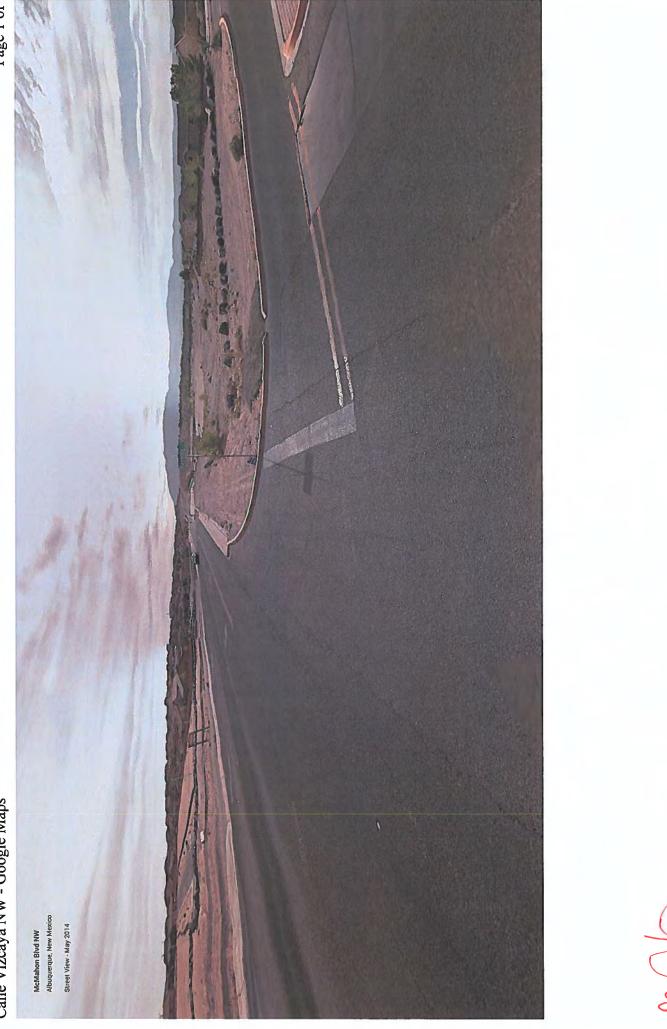

Additional planning history references are located in Appendix A.

3. EXISTING DRAINAGE CONDITIONS

Existing Watershed Boundaries are shown on Figure 2. Four existing drainage outfalls were constructed by previous projects.

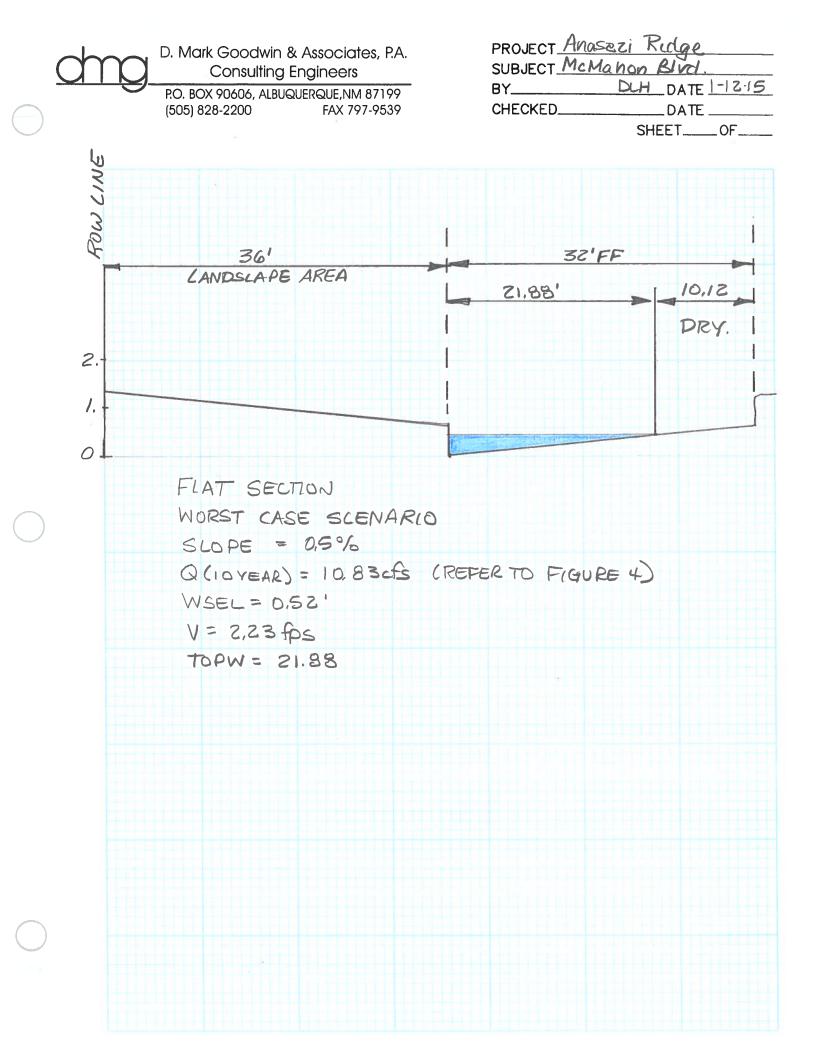
- 1. Surface drainage in McMahon Boulevard, including runoff from Basins OS-1B and RW-1C (see Figure 3-2 for Existing Drainage Basins), flows east to existing storm inlets located east of the Calabacillas Arroyo, which discharge into the arroyo through a 120 inch storm sewer below the bridge.
- 2. Runoff from the Central New Mexico Community College (CNM) Westside Campus basin B-3 and upstream offsite basins OS-1 and RW-2, drain into an existing 60 inch storm sewer located in Universe Boulevard about 150 feet north of the campus entrance which flows south and discharges into the West Branch of the Calabacillas Arroyo just below the bridge. This pipe was constructed by CNM as part of the Phase 1 infrastructure as identified in their 2001 Master Drainage Plan. However, when CNM built Phase 2 in 2005 they did not construct any of the Master Planned infrastructure in Universe Boulevard or McMahon Boulevard. Phase 2 provided an onsite conveyance system rather than the Master Planned offsite conveyance system for runoff from offsite Basins OS-1 and RW-2.
- 3. Runoff from basin RW-1 drains east through the undeveloped property in the southeast corner of the intersection of McMahon Boulevard and Universe Boulevard and flows into an 18 inch storm sewer at the west end of Rio Segura Avenue.





https://www.google.com/maps/place/Calle+Vizcaya+NW,+Albuquerque,+NM+87114/(2035.2125377,-106.7202235,111m/data=!3m1!1e3!4m2!3m... 1/5/201:100.120235,111m/data=!3m1!1e3!4m2!3m... 1/5/201:100.120235,111m/data=!3m1!1e3!4m2!3m... 1/5/201:100.120235,111m/data=!3m1!1e3!4m2!3m... 1/5/201:100.120235,111m/data=!3m1!1e3!4m2!3m... 1/5/201:100.120235,111m/data=!3m1!1e3!4m2!3m... 1/5/201:100.120235,111m/data=!3m1!1e3!4m2!3m... 1/5/201:100.120235,111m/data=!3m1!1e3!4m2!3m... 1/5/201:100.120235,111m/data=!3m1!1e3!4m2!3m... 1/5/201:100.120235,111m/data=!3m1!1e3!4m2!3m... 1/5/201:1000

Imagery @2015 U.S. Geological Survey, Map data @2015 Google 20 ft



G (0) (1) (1) (1) (1)

1/5/201:

https://www.google.com/maps/@35.2125244,-106.72078,3a,90y,87.76h,72.04t/data=!3m4!1e1!3m2!1suXwfXZog0JIuJjQVj4bEMw!2e0

Image capture: May 2014 🛛 👜 2015 Google

<pre>************************************</pre>							0 68.			
**************************************			FQ	0			0 0.725	L-BANK ELEV R-BANK ELEV SSTA ENDST		1.39 1.39 35.92 57.80
	XXXXX X X X X X X X X X X X X X X X X		WSEL	0		e	0 38 0	OLOSS TWA ELMIN TOPWID		.00 .0 21.88
	XXXXX	YR-6HR ST	Q	0		68	0.125	HL VOL WTN CORAR		00.000.
	XXXXX X X X X X X X X X X X X	STREET CAPACITY CALCULATIONS 10YR-6HR ST	SNIVH	0		4	36.0	HV AROB XNR ICONT		8009 0.00
	XXXXXXX X XXXXX XXXXXXXXXXXXXXXXXXXXXX	CITY CALCU	METRIC	0			m. 00	EG ACH XNCH IDC		. 60 . 4. 9 017 0
* * * * * * * * *	x x x x x x x x x x x x x x x x x x x x	FREET CAPA(STRT	.005		26	.1 10.83 68.1 35.9	WSELK ALOB XNL ITRIAL		00.00 0.00
********** 09:14:52	09:14:52 ******* S: *********	I.	IDIR	0	RINTOUT	7	-	CRIWS QROB VROB XLOBR		MIN USED 00 00.
.*********** JE PROFILES May 1991 LS TIME	:JAN15 09:1 ************************************	dge Subdiv ECTION VD.	NINV	0	SUMMARY PRINTOUT	г	0.01 0.01 0.8	CWSEL QCH VCH XLCH		.300 AVG OF MAX, .52 10.8 2.23 0.
ER SURFACE SR SURFACE 4.6.2; Ma 12JAN15	:CUTED 12JAN ************************************	Anasazi Ridge Subdivision 32' HALF SECTION MCMAHON BLVD.	DNI	0	CODES FOR	43	.017 10.83 6 0 68.1	DEPTH QLOB VLOB XLOBL		
1*************************************	THIS RUN EXECUTED 12JAN15 09:14:52 ************************************	<u></u> « Μ Σ	ICHECK	0	VARIABLE	38	.017 3 1 1.39 1.395	SECNO Q SLOPE	OF 1	0 1.0 WSEL 1.000 10.8 10.8 00
*******	THIS * * * * * * * * *	T1 T2 T3	Ľ		J3		NC QT GR GR		* PROF	CCHV= + SECN 2 096 1 .0

11 12 13

				EV								EV		
		E		NK ELEV NK ELEV T		1.39 1.39 7.49				CE		NK ELEV NK ELEV T		7 8 8 8 7 8 8 8
FQ		ITRACE	0	L-BANK R-BANK SSTA ENDST		1.39 1.39 35.92 57.49		FQ		ITRACE	0	L-BANK R-BANK SSTA ENDST		1.39 1.39 35.93 56.75
1 E		EM	0	OLOSS TWA ELMIN TOPWID		.00 .0 21.57		3L		IM	0	OLOSS TWA ELMIN TOPWID		.00 .00 20.83
MSEL		CHNIM	0	OLOS TWA ELMI TOPY		8		MSEL		CHNIM	-	OLOS TWA ELMJ TOPV		6
		2	0	HL VOL WTN CORAR		000 · · · · · · · · · · · · · · · · · ·				z	0	HL VOL WTN CORAR		0000
ø		IBW		THAN				a		IBW		HL VO: CO		
SNIVH		ALLDC	0	HV AROB XNR ICONT		9 000 000		SNIVH		ALLDC	0	HV AROB XNR ICONT		60. 000.
METRIC				н		.60 4.7 017 0		METRIC				н		.59 44.4 017 0
MET		FN	0	EG ACH XNCH IDC				MET		FN	0	EG ACH XNCH IDC		·
STRT	.0054	XSECH	0	WSELK ALOB XNL ITRIAL		000 · · · ·		STRT	.0065	XSECH	0	WSELK ALOB XNL ITRIAL		0000 0000 0000
	·	ь		10 0°		USED .00 .00				Þ		in ex		CSED • 00 • 00 • 0 • 00
IDIR	0	XSECV	0	CRIWS QROB VROB XLOBR		MIN USED .00 .00.		IDIR	0	XSECV	0	CRIWS QROB VROB XLOBR		* * * N * * * 52 · · · C
Δ	0	SV		H EL		.300 OF MAX, .51 10.8 2.29 0.		>	0	NS		н ЕГ		.300 OF MAX, .50 10.8 2.45 2.45 0. 5 0. 5 11LES 11LES
NIN		PRFVS	Г- Т	CWSEL QCH XLCH		. 3 AVG OF 1 2		NIN		PRFVS	- 1	CWSEL QCH XLCH		CEHV= .300 #IVEN, AVG OF MAX, MIN .50 .50 .0 10.8 .00 2.45 0. 0. 0. 0. TFED 12JAN15 09:14:5 TFED 12JAN15 09:14:5 TFED 12JAN15 09:14:5 TFED 12JAN15 12JAN15 2; MAY 1991
ŌNI	m	PLOT	0	DEPTH QLOB VLOB XLOBL		CEHV= GIVEN, 7 .51 .00 .00		ŬNI	m	PLOT	0	DEPTH QLOB VLOB XLOBL		CEHV= IIVEN, J .50 .50 .00 .00 .12(RFACE 12(RFACE 12)
ЦЦ		Ĩ		8922X		.100 C 00 NOT GI		II		II		867X		.100 C 00 NOT GI EXECUT EXECUT ER SUF 4.6.2
ICHECK	0	NPROF	5	SECNO Q TIME SLOPE	0	0 1.0 WSEL 1.000 10.8 .00 05359		ICHECK	0	NPROF	0	SECNO Q TIME SLOPE	m r.	0 1.00 WSEL N 1.000 1.00 1.00 8 1.00 8 8425 84425 2 WATE 1.01 1 1.01
л. 1		J2 N		0.050	* PROF	CCHV= *SECN 2096 0	T1 T2 T3	11 1		J2 N		0.050	* PROF	CCHV= *SECN 2096 2096 .0 THIS HHEC- Vers *****

NOTE- ASTERISK (*) AT LEFT OF CROSS-SECTION NUMBER INDICATES MESSAGE IN SUMMARY OF ERRORS LIST

MCMAHON BLVD.

SUMMARY PRINTOUT

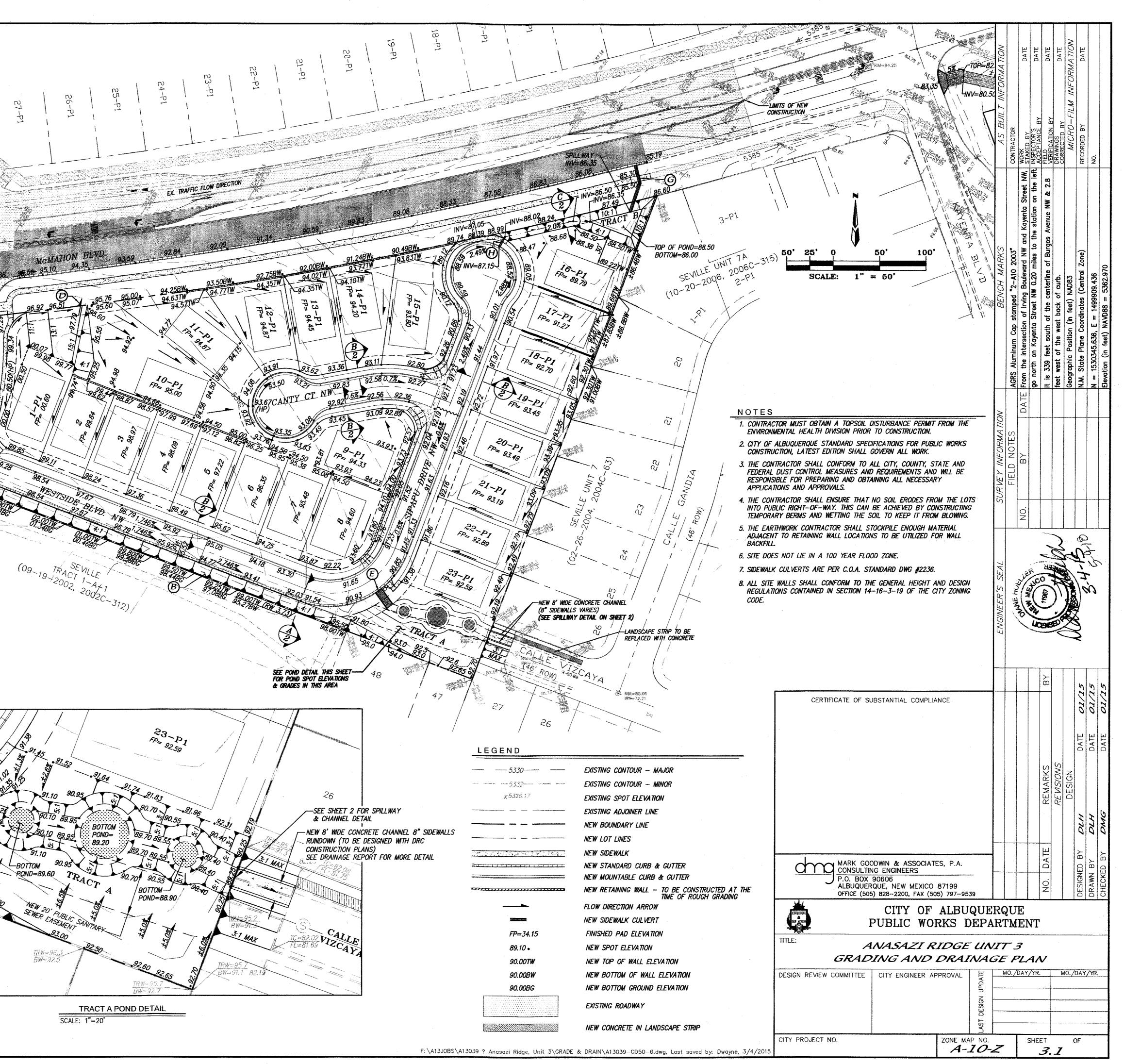
	IU YK SIDKM	0 501 01000	010 0 0 m L	
		1		
EG	.60	.60	.59	
FRCH	.83	.86	.94	
TOPWID	21.88	21.57	20.83	
NCH	2.23	2.29	2.45	
CRIWS	00.	00.	00.	ţ
CWSEL	.52	.51	.50	
Ø	10.83	10.83	10.83	
SECNO	1.000	1.000	1.000	

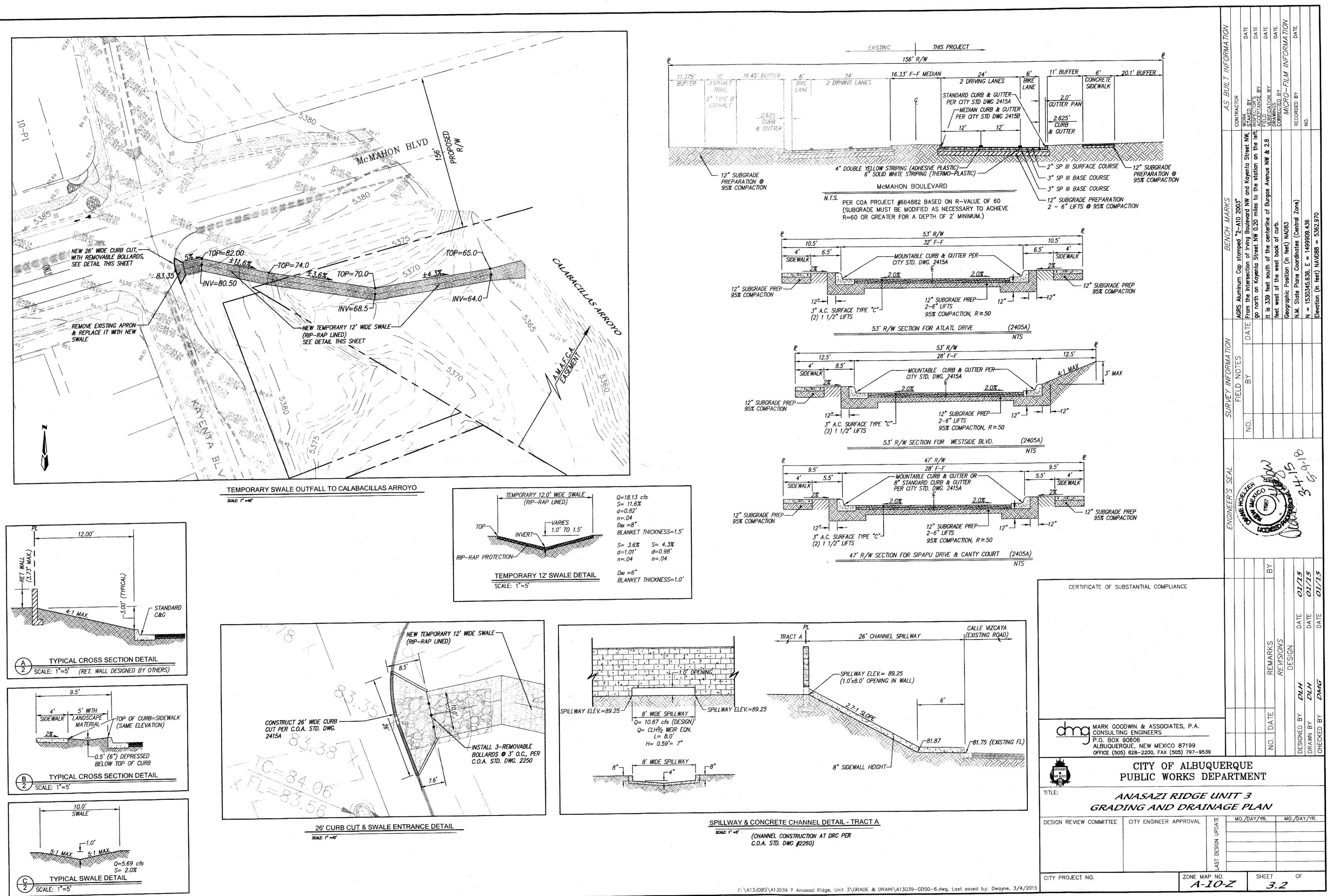
Mc Wahon Bud. - West of Kayenta along flat area of Rood.

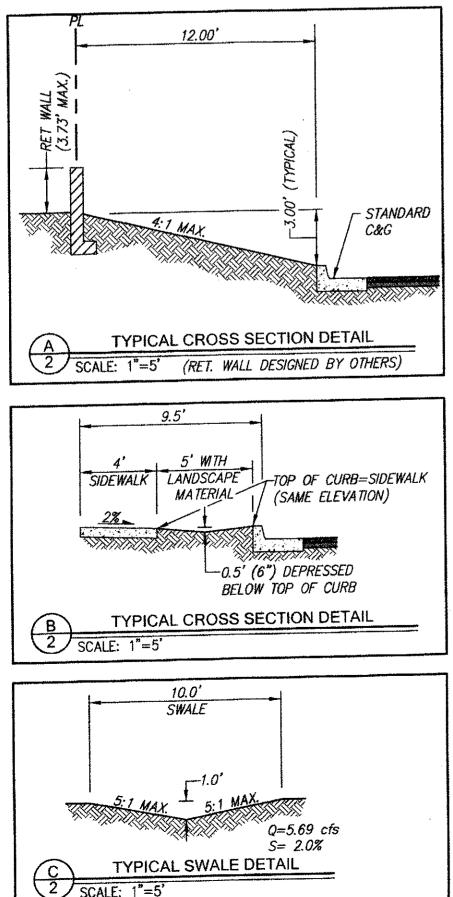
<pre>************************************</pre>								o				
**************************************				FQ	0			0	L-BANK ELEV R-BANK ELEV SSTA ENDST			.45
	XXXXXX X X X X X X X X X X X X X X X X			WSEL	0		m	0 100	OLOSS TWA ELMIN TOPWID			00.
	XXXXX			o	0		68	0 .35	HL VOL WTN CORAR			00.
	XXXXX X X X X X X X X X X X X X X X X		royo	SNIVH	0		4	0	HV AROB XNR I CONT			. 05
	XXXXXXX X X XXXXX X XXXXX X XXXXXXX X XXXX		acillas Ar	METRIC	0			е. Об.	EG ACH XNCH IDC		Ŧ	.39
* 14 * * * * *	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		NNEL Calab	STRT	.0045		26	.1 100 40	WSELK ALOB XNL ITRIAL		.04 FEET	.00
**************************************	09:56:34	* * *	CHANNEL CAPACITY CALCULATIONS ANASAZI RIDGE at Kayenta Blvd. VALLEY GUTTER TO 10' WIDE CHANNEL Calabacillas Arroyo	IDIR	0	PRINTOUT	7		CRIWS QROB VROB XLOBR		, MIN USED TENDED	00.
E PROFILES E PROFILES May 1991 5 TIME	15 09:	********** PROFILES Y 1991 *********	APACITY CA IDGE at Ka TTER TO 10	ANIN	0	R SUMMARY	1	7 .017 3 3 00 0 0	CWSEL QCH VCH XLCH		.300 AVG OF MAX, MIN 1.00 EXTENDED	.34
<pre>************************************</pre>	UTED 12JA	.*************************************	CHANNEL CAPACITY ANASAZI RIDGE at VALLEY GUTTER TO	ŌNI	0	VARIABLE CODES FOR SUMMARY PRINTOUT	43	.01 1.81	DEPTH QLOB VLOB XLOBL		.100 CEHV= 00 NOT GIVEN, / SECTION	.34
<pre>1************************************</pre>	THIS RUN EXECUTED 12JAN15	**************************************		I ICHECK	0		38	с .017 г .1 г .45	SECNO Q SLOPE	* PROF 1	CCHV= .100 CEHV= .300 *SECNO 1.000 2096 WSEL NOT GIVEN, AVG OF MAX, MIN USED 3280 CROSS SECTION 1.00 EXTENDED	1.000
* * * * * * * H	THT	* *	11 12 13	ŢĹ		J.3		NC X1 GR		*	บัสัต้	

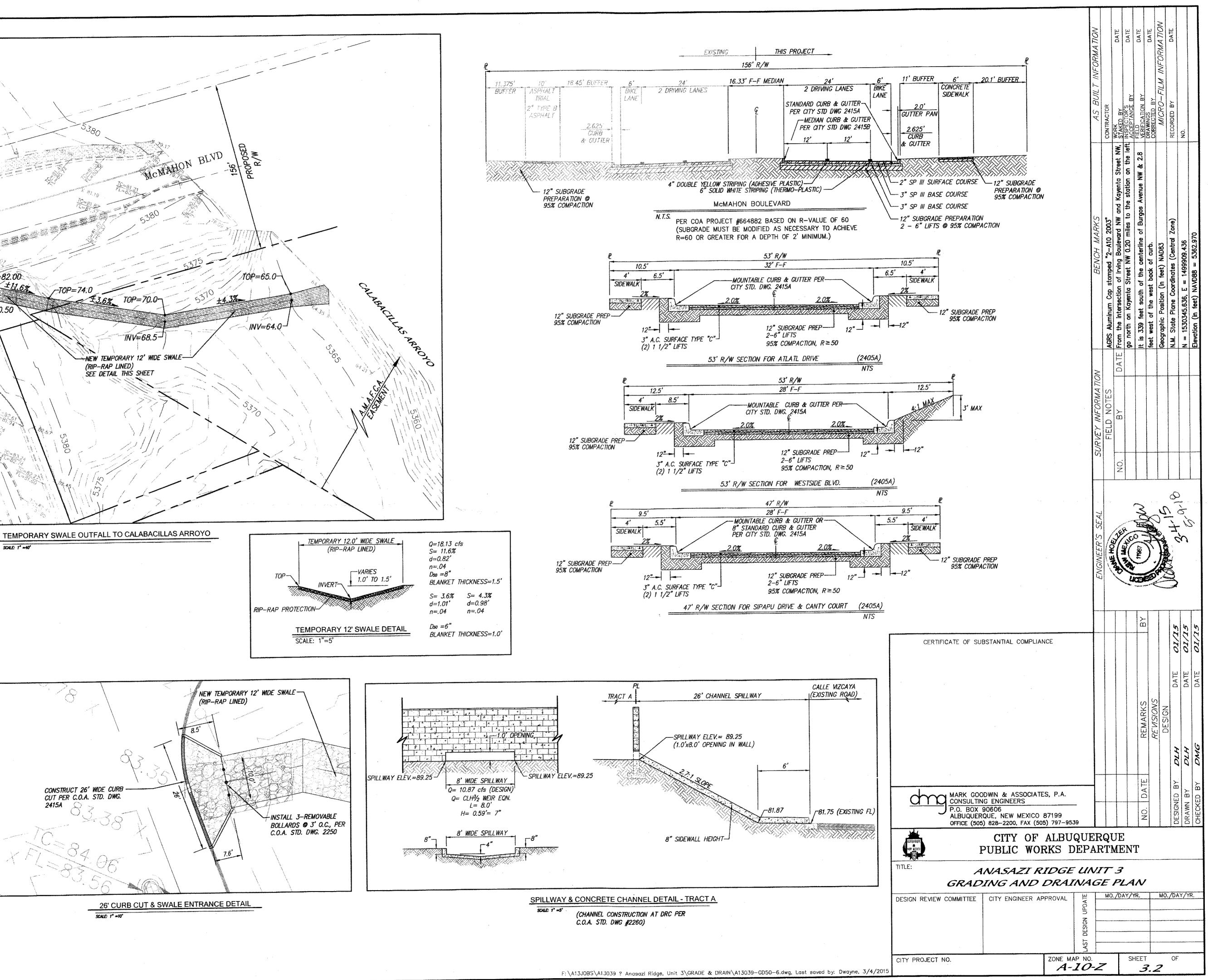
			09:56:34	
	3		12JAN15	
.30	9.89	65.00	EXECUTED 12JAN15	
0.	00.	55.11	THIS RUN	
0.	.000	00.		
0.	. 000	8		
9.8	.017	0		
0.	.000	0		
0.	00.	.0		***
18.1	1.85	.0		****
0.	00.	.0		*****
18.1	00.	.004454		*************

NOTE- ASTERISK (*) AT LEFT OF CROSS-SECTION NUMBER INDICATES MESSAGE IN SUMMARY OF ERRORS LIST


VALLEY GUTTER TO 10'


SUMMARY PRINTOUT


	¥
С Э	.39
FRCH	.77
TOPWID	55.11
NCH	1.85
CRIWS	00.
CWSEL	.34
o	18.13
SECNO	1.000


Me Mahon e Kayenta Vallay Gutter - Low Area

KEYED NOTES: CONSTRUCT HEADER CURB AT EDGE OF NEW PAVEMENT AND C&G, INSTALL TYPE-III E CONSTRUCT 8' WIDE CHANNEL SECTION TO BE DESIGNED AT DRC BARRICADE © CONSTRUCT HEADER CURB AT EDGE OF NEW PAVEMENT AND C&G B THE TO EXISTING GROUND, 4:1 MAX. SLOPE G 24" & 12" SIDEWALK CULVERT PER C.O.A. STD. DWG #2236 C 4:1 SIDE SLOPE (MAX), TURN 2 BLOCKS ON SIDE TO ALLOW SMALL DRAINAGE TO (DESIGN AT DRC-SEE DRAINAGE REPORT FOR HYDRAULIC CALCULATIONS) PASS FOR TRACT C AND A PORTION OF LOT 1. CREATE 2.0' WIDE GRAVEL PROTECTED RUNDOWN H 24" SIDEWALK CULVERT PER C.O.A. STD. DWG #2236 D TURN 1 BLOCK SIDEWAYS FOR DRAINAGE OUTLET -LIMIT OF NEW CONSTRUCTION 09.00TW 24 FP = 05.60PARADISE HEIGHTS UNIT FIVE (09-19-1995, 95C-348) AND PARADISE BLVD HEIGHTS SU-1 C-1 USES UNIT 5) SP 35 223 WESTS SU-1 C-1 USES W/RESTRICTIONS DESCRIBED IN PROJECT 1000931 ZONE MAP: A-10-Z VICINITY MAP ROND=89.60 \<u>7KW=98.</u> 614=95.4 LEGAL DESCRIPTION A tract of land situate within the Town of Alameda Grant, projected A tract of land situate within the Town of Alameda Grant, projected Section 3, Township 11 North, Range 2 East, New Mexico Principal Meridian, City of Albuquerque, Bernalillo County, New Mexico being a portion of LOT 3 and all of LOTS 4 thru 9, BLOCK 7, all of LOTS 9 thru 13, BLOCK 8, all of LOT 12, BLOCK 9, all of LOTS 2 thru 10, BLOCK 14 and portions of NAVAJO DRIVE NW, GORDON AVENUE NW, MASON DRIVE NW, WESTSIDE BOULEVARD NW and McMAHON NEW BLANKET DRAINAGE-J EASEMENT WITHIN TRACT A TRW=96.3 BW=32.5 48 BOULEVARD NW, PARADISE HEIGHTS UNIT 5, as the same is shown and designated on said plat filed for record in the office of the County Clerk of Bernalillo County, New Mexico on March 12, 1973 in Volume D5, Folio 111 and 112, and containing 6.9826 acres more or less

Copyright © 2015 D. MARK GOODWIN & ASSOCIATES, P.A. All Rights Reserved.