CITY OF ALBUQUERQUE

Planning Department Alan Varela, Director

Mayor Timothy M. Keller

October 24, 2022

Dana Peterson, P.E. AECOM 6501 Americas Parkway NE, Suite 900 Albuquerque, NM 87110

RE: McMahon Blvd Widening-Kayenta to Rockcliff Drainage Report Engineer's Stamp Date: 08/31/22 Hydrology File: A10D012 CPN # 722690

Dear Mr. Peterson:

PO Box 1293 Based upon the information provided in your submittal received 09/01/2022, the Drainage Report is approved for Grading Permit and Work Order.

If you have any questions, please contact me at 924-3995 or <u>rbrissette@cabq.gov</u>.

Sincerely,

NM 87103

Renée C. Brissette

www.cabq.gov

Renée C. Brissette, P.E. CFM Senior Engineer, Hydrology Planning Department

City of Albuquerque

Planning Department Development & Building Services Division DRAINAGE AND TRANSPORTATION INFORMATION SHEET (REV 11/2018)

Project Title:	Building	Permit #: Hydrology File #:
DRB#:	EPC#:	Work Order#:
Legal Description:		
City Address:		
Applicant:		Contact:
Address:		
		E-mail:
Owner:		Contact:
Address:		
		E-mail:
TYPE OF SUBMITTAL: PLAT (_# OF LOTS)	RESIDENCE DRB SITE ADMIN SITE
IS THIS A RESUBMITTAL?:	Yes	No
DEPARTMENT: TRAFFIC/ TRAN	SPORTATION _	HYDROLOGY/ DRAINAGE
Check all that Apply: TYPE OF SUBMITTAL: ENGINEER/ARCHITECT CERTIFICA PAD CERTIFICATION CONCEPTUAL G & D PLAN GRADING PLAN DRAINAGE MASTER PLAN	ATION	TYPE OF APPROVAL/ACCEPTANCE SOUGHT: BUILDING PERMIT APPROVAL CERTIFICATE OF OCCUPANCY PRELIMINARY PLAT APPROVAL SITE PLAN FOR SUB'D APPROVAL SITE PLAN FOR BLDG. PERMIT APPROVAL ENAL PLAT APPROVAL
DRAINAGE MASTER PLAN DRAINAGE REPORT FLOODPLAIN DEVELOPMENT PER ELEVATION CERTIFICATE CLOMR/LOMR TRAFFIC CIRCULATION LAYOUT TRAFFIC IMPACT STUDY (TIS) OTHER (SPECIFY) PRE-DESIGN MEETING?	(TCL)	FINAL PLAT APPROVAL SIA/ RELEASE OF FINANCIAL GUARANTEE FOUNDATION PERMIT APPROVAL GRADING PERMIT APPROVAL SO-19 APPROVAL PAVING PERMIT APPROVAL GRADING/ PAD CERTIFICATION WORK ORDER APPROVAL CLOMR/LOMR FLOODPLAIN DEVELOPMENT PERMIT OTHER (SPECIFY)
DATE SUBMITTED	Bv	

COA STAFF:

ELECTRONIC SUBMITTAL RECEIVED:

FEE PAID:

Drainage Report for: McMahon Boulevard Widening

Kayenta Street to Rockcliff Drive

Prepared for: City of Albuquerque

COA Project Number: 7226.90 AECOM Project Number: 60645365

August 2022

This report, entitled McMahon Boulevard Widening Drainage Report, was prepared by me or directly under my supervision.

Dana M Peterson, PE

New Mexico PE Number 23231

Table of Contents

1	Exe	cutive Summary								
2	Intro	Introduction and Background4								
	2.1	Floodplain								
	2.2	Previous Studies								
3	Exis	ting Conditions6								
	3.1	Contributing Drainage								
	3.2	State of Surrounding Development								
	3.3	Calabacillas Arroyo & AMAFCA11								
	3.4	Existing Storm Drain System								
4	Hyd	rology12								
	4.1	Precipitation14								
	4.2	Land Treatment and Initial Constraints14								
	4.3	Reach Routing								
	4.4	Modeling15								
5	Hyd	raulics18								
	5.1	Street Capacity								
	5.2	Inlet Analysis								
	5.3	Storm Drain Analysis								
6	Data	a Sources								

Attachments

Attachment 1: Supporting Hydrology

1-1 NOAA Atlas 14 Precipitation Report 1-2 HEC-HMS Inputs and Outputs

Attachment 2: Supporting Hydraulics

2-1 FlowMaster Reports 2-2 StormCAD Reports

Attachment 3: Electronic Files

- 3-1 HEC-HMS Model
- 3-2 FlowMaster Workbook
- 3-3 StormCAD Model

Mcl

1 Executive Summary

This Drainage Report analyzed the contributing drainage to McMahon Blvd within the proposed project limits in accordance with City of Albuquerque Drainage Standards. Previous drainage studies and their associated City Work Order plans were researched in the preparation of this report and are cited throughout. A Portion of this project is in the FEMA designated Floodway and SFHA Zone AE. Due to the placement of fill in a Floodway, a Conditional Letter of Map Revision (CLOMR) is recommended prior to commencing work. A Letter of Map Revision (LOMR) is also recommended at project completion.

There is one existing outfall from McMahon Blvd into the Calabacillas Arroyo: a 48" storm drain located approximately 600 ft east of the Calabacillas Bridge, constructed as part of CPN 773481. In coordination with AMAFCA, it is the intent of this project to continue using this outfall as the only outfall for McMahon Blvd into the Calabacillas. Surface flows from McMahon Blvd and its contributing subbasins all flow to a low point in McMahon Blvd, approximately 800 ft east of the Calabacillas bridge. Here they are collected by several inlets and conveyed to the Calabacillas via the 48" storm drain. Drainage from the existing westbound lanes is collected in the existing inlets on the north side of McMahon. Drainage in the proposed eastbound lanes will be similarly collected by inlets along the south side of McMahon, constructed with this project.

Hydrologic analysis for the proposed development was conducted for the contributing drainage basins in accordance with the 2020 City of Albuquerque Development Process Manual. Proposed ROW development, both this project and future proposed projects, was assigned land treatments based on its proposed development. Areas outside the City limits were allowed to discharge based on current (undeveloped) rates. Most of the residential subdivisions surrounding the project area do not discharge to McMahon Blvd.

Hydraulic analysis was also conducted in accordance with the 2020 City of Albuquerque Development Process Manual (DPM). Street capacity analysis did show McMahon Blvd to be slightly over-capacity just west of the McMahon and Kayenta intersection assuming proposed development of the upstream ROW. Any proposed development (non-ROW) west of this intersection will need to match the existing discharge patterns. Inlet analysis showed adequate capacity for the existing and proposed inlets. Storm drain analysis showed adequate capacity on the existing and proposed storm drain.

AECOM

2 Introduction and Background

The purpose of this drainage report is to document the existing and proposed storm water flows associated with the expansion of McMahon Boulevard between Rockcliff Drive and Kayenta Street. The current section is a 2-lane partial section, which will be expanded to become a 4-lane full section with the addition of the two dedicated eastbound lanes as well as a bike lane and sidewalk. The City of Albuquerque Project Number (CPN) is: 7226.90. The project location is shown below in Figure 2-1:

Figure 2-1: Project Location

2.1 Floodplain

The McMahon Blvd project area is bisected by the Calabacillas Arroyo, an AMAFCA-managed regional drainage facility. The Calabacillas Arroyo is a mapped Special Flood Hazard Area (SFHA) per FEMA Flood Insurance Rate Maps (FIRMs) 35001C0103H and 35001C0104H, both effective 8/16/2012 (Figure 2-2):

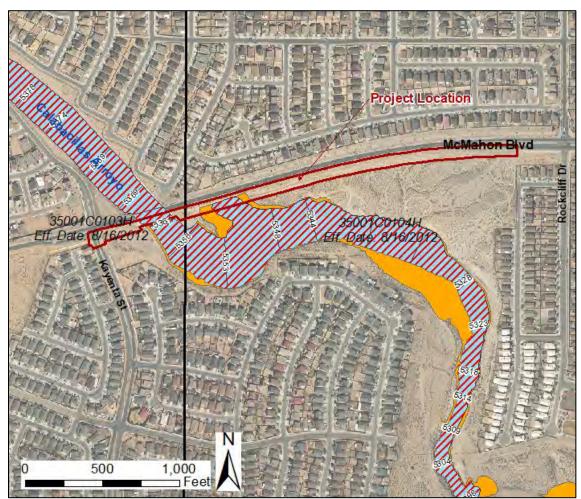


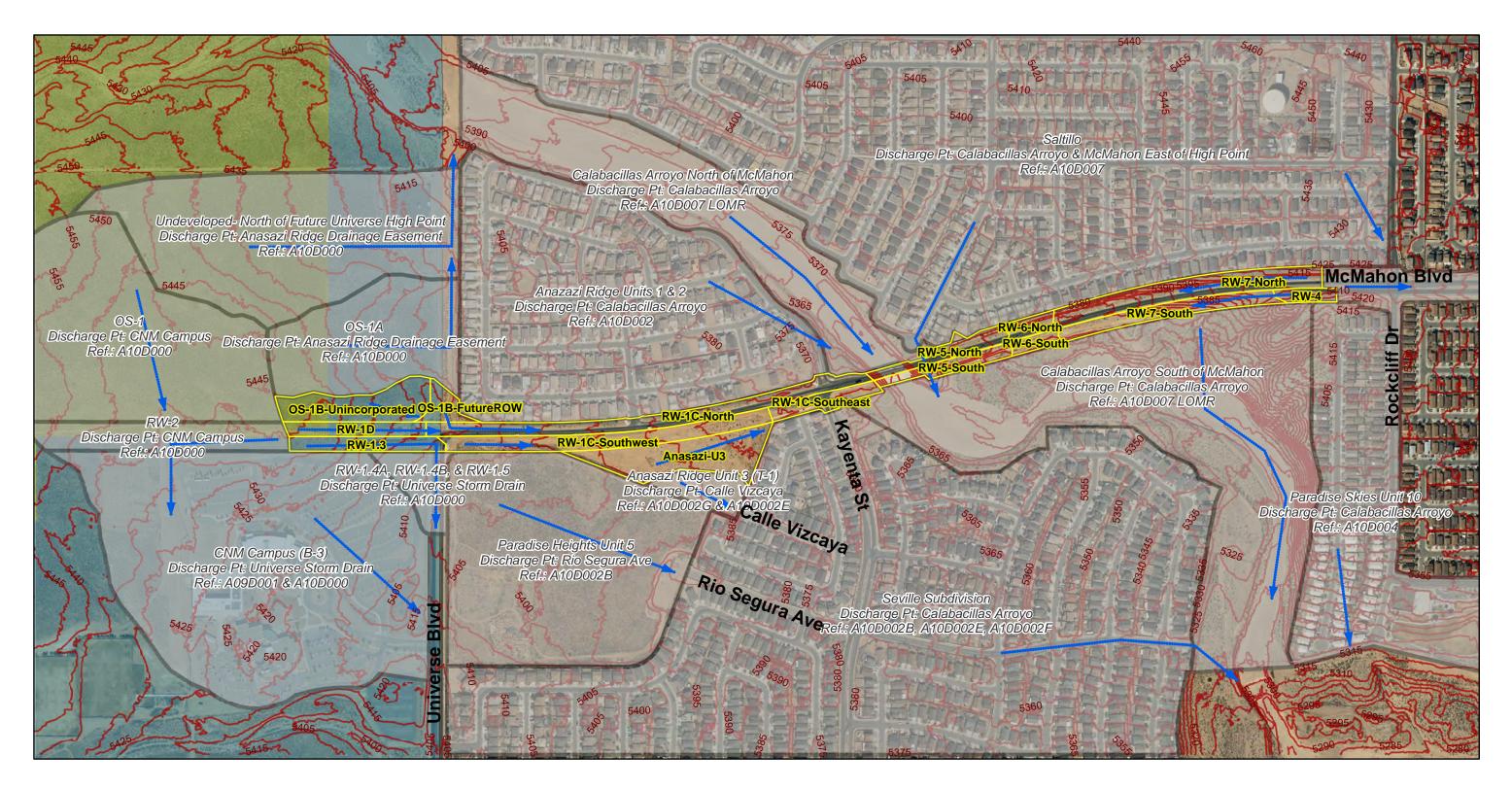
Figure 2-2: SFHA's in Project Vicinity

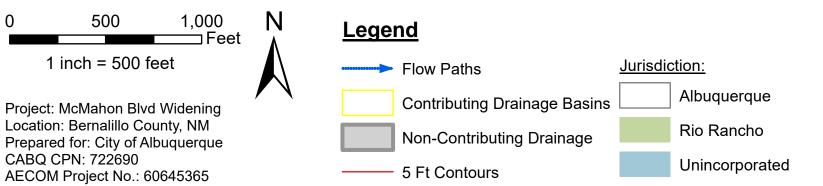
A Portion of this project is in the FEMA designated Floodway and SFHA Zone AE. Due to the placement of fill in a Floodway, a Conditional Letter of Map Revision (CLOMR) is recommended prior to commencing work. A Letter of Map Revision (LOMR) is also recommended at project completion.

2.2 Previous Studies

The existing and proposed drainage conditions along McMahon Blvd are documented in several reports for private development and previous road improvements in the area:

- Bohannan Huston, Inc. *Drainage Study for Paradise Skies Unit 10 Subdivision*. ABQ Hydrology File No.: A10D004. April 2003. The report and supporting grading plan served as the basis of development for Paradise Skies Unit 10, located on the south side of McMahon Blvd and west of Rockcliff Dr.
- Mark Goodwin & Associates, Inc. Drainage Report for Anasazi Ridge Subdivision. ABQ Hydrology File No.: A10D002. November 2004. This report and associated grading plan were the basis of development for Anasazi Ridge Units 1 and 2, located on the north side of McMahon Blvd, west of the Calabacillas Arroyo.


- Mark Goodwin & Associates, Inc. *Arroyo Vista Subdivision Drainage Management Plan*. ABQ Hydrology File No.: A10D007. July 2005. This report and supporting grading plans were the basis of development for Arroyo Vista Subdivision, later renamed as Saltillo Subdivision Unit 1 and 2.
- Mark Goodwin & Associates, Inc. *Drainage Report for Seville Unit 7A*. ABQ Hydrology File No.: A10D002F. July 2006. This report and supporting grading plan were the basis of development for Seville Subdivision Unit 7A, located southwest of the McMahon and Kayenta intersection.
- Mark Goodwin & Associates, Inc. LOMR for the Upper Bound of the Detailed Study Reach of the Calabacillas Arroyo. ABQ Hydrology File No.: A10D007-LOMR. January 2010. This LOMR revised the Calabacillas Arroyo floodplain and floodway based on the development of Saltillo Subdivision, Anasazi Ridge Subdivision and the McMahon Blvd bridge crossing.
- Mark Goodwin & Associates, Inc. *Anasazi Ridge Unit 3 Subdivision Drainage Management Plan*. ABQ Hydrology File No.: A10D002G. January 2015. This report and associated grading plan were the basis of development for Anasazi Ridge Unit 3 Subdivision, located on the south side of McMahon Blvd, west of Kayenta Street. At the time of this report, work on Anasazi Ridge Unit 3 has not yet commenced.
- URS, Inc. *McMahon Boulevard Extension Final Drainage Report, Revision 2.* ABQ Hydrology File No.: A10D000. April 2010. This report characterizes the drainage patterns west of the Calabacillas bridge. Both existing and proposed developed conditions are included.
- Wilson and Company, Inc. Drainage Report for Seville Subdivision Unit 3. ABQ Hydrology File No.: A10D002B. April 2002. This report and supporting grading plan were the basis of development for Seville Subdivision Unit 3, located on the south side of McMahon Blvd, west of the Calabacillas Arroyo.
- Wilson and Company, Inc. *Drainage Report for Seville Subdivision Unit 7*. ABQ Hydrology File No.: A10D002E. September 2003. This report and supporting grading plan were the basis of development for Seville Subdivision Unit 7, located southwest of the McMahon and Kayenta intersection.
- Wilson and Company, Inc. *Central New Mexico Community College Westside Campus Drainage Master Plan*. ABQ Hydrology File NO.: A09D001. August 2010. This report master planned the drainage for the CNM Westside campus, located west of Universe Blvd in unincorporated Bernalillo County.


These drainage studies and the associated City Work Order plans were researched in the preparation of this report and are cited throughout.

3 Existing Conditions

By reviewing the previously developed drainage reports, existing and proposed development, and site topography, a combined drainage basin map of the flows contributing to the McMahon Blvd project area was developed. The drainage basins were drawn to match those presented in previous reports and were modified to reflect current existing conditions and proposed development See Figure 3-1:

McMahon Blvd Widening Drainage Basins Figure 3-1

3.1 Contributing Drainage

Most of the residential subdivisions surrounding the project area do not discharge to McMahon Blvd. These non-contributing drainage areas were investigated to ensure they will have no adverse impact to the McMahon Blvd project. The following basins do contribute to McMahon Blvd:

- Anasazi-U3. This undeveloped subbasin currently discharges to McMahon Blvd. The results of the drainage analysis showed McMahon Blvd to be at capacity near the intersection of McMahon and Kayenta, so developed discharge from this subbasin will need to be restricted existing discharge.
- OS-1B-FutureROW. This subbasin is currently undeveloped, but will eventually become Universe Blvd, north of McMahon. The proposed development of this ROW will free discharge into the westbound lanes of McMahon Blvd.
- OS-1B-Unincorporated. This undeveloped subbasin lays outside the City of Albuquerque in Unincorporated Bernalillo County and in the City of Rio Rancho. The existing discharge is accommodated in the design of McMahon Blvd, but any development will need to be restricted to the existing discharge.
- RW-1.3. This subbasin is partially developed to provide access to the CNM Westside Campus. It currently discharges to Universe Blvd, south of the McMahon and Universe intersection. Future development of McMahon Blvd west of the Universe intersection will be required to maintain this discharge pattern, per the URS report (URS, 2010) and the Wilson report for CNM Campus (Wilson, 2010).
- RW-1C-North. This fully developed subbasin free discharges to McMahon Blvd and is expected to continue to do so.
- RW-1C-Southwest. This subbasin is currently undeveloped, but will eventually become the eastbound lanes of McMahon Blvd, between Kayenta Blvd and Universe Blvd. The proposed development of this ROW will free discharge to the eastbound lanes of McMahon Blvd.
- RW-1C-Southeast. This subbasin is partially developed, but will be fully developed as part of this project to become the eastbound lanes of McMahon Blvd, in the immediate vicinity of Kayenta Street. The development of this ROW will free discharge to the eastbound lanes of McMahon Blvd.
- RW-1D. This subbasin is currently undeveloped, but will eventually become the westbound lanes of McMahon Blvd, west of Universe Blvd. The proposed development of this ROW will free discharge to the westbound lanes of McMahon Blvd.
- RW-4 This subbasin is currently undeveloped, but will become the eastbound lanes of McMahon Blvd, west of Rockcliff, as part of this project. The development of this ROW will free discharge to the eastbound lanes of McMahon Blvd.
- RW-5-North. This fully developed subbasin free discharges to McMahon Blvd and is expected to continue to do so.
- RW-5-South. This subbasin is currently undeveloped, but will become the eastbound lanes of McMahon Blvd, east of Kayenta Street, as part of this project. The development of this ROW will free discharge to the eastbound lanes of McMahon Blvd.
- RW-6-North. This fully developed subbasin free discharges to McMahon Blvd and is expected to continue to do so.

- RW-6-South. This subbasin is currently undeveloped, but will become the eastbound lanes of McMahon Blvd, east of subbasin RW-5-South, as part of this project. The development of this ROW will free discharge to the eastbound lanes of McMahon Blvd.
- RW-7-North. This fully developed subbasin free discharges to McMahon Blvd and is expected to continue to do so.
- RW-7-South. This subbasin is currently undeveloped, but will become the eastbound lanes of McMahon Blvd, west of subbasin RW-4, as part of this project. The development of this ROW will free discharge to the eastbound lanes of McMahon Blvd.

The drainage basins delineated in URS (2010) report served as the base for the delineations and naming structure of this report's basins. The additional basins were added and modified to reflect the expanded scope, current, and proposed conditions.

3.2 State of Surrounding Development

As demonstrated by the drainage basin map (Figure 3-1), the areas surrounding this project are largely built-out. Street capacity analysis (Section 5.1) did show McMahon Blvd to be at slightly over-capacity just west of the McMahon and Kayenta intersection assuming proposed development of the upstream ROW. Any development (non-ROW) west of this intersection will need to match the existing discharge patterns. Any development west of Universe Blvd is outside of the City of Albuquerque and will be expected to match the existing discharge patterns if discharging into the City of Albuquerque.

East of the McMahon and Kayenta Intersection, the developable properties are built-out and only the eastbound ROW remains to be developed (this project). Hydraulic analysis showed adequate capacity in the street, inlets, and storm drain for the westbound and eastbound lanes in this area. The area of land east of the bridge and pinned between McMahon Blvd and the Calabacillas Arroyo (non-contributing drainage basin "Calabacillas Arroyo South of McMahon"), is largely owned by AMAFCA. If this were to ever be developed, it would be expected to discharge downhill into the Calabacillas unless capacity could be demonstrated in McMahon Blvd.

The street sections shown below (Figure 3-2, Figure 3-3, Figure 3-4, and Figure 3-5) illustrate the existing state of McMahon Blvd versus the proposed condition, which is to be built by this project:

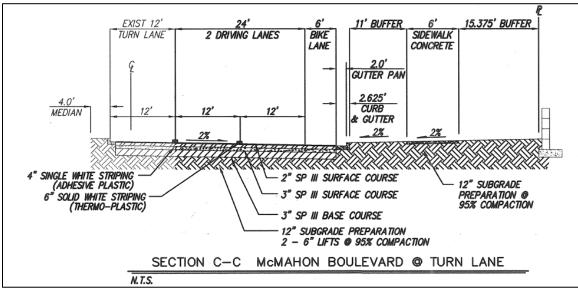


Figure 3-2: Existing Eastbound McMahon Blvd at Sta. 1046+25 Analysis Point "EB-A", excerpt from CPN 722680

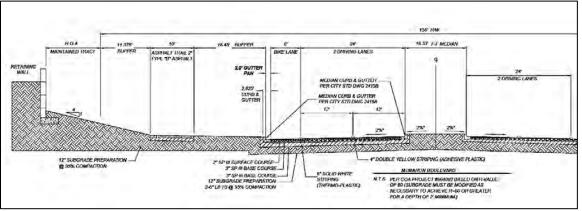


Figure 3-3: Existing Westbound McMahon Blvd at Sta. 1046+25, Analysis Point "WB-A", adapted from CPN 759581

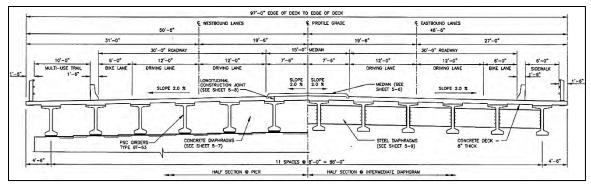


Figure 3-4: Existing Eastbound and Westbound McMahon Blvd at Sta. 1052+00, Analysis Point "EB-B" & "WB-B", excerpt from CPN 681602

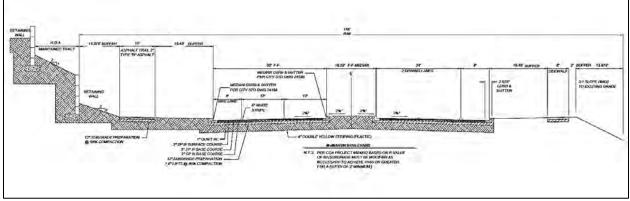


Figure 3-5: Existing Westbound and Proposed Eastbound McMahon Blvd at Sta. 1058+60 through 1066+20, Analysis Point "EB-C, D, E" & "WB-C, D, E", adapted from CPN 773481

Stations referenced above refer to the stationing provided in the work order plans; the referenced analysis points refer to the locations of the street capacity analysis in Section 5.1. For plan view locations, please see Figure 5-1.

3.3 Calabacillas Arroyo & AMAFCA

There is one existing outfall from McMahon Blvd into the Calabacillas Arroyo: a 48" storm drain located approximately 600 ft east of the Calabacillas Bridge, constructed as part of Saltillo Unit 1 (CPN 773481, Mark Goodwin & Associates, 2006). In coordination with AMAFCA, it is the intent of this project to continue using this outfall as the only outfall for McMahon Blvd into the Calabacillas. There also exists a 108" storm drain outfall at the eastern bridge abutment, constructed with the Saltillo Subdivision; this storm drain serves the Saltillo Subdivision and is not expected to be disturbed as part of this project.

3.4 Existing Storm Drain System

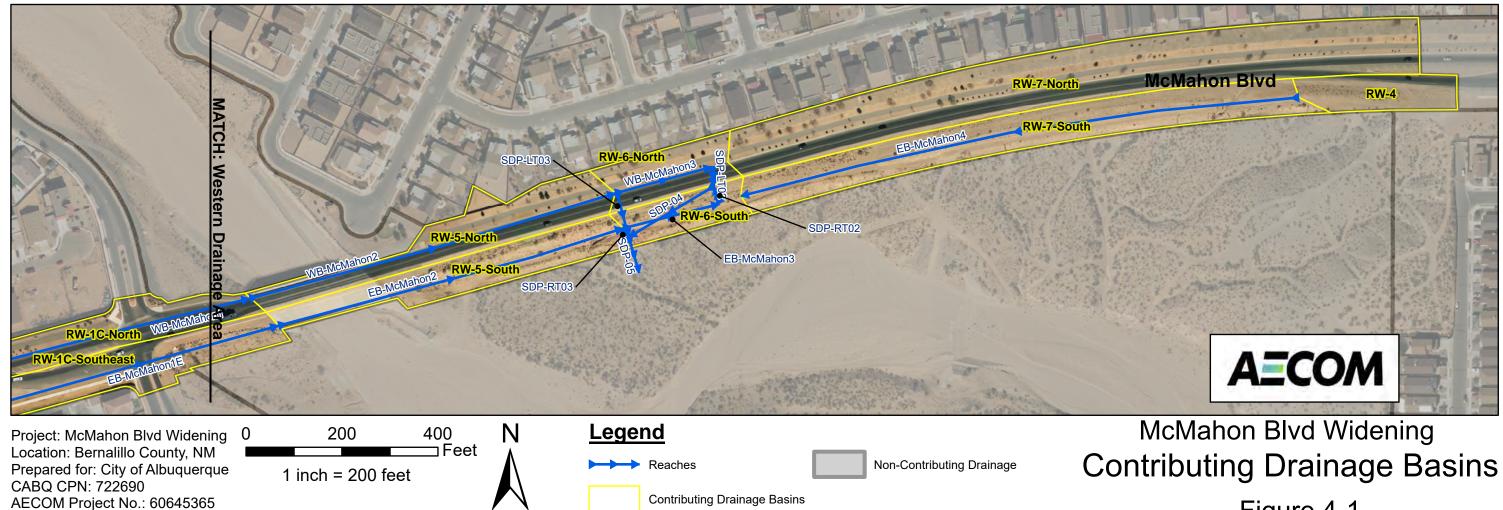
Surface flows from McMahon Blvd and its contributing subbasins all flow to a low point in McMahon Blvd, approximately 800 ft east of the Calabacillas bridge. Here they are collected by several inlets and conveyed to the Calabacillas via the 48" storm drain discussed above. Drainage from the existing westbound lanes is collected in the existing inlets on the north side of McMahon. Drainage in the proposed eastbound lanes will be similarly collected by inlets along the south side of McMahon, constructed with this project. The existing storm drain is shown in Figure 3-6:

AECOM

Figure 3-6: Existing Storm Drain Infrastructure

The proposed storm drain and inlets will connect with the existing storm drain and utilize the same 48" outfall into the Calabacillas. Street capacity, inlet capacity, and storm drain capacity were all confirmed for both the existing system and the proposed improvements. Original layout of the proposed storm drain for the eastbound lanes was designed with CPN 773481 (Mark Goodwin & Associates, 2006). The drainage analysis conducted with the current project confirmed the original layout and design based on current, as-constructed conditions and proposed development.

4 Hydrology


Hydrologic analysis for the proposed development was conducted for the contributing drainage basins identified in Figure 3-1 in accordance with the 2020 City of Albuquerque Development Process Manual (DPM). These drainage basins are shown in detail as Figure 4-1:

Western Drainage Area:

Eastern Drainage Area:

Figure 4-1

4.1 Precipitation

Precipitation was determined from NOAA Atlas 14 at the centroid of the watershed (Attachment 1-1). Both the 100-yr storm and the 10-yr storm were evaluated. The 100-yr storm was used as the design basis for all the hydraulic analysis. The 10-yr storm was used as the design basis for the arterial road street capacity, per the DPM Ch 6-9(A)4; McMahon Blvd is a Regional Principal Arterial.

The modeled storm was a 24-hr NRCS Frequency Storm with the peak at hour 12 and a 5-minute intensity duration. The 100-yr, 24-hr precipitation was: 2.61". The 10-yr, 24-hr precipitation was: 1.76".

4.2 Land Treatment and Initial Constraints

The contributing drainage basins were assigned the following land treatments based on current and proposed land cover. Proposed ROW development, both this project and future proposed projects, was assigned land treatments based on its proposed development. Areas outside the City limits were allowed discharge based on current (undeveloped) rates.

The weighted initial abstractions and curve numbers were calculated per the DPM, Tables 6.2.11 and 6.2.9. The Time of Concentration (Tc) was less than 0.2-hrs for all basins, so Tc = 0.2-hrs (12-minutes) was used, per the DPM, Equation 6.10. Lag Time was determined, per the DPM Equation, 6.17. Land treatments and initial constraints were as follows (Table 4-1):

			Land	Cover	-	Weighted	Weighted	Time of	
Basin Name						Initial	ĊN	Concentration	Lag Time
	Area	A	В	С	D	Abstraction			
	Ac	%	%	%	%	in	unitless	min	min
Anasazi-U3	3.99	95%	0%	5%	0%	0.64	77	12	7.2
OS-1B-FutureROW	0.78	0%	0%	40%	60%	0.20	93	12	7.2
OS-1B-Unincorporated	3.05	95%	0%	5%	0%	0.64	77	12	7.2
RW-1.3	1.48	0%	0%	40%	60%	0.20	93	12	7.2
RW-1C-North	4.01	0%	0%	40%	60%	0.20	93	12	7.2
RW-1C-Southeast	1.13	0%	0%	40%	60%	0.20	93	12	7.2
RW-1C-Southwest	3.40	0%	0%	40%	60%	0.20	93	12	7.2
RW-1D	1.36	0%	0%	40%	60%	0.20	93	12	7.2
RW-4	0.55	0%	0%	40%	60%	0.20	93	12	7.2
RW-5-North	1.25	0%	0%	40%	60%	0.20	93	12	7.2
RW-5-South	1.11	0%	0%	40%	60%	0.20	93	12	7.2
RW-6-North	0.62	0%	0%	40%	60%	0.20	93	12	7.2
RW-6-South	0.48	0%	0%	40%	60%	0.20	93	12	7.2
RW-7-North	3.75	0%	0%	50%	50%	0.23	92	12	7.2
RW-7-South	2.08	0%	0%	40%	60%	0.20	93	12	7.2

Table 4-1: Land Treatment and Initial Constraints

Basin "Anasazi-U3" will need to be restricted to current discharge if developed; street capacity analysis did show McMahon Blvd to be at capacity just west of the McMahon and Kayenta intersection assuming proposed development of the upstream ROW. Any non-ROW development west of this intersection will

need to match the existing discharge patterns. Any development west of Universe Blvd such as "OS-1B-Unicorporated" and neighboring non-contributing basins, is outside of the City of Albuquerque and will be expected to match the existing discharge patterns if discharging into the City of Albuquerque.

4.3 Reach Routing

The above basins were routed to their discharge points using the reaches shown in Figure 4-1 and summarized below in Table 4-2:

	Length	Average Slope	Manning's n	Channel Width or Pipe Dia.	К	Velocity	Travel Time
Reach Name	Ft	%	unitless	Ft	unitless	fps	minutes
EB-McMahon1E	600	1.00%	0.016	32	3	3.0	3.3
EB-McMahon1W	1738	1.58%	0.016	32	3	3.8	7.7
EB-McMahon2	747	1.94%	0.016	32	3	4.2	3.0
EB-McMahon3	207	0.97%	0.016	32	3	3.0	1.2
EB-McMahon4	1184	3.46%	0.016	32	3	5.6	3.5
SDP-04	200	2.05%	0.013	2.5	3	4.3	0.8
SDP-05	80	0.50%	0.013	4	3	2.1	0.6
SDP-LT02	38	7.58%	0.013	2	3	8.3	0.1
SDP-LT03	90	12.00%	0.013	1.5	3	10.4	0.1
SDP-RT02	38	7.58%	0.013	2	3	8.3	0.1
SDP-RT03	38	12.00%	0.013	1.5	3	10.4	0.1
WB-McMahon1	2357	1.46%	0.016	32	3	3.6	10.8
WB-McMahon2	793	1.83%	0.016	32	3	4.1	3.3
WB-McMahon3	208	0.96%	0.016	32	3	2.9	1.2

Table 4-2: Reaches

Surface reach lengths and slopes were determined in ArcGIS using 2010 Bernalillo County Lidar for the elevations; surface reaches are prefixed with "EB" (eastbound) or "WB" (westbound). Surface reaches used a simplified rectangular cross section for the street widths.

Storm drain pipe (SDP) reach lengths, slopes, and diameters were taken from the Saltillo Unit 1 Work Order and As-builts, which included the proposed storm drain. Manning's n values of 0.016 (asphalt) and 0.013 (concrete and storm drain) were used. Travel time was computed using the simple Lag method and the DPM, Equations 6.10 and 6.11.

4.4 Modeling

A hydrologic model was created in HEC-HMS 4.7 using the inputs described above. The basin model map (Figure 4-2) and McMahon low point detail (Figure 4-3) are shown below. Additional supporting excerpts are included as (Attachment 1-2) and the model is in included in the electronic files (Attachment 3-1).

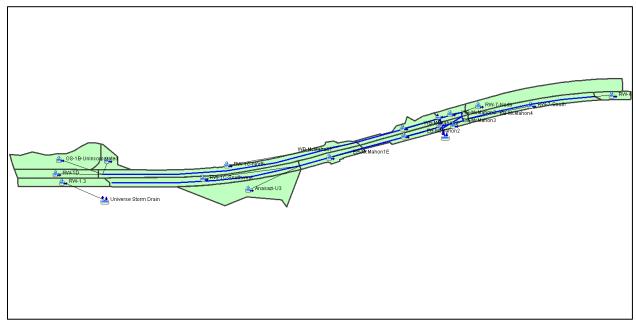


Figure 4-2: Basin Model Map

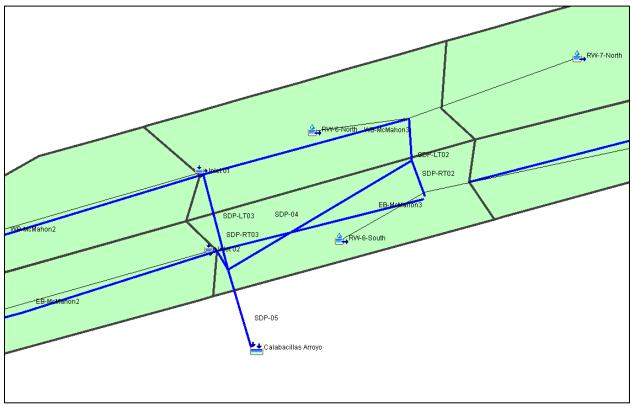


Figure 4-3: McMahon Low Point Detail

Inlet 01 and Inlet 02 are inlets on grade; flows were split at these elements using diversion elements and inlet rating tables developed as part of the Inlet Analysis (Section 5.2). Flows that bypassed Inlet 01 and

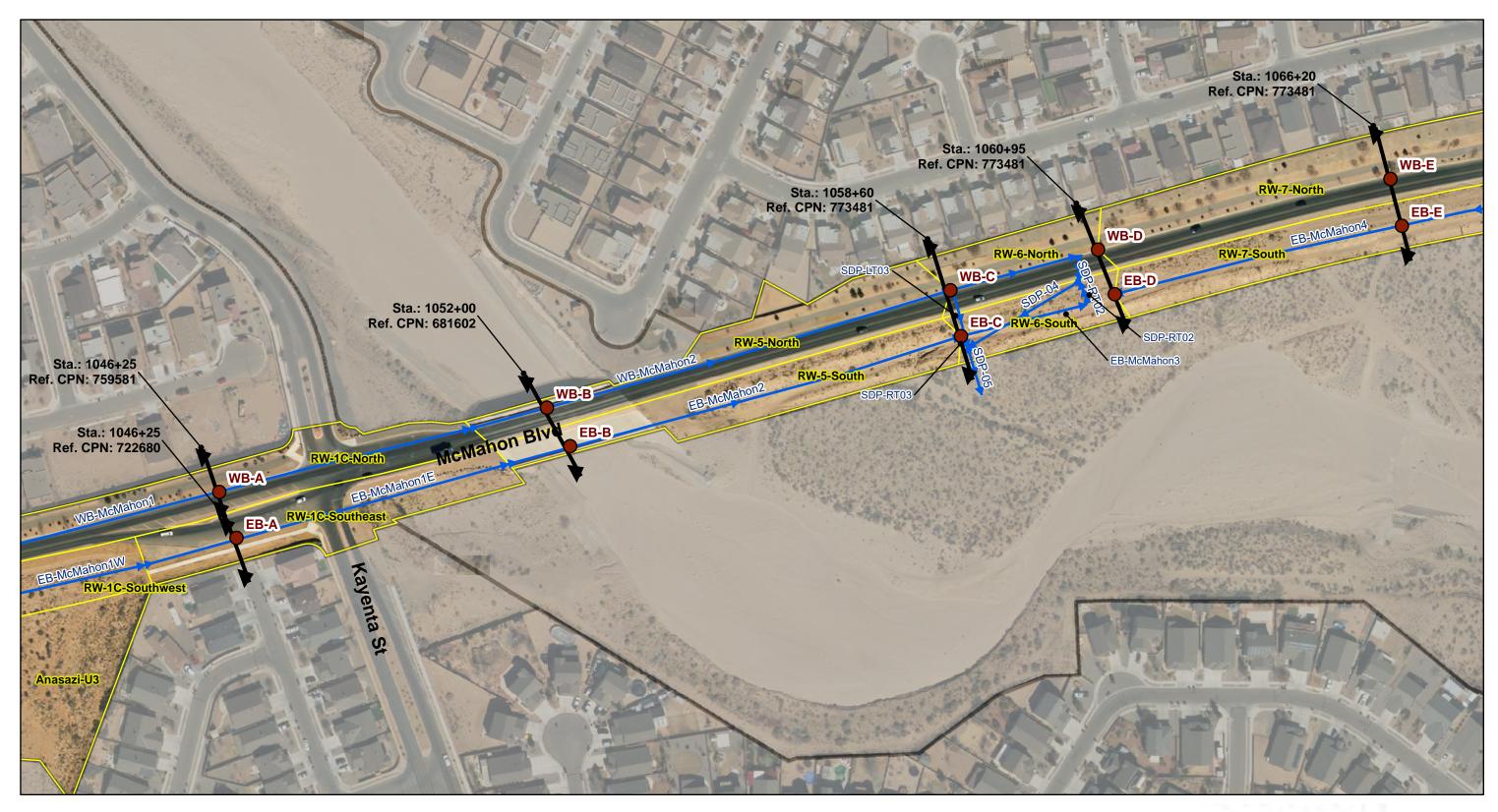
Inlet 02 continued east to the McMahon low point located at SDP-LT02 and SDP-RT02; sump inlets Inlet 03 and Inlet 05 capture all residual flows at the low point.

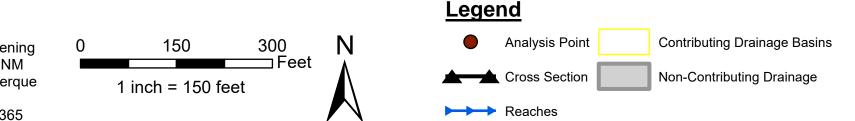
Summary results are shown below (Table 4-3) and additional results are included in (Attachment 1-2).

Table 4-3: HEC-HMS Summary Results

		10)-yr	100-	-yr
Element		Peak		Peak	
Liement	Drainage Area	-		discharge	Volume
		(cfs)	Volume (Ac-Ft)	(cfs)	(Ac-Ft)
Anasazi-U3	0.0062	1.8		6.0	0.3
Calabacillas Arroyo	0.0433	35.7	2.0	69.4	3.6
EB-McMahon1E	0.0115	8.5	0.4	18.6	0.8
EB-McMahon1W	0.0000	0.0	0.0	0.0	0.0
EB-McMahon2	0.0133	10.5	0.5	22.3	1.0
EB-McMahon3	0.0150	4.5	0.1	13.2	0.4
EB-McMahon4	0.0009	1.2	0.1	2.2	0.1
Inlet 01	0.0164	4.2	0.2	11.0	0.5
Inlet 02	0.0150	4.5	0.1	13.2	0.4
OS-1B-FutureROW	0.0012	1.5	0.1	2.9	0.1
OS-1B-Unincorporated	0.0048	1.4	0.1	4.6	0.2
RW-1C-North	0.0063	8.1	0.4	15.1	0.6
RW-1C-Southeast	0.0018	2.3	0.1	4.3	0.2
RW-1C-Southwest	0.0053	6.8	0.3	12.7	0.5
RW-1D	0.0021	2.7	0.1	5.0	0.2
RW-1.3	0.0023	3.0	0.1	5.5	0.2
RW-4	0.0009	1.2	0.1	2.2	0.1
RW-5-North	0.0020	2.6	0.1	4.8	0.2
RW-5-South	0.0017	2.2	0.1	4.1	0.2
RW-6-North	0.0010	1.3	0.1	2.4	0.1
RW-6-South	0.0008	1.0	0.0	1.9	0.1
RW-7-North	0.0059	7.1	0.3	13.5	0.5
RW-7-South	0.0033	4.3	0.2	7.9	0.3
SDP-LT02	0.0233	11.9	0.5	25.3	1.1
SDP-LT03	0.0000*	7.4	0.5	11.1	0.9
SDP-RT02	0.0200	9.6	0.4	22.2	0.9
SDP-RT03	0.0000*	7.6	0.5	12.1	0.8
SDP-04	0.0433	21.1	1.0	46.6	2.0
SDP-05	0.0433	35.7	2.0	69.4	3.6
Universe Storm Drain	0.0023	3.0	0.1	5.5	0.2
WB-McMahon1	0.0081	5.5	0.3	12.5	0.5
WB-McMahon2	0.0144	9.7	0.6	20.1	1.1
WB-McMahon3	0.0164	4.2	0.2	11.0	0.5

*these elements have no associated drainage area because the upstream elements are diversions


5 Hydraulics


Hydraulic analysis for the proposed development was conducted in accordance with the 2020 City of Albuquerque Development Process Manual (DPM).

5.1 Street Capacity

Street capacity analysis was conducted for the existing westbound lanes and the proposed eastbound lanes by identifying the key areas where the flow depth or the energy grade might exceed DPM requirements. The below analysis points were selected (Figure 5-1):

Project: McMahon Blvd Widening Location: Bernalillo County, NM Prepared for: City of Albuquerque CABQ CPN: 722690 AECOM Project No.: 60645365

McMahon Blvd Widening Analysis Points Figure 5-1

At each analysis point, street sections were determined from as-built construction plans (Table 5-1):

TUDIE 5-1	Table 5-1: Street Sections								
	EB-A,	section per CPN 722680		WB-A	, section per CPN 759581				
Station	Elevation	Description	Station	Elevation	Description				
0.000	1.465	top of median curb	0.000	4.039	property line				
0.167	0.965	face of median curb	11.375	1.196	back of asphalt trail				
12.167	0.725	edge of left turn lane	21.375	0.996	edge of asphalt trail				
24.167	0.485	edge of left drive lane (1 dry lane)	37.825	0.667	top of curb				
42.167	0.125	edge of asphalt / edge of gutter pan	37.992	0.000	flowline				
44.167	0.000	flowline	39.992	0.125	edge of asphalt / edge of gutter pan				
44.333	0.667	top of curb	57.992	0.485	edge of left drive lane (1 dry lane)				
55.333	0.887	edge of sidewalk	69.992	0.725	face of median curb				
61.333	1.007	back of sidewalk	70.158	1.225	top of median curb				
76.708	1.314	property line							
	EB-B,	section per CPN 681602		WB-B	, section per CPN 681602				
Station	Elevation	Description	Station	Elevation	Description				
0.000		top of median concrete	0.000	2.667	top of Jersey barrier				
0.333	0.600	face of median concrete	0.750	0.000	flowline				
12.333	0.360	edge of left drive lane (1 dry lane)	18.750	0.360	edge of left drive lane (1 dry lane)				
30.333	0.000	flowline	30.750	0.600	face of median concrete				
31.083	2.667	top of Jersey barrier	31.083	0.933	top of median concrete				
		& EB-E, section per CPN 773481	-		& WB-E, section per CPN 773481				
		Description	Station		Description				
0.000		top of median curb	0.000	4.984	property line				
0.167	0.725	face of median curb	11.375	1.196	back of asphalt trail				
12.167		edge of left drive lane (1 dry lane)	21.375		edge of asphalt trail				
30.167		edge of asphalt / edge of gutter pan	37.825		top of curb				
32.167		flowline	37.992	0.000	flowline				
32.333		top of curb	39.992	0.125	edge of asphalt / edge of gutter pan				
48.783		edge of sidewalk	57.992		edge of left drive lane (1 dry lane)				
54.783	1.116	back of sidewalk	69.992	0.725	face of median curb				
70.158	1.423	property line	70.158	1.225	top of median curb				

Table 5-1: Street Sections

Excerpts showing these cross sections are provided as Figure 3-2, Figure 3-3, Figure 3-4, and Figure 3-5; their locations are shown in Figure 5-1. The proposed eastbound lanes are generally planned to mirror the westbound lanes – standard curb and gutter, two driving lanes, but with sidewalk instead of an asphalt trail.

At each analysis point, the slope was determined from as-built construction plans as well. For the proposed eastbound lanes, the slope was assumed to match that of the adjacent westbound lanes. Contributing drainage to each analysis point was determined from the hydrologic analysis. The initial constraints for the street capacity analysis are shown in Table 5-2:

Name	Slope	Contributing Drainage		Q100				
	ft/ft							
EB-A	0.0050	RW-1C-Southwest, Anasazi-U3, 25% of RW-1C Southeast	9.2	19.8				
EB-B	0.0122	EB-McMahon2	10.5	22.3				
EB-C	0.0171	EB-McMahon2 plus RW-5-South	12.7	26.4				
EB-D (Sump)	0.0000	EB-McMahon3 plus EB-McMahon4, minus inlet 02 loss	9.6	22.2				
EB-E	0.0500	EB-McMahon4 plus RW-7-South	5.5	10.1				
		OS-1B-Unincorporated, OS-1B-FutureROW, RW-1D, 80% of RW-1C-						
WB-A	0.0050	North	12.0	24.6				
WB-B	0.0122	WB-McMahon2	9.7	20.1				
WB-C	0.0171	WB-McMahon2 plus RW-5-North	12.3	24.9				
WB-D								
(Sump)	0.0000	WB-C plus RW-6-North, RW-7-North, minus inlet 01 loss	11.9	25.3				
WB-E	0.0500	RW-7-North	7.1	13.5				

Table 5-2: Street Capacity Initial Constraints

The street sections and initial constraints were loaded into Bentley FlowMaster (v. 10.00.00.02) to determine the flow depth and velocity at each analysis point for the 10-yr and 100-yr storm using the Manning's n equation for irregular channel sections. The detailed reports are included in Attachment 2-1 and the model workbook is provided in Attachment 3-2. Summarized results are provided below (Table 5-3 and Table 5-4):

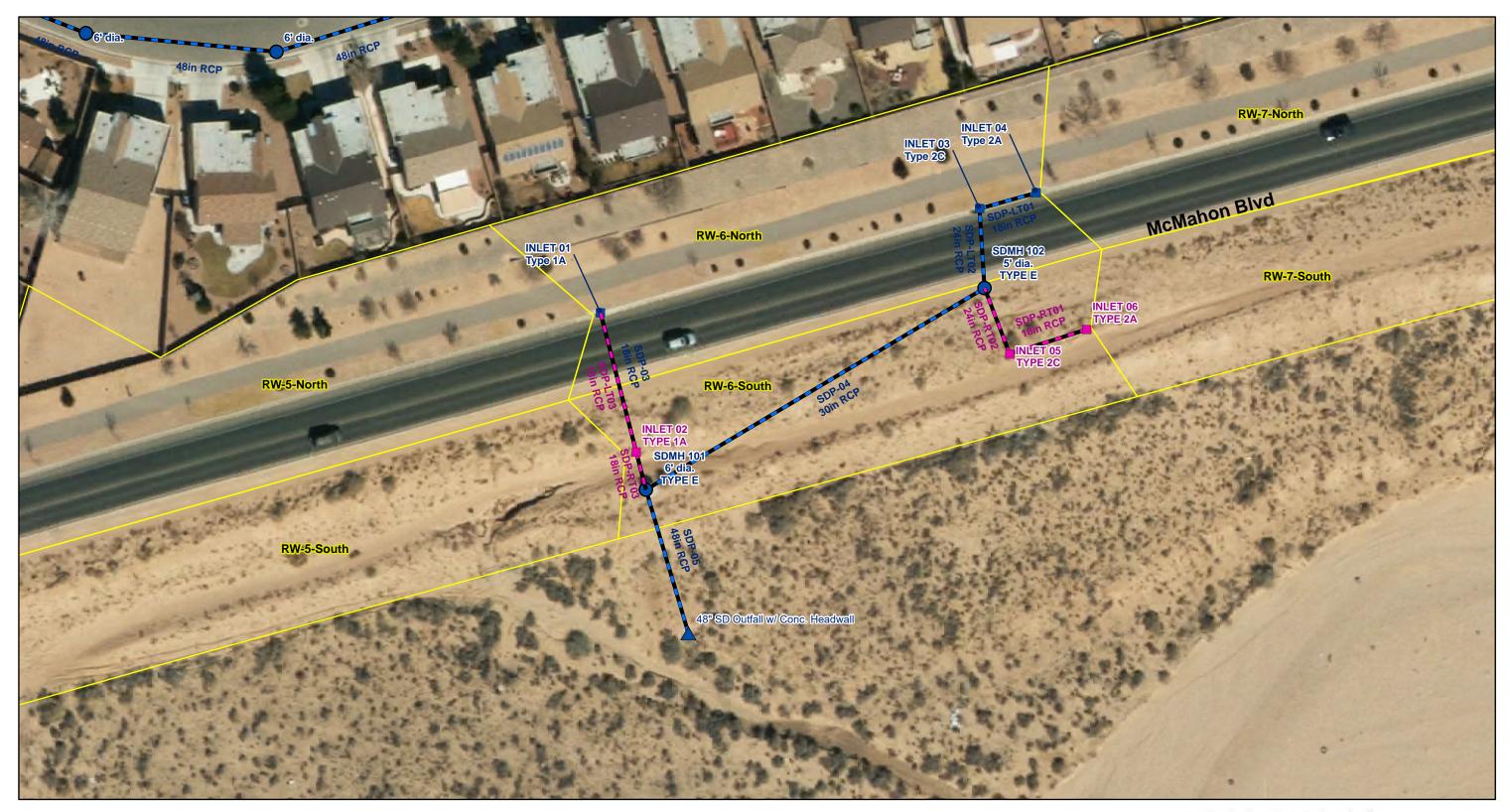
Table 5-3: Summarized Street Capacity Results, 10-yr Storm

Name	Q10 cfs	Q10 Flow Depth Ft	Flow Depth	Q10 Top Width Ft	F-F width Ft	width	Q10 Velocity fps	Depth x Velocity < 6.5
EB-A	9.2	0.493	0.485	20.5	32	11.5	2.15	1.06
EB-B	10.5	0.342	0.360	16.4	30	13.6	3.57	1.22
EB-C	12.7	0.450	0.485	17.7	32	14.3	3.69	1.66
EB-D (Sump)	9.6	0.342	0.485	11.1	32	20.9	0.00	0.00
EB-E	5.5	0.297	0.485	10.7	32	21.4	4.53	1.35
WB-A	12.0	0.537	0.485	22.8	32	9.3	2.29	1.23
WB-B	9.7	0.332	0.360	16.2	30	13.9	3.50	1.16
WB-C	12.3	0.445	0.485	17.7	32	14.4	3.66	1.63
WB-D (Sump)	11.9	0.375	0.485	13.2	32	18.8	0.00	0.00
WB-E	7.1	0.320	0.485	11.8	32	20.2	4.82	1.54

Name	Q100 cfs	Depth	Flow Depth		Q100 EGL	Q100 Allowable EGL Ft
EB-A	19.8	0.633	0.667	2.59	0.737	1.314
EB-B	22.3	0.453	0.993	4.32	0.743	2.667
EB-C	26.4	0.568	0.667	4.43	0.873	1.423
EB-D (Sump)	22.2	0.517	0.667	0.00	0.000	1.423
EB-E	10.1	0.355	0.667	5.24	0.781	1.423
WB-A	24.6	0.683	0.667	2.70	0.796	4.039
WB-B	20.1	0.436	0.993	4.21	0.711	2.667
WB-C	24.9	0.558	0.667	4.36	0.853	4.984
WB-D (Sump)	25.3	0.558	0.667	0.00	0.000	4.984
WB-E	13.5	0.388	0.667	5.62	0.878	4.984

Table 5-4: Summarized Street Capacity Results, 100-yr Storm

McMahon Blvd exceeds capacity at analysis point "EB-A" and "WB-A" as shown above in red (Table 5-3 and Table 5-4). Because both the eastbound and westbound lanes are already constructed at these locations, a variance from DPM standards is requested for:


- EB-A: Flow depth exceeded by 0.008' (0.10") during the 10-yr event; however, 11.5' of remaining drivable width remains
- WB-A: Flow depth exceeded by 0.052' (0.6") during the 10-yr event; however, 9.3' of drivable width, plus the entire left turn bay (12') remains
- WB-A: Flow depth exceeded by 0.016' (0.2") during the 100-yr event; flow depth is still contained within the ROW

Analysis points WB-D and EB-D are at the sumps; flow depths at these analysis points were determined from the headwater depth at the sump inlets as determined in the Inlet Analysis (Section 5.2).

5.2 Inlet Analysis

3 existing and 3 proposed inlets are located in the project area, connecting to existing and proposed storm drain as shown in Figure 5-2:

AECOM

McMahon Blvd Widening Proposed Inlets and Storm Drain Figure 5-2

Inlet capacity for the existing and proposed inlets was determined using Bentley FlowMaster (v. 10.00.00.02) and information obtained from the Saltillo Unit 1 construction plans.

Inlet 01 and Inlet 02 are inlets on grade. Their capture efficiency was modeled in HEC-HMS as diversion elements using rating tables developed first in FlowMaster. A range of flows were loaded into FlowMaster based on preliminary results from HEC-HMS in order to determine a total flow vs. interception rating table. These rating tables were then loaded into the HEC-HMS model and to determine the interception and bypass flows. The rating tables are shown as Table 5-5 and the reports provided in (Attachment 2-1).

Table 5-5: Rating Tables

	<u>Inlet 01</u>			Inlet 02			
Q100 range: 0-25.9 cfs		preliminary range from HEC-HMS		Q100 range:	0-24.2 cfs	preliminary range from HEC-HMS	
	-				-		
Q Total	Efficiency	Q Intercepted		Q Total	Efficiency	Q Intercepted	
cfs	%	cfs		cfs	%	cfs	
0		0.00		C		0.00	
5	83.06	4.15		5	83.06	4.15	
10	67.18	6.72		10	67.18	6.72	
15	58.27	8.74		15	58.27	8.74	
20	52.39	10.48		20	52.39	10.48	
25	48.13	12.03		25	48.13	12.03	
30	44.85	13.46		30	44.85	13.46	
35	42.23	14.78		35	42.23	14.78	
40	40.06	16.02		40	40.06	16.02	
45	38.23	17.20		45	38.23	17.20	

Inlet 03 and Inlet 04 were modeled as one large inlet in a sump with a 50% clogging factor on the grate. Inlet 05 and Inlet 06 were modeled the same way. The headwater depths at the sump were also used for determining street capacity in Section 5.1. The inlet summary is shown below (Table 5-6) and the detailed reports are provided in (Attachment 2-1).

Table 5-6: Inlet Summary

			Q100 Total	Q100 Intercepted	Q100 Bypass
	Name	Туре	cfs	cfs	cfs
Evicting	Inlet 01	Single-A on grade	22.1	11.1	11
Existing WB Inlets	Inlet 03	Double-C in sump	25.3	12.65	12.65
vvb miets	Inlet 04	Double-A in sump	12.65	12.65	0
Dranacad	Inlet 02	Single-A on grade	25.3	12.1	13.2
Proposed EB Inlets	Inlet 05	Double-C in sump	22.2	11.1	11.1
EDIMEts	Inlet 06	Double-A in sump	11.1	11.1	0

5.3 Storm Drain Analysis

Once the Inlet interceptions were known the storm drain was modeled as a steady state system using Bentley StormCAD v8i SELECTseries 5 (v. 08.11.05.113). The storm drain model plan view is shown below (Figure 5-3) and the storm drain profiles are provided in (Attachment 2-2).

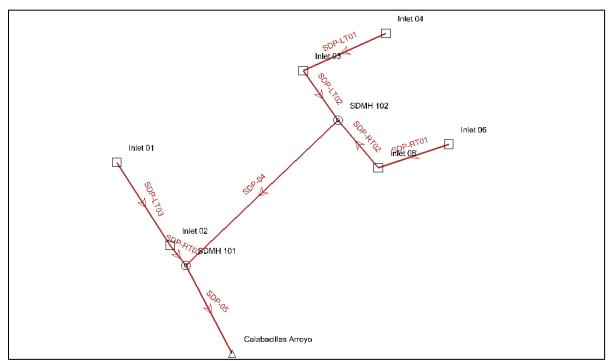


Figure 5-3: Storm Drain Model Plan View

HEC-22 Energy Equations (Third Edition) were selected for the headloss method and the 100-yr water surface elevation (WSE) in the Calabacillas Arroyo was used as the tailwater elevation. The 100-yr water surface was determined to be 5349.47 ft by linear interpolation between the two Base Flood Elevations published in the effective FIRM (Table 5-7):

Table 5-7: Calabacillas Outfall WSE									
		distance from							
Name	100yr BFE	DS-X Section	WS Slope						
	Ft	Ft	ft/ft						
US X-Section	5353.00	357.5	0.0140						
DS X-Section	5348.00	0.0							
48" SD Outfall	5349.47	105.00							

Rim, invert and flowline data provided in the Saltillo Unit 1 as-built construction plans were used; this included the proposed elevation data for the new storm drain and inlets. Elevation data and detailed results of the storm drain analysis are provided in Attachment 2-2. The StormCAD Model is provided in Attachment 3-3. The storm drain has adequate capacity to accept the proposed flows.

6 Data Sources

BernCo. "LiDAR-derived, Topographic Contours – Bernalillo County." Bohannan-Huston, Inc. 2010.

- CABQ. "Albuquerque Development Process Manual: Chapter 6, Drainage, Flood Control, and Erosion Control." 2020.
- CABQ. "Hydrology and Transportation Files." Retrieved from http://data.cabq.gov/government/planning/drainage, January 2020:

Bohannan Huston, Inc. *Drainage Study for Paradise Skies Unit 10 Subdivision*. ABQ Hydrology File No.: A10D004. April 2003.

Mark Goodwin & Associates, Inc. *Drainage Report for Anasazi Ridge Subdivision*. ABQ Hydrology File No.: A10D002. November 2004.

Mark Goodwin & Associates, Inc. *Arroyo Vista Subdivision Drainage Management Plan*. ABQ Hydrology File No.: A10D007. July 2005.

Mark Goodwin & Associates, Inc. *Drainage Report for Seville Unit 7A*. ABQ Hydrology File No.: A10D002F. July 2006.

Mark Goodwin & Associates, Inc. *LOMR for the Upper Bound of the Detailed Study Reach of the Calabacillas Arroyo*. ABQ Hydrology File No.: A10D007-LOMR. January 2010.

Mark Goodwin & Associates, Inc. *Anasazi Ridge Unit 3 Subdivision Drainage Management Plan*. ABQ Hydrology File No.: A10D002G. January 2015.

URS, Inc. *McMahon Boulevard Extension – Final Drainage Report, Revision 2.* ABQ Hydrology File No.: A10D000. April 2010.

Wilson and Company, Inc. *Drainage Report for Seville Subdivision Unit 3*. ABQ Hydrology File No.: A10D002B. April 2002.

Wilson and Company, Inc. *Drainage Report for Seville Subdivision Unit* 7. ABQ Hydrology File No.: A10D002E. September 2003.

Wilson and Company, Inc. *Central New Mexico Community College Westside Campus Drainage Master Plan*. ABQ Hydrology File NO.: A09D001. August 2010.

- FEMA. "Flood Insurance Rate Maps 35001C0103H and 35001C0104H, effective 8/16/2012." Retrieved January 2020
- NOAA. "Point Precipitation Frequency Estimates." Version: NOAA Atlas 14, Volume 1, Version 5. Retrieved January 2020.

Attachment 1: Supporting Hydrology

1-1 NOAA Atlas 14 Precipitation Report

NOAA Atlas 14, Volume 1, Version 5 Location name: Albuquerque, New Mexico, USA* Latitude: 35.2126°, Longitude: -106.7207° Elevation: 5361.78 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹										
Duration	Average recurrence interval (years)									
	1	2	5	10	25	50	100	200	500	1000
5-min	0.163 (0.140-0.191)	0.212 (0.181-0.248)	0.285 (0.243-0.334)	0.342 (0.291-0.400)	0.421 (0.356-0.492)	0.483 (0.407-0.564)	0.549 (0.459-0.639)	0.619 (0.513-0.720)	0.714 (0.586-0.831)	0.789 (0.644-0.919)
10-min	0.249 (0.213-0.291)	0.322 (0.275-0.377)	0.434 (0.369-0.508)	0.521 (0.443-0.609)	0.641 (0.542-0.749)	0.736 (0.620-0.858)	0.836 (0.699-0.973)	0.942 (0.782-1.10)	1.09 (0.892-1.27)	1.20 (0.980-1.40)
15-min	0.308 (0.265-0.360)	0.400 (0.341-0.467)	0.537 (0.458-0.630)	0.646 (0.550-0.755)	0.795 (0.672-0.928)	0.912 (0.769-1.06)	1.04 (0.866-1.21)	1.17 (0.969-1.36)	1.35 (1.11-1.57)	1.49 (1.22-1.73)
30-min	0.415 (0.356-0.485)	0.538 (0.459-0.629)	0.724 (0.617-0.849)	0.870 (0.740-1.02)	1.07 (0.905-1.25)	1.23 (1.03-1.43)	1.40 (1.17-1.63)	1.57 (1.31-1.83)	1.81 (1.49-2.11)	2.01 (1.64-2.34)
60-min	0.514 (0.441-0.601)	0.666 (0.568-0.779)	0.896 (0.764-1.05)	1.08 (0.916-1.26)	1.33 (1.12-1.55)	1.52 (1.28-1.77)	1.73 (1.44-2.01)	1.95 (1.62-2.27)	2.24 (1.84-2.62)	2.48 (2.02-2.89)
2-hr	0.604 (0.515-0.717)	0.773 (0.657-0.919)	1.02 (0.869-1.22)	1.23 (1.04-1.45)	1.51 (1.27-1.78)	1.74 (1.45-2.04)	1.98 (1.64-2.32)	2.24 (1.84-2.62)	2.60 (2.11-3.04)	2.89 (2.32-3.39)
3-hr	0.664 (0.572-0.785)	0.845 (0.727-0.997)	1.11 (0.953-1.30)	1.32 (1.13-1.55)	1.61 (1.37-1.89)	1.85 (1.56-2.16)	2.10 (1.76-2.45)	2.37 (1.97-2.76)	2.74 (2.25-3.19)	3.04 (2.48-3.55)
6-hr	0.765 (0.663-0.892)	0.966 (0.842-1.13)	1.25 (1.09-1.45)	1.47 (1.27-1.71)	1.77 (1.53-2.06)	2.01 (1.73-2.33)	2.26 (1.93-2.62)	2.52 (2.14-2.92)	2.89 (2.42-3.34)	3.19 (2.64-3.69)
12-hr	0.854 (0.751-0.978)	1.08 (0.948-1.23)	1.37 (1.20-1.56)	1.60 (1.40-1.82)	1.91 (1.66-2.17)	2.15 (1.86-2.44)	2.40 (2.06-2.72)	2.66 (2.27-3.02)	3.00 (2.55-3.42)	3.29 (2.76-3.75)
24-hr	0.966 (0.854-1.10)	1.21 (1.07-1.38)	1.52 (1.34-1.73)	1.76 (1.56-2.00)	2.09 (1.84-2.38)	2.35 (2.05-2.66)	2.61 (2.28-2.96)	2.88 (2.50-3.26)	3.24 (2.80-3.67)	3.53 (3.02-3.99)
2-day	1.03 (0.916-1.16)	1.29 (1.15-1.46)	1.62 (1.44-1.83)	1.88 (1.67-2.12)	2.23 (1.97-2.51)	2.50 (2.20-2.81)	2.78 (2.43-3.12)	3.06 (2.67-3.44)	3.44 (2.98-3.87)	3.73 (3.22-4.21)
3-day	1.18 (1.07-1.31)	1.47 (1.33-1.63)	1.83 (1.65-2.02)	2.10 (1.90-2.33)	2.48 (2.23-2.74)	2.77 (2.48-3.06)	3.06 (2.73-3.38)	3.36 (2.98-3.71)	3.75 (3.32-4.16)	4.05 (3.57-4.50)
4-day	1.33 (1.22-1.45)	1.65 (1.51-1.81)	2.03 (1.86-2.22)	2.33 (2.13-2.54)	2.73 (2.49-2.98)	3.04 (2.76-3.31)	3.34 (3.03-3.65)	3.65 (3.30-3.99)	4.06 (3.66-4.44)	4.37 (3.92-4.79)
7-day	1.53 (1.40-1.66)	1.90 (1.74-2.06)	2.31 (2.12-2.52)	2.64 (2.42-2.87)	3.07 (2.81-3.33)	3.39 (3.10-3.68)	3.71 (3.38-4.03)	4.02 (3.66-4.36)	4.42 (4.01-4.81)	4.72 (4.27-5.14)
10-day	1.69 (1.55-1.84)	2.10 (1.93-2.28)	2.57 (2.36-2.79)	2.94 (2.70-3.19)	3.43 (3.15-3.72)	3.80 (3.48-4.11)	4.17 (3.81-4.51)	4.54 (4.13-4.92)	5.02 (4.55-5.44)	5.37 (4.86-5.83)
20-day	2.13 (1.95-2.32)	2.64 (2.43-2.88)	3.21 (2.95-3.49)	3.64 (3.34-3.95)	4.19 (3.84-4.55)	4.59 (4.20-4.97)	4.98 (4.55-5.39)	5.35 (4.87-5.78)	5.81 (5.28-6.29)	6.13 (5.56-6.65)
30-day	2.56 (2.35-2.77)	3.18 (2.92-3.44)	3.83 (3.52-4.14)	4.31 (3.96-4.65)	4.92 (4.51-5.30)	5.35 (4.90-5.76)	5.76 (5.27-6.20)	6.15 (5.61-6.62)	6.61 (6.03-7.12)	6.94 (6.31-7.48)
45-day	3.12 (2.88-3.37)	3.86 (3.57-4.18)	4.61 (4.25-4.97)	5.15 (4.74-5.54)	5.80 (5.34-6.24)	6.24 (5.75-6.72)	6.65 (6.12-7.15)	7.01 (6.45-7.54)	7.43 (6.83-7.98)	7.69 (7.08-8.26)
60-day	3.59 (3.32-3.89)	4.45 (4.11-4.81)	5.31 (4.91-5.73)	5.92 (5.47-6.39)	6.66 (6.16-7.19)	7.17 (6.63-7.73)	7.63 (7.06-8.24)	8.05 (7.44-8.69)	8.53 (7.89-9.22)	8.84 (8.18-9.55)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

interval (years)

1

2 5

10

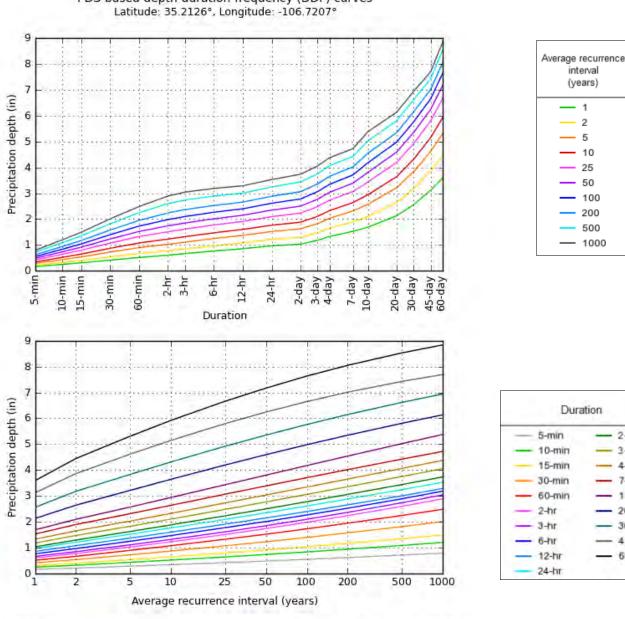
25 50

100 200

500 - 1000

- 2-day

3-day 4-day


7-day

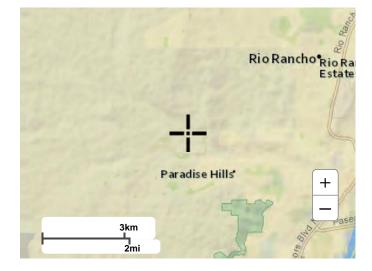
10-day 20-day

30-day

45-day

- 60-day

PDS-based depth-duration-frequency (DDF) curves

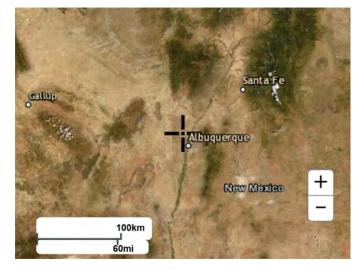

NOAA Atlas 14, Volume 1, Version 5

Created (GMT): Mon Dec 28 13:45:29 2020

Back to Top

Maps & aerials

Small scale terrain



Large scale terrain

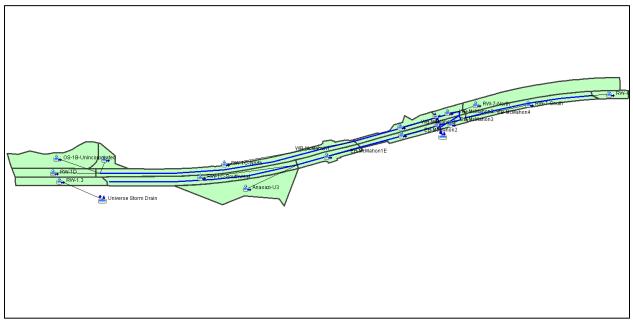
Large scale map

Large scale aerial

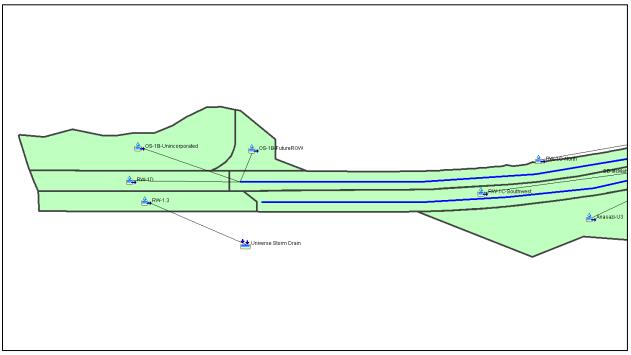
Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

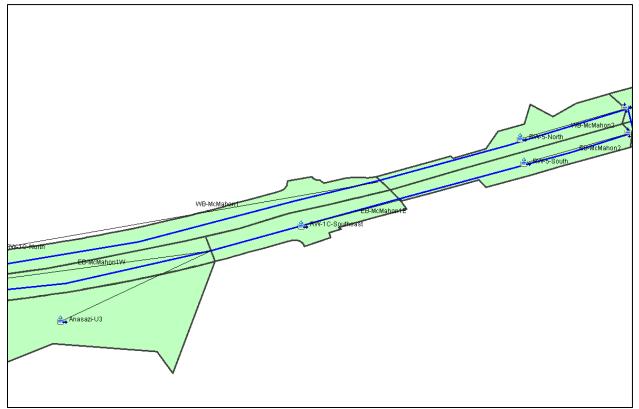
Disclaimer

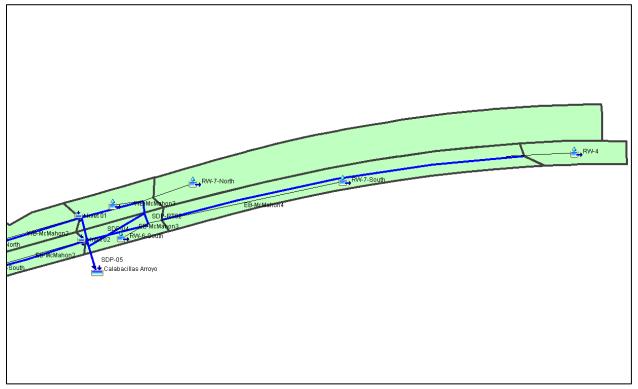


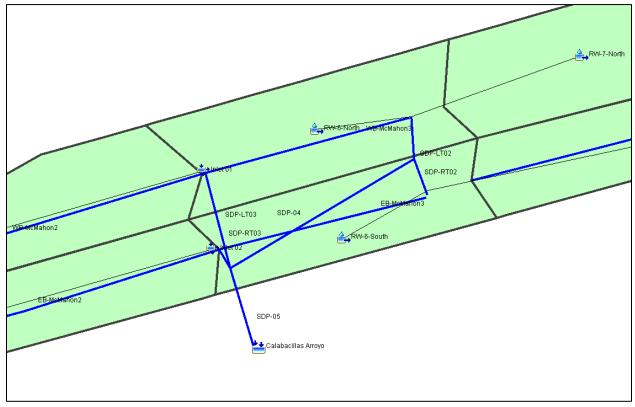
1-2 HEC-HMS Inputs and Outputs


HEC-HMS Inputs and Outputs

Basin Model


Overview:


West Area:


Center Area:

East Area:

McMahon Low Point Detail:

Precipitation 10-yr Storm:

100-yr Storm:

Frequency Storm			Frequency Storm			
Met Name: 10yr		Met Name	: 100	yr		
Storm Type:	HYDRO35 TP40 TP49	\sim	Storm Type	: HYD	RO35 TP40 TP49	\sim
Annual-Partial Conversion:	None	\sim	Annual-Partial Conversion	:No	one	~
Annual-Partial Ratio:	1.00		Annual-Partial Ratio	: 1.00)	
Storm Duration:	1 Day	~	Storm Duration	: 1 Da	зу	~
Intensity Duration:	5 Minutes	\sim	Intensity Duration	: 5 M	inutes	~
Intensity Position:	50 Percent	~	Intensity Position	: 50 F	Percent	~
Area Reduction:	None	~	Area Reduction	:No	one	~
Curve:	Uniform For All Subbasins	\sim	Curve	: Unif	form For All Subbasins	~
Duration	Depth (IN)		Duration		Depth (IN)	
5 Minutes		0.342	5 Minutes			0.549
15 Minutes		0.646	15 Minutes			1.040
1 Hour		1.080	1 Hour			1.730
2 Hours		1.230	2 Hours		1.980	
3 Hours		1.320	3 Hours			2.100
6 Hours		1.470	6 Hours			2.260
12 Hours		1.600	12 Hours			2.400
1 Day 1.76		1.760	1 Day			2.610
2 Days			2 Days			
4Days			4 Days			
7 Days			7 Days			
10 Days			10 Days			

Control

Control Specifications		
Name:	Control 1	
Description:		÷
*Start Date (ddMMMYYYY)	01Jan2021	
*Start Time (HH:mm)	00:00	
*End Date (ddMMMYYYY)	02Jan2021	
*End Time (HH:mm)	00:01	
Time Interval:	1 Minute \sim	

Inflow-Diversion Functions

Inlet-01 Rating Table				ion Func ating tal ating tal	tions ble		
🔀 Paired Data	Table	Graph		🔀 Paired Dat	a Table	Graph	
Inflow (CFS)			Diversion (CFS)	Inflow (CFS)			Diversion (CFS)
		0.0	0.00			0.0	0.00
		5.0	4.15			5.0	4.15
		10.0	6.72			10.0	6.72
		15.0	8.74			15.0	8.74
		20.0	10.48			20.0	10.48
		25.0	12.03			25.0	12.03
		30.0	13.46			30.0	13.46
		35.0	14.78			35.0	14.78
		40.0	16.02			40.0	16.02
		45.0	17.20			45.0	17.20

Inlet-01 Rating Curve

Inflow (CFS)

🖃 📙 Paired Data Paired Data E Inflow-Diversion Functions - Inflow-Diversion Functions Inlet-01 rating table Z Inlet-01 rating table Inlet-02 rating table Components Compute Results Components Compute Results 😕 Paired Data Table Graph 🔀 Paired Data Table Graph 18-18-16-16-14-14-12-12-Diversion (CFS) Diversion (CFS) 6-6-4-4-2-2-0+ 0-10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 Ó 5 0

Inlet-02 Rating Curve

Inflow (CFS)

Inlet-02 Rating Table

Summary Output Tables

10-yr Storm

	Project: McMa	ahon_Expansion Simulat	tion Run: 10yr	
	Start of Run: 01Jan2021, End of Run: 02Jan2021,	00:01 Meteorolog	ic Model: 10yr	
	Compute Time:04Feb2021,	10:13:12 Control Spe	cifications:Control 1	
Show Elements: All Elements ~		Volume Units: 🔵 IN 🔘	ACRE-FT	Sorting: Alphabetic $ \smallsetminus $
Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume
Element	(MI2)	(CFS)		(ACRE-FT)
Anasazi-U3	0.0062	1.8	01Jan2021, 12:11	0.1
Calabacillas Arroyo	0.0433	35.7	01Jan2021, 12:12	2.0
EB-McMahon 1E	0.0115	8.5	01Jan2021, 12:12	0.4
EB-McMahon 1W	0.0000	0.0	01Jan2021, 00:00	0.0
EB-McMahon2	0.0133	10.5	01Jan2021, 12:15	0.5
EB-McMahon3	0.0150	4.5	01Jan2021, 12:15	0.1
EB-McMahon4	0.0009	1.2	01Jan2021, 12:12	0.1
Inlet 01	0.0164	4.2	01Jan2021, 12:12	0.2
Inlet 02	0.0150	4.5	01Jan2021, 12:14	0.1
OS-1B-FutureROW	0.0012	1.5	01Jan2021, 12:09	0.1
OS-1B-Unincorporated	0.0048	1.4	01Jan2021, 12:11	0.1
RW-1C-North	0.0063	8.1	01Jan2021, 12:09	0.4
RW-1C-Southeast	0.0018	2.3	01Jan2021, 12:09	0.1
RW-1C-Southwest	0.0053	6.8	01Jan2021, 12:09	0.3
RW-1D	0.0021	2.7	01Jan2021, 12:09	0.1
RW-1.3	0.0023	3.0	01Jan2021, 12:09	0.1
RW-4	0.0009	1.2	01Jan2021, 12:09	0.1
RW-5-North	0.0020	2.6	01Jan2021, 12:09	0.1
RW-5-South	0.0017	2.2	01Jan2021, 12:09	0.1
RW-6-North	0.0010	1.3	01Jan2021, 12:09	0.1
RW-6-South	0.0008	1.0	01Jan2021, 12:09	0.0
RW-7-North	0.0059	7.1	01Jan2021, 12:09	0.3
RW-7-South	0.0033	4.3	01Jan2021, 12:09	0.2
SDP-LT02	0.0233	11.9	01Jan2021, 12:11	0.5
SDP-LT03	0.0000	7.4	01Jan2021, 12:12	0.5
SDP-RT02	0.0200	9.6	01Jan2021, 12:13	0.4
SDP-RT03	0.0000	7.6	01Jan2021, 12:14	0.5
SDP-04	0.0433	21.1	01Jan2021, 12:11	1.0
SDP-05	0.0433	35.7	01Jan2021, 12:12	2.0
Universe Storm Drain	0.0023	3.0	01Jan2021, 12:09	0.1
WB-McMahon 1	0.0081	5.5	01Jan2021, 12:19	0.3
WB-McMahon2	0.0001	9.7	01Jan2021, 12:20	0.6
WB-McMahon3	0.0164	4.2	01Jan2021, 12:13	0.2
Wo menditorio	0.0101	714	013012021, 12,13	0.2

100-yr Storm:

🖽 Global Summary Results for Run "100yr"

Project: McMahon_Expansion Simulation Run: 100yr

Show Elements: All Elements >	npute Time:04Feb2021,	/olume Units: () IN () A	cifications:Control 1 ACRE-FT	Sorting: Alphabetic V
Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (ACRE-FT)
Anasazi-U3	0.0062	6.0	01Jan2021, 12:10	0.3
Calabacillas Arrovo	0.0433	69.4	01Jan2021, 12:12	3.6
B-McMahon 1E	0.0115	18.6	01Jan2021, 12:12	0.8
B-McMahon 1W	0.0	0.0	01Jan2021, 00:00	0.0
B-McMahon2	0.0133	22,3	01Jan2021, 12:15	1.0
B-McMahon3	0.0150	13.2	01Jan2021, 12:15	0.4
B-McMahon4	0.0009	2.2	01Jan2021, 12:12	0.1
nlet 01	0.0009	11.0	01Jan2021, 12:12	0.1
nlet 02	0.0150	13.2	01Jan2021, 12:12	0.5
DS-1B-FutureROW	0.0012	2.9	01Jan2021, 12:09	0.1
DS-1B-Unincorporated	0.0012	4.6	01Jan2021, 12:10	0.1
W-1C-North	0.0048	15.1	01Jan2021, 12:09	0.2
RW-1C-Southeast	0.0018	4.3	01Jan2021, 12:09	0.0
W-1C-Southwest	0.0018	12.7	01Jan2021, 12:09	0.2
RW-1D	0.0033	5.0	01Jan2021, 12:09	0.2
W-1.3	0.0021	5.5	· · · · · · · · · · · · · · · · · · ·	0.2
(W-1.5 (W-4	0.0023	2.2	01Jan2021, 12:09	0.2
W-5-North	0.0009	4.8	01Jan2021, 12:09	0.1
			01Jan2021, 12:09	
W-5-South	0.0017	4.1	01Jan2021, 12:09	0.2
RW-6-North	0.0010	2.4	01Jan2021, 12:09	0.1
RW-6-South	0.0008	1.9	01Jan2021, 12:09	0.1
RW-7-North	0.0059	13.5	01Jan2021, 12:09	0.5
RW-7-South	0.0033	7.9	01Jan2021, 12:09	0.3
SDP-LT02	0.0233	25.3	01Jan2021, 12:11	1.1
SDP-LT03	0.0	11.1	01Jan2021, 12:12	0.9
SDP-RT02	0.0200	22.2	01Jan2021, 12:13	0.9
DP-RT03	0.0	12.1	01Jan2021, 12:14	0.8
DP-04	0.0433	46.6	01Jan2021, 12:12	2.0
DP-05	0.0433	69.4	01Jan2021, 12:12	3.6
Jniverse Storm Drain	0.0023	5.5	01Jan2021, 12:09	0.2
VB-McMahon1	0.0081	12.5	01Jan2021, 12:19	0.5
VB-McMahon2	0.0144	20.1	01Jan2021, 12:20	1.1
WB-McMahon3	0.0164	11.0	01Jan2021, 12:13	0.5

- • ×

Attachment 2: Supporting Hydraulics

2-1 FlowMaster Reports

AECOM

Project Description Friction Method Manning Formula Solve For Normal Depth Input Data 0.0050 Discharge 9.20

Worksheet for EB-A, 10yr

Section Definitions

Station	Elevation
(ft)	(ft)
0+00.000	1.465
0+00.167	0.965
0+24.167	0.485
0+42.167	0.125
0+44.167	0.000
0+44.333	0.667
0+55.333	0.887
0+61.333	1.007
0+76.708	1.314

Roughness Segment Definitions

Start Station & Elevation	End Station & Elevation	Roughness Coefficient
0+00.000, 1.465)	(0+76.708, 1.314)	
Options		
Current Roughness Weighted Method	Pavlovskii's Method	
Open Channel Weighting Method	Pavlovskii's Method	
Closed Channel Weighting Method	Pavlovskii's Method	
Results		
Normal Depth	5.9	
Elevation Range	0.000 to 1.465 ft	
Flow Area	4.3	
Wetted Perimeter	20.938	
Hydraulic Radius	2.5	
Top Width	20.54	
Normal Depth	5.9	
Critical Depth	5.6	
Critical Slope	0.0075	
Velocity	2.15	
Velocity Head	0.072	
Specific Energy	0.5650	
Froude Number	0.829	
Flow Type	Subcritical	

GVF Input Data

McMahon2.fm8 2/2/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

GVF Input Data		
Downstream Depth	0.0	
Length	0.000	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0	
Profile Description	N/A	
Profile Headloss	0.00	
Downstream Velocity	0.00	
Upstream Velocity	0.00	
Normal Depth	5.9	
Critical Depth	5.6	
Channel Slope	0.0050	
Critical Slope	0.0075	

Worksheet for EB-A, 10yr

McMahon2.fm8 2/2/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Channel Slope Discharge 12.00

Worksheet for WB-A, 10yr

Section Definitions

Station	Elevation
(ft)	(ft)
0+00.000	4.039
0+11.375	1.196
0+21.375	0.996
0+37.825	0.667
0+37.992	0.000
0+39.992	0.125
0+57.992	0.485
0+69.992	0.725
0+70.158	1.225

Roughness Segment Definitions

Start Station & Elevation	End Station & Elevation	Roughness Coefficient	
0+00.000, 4.039)	(0+70.158, 1.225)		0.01
Options			
Current Roughness Weighted Method	Pavlovskii's Method		
Open Channel Weighting Method	Pavlovskii's Method		
Closed Channel Weighting Method	Pavlovskii's Method		
Results			
Normal Depth	6.4		
Elevation Range	0.000 to 4.039 ft		
Flow Area	5.2		
Wetted Perimeter	23.178		
Hydraulic Radius	2.7		
Top Width	22.75		
Normal Depth	6.4		
Critical Depth	6.1		
Critical Slope	0.0072		
Velocity	2.29		
Velocity Head	0.082		
Specific Energy	0.6189		
Froude Number	0.842		
Flow Type	Subcritical		

GVF Input Data

McMahon2.fm8 2/2/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

GVF Input Data		
Downstream Depth	0.0	
Length	0.000	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0	
Profile Description	N/A	
Profile Headloss	0.00	
Downstream Velocity	Infinity	
Upstream Velocity	Infinity	
Normal Depth	6.4	
Critical Depth	6.1	
Channel Slope	0.0050	
Critical Slope	0.0072	

Worksheet for WB-A, 10yr

McMahon2.fm8 2/2/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Worksheet for EB-B, 10yr

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Channel Slope	0.0122	
Discharge	10.50	

Section Definitions

Station (ft)	Elevation (ft)
0+00.000	0.933
0+00.333	0.600
0+12.333	0.360
0+30.333	0.000
0+31.083	2.667

Roughness Segment Definitions

Start Station & Elevation	End Station & Elevation	Roughness Coefficient
(0+00.000, 0.933)	(0+31.083, 2.667)	0.014

0 **.**:

Options	
Current Roughness Weighted Method	Pavlovskii's Method
Open Channel Weighting Method	Pavlovskii's Method
Closed Channel Weighting Method	Pavlovskii's Method
Results	
Normal Depth	4.1
Elevation Range	0.000 to 2.667 ft
Flow Area	2.9
Wetted Perimeter	17.450
Hydraulic Radius	2.0
Top Width	17.19
Normal Depth	4.1
Critical Depth	4.9
Critical Slope	0.0050
Velocity	3.57
Velocity Head	0.199
Specific Energy	0.5404
Froude Number	1.524
Flow Type	Supercritical
GVF Input Data	
Downstream Depth	0.0
Length	0.000
Number Of Steps	0

McMahon2.fm8 2/2/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

GVF Output Data		
Upstream Depth	0.0	
Profile Description	N/A	
Profile Headloss	0.00	
Downstream Velocity	Infinity	
Upstream Velocity	Infinity	
Normal Depth	4.1	
Critical Depth	4.9	
Channel Slope	0.0122	
Critical Slope	0.0050	

Worksheet for EB-B, 10yr

McMahon2.fm8 2/2/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Project Description Friction Method Manning Formula Solve For Normal Depth Input Data 0.0122 Discharge 9.70

Worksheet for WB-B, 10yr

Section Definitions

Station		Elevation	
(ft)		(ft)	
	0+00.000		2.667
	0+00.750		0.000
	0+18.750		0.360
	0+30.750		0.600
	0+31.083		0.933
	Roughness Segment Definitions	;	
Start Station & Elevation	End Station & Elevation	Roughness Coefficient	
(0+00.000, 2.667)	(0+31.083, 0.933)		0.014
Options			
Current Roughness Weighted Method	Pavlovskii's Method		
Open Channel Weighting Method	Pavlovskii's Method		
Closed Channel Weighting Method	Pavlovskii's Method		

Normal Depth	4.0	
Elevation Range	0.000 to 2.667 ft	
Flow Area	2.8	
Wetted Perimeter	16.950	
Hydraulic Radius	2.0	
Top Width	16.70	
Normal Depth	4.0	
Critical Depth	4.7	
Critical Slope	0.0050	
Velocity	3.50	
Velocity Head	0.190	
Specific Energy	0.5224	
Froude Number	1.514	
Flow Type	Supercritical	

Downstream Depth	0.0	
Length	0.000	
Number Of Steps	0	

McMahon2.fm8 2/2/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

GVF Output Data		
Upstream Depth	0.0	
Profile Description	N/A	
Profile Headloss	0.00	
Downstream Velocity	Infinity	
Upstream Velocity	Infinity	
Normal Depth	4.0	
Critical Depth	4.7	
Channel Slope	0.0122	
Critical Slope	0.0050	

Worksheet for WB-B, 10yr

McMahon2.fm8 2/2/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Project Description	
Friction Method	Manning Formula
Solve For	Normal Depth
Input Data	
Channel Slope	0.0171
Discharge	12.70

Worksheet for EB-C, 10yr

Section Definitions

Station	Elevation
(ft)	(ft)
0+00.000	1.225
0+00.167	0.725
0+12.167	0.485
0+30.167	0.125
0+32.167	0.000
0+32.333	0.667
0+48.783	0.996
0+54.783	1.116
0+70.158	1.423

Roughness Segment Definitions

Start Station & Elevation	End Station & Elevation	Roughness Coefficient	
0+00.000, 1.225)	(0+70.158, 1.423)		0.0
Options			
Current Roughness Weighted Method	Pavlovskii's Method		
Open Channel Weighting Method	Pavlovskii's Method		
Closed Channel Weighting Method	Pavlovskii's Method		
Results			
Normal Depth	5.4	_	
Elevation Range	0.000 to 1.423 ft		
Flow Area	3.4		
Wetted Perimeter	18.712		
Hydraulic Radius	2.2		
Top Width	18.35		
Normal Depth	5.4		
Critical Depth	6.2		
Critical Slope	0.0072		
Velocity	3.69		
Velocity Head	0.212		
Specific Energy	0.6619		
Froude Number	1.505		
Flow Type	Supercritical		

GVF Input Data

McMahon2.fm8 2/2/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

GVF Input Data		
Downstream Depth	0.0	
Length	0.000	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0	
Profile Description	N/A	
Profile Headloss	0.00	
Downstream Velocity	Infinity	
Upstream Velocity	Infinity	
Normal Depth	5.4	
Critical Depth	6.2	
Channel Slope	0.0171	
Critical Slope	0.0072	

Worksheet for EB-C, 10yr

McMahon2.fm8 2/2/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Project Description	
Friction Method	Manning Formula
Solve For	Normal Depth
Input Data	
Channel Slope	0.0171
Discharge	12.30

Worksheet for WB-C, 10yr

Section Definitions

Station (ft)	Elevation (ft)
0+00.000	4.984
0+11.375	1.196
0+21.375	0.996
0+37.825	0.667
0+37.992	0.000
0+39.992	0.125
0+57.992	0.485
0+69.992	0.725
0+70.158	1.225

Roughness Segment Definitions

Start Station & Elevation	End Station & Elevation	Roughness Coefficient	
(0+00.000, 4.984)	(0+70.158, 1.225)		0.0
Options			
Current Roughness Weighted Method	Pavlovskii's Method Pavlovskii's Method		
Open Channel Weighting Method Closed Channel Weighting Method	Pavlovskii's Method Pavlovskii's Method		
Results			
Normal Depth	5.3		
Elevation Range	0.000 to 4.984 ft		
Flow Area	3.4		
Wetted Perimeter	18.484		
Hydraulic Radius	2.2		
Top Width	18.13		
Normal Depth	5.3		
Critical Depth	6.1		
Critical Slope	0.0072		
Velocity	3.66		
Velocity Head	0.209		
Specific Energy	0.6541		
Froude Number	1.502		
Flow Type	Supercritical		

GVF Input Data

McMahon2.fm8 2/2/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

GVF Input Data		
Downstream Depth	0.0	
Length	0.000	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0	
Profile Description	N/A	
Profile Headloss	0.00	
Downstream Velocity	Infinity	
Upstream Velocity	Infinity	
Normal Depth	5.3	
Critical Depth	6.1	
Channel Slope	0.0171	
Critical Slope	0.0072	

Worksheet for WB-C, 10yr

McMahon2.fm8 2/2/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Project Description	
Solve For	Spread
Input Data	
Discharge	9.60
Gutter Width	2.50
Gutter Cross Slope	0.0625
Road Cross Slope	0.0200
Local Depression	2.8
Local Depression Width	25.0
Grate Width	2.10
Grate Length	13.400
Grate Type	P-50 mm x 100 mm (P-1-7/8"-4")
Clogging	50.0
Curb Opening Length	18.290
Opening Height	0.650
Curb Throat Type	Horizontal
Throat Incline Angle	90.00
Options	
Calculation Option	Use Both
Results	
Spread	11.734
Depth	4.1
Gutter Depression	1.3
Total Depression	4.1
Open Grate Area	11.3
Active Grate Weir Length	15.500

Worksheet for EB-D, 10yr, Inlets 05 and 06 in sump

Project Description	
Solve For	Spread
Input Data	
Discharge	11.90
Gutter Width	2.50
Gutter Cross Slope	0.0625
Road Cross Slope	0.0200
Local Depression	2.8
Local Depression Width	25.0
Grate Width	2.10
Grate Length	13.400
Grate Type	P-50 mm x 100 mm (P-1-7/8"-4")
Clogging	50.0
Curb Opening Length	18.290
Opening Height	0.650
Curb Throat Type	Horizontal
Throat Incline Angle	90.00
Options	
Calculation Option	Use Both
Results	
Spread	13.552
Depth	4.5
Gutter Depression	1.3
Total Depression	4.1
Open Grate Area	11.3
Active Grate Weir Length	15.500

Worksheet for WB-D, 10yr, Inlets 03 and 04 in sump

Worksheet for EB-E, 10yr

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Channel Slope	0.0500	
Discharge	5.50	

Section Definitions

Station	Elevation
(ft)	(ft)
0+00.000	1.225
0+00.167	0.725
0+12.167	0.485
0+30.167	0.125
0+32.167	0.000
0+32.333	0.667
0+48.783	0.996
0+54.783	1.116
0+70.158	1.423

Roughness Segment Definitions

Start Station & Elevation	End Station & Elevation	Roughness Coefficient	
0+00.000, 1.225)	(0+70.158, 1.423)		0.
Options			
Current Roughness Weighted Method	Pavlovskii's Method		
Open Channel Weighting Method	Pavlovskii's Method		
Closed Channel Weighting Method	Pavlovskii's Method		
Results			
Normal Depth	3.6		
Elevation Range	0.000 to 1.423 ft		
Flow Area	1.2		
Wetted Perimeter	10.887		
Hydraulic Radius	1.3		
Top Width	10.65		
Normal Depth	3.6		
Critical Depth	4.7		
Critical Slope	0.0080		
Velocity	4.53		
Velocity Head	0.319		
Specific Energy	0.6152		
Froude Number	2.364		
Flow Type	Supercritical		

GVF Input Data

McMahon2.fm8 2/2/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

GVF Input Data		
Downstream Depth	0.0	
Length	0.000	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0	
Profile Description	N/A	
Profile Headloss	0.00	
Downstream Velocity	Infinity	
Upstream Velocity	Infinity	
Normal Depth	3.6	
Critical Depth	4.7	
Channel Slope	0.0500	
Critical Slope	0.0080	

Worksheet for EB-E, 10yr

McMahon2.fm8 2/2/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Project Description Friction Method Manning Formula Solve For Normal Depth Input Data 0.0500 Discharge 7.10

Worksheet for WB-E, 10yr

Section Definitions

Station	Elevation
(ft)	(ft)
0+00.000	4.984
0+11.375	1.196
0+21.375	0.996
0+37.825	0.667
0+37.992	0.000
0+39.992	0.125
0+57.992	0.485
0+69.992	0.725
0+70.158	1.225

Roughness Segment Definitions

Start Station & Elevation	End Station & Elevation Roughness Coeffic	cient
(0+00.000, 4.984)	(0+70.158, 1.225)	0.01
Options		
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method	Pavlovskii's Method Pavlovskii's Method Pavlovskii's Method	
Results		_
Normal Depth	3.8	
Elevation Range	0.000 to 4.984 ft	
Flow Area	1.5	
Wetted Perimeter	12.069	
Hydraulic Radius	1.5	
Top Width	11.81	
Normal Depth	3.8	
Critical Depth	5.1	
Critical Slope	0.0077	
Velocity	4.82	
Velocity Head	0.360	
Specific Energy	0.6800	
Froude Number	2.403	
Flow Type	Supercritical	

GVF Input Data

McMahon2.fm8 2/2/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

GVF Input Data		
Downstream Depth	0.0	
Length	0.000	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0	
Profile Description	N/A	
Profile Headloss	0.00	
Downstream Velocity	Infinity	
Upstream Velocity	Infinity	
Normal Depth	3.8	
Critical Depth	5.1	
Channel Slope	0.0500	
Critical Slope	0.0077	

Worksheet for WB-E, 10yr

McMahon2.fm8 2/2/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Channel Slope	0.0050	
Discharge	19.80	

Worksheet for EB-A, 100yr

Section Definitions

Station	Elevation
(ft)	(ft)
0+00.000	1.465
0+00.167	0.965
0+24.167	0.485
0+42.167	0.125
0+44.167	0.000
0+44.333	0.667
0+55.333	0.887
0+61.333	1.007
0+76.708	1.314

Roughness Segment Definitions

Start Station & Elevation	End Station & Elevation Roughness Coefficient	
0+00.000, 1.465)	(0+76.708, 1.314)	0.0
Options		
Current Roughness Weighted Method Open Channel Weighting Method	Pavlovskii's Method Pavlovskii's Method	
Closed Channel Weighting Method	Pavlovskii's Method	
Results		
Normal Depth	7.6	
Elevation Range	0.000 to 1.465 ft	
Flow Area	7.6	
Wetted Perimeter	28.042	
Hydraulic Radius	3.3	
Top Width	27.54	
Normal Depth	7.6	
Critical Depth	7.2	
Critical Slope	0.0067	
Velocity	2.59	
Velocity Head	0.105	
Specific Energy	0.7372	
Froude Number	0.869	
Flow Type	Subcritical	

GVF Input Data

McMahon2.fm8 2/3/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

GVF Input Data		
Downstream Depth	0.0	
Length	0.000	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0	
Profile Description	N/A	
Profile Headloss	0.00	
Downstream Velocity	0.00	
Upstream Velocity	0.00	
Normal Depth	7.6	
Critical Depth	7.2	
Channel Slope	0.0050	
Critical Slope	0.0067	

Worksheet for EB-A, 100yr

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Channel Slope	0.0050	
Discharge	24.60	

Worksheet for WB-A, 100yr

Section Definitions

Station	Elevation
(ft)	(ft)
0+00.000	4.039
0+11.375	1.196
0+21.375	0.996
0+37.825	0.667
0+37.992	0.000
0+39.992	0.125
0+57.992	0.485
0+69.992	0.725
0+70.158	1.225

Roughness Segment Definitions

Start Station & Elevation	End Station & Elevation	Roughness Coefficient	
0+00.000, 4.039)	(0+70.158, 1.225)		0.
Options			
Current Roughness Weighted Method	Pavlovskii's Method		
Open Channel Weighting Method	Pavlovskii's Method		
Closed Channel Weighting Method	Pavlovskii's Method		
Results			
Normal Depth	8.2		
Elevation Range	0.000 to 4.039 ft		
Flow Area	9.1		
Wetted Perimeter	31.436		
Hydraulic Radius	3.5		
Top Width	30.91		
Normal Depth	8.2		
Critical Depth	7.8		
Critical Slope	0.0065		
Velocity	2.70		
Velocity Head	0.114		
Specific Energy	0.7969		
Froude Number	0.878		
Flow Type	Subcritical		

GVF Input Data

McMahon2.fm8 2/3/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

GVF Input Data		
Downstream Depth	0.0	
Length	0.000	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0	
Profile Description	N/A	
Profile Headloss	0.00	
Downstream Velocity	Infinity	
Upstream Velocity	Infinity	
Normal Depth	8.2	
Critical Depth	7.8	
Channel Slope	0.0050	
Critical Slope	0.0065	

Worksheet for WB-A, 100yr

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Channel Slope	0.0122	
Discharge	22.30	

Worksheet for EB-B, 100yr

Section Definitions

Station (ft)	Elevation (ft)
0+00.000	0.933
0+00.333	0.600
0+12.333	0.360
0+30.333	0.000
0+31.083	2.667

Roughness Segment Definitions

Start Station & Elevation	End Station & Elevation	Roughness Coefficient	
(0+00.000, 0.933)	(0+31.083, 2.667)		0.014

Onti

Options	
Current Roughness Weighted Method	Pavlovskii's Method
Open Channel Weighting Method	Pavlovskii's Method
Closed Channel Weighting Method	Pavlovskii's Method
Results	
Normal Depth	5.4
Elevation Range	0.000 to 2.667 ft
Flow Area	5.2
Wetted Perimeter	23.144
Hydraulic Radius	2.7
Top Width	22.80
Normal Depth	5.4
Critical Depth	6.6
Critical Slope	0.0045
Velocity	4.32
Velocity Head	0.289
Specific Energy	0.7428
Froude Number	1.598
Flow Type	Supercritical
GVF Input Data	
Downstream Depth	0.0
Length	0.000
Number Of Steps	0

McMahon2.fm8 2/3/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

GVF Output Data		
Upstream Depth	0.0	
Profile Description	N/A	
Profile Headloss	0.00	
Downstream Velocity	Infinity	
Upstream Velocity	Infinity	
Normal Depth	5.4	
Critical Depth	6.6	
Channel Slope	0.0122	
Critical Slope	0.0045	

Worksheet for EB-B, 100yr

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Channel Slope	0.0122	
Discharge	20.10	

Worksheet for WB-B, 100yr

Section Definitions

Station (ft)	Elevation (ft)
0+00.000	2.667
0+00.750	0.000
0+18.750	0.360
0+30.750	0.600
0+31.083	0.933

Roughness Segment Definitions

Start Station & Elevation	End Station & Elevation	Roughness Coefficient	
(0+00.000, 2.667)	(0+31.083, 0.933)		0.014

~

Options	
Current Roughness Weighted Method	Pavlovskii's Method
Open Channel Weighting Method	Pavlovskii's Method
Closed Channel Weighting Method	Pavlovskii's Method
Results	
Normal Depth	5.2
Elevation Range	0.000 to 2.667 ft
Flow Area	4.8
Wetted Perimeter	22.255
Hydraulic Radius	2.6
Top Width	21.92
Normal Depth	5.2
Critical Depth	6.3
Critical Slope	0.0046
Velocity	4.21
Velocity Head	0.275
Specific Energy	0.7109
Froude Number	1.588
Flow Type	Supercritical
GVF Input Data	
Downstream Depth	0.0
Length	0.000
Number Of Steps	0

McMahon2.fm8 2/3/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

GVF Output Data		
Upstream Depth	0.0	
Profile Description	N/A	
Profile Headloss	0.00	
Downstream Velocity	Infinity	
Upstream Velocity	Infinity	
Normal Depth	5.2	
Critical Depth	6.3	
Channel Slope	0.0122	
Critical Slope	0.0046	

Worksheet for WB-B, 100yr

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Channel Slope	0.0171	
Discharge	26.40	

Worksheet for EB-C, 100yr

Section Definitions

Station	Flouration
Station (ft)	Elevation (ft)
(11)	(11)
0+00.000	1.225
0+00.167	0.725
0+12.167	0.485
0+30.167	0.125
0+32.167	0.000
0+32.333	0.667
0+48.783	0.996
0+54.783	1.116
0+70.158	1.423

Roughness Segment Definitions

Start Station & Elevation	End Station & Elevation	Roughness Coefficient	
0+00.000, 1.225)	(0+70.158, 1.423)		0.0
Options			
Current Roughness Weighted Method	Pavlovskii's Method		
Open Channel Weighting Method	Pavlovskii's Method		
Closed Channel Weighting Method	Pavlovskii's Method		
Results			
Normal Depth	6.8		
Elevation Range	0.000 to 1.423 ft		
Flow Area	6.0		
Wetted Perimeter	24.758		
Hydraulic Radius	2.9		
Top Width	24.31		
Normal Depth	6.8		
Critical Depth	8.0		
Critical Slope	0.0065		
Velocity	4.43		
Velocity Head	0.304		
Specific Energy	0.8728		
Froude Number	1.575		
Flow Type	Supercritical		

GVF Input Data

McMahon2.fm8 2/3/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

GVF Input Data		
Downstream Depth	0.0	
Length	0.000	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0	
Profile Description	N/A	
Profile Headloss	0.00	
Downstream Velocity	Infinity	
Upstream Velocity	Infinity	
Normal Depth	6.8	
Critical Depth	8.0	
Channel Slope	0.0171	
Critical Slope	0.0065	

Worksheet for EB-C, 100yr

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Channel Slope	0.0171	
Discharge	24.90	

Worksheet for WB-C, 100yr

Section Definitions

Station (ft)	Elevation (ft)
0+00.000	4.984
0+11.375	1.196
0+21.375	0.996
0+37.825	0.667
0+37.992	0.000
0+39.992	0.125
0+57.992	0.485
0+69.992	0.725
0+70.158	1.225

Roughness Segment Definitions

Start Station & Elevation	End Station & Elevation	Roughness Coefficient	
0+00.000, 4.984)	(0+70.158, 1.225)		0.0
Options			
Current Roughness Weighted Method	Pavlovskii's Method		
Open Channel Weighting Method	Pavlovskii's Method		
Closed Channel Weighting Method	Pavlovskii's Method		
Results			
Normal Depth	6.7		
Elevation Range	0.000 to 4.984 ft		
Flow Area	5.7		
Wetted Perimeter	24.222		
Hydraulic Radius	2.8		
Top Width	23.78		
Normal Depth	6.7		
Critical Depth	7.8		
Critical Slope	0.0065		
Velocity	4.36		
Velocity Head	0.295		
Specific Energy	0.8531		
Froude Number	1.568		
Flow Type	Supercritical		

GVF Input Data

McMahon2.fm8 2/3/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.00.00.02] Page 1 of 2

GVF Input Data		
Downstream Depth	0.0	
Length	0.000	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0	
Profile Description	N/A	
Profile Headloss	0.00	
Downstream Velocity	Infinity	
Upstream Velocity	Infinity	
Normal Depth	6.7	
Critical Depth	7.8	
Channel Slope	0.0171	
Critical Slope	0.0065	

Worksheet for WB-C, 100yr

Project Description	
Solve For	Spread
Input Data	
Discharge	22.20
Gutter Width	2.50
Gutter Cross Slope	0.0625
Road Cross Slope	0.0200
Local Depression	2.8
Local Depression Width	25.0
Grate Width	2.10
Grate Length	13.400
Grate Type	P-50 mm x 100 mm (P-1-7/8"-4")
Clogging	50.0
Curb Opening Length	18.290
Opening Height	0.650
Curb Throat Type	Horizontal
Throat Incline Angle	90.00
Options	
Calculation Option	Use Both
Results	
Spread	20.612
Depth	6.2
Gutter Depression	1.3
Total Depression	4.1
Open Grate Area	11.3
Active Grate Weir Length	15.500

Worksheet for EB-D, 100yr, Inlets 05 and 06 in sump

Project Description		
Solve For	Spread	
Input Data		
Discharge	25.30	
Gutter Width	2.50	
Gutter Cross Slope	0.0625	
Road Cross Slope	0.0200	
Local Depression	2.8	
Local Depression Width	25.0	
Grate Width	2.10	
Grate Length	13.400	
Grate Type	P-50 mm x 100 mm (P-1-7/8"-4")	
Clogging	50.0	
Curb Opening Length	18.290	
Opening Height	0.650	
Curb Throat Type	Horizontal	
Throat Incline Angle	90.00	
Options		
Calculation Option	Use Both	
Results		
Spread	22.508	
Depth	6.7	
Gutter Depression	1.3	
Total Depression	4.1	
Open Grate Area	11.3	
Active Grate Weir Length	15.500	

Worksheet for WB-D, 100yr, Inlets 03 and 04 in sump

Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Channel Slope Discharge 10.10

Worksheet for EB-E, 100yr

Section Definitions

Station	Elevation
(ft)	(ft)
0+00.000	1.225
0+00.167	0.725
0+12.167	0.485
0+30.167	0.125
0+32.167	0.000
0+32.333	0.667
0+48.783	0.996
0+54.783	1.116
0+70.158	1.423

Roughness Segment Definitions

Start Station & Elevation	End Station & Elevation	Roughness Coefficient	
0+00.000, 1.225)	(0+70.158, 1.423)		0.0
Options			
Current Roughness Weighted Method	Pavlovskii's Method		
Open Channel Weighting Method	Pavlovskii's Method		
Closed Channel Weighting Method	Pavlovskii's Method		
Results			
Normal Depth	4.3		
Elevation Range	0.000 to 1.423 ft		
Flow Area	1.9		
Wetted Perimeter	13.885		
Hydraulic Radius	1.7		
Top Width	13.60		
Normal Depth	4.3		
Critical Depth	5.7		
Critical Slope	0.0074		
Velocity	5.24		
Velocity Head	0.427		
Specific Energy	0.7824		
Froude Number	2.456		
Flow Type	Supercritical		

GVF Input Data

McMahon2.fm8 2/3/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.00.00.02] Page 1 of 2

GVF Input Data		
Downstream Depth	0.0	
Length	0.000	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0	
Profile Description	N/A	
Profile Headloss	0.00	
Downstream Velocity	Infinity	
Upstream Velocity	Infinity	
Normal Depth	4.3	
Critical Depth	5.7	
Channel Slope	0.0500	
Critical Slope	0.0074	

Worksheet for EB-E, 100yr

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Channel Slope	0.0500	
Discharge	13.50	

Worksheet for WB-E, 100yr

Section Definitions

Station	Elevation
(ft)	(ft)
0+00.000	4.984
0+11.375	1.196
0+21.375	0.996
0+37.825	0.667
0+37.992	0.000
0+39.992	0.125
0+57.992	0.485
0+69.992	0.725
0+70.158	1.225

Roughness Segment Definitions

Start Station & Elevation	End Station & Elevation	Roughness Coefficient				
0+00.000, 4.984)	(0+70.158, 1.225)					
Options						
Current Roughness Weighted Method	Pavlovskii's Method					
Open Channel Weighting Method	Pavlovskii's Method					
Closed Channel Weighting Method	Pavlovskii's Method					
Results						
Normal Depth	4.7					
Elevation Range	0.000 to 4.984 ft					
Flow Area	2.4					
Wetted Perimeter	15.566					
Hydraulic Radius	1.9					
Top Width	15.26					
Normal Depth	4.7					
Critical Depth	6.3					
Critical Slope	0.0071					
Velocity	5.62					
Velocity Head	0.491					
Specific Energy	0.8791					
Froude Number	2.497					
Flow Type	Supercritical					

GVF Input Data

McMahon2.fm8 2/3/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.00.00.02] Page 1 of 2

GVF Input Data		
Downstream Depth	0.0	
Length	0.000	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0	
Profile Description	N/A	
Profile Headloss	0.00	
Downstream Velocity	Infinity	
Upstream Velocity	Infinity	
Normal Depth	4.7	
Critical Depth	6.3	
Channel Slope	0.0500	
Critical Slope	0.0071	

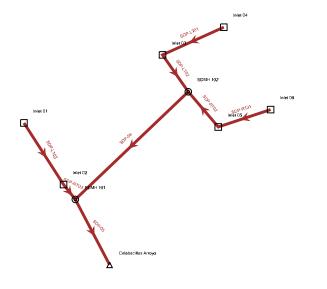
Worksheet for WB-E, 100yr

Solve For	Efficiency
	,
Input Data	
Discharge	10.00
Slope	0.0171
Gutter Width	2.50
Gutter Cross Slope	0.0625
Road Cross Slope	0.0200
Roughness Coefficient	0.016
Local Depression	2.8
Local Depression Width	25.0
Grate Width	2.10
Grate Length	3.300
Grate Type	P-50 mm x 100 mm (P-1-7/8"-4")
Clogging	0.0
Curb Opening Length	7.500
Options	
•	
Calculation Option	Use Both
Grate Flow Option	Exclude None
Results	
Efficiency	67.18
Intercepted Flow	6.72
Bypass Flow	3.28
Spread	14.729
Depth	4.8
Flow Area	2.3
Gutter Depression	1.3
Total Depression	4.1
Velocity	4.34
Splash Over Velocity	6.53
Frontal Flow Factor	1.000
Side Flow Factor	0.129
Grate Flow Ratio	0.407
Equivalent Cross Slope	0.0834
	3.300
Active Grate Length	0.000
Active Grate Length Length Factor	0.170

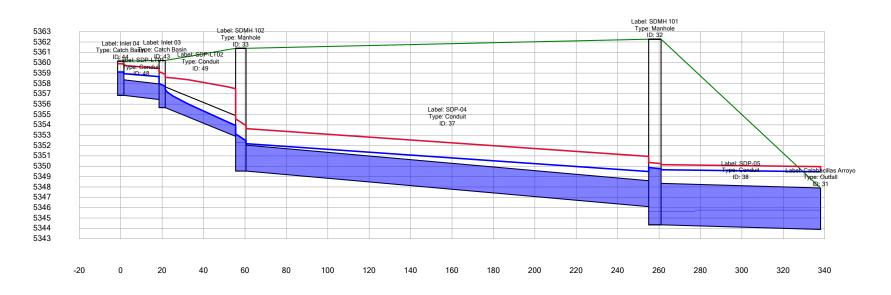
Worksheet for Inlets 01 and 02 Rating Table

Project Description			
Solve For	Efficiency		
nput Data			
Discharge	10.00		
Slope	0.0171		
Gutter Width	2.50		
Gutter Cross Slope	0.0625		
Road Cross Slope	0.0200		
Roughness Coefficient	0.016		
Local Depression	2.8		
Local Depression Width	25.0		
Grate Width	2.10		
Grate Length	3.300		
Grate Type	P-50 mm x 100) mm (P-1-7/8"-4")	
Clogging	0.0		
Curb Opening Length	7.500		
Discharge		Efficiency	Intercepted Flow
(cfs)		(%)	(cfs)
	0.00		
	5.00	83.06	
	10.00	67.18	
	15.00	58.27	
	20.00 25.00	52.39 48.13	
	25.00 30.00	48.13 44.85	
		44.85	
		10.00	
	35.00 40.00	42.23 40.06	

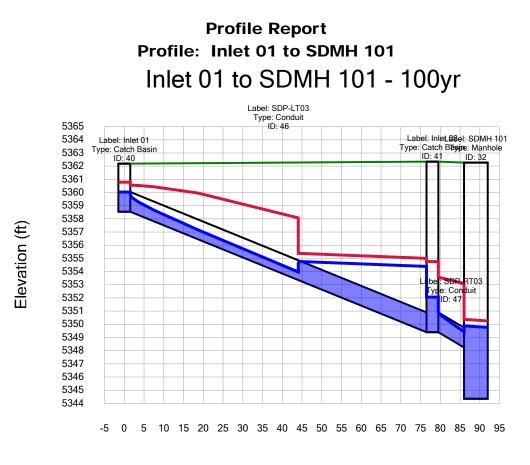
Rating Table for Inlets 01 and 02 Rating Table



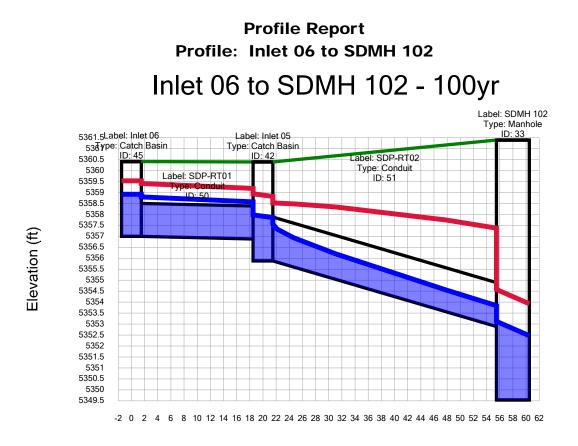
2-2 StormCAD Reports


AECOM

Scenario: 100yr



McMahon.stsw 2/3/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley StormCAD V8i (SELECTseries 5) [08.11.05.113] Page 1 of 1


Profile Report Profile: Inlet 04 to Calabacillas Arroyo Inlet 04 to Calabacillas Arroyo - 100yr

Station (ft)

Station (ft)

Station (ft)

Analysis Results Scenario: 100yr

Engineer Company 12/29/2020 Scenario Summary 52 100yr

Notes Active Topology Base Active Topology User Data Extensions Base User Data Extensions Physical Base Physical **Boundary Condition** Base Boundary Condition **Initial Settings** Base Initial Settings Hydrology Base Hydrology Output Base Output Infiltration and Inflow Base Infiltration and Inflow Rainfall Runoff Base Rainfall Runoff Water Quality Base Water Quality Sanitary Loading Base Sanitary Loading Headloss Base Headloss Operational Base Operational Design Base Design System Flows Base System Flows SCADA Base SCADA Solver Calculation Options **Base Calculation Options**

Network Inventory

Title

Date

Notes

ID

Label

,			
Conduits	8	Manholes	2
-Circle	8	Taps	0
-Box	0	Transitions	0
-Ellipse	0	Cross Sections	0
-Virtual	0	Outfalls	1
-Irregular Channel	0	Catchments	0
-Trapezoidal Channel	0	Low Impact Development Controls	0
-Triangular Channel	0	Ponds	0
-Rectangular Channel	0	Pond Outlet Structures	0
-Pipe-Arch	0	Headwalls	0

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley StormCAD V8i (SELECTseries 5) [08.11.05.113] Page 1 of 4

Analysis Results Scenario: 100yr

Network Inventory			
Laterals	0	Pumps	0
Channels	0	Wet Wells	0
Gutters	0	Pressure Junctions	0
Pressure Pipes	0	SCADA Elements	0
Catch Basins	6	Pump Stations	0
-Maximum Capacity	0	Variable Speed Pump Batteries	0
-Full Capture	6	Air Valves	0
-Catalog Inlet	0		

Outfall elements for network with outlet: <None>

Label	System Additional Flow (cfs)	System Known Flow (cfs)	System Rational Flow (cfs)	System Intensity (in/h)	System Flow Time (min)	System CA (acres)
Calabacillas Arroyo	34.85	35.85	0.00	11.972	0.669	0.000

Conduit elements for network with outlet: Calabacillas Arroyo

Label	Section Type	Conduit Description	Length (Unified) (ft)	Number of Barrels	Slope (Calculated) (ft/ft)	Flow (cfs)	Velocity (ft/s)	Invert (Start) (ft)	Invert (Stop) (ft)	Hydraulic Grade Line (In) (ft)
SDP-04	Circle	Circle - 30.0 in	200.0	1	0.017	47.50	9.68	5,349.54	5,346.10	5,352.18
SDP-05	Circle	Circle - 48.0 in	80.0	1	0.006	70.70	5.63	5,344.35	5,343.90	5,349.66
SDP-LT03	Circle	Circle - 18.0 in	78.0	1	0.117	11.10	17.92	5,358.54	5,349.40	5,359.81
SDP-RT03	Circle	Circle - 18.0 in	11.0	1	0.105	23.20	20.75	5,349.40	5,348.24	5,350.88
SDP-LT01	Circle	Circle - 18.0 in	20.0	1	0.020	12.65	7.16	5,356.85	5,356.45	5,358.94
SDP-LT02	Circle	Circle - 24.0 in	38.0	1	0.073	25.30	18.55	5,355.67	5,352.89	5,357.44
SDP-RT01	Circle	Circle - 18.0 in	20.0	1	0.006	11.10	6.28	5,357.00	5,356.88	5,358.80
SDP-RT02	Circle	Circle - 24.0 in	38.0	1	0.079	22.20	18.41	5,355.88	5,352.89	5,357.56

Hydraulic

Grade Line (Out)

(ft) 5,349.50 5,349.47 5,354.39 5,349.44

McMahon.stsw 2/3/2021

Analysis Results

Scenario: 100yr

Conduit elements for network with outlet: Calabacillas Arroyo

Hydraulic Grade Line (Out)
(ft)
5,358.65
5,353.94
5,358.57
5,353.84

Catch Basin elements for network with outlet: Calabacillas Arroyo

Label	Inlet Type	Flow (Captured) (cfs)	Flow (Total Bypassed) (cfs)	Capture Efficiency (Calculated) (%)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)	Headloss (ft)	Headloss Method
Inlet 01	Full Capture	0.00	0.00	100.0	5,360.04	5,360.04	0.22	HEC-22 Energy (Third Edition)
Inlet 02	Full Capture	0.00	0.00	100.0	5,352.07	5,352.07	1.18	HEC-22 Energy (Third Edition)
Inlet 05	Full Capture	0.00	0.00	100.0	5,357.98	5,357.86	0.41	HEC-22 Energy (Third Edition)
Inlet 03	Full Capture	0.00	0.00	100.0	5,357.98	5,357.73	0.54	HEC-22 Energy (Third Edition)
Inlet 04	Full Capture	0.00	0.00	100.0	5,359.10	5,359.10	0.16	HEC-22 Energy (Third Edition)
Inlet 06	Full Capture	0.00	0.00	100.0	5,358.92	5,358.92	0.12	HEC-22 Energy (Third Edition)

Manhole elements for network with outlet: Calabacillas Arroyo

Label	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)	Headloss (ft)	Headloss Method	System Additional Flow (cfs)	System Known Flow (cfs)	System Rational Flow (cfs)	System Intensity (in/h)	System Flow Time (min)	System CA (acres)
-------	---	--	------------------	--------------------	------------------------------------	-------------------------------	----------------------------------	-------------------------------	------------------------------	----------------------

McMahon.stsw 2/3/2021

Analysis Results

Scenario: 100yr

Manhole elements for network with outlet: Calabacillas Arroyo

Label	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)	Headloss (ft)	Headloss Method	System Additional Flow (cfs)	System Known Flow (cfs)	System Rational Flow (cfs)	System Intensity (in/h)	System Flow Time (min)	System CA (acres)
SDMH 101	5,349.88	5,349.76	0.21	HEC-22 Energy (Third Edition)	34.85	35.85	0.00	8.000	0.432	0.000
SDMH 102	5,353.12	5,352.47	0.94	HEC-22 Energy (Third Edition)	23.75	23.75	0.00	8.000	0.087	0.000

Label	Start Node	Stop Node	Length (Unified) (ft)	Flow (cfs)	Velocity (ft/s)	Invert (Start) (ft)	Invert (Stop) (ft)	Slope (Calculated) (ft/ft)	Elevation Ground (Start) (ft)	Elevation Ground (Stop) (ft)
SDP-04	SDMH 102	SDMH 101	200.0	47.50	9.68	5,349.54	5,346.10	0.017	5,361.39	5,362.27
SDP-05	SDMH 101	Calabacillas Arroy	vo 80.0	70.70	5.63	5,344.35	5,343.90	0.006	5,362.27	5,347.90
SDP-LT03	Inlet 01	Inlet 02	78.0	11.10	17.92	5,358.54	5,349.40	0.117	5,362.19	5,362.34
SDP-RT03	Inlet 02	SDMH 101	11.0	23.20	20.75	5,349.40	5,348.24	0.105	5,362.34	5,362.27
SDP-LT01	Inlet 04	Inlet 03	20.0	12.65	7.16	5,356.85	5,356.45	0.020	5,360.16	5,360.22
SDP-LT02	Inlet 03	SDMH 102	38.0	25.30	18.55	5,355.67	5,352.89	0.073	5,360.22	5,361.39
SDP-RT01	Inlet 06	Inlet 05	20.0	11.10	6.28	5,357.00	5,356.88	0.006	5,360.41	5,360.39
SDP-RT02	Inlet 05	SDMH 102	38.0	22.20	18.41	5,355.88	5,352.89	0.079	5,360.39	5,361.39
Energy Grade Line (In) (ft)	Energy Grade Line (Out) (ft)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)							
5,353.63	5,350.95	5,352.18	5,349.50							
5,350.16	5,349.96	5,349.66	5,349.47							
5,360.56	5,355.00	5,359.81	5,354.39							
5,353.57	5,351.44	5,350.88	5,349.44							
5,359.74	5,359.45	5,358.94	5,358.65							
5,358.59	5,355.81	5,357.44	5,353.94							
5,359.41	5,359.19	5,358.80	5,358.57							
5,358.52	5,354.96	5,357.56	5,353.84							

Conduit FlexTable: Combined Pipe/Node Report

Inlets:

Name	Type	Existing or	Q100	TC	FL	Invert Out
Name	туре	Proposed?	cfs	ft	ft	ft
Inlet 01	Single-A on grade	Existing	11.10	5363.01	5362.19	5358.54
Inlet 02	Single-A on grade	Proposed	12.10	5363.01	5362.34	5349.40
Inlet 03	Double-C in sump	Existing	12.65	5361.06	5360.22	5355.67
Inlet 04	Double-A in sump	Existing	12.65	5361.08	5360.16	5356.85
Inlet 05	Double-C in sump	Proposed	11.10	5361.06	5360.39	5355.88
Inlet 06	Double-A in sump	Proposed	11.10	5361.08	5360.41	5357.00

Elevations:

From Plans From As-Built Survey Proposed

Manholes:

Name	Turno	Existing or	Q100	Rim	Invert Out	
Name	Туре	Proposed?	cfs	ft	ft	
SDMH 101	6' dia Type E	Existing	70.70	5362.27	5344.35	
SDMH 102	5' dia Type E	Existing	47.50	5361.39	5349.54	

Pipes:

Name	Туре	Existing or Proposed?	Q100	Invert Up	Invert Down	Diameter	Length	Slope, from plans	Slope, calculated	Upstream Element	Downstream Element
		Proposed!	cfs	ft	ft	ft	ft	ft/ft	ft/ft		
SDP-LT01	CL-III RCP	Existing	12.65	5356.85	5356.45	1.5	20	0.0100	0.0200	Inlet 04	Inlet 03
SDP-LT02	CL-III RCP	Existing	25.30	5355.67	5352.89	2	38	0.0758	0.0732	Inlet 03	SDMH 102
SDP-RT01	CL-III RCP	Proposed	11.10	5357.00	5356.88	1.5	20	0.0060	0.0060	Inlet 06	Inlet 05
SDP-RT02	CL-III RCP	Proposed	22.20	5355.88	5352.89	2	38	0.0758	0.0787	Inlet 05	SDMH 102
SDP-03*	CL-III RCP	Existing	11.10	5358.54	5348.24	1.5	90	0.1200	0.1144	Inlet 01	SDMH 101
SDP-LT03*	CL-III RCP	Modified	11.10	5358.54	5349.40	1.5	78	0.1200	0.1167	Inlet 01	Inlet 02
SDP-RT03*	CL-III RCP	Modified	23.20	5349.40	5348.24	1.5	11	0.1200	0.1098	Inlet 02	SDMH 101
SDP-04	CL-IV RCP	Existing	47.50	5349.54	5346.10	2.5	200	0.0205	0.0172	SDMH 102	SDMH 101
SDP-05	CL-IV RCP	Existing	70.70	5344.35	5343.90	4	80	0.0050	0.0056	SDMH 101	Calabacillas

*as currently proposed, SDP-03 will be cut to accommodate Inlet 02, creating SDP-LT03 and SDP-RT03

Attachment 3: Electronic Files

- 3-1 HEC-HMS Model
- 3-2 FlowMaster Workbook
 - 3-3 StormCAD Model