

November 12, 1996

Martin J. Chávez, Mayor

Kent M. Whitman, PE Community Science Corp P.O. Box 1328 Corrales, NM 87048

RE:

DRAINAGE REPORT FOR TUSCANY SUBDIVISION, UNIT 3 (A-11/D1) RECEIVED OCTOBER 31, 1996 FOR FINAL PLAT & WORK ORDER ENGINEER'S STAMP DATED JULY 16, 1996, REV SEPT 9th /96

Dear Mr. Whitman:

Based on the information included in the submittal referenced above, City Hydrology accepts the drainage report for work order & final plat.

Engineer's Certification of grading & drainage per DPM checklist must be accepted by City Hydrology before the Financial Guaranty will be released.

It is City Hydrology's understanding that DRB has not approved the Amended Grading Plan, dated 8/6/96. The DRB approved Grading Plan is dated, 4-22-96.

If you have any questions about this project, You may contact me at 768-2727.

Sincerely,

John P. Curtin, P.E. Civil Engineer/Hydrology

c: Andrew Garcia

Fred Aguirre, DRB 95-41

Stan Strickman, Curb West Inc, 6301 Indian School NE #680, 87110

Good for You, Albuquerque!

whin

August 12, 1996

Martin J. Chávez, Mayor

Bo K. Johnson, PE Bokay Construction/Management 5905 Azuelo Ct NW Albuquerque, NM 87120

RE:

ENGINEER'S CERTIFICATION FOR TUSCANY SUBD, UNIT 1 (A-11/D1)
RECEIVED AUGUST 9, 1996 FOR FINANCIAL GUARANTY RELEASE
ENGINEER'S STAMP DATED 8/08/96

Dear Mr. Johnson:

Based on the information included in the submittal referenced above, City Hydrology accepts the Engineer's Certification for financial guaranty release.

Contact Terri Martin to obtain the Financial Guaranty Release for City Project Number 5208.91.

Since there are no rear yard ponds indicated on the approved grading & drainage plan, it is City Hydrology's understanding that all lots must drain to the street. Because the Engineer's Certification is the document used to resolve any complaints, it would be helpful to have a sharp, crisp blueprint or black line copy in the file instead of a bleary xerox copy.

If I can be of further assistance, You may contact me at 768-2727.

Sincerely,

John P. Curtin, P.E.

Civil Engineer/Hydro ogy

c: Andrew Garcia Fred Aguirre

Terri Martin, CPN 5208.91

Stan Strickman, Curb West Inc, 6301 Indian School NE #680, 87110

Good for You, Albuquerque!

City of Albuquerque

P. O. BOX 1293 ALBUQUERQUE, NEW MEXICO 87103 PUBLIC WORKS DEPARTMENT

August 8, 1996

CERTIFICATE OF WORK ORDER COMPLETION

Charles Haege!in Curb Inc. 6301 Indian School Rd. N.E. Albuquerque, NM 87110

RE: TUSCANY SUBDIVISION, PROJECT NO. 5208.91 MAP No. A-11/A-12

Dear Sir:

This is to certify that the City of Albuquerque accepts Project No. 5208.91 as being completed according to approved plans and construction specifications. Please be advised this certificate of completion and acceptance shall only become effective upon final plat approval and filing in the office of the Bernalillo County Clerk's Office.

The project is described as follows:

Asphalt paving, curb and gutter, sidewalks and storm drain improvements along Bandalier Drive, Napoli Place, Sicily Road, Milano Street, Palermo Street and Tuscany Court. Also included in this project was some extensive bank stabilization along the north and west bank of the Calabacillas Arroyo directly adjacent to Tuscany Unit One. This included soil cement and rip rap work along this area. Water and sewer improvements were also done in this area at the direction of New Mexico Utilities Inc.

The contractor's correction period began the date of this letter and is effective for a period of one (1) year.

Sincerely,

Russell B. Givler, P.E.

Chief Construction Engineer,

Engineering Group

Public Works Department

June 14, 1996

Martin J. Chávez, Mayor

Thomas J. Bellon Community Science Corp P.O. Box 1328 Corrales, NM 87048

RE:

AMENDED GRADING PLAN FOR TUSCANY SUBD, UNIT 2 (A-11/D1)
RECEIVED MAY 22, 1996 FOR ROUGH GRADING, W.O. & FINAL PLAT
ENGINEER'S STAMP DATED 5-13-96

Dear Mr. Bellon:

Based on the information included in the submittal referenced above, City Hydrology accepts the amended grading plan for Rough Grading, Work Order & Final Plat.

Engineer's Certification of grading & drainage per DPM checklist must be accepted by City Hydrology before the Financial Guaranty will be released.

Revise Section A-A to indicate the interim condition that is certified. There are no PDEs indicated on the Plat. Typically in this unit, the downhill setback is 15' instead of 5'. It appears that additional retaining walls or slopes may be required to achieve the proposed grades along the border between Unit 2 & Unit 3.

If you have any questions about this project, You may contact me at 768-2727.

Sincerely,

John P. Curtin, P.E. Civil Engineer/Hydrology

1. Custin-

c: Andrew Garcia

Fred Aguirre, DRB 95-41

Stan Strickman, Curb West Inc, 6301 Indian School NE #680, 87110

Good for You, Albuquerque!

May 10, 1996

Martin J. Chávez, Mayor

Thomas J. Bellon Community Science Corp P.O. Box 1328 Corrales, NM 87043

RE:

GRADING PLAN FOR TUSCANY SUBDIVISION, UNIT 3 (A-11/D1) RECEIVED APRIL 24, 1996 FOR R GRADING & FINAL PLAT

ENGINEER'S STAMP DATED 4-22-96

Dear Mr. Bellon:

Based on the information included in the submittal referenced above, City Hydrology accepts the Grading Plan, dated 4-22-96, for Rough Grading. The following comments must be addressed before the Grading Plan will be accepted for Final Plat:

Submit the street hydraulics & final storm drain design. Indicate the interim condition on Section A-A. Typically in this unit, the downhill setback is 15' instead of 5'. The typical garden wall detail must not have turned blocks.

If you have any questions about this project, You may contact me at 768-2727.

Sincerely,

John P. Curtin, P.E.

Civil Engineer/Hydrology

c: Andrew Garcia

Fred Aguirre, DRB 95-41

Stan Strickman, Curb West Inc. 6301 Indian School NE #680, 87110

Custin

City of Albuquerque

P.O. BOX 1293 ALBUQUERQUE, NEW MEXICO 87103

April 8, 1996

Thomas J. Bellon **Community Science Corp** P.O. Box 1328 Corrales, NM 87048

DRAINAGE REPORT FOR TUSCANY SUBDIVISION, UNIT 2 (A-11/D1) RE:

RECEIVED MARCH 13, 1996 FOR R GRADING & FINAL PLAT

ENGINEER'S STAMP DATED 3-11-96

Dear Mr. Bellon:

Based on the information included in the submittal referenced above, City Hydrology accepts the Drainage Report for Work Order and the Grading Plan, dated 3-8-96, for Rough Grading. The following comments must be addressed before the Grading Plan will be accepted for Final Plat:

Indicate how the back of sidewalk will be raised to .6' above top of curb along Bandelier. C.O.A. Spec Section 1012 requires gravel mulch on slopes steeper than 3h:1v. Modify Section A-A to indicate the situation between Lots 19 & 20, Block 8. Indicate both the final and interim conditions.

Modifying the Master Plan AHYMO run adds a lot of useless bulk to the report. Only 5 input pages out of 16 pertain to this unit. The AHYMO run for this unit should represent the proposed conditions instead of the approximations available at the master plan stage. Avoid excessive routing. Hydrograph 225.20 is routed through the same system twice. Part of the HEC-2 printouts were sheared off eliminating any usefulness.

Section C-C should be designed for about 15 cfs instead of 10.34 cfs (1/2) Basin 225 + 2/3 Basin 210). The token reinforcement shown on Section C-C is inadequate. Use the reinforcement shown in C.O.A. Std Dwg 2260. Expansion joints are allowed only at structures.

CONTINUED ON PAGE 2.

REVISED/AMENDED DRAINAGE REPORT

FOR

THE TUSCANY SUBDIVISION, UNITS I, II, & III (MAP # A11 & A12) (FINAL DRAINAGE REPORT FOR TUSCANY UNIT III)

PREPARED FOR

CURB WEST, INC. 6301 INDIAN SCHOOL NE, # 680 ALBUQUERQUE, NEW MEXICO 87109

PREPARED BY

COMMUNITY SCIENCES CORPORATION
P. O. BOX 1328
CORRALES, NEW MEXICO 87048

THOMAS J. BELLON, JR. PROJECT MANAGER

JULY 16, 1996

REU SEPT. 9TH 196

Kent M. Whitman , P.E.

TABLE OF CONTENTS

		PAGE NUMBER
I.	PURPOSE AND SCOPE	1
II.	TEMPORARY PONDS	1
PLATES		
	TUSCANY, UNIT #III GRADING PLAN (Revised)	
APPENDICES		
	APPENDIX A - HYDRAIII IC CAI CIII ATIONS (Revised)	

I. PURPOSE AND SCOPE

Curb West, Inc. is currently planning for the development of The Tuscany Subdivision, Unit 3. The proposed development consists of approximately 11.795 acres and is to be subdivided into 46 single family residential lots.

3.900 Acres

The original report presented a Preliminary Drainage Management and Conceptual Grading Plan for approval by the City of Albuquerque in order that subsequent subdivision and development may commence.

This Revised Report presents a Drainage Management concept for the final design for drainage purposes for Unit #3 of the Tuscany Subdivision. As a part of this report the Final Grading Plans and Drainage Calculations for Tuscany Unit #3 are supplied.

II. TEMPORARY PONDS

Temporary Ponds were designed using DPM criteria. The Q's used for the sizing of these temporary ponds were for undeveloped conditions, no impervious areas, therefore the capacity is the volume for the 6 hour 100-year storm. (Calculations provided) The following is a summary of the calculated capacities needed:

POND #	Required Volume (cf)(calc)	DESIGN VOL (cf)
4	70,214 CF	103,150 cf *

^{*} At spillover condition

STEINS TEMPORPHY POINT FOR TUSCHUM UNTO

PER UNIT ! REPORT

V10 dy = V360

From AHYM3 RUN FOR UNT 1 US USE HYDROSENS Nº 175.20 FOR MEW Paul

1360 = 1.6119 Fec =-

1/360 = 70, 214 CF (CEGUIESO TIMES.

73~0 CLEATACY = 103, 150 CF @ SPICOUSE

Found while tours the Regulas.

TABLE 1 (Revised) ULTIMATE DEVELOPED CONDITION

(If all properties, both on-site and off-site, developed) TP=0.1330

(If all properties, both on-site and off-site, developed) TP=0.1330 LAND INCREMENTAL FUTURE													
LAI TREAT								Т	INCHEM	ENTAL	TOT		
Basin	Area	Contr.	Sum	Тс	Α	В	С	D	0	0			
I.D.	(Sq.Mi.)	Basin	Area	(Min.)	'`			_	Q ₁₀₀ (cfs)	Q ₁₀ (cfs)	Q ₁₀₀ (cfs	Q ₁₀ (cfs)	
	(5 4)		(Sq.Mi.)	(,		-			(013)	(013)	(613	(613)	
Future McMahon Boulevard (Unser to West Mesa Medical)													
100	0.0035		0.0035	12		5	5	90	9.52		9.52		
100.1	0.0035	100	0.0070	12		5	5	90	9.52		19.05		
185	0.0024		0.0024	12		5	5	90	6.53		6.53		
185.1	0.0024	185 &	0.0118	12		5	5	90	6.53		32.12		
, , ,		100.1									V==		
105	0.0366	185.1	0.0484	12		21	22	57	84.33		116.45		
					16.5 0	fs (fut	ure ir			ned for 7			
Off-site Q at McMahon Boulevard (105) $Q_{100} = 116.5$ cfs (future inlets to be designed for 76.5 cfs) *NOTE #1: 40 cfs to be allowed to bypass future inlets in future McMahon to join flows at Bandelier to east.													
115	0.0146	105	0.063	12		21	22	57	33.65	lio iro ut	148.32	io odoi.	
110	0.0171	115	0.0801	12		21	22	57	39.41		186.38		
	Q to Tusca				_					or 146 4 c			
125	0.0090	110	0.0891	12		29	29	42	19.03	7 140.4 0	208.08		
									_	h 1 Init #2		ofo*	
	scany Dr at	_		$\frac{1}{12}$		25				11 01111 #3		CIS)	
155 Off site	0.0324		0.0324				25	50	71.72		71.72		
	Basins (futi			12	5,9 C						74.99		
160	0.0012	155	0.0336	12		5 25	5 25	90	3.28 19.05		94.04		
165	0.0086	160	0.0422	12		25	25	50			18.83		
<u>175</u> 170	0.0085	175 &	0.0085 0.0516	12		5	5	50 90	18.83 2.46		114.38		
170	0.0009	165	0.0516	12		5	5	90	2.40		114.30		
NOTE #	:2: 1/2 of Ba		to ioin with	Basin #1	50 () in Ba	andel	ier is	78.5 cfs	<u> </u>			
265	0.0025	170 &	0.1432	12		29	29	42	5.30		329.21		
200	0.0025	125	0.1402					72	0.00		020.21		
180	0.0006	265	0.1438	12		5	5	90	1.65	_	330.79		
260	0.0005	180	0.1443	12		5	5	90	1.37		333.47		
255	0.0007	250	0.1550	12		29	29	42	1.49		334.93		
252	0.0090	250	0.1538	12		29	29	42	19.03		350.90		
250	0.0010	252	0.1543	12		5	5	90	2.73		353.96		
	ndelier Driv	e at Sorre	ento Drive C	2 = 350	.94cf	s (Per	TON	E #2	Q = 315	5.0)			
205	0.0006		0.0006	12		15	15	70	1.50		1.50		
210	0.0027	205	0.0033	12		15	15	70	6.67		8.17		
215	0.0095	210	0.0128	12		29	29	42	20.08		27.24		
195	0.0022	215	0.0150	12		5	5	90	5.99		33.02		
220	0.0007	195	0.0157	12		5	5	90	1.92		35.23		
200	0.0013					46	47	7	2.19		37.40		
	e - Q100 =	2.2 cfs to	inlet in par	k									
	n # 225 joir	_			5 to \	/ecchi	o Driv	/e)					
225	0.0038		0.0038	12		5	5	90	10.34		10.34		
230	0.0063	225 &	0.0258	12		29	29	42	13.32	-	60.46		
_30	5.5000	220	5.5200						10.02		557.15		
1/2 Basi	n # 225 joir		partial flow	from #355	5 to 5	Sorren	to Dri	ve)			_		
225	0.0038		0.0038	12		5	5	90	10.34		10.34		
240	0.0077	225	0.0115	12		29	29	42	16.28		25.94		
											_3,5 .		

Rev. 12-13-95

TABLE 1 (Revised)

ULTIMATE DEVELOPED CONDITION (continued)

(If all properties, both on-site and off-site, developed) TP=0.1330

					_	LA		_	INCREM	IENTAL	FUTURE		
					_	REAT		<u>T</u>			TOT	AL_	
Basin I.Ď.	Area (Sq.Mi.)	Contr. Basin	Sum Area	Tc (Min.)	Α	В	С	D	Q ₁₀₀	Q ₁₀	Q ₁₀₀	Q,10	
1.0.	(34.141.)	Dasiii	(Sq.Mi.)	(101111.)		-			(cfs)	(cfs)	(cfs	(cfs)	
240T		230	0.1923	12							86.95		
235	0.0007	255 &	0.1923	12		5	5	90	1.92		435.09	_	
233	0.0007	240T	0.1943	12				30	1.52		435.09		
Total Q	in Bandelie	r Drive (2	35) SUMP	$Q_{100} = 43$	5.1 c	fs: (35	9.2 c	fs to	outfall #1)				
	ion in Q, _m t										•		
270	0.0096		0.0096	12		27	27	46	20.78		20.78		
275	0.0076	270	0.0172	12		27	27	46	16.45		34.81		
280	0.0122	275	0.0294	12		27	27	46	26.40		57.55		
Total Q	at Sump in	Sicily Pla		7.6: to ou	tfall #	‡ 2							
130	0.0277		0.0277	12	T	25	25	50	61.62		61.62	T	
135	0.0017	130	0.0294	12		5	5	90	4.63		65.95		
140	0.0115		0.0115	12		25	25	50	25.47		88.69	_	
145	0.0018	135 &	0.0427	12		5	5	90	4.91		93.38	_	
140	0.0010	140	0.0427	12		, , , , , , , , , , , , , , , , , , ,		30	7.51		30.00		
150	0.0007	145	0.0434	12		5	5	90	1.92		95.21		
152	0.0148	150	0.0582	12		25	25	50	32.77		116.70		
292	0.027	152	0.0852	12		25	25	50	59.77		175.99		
305 190	0.0015 0.0014		0.0015 0.0029	12 12		5 _5	5 5	90 90	4.09 3.82		4.09 3.82		
	Mahon Bou									TE #1		т	
300	0.0018	305	0.0018	12		5_	5	90	4.91		9.00		
310_	0.0012	300	0.0030	12		5	5	90	3.28	· ·	12.27	_	
315	0.0093	310	0.0123	12		25	25_	50	20.60		32.87		
	rrow Site -									= 32.9 cf)	
320	0.0021	315	0.0159	12		5	5	90	5.72		32.16		
295	0.0021	190	0.0035	12		5	5_	90	5.72		7.97		
325	0.0030	320	0.0224	12		5	5	90	8.17		39.57		
	at Inlets ne											1\	
	addition of f									37.6. (13		sea)	
				_									
350	0.0012	295	0.0507	12		5	5	90	3.28		102.11		
335 330 350 Total Q 40 cfs b & S/S =	0.0259 0.0012 0.0012 to Calabac ypass. (Tot 15.0 cfs N/ intercept: N	325 335 330 & 295 illas in S. al future f S inlet ea	0.0483 0.0495 0.0507 D McMat low to Cala st of Dover	12 12 12 non Boule bacillas i: = 13.0 cf	 evard s 142	25 5 5 (350) .1 cfs	25 5 Q ₁₀₀) (3 in	50 90 90 = 10 elets i	57.33 3.28 3.28 2.1 cfs (uintercept: I	Itimate) S N/S west	88.92 92.05 102.11 ee Note # of Dover C	1 abo	

Rev. 12-13-95

TABLE 2
STREET FLOW CHARACTERISTICS

STREET	WIDTH	CURB TYPE	LOCATION	SLOPE %	Q	Dn	Dc	Vn	Vc	EG	F	*POOL DEPTH
Tuscany Dr.	32'	STD	20 + 20	8.0	29.92	0.37	0.54	6.89	6.89	1.11	3.30	1.46
Tuscany Dr.	32'	STD	22 + 00	4.0	29:92	0.41	0.54	5.38	5.38	0.86	2.28	1.10
Tuscany Dr.	32'	STD	24 + 50	6.78	29.92	0.38	0.54	6.47	6.47	1.03	3.01	1.35
Tuscany Dr.	32'	STD	27 + 50	4.0	32.4	0.42	0.55	5.55	5.55	0.90	2.30	1.15
Tuscany Dr.	32'	STD	29 + 80	4.0	32.4	0.42	0.55	5.55	5.55	0.90	2.30	1.15
Palazzo Rd.	27'	MNT	10 + 81	0.01	9.5	0.45	0.31	2.25	1.19	0.47	0.39	0.34
Palazzo Rd.	27'	MNT	11 + 25	2.7	9.5	0.26	0.31	3.37	2.25	0.44	1.86	0.41
Palazzo Rd.	27'	MNT	13 + 03	5.42	9.5	0.23	0.31	4.36	2.25	0.53	2.72	0.41
Portofino Dr.	27'	MNT	16 + 00	3.0	19.02	0.40	0.40	4.35	2.79	0.61	1.95	0.55
Portofino Dr.	27'	MNT	17 + 00	3.0	19.02	0.40	0.40	2.79	2.79	0.53	1.00	0.55
Portofino Dr.	28'	STD	17 + 10	3.0	19.02	0.37	0.46	4.33	2.81	0.67	1.93	0.61
Portofino Dr.	28'	STD	19 + 60	3.0	19.02	0.37	0.46	4.33	2.81	0.67	1.93	0.61

^{*}Pool depth = Dc + 1.25 $(Vc^2)/(2g)$

Assumptions for design. drain to the west of the current boundary. Engineering CPN # 5208.90. 72"out Fol 117.1 cfs.

- 1) Total Q for Basin 155 is 71.8 cfs. Fifty percent will discharge at point A and the remainder will discharge off site and be directed to a future storm
- 2) The total Q at point B, the intersection of McMahon Blvd. and Tuscany Dr., is 116.45 cfs. Forty cfs will be allowed to bypass Tuscany Dr. and will be collected further downstream in future inlets at Bandelier Dr. per Smith
- 3) The actual number of inlets that will be installed on McMahon Blvd. west of Tuscany Dr. and on the northern portion of Tuscany Dr. (labeled as "Future Anticipated" on this schematic) is presently unknown. The system must, however, be designed to capture 80% of the anticipated Q or approximately

		_							_								_
•			>	Depth			e. 'S										
) e	Dia.			16.46				ante							
	BY		Connector Pipe	١ ـ	Ì		11				110	ĺ					
	CALCULATED BY		Conne	po			50			-	1/2	1					
	COL	<u> </u>		Head		_	6,96 + 9,5				7						
	CA	DATE	C. B.	Size			6'9				450019	0					
				S.							7						
			Guller	ت. •	,37	.37		24'	26		2	3	0				
		Bynuss	Gap. of Guller	Total Inter. & Street	6.96	96'9		7.2	7.2		Fra.	14.4					
				Inter.	00	8		0	6		26.58	ll.					
		1	C	Total	96.61	76.71		16.2	76.2		94	10/0					
			Orain	Area				Bypuss Srom F3			Total	Band					
				Sym.	F3	F d		F5	FG								
٧	PROJECT	DESIGN FREQUENCY) It	M 40c8s	. A P * 7	. Please see note Subdivision "" Concerning	20 2		.,0	hus =	sn <u>L</u>	3		F5.	Bondo Lier	
			4-8	52					80					P	LATE 2	2.3 D-	.10

CATCH BASIN CALCULATION SHEET

Trapezoidal Channel Analysis & Design Open Channel - Uniform flow

Worksheet Name: tuscany 3 floodwall

Comment: Tuscany 3 Floodwall

Solve For Depth

Given Input Data:

Bottom Width.... 0.00 ft
Left Side Slope. 3.00:1 (H:V)
Right Side Slope. 0.00:1 (H:V)
Manning's n.... 0.025
Channel Slope... 0.0050 ft/ft
Discharge..... 1.50 cfs

Computed Results:

Open Channel Flow Module, Version 3.12 (c) 1990 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708