DRAINAGE AND TRANSPORTATION SHEET

(REV. 1/28/2003rd)

PROJECT TITLE: DRB : 1000936	Valero Corner Store, Unser & McMahon EPC #:	ZONE MAP/DRG. FILE # A-11-2 DOOD WORK ORDER #:	2
LEGAL DESCRIPTION	NTract H, Zolin, Kunath, Tres Esquinas, LLC &	Curb Inc	
CITY ADDRESS:	10801 Unser Blvd. NW	Tours mo.	
ENGINEERING FIRM:		CONTACT: JOEL HERNANDEZ	
ADDRESS:	5571 MIDWAY PARK PLACE NE	PHONE: (505) 858-3100	
CITY, STATE:	ALBUQUERQUE, NM	ZIP CODE: 87109	
OWNER:	Diamond Champack Stations Inc	CONTACT:	
ADDRESS:	Diamond Shamrock Stations, Inc. 952 E. Baseline Road, #103	PHONE:	
CITY, STATE:	Mesa, AZ 85204	ZIP CODE:	_
OITT, OTATE.	111COU, NE COECT		
ARCHITECT:		CONTACT:	
ADDRESS:		PHONE:	
CITY, STATE:		ZIP CODE:	_
SURVEYOR:	PRECISION SURVEYS	CONTACT: LARRY MEDRANO	
ADDRESS:	8500-A JEFFERSON STREET, NE	PHONE: (505) 856-5700	
CITY, STATE:	ALBUQUERQUE, NM	ZIP CODE: 87113	
	7-1	-/	
CONTRACTOR:		CONTACT:	
ADDRESS:		PHONE:	
CITY, STATE:		ZIP CODE:	
DRAINAGE PI CONCEPTUAL GRADING PLAI EROSION CON ENGINEER'S C CLOMR/LOMR TRAFFIC CIRC ENGINEERS CI ENGINEERS CI	PORT AN 1st SUBMITTAL, <i>REQUIRES TCL or equal</i> LAN RESUBMITTAL GRADING & DRAINAGE PLAN N	WORK ORDER APPROVAL SO-19	L
WAS A PRE-DESIGN COPY PROVIDE	ONFERENCE ATTENDED:	MAR 2 1 2011 HYDROLOGY SECTION	
DATE SUBMITTED:	3/21/2011	BY: JOEL HERNANDEZ, PE	

Requests for approvals of Site Development Plans and/or Subdivision Plats shall be accompanied by a drainage submittal. The particular nature, location and scope of the proposed development defines the degree of drainage detail. One or more of the following levels of sumbittal may be required based on the following:

- 1. **Conceptual Grading and Drainage Plans**: Required for approval of Site Development Plans greater than five (5) acres and Sector Plans.
- 2. Drainage Plans: Required for building permits, grading permits, paving permits and site plans less than five (5) acres.
- 3. Drainage Report: Required for subdivisions containing more than ten (10) lots or constituting five (5) acres or more.

DRAINAGE REPORT

for

Valero Corner Store Unser & McMahon Boulevard NW Albuquerque, New Mexico

Prepared by:

Tierra West, LLC 5571 Midway Park Place NE Albuquerque, New Mexico 87109

March, 2011

I certify that this report was prepared under my supervision, and I am a registered professional engineer in the State of New Mexico in good standing.

RAY BOHAMAN MEXICO RESIDENCE REPORT OF THE RESIDENCE R

Job No 2010051

TABLE OF CONTENTS

Purpose	ర
Introduction	3
Vicinity and FIRM Map	4
Existing Conditions	
Proposed Conditions	5
Summary	6
out in the state of the state o	•
Map Pockets	
Site Grading and Drainage Plan, Map Pocket A	Δ
One ordaing and brainage rian, map reconcert	
<u>Appendices</u>	
Hydrologic and Hydraulic Analysis APPENDI	ХА
Hydrologic Maps (Pre- and Post-Development)	ΧВ
BHI Master Drainage Study (File A-11/D005A excerpt)	хс

PURPOSE

The purpose of this report is to provide the drainage management plan for the development of the Valero Corner Store, a convenience store and gas station, and a future commercial building. This plan will be utilized for the development of a 2.91 acre property, to be subdivided into two tracts by this project (Tract G and Tract H), and developed with all necessary public and private infrastructure within the site, including the southerly half-width construction of Calle Perro. This plan is in accordance with the DPM, Chapter 22, Hydrology Section. The purpose of this report is to provide the drainage analysis and management plan for the new site.

INTRODUCTION

The subject of this report, as shown on the Exhibit A vicinity map, is a 2.91-acre parcel of land located on the northwest corner of Unser and McMahon Boulevard. The site appears on zone atlas page A-11-Z and is currently undeveloped, although storm drainage improvements have been installed with the northerly half-width improvements of Calle Perro. The property will be re-platted to create Tract G (.99 AC) for parking and a future commercial building, and Tract H (1.92 AC) for the convenience store and gas station. As shown on FIRM map 35001C0104G, the subject property has been determined to be outside the 100- and 500-year floodplains. A "Master Drainage Study for the Unser/McMahon Area " was previously done by Bohannan Huston in July of 2001 and amended November 13, 2001. The drainage report assumes the project property (identified in the report as Basin DB5A; Q=10.9 cfs) has free discharge to the storm drain system within Unser Boulevard. The proposed development was designed to convey flow in the manner consistent with the assumptions of the referenced report.

Exhibit A- Vicinity Map

EXISTING CONDITIONS

The project property is undeveloped and bound by Unser Boulevard to the east, McMahon Boulevard to the south, Piñon Verde to the west, and Calle Perro ("half-width" improvements recently constructed by project # 1002944) to the north. No offsite flows are conveyed onto the project property. Topography is gently sloping from southwest to northeast with some localized depressions, ultimately conveying drainage runoff from the property to the curb inlet in Calle Perro. Discharge for the existing, undeveloped condition is calculated at 5.86 cfs.

PROPOSED CONDITIONS

The site will be graded to accommodate the proposed structures and associated parking facilities. Although the building within Tract G and its associated parking will be constructed in the future, the analysis of this report is based on the ultimate build-out condition.

The drainage condition around the site will remain unchanged, with the exception of Calle Perro, which will be constructed to its full-width configuration draining into the existing curb inlet at low point near Unser Blvd. Piñon Verde Drive will continue to drain from south to north, crossing Calle Perro at a valley gutter. A high point/water-break in Calle Perro near the Piñon Verde intersection will preclude flows from being diverted. The proposed driveway connection to Piñon Verde is located near the high point in the road and is configured to maintain flows within the road. This report designates the southerly half of Calle Perro as Basin A, which generates 0.87 cfs during the 100-year storm. A water-break in the Calle Perro driveway separates Basin A from on-site flows.

This project proposes to construct storm drain facilities to convey onsite drainage into the existing storm drain pipe connecting the curb inlet in Calle Perro to the inlet on Unser Blvd. located on the northeast corner of the project property. The proposed facilities will be private and

will consist of two drop inlets (single type "D"), 12-inch and 18-inch storm drain pipe, and a 4-foot manhole at the connection point. Drainage within the site will be conveyed to the proposed inlets by means of overland flow to curb cuts adjacent to the landscape areas, then by earthen swales to the two depressions where the drop inlets are proposed. This report designates the tributary area to the northerly drop inlet as Basin B-1 (developed Q=6.17 cfs), and Basin B-2 as the tributary area to the southerly drop inlet (developed Q=3.86 cfs). Hydraulic calculations to analyze proposed inlet grates and pipe sizing, as well as the existing storm drain facilities connecting to the 66-inch storm drain line in Unser Boulevard, are included in Appendix A of this report.

SUMMARY AND RECOMMENDATIONS

Per the previous drainage report, this site has free discharge into the storm drain system in Unser Blvd. The proposed improvements will accommodate the proposed development while maintaining historic drainage patterns and not exceeding the total developed discharge (Q=10.9 cfs) anticipated by the BHI master drainage study. The development of this site is consistent with the DPM, Chapter 22, Hydrology section. It is recommended this development be approved for rough grading and Site Plan for Building Permit.

MAP POCKET A

SITE GRADING AND DRAINAGE PLAN

APPENDIX A

CALCULATIONS

Weighted E Method

Deceloced on the actin contraction to Price and Dain action

											100	100-Year, 6-Hr		10-	10-Year, 6-Hr		2-Ye	2-Year, 6-Hr		100-Yea	00-Year, 10-Day	
Basin	Area	Area	Treatment A	ent A	Treatr	Treatment B	Treatn	reatment C	Treatment D	Щ	Weighted E Volume	Volume	Flow	Weighted E Volume	Volume	Flow	Weighted E	Volume	Flow	Weighted E V	Volume	Flow
	(sf)	(acres)	%	(acres)	%	(acres)	%	(acres)	%	(acres)		(ac-ft)	cfs		(ac-ft)	cfs		(ac-ft)	cfs		(ac-ft)	cfs
>	8953	0.21	0%	0	0%	0.00	10%	10% 0.0205533	90%	0.18	1.872	0.032	0.87	1.160	0.020	0.57	0.660	0.011	0.32	1.872	0.055	0.87
B-1	67224	1.54	0%	0	0%	0.00	25%	25% 0.3858127	75%	1.16	1.725	0.222	6.17	1.040	0.134	3.92	0.570	0.073	2.14	1.725	0.364	6.17
B-2	49613	1.14	0%	0	26%	0.30	25%	25% 0.2847394	49%	0.56	1.387	0.132	3.86	0.775	0.074	2.26	0.385	0.037	1.09	1.387	0.200	3.86
Total	125,790	2.89								1.90		0.386	10.89			6.75					0.618	10.89
P@ De elo 🗆	P@□De□elo □□ en □□ o □ □□ti⊑on																			188		
											100	100-Year, 6-Hr		10-	10-Year, 6-Hr		2-Ye	2-Year, 6-Hr		100-Yea	100-Year, 10-Day	
Bacin	Area	Aros	Treatment A	net A	Trastr	Treatment B	Troatn	Treatment C	Treatm	Treatment D	Weighted F Volume Flow	Volume	┙	Weighted E Volume Flow	Volume	╛	Weighted E Volume	Volume	Flow	Weighted E Volume Flow	'olume	Flow

Equations for Weighted E Method:

125,790

2.89

Weighted E = Ea*Aa + Eb*Ab + Ec*Ac + Ed*Ad / (Total Area)

Volume = Weighted D * Total Area

Flow = Qa * Aa + Qb * Ab + Qc * Ac + Qd * Ad

Volume (10-day) = V_{360} + Ad * (P_{10days} - P_{360})/ 12 in/ft

1 100-Year 10 - Yea 2 0.44 0.08 0.67 0.22 0.99 0.44	Excess Precipitation, E (inches)	ecipitation	, E (inch	es)
0.44 0.08 0.67 0.22 0.99 0.44	Zone 1	100-Year	10 - Yea	
0.67 0.22 0.99 0.44	E	0.44	0.08	0.00
0.99 0.44	E _b	0.67	0.22	0.01
107	E _c	0.99	0.44	0.12
1.97 1.24	E _d	1.97	1.24	0.72

Zone 1 100-Year 10 - Year 2 - Year Qa 1.29 0.24 0 Qb 2.03 0.76 0.03 Qc 2.87 1.49 0.47 Qd 4.37 2.89 1.69	Peak D	Peak Discharge (cfs/acre	cfs/acre)	
1.29 0.24 2.03 0.76 2.87 1.49 4.37 2.89	Zone 1	100-Year		2 - Year
2.03 0.76 2.87 1.49 4.37 2.89	Q	1.29	0.24	0
2.87 1.49 4.37 2.89	Q _b	2.03	0.76	0.03
4.37 2.89	Q_c	2.87	1.49	0.47
	Q	4.37	2.89	1.69

Capacity of a Single 'D' Storm Drop Inlets

Capacity of the grate:

```
L = 40" - 2(2"_{ends}) - 7(\frac{1}{2}"_{middle bars})

= 32 \frac{1}{2}"

= 2.7083'

W = 25" - 13(\frac{1}{2}"_{middle bars})

= 18.5"

= 1.54'

Area = 2.7083' \times 1.54'

= 4.18 \text{ ft}^2

Effective Ar = 4.18 - 4.18 (0.5_{clogging factor})

= 2.09 \text{ ft}^2 at the grate
```

Orifice Equation

```
Q = CA sqrt(2gH)

For H = 0.40 (assumes no ponding in pavement area)

Q = 0.6*2.09*sqrt(2*32.2*0.33)

Q = 6.4 cfs (capacity) >6.17 cfs (max required), therefore OK
```

	Worksheet for Circula	r F	Pipe - 12-in	
Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Roughness Coefficient	0.0	13		
Channel Slope	0.015		ft/ft	
Diameter	12.		in	
Discharge	3.	86	ft³/s	
Results				
Normal Depth	0.	73	ft	
Flow Area		62	ft²	
Wetted Perimeter		05	ft	
Hydraulic Radius	0.	30	ft	
Fop Width	0.	89	ft	
Critical Depth	0.	83	ft	
Percent Full	73	3.1	%	
ritical Slope	0.011	37	ft/ft	
elocity	6.	27	ft/s	
elocity Head	0.	61	ft	
pecific Energy	1.	34	ft	
oude Number	1.	33		
aximum Discharge	4.	69	ft³/s	
scharge Full	4.	36	ft³/s	
ope Full	0.011	74	ft/ft	
ow Type	SuperCritical			
GVF Input Data				
ownstream Depth	0.	00	ft	
.ength	0.	00	ft	
umber Of Steps		0		
SVF Output Data				
jpstream Depth	0.	00	ft	
Profile Description				
Profile Headloss	0.4	00	ft	
Average End Depth Over Rise	0.4	00	%	
Normal Depth Over Rise	73.	12	%	
Downstream Velocity	Infin	ity	ft/s	

Worksheet for Circular Pipe - 12-in

GVF	Output	Data
------------	--------	------

Upstream Velocity	Infinity	ft/s
Normal Depth	0.73	ft
Critical Depth	0.83	ft
Channel Slope	0.01500	ft/ft
Critical Slope	0.01137	ft/ft

Friction Method Solve For Normal Depth Normal Depth Over Rise Normal Depth Ov	Wo	orksheet for Circ	ular Pip	e - 18-in RCP
	Project Description			
Imput Data	Friction Method	Manning Formula		
Roughness Coefficient 0.013 Channel Slope 0.01000 fult Channel Slope 0.01000 fult Channel Slope 10.89 fuls Channel Slope 10.89 fuls Channel Slope 10.89 fuls Channel Slope 10.89 fuls Channel Slope Channel Sl	Solve For	Normal Depth		
Channel Slope	Input Data			
Diameter 18.00 in	Roughness Coefficient		0.013	
10.89 ft 5	Channel Slope		0.01000	ft/ft
Normal Depth	Diameter		18.00	in
Normal Depth 1.29 ft Flow Area 1.61 ft² Wetted Perimeter 3.55 ft Hydraulic Radius 0.45 ft Top Width 1.05 ft Critical Depth 1.26 ft Percent Full 85.7 % Critical Slope 0.01025 ft/R Velocity 6.75 ft/s Velocity 6.75 ft/s Velocity 1.99 ft Froude Number 0.96 Maximum Discharge 11.30 ft²/s Discharge Full 10.50 ft²/s Clice Full 0.01075 ft/R Slope Full 0.000 ft Length 0.00 ft SubCritical Slope 0.000 ft Support Steps 0.000 ft Support Steps 0.000 ft Profile Description Profile Headloss 0.000 ft Average End Depth Over Rise 0.000 % Soverage End Depth Over Rise 0.000 % Soverage End Depth Over Rise 0.000 %	Discharge		10.89	ft³/s
	Results			
Wetted Perimeter 3.55 ft Hydraulic Radius 0.45 ft Top Width 1.05 ft Critical Depth 1.26 ft Percent Full 85.7 % Critical Slope 0.01025 ft/ft Velocity 6.75 ft/s Velocity Head 0.71 ft Specific Energy 1.99 ft Froude Number 0.96 Froude Number Maximum Discharge 11.30 ft/s Discharge Full 0.50 ft/ft Slope Full 0.01075 ft/ft Flow Type SubCritical SubCritical GVF Input Data Downstream Depth 0.00 ft Number Of Steps 0 ft GVF Output Data Upstream Depth 0.00 ft Profile Description 0.00 ft Average End Depth Over Rise 0.00 % Normal Depth Over Rise 85.73 %	Normal Depth		1.29	ft
Hydraulic Radius	Flow Area		1.61	ft²
Top Width 1.05 ft Critical Depth 1.26 ft Percent Full 85.7 % Critical Slope 0.01025 ft/ft Velocity 6.75 ft/s Velocity 6.75 ft/s Velocity 1.99 ft Froude Number 0.96 Maximum Discharge 11.30 ft//s Slope Full 10.50 ft//s Slope Full 0.01075 ft/ft Slope Full 0.01075 ft/ft Slope Full 0.000 ft Length 0.00 ft SubCritical 0.000 ft Percent Deta 0.000 ft Percent Description Percent Depth 0.000 ft Percent Depth 0.000 ft Percent Depth 0.000 ft Percent Description Percent Depth 0.000 ft	Wetted Perimeter		3.55	ft
Critical Depth 1.26 ft Percent Full 85.7 % Critical Slope 0.01025 ft/ft Velocity 6.75 ft/s Velocity 6.75 ft/s Velocity 1.99 ft Froude Number 0.96 Maximum Discharge 11.30 ft²/s Discharge Full 10.50 ft²/s Slope Full 0.01075 ft/ft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Pumber Of Steps 0 ft GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Normal Depth Over Rise 85.73 %	Hydraulic Radius		0.45	ft
Percent Full 85.7 % Critical Slope 0.01025 ft/ft Velocity 6.75 ft/s Velocity Head 0.71 ft Specific Energy 1.99 ft Froude Number 0.96 Maximum Discharge 11.30 ft²/s Discharge Full 10.50 ft²/s Slope Full 0.01075 ft/ft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Sumber Of Steps 0 ft GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Normal Depth Over Rise 85.73 %	Top Width		1.05	ft
Critical Slope	Critical Depth		1.26	ft
Velocity	Percent Full		85.7	%
Velocity Head 0.71 ft	Critical Slope		0.01025	ft/ft
1.99 ft	Velocity		6.75	ft/s
Froude Number 0.96 Maximum Discharge 11.30 ft²/s Discharge Full 10.50 ft²/s Slope Full 0.01075 ft/ft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Normal Depth Over Rise 85.73 %	Velocity Head		0.71	ft
Maximum Discharge	Specific Energy		1.99	ft
10.50 ft 10.	Froude Number		0.96	
Slope Full 0.01075 ft/ft	Maximum Discharge		11.30	ft³/s
Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Normal Depth Over Rise 85.73 %	Discharge Full		10.50	ft³/s
GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Normal Depth Over Rise 85.73 %	Slope Full		0.01075	ft/ft
Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Normal Depth Over Rise 85.73 %	Flow Type	SubCritical		
Length 0.00 ft Number Of Steps 0 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Normal Depth Over Rise 85.73 %	GVF Input Data			
SVF Output Data Upstream Depth Orofile Description Profile Headloss Average End Depth Over Rise Normal Depth Over Rise 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Downstream Depth		0.00	ft
GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Normal Depth Over Rise 85.73 %	Length		0.00	ft
Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Normal Depth Over Rise 85.73 %	Number Of Steps		0	
Profile Description Profile Headloss Average End Depth Over Rise Normal Depth Over Rise 85.73 %	GVF Output Data			
Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Normal Depth Over Rise 85.73 %	Upstream Depth		0.00	ft
Average End Depth Over Rise 0.00 % Normal Depth Over Rise 85.73 %	Profile Description			
Normal Depth Over Rise 85.73 %	Profile Headloss		0.00	ft
Normal Depth Over Rise 85.73 %	Average End Depth Over Rise		0.00	%
·	Normal Depth Over Rise		85.73	%
	Downstream Velocity		Infinity	ft/s

Worksheet for Circular Pipe - 18-in RCP

GVF Output Data

Upstream Velocity Infinity ft/s Normal Depth 1.29 Critical Depth 1.26 ft Channel Slope 0.01000 ft/ft Critical Slope 0.01025 ft/ft

Project Description Friction Method Manning Formula Solve For Normal Depth Input Data		
Solve For Normal Depth		
Input Data		
Roughness Coefficient	0.041	
Channel Slope	0.01000	ft/ft
Left Side Slope	3.00	ft/ft (H:V)
Right Side Slope	3.00	ft/ft (H:V)
Discharge	6.17	ft³/s
Results		
Normal Depth	0.97	ft
Flow Area	2.85	ft²
Wetted Perimeter	6.16	ft
Hydraulic Radius	0.46	ft
Top Width	5.85	ft
Critical Depth	0.77	ft
Critical Slope	0.03619	ft/ft
Velocity	2.17	ft/s
Velocity Head	0.07	ft
Specific Energy	1.05	ft
Froude Number	0.55	
Flow Type Subcritical		
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.97	ft
Critical Depth	0.77	ft
Channel Slope	0.01000	ft/ft
Critical Slope	0.03619	ft/ft

Scenario: Base

Profile Report Engineering Profile - Profile - 1 (Valero Corner Store, abq - SD Analysis.stc)

Station (ft)

Profile Report Engineering Profile - Profile - 2 (Valero Corner Store, abq - SD Analysis.stc)

Station (ft)

Flex Table: Conduit Table (Valero Corner Store, abq - SD Analysis.stc)

								,	1	•	
Label	Invert (Upstream) (ft)	Stop Node	Invert (Downstream) (ft)	Manning's n	Diameter (in)		Flow (ft³/s)	Length (Unified) (ft)	Slope (Calculated) (ft/ft)	Capacity (Full Flow) (ft³/s)	Elevation Ground (Start) (ft)
CO-1	5,291.18 CB-2	CB-2	5,290.65	0.013		8.0	3.03	39.0	0.014	12.24	5,296.10
CO-2	5,290.65 MH-1	MH-1	5,290.38	0.013	-	8.0	3.90	10.0	0.027	17.26	5,296.02
CO-3	5,290.38 CB-5	CB-5	5,289.09	0.013	-	8.0	13.93	49.0	0.026	17.04	5,297.00
CO-4	5,295.71 CB-4	CB-4	5,293.28	0.013	-	2.0	3.86	161.7	0.015	4.37	5,297.71
CO-5	5,293.28 MH-1	MH-1	5,290.38	0.013	_	18.0	10.03	31.2	0.093	32.02	5,297.10
9-00	5,289.09 OF-6	OF-6	5,288.47	0.013	-	8.0	31.93	31.0	0.020	14.85	5,296.77
Elevation	Hydraulic Grade	Hydrauli	ic Grade Cover (St	art) Cover (Stop)		locity					
Ground	Line (In)	Line (Out)	t) (ft)			(Average)					
(Stop) (ft)	(L)	£				t/s)					1,70
5,296.02	5,293.80	2	,293.76	3.42	3.87	1.71					
5,297.00	5,293.76	<u></u>	,293.75	3.87	5.12	2.21					
5,296.77	5,293.70		732.84	5.12	6.18	7.88					
5,297.10	5,296.55	2	,294.53	1.00	2.82	6.28					
5,297.00	5,294.50	2	,293.75	2.32	5.12	16.02					
5,290.00	5,292.84	2	,289.96	6.18	0.03	18.07					

APPENDIX B

Pre-Development Basin Map

Post-Development Basin Map

APPENDIX C

BHI Master Drainage Study Excerpt

A-11/000 5A

MASTER DRAINAGE STUDY FOR THE UNSER / MCMAHON AREA

BOHANNAN HUSTON

7500 JEFFERSON NE

NEW MEXICO 87109

fox 505 821 0892

Courtyord One

July 17, 2001 AMENDED NOVEMBER 13, 2001

PREPARED FOR:

CURB, INC. 6301 INDIAN SCHOOL NE, SUITE 208 ALBUQUERQUE, NM 87109

