
CITY OF ALBUQUERQUE

Planning Department
David Campbell, Director

September 28, 2018

David Soule, P.E. Rio Grande Engineering PO Box 93924 Albuquerque, NM 87199

RE: Kidz Academy

McMahon and Fineland NW Grading Plan Stamp Date: 9/25/18 Drainage Report Stamp Date: 2/20/18

Hydrology File: A11D016

Dear Mr. Soule,

PO Box 1293

Based on the submittal received on 9/28/18, the Grading Plan and Drainage Report are approved for Building Permit.

Prior to Certificate of Occupancy (For Information):

Albuquerque

1. Engineer's Certification, per the DPM Chapter 22.7: *Engineer's Certification Checklist For Non-Subdivision* is required.

NM 87103

2. The new ponds will need to be certified (along with the rest of the site). Once certified, the City can release the previous covenant on the temporary retention pond (not constructed).

www.cabq.gov

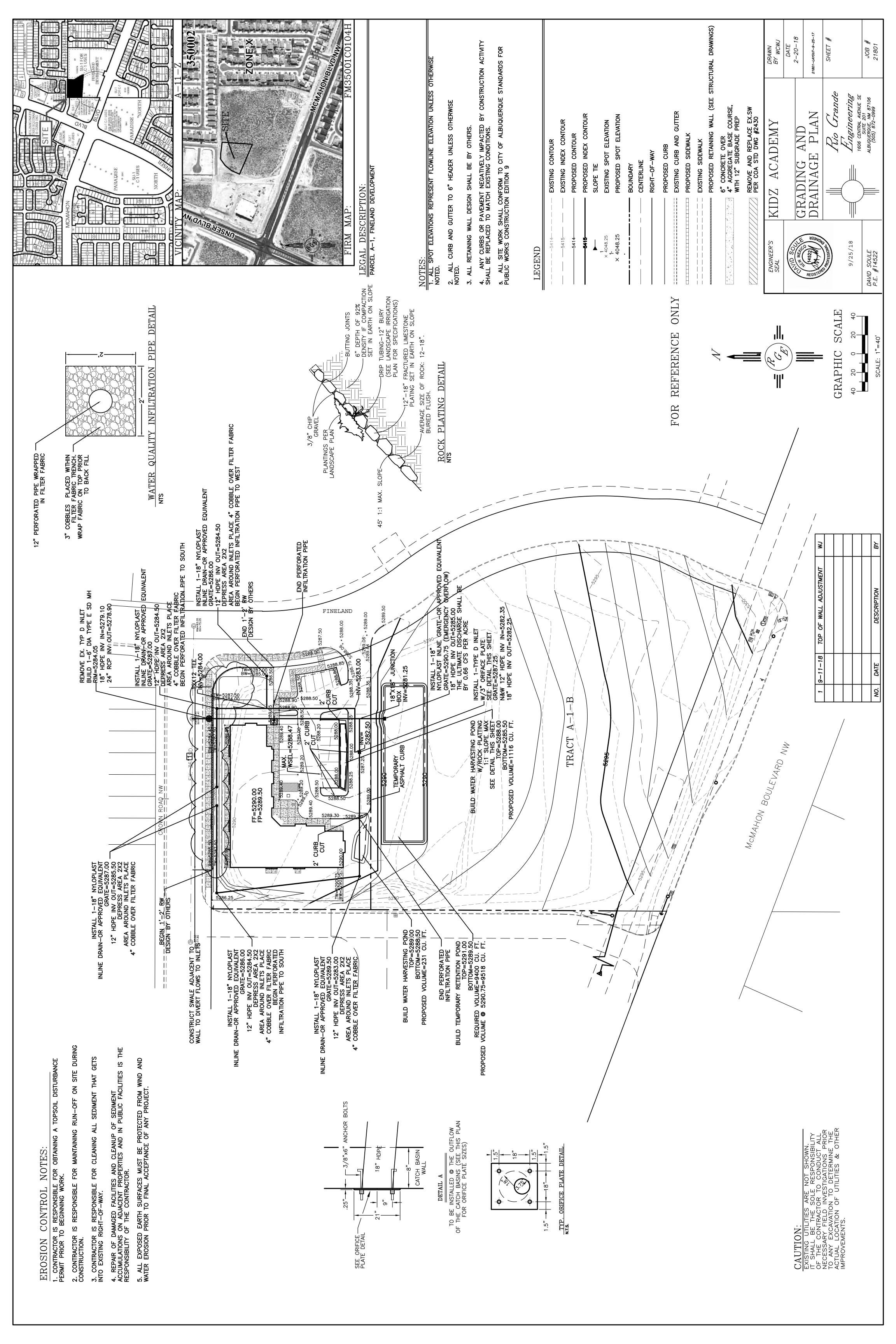
3. City acceptance and close-out of the public Work Order will be required, unless financial guarantee has been posted.

If you have any questions, please contact me at 924-3695 or dpeterson@cabq.gov.

Sincerely,

Dana Peterson, P.E.

Senior Engineer, Planning Dept. Development Review Services


City of Albuquerque

Planning Department

Development & Building Services Division

DRAINAGE AND TRANSPORTATION INFORMATION SHEET (REV 6/2018)

Project Title: kidz academy DRB#:	Building Permit	:	Hydrold	ogy File #: AllD16
Legal Description: lot AlA AND Al.				Order#:
City Address: NORTHWEST CORNER (
Applicant: KEITH GRIEGO			Contact:	
Address:				
Phone#:	Fax#:		E-mail: _	
Other Contact: RIO GRANDE ENGINE Address: PO BOX 93924 ALB NM	ERING		Contact:	DAVID SOULE
Phone#: 505.321.9099	Fax#: _505.872.0	1999	E-mail: a	avid@riograndeengineering.com
TYPE OF DEVELOPMENT: PLAT	RESIDEN	CE DRB	SITE X	ADMIN SITE
Check all that Apply:				
DEPARTMENT: X HYDROLOGY/ DRAINAGE TRAFFIC/ TRANSPORTATION	-	TYPE OF APPROVA BUILDING PER CERTIFICATE (MIT APPR	
TYPE OF SUBMITTAL:	-	CERTIFICATE	J. 00001	ANCI
ENGINEER/ARCHITECT CERTIFICATION	T _	PRELIMINARY	PLAT API	PROVAL
PAD CERTIFICATION		SITE PLAN FOI		
CONCEPTUAL G & D PLAN	-			ERMIT APPROVAL
GRADING PLAN	-	FINAL PLAT A	PPROVAL	•
DRAINAGE REPORT				
DRAINAGE MASTER PLAN	-			CIAL GUARANTEE
FLOODPLAIN DEVELOPMENT PERMIT A	PPLIC _	FOUNDATION		
ELEVATION CERTIFICATE	-	GRADING PER		OVAL
CLOMR/LOMR	_	SO-19 APPROV		
TRAFFIC CIRCULATION LAYOUT (TCL)	_	PAVING PERM		
TRAFFIC IMPACT STUDY (TIS)	-	GRADING/ PAD		
STREET LIGHT LAYOUT	-	WORK ORDER A	APPROVAL	,
OTHER (SPECIFY)	-	CLOMR/LOMR		
PRE-DESIGN MEETING?	-	FLOODPLAIN I OTHER (SPECI		
IS THIS A RESUBMITTAL?: X Yes No	,	OTILER (SPECI		_
DATE SUBMITTED:				
COA STAFF:	ELECTRONIC SUBM	ITTAL RECEIVED:		
	FEE PAID:			

9/20/2018 Date:

Office: ANNEX Batch: 9628

Cashier: TRSMAB

Tran #: 19

12:36 PM Office Station ID

Receipt #: 00520967

ANNEX

Permit:

2018060383 \$160.00

Trans Amt:

0909 REV Actions

\$160.00

Payment Total:

\$160.00

Transaction Total:

Check Tendered:

\$160.00

Checks presented:

Thank you for your payment. Have a nice day!

uquerque Planning Department

p – Development and Building Services

9/20/2018 Issued By: E08375 364065

383

Category Code 970

83, Review: Drain Plan-Lomr-Traffic Impact

EMY

Agent / Contact RIO GRANDE ENGINEERING DAVID SOULE PO BOX 93924 **ALBUQUERQUE NM 87199**

DAVID@RIOGRANDEENGINEERING.COM

\$160.00

\$160.00

David Soule

From: Keith Griego [kidzacademystaff@gmail.com]

Sent: Tuesday, February 20, 2018 11:39 AM

To: David Soule

Cc: Jack Clifford; Phil Ward

Subject: Re: Permission to grade on Pacel A-1-A and A-1-B Fineland Development

David,

Keith Griego owner of Kidz Academy gives permission for grading on the city approved plan per file A11D016.

Thanks,

Keith

On Tue, Feb 20, 2018 at 7:09 AM, David Soule david@riograndeengineering.com wrote:

The purpose of this email is to confirm the owners of Parcel A-1-A(Keith Griego) and Parcel A-1-B(Jack Clifford and Phil Ward) allow grading to be performed on their respective lots based upon the city approved grading plan

as shown in drainage file A11D016. A response back with affirmation is requested and will be included within the city drainage file.

David Soule

From: Jack Clifford [jackc3909@gmail.com]

Sent: Tuesday, February 20, 2018 12:01 PM

To: David Soule; Keith Griego; Phil Ward

Subject: Re: Permission to grade on Pacel A-1-A and A-1-B Fineland Development

Hi David, McMahon Tenancy in Common gives permission for the grading of our property per the attached grading plan sent to us.

Jack

On Tue, Feb 20, 2018 at 10:41 AM, David Soule < david@riograndeengineering.com > wrote:

Academy please plot one out. Jack Clifford will pick up Jack Academy is located on San Mateo north of Alameda David

From: Jack Clifford [mailto:jackc3909@qmail.com] Sent: Tuesday, February 20, 2018 10:31 AM

To: David Soule

Subject: Re: Permission to grade on Pacel A-1-A and A-1-B Fineland Development

Hi David, could print me a copy of the grading plan, and I can come by to pick it up. Let know where your office is located. I'm just waiting for Phil to consent to this action, as a soon as he responds, I will let you know.

Jack

On Tue, Feb 20, 2018 at 7:09 AM, David Soule < david@riograndeengineering.com > wrote:

The purpose of this email is to confirm the owners of Parcel A-1-A(Keith Griego) and Parcel A-1-B(Jack Clifford and Phil Ward) allow grading to be performed on their respective lots based upon the city approved grading plan

as shown in drainage file A11D016. A response back with affirmation is requested and will be included within the city drainage file.

Jack J. Clifford
The Grayland Corporation
9004 Menaul Blvd NE, Ste 20
Albuquerque NM 87112
505-881-0900 phone
505-292-7695 fax

Jack J. Clifford The Grayland Corporation 9004 Menaul Blvd NE, Ste 20 Albuquerque NM 87112 505-881-0900 phone 505-292-7695 fax

REVISED DRAINAGE REPORT

For

KIDZ ACADEMY Parcel A1A and A1B Fineland Subdivision Albuquerque, New Mexico

Prepared by

Rio Grande Engineering PO Box 93924 Albuquerque, New Mexico 87199

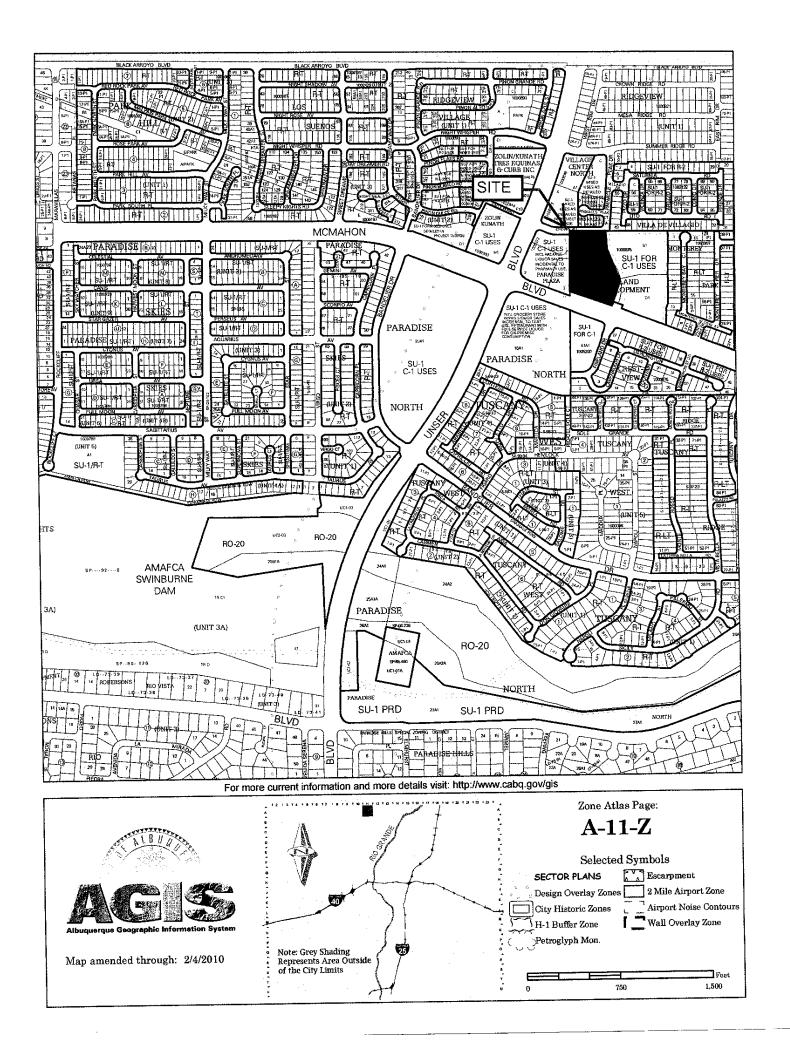
FEBRUARY 2018

David Soule P.E. No. 14522

TABLE OF CONTENTS

Purpose	3
Purpose	3
Tribing Operations	a
Existing Conditions	٥
Exhibit A-Vicinity Map	ኅ
Proposed Conditions Summary	5
Summary	5
<u>Appendix</u>	
	Δ
Site Hydrology	/`
Site Hydrology Hydraulic Model and calculations	
Мар	
Site Grading and Drainage Plan	

PURPOSE


The purpose of this report is to provide the Drainage Management Plan for the subdivision of a 4.33 acre tract and the construction of a Kidz Daycare building with associated parking lot and playground on the northern 1.03 acres. The southern portion will be mass graded to balance the site and allow for future development. This plan was prepared in accordance with the City of Albuquerque design regulations, utilizing the City of Albuquerque's Development Process Manual drainage guidelines. This report will demonstrate that the grading does not adversely affect the surrounding properties, nor the upstream or downstream facilities.

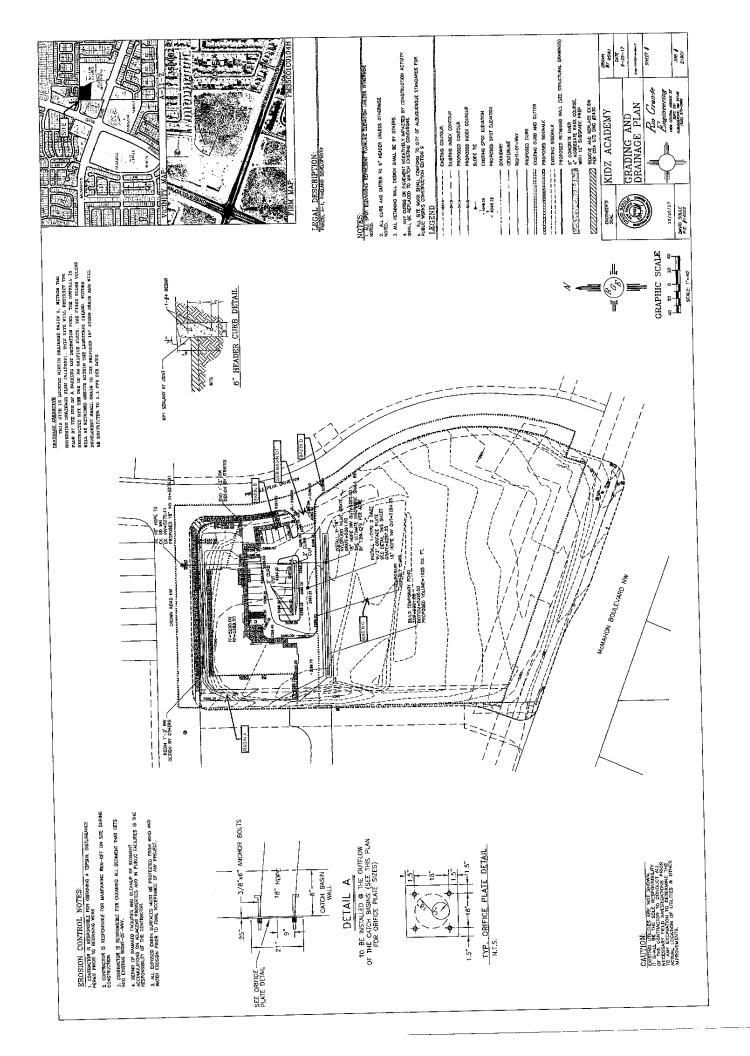
INTRODUCTION

The subject of this report, as shown on the Exhibit A, is a 4.33 -acre parcel of land located on the west side of Fineland drive between McMahon and Crown road. The legal description of this site is tract A1A and A1B Fineland Subdivision. As shown on FIRM map35001C0104H, the entire site is located within Flood Zone X. The site is bound on all sides by roadways and not impacted by upland flows. The site is an undeveloped site. The site free discharges 5.63 cfs to the intersection of Crown road and Fineland. The site is located within basin O as shown in the area drainage plan (A11D009). The proposed improvements include the construction of a day care with parking and play ground areas on tract A1A. The remaining A1B will not be developed at this time. This site must conform to the 1.3 cfs per acre assigned within the master drainage plan and discharge to the existing storm drain system within Crown. The site must manage the first flush volume onsite.

EXISTING CONDITIONS

The site is currently undeveloped. The site currently discharges native flow of 5.63 or 1.3 cfs per acre to the intersection of crown and Fineland. The flows are captured by inlets north of the intersection and conveyed north to the Black Arroyo. Due to being higher than the surrounding roadways, the site is not impacted by upland flows.

PROPOSED CONDITIONS


The proposed improvements consist of new building with exterior sand playgrounds with a parking area within tract A1A. The southerly tract A1B will not be developed at this time, but allowance for its future development is provided and it will be mass graded with this project. The proposed site development will contain 4 basins. Basin A contains the playground areas around the building. This basin generates 0.69 cfs, which is captured by area drains within the play ground area. The inlets are conveyed to a single D inlet located within the parking lot by a private 12" storm drain. Basin B contains the building and parking lot. This basin is collected by a single type D inlet located within the parking lot. This basin discharges 3.00 cfs. The parking area will sheet flow to the Single D inlet. The north and west portion of the roof is directed to this inlet via an underground storm drain shared with basin A. The outlet flow for basins A and B are metered by the introduction of an orifice plate with a 3.75" opening placed at the outlet of the D inlet. The parking area acts as the detention basin. As shown in appendix B, this pond was modeled using AHYMO and the resultant peak out fall will be.64 cfs with a maximum water surface elevation of 5288.48. In the event of clogging the driveway to Fineland serves as the emergency overflow. The inlet is connected to an 18" storm drain which will be connected to an existing manhole at Crown. Basin C contains the undeveloped tract A1B. This basin generates 7.49 cfs and 9,365.4 CF. The undeveloped flow from this basin is captured by an interim retention pond that will retain the 100-year 10-day volume. The onsite storm drain extends to this pond and acts as an emergency overflow and will be utilized for the metered developed flow upon development of the lot. The future development must maintain a peak discharge of 2.15 cfs. Basin D contains the existing surrounding road way This basin generated 2.67 cfs which drains to the intersection of Fineland and Crown were he sheet flows north and is captured by city maintained inlets. The combined flow leaving this site is 3.31 in the proposed conditions and 5.46 cfs in the ultimate condition which is less than the allowed rate of 5.63 cfs or 1.3 cfs per acre. The developed portion will retain 1116 cf within the parking lot landscape pond and the onsite storm drain will

provide infiltration volume of 248 cf within the system, which is greater than the 776 cubic feet required for the first flush requirement. A portion of the parking driveway will discharge 114 cf to the roadways without being treated.

SUMMARY AND RECOMMENDATIONS

This project is located within basin O of the area drainage plan (A11D009). The site has a total peak discharge to the city maintained facilities of 5.46 cfs (1.26 cfs per acre). This is less than the allowed discharge rate of 5.63 cfs (1.3 cfs per acre). The first flush volume of 776 cubic feet is retained onsite. The plan allows for the future development of the parcel A1B. The onsite storm drain was designed to convey the current and ultimate flow. The ponds will overflow in an emergency or clogging situation via the parking lot discharging to Fineland. The development of this site will not negatively impact the upstream nor down stream facilities. Since the work area does exceed 1 acre, erosion and sediment Control Plan shall be required prior to any construction activity.

APPENDIX A SITE HYDROLOGY

Weighted E Method

Eviction Developing Basins								100-Year, 6-hr.			10-day
Basin	Area (sf)	Area (acres)	Treatment A % (acres)	Treatment B	B Treatment C (acres) % (acres)	Treatment D (ac	res)	Weighted E (ac-ft)	Volume (ac-ft) 0.100	Flow cfs 2.67	Volume (ac-ft) 0.182
BASIN D SUBBAŜIN D1	26615 692	0.611	%0 %0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 0.0% 0 0.178 18.0% 0.05013	\ \ \ '	0.016	1.970	0.003	0.07	0.005
BASINA BASINB BASINC	12131 32801 117128 44932.00	0.278 0.753 2.689 1.03	%0 %0		0.053 15.0% 0.11295 0.269 90.0% 2.42 0.23 16% 0.16	1295 78% 2.42 0% 0.16 61%	0.587	0.958	0.109	7.49	0.215
Equations:											
Weighted E = Ea*Aa + Eb*Ab + Ec*Ac + Ed*Ad / (Total Area)) + Ec*Ac + Ed	*Ad / (Total			FIRS	FIRST FLUSH	776 CF 114 CF	<u>ሁ</u> ሥ			
Volume = Weighted D * Total Area	Area		DRIV	EWAY NOT CAP	DRIVEWAY NOT CAPTURED SUB DASSES	5					

ALLOWED DISCHARGE=5.63 CFS
DISCHARGE FROM STREET/DRIVE=2.67
REMAINING ALLOWED=2.96 CFS
ONSITÉ ALLOWABLE DISCHARGE=.79 CFS PER ACRE
TRACT A1A=.81 CFS
TRACT A1A=2.15 CFS

Qa= 1.29 Qb= 2.03 Qc= 2.87 Qd= 4.37

Where for 100-year, 6-hour storm (zone 1)

Ea= 0.44

Eb= 0.67

Ec≂ 0.99

Ed= 1.97

Flow = Qa * Aa * Qb * Ab + Qc * Ac + Qd * Ad

APPENDIX B HYDRAULIC MODELING AND CALCULATIONS

DROP INLET CALCULATIONS

INLET	TYPE OF	AREA	Q	Н	H ALLOW
il	INLET	(SF)	(CFS)	(FT)	(FT)
INLET A	SINGLE	3.84	2.88	0.0243	1.5

ORIFICE EQUATION

 $Q = CA \ sqrt(2gH)$

C =

g = 32.2

0.6

Pipe Capacity

Pipe	D	Slope	Area	R	Q Provided	Q Required	Velocity
	(in)	(%)	(ft^2)		(cfs)	(cfs)	(ft/s)
18HDPE	18	4	1.77	0.375	18.26	4.18	2.37
12HDPE	12	0.7	0.79	0.25	2.59	1.32	1.68

<u>Manning's Equation:</u> Q = 1.49/n * A * R^(2/3) * S^(1/2)

A = Area

R = D/4

S = Slopen = 0.015

VOLUME CALCULATIONS

PARKING LOT POND

OUTLET

inlet bottim outfall

POND OVERFLOW

Ī	ACTUAL	DEPTH	AREA	VOLUME	VOLUME	VOLUME	Q
	ELEV.	(FT)	SF	PER UNIT	CUMULATIVI	AC-FT	(CFS)
							l
١	84.25	0	4	4	4	0.000	
ŀ	85.50	0.00	4.00	5	9	0.000	0.00
ı	86.50	1.00	4.00	4.0000	13	0.001	0.37
-1	87.50	2.00	332.00	168.0000	181	0.004	0.52
٧l	88.00	2.50	2346.00	669.5000	850.5	0.020	0.58
	88.50	3.00	8462.00	2702.0000	3552.5	0.082	0.64
1	88.75	3.25	9785.00	2280.8750	5833.375	0.134	0.67
					ľ		

outlet at 87.25

Orifice Equation Q = CA SQRT(2gH)

C = 0.6Diameter (in) 3.75 Area (ft^2)= 0.076699039 g = 32.2

H(Ft) = Depth of water above center of orifice

Q(CFS)= Flow

pondrout011718.txt

AHYMO - DETENTION-KIDZ ACADEMY *S

POND ROUTING

TIME=0.0 PUNCH CODE=0 **START**

TYPE=2 RAINFALL

QUARTER=0.0 ONE= 1.87 IN

DAY= 2.66 IN DT = 0.05 HR SIX=2.20 IN

0.134

ID=1 HYD NO=101 DA= .0016094 SQ MI PER A=0 PER B=22 PER C=16 PER D=61 TP=-.142 MASSRAIN=-1 COMPUTE NM HYD

ID=1 CODE=3 PRINT HYD

0.67

* ROUTE THE TOTAL FLOW THROUGH THE PROPOSED RESERVOIR ROUTE RESERVOIR ID=2 HYD NO=102 INFLOW=1 COM INFLOW=1 CODE=3 ELEV(FT) 85.50 STORAGE(AC-FT) OUTFLOW(CFS) 0.00 0.000 86.50 0.001 87.50 88.00 0.52 0.58 0.004 0.020 88.50 88.75 0.64

FINISH

AHYMO.OUT

AHYMO PROGRAM (AHYMO-S4) - Version: S4.01a - Rel: 01a
RUN DATE (MON/DAY/YR) = 02/08/2018
START TIME (HR:MIN:SEC) = 08:59:24 USER NO.=
RioGrandeSingleA41963517
INPUT FILE = ents and Settings\Owner\Desktop\2017
jobs\17187-kidz\drainage\pondrout011718.txt

*S AHYMO - DETENTION-KIDZ ACADEMY
*S POND ROUTING

START

TIME=0.0 PUNCH CODE=0

RAINFALL

TYPE=2

QUARTER=0.0 ONE= 1.87 IN

SIX=2.20 IN DAY= 2.66 IN DT = 0.05 HR

24-HOUR RAINFALL DIST. - BASED ON NOAA ATLAS 14 FOR CONVECTIVE

```
AREAS (NM & AZ) - D1
                                                                 END TIME = 0.0069 0.009
                                                                                        24.000002 HOURS
                                     0.050000 HOURS
00 0.0022 0.00
                           DT =
                                                                                                   0.0154
                                                                            0.0096
                                                                                        0.0123
                                                     0.0045
                              0.0000
                                                                 0.0412
                                                                                        0.0578
                                                                                                   0.0664
                                                                            0.0494
                              0.0197
                                          0.0264
                                                     0.0336
                                                                 0.1052
0.3614
                                                                                        0.1387
                                                                                                    0.1657
                                                                            0.1168
                                          0.0844
                                                     0.0946
                              0.0753
                                                                                                   0.7733
                                                                            0.4375
                                                                                        0.5689
                                         0.2430
1.3695
                              0.2020
                                                     0.2937
                                                                                                    1.8568
                                                                 1.6610
                                                                                        1.8079
                                                                             1.7465
                                                     1.5635
                               1.1234
                                                                                                    2.0183
                                                     1.9592
                                                                             1.9979
                                                                                        2.0087
                                          1.9306
                                                                 1.9828
                               1.8994
                                                     2.0426
2.0754
2.0949
                                                                 2.0499
2.0784
2.0974
                                                                                                    2.0659
2.0870
                                                                             2.0568
2.0813
2.0999
                                                                                         2.0625
                                          2.0352
2.0724
2.0923
                               2.0273
                                                                                         2.0842
                               2.0692
                                                                                                    2.1046
                                                                                         2.1023
                               2.0896
                                                                                                    2.1199
                                                                                         2.1179
                                                                             2.1158
                                          2.1092
                                                      2.1115
                                                                 2.1136
                               2.1069
                                                                             2.1299
2.1428
2.1548
                                                                                         2.1318
2.1446
                                                                                                    2.1337
2.1463
                                                                 2.1280
2.1411
2.1531
                                                     2.1260
                                          2.1240
                               2,1220
                                                     2.1392
2.1514
2.1628
                                          2.1374
                               2.1356
                                                                                                    2.1580
                                                                                         2.1564
                                          2.1498
2.1612
                               2.1481
                                                                                         2.1674
                                                                             2.1658
                                                                                                    2.1689
                                                                 2.1643
                               2.1596
2.1704
                                                                 2.1747
                                                                                         2.1776
                                                                                                    2.1790
                                                      2.1733
                                                                             2.1762
                                          2.1718
                                                      2.1832
2.1924
2.2013
2.2102
                                                                                                    2.1885
                                                                             2.1859
                                                                                         2.1872
                                                                  2.1845
                                          2.1818
                               2.1804
                                                                              2.1950
                                                                                         2.1963
                                                                                                    2.1975
                                          2.1912
2.2000
2.2089
                                                                  2.1937
                               2.1899
                                                                                                     2.2064
                                                                  2.2026
                                                                             2.2038
                                                                                         2.2051
                               2.1988
                                                                                         2.2141
2.2230
2.2319
2.2409
                                                                             2.2128
                                                                                                     2.2153
                                                                  2.2115
                               2.2077
                                                                 2.2204
2.2294
2.2383
                                                                                                     2.2243
                                                                             2.2217
                                                      2.2192
                               2.2166
                                          2.2179
                                                                             2.2307
2.2396
                                                                                                     2.2332
                                                      2.2281
                                           2.2268
                               2.2256
                                                      2.2371
2.2460
2.2549
                                                                                                     2.2422
                                          2.2358
2.2447
                               2.2345
2.2434
2.2524
                                                                                         2.2498
                                                                  2.2473
                                                                                                     2.2511
                                                                              2.2486
                                                                                         2.2588
2.2677
                                                                              2.2575
                                                                                                     2,2601
                                                                 2.2562
                                           2.2537
                                                                 2.2652
2.2741
2.2831
2.2920
                                                                                                     2.2690
                                                      2.2639
2.2728
2.2818
                                                                              2.2664
2.2754
                                           2.2626
                                2.2613
                                                                                                     2.2779
                                                                                         2.2767
                                          2.2716
2.2805
2.2894
                                2.2703
                                                                              2.2843
2.2933
                                                                                         2.2856
                                                                                                     2.2869
                                2.2792
2.2882
                                                                                         2.2946
2.3035
2.3124
                                                                                                     2.2958
2.3048
                                                       2.2907
                                                                  2.3009
2.3099
2.3188
2.3278
                                                      2.2997
2.3086
2.3176
2.3265
                                                                              2.3022
2.3112
                                           2.2984
                                2.2971
                                                                                                     2.3137
                                           2.3073
                                2.3061
                                                                              2.3201
                                                                                         2.3214
                                2.3150
2.3239
                                           2.3163
                                                                                                     2.3316
                                                                                         2.3303
                                                                              2.3291
                                           2.3252
                                                                  2.3367
2.3457
                                                                              2.3380
                                                                                          2.3393
                                                                                                     2.3406
                                                       2.3354
                                2.3329
                                           2.3342
                                                                                                     2.3495
                                                                              2.3469
                                                                                          2.3482
                                                       2.3444
                                           2.3431
                                2.3418
                                                                                                     2.3584
                                                       2.3533
2.3623
                                                                  2.3546
2.3636
                                                                              2.3559
                                                                                          2.3572
                                           2.3521
2.3610
                                2.3508
                                                                              2.3648
                                                                                          2.3661
                                                                                                     2.3674
                                2.3597
                                                                                          2.3750
                                                                                                     2.3763
                                                                              2.3738
                                                       2.3712
                                                                  2.3725
                                2.3687
                                           2.3699
                                                          Page 1
```

```
AHYMO.OUT
                                                         2.3853
                                     2.3827
2.3917
                                               2.3840
                   2.3802
                            2.3814
         2.3789
2.3776
                                               2.3929
                                                         2.3942
                   2.3891
                            2.3904
         2.3878
2.3865
                                                         2.4032
                                      2.4006
                            2.3993
                                               2.4019
2.3955
                   2.3980
         2.3968
                                               2.4108
2.4198
                                                         2.4121
                                      2.4095
                            2,4083
2.4044
         2.4057
                   2.4070
                                                         2.4210
                            2.4172
                                      2.4185
         2.4147
                   2.4159
2.4134
                                                         2.4300
                                                2.4287
                   2.4249
                            2.4262
                                      2.4274
         2.4236
2.4223
                                                2.4377
                                                         2,4389
                                      2.4364
                   2.4338
                             2.4351
         2.4325
2.4313
                                                2.4466
                                                         2.4479
                             2.4440
                                      2.4453
          2.4415
                   2.4428
2.4402
                                                2.4555
                                      2.4543
                                                         2.4568
                             2.4530
         2.4504
                   2.4517
2.4492
                                      2.4632
                                                         2.4658
                            2.4619
                                                2.4645
         2.4594
                   2.4607
2.4581
                                                2.4734
                                                         2.4747
                   2.4696
2.4785
2.4875
                             2.4709
                                      2,4722
         2.4683
2,4670
                             2.4798
                                                2.4824
                                                         2.4837
                                      2.4811
         2.4773
2.4760
                                                         2.4926
                                      2.4900
                                                2.4913
                             2.4888
2.4849
          2,4862
                                                2.5003
                                      2.4990
                                                         2.5015
                   2.4964
                             2.4977
          2.4952
2.4939
                             2.5067
2.5156
2.5245
                                                2.5092
                                                         2.5105
                                      2.5079
          2.5041
                   2.5054
2.5028
                                                         2.5194
                                                2.5182
          2.5130
2.5220
                   2.5143
                                      2.5169
2.5118
                                                2.5271
                                                         2.5284
                                       2.5258
                   2.5233
2.5207
                                                          2.5373
         2.5309
2.5399
2.5488
                                      2.5348
                                                2.5360
                   2.5322
                             2.5335
2.5297
                                      2.5437
2.5527
2.5616
                                                2.5450
                                                          2.5463
                   2.5412
                             2,5424
2.5386
                                                          2.5552
                                                2.5539
                             2.5514
                   2.5501
2.5475
                                                          2.5642
                                                2.5629
                   2.5590
                             2.5603
2.5693
          2.5578
2.5565
                                                2.5718
                                                          2.5731
          2.5667
2.5757
                   2.5680
2.5769
                                       2.5705
2.5654
                                                2.5808
                                                          2.5820
                                       2.5795
                             2.5782
2.5744
                                                          2.5910
                                       2.5884
                                                2.5897
                             2.5872
          2.5846
                    2.5859
 2.5833
                             2.5961
                                                 2.5987
                                                          2.5999
                    2.5948
                                       2.5974
          2.5935
 2.5923
                                                2.6076
                                                          2.6089
                                       2.6063
                    2.6038
2.6127
                             2.6050
          2.6025
 2.6012
                                                          2,6178
                                                 2.6165
                                       2.6153
                             2.6140
          2.6114
 2.6102
                                                 2.6255
                                                          2.6268
                                       2.6242
                    2.6217
                              2.6229
          2.6204
 2.6191
                                                          2.6357
                             2.6319
                                       2.6332
                                                 2.6344
          2.6293
                    2.6306
 2.6280
                                       2.6421
                                                 2.6434
                                                          2.6447
                              2.6408
                    2.6395
          2.6383
 2.6370
                                                          2.6536
                                       2.6510
                              2.6498
                                                 2.6523
                    2.6485
          2.6472
 2.6459
                             2.6587
                                       2.6600
                    2.6574
          2.6562
 2.6549
```

COMPUTE NM HYD

ID=1 HYD NO=101 DA= .0016094 SQ MI PER A=0 PER B=22 PER C=16 PER D=61 TP=-.142 MASSRAIN=-1

*****WARNING***** SUM OF TREATMENT TYPES DOES NOT EQUAL 100 PERCENT OR TOTAL AREA

```
SHAPE
                                               K/TP RATIO = 0.545000
                           TP = 0.142000HR
        K = 0.077390HR
CONSTANT, N = 7.106428
                                                                         526.28
                                      UNIT VOLUME = 0.9962
         UNIT PEAK = 3.6752
                                CFS
 P60 = 1.8700
                                            0.10000 INCHES
                                                              INF =
                                                                     0.04000
                                     IA =
                   0.000992 SQ MI
         AREA =
        RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT =
INCHES PER HOUR
0.050000
```

K/TP RATIO = 0.903323SHAPE TP = 0.142000HRK = 0.128272HRCONSTANT, N = 3.922324349.96 UNIT VOLUME = 0.9931 1.5225 CFS UNIT PEAK = P60 = 1.8700INF = 1.07316 0.43684 INCHES 0.000618 SQ MI IA = AREA = RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = INCHES PER HOUR 0.050000

PRINT HYD

ID=1 CODE=3

AHYMO.OUT PARTIAL HYDROGRAPH 101.00

	TIME	FLOW	TIME	FLOW	TIME	FLOW
TIME	FLOW HRS	TIME CFS	FLOW HRS	CFS	HRS	CFS
HRS	CFS 0.000	0.0	CFS 4.950	0.0	9.900	0.0
14.850	0.0 0.150	19.800 0.0	0.0 5.100	0.0	10.050	0.0
15.000	0.0 0.300	19.950 0.0	0.0 5.250	0.0	10.200	0.0
15.150	0.0 0.450	20.100 0.0	0.0 5.400	0.0	10.350	0.0
15.300	0.0 0.600	20.250 0.0	0.0 5.550	0.0	10.500	0.0
15.450	0.0 0.750	20.400 0.0	0.0 5.700	0.0	10.650	0.0
15.600	0.0	20.550 0.0	0.0 5.850	0.0	10.800	0.0
15.750	0.0 1.050	20.700 0.2	0.0 6.000	0.0	10.950	0.0
15.900	0.0 1.200	20.850	0.0 6.150	0.0	11.100	0.0
16.050	0.0 1.350	21.000 1.1	0.0 6.300	0.0	11.250	0.0
16.200	0.0	21.150 3.8	0.0 6.450	0.0	11.400	0.0
16.350	0.0 1.650	21.300 2.5	0.0 6.600	0.0	11.550	0.0
16.500	0.0 1.800	21.450 1.2	0.0 6.750	0.0	11.700	0.0
16.650	0.0 1.950	21.600 0.6	0.0 6.900	0.0	11.850	0.0
16.800	0.0 2.100	21.750 0.4	0.0 7.050	0.0	12.000	0.0
16.950	0.0 2.250	21.900 0.2	0.0 7.200	0.0	12.150	0.0
17.100	0.0 2.400	22.050 0.1	0.0 7.350	0.0	12.300	0.0
17.250	0.0 2.550	22.200 0.1	0.0 7.500	0.0	12.450	0.0
17.400	0.0 2.700	22.350 0.0	0.0 7.650	0.0	12.600	0.0
17.550	0.0 2.850	22.500 0.0	0.0 7.800	0.0	12.750	0.0
17.700	0.0 3.000	22.650 0.0	0.0 7.950	0.0	12.900	0.0
17.850	0.0 3.150	22.800 0.0	0.0 8.100	0.0	13.050	0.0
18.000	0.0 3.300	22.950 0.0	0.0 8.250	0.0	13.200	0.0
18.150	0.0 3.450	23.100 0.0	0.0 8.400	0.0	13.350	0.0
18.300	0.0 3.600	23.250	0.0 8.550	0.0	13.500	0.0
18.450	0.0 3.750	23.400	0.0 8.700	0.0	13.650	0.0
18.600	0.0 3.900	23.550	0.0 8.850	0.0	13.800	0.0
18.750	0.0 4.050	23.700	0.0 9.000	0.0	13.950	0.0
18.900	0.0 4.200	23.850 0.0	0.0 9.150	0.0	14.100	0.0
	,,200	*	Pag	je 3		

			AHYMO.	OUT		
19.050	0.0 4.350	24.000 0.0	0.0 9.300	0.0	14.250	0.0
19.200	0.0 4.500	24.150 0.0	0.0 9.450	0.0	14.400	0.0
19.350	0.0 4.650	24.300 0.0	0.0 9.600	0.0	14.550	0.0
19.500	0.0 4.800	24.450 0.0	0.0 9.750	0.0	14.700	0.0
19.650	0.0					

RUNOFF VOLUME = 1.84975 INCHES = 0.1588 ACRE-FEET
PEAK DISCHARGE RATE = 3.78 CFS AT 1.500 HOURS BASIN AREA = 0.0016 SQ. MI.

* ROUTE THE TOTAL ROUTE RESERVOIR	FLOW THROUGH THE ID=2 HYD NO= OUTFLOW(CFS) 0.00 0.37 0.52	E PROPOSED RESERVO =102 INFLOW=1 STORAGE(AC-FT) 0.000 0.001 0.004	OIR CODE=3 ELEV(FT) 85.50 86.50 87.50 0.020	88.00
	0.64	.0.082 0.67	88.50 0.134	88.75

*	**	*	r	*	*	*	ŵ	*	*	s'e	*	*	*	*	*	ň
	TIM (HR				FLO FS)			LEV FEE			VOL (AC	UME -FT	5)		TFL FS)	
	0.000 0.000 1.1111111111111111111111111	00 130 45 60 75 90 50 50 50 50 50 50 50 50 50 5			0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	00 00 00 00 00 00 00 00 11 13 13 14 14 16 16 16 17 17 10 10 10 10 10 10 10 10 10 10 10 10 10		88 88 88 88 88 88	50 50 50 50 50 50 52 86 51 06			0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	00 00 00 00 00 00 00 00 00 00 00 00 00		000000000000000000000000000000000000000	00 00 00 00 00 01 13 52 63 64 64 63 66 61 60

3.34.035.34.035.35.35.35.35.35.35.35.35.35.35.35.35.3	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	88.10 88.092 87.750 88.092 87.750 85.552 85.552 85.553 85.553 85.554 85.554 85.554 85.554 85.554 85.554 85.554 85.555 85.554 85.555 85.554 85.555	AHYMO.OUT 0.032 0.025 0.017 0.011 0.004 0.000	0.59 0.58 0.57 0.54 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0
TIME (HRS)	INFLOW (CFS)	ELEV (FEET)	VOLUME (AC-FT)	OUTFLOW (CFS)
8.40 8.55 8.70 8.85 9.00 9.15 9.30 9.45 9.60 9.75 9.90 10.35 10.65 10.65 11.10 11.25 11.40 11.55 11.70 11.85	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	85.54 85.55 85 85 85 85 85 85 85 85 85 85 85 85 8	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

12.00 12.15 12.30 12.45 12.75 12.90 13.05 13.35 13.50 13.65 13.80 13.95 14.40 14.45 14.70 14.85 14.70 14.85 15.60 15.75 15.60 15.75 16.05 16.65	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	855.5.5.4 885.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	AHYMO.OUT 0.000	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
TIME (HRS)	INFLOW (CFS)	ELEV (FEET)	VOLUME (AC-FT)	OUTFLOW (CFS)
16.80 16.95 17.10 17.25 17.40 17.55 17.70 17.85 18.00 18.15 18.30 18.45 18.60 19.05 19.05 19.20 19.35 19.65 19.65 19.80 19.65 19.65 19.65 19.65 19.65 19.65 19.65 19.70	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	855.544 855.5544 855.5544 855.555.554 855.555.554 855.5544 855.554 855.554 855.554 855.554 855.554 855.554 855.554 855.554	0.000 0.000	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

AHYMO.OUT						
20.85	0.02	85.54	0.000	0.02		
21.00	0.02	85.54	0.000	0.02		
21.15	0.02	85.54	0.000	0.02		
	0.02	85.54	0.000	0.02		
21.30	0.02	85.54	0.000	0.02		
21.45	0.02	85.54	0.000	0.02		
21.60		85.54	0.000	0.02		
21.75	0.02	85.54	0.000	0.02		
21.90	0.02	85.54	0.000	0.02		
22.05	0.02	85.54	0.000	0.02		
22.20	0.02	85.54	0.000	0.02		
22.35	0.02	85.54	0.000	0.02		
22.50	0.02	85.54	0.000	0.02		
22.65	0.02	85.54	0.000	0.02		
22.80	0.02	85.54	0.000	0.02		
22.95	0.02	85.54	0.000	0.02		
23.10	0.02	85.54	0.000	0.02		
23.25	0.02		0.000	0.02		
23.40	0.02	85.54	0.000	0.02		
23.55	0.02	85.54 85.54	0.000	0.02		
23.70	0.02	85.54	0.000	0.02		
23.85	0.02	85.54	0.000	0.02		
24.00	0.02	85.53	0.000	0.01		
24.15	0.01	85.51	0.000	0.00		
24.30	0.00	03.31	TEC _ DEAK O		1.95	
PEAK DISCHARGE = 0.637 CFS - PEAK OCCURS AT HOUR 1.95 MAXIMUM WATER SURFACE ELEVATION = 88.473						
MAXIMUM WALL	K SUKFACE			INCREMENTAL TI	ME=	0.050000HRS
MAXIMUM STORAGE = 0.0787 AC-FT INCREMENTAL TIME= 0.050000HRS						

FINISH

NORMAL PROGRAM FINISH END TIME (HR:MIN:SEC) = 08:59:24