FOR
PALOMA DEL SOL
ADDENDUM TO
JUNE, 1995 & NOVEMBER 1995
REPORTS

PREPARED FOR: THE STROSNIDER COMPANY 6121 INDIAN SCHOOL ROAD, NE SUITE #275 ALBUQUERQUE, NM 87110 (505)884-7666

PREPARED BY:

COMMUNITY SCIENCES CORPORATION P.O. BOX 1328 CORRALES, NM 87048 (505)897-0000

THOMAS J. BELLON, JR PROJECT MANAGER

JAN 2 3 1996

1-24-96 Rev 3-8-96

JANUARY, 1996

CSC#20-03-036/20-03AX.REP

TABLE OF CONTENTS

		Page Number
	INTRODUCTION	1
١.	OFF-SITE DRAINAGE	1
И.	ON-SITE DRAINAGE	1 - 2
٧.	CONCLUSIONS	2

TABLES

TABLE 1A 100-YEAR PEAK DISCHARGE TABLE 1B BACK YARD POND VOLUMES & DISCHARGES REFERENCE TABLE 2

PLATES & SHEETS

PLATE 1	VICINITY MAP
PLATE 2	REVISED DRAINAGE BASIN MAP
SHEET 5	GRADING & EROSION CONTROL PLAN
SHEET 6	GRADING & EROSION CONTROL PLAN
SHEET 16	SAN TIMOTEO/CALLE CONTENTO STORM DRAIN
SHEET 18	STORM DRAIN BASELINE "A", "B", & "C"

APPENDICES

APPENDIX	Α	AHYMO INPUT, SUMMARY AND DETAILED OUTPUT
APPENDIX	В	REVISED HGL CALCULATIONS (STORMPLUS) + HEC-2 RUNS
APPENDIX	С	SEGMENTS OF JUNE, 1995 DRAINAGE REPORT AND COPIES
		OF CITY & AMAFCA LETTERS
APPENDIX	Ð	SEGMENTS OF NOVEMBER 1995 ADDENDUM TO JUNE 1995
		DRAINAGE REPORT

I. INTRODUCTION:

This is the Final Revised Drainage Report adding to the June and November 1995 Drainage Report for Paloma del Sol (approved for Preliminary Plat and Rough Grading) and is prepared for the purpose of pointing out changes between the earlier report and the Final Design of Infrastructure Plans. The revisions in this report include revised HGL calculations and an increase in the storm drain system pipe size in Baseline "B" in San Timoteo and Calle Contento Avenues.

Site Description, Drainage Criteria, Computational Procedures and Erosion Control have not changed. The June 1995 Report describes these items in detail, copies are provided in the Appendix C. Segments of the November 10, 1995 Addendum to Drainage Report for Paloma del Sol is provided in Appendix D.

II. OFF-SITE DRAINAGE

Contributing off-site drainage will be coming from two directions: at the west project boundary, a portion of the street drainage from Bandelier Drive and at the north project boundary, drainage from McMahon Boulevard. No off-site drainage is anticipated from the apartments located adjacent to the east project site boundary. All contributing off-site and on-site drainage will drain southward to the Calabacillas Arroyo.

Contributing off-site drainage from Bandelier Drive on the west will be approximately 2 cfs. This discharge will combine with on-site drainage and flow eastward along San Timoteo Avenue to a sump point near the middle of the project site where it will be intercepted and conveyed south in a storm drain system to the Calabacillas Arroyo.

Off-site drainage from the north project boundary will enter the project site at two locations. Inlets located in McMahon Blvd. immediately west of Dover Street will intercept "future condition" flows coming from the west along McMahon Blvd., totaling approximately 72.9 cfs and from the northeast near Dover Street, totaling approximately 6.7 cfs for a future total of 79.6 cfs at the first location. Forty cfs of the flow from west McMahon Blvd. is due to future development of McMahon Blvd. west of Bandelier Drive. Under "existing conditions", 32.9 cfs flows from the west along McMahon Blvd. for a total of 39.6 cfs at this location under present conditions. Inlets located at the intersection of McMahon and Redbud Street will intercept approximately 34 cfs from the north and west along McMahon and 33.5 cfs from the north and east along McMahon Blvd. for a total of 67.5 cfs at the second location. At each of these locations, a storm drain system will convey the off-site runoff south, intercepting on-site runoff at one of the two sump locations in San Timoteo Avenue before ultimately discharging into the Calabacillas Arroyo.

The determination of off-site flows referenced in this report were generated previously in the Tuscany - Unit 1 Drainage Report (Project No. 5208.92) dated November 10, 1995 and approved December 15, 1995.

III. ON-SITE DRAINAGE

On-site Drainage patterns have not been changed between the June, 1995 Drainage Report and this addendum. Basins have been combined and new basin designations assigned.

Surface drainage still flows to the two (2) Sump Points within the Tract, and will be intercepted into storm drain system and conveyed to Calabacillas Arroyo.

On-site runoff in San Timoteo Avenue from the westerly boundary (including off-site surface flow), Bandelier Drive, will be combined with flows from Los Suenos Court and Madrina Court and from a high point west of Aventura Court and flow to low point at the approximate center of the property. These flows will be collected in inlets and conveyed to the Calabacillas Arroyo via a storm drain. (Basins 101.1, 101.2 & 101.3) (See Revised Plate 2). Approximately 42 cfs will reach this sump point as surface flow and 79.6 cfs through the storm drain system from McMahon Blvd. for a future total of 121.6 cfs at this location.

On-site surface runoff from Calle Contento Avenue and the eastern portion of San Timoteo Avenue, totaling approximately 48.1 cfs will combine with off-site flows from McMahon Blvd. in the north through a storm drain system, totaling approximately 67.5 cfs at a second sump point location in San Timoteo Avenue. The future total discharge at this second sump point location will be approximately 115.6 cfs. From this location the storm drain system will be designed to convey two times the on-site 100-year discharge plus the contributing off-site discharge which equals approximately 163.7 cfs or (48.1 + 48.1 + 67.5 cfs).

The storm drainage system will be designed in accordance with the City of Albuquerque standards. Both of the outfall structures to the Calabacillas Arroyo will be designed in conjunction with AMAFCA policies and will be subject to the review and approval of AMAFCA as well as the City. Both of the outfall structures were designed to take potential scour into account. In addition, both structures were designed to start approximately six feet below the existing bottom surface of the Callabacillas Arroyo.

Runoff from some of the lots within the Paloma del Sol development will not entirely drain runoff towards the adjacent frontage road. Lots 24 through 27 of Block 1 will have private backyard retention ponds for rear lot drainage. These ponds will be designed per COADPM section 22. Lots 1 through 23 of Block 1 will be set 25 feet back from San Timoteo Avenue and will be required to drain roof runoff and the front 30 feet of the lot toward San Timoteo Avenue. Rear lot drainage for these lots will be accomplished through backyard retention ponds with overflow capabilities to the Calabacillas Arroyo. To be conservative, these flows were assumed to contribute to on-site surface runoff to one of the two sump inlet locations. Information on sump basin size is provided in an appendix to this report.

Plans for the storm drain system will be a part of the DRC improvement plan submittal. Final HGL calculations will be provided at the time of final design with this report.

IV. CONCLUSIONS

This addendum should address the comments previously mentioned in the letter from the City of Albuquerque dated July 18, 1995, and in the letter from AMAFCA dated July 14, 1995.

Drainage patterns stated in the June, 1995 Drainage Report have not been altered, but we have simplified the Drainage Basin Map.

The off-site flows from McMahon per the Smith Engineering Co. Drainage Report for C.P.N. 5208.90 and the proposed outfalls onto the Paloma del Sol project have been incorporated into the design of the storm drain system proposed for this project.

Details of the outfall structures and the spillways are provided in the infrastructure plans for the Paloma del Sol project (CPN 5300.90), concurrently under review by the DRC.

TABLE 1A

100-YEAR PEAK DISCHARGES DEVELOPED CONDITIONS (ON-SITE & OFF-SITE)

				LA TREAT	MEN.	Γ	INCREMENTAL	FUTURE TOTAL
Basin	Area	Sum Area	Α	В	C	D	Q100	Q100
I.D.	(Sq.Mi.)	(Sq.Mi.)					(cfs)	(cfs)
100.1								
101.1	0.00694	13.91						
101.2	0.01014	0.01778	0	36	36	28	20.32	
101.3	0.00289	0.02067	0	36	36	28	5.80	
San Timo	teo Avenue s	surface flow at s	sump S	Station	20+8	5		42.01
*Off-site fl	ow from McM	lahon Boulevar	d (We	st) (32	.9 cfs	+ 40 c	fs + 6.7 cfs)	79.6
Total storr	n drain disch	arge to Calabac	illas A	rroyo	West	Outfall		121.6
102.1	0.00901		0	36	36	28	18.06	
102.2	0.00423	0.01324	0	36	36	28	8.49	26.54
102.3	0.00539		0	36	36	28	10.81	
102.4	0.00536	0.01075	0	36	36	28	10.75	21.56
San Timo	teo Avenue s	surface flow at s	sump S	Station	30+4	5		48.1
Off-site fl	ow from McN	lahon Boulevar	d (Eas	t) (16	<u>cfs</u> + 2	25.5 cf	s + 26 cfs)	67.5 (64.0)
Total storr	n drain disch	arge to Calabad	cillas A	rroyo	East (Dutfall.		115.6 (112.1)*
Total Stor	rm Drain DES	SIGN discharge	to Ca	labacil	las Ar	royo E	ast Outfall	
(2 * 48.1	cfs + 67.5 cfs	s)						163.7 (160.2)*

^{*}Revised Tuscany Drainage Report shows only 64.0 cfs, use of 67.5 cfs will be more conservative (See Revised Table 2 for Tuscany herein for reference)

TABLE 1B
BACK YARD POND VOLUMES & DISCHARGES
DEVELOPED CONDITIONS

							POND VOLUME (AF)	FUTURE DISCHARGE Q100
103.1	0.00323		0	50	50	0	0.152	5.33
103.2	0.00401		0	50	50	0	0.188	6.61
103.3	0.00201		0	50	50	0	0.094	3.32
103.4	0.00054		0	50	50	0	0.025	0.90
103.5	0.00003		0	50	50	0	0.001	0.06
Total for r	ear yard pond	ds (Basins 103.	1 to 10	03.5)			0.461	16.22
104.1	0.00246		0	50	50	0		4.06
Total she	et flow to Cala	abacillas Arroyo						4.06

COMPUTER PERCENT IMPERVIOUS

N = 65 DU/29 acres = 2.24

$$\%D = 7(N^{2} + 5N)^{0.5}$$

$$= 7(2.24^{2} + 5(2.24))^{0.5}$$

$$= 28\%$$

Rev. 3/7/96

CSC#20-03-036/20-03AY.REP

^{*}For explanation of off-site flows refer to the Tuscany Development Reference Table 2. These discharges we originally calculated in Tuscany Drainage Report dated 11-10-95.

TABLE 1A

100-YEAR PEAK DISCHARGES DEVELOPED CONDITIONS (ON-SITE & OFF-SITE)

	LAND INCREMENTAL FU												
			1	REAT	MEN	r							
Basin	Area	Sum Area	Α	В	C	D	Q100	Q100					
I.D.	(Sq.Mi.)	(Sq.Mi.)					(cfs)	(cfs)					
100.1													
101.1	0.00694	0.00764	0	36	36	28	13.91						
101.2	0.01014	0.01778	0	36	36	28	20.32						
101.3	0.00289	0.02067	0	36	36	28	5.80						
San Timo	teo Avenue s	urface flow at	sump S	Station	20+8	5		42.01					
*Off-site f	low from McM	ahon Boulevar	d (We	st) (32	.9 cfs	+ 40 c	fs + (1/2)(13 cfs))?	79.6					
		arge to Calaba						121.6					
102.1	0.00901		0	36	36	28	18.06						
102.2	0.00423	0.01324	0	36	36	28	8.49	26.54					
102.3	0.00539		0	3 6	36	28	10.81						
102.4	0.00536	0.01075	0	36	36	28	10.75	21.56					
San Time	48.1												
*Off-site f	67.5												
Total sto	rm drain disch	narge to Calaba	cillas	Arroyo	East	Outfal		115.6					
Total Sto	rm Drain DES	SIGN discharge	to Ca	labacil	las Ar	royo E	ast Outfall						
	cfs + 67.5 cfs							163.7					

TABLE 1B BACK YARD POND VOLUMES & DISCHARGES DEVELOPED CONDITIONS

							POND VOLUME (AF)	FUTURE? DISCHARGE Q100
103.1	0.00323		0	50	50	0	0.152	5.33
103.2	0.00401		0	50	50	0	0.188	6.61
103.3	0.00201		0	50	50	0	0.094	3.32
103.4	0.00054		0	50	50	0	0.025	0.90
103.5	0.00003		0	50	50	0	0.001	0.06
Total for re	ear yard pond	is (Basins 103.1	1 to 10	3.5)			0.461	16.22
104.1	0.00246		0	50	50	0		4.06
Total shee	et flow to Cala	abacillas Arroyo						4.06

COMPUTER PERCENT IMPERVIOUS

N = 65 DU/29 acres = 2.24

%D =
$$7(N^2 + 5N)^{0.5}$$

= $7(2.24^2 + 5(2.24))^{0.5}$
= 28%

^{*}For explanation of off-site flows refer to the Tuscany Development Reference Table 2. These discharges were originally calculated in Tuscany Drainage Report dated 11-10-95.

TABLE 1 (Revised)
ULTIMATE DEVELOPED CONDITION
ties, both on-site and off-site, developed) TP=0.1330

			operties, b			LAI	D		INCREM	ENTAL	FUTU TOT	
Basin I.D.	Area (Sq.Mi.)	Contr. Basin	Sum Area (Sq.Mi.)	Tc (Min.)	A	В	С	D	Q ₁₀₀ (cfs)	Q ₁₀ (cfs)	Q _{1∞} (cfs	Q ₁₀ (cfs)
Future N	McMahon B	oulevard	(Unser to V	Vest Mes	a Med	dical (Carer	nore	Site))			
100	0.0035		0.0035	12		5	5	90	9.52		9.52	
100.1	0.0035	100	0.0070	12		5	5	90	9.52		19.05	
185	0.0024		0.0024	12		5	5	90	6.53		6.53	
185.1	0.0024	185 & 100.1	0.0118	12		5	5	90	6.53		32.12	
105	0.0366	185.1	0.0484	12		21	22	57	84.33		116.45	
Off-site	Q at McMa	hon Boule	evard (105)	Q.,,, = 11	6.5 c	fs (fut	ure ir	nlets	to be design	ned for 7	76.5 cfs)	
			ved to bypa									to east
115	0.0146	105	0.063	12		21	22	57	33.65		148.32	
110	0.0171	115	0.0801	12		21	22	57	39.41		186.38	
			(110) Q ₁₀₀ =	186.4 cfs	s (futi	ıre inl	ets to	be d	esigned fo	or 146.4 c	fs)*	
125	0.0090	110	0.0891	12		29	29			1 1 1 5 1 1 1	208.08	
			r Dr (125) (_	_		_		th I Init #3		cfe*
	0.0324	Dandelle	0.0324	12	1	25	25	50	71.72	III OTHE #3	71.72	Lis)_
155		uro inloto	to be desig		F 0 of						71.72	
NOTE #	2: 1/2 of B	<u>asin #15</u>	5 (35.9 cfs)	to join wi		sin #1	50					,
160	0.0012	_155	0.0336	12		5	5	90	3.28		74.99	ļ
16 <u>5</u>	0.0086	_ 160	0.0422	12		25	25	50	19.05		94.04	ļ <u> </u>
<u>175</u>	0.0085		0.0085	12		25	25	50	18.83		18.83	
170	0.0009	175 & 165	0.0516	12		5	5	90	2.46	<u> </u>	114.38	
			verted from		<u>er,. Q</u>					<u>asin #170</u>		
265 ———	0.0025	170 & 125	0.1432	12		29	29	42	5.30		329.21	
180	0.0006	265	0.1438	12		5	5	90	1.65		330.79	
260	0.0005	180	0.1443	12		5	5	90	1.37		333.47	
2 <u>55</u>	0.0007	250	0.1550	12		29	29	42	1.49		334.93	ļ
252	0.0090	250	0.1538	12		29	29	42	19.03		350.90	⊢ −
250	0.0010	252							2.73		353.96	
		e at Sorre	ento Drive (_	_		5.0)		
205	0.0006		0.0006	12_		15	15	70	1.50		1.50	
<u>210</u>	0.0027	205	0.0033	12		15	15	70	6.67		8.17	
225	0.0038		0.0071	12		5	5	90	10.34		17.68	
215	0.0095	210	0.0166	12		29	29	42	20.08		35.94	ļ
<u> 195</u>	0.0022	215	0.0188	12		5	5	90	5. <u>99</u>		41.67	<u> </u>
220	0.0007	195	0.0195	12		5	5	90	1.92		43.53	<u> </u>
200	0.0013				<u> </u>	46	47	7	2.19	<u> </u>	45.70	<u>_,</u>
Park Si	te - Q100 =	2.2 cfs to	inlet in par	'k								
1/2 Bas	in # 225 joi	ns #210										
230	0.0063	220	0.0063	12		29	29	42	13.32		58.64	
1/2 Bas	in # 225 joi	ns #240 (partial flow	from #35	5 to 9	Sorrer	to Dr	ive)				
225	0.0038		0.0038	12		5	5	90	10.34		10.34	
240	0.0077	225	0.0115	12		29	29	42	16.28		25.94	

Rev. 3-7-96

TUSCANY DEVELOPMENT (REFERENCE TABLE 2) TABLE 1 (Revised)

ULTIMATE DEVELOPED CONDITION (continued)

					Т.	LA! REAT		T	INCREM	ENTAL	FUTU TOT	
Basin I.D.	Area (Sq.Mi.)	Contr. Basin	Sum Area (Sq.Mi.)	Tc (Min.)	Α	В	С	D	Q ₁₀₀ (cfs)	Q ₁₀ (cfs)	Q ₁₀₀ (cfs	Q ₁₀ (cfs)
240T		230	0.1923	12							86.95	
235	0.0007	255 & 240T	0.1943	12		5	5	90	1.92		435.09	
Total Q i	in Bandelie	r Drive (2	35) SUMP	Q ₁₀₀ = 43	5.1 c	fs: (35 ote #2	9.2 c	fs to	outfall #1)			
270	0.0096		0.0096	12		27	27	46	20.78		20.78	
275	0.0076	270	0.0172	12		27	27	46	16.45		34.81	
280	0.0122	275	0.0294	12		27	27	46	26.40		57.55	
			$Ce Q_{100} = 5$					40	20.40	L	07.00	1
130	0.0277		0.0277	12		25	25	50	61.62		61.62	1
135	0.0017	130	0.0294	12		5	5	90	4.63		65.95	
140	0.0115		0.0115	12		25	25	50	25.47		88.69	
145	0.0018	135 & 140	0.0427	12		5	5	90	4.91		93.38	
150	0.0007	145	0.0434	12		5	5	90	1.92		95.21	
152	0.0148	150	0.0582	12		25	25	50	32.77		116.70	
292	0.027	152	0.0852	12		25	25	50	59.77		175.99	1
Total Q	at temp. Of	n-site Por	10 #1 and #	2 (2921)	U ₁₀₀	= 170	.u cis	(uiui	nate nows)(211.9 C	is to tuture	e outfall
The incr	ease in Q a	at future o	nd #1 and # outfall is a re 0.0015	esult of N	ote #	2 dive	rsion 5	90	4.09)(211.9 c	4.09	outfall
The incr 305 190	0.0015 0.0014	at future o	0.0015 0.0029	esult of N 12 12	ote #	2 dive 5 5	rsion 5 5	90	4.09 3.82			outfall
The incr 305 190 Q in Mc	ease in Q a 0.0015 0.0014 Mahon Bou	at future of levard at	0.0015 0.0029 Bandelier I	esult of N 12 12 Drive (N/S	ote # 3=24.	2 dive 5 5 1 cfs	rsion 5 5 8 S/S	90 90 =23.	4.09 3.82 8 cfs) *NO		4.09 3.82	outfall
The incr 305 190 Q in Mc 300	ease in Q a 0.0015 0.0014 Mahon Bot 0.0018	at future of the second	0.0015 0.0029 Bandelier [0.0018	12 12 12 2 2 12 2 12 12	ote # 6=24.	2 dive 5 5 1 cfs 5	5 5 8 S/S 5	90 90 =23. 90	4.09 3.82 8 cfs) *NO 4.91		4.09 3.82 9.00	outfall
The incr 305 190 Q in Mcl 300 310	0.0015 0.0014 Mahon Bou 0.0018 0.0012	at future of	0.0015 0.0029 Bandelier [0.0018 0.0030	12 12 12 Drive (N/S	ote # 3=24.	2 dive 5 5 1 cfs 6 5	5 5 8 S/S 5 5	90 90 =23. 90 90	4.09 3.82 8 cfs) *NO 4.91 3.28		4.09 3.82 9.00 12.27	
The incr 305 190 Q in Mc 300 310 315	0.0015 0.0014 Mahon Bou 0.0018 0.0012 0.0093	at future of	0.0015 0.0029 Bandelier I 0.0030 0.0123	12 12 12 12 0rive (N/S 12 12	ote # 3=24. 	2 dive 5 5 1 cfs 5 5 25	5 5 8 S/S 5 5 25	90 90 =23. 90 90	4.09 3.82 8 cfs) *NO 4.91 3.28 20.60	TE #1	9.00 12.27 32.87	(* WE
The incr 305 190 Q in Mc 300 310 315 Q on Bo	0.0015 0.0014 Mahon Bou 0.0018 0.0012 0.0093 orrow Site -	at future of	0.0015 0.0029 Bandelier [0.0018 0.0030 0.0123 McMahon E	12 12 12 12 12 12 12 12 12 30ulevard	ote # 3=24. 	2 dive 5 5 1 cfs 5 5 25	5 5 8 S/S 5 5 25	90 90 =23. 90 90 50	4.09 3.82 8 cfs) *NO 4.91 3.28 20.60 and #5 Q ₁₀₀	TE #1	9.00 12.27 32.87	(* WE
The incr 305 190 Q in Mcl 300 310 315 Q on Bo 320	0.0015 0.0014 Mahon Bou 0.0018 0.0012 0.0093 prrow Site -	at future of	0.0015 0.0029 Bandelier I 0.0030 0.0123 McMahon E 0.0159	12 12 12 12 12 12 12 12 12 12 12 12 12 1	ote # 3=24. 	2 dive 5 5 1 cfs 5 5 25 7 Tem	5 5 8 S/S 5 5 25 porar	90 90 =23. 90 90	4.09 3.82 8 cfs) *NO 4.91 3.28 20.60 nd #5 Q ₁₀₀ 5.72	TE #1	9.00 12.27 32.87	(*WE
The incr 305 190 Q in Mc 300 310 315 Q on Bo 320 295	0.0015 0.0014 Mahon Bou 0.0018 0.0012 0.0093 orrow Site - 0.0021	at future of	0.0015 0.0029 Bandelier I 0.0030 0.0123 McMahon E 0.0035	12 12 12 12 12 12 12 12 12 30ulevard 12	ote # 6=24. (315	2 dive 5 5 5 1 cfs 6 25 7 Tem 5 5 5	5 5 8 S/S 5 5 25 porar 5	90 90 =23. 90 90 50 y por 90	4.09 3.82 8 cfs) *NO 4.91 3.28 20.60 ad #5 Q ₁₀₀ 5.72 5.72	TE #1	9.00 12.27 32.87 s (ultimate 32.16 7.97	(* WE:
The incr 305 190 Q in Mc 300 310 315 Q on Bo 320 295 325	0.0015 0.0014 Mahon Bou 0.0018 0.0012 0.0093 orrow Site - 0.0021 0.0021 0.0030	at future of	0.0015 0.0029 Bandelier I 0.0030 0.0123 McMahon E 0.0035 0.0035	12 12 12 12 12 12 12 12 12 30ulevard 12 12	ote # 3=24 (315	2 dive 5 5 5 1 cfs 6 25 7 Tem 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 5 5 8 S/S 5 25 porar 5 5	90 90 =23. 90 90 50 y pol 90 90	4.09 3.82 8 cfs) *NO 4.91 3.28 20.60 nd #5 Q ₁₀₀ 5.72 5.72 8.17	TE #1 = 32.9 cf	9.00 12.27 32.87 s (ultimate 32.16 7.97 39.57	(*WE
The incr 305 190 Q in Mc 300 310 315 Q on Bo 320 295 325 Total Q	0.0015 0.0014 Mahon Bou 0.0018 0.0012 0.0093 orrow Site - 0.0021 0.0030 at inlets ne	at future of	0.0015 0.0029 Bandelier [0.0018 0.0030 0.0123 McMahon E 0.0159 0.0035 0.0224 Street Q ₁₀₀	12 12 12 12 12 12 12 12 12 30ulevard 12 12 12 12 12	ote # 3=24 (315	2 dive 5 5 1 cfs 6 5 5 25) Tem 5 5 5 imate)	5 5 8 S/S 5 5 25 porar 5 5 (N/S	90 90 90 90 90 50 y por 90 90 90	4.09 3.82 8 cfs) *NO 4.91 3.28 20.60 nd #5 Q ₁₀₀ 5.72 5.72 8.17 59.6; S/S	TE #1 = 32.9 cf	9.00 12.27 32.87 s (ultimate 32.16 7.97 39.57 cfs)	(*WE
The incr 305 190 Q in Mc 300 310 315 Q on Bo 320 295 325 Total Q	0.0015 0.0014 Mahon Bou 0.0018 0.0012 0.0093 orrow Site - 0.0021 0.0030 at inlets ne	at future of	0.0015 0.0029 Bandelier I 0.0030 0.0123 McMahon E 0.0035	12 12 12 12 12 12 12 12 12 30ulevard 12 12 12 12 12	ote # 3=24 (315	2 dive 5 5 1 cfs 6 5 5 25) Tem 5 5 5 imate)	5 5 8 S/S 5 5 25 porar 5 5 (N/S	90 90 90 90 90 50 y por 90 90 90	4.09 3.82 8 cfs) *NO 4.91 3.28 20.60 nd #5 Q ₁₀₀ 5.72 5.72 8.17 59.6; S/S	TE #1 = 32.9 cf	9.00 12.27 32.87 s (ultimate 32.16 7.97 39.57 cfs)	(*WE
The incr 305 190 Q in Mc 300 310 315 Q on Bo 320 295 325 Total Q	0.0015 0.0014 Mahon Bou 0.0018 0.0012 0.0093 orrow Site - 0.0021 0.0030 at inlets ne	at future of	0.0015 0.0029 Bandelier [0.0018 0.0030 0.0123 McMahon E 0.0159 0.0035 0.0224 Street Q ₁₀₀	12 12 12 12 12 12 12 12 12 30ulevard 12 12 12 12 12	ote # 3=24 (315	2 dive 5 5 1 cfs 6 5 5 25) Tem 5 5 5 imate)	5 5 8 S/S 5 5 25 porar 5 5 (N/S	90 90 90 90 90 50 y por 90 90 90	4.09 3.82 8 cfs) *NO 4.91 3.28 20.60 nd #5 Q ₁₀₀ 5.72 5.72 8.17 59.6; S/S	TE #1 = 32.9 cf	9.00 12.27 32.87 s (ultimate 32.16 7.97 39.57 cfs)	(*WE
The incr 305 190 Q in Mcl 300 310 315 Q on Bo 320 295 325 Total Q Due to a	0.0015 0.0014 Mahon Bou 0.0018 0.0012 0.0093 orrow Site - 0.0021 0.0030 at Inlets ne	at future of	0.0015 0.0029 Bandelier [0.0018 0.0030 0.0123 McMahon E 0.0035 0.00224 Street Q ₁₀₀ cfs (see No	12 12 12 12 12 12 12 12 12 12 12 12 12 1	ote # 3=24 (315	2 dive 5 5 5 5 25 5 5 5 imate) to inl	5 5 5 25 porai 5 5 (N/S ets w	90 90 =23. 90 90 50 y poi 90 90 90 Q = est o	4.09 3.82 8 cfs) *NO 4.91 3.28 20.60 ad #5 Q ₁₀₀ 5.72 5.72 8.17 59.6; S/S	TE #1 = 32.9 cf	9.00 12.27 32.87 s (ultimate 32.16 7.97 39.57 cfs) cfs Bypas	(*WE
The incr 305 190 Q in Mc 300 310 315 Q on Bo 320 295 325 Total Q Due to a 335	0.0015 0.0014 Mahon Bou 0.0018 0.0012 0.0093 orrow Site - 0.0021 0.0021 0.0030 at Inlets neaddition of to	at future of	0.0015 0.0029 Bandelier I 0.0018 0.0030 0.0123 McMahon E 0.0035 0.00224 Street Q _{1,00} cfs (see No	12 12 12 12 12 12 12 12 12 12 12 12 12 1	ote # S=24 (315 s (ult	2 dive 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 5 5 25 porai 5 (N/S ets w	90 90 90 90 50 y por 90 90 90 Q = est o	4.09 3.82 8 cfs) *NO 4.91 3.28 20.60 5.72 5.72 8.17 59.6; S/S f Dover is 57.33 3.28 3.28	TE #1 = 32.9 cf Q = 28.0	9.00 12.27 32.87 s (ultimate 32.16 7.97 39.57 cfs) 39.57	(*WE
The incr 305 190 Q in Mcl 300 310 315 Q on Bo 320 295 325 Total Q Due to a 335 330 350 Total Q 40 cfs b & S/S = (3 inlets cfs)	ease in Q a 0.0015 0.0014 Mahon Bot 0.0018 0.0012 0.0093 orrow Site 0.0021 0.0030 at Inlets neaddition of 1 0.0259 0.0012 to Calabac ypass. (To 15.0 cfs Nointercept:	at future of a substitution of	0.0015 0.0029 Bandelier [0.0018 0.0030 0.0123 McMahon E 0.0159 0.0035 0.0224 Street Q _{1,00} cfs (see No 0.0483 0.0495 0.0507 D McMa flow to Cala ast of Dover	12 12 12 12 12 12 12 12	ote # 6=24. (315 s (ult e Q,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2 dive 5 5 5 1 cfs 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 5 5 25 porar 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	90 90 90 90 50 90 90 90 90 90 90 90	4.09 3.82 8 cfs) *NO 4.91 3.28 20.60 10 #5 Q ₁₀₀ 5.72 5.72 8.17 59.6; S/S f Dover is 57.33 3.28 3.28 63.89 02.1 cfs (u) intercept:	TE #1 = 32.9 cf Q = 28.0 87.6. (19) Itimate) S N/S west	9.00 12.27 32.87 s (ultimate 32.16 7.97 39.57 cfs bypes 88.92 92.05 102.11 Gee Note for Dover of Dover	(* WE:
The incr 305 190 Q in Mcl 300 310 315 Q on Bo 320 295 325 Total Q Due to a 335 330 350 Total Q 40 cfs b & S/S = (3 inlets	ease in Q a 0.0015 0.0014 Mahon Bou 0.0018 0.0012 0.0093 orrow Site - 0.0021 0.0030 at inlets neaddition of 1 0.0259 0.0012 to Calabac ypass. (Total 15.0 cfs No intercept:	at future of a substitution of	0.0015 0.0029 Bandelier [0.0018 0.0030 0.0123 McMahon E 0.0035 0.00224 Street Q, ocfs (see No 0.0483 0.0483 0.0495 0.0507 D McMaflow to Calast of Dover	12 12 12 12 12 12 12 12 12 12 12 12 12 1	ote # 6=24 (315 s (ult e Q.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2 dive 5 5 5 1 cfs 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	90 90 90 90 50 90 90 90 90 90 90 90 90	4.09 3.82 8 cfs) *NO 4.91 3.28 20.60 nd #5 Q ₁₀₀ 5.72 5.72 8.17 59.6; S/S f Dover is 57.33 3.28 3.28 63.87 02.1 cfs (u intercept:	TE #1 = 32.9 cf Q = 28.0 87.6. (19) Itimate) S N/S west 87.6.6	9.00 12.27 32.87 s (ultimate 32.16 7.97 39.57 cfs) 6 99.05 102.11 See Note 4 of Dover 6	(*WE) 1 about Q = 59.6
The incr 305 190 Q in Mcl 300 310 315 Q on Bo 320 295 325 Total Q Due to a 335 330 350 Total Q 40 cfs b & S/S = (3 inlets cfs)	ease in Q a 0.0015 0.0014 Mahon Bot 0.0018 0.0012 0.0093 orrow Site 0.0021 0.0030 at Inlets neaddition of 1 0.0259 0.0012 to Calabac ypass. (To 15.0 cfs Nointercept:	at future of a substitution of	0.0015 0.0029 Bandelier [0.0018 0.0030 0.0123 McMahon E 0.0159 0.0035 0.0224 Street Q _{1,00} cfs (see No 0.0483 0.0495 0.0507 D McMa flow to Cala ast of Dover	12 12 12 12 12 12 12 12	ote # 6=24 (315 s (ult e Q.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2 dive 5 5 5 1 cfs 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 5 5 25 porar 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	90 90 90 90 50 90 90 90 90 90 90 90	4.09 3.82 8 cfs) *NO 4.91 3.28 20.60 10 #5 Q ₁₀₀ 5.72 5.72 8.17 59.6; S/S f Dover is 57.33 3.28 3.28 63.89 02.1 cfs (u) intercept:	TE #1 = 32.9 cf Q = 28.0 87.6. (19) Itimate) S N/S west 87.6.6	9.00 12.27 32.87 s (ultimate 32.16 7.97 39.57 cfs bypes 88.92 92.05 102.11 Gee Note for Dover of Dover	(*WE) 1 about Q = 59.6

TABLE 1 (Revised)

2	ULTIMATE DEV	VELOPED CONDITION	ON (continued)
REFERENCE	(If all properties, both	on-site and off-site,	developed) TP=0.1330
		1 4415	444.0.00.000.000.00

			ii propertie			LAI			INCREM	ENTAL	FUTU TOT	
Basin I.D.	Area (Sq.Mi.)	Contr. Basin	Sum Area	Tc (Min.)	Α	В	С	D	Q ₁₀₀ (cfs)	Q ₁₀ (cfs)	Q ₁₀₀ (cfs	Q ₁₀ (cfs)
			(Sq.Mi.)									
240T		230	0.1923	12							86.57	
235	0.0007	255 & 240T	0.1943	12		5	5	90	1.92		434.29	
otal Q	in Bandelie	r Drive (2	35) SUMP	Q = 43	4.3 c	fs: (35	9.2 c	fs to	outfall #1)			
			1 is result									
270	0.0096		0.0096	12		27	27	46	20.78		20.78	
275	0.0076	270	0.0172	12		27	27	46	16.45		34.81	
280	0.0122	275	0.0294	12		27	27	46	26.40		57.55	
Total Q	at Sump in	Sicily Pla	ce Q ₁₀₀ = 5	7.6: to ou	ıtfall #	‡ 2						
130	0.0277		0.0277	12		25	25	50	61.32		61.32	
135	0.0017	130	0.0294	12		5	5	90	4.63		65.95	
140	0.0115		0.0115	12		25	25	50	25.47		88.69	
145	0.0018	135 & 140	0.0427	12		5	5	90	4.91		93.38	
150	0.0007	145	0.0434	12		5	5	90	1.92		95.21	
152	0.0148	150	0.0582	12		25	25	50	32.77		116.70	
292	0.027	152	0.0852	12		25	25	50	59.77		175.99	
			nd #1 and # outfall is a ro 0.0015						4.09	. 211.50	4.09	- Cuttail)
190	0.0013		0.0013	12		5	5	90	3.82		3.82	
Future i through	nlets west Tract 1A.	Q in McM	ier will pick lahon Boule	-up 40 cf evard at E		lier D	s & 2 rive (0 cfs	s/s) & be 24.1 cfs &		d in S.D. to cfs) *NOT	
300	0.0018	305	0.0018	12		5	5	90	4.91		9.00	
310 315	0.0012	300	0.0030	12		25	25	50	3.28 20.60		12.27 32.87	
					15\ +=		-			00.0.0		\bon
			Mahon Boulted, total Q.), when
320	0.0021	315	0.0159	12		5	5	90	5.72	i. Will De	32.16	
295	0.0021	190	0.0035	12		5	5	90	5.72		7.97	
325	0.0030	320	0.0224	12		5	5	90	8.17	<u> </u>	39.57	
Total Q 6.7 cfs,	at two (2) respective	Inlets we	st of Dover /S of McMa d 6.7 cfs at	Street (3 thon a si	ngle i	₁₀₀ = 3 nlet w	39.6 d	fs (u J abo	ltimate) on out 1 cfs ±	; total fu	Mahon: 32 ture Q in t	
335	0.0259	325	0.0483	12		25	25	50	57.33		88.92/	Not
330	0.0012	335	0.0495	12		5	5	90	3.28		92,08	Valie
350	0.0012	330 & 295	0.0507	12		5	5	90	3.28		102.11	
flows to N/S of M then flo	tal Q _∞ = 14 McMahon E ws to inlet	cillas in S 42.1 cfs th Blvd. divid west of R	S.D. from Marough all in les its flows ledbud & 1/ east of Red	lets in Marian as follow 2 to Red	cMah vs: N bud (on (*9 let To Q = 23	See N tal Q 3.3 cf	ote # $_{\infty}$ = 4 s, that	1 - Re: 40 9.3 cfs, ab at joins wit	cfs Bypa out 1/2 to h Basin #	ss) Basin o Dover Q 330 for to	=26 cfs, tal Q _{.m} =

of Redbud & sump inlet east of Redbud. Total Q, in SD at east end Tract 1A is about 64 cfs. 12

12

12

Q from McMahon Boulevard to Golf Course Road (345) Q₁₀₀ = 23.9 cfs (ultimate)

90

90

5

5

9.25

8.98

5.68

9.25

18.23

23.91

0.0034

0.0067

0.0099

Rev. 3/7/96

340_

355

345

CSC#20-03-036/20-03az.rep

-0.0034

340

355

0.0033

0.0032

TUSCANY DEVELOPMENT (REFERENCE TABLE 2)

TABLE 1 (Revised) ULTIMATE DEVELOPED CONDITION

(If all properties, both on-site and off-site, developed) TP=0.1330

		(11 411)	properties,			LAN	ND.		INCREM		FUTU TOT	
D:-	A	04-	C									
Basin	Area	Contr.	Sum Area	Tc	Α	В	С	D	Q ₁₀₀	Q ₁₀	Q ₁₀₀	Q ₁₀
I.D.	(Sq.Mi.)	Basin	(Sq.Mi.)	(Min.)					(cfs)	(cfs)	(cfs	(cfs)
Euturo A	AcMahon B	oulovard		lest Mes	a Ma	tical)					l	
100	0.0035		0.0035	12		5	5	90	9.52		9.52	
100.1	0.0035	100	0.0033	12		5	5	90	9.52		19.05	
185	0.0033		0.0024	12		5	5	90	6.53		6.53	
185.1	0.0024	185 &	0.0024	12		5	5	90	6.53		32.12	
165.1	0.0024	100.1	0.0116	12		3	3	30	0.55		52.12	
105	0.0366	185.1	0.0484	12		21	22	57	84.33		116.45	
Off-site	Q at McMal	hon Boule	evard (105)	$Q_{100} = 11$	6.5 c	fs (fut	ure ir	ilets t	o be desig	ned for 7	76.5 cfs)	
*NOTE	#1: 40 cfs to	o be allow	ved to bypa	ss future	inlets	in fut	ure M	<u>ІсМа</u>	hon to join	flows at	Bandelier	to east.
115	0.0146	105	0.063	12		21	22	57	33.65		148.32	
110	0.0171	115	0.0801	12		21	22	57	39.41		186.38	
Off-site	Q to Tusca	ny Drive ((110) Q. =	186.4 cfs	s (futi	ure inle	ets to	be d	esigned fo	r 146.4 c	fs)*	
125	0.0090	110	0.0891	12		29	29	42	19.03		208.08	
	scany Dr at			208	3.1 cfs			ets pr		h Unit #3		cfs)*
155	0.0324		0.0324	12		25	25	50	71.72		71.72	1
	Basins (fut				5.9 cf							
160	0.0012	155	0.0336	12		5	5	90	3.28		74.99	
165	0.0086	160	0.0422	12		25	25	50	19.05		94.04	
175	0.0085		0.0085	12		25	25	50	18.83		18.83	
170	0.0009	175 &	0.0516	12		5	5	90	2.46		114.38	
NOTE #	2: 1/2 of Ba	165	to join with	Pacin #1	50.0) in Br	L	ior io	79 5 ofc			
			0.1432	12		29	29	42		r	220.21	
265	0.0025	170 & 125	0.1432	12		29	29	42	5.30		329.21	
180	0.0006	265	0.1438	12		5	5	90	1.65		330.79	
260	0.0005	180	0.1443	12		5	5	90	1.37		333.47	
255	0.0007	250	0.1550	12		29	29	42	1.49		334.93	
252	0.0090	250	0.1538	12		29	29	42	19.03		350.90	
250	0.0010	252	0.1543	12		5	5	90	2.73		353.96	
Q in Ba	ndelier Driv	e at Sorre	ento Drive ($Q_{100} = 350$).94ct	s (Per	TOM:	E #2	$Q_{100} = 315$	5.0)		
205	0.0006		0.0006	12		15	15	70	1.50		1.50	
210	0.0027	205	0.0033	12		15	15	70	6.67		8.17	
215	0.0095	210	0.0128	12		29	29	42	20.08		27.24	
195	0.0022	215	0.0150	12		5	5	90	5.99		33.02	
220	0.0007	195	0.0157	12		5	5	90	1.92		35.23	
200	0.0013					46	47	7	2.19		37.40	
Park Sit	e - Q100 =	2.2 cfs to	inlet in par	k								
1/2 Bas	in # 225 joi	ns #230 (partial flow	from #22	5 to \	/ecchi	o Dri	ve)				
225	0.0038		0.0038	12		5	5	90	10.34		10.34	
230	0.0063	225 & 220	0.0258	12		29	29	42	13.32		60.46	
1/2 Bas	in # 225 joi		partial flow	from #35	5 to 5	Sorren	to Dr	ive)				
225	0.0038		0.0038	12	T	5	5	90	10.34		10.34	
	0.0077	225	0.0115	12		29	29	42	16.28		25.94	1

Rev. 12-13-95

INLET CAPACITY CALCULATIONS

San Timoteo Avenue Station 20+85

Assume Weir Control on double grate inlet:

$$Q = 3.0 LH^{3/2}$$

 $H = (Q + 3.0L)^{2/3}$

$$1/2 Q_{100} = 21.0 cfs$$

L = 10.67'

$$A = 8.8 \text{ ft}^2$$

$$H = [21.0 + (3.0 * 10.67)]^{2/3}$$

$$H = 0.76' < 1.0'$$

Check Orifice Control:

$$Q = 0.65 \text{ A}(2g\text{H})^{1/2}$$

 $H = (Q \div 0.65\text{A})^2 \div 64.4$

$$H = [21.0 \div (0.65 * 8.8)]^2 \div 64.4$$

 $H = 0.21$

Weir Control: Use Type A - Double grate, Double throat inlet (Inlets #1 and 2)

San Timoteo Avenue Station 30+45

Assume Weir Control on double grate inlet:

$$H = (Q \div 3.0L)^{2/3}$$

$$1/2 Q_{100} = 24.05 cfs$$

L = 10.67'

$$H = (24.05 \div 3.0 * 10.67')^{2/3}$$

 $H = 0.82' < 1.0'$

Weir Control: Use Type A - Double grate, Double throat inlet (Inlets #3 and 4)

CHANDEL @ CENTER OF Pract

5=0,05

MAX. CAP. = D= 18"; A= 33.05F; R= 1.32 $Q_{mx} = \frac{1.486(33)(1.32)^{2/3}(.05)^{1/2}}{1.017} = 776.0 cFs$

W/1 FREEBOARD= D=6"; A=10.05F; R=0.476 QCAP = 1.486 (10,0) (1476) 3/3 (105) = 119,2crs 42.1cfs < 119.2: Flow will be LESS THANG! ole DEE P.

2002

22-141 22-142 22-144

AMPAD.

(TO BE LANDSCAPED, NOTREES OR SHRUBS)

 $\frac{MAX.CAP4CITY;D=18";A=33.75SF;R=1.125}{MX.Q_{CAP}=\frac{1.486}{.025}(33.75)(1.125)^{2/3}(.06)^{1/2}=531.6cFS}$

1 FREEBOARD: D=6"; A=8.75sf; R=.438

QCAP = \frac{1.486}{.025}(8.75)(.438)^2/3(.06)^2 = \frac{73.5}{25}CFS

QIOS = \frac{48.1}{25}(8.75)(.438)^2/3(.06)^2 = \frac{73.5}{25}CFS

PROVIDE OUTLET THROUGH REAR

PERIMETER GARDEN WALL FOR THIS

OVERFLOW: TO ACT AS WEIR?

Q=CLH3 $C \cong 2.7$ ASSUME: $H = 4^{11}$; Q = 48.1c = s @ Sump PT. $L = Q (CH^{2/3}) = \frac{48.1}{2.7} (.33)^{2/3} \cong 37LF$

INLET CAPACITY CALCULATIONS

San Timoteo Avenue Station 20+85

Assume Weir Control on double grate inlet:

$$Q = 3.0 LH^{3/2}$$

 $H = (Q \div 3.0L)^{2/3}$

$$1/2 Q_{100} = 21.0 cfs$$

L = 10.67'

$$A = 8.8 \text{ ft}^2$$

$$H = [21.0 \div (3.0 * 10.67)]^{2/3}$$

$$H = 0.76' < 1.0'$$

Check Orifice Control:

$$Q = 0.65 \text{ A}(2g\text{H})^{1/2}$$

 $H = (Q + 0.65\text{A})^2 \div 64.4$

$$H = [21.0 \div (0.65 * 8.8)]^2 \div 64.4$$

 $H = 0.21$

Weir Control: Use Type A - Double grate, Double throat inlet (Inlets #1 and 2)

San Timoteo Avenue Station 30+45

Assume Weir Control on double grate inlet:

$$H = (Q \div 3.0L)^{2/3}$$

$$1/2 Q_{100} = 24.05 cfs$$

L = 10.67'

- : . -

$$H = (24.05 \div 3.0 * 10.67')^{2/3}$$

 $H = 0.82' < 1.0'$

Weir Control: Use Type A - Double grate, Double throat inlet (Inlets #3 and 4)