

DRAINAGE REPORT FOR ELLISON DRIVE IMPROVEMENTS (COORS BOULEVARD BYPASS TO GOLF COURSE ROAD) Prepared for:

BROWN/NZD DEVELOPMENT JOINT VENTURE C/O BROWN & ASSOCIATES 3411 CANDELARIA NE ALBUQUERQUE, NEW MEXICO 87107

Prepared by:

Job No. 94306.40

BOHANNAN-HUSTON INC. ENGINEERS ARCHITECTS PHOTOGRAMMETRISTS SURVEYORS COURTYARD 1, 1500 JEFFERSON NE ALBUQUERQUE, NM 37109 TEL 505) 823-1000 FAX (505) 321 0892

F.9

This eastern portion of the site has slopes ranging from 0.5% to 2% in a generally eastern direction. Soils are highly absorptive sandy soils with occasional clay lenses. Vegetation is light outside of the road and shoulder, consisting of grasses and small sagebrush.

Offsite Drainage Basins

The only offsite basins that impact the site are those of Tracts A-2A and A-2B to the south of Ellison Drive from Seven Bar Loop Road (South) to the Black Diversion Channel. This basin is shown on Plate 6 (Existing Conditions Map inset on the Conceptual Drainage Plan for the platting of Tracts A-1A, A-2A and A-2B Seven Bar Ranch dated September, 1994 by Bohannan Huston, Inc. (CoA Hydrology File # A13/D8)). The basin generates an undeveloped flow of 11.29 cfs during the 100-year storm.

IV. PROPOSED DEVELOPED CONDITIONS

The proposed project has been divided into two phases on both of the portions east and west of the Black Diversion Channel. Ellison Drive will ultimately consist of six traffic lanes and a median from Golf Course Road to the Coors Boulevard Bypass. Phase I will construct the outer 4 traffic lanes and Phase II will complete the inner 2 lanes, median and bridge widening at the Black Diversion Channel. Currently, the SAD 223 is under construction and is anticipated to be complete by the Fall of 1996. Phase I of this project will be complete by the end of 1995. The start of Phase II construction will depend on the development of the tracts to the north of Ellison Drive and east of the Black Diversion Channel, it is not anticipated that Phase II will be required prior to the completion of the SAD 223.

3

Construction east of the Black Diversion Channel

Phase II construction of Ellison Drive east of the Black Diversion Channel includes two inside traffic lanes and a median from the Black Diversion Channel to the Coors Boulevard Bypass, and an extension of the Phase I storm drain from the intersection of Ellison Drive and Cibola Loop East to the intersection of Ellison Drive and Cibola Loop West. This storm drain extension will convey the off-site flows from Tract B-9G, a portion of Tract B-9H and the Cibola Loop West right-of-way, and will be built either with the Phase II pavement or with the development of Tracts B-9G and B-9H, whichever occurs first. The Phase I storm drain is designed for the flows at the full build-out (Phase II) of Ellison and the tracts to the north (see Offsite Basins below). The Phase I median is wide enough to accommodate the construction of this storm drain extension prior to the inner two traffic lanes being built, if this is necessary. Please refer to Plate 8.

Offsite Basins west of Black Diversion Channel

Most of the residential lots planned for Tract A-2A and located adjacent to Ellison Drive require either backyard ponds or curb drains to Ellison Drive due to elevation differences between pads and Ellison Drive. The street section and the storm drain in Ellison Drive west of the Diversion Channel has been design to accommodate these flows should a curb drain option be approved for this subdivision.

Tract A-2B, the site planned for a school by APS, is currently under design by Wilson and Company. The Conceptual Drainage Plan for the platting of Tracts A-1A, A-2A and A-2B Seven Bar Ranch (dated September, 1994 by Bohannan Huston, Inc. (CoA Hydrology File # A13/D8)), allows for free discharge from the northern portion of this tract. The street section and the storm drain in Ellison Drive west of the Diversion Channel has been design to accommodate the free discharge of these flows up to 21.67 cfs without ponding onsite. Please refer to Plate 6.

1\cdp\9321743\elimpt1 wp- May 31, 1995

As discussed in the existing conditions section above, the tracts to the south of Ellison Drive generate 11.29 cfs in their undeveloped conditions. Prior to development of these site, a swale on the south side of the proposed Ellison Drive and in the right-ofway will convey existing flows east to the maintenance road adjacent to the Black Diversion Channel. This swale will discharge less flow onto the maintenance road than currently because the curb and gutter being built with Ellison Drive will intercept all impervious flow.

Offsite Basins east of Black Diversion Channel

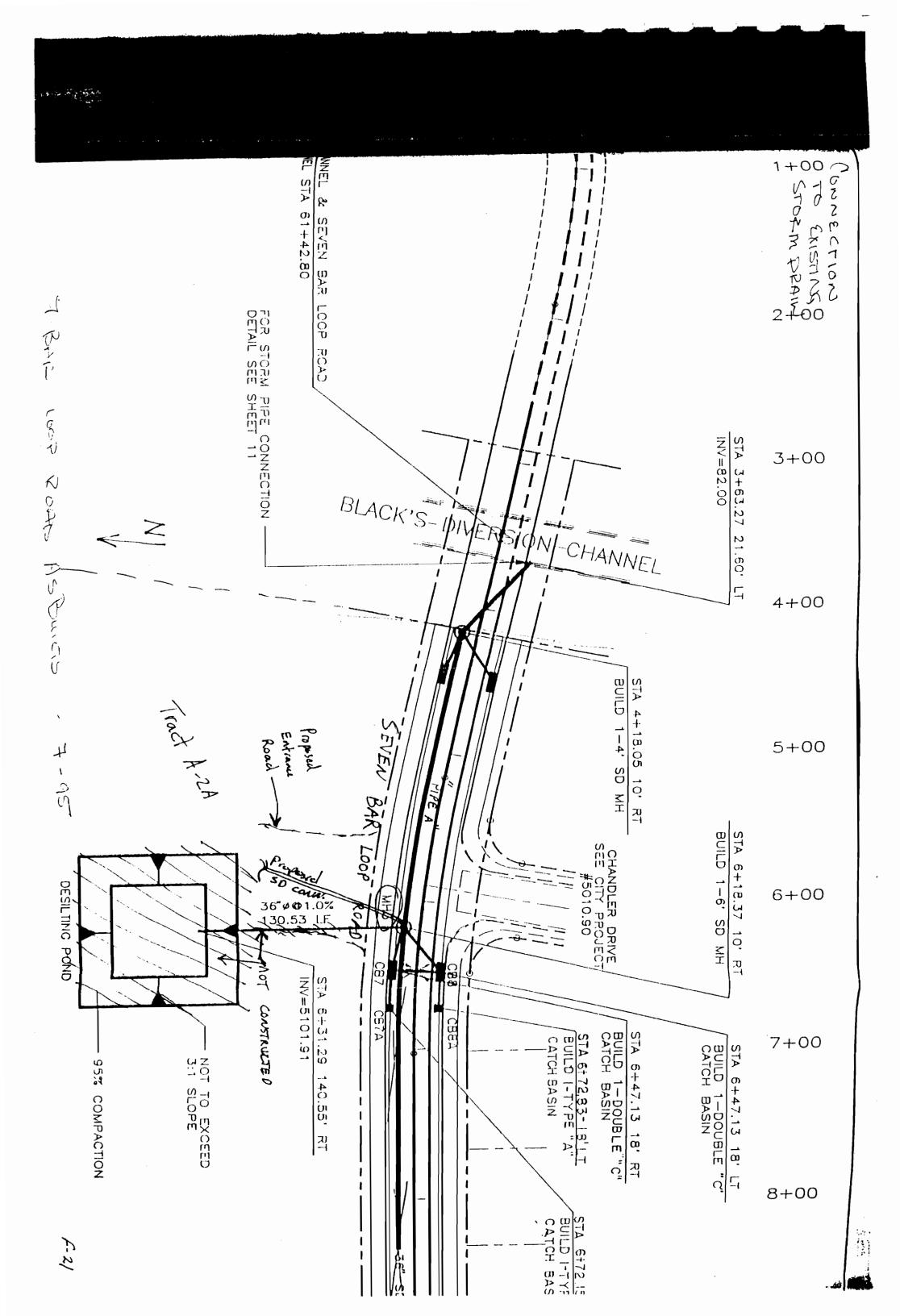
For all the Tracts that eventually discharge into the Ellison Drive storm drain system as designed herein, the flows were taken directly from the SAD No. 223 Drainage Management Plan dated May, 1991 by Easterling and Associates, Inc. (CoA Hydrology File # A01/D223). That report describes detailed requirements for onsite ponding and allowable release rates, no attempt was made here to justify or modify these. Please refer to Plate 7.

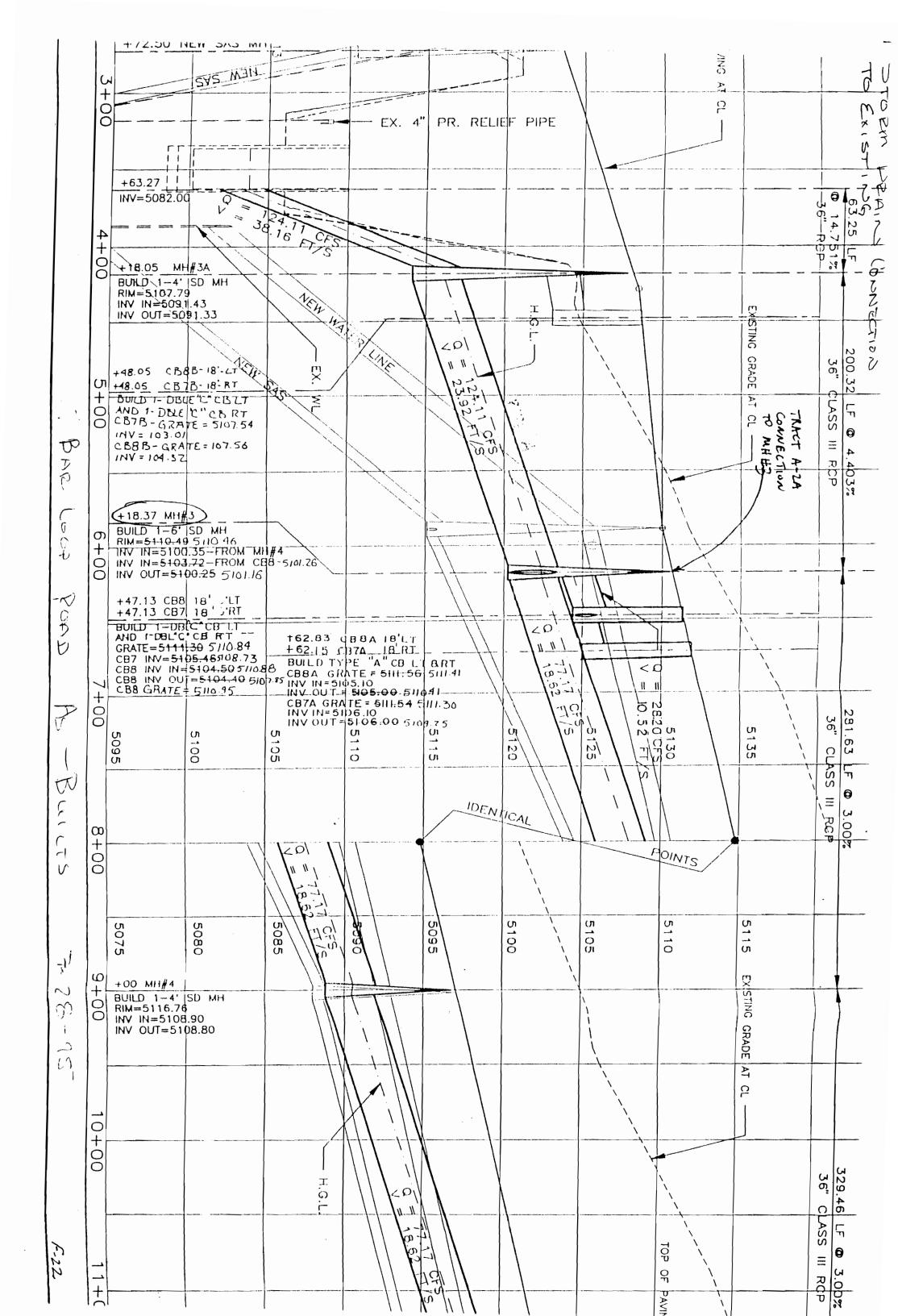
V. PHASING/BUILDING PERMIT/FINAL PLAT APPROVALS

This report requests CoA/Hydrology approval for the phased infrastructure improvement plans for Ellison Drive between the Coors Boulevard Bypass and Golf Course Road. These improvements include the construction of 4 traffic lanes, a masterplan sanitary sewer line and the phased construction of two storm drain systems.

As discussed in the existing conditions section above, the tracts to the south of Ellison Drive generate 11.29 cfs in their undeveloped conditions. Prior to development of these site, a swale on the south side of the proposed Ellison Drive and in the right-ofway will convey existing flows east to the maintenance road adjacent to the Black Diversion Channel. This swale will discharge less flow onto the maintenance road than currently because the curb and gutter being built with Ellison Drive will intercept all impervious flow.

Offsite Basins east of Black Diversion Channel


For all the Tracts that eventually discharge into the Ellison Drive storm drain system as designed herein, the flows were taken directly from the SAD No. 223 Drainage Management Plan dated May, 1991 by Easterling and Associates, Inc. (CoA Hydrology File # A01/D223). That report describes detailed requirements for onsite ponding and allowable release rates, no attempt was made here to justify or modify these. Please refer to Plate 7.


V. PHASING/BUILDING PERMIT/FINAL PLAT APPROVALS

This report requests CoA/Hydrology approval for the phased infrastructure improvement plans for Ellison Drive between the Coors Boulevard Bypass and Golf Course Road. These improvements include the construction of 4 traffic lanes, a masterplan sanitary sewer line and the phased construction of two storm drain systems.

+`odp\9321743\ellipt1 wp- May 31, 1995

F-11

7-Bar Loop Road Drainage Calculations Worksheet for Irregular Channel

Sta 13+95 ?.

Project Description	
Project File	c:\haestad\fmw\7-barlp.fm2
Worksheet	7-barlp
Flow Element	Irregular Channel
Method	Manning's Formula
Solve For	Water Elevation

36	'F-	F
----	-----	---

Input Data				
Channel Slope	0.0800	00 ft/ft		
Elevation range:	99.64 ft to 100.64 ft.			
Station (ft)	Elevation (ft)	Start Station	End Station	Roughness
100.00	100.64	100.00	168.00	0.014
116.00	100.31 Gu	Hon 1:		1=0.017
ج رز 116.05	99.64 99 8	Her Lip 6-100,18		12-01011
134.00	100.00	-100,18		
151.95/50	99.64 99.8			
152.00	100.31			
168.00	100.64		· •	
Discharge	14.30	cfs V Ex	STUE J	WINSTERMIN

Roughness 0.014 n=0.017

Results		
Wtd. Mannings Coefficient	0.014	
Water Surface Elevation	99.85	ft
Flow Area	2.18	ft²
Wetted Perimeter	21.24	ft
Top Width	20.85	ft
Height	0.21 ∗	ft
Critical Depth	99.99	ft
Critical Slope	0.005244	ft/ft
Velocity	6.57	ft/s
Velocity Head	0.67	ft
Specific Energy	100.52	ft v
Froude Number	3.59	
Flow is supercritical.		
Flow is divided.		

Attachment

12/05/95 08:15:58 AM

Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666

7-Bar Loop Road Drainage Calculations Worksheet for Irregular Channel

Project Descripti	Project Description					
Project File	c:\haestad\fmw\7-barlp.fm2					
Worksheet	7 horle					
vvorksneet	7-barlp					
Flow Element	Irregular Channel					
Method	Manning's Formula					
Solve For	Water Elevation					

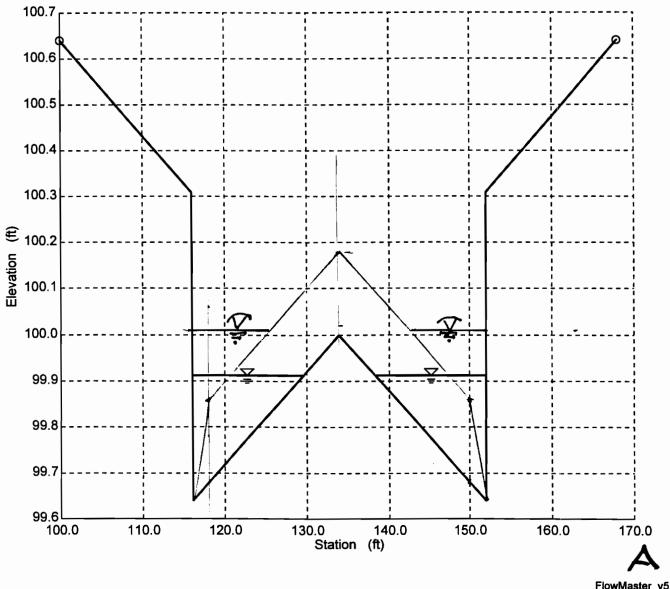
5tz 10+00? 36' F-F

Input Data		_			
Channel Slope	0.017930) ft/ft	1		
Elevation range:	99.64 ft to 100.64 ft.				
Station (ft)	Elevation (ft)	St	art Station	End Station	Roughness
100.00	100.64		100.00	168.00	0.014
116.00	100.31				
116.05	99.64				
134.00	100.00				
151.95	99.64				
152.00	100.31				
168.00	100.64				
Discharge	7.50	cfs	VEX	istilly app	LEAM

Results		
Wtd. Mannings Coefficient	0.014	
Water Surface Elevation	99.86	ft
Flow Area	2.35	ft²
Wetted Perimeter	22.07	ft
Top Width	21.66	ft
Height	0.22	ft
Critical Depth	99.91	ft
Critical Slope	0.00571	7 ft/ft
Velocity	3.19	ft/s
Velocity Head	0.16	ft
Specific Energy	100.02	ft 🗸
Froude Number	1.71	
Flow is supercritical.		
Flow is divided.		

FlowMaster v5.08 Page 2 of

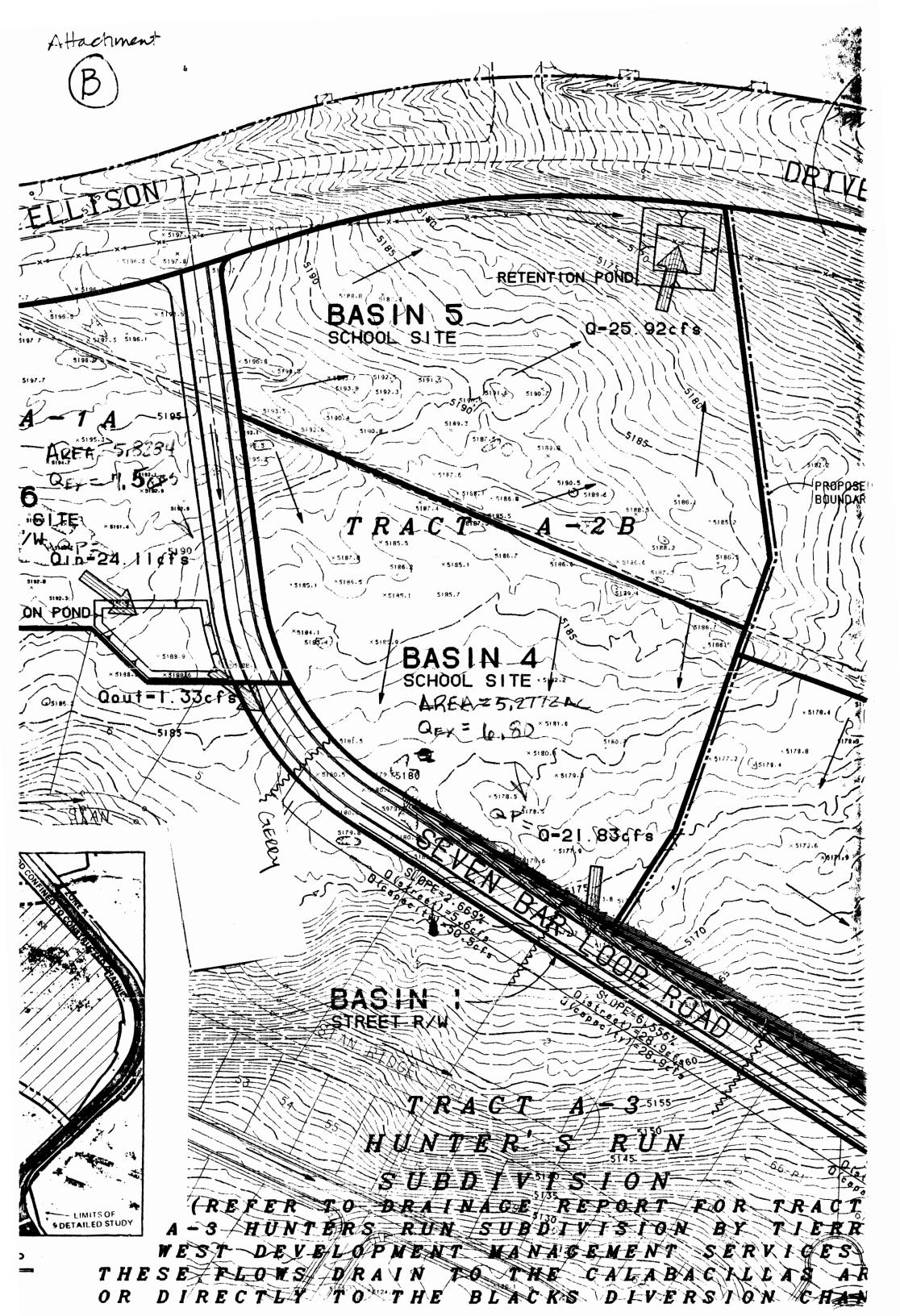
7-Bar Loop Road Drainage Calculations Worksheet for Irregular Channel


Project Descriptio	n	(ta	13+95
Project File	c:\haestad\fmw\7-ba	$\ln fm^2$ 514	
Worksheet	7-barlp		
Flow Element	Irregular Channel		
Method	Manning's Formula		
Solve For	Water Elevation		
Innut Data	<u></u>		
Input Data	0.080000	AVA CRITICAL	P.V. S. So
Channel Slope	99.64 ft to 100.64 ft.		
-		Start Station End Station	Roughness
Station (ft)	Elevation (ft)	100.00 168.00	0.014
100.00	100.64 100.31	100.00 188.00	
116.00	00.04 # 0	BBBB	h=0.017
116.05 134.00	99.64	99.86	1 -
134.00		100.18	Sutter Lip
		C	
152.00	100.31		·
168.00 Discharge	100.64	A Darnie	
Discharge	28.90	cfs / Proposition	
Results			
Wtd. Mannings C		<u>.</u>	
Water Surface El		ft	
Flow Area	3.69	ft²	
Wetted Perimeter		ft	
Top Width	27.14	ft d = 0.37'	
Height	0.27	ft c = 0.37	
Critical Depth	100.09	ft = 6.9 fps	
Critical Slope		549 ft/ft $y = G g f n S$	
Velocity	7.84	ft/s $V = 6.77ps$	
Velocity Head	0.95	ft ft <i>E=0.37+(6</i>	
Specific Energy	100.87	π ^w E = 0,37+ (6	(.7) = (.1)
Froude Number	. 3.75		129 111
	!		. /
Flow is supercritic	cal.		0
Flow is supercritic Flow is divided.	cal.		= 100.75'

11/22/95 10:08:01 AM

Cross Section Cross Section for Irregular Channel

Project Descript	ion
Project File	c:\haestad\fmw\7-barlp.fm2
Worksheet	7-barlp
Flow Element	Irregular Channel
Method	Manning's Formula
Solve For	Water Elevation


Section Data		
Wtd. Mannings Coefficient	0.014	
Channel Slope	0.08000	00 ft/ft
Water Surface Elevation	99.91	ft
Discharge	28.90	cfs

11/22/95 10:08:31 AM

Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666

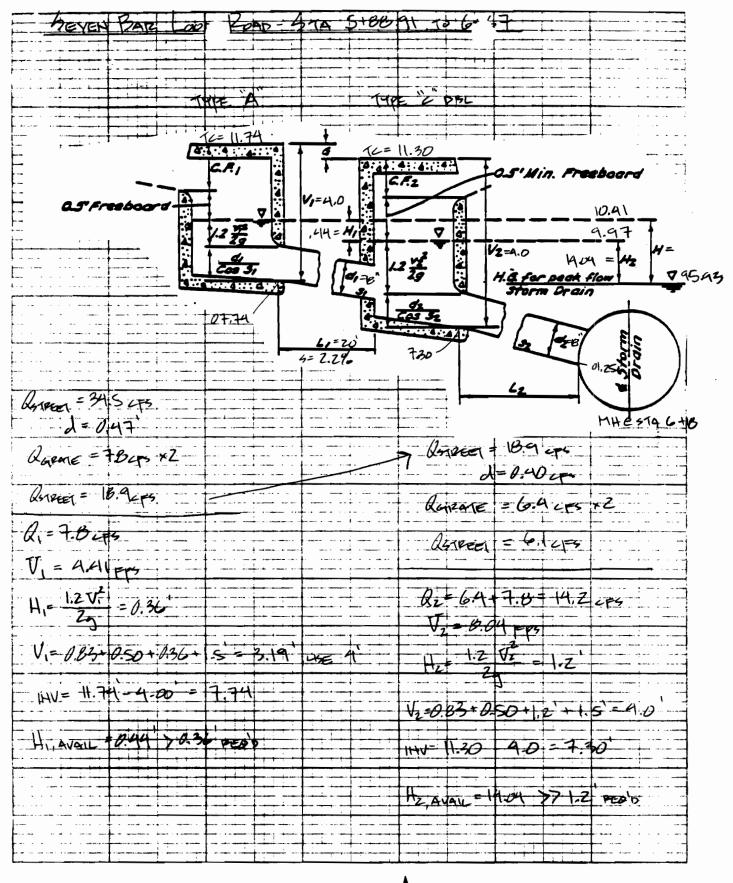
FlowMaster v5.08 Page A of 5

HYDROLOGIC BASIN SUMMARY DATA PROPOSED CONDITIONS - TRACTS C-1 & F - 100 YEAR STORM

FILE:CDP:[C9416540.HYDRO]BASINS.WK4 DATE: SEPTEMBER 8, 1994

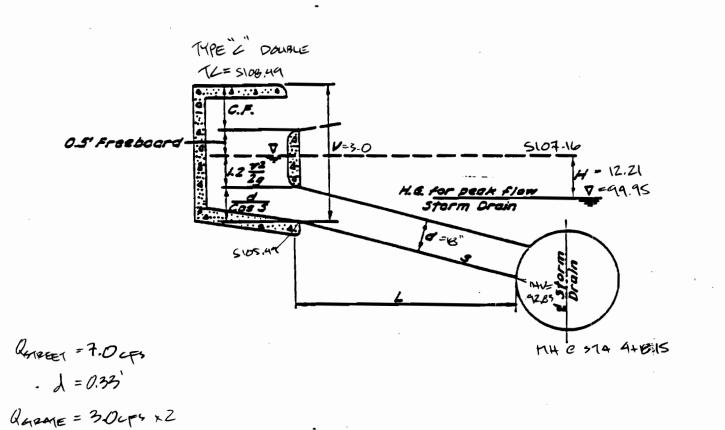
÷

RATIONAL METHOD	24-HR VOLUME	V-100(ac-ft)		2.56	2.10	0.79	0.98	0.89	7.7512
COMPOSITE EXCESS	PRECIP.	ш	 1.61	1.31	1.31	1.84	1.84	1.84	
RATIONAL	RUNOFF	Q-10(cfs)	7.54	43.85	35.92	13.76	17.02	15.48	
RATIONAL METHOD	RUNOFF	Q-100(cfs)	12.21	76.51	62.67	21.26	26.30	23.91	 222.8630
RATIONAL METHOD PEAK	DISCHARGE	CI(cfs/ac)	3.71	3.26	3.26	4.14	4.14	4.14	
	_	۵	- 72	42	42	8	8	6	
)SITE VD	L L	ပ	0	82	83	0	0	0	
COMPOSITE % LAND	EATME	В	58 -	53	29	10	10	9	
	ТН		0	0	0	0	0	0	
	AREA	(ACRES)	3.2872	23.4938	19.2441	5.1407	6.3596	5.7821	63.3075
	BASIN	Q		V	ო	4	S	9	


NOTE

RAINFALL DATA FOR 100-YEAR. 24-HOUR STORM

EAK DISCHARGE (C*I) IN cfs/ac BY LAND TREATMENTS					
E (C*I) IN cfs/ac	10 y r	0.24	0.76	1.49	2.89
SCHARG	100yr	1.29	2.03	2.87	4.37
PEAK DI		C*l(a)=	C*I(b)=	C*I(c)=	C*I(d)=


EXCESS PRECIPITATION (E) IN inches BY LAND TREATMENTS

0.4	0.67	0.99	1.97
E(a)=	E(b)=	E(c)=	E(d)=

	BOHANNAN	-HUSTON INC.
PROJECT NAME GENEH BAD- TRACE A-	ZA A 215 SHEET 1	CFZ
PROJECT NO94165.40	BY	DATE
SUBJECT GENEN BAR Lap POAD I.	+LE(- CH'D	DATE

SEVEN BAR LOOP AD - STA 4+28

.: RESTREET = 1.0 CPS RESIDUAL

$$k = 3.0 \text{ LPS}$$

$$V_{i} = 1.70 \text{ PPS}$$

$$H = \frac{1.2 \text{ V}^{2}}{2g} = 0.05^{\circ}$$

$$V = 0.83 + 0.50 + 0.05 + 1.5^{\circ} 2.88 \text{, USE } 3^{\circ}$$

1HV= 5108.49 - 3 = 5105.49

HAVAIL = 12,21 >> 0.05 - HAEG'D.

	BOHAN	NAN-HUSTON	INC.
PROJECT NAME DEVEN BAR - TRAC A-24	A-26 SHEET	Z OF Z	
PROJECT NC 94165.40			
SUBJECT GEVEN BAR LOUP POAD INLESS	CH'D	DATE	

TRACTS A-1 & A-1 SEVEN BAR RANCH

	18 37	4+18.15	3+63.27	Station
1	Ē	Ŧ	OUTLET	Structure
18	8	:	8	Diam.
18 14.20	30 28.40		110.41	Ð
1.77	4.91		7.07	NB
8.04	5.79		15.60	Vel.
•	-			×
105	410	1		
0.0183	0.0048		0.0274	Q
261.63	200.32		8	Langth
				ţ.
1	8	9 .00	0.00	₽₹
0.90	3	30.00	0. 00	
5.15	0.98		1.73	Ŧ
			1.73 0.00	Ŧ
		0.21 1.3	0.00 0.0	Ŧ
		0.21 1.3	0.00 0.0	Ŧ
		0.21 1.3	0.00 0.0	Ŧ
		0.21 1.3	0.00 0.0	Ŧ
		0.21 1.3	0.00 0.0	Ŧ
u.w u.w u.w u.w u.w swears awaa.w 5,15		0.21 1.37 0.00 0.38 1.96 5067.24 5002.48	0.00 0.00 0.00 0.00 5085.51 5085.51	To tul Hb Hj Hmh Ht Losses HGL(dn) HGL(up)
u.w u.w u.w u.w u.w swears awaa.w 5,15		0.21 1.37 0.00 0.38 1.96 5067.24 5002.48	0.00 0.00 0.00 0.00 5085.51 5085.51	To tul Hb Hj Hmh Ht Losses HGL(dn) HGL(up)
u.w u.w u.w u.w u.w swears awaa.w 5,15		0.21 1.37 0.00 0.38 1.96 5067.24 5002.48	0.00 0.00 0.00 0.00 5085.51 5085.51	To tul Hb Hj Hmh Ht Losses HGL(dn) HGL(up)
u.w u.w u.w u.w u.w swears awaa.w 5,15		0.21 1.37 0.00 0.38 1.96 5067.24 5002.48	0.00 0.00 0.00 0.00 5085.51 5085.51	Ŧ

0.013

Manning's n -for pipe

	SEVEN BAR	TRACTS A-	SEVEN BAR TRACTS A-2A & A-2B SEDIMENT YIELD ANALYSIS	YSIS
DESCRIPTION	VARIABLE		UNIVERSAL SUIL LUSS EQUATION UNIT	
Drainage Area Slope Slope Angle	DA S L	Sq. Mi. Ft/Ft Radians Feet	0.045 0.050 0.050 400.000	
Rainfall	œ		25.000	
Soil Erodability*	<u>ہ</u> ہ		0.280	
siope Lengin ractor Cover*	ვი		0.170	
Support Practice Factor	٩		1.000	
Sediment Yield	•	Tons/Acre	1.073	
		Tons	30.738	
		δ	22.769	
			Total Annual Sediment Yield	22.769 Cy
Estimated Soil Unit Weight	100.000	Lbs/Cf	Adjustment Factor	4.000

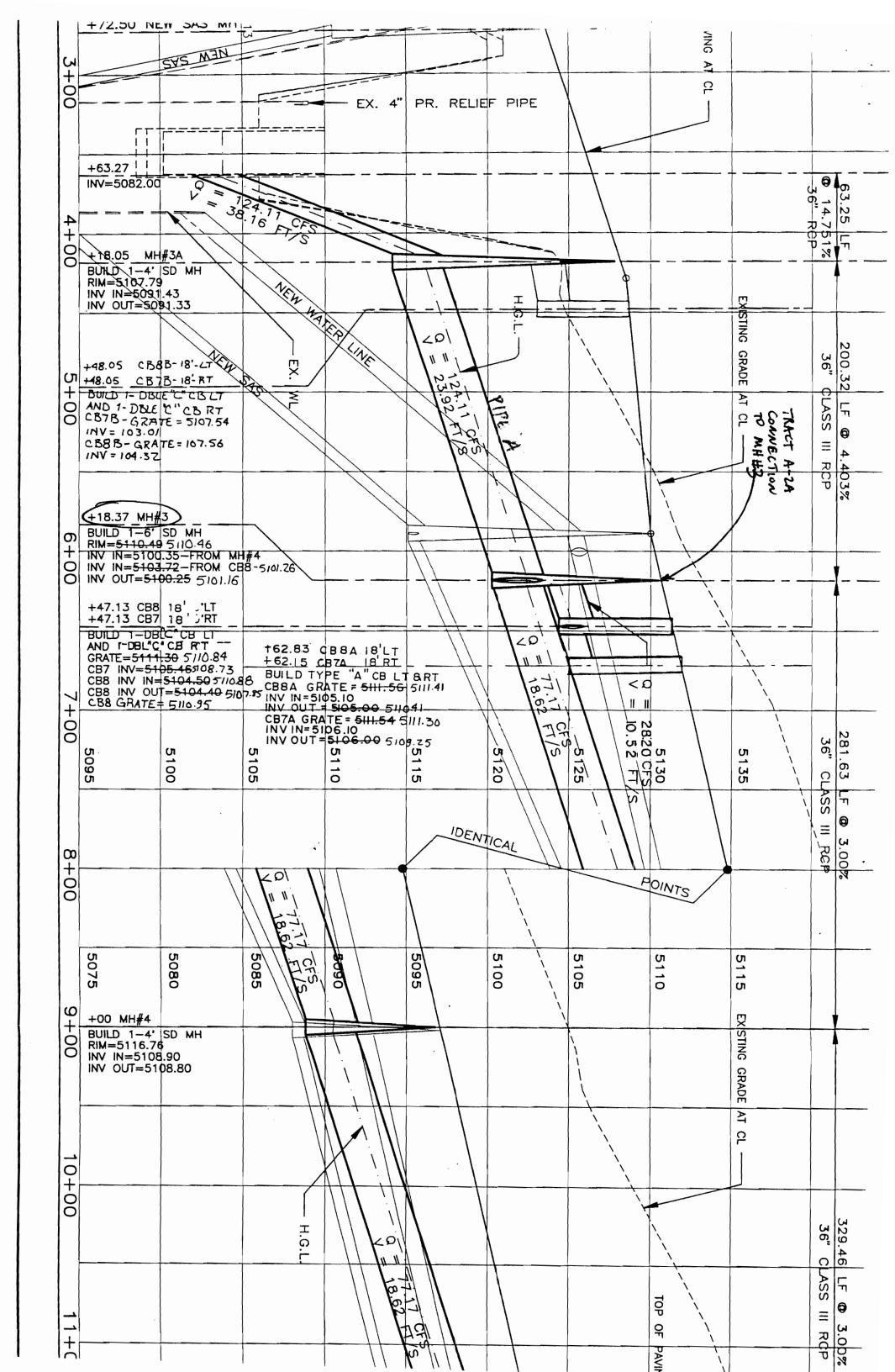
NOTE: The Universal Soil Loss Equation typically underestimates the actual sediment yield by 4 times so a factor of 4 is applied to the total annual sediment yield.

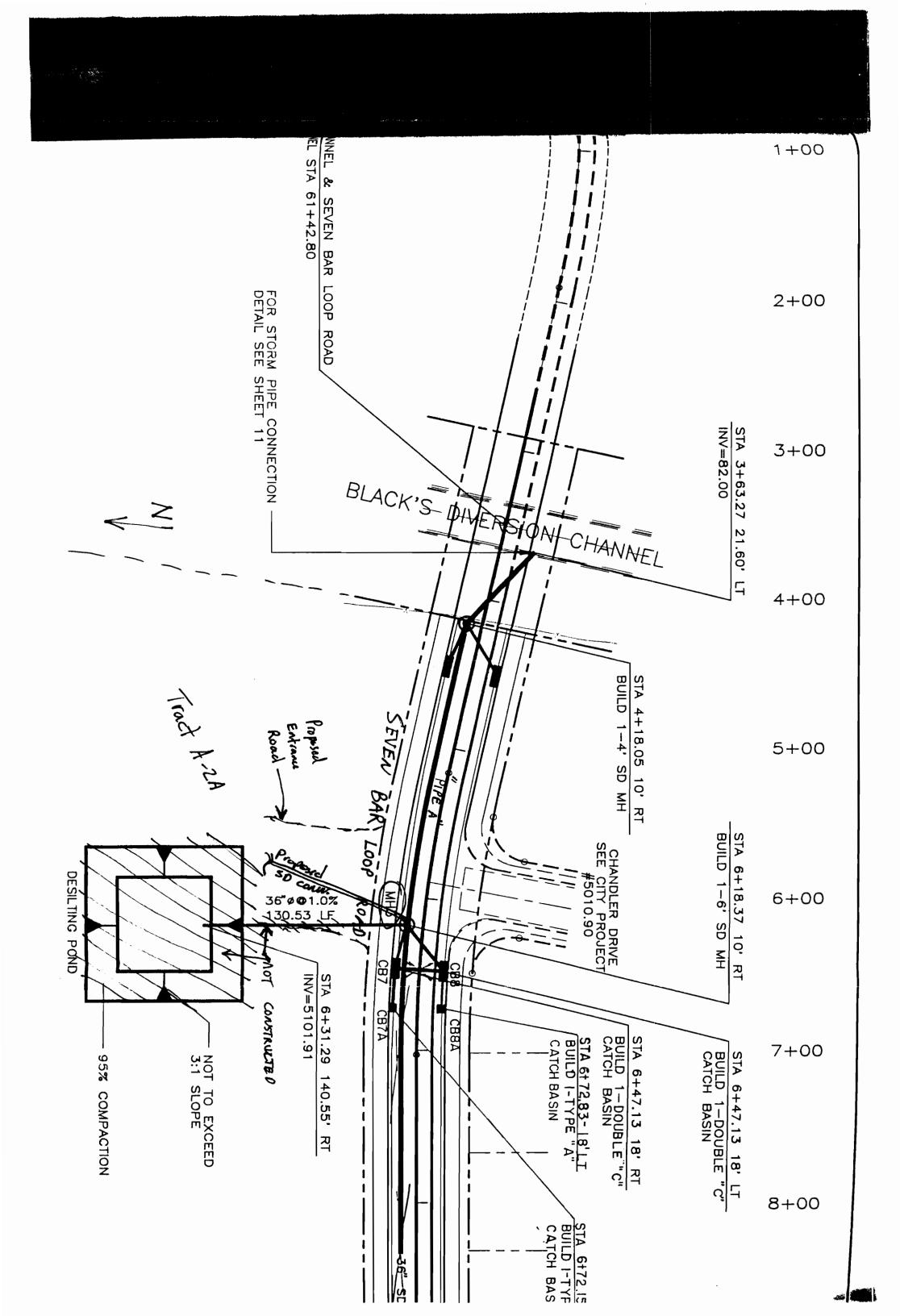
91.076 Cy

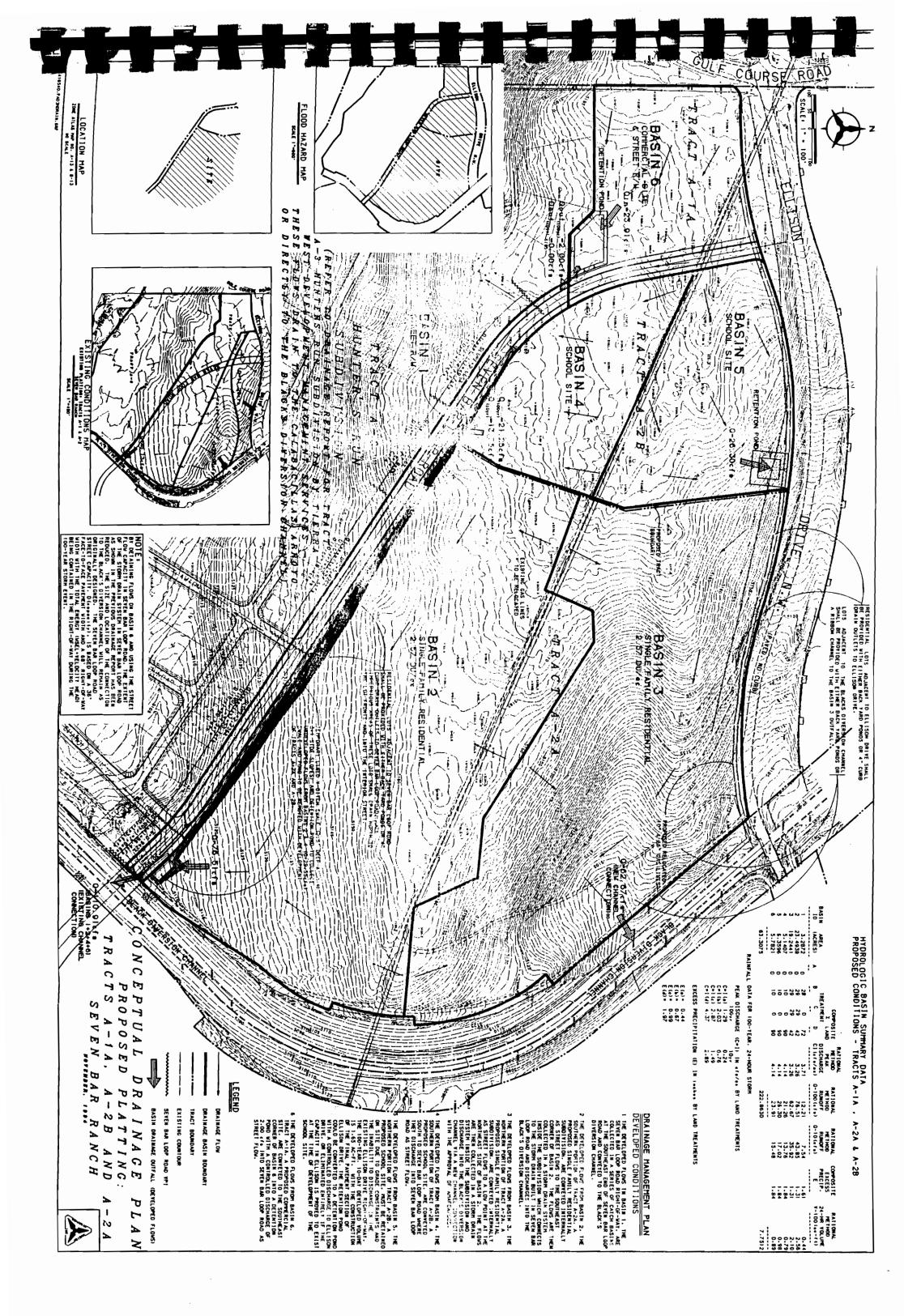
Adjusted Sediment Yield

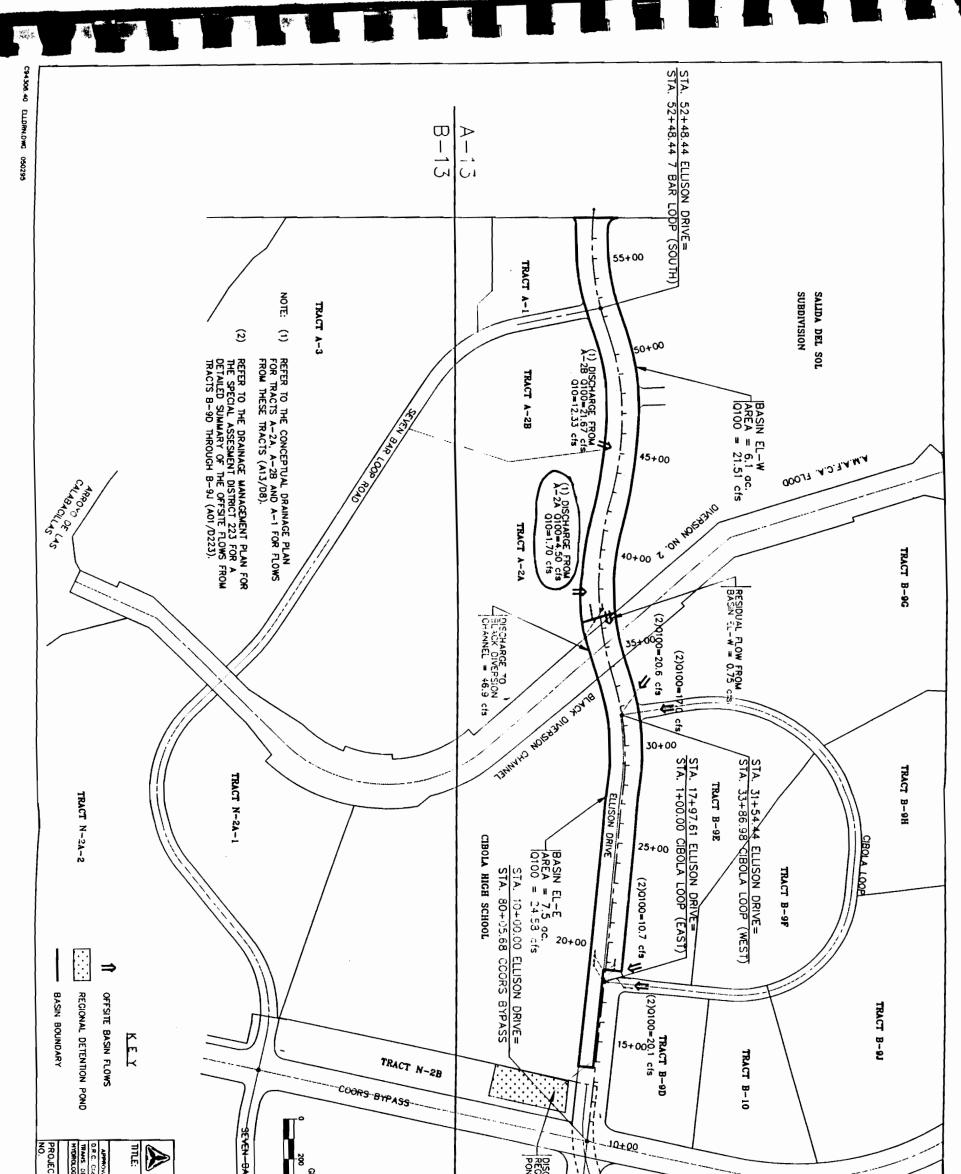
West Boundary Swales - adjacent to sple, tmp#1.txt Channel Calculator on APS land Given Input Data: Shape Trapezoidal Depth of Flow 6.0000 cfs 0.0100 ft/ft Slope Manning's n 0.0200 12.0000 in Height Bottom width 120.0000 in Left slope 0.4000 ft/ft Right slope 0.4000 ft/ft Computed Results: Depth 2.6284 in Velocity 2.5971 fps Flow area 2.3103 ft2 Flow perimeter 134.1545 in Hydraulic radius 2.4798 in Top width 133.1421 in Area 12.5000 ft2 Perimeter 184.6220 in Percent full 21.9035 % Critical Information Critical depth Critical slope 0.0099 ft/ft Critical velocity 2.5911 fps 2.3157 ft2 Critical area Critical perimeter 134.1858 in Critical hydraulic radius 2.4850 in Critical top width 133.1712 in Specific energy 0.3239 ft Minimum energy 0.3293 ft Subdivision Froude number 1.0034 Flow condition Supercritical wali 10' bottom 10Km ← APS site ---

1 01 $X - \forall$ 133HS P. McM. 9001 AA8 .X ¥.X CHECKED BA: 2515.152 X,X,X YB NWARD \$6-XX-X prof :JTAQ (71) 2346. 18. 92. 15. 22.1. BUS LOADING EXISTING TENNER ONE MY V **SNOISINA**B NAJA BIIS AA8-V 2/2 80.2 = Walt PROJECT 2. OFF-2 developed Flow= 4.16 cf (+mis report) TRACT A-2A **2340** \circ CENERAL NOTES · spjart prupped Note: Due to slopes public service and site recurring to slopes public blacins will be Note: Due to slopes public Recurring and site of and blacins will be REDQUEROLOGI ALEDQUEROLOGI ALEQUEROLOGI ALEQUE 130 (0) \$ was !: M mart) School SITE ALBUQUERQUE $\mathcal{F}_{\mathcal{O}}$ TNAM901AVENT 501 3781550 ATH JUSJ-


DRAINAGE REPORT FOR ELLISON DRIVE IMPROVEMENTS (COORS BOULEVARD BYPASS TO GOLF COURSE ROAD) Prepared for:


BROWN/NZD DEVELOPMENT JOINT VENTURE C/O BROWN & ASSOCIATES 3411 CANDELARIA NE ALBUQUERQUE, NEW MEXICO 87107


Prepared by:


Job No. 94306.40

BOHANNAN-HUSTON INC. ENGINEERS ARCHITECTS PHOTOGRAMMETRISTS SURVEYORS COURTYARD I, 7500 JEFFERSON NE ALBUQUERQUE, NM 87109 TEL (505) 823-1000 FAX (505) 821-0892

CITY OF ALBUQUE FUBLIC WORKS DEP ELLISON ORIVE DRAINAGE P DRAINAGE	GRAPHIC SCALE 400 100 ROAD 100 ROAD		SCHARGE TO GIONAL DETENTION NO = 94.8 cfs	ELLISON DRIVE	TRACT 0-1A
		ENGINEERS SEAL	SURVEY INFORMATION		AS BUILT INFORMATION
			FIELD NOTES	ACS "3-A13" - A 3" HUGG BRASS CAP STAMPED	CONTRACTOR
			NO. BY DATE		STANED BY DATE
					ACCEPTANCE BY DATE
	NO. DATE REMARKS	BY		BERNALILLO CO. LINE, APPROXIMATELY 36.5 FT.	VERTICATEN BY DATE
	REVISIONS			SW OF THE SOUTHERLY RIGHT-OF-WAY FENCE OF	CORRECTOR BY DATE
	DESIGN			STATE ROAD 528 AND 33.5 FT. EAST OF THE EAST	MICRO-FILM INFORMATION
	DESIGNED BY BHI DATE 3-95			RIGHT-OF-WAY FENCE OF BLACKS CHANNEL	RECORDED BY DATE
	DRAWN BY BHI DATE 3-95 CHECKED BY BHI DATE 3-95		·	ELEVATION - \$198.732	NQ.
	CHECKED BY BH DATE 3-95				

.

$$\frac{Descollado}{Q} = \frac{Q}{47.5} \times Z = 95.0 \text{ cfs}$$

$$Q = \frac{47.5}{17.2} \times \frac{110}{10} \text{ cfs}$$

$$\frac{17.2}{26.4} = \frac{110}{10} \text{ cfs}$$

$$\frac{17.2}{26.4} = \frac{110}{10} \text{ cfs}$$

• 95.0 - 43.6 = 51.4 cfs in sump grate

$$A_{\frac{51.4}{6\sqrt{2}(32.2)(.8)}} = 11.94$$
 ft²
 $I grate = 3.79$ ft² use 4 grate

- NE

4 1 Juni -

Bokannan A Huston

Ridingcircle @ Packway

$$Q = 55.9$$

 $Q \text{ upstream} = 11 + 7.6 = 18.6$
 $Q_{\text{sump}} = 55.9 - 18.6 = 37.6$
 $\frac{37.6}{3.79} = 10 \text{ grates}$

- .

DEPENDANCE CONTROL OF BUILDENE OF CONTROL OF

