SUPPLEMENTAL CALCULATIONS

LOWE'S SUBDIVISION, LOT 3

JANUARY 24, 2012

ISAACSON & ARFMAN, P.A.

Consulting Engineering Associates
Albuquerque, New Mexico
1899 CG-101.dwg Jan 24,2012

PROJECT Lowe's Subdivision - Lot 3

JOB NO. ___1899_

BY BJB

DATE 01-24-12

North Arrow

AREA OF SITE: 102163 SF 2.3 100-year, 6-hour **HISTORIC FLOWS: DEVELOPED FLOWS: EXCESS PRECIP:** Precip. Zone Treatment SF % Treatment SF 0 20432.6 20% 0% Area A Area A = 10216 10% 70% Area B 71514.1 Area B = Area C 10216.3 10% Area C 15324 15% =75% Area D 0 0% Area D 76622 = = 102163 100% Total Area 102163 100% Total Area On-Site Weighted Excess Precipitation (100-Year, 6-Hour Storm) Weighted E = $E_AA_A + E_BA_B + E_CA_C + E_DA_D$ $A_A + A_B + A_C + A_D$ 1.69 in. 0.66 in. Developed E Historic Ε On-Site Volume of Runoff: V360 = E*A / 12 5585 CF Developed V₃₆₀ = 14413 CF Historic V₃₆₀

On-Site Peak Discharge Rate: $Qp = Q_{pA}A_A + Q_{pB}A_B + Q_{pC}A_C + Q_{pD}A_D / 43,560$

For Precipitation Zone 1

 Q_{pA} 1.29 Q_{pC} 2.87

 Q_{nB} 2.03 Q_{pD} 4.37

4.6 CFS Developed Q_p 9.2 CFS Historic Q_p

OVERALL BASIN CALCULATIONS

ISAACSON & ARFMAN, P.A.

Consulting Engineering Associates Albuquerque, New Mexico 1899 CG-101.dwg

PROJECT Lowe's Subdivision - Lot 3

JOB NO. ___1899_

BY BJB

DATE 01-24-12

 $E_A = 0.44$

 $E_B = 0.67$

 $E_C = 0.99$

 $E_D = 1.97$

BASIN NO. 1	The same land	DESCRIPTION DE	RAINS TO CENTER RUNDOWN
Area of basin flows =	44900	SF =	1.0 Ac.
The following calculation	ons are based on	Freatment areas as shown in table to the righ	t LAND TREATMENT
		nted Excess Precipitation (see formula above	
	Weighted E	= 1.89 in.	B= 0%
			C = 8%
		ne of Runoff (see formula above)	
	V360	= 7078 CF	D= 92%
	î	Discharge Rate: (see formula above)	
	QP	= 4.4 cfs	
BASIN NO. 2	WEIGHT STATE	DESCRIPTION DRAINS	TO PHASE II STORM DRAIN SYSTEM
Area of basin flows =	5254	SF =	0.1 Ac.
The following calculation		Freatment areas as shown in table to the righ	t LAND TREATMENT
		nted Excess Precipitation (see formula above	
	Weighted E	= 1.69 in.	B = 10%
		ne of Runoff (see formula above)	C = 15%
		-	
	V360	= 741 CF	D = 75%
	Sub-basin Peak I	Discharge Rate: (see formula above)	
	Qp	= 0.5 cfs	
BASIN NO. 3		DESCRIPTION D	DRAINS TO EAST RUNDOWN
Area of basin flows =	13422	SF =	0.3 Ac.
		Freatment areas as shown in table to the righ	t LAND TREATMENT
6		nted Excess Precipitation (see formula above	
	Weighted E	= 1.92 in.	B = 0%
		ne of Runoff (see formula above)	C = 5%
	V360	= 2149 CF	D= 95%
		Discharge Rate: (see formula above)	
	QP	= 1.3 cfs	
BASIN NO. 4		DESCRIPTION DRAINS	S TO MAIN STORM DRAIN SYSTEM
Area of basin flows =	17116	SF =	0.4 Ac.
The following calculation	ons are based on	Freatment areas as shown in table to the righ	t LAND TREATMENT
0		nted Excess Precipitation (see formula above	
	Weighted E	= 1.84 in.	B= 4%
		ne of Runoff (see formula above)	C = 8%
			D= 88%
	V360	= 2624 CF	D - 8870
		Discharge Rate: (see formula above)	
	Qp	= 1.6 cfs	
BASIN NO. 5		DESCRIPTION DRAINS W	/ITHIN LANDSCAPED AREA TO POND
Area of basin flows =	5888	SF =	0.1 Ac.
The following calculation	ons are based on	Treatment areas as shown in table to the righ	t LAND TREATMENT
	Sub-basin Weigh	nted Excess Precipitation (see formula above) A = 0%
	Weighted E	= 1.48 in.	B= 15%
		ne of Runoff (see formula above)	C = 30%
	V360	= 727 CF	D = 55%
			5 55/0
		Discharge Rate: (see formula above)	
	Qp	= 0.5 cfs	
BASIN NO. 6	T	DESCRIPTION	EXISTING POND
A rea of bas in flows =	15582	SF =	0.4 Ac.
The following calculation		Treatment areas as shown in table to the righ	
	Sub-basin Weig	hted Excess Precipitation (see formula above	A = 0%
	Weighted E	= 0.83 in.	B = 50%
		ne of Runoff (see formula above)	C = 50%
	V ₃₆₀	= 1078 CF	D = 0%
		Discharge Rate: (see formula above)	
		= 0.9 cfs	
	Qp	- U.9 CIS	

SUB-BASIN CALCULATIONS

ISAACSON & ARFMAN, P.A.

Consulting Engineering Associates Albuquerque, New Mexico 1899 CG-101.dwg

PROJECT_Lowe's Subdivision - Lot 3

JOB NO. 1899 BY BJB DATE 01-24-12

BASED ON 100-YEAR, 6-HOUR STORM

BASIN 1:

4.4 CFS

Surface drains to proposed 2' bottom width 'U' shaped concrete channel with 1' radius ends. Total opening width = 4.0'. Per Weir Equation (Q=CLH 3) the opening capacity = 4.7 cfs. The depth within the 'U' shaped concrete channel = 0.29' (at 3% slope). See separate channel calculations.

BASIN 2:

0.5 CFS

Approximately 0.4 cfs is discharged to the Phase II storm drain system. At a slope of 0.5%, a 12" storm drain has a full flow capacity of $3 \pm cfs$.

BASIN 3:

1.3 CFS

Surface drains to proposed 2' bottom width 'U' shaped concrete channel with 1' radius end (1 side only). Total opening width = 3.0'. Per Weir Equation $(Q=CLH^{\frac{3}{2}})$ the opening capacity = 3.5 cfs. The depth within the 'U' shaped concrete channel = 0.13' (at 3% slope). See separate channel calculations.

BASIN 4:

1.6 CFS

Discharged to the main storm drain system. At a slope of 0.83%, a 12" storm drain has a full flow capacity of 3.8± cfs.

BASIN 5:

0.5 CFS

Surface drains within landscaping to enter pond.

BASIN 6:

0.9 CFS

Captured within existing pond.

SUB-BASIN ANALYSIS

PROJECT Lowe's Subdivision - Lot 3

Consulting Engineering Associates Albuquerque, New Mexico 1899 CG-101.dwg Jan 24,2012

ISAACSON & ARFMAN, P.A.

JOB NO. 1899

BY BJB DATE 01-24-12

Channel Report

Hydraflow Express Extension for AutoCAD® Civil 3D® 2012 by Autodesk, Ing

<Name> WEST CHANNEL

Tuesday, Jan 24 2012

Rectangular

Bottom Width (ft) = 2.00Total Depth (ft) = 0.50

Invert Elev (ft) = 100.00 Slope (%) = 3.00 N-Value = 0.012

Calculations

Compute by: Known Q Known Q (cfs) = 4.40 Highlighted

= 0.29Depth (ft) Q (cfs) = 4.400Area (sqft) = 0.58Velocity (ft/s) = 7.59Wetted Perim (ft) = 2.58Crit Depth, Yc (ft) = 0.50Top Width (ft) = 2.00EGL (ft) = 1.18

Reach (ft)

Channel Report

Hydraflow Express Extension for AutoCAD® Civil 3D® 2012 by Autodesk, Inc.

Tuesday, Jan 24 2012

<Name>

EAST CHUNNEL

Rectangular

Bottom Width (ft) = 2.00Total Depth (ft) = 0.50

Invert Elev (ft) = 100.00Slope (%) = 3.00N-Value = 0.012

Calculations

Compute by: Known Q Known Q (cfs) = 1.30

Highlighted

Depth (ft) = 0.13= 1.300Q (cfs) = 0.26Area (sqft) Velocity (ft/s) = 5.00Wetted Perim (ft) = 2.26Crit Depth, Yc (ft) = 0.24Top Width (ft) = 2.00EGL (ft) = 0.52

Reach (ft)