## CITY OF ALBUQUERQUE

*Planning Department* Alan Varela, Director



Mayor Timothy M. Keller

March 31, 2022

Jeremy Shell, P.E. Respec 5971 Jefferson St. NE Albuquerque, NM 8710

### RE: The Peaks by Markana Phase II Conceptual Grading & Drainage Plans Engineer's Stamp Date: 03/2022 Hydrology File: B18D029

Dear Mr. Shell:

Sincerely,

PO Box 1293 Based upon the information provided in your submittal received 03/24/2022, the Conceptual Grading & Drainage Plan is approved for action by the DRB on Site Plan for Building Permit and Site Plan for Subdivision.

Albuquerque As a reminder, if the project total area of disturbance (including the staging area and any work within the adjacent Right-of-Way) is 1 acre or more, then an Erosion and Sediment Control (ESC) Plan and Owner's certified Notice of Intent (NOI) is required to be submitted to the Stormwater Quality Engineer (Doug Hughes, PE, jhughes@cabq.gov, 924-3420) 14 days prior to any earth disturbance.

If you have any questions, please contact me at 924-3995 or <u>rbrissette@cabq.gov</u>.

www.cabq.gov

Renée C. Brissette

Renée C. Brissette, P.E. CFM Senior Engineer, Hydrology Planning Department



### The Peaks By Markana - Phase II Hydraulic Analysis of Downstream Capacity

March 30, 2022

This document as well as the following supporting calculations are intended to demonstrate that downstream capacity is available for The Peaks By Markana - Phase II. The developed rate of discharge for the subject site is 15.2 cfs. Please reference the Drainage Plan for more information. Per the Drainage Management Plan for the Glendesto Subdivision by Mark Goodwin & Associates dated January 23, 2018, the peak flow rate in Glendale Avenue at it's intersection with San Pedro Drive is 30.4 cfs. Therefore, the flow rate to be used for this analysis is 45.6 cfs.

The capacity of the existing section of Glendale Avenue was analyzed and determined to be sufficient. The HGL does not exceed curb height and the EGL is contained within the right-of-way. The Manning's calculation for the capacity of Glendale Avenue is included. The existing roadway section that was built with the Glendesto Subdivision is also included. Before runoff reaches San Pedro, flows in Glendale Avenue enter a roadside channel. From there it is collected in a catch basin, routed through a 36" storm drain, and ultimately outfalls into the La Cueva Arroyo. Calculations for the capacity of the catch basin and storm drain are also included herein.

Should you have any questions, comments, concerns, or require additional information upon your review of the calculations provided, please contact me at your convenience.

Sincerely,

Jeremy Shell, PE Project Manager Community Design Solutions

7770 JEFFERSON ST., NE SUITE 200 Albuquerque, NM 87109 505.268.2661



| <u>Irregu</u><br>Input                                                  | <u>ılar Se</u>                    | ction                        |                                                        |                          |                              |                            |                        |                          |                                                                                 |                      |                     |                   |  |
|-------------------------------------------------------------------------|-----------------------------------|------------------------------|--------------------------------------------------------|--------------------------|------------------------------|----------------------------|------------------------|--------------------------|---------------------------------------------------------------------------------|----------------------|---------------------|-------------------|--|
| mpar                                                                    | Flow<br>Slope                     |                              |                                                        | 45.6 cfs<br>0.0277 ft/ft |                              |                            |                        |                          |                                                                                 |                      |                     |                   |  |
|                                                                         | <b>Sta</b><br>0<br>54             | <b>Elev</b><br>0.965<br>0.87 | <b>n</b><br>0.017<br>0.017                             | <b>Sta</b><br>42<br>58.5 | <b>Elev</b><br>0.125<br>0.49 | <b>n</b><br>0.017<br>0.017 | <b>Sta</b><br>44<br>60 | <b>Elev</b><br>0<br>0.99 | <b>n</b><br>0.017<br>0.017                                                      | <b>Sta</b><br>44.01  | <b>Elev</b><br>0.67 | <b>n</b><br>0.017 |  |
| Output<br>WSElev<br>Flow Area<br>Velocity<br>Velocity Head<br>Top Width |                                   |                              | 0.617 ft<br>7.27 sf<br>6.27 fps<br>0.612 ft<br>28.5 ft |                          |                              |                            |                        | Froude N                 | umber                                                                           | Calculat             | ion                 |                   |  |
|                                                                         | Critical WSElev<br>Critical Slope |                              |                                                        | 0.813<br>ft/ft           | ft                           |                            |                        |                          | $F_1 = v_1 / (gy_1)^{1/2}$<br>$F_1 = 6.27 / (32.2^*.617)^{1/2}$<br>$F_1 = 1.41$ |                      |                     |                   |  |
|                                                                         |                                   |                              |                                                        |                          |                              |                            |                        |                          | Sequent Depth Calculation<br>$y_2 = (y_1/2) [(1+8F_1^2)^{1/2} - 1]$             |                      |                     |                   |  |
| 1.0                                                                     |                                   |                              |                                                        |                          |                              |                            |                        |                          | $\gamma_2 = (.617/2) [(1+8*1.41^2)^{1/2} - 1]$                                  |                      |                     |                   |  |
|                                                                         | 0.6                               |                              |                                                        |                          |                              | -                          |                        |                          | γ <sub>2</sub> = 0.500                                                          | / IL < 0.            | 505 IL              |                   |  |
| 0.4                                                                     |                                   |                              |                                                        |                          |                              |                            |                        | _                        | F <sub>1</sub> : Froud<br>v <sub>1</sub> : Veloc                                | le Numb<br>ity (fps) | ber                 |                   |  |
|                                                                         | 0.2                               |                              |                                                        |                          |                              |                            |                        |                          | g: Gravity<br>γ <sub>1/2</sub> : Dept                                           | h (ft)               | (/\$*)              |                   |  |
|                                                                         | 0                                 | 10                           | 20                                                     | ) 3                      | 0 4                          | 40                         | 50                     | 60                       |                                                                                 |                      |                     |                   |  |

Glendale Ave.msd 3/30/2022 ManningSolver v1.019 Copyright (c) 2000 Current Applications

## PROFILE VIEW

| DOUBLE D INLET<br>SUMP CONDITION<br>As ORIFICE CAPACITY     | SCALE: 1"=5'<br>As WEIR         |
|-------------------------------------------------------------|---------------------------------|
| H = 2.0'<br>AREA = 9.12 SQ. FT.<br>Q = 62.3 cfs             | L = 16.6'<br>H = 1.16'<br>C = 3 |
| Q <sub>100</sub> = 25.47 cfs<br>Q <sub>10</sub> = 13.46 cfs | $Q = 62.3 \ cfs$                |

## Circular Channel Input

| Input |                |               |
|-------|----------------|---------------|
| -     | Depth          | 3 ft          |
|       | Slope          | 0.0089 ft/ft  |
|       | Manning's n    | 0.013         |
|       | Diameter       | 36 in         |
| Outp  | ut             |               |
| -     | Flow           | 62.9 cfs      |
|       | Flow Area      | 7.07 sf       |
|       | Velocity       | 8.90 fps      |
|       | Velocity Head  | 1.23 ft       |
|       | Top Width      | 0.00 ft       |
|       | Froude Number  | 0.00          |
|       | Critical Depth | 2.552 ft      |
|       | Critical Slope | 0.00837 ft/ft |
|       | -              |               |



Storm.msd 3/30/2022 ManningSolver v1.019 Copyright (c) 2000 Current Applications



![](_page_6_Figure_1.jpeg)

| The following calcualtions are based on Albuquerque's Development Process Manual, Article 6-2 |  |
|-----------------------------------------------------------------------------------------------|--|
| Runoff Rate:                                                                                  |  |

![](_page_7_Figure_0.jpeg)

![](_page_7_Figure_1.jpeg)

# LEGEND: ----- PROPERTY BOUNDARY ---- 5270---- EXISTING MAJOR CONTOUR EXISTING MINOR CONTOUR PROPOSED HIGH POINT ------- SD ------- PROPOSED STORM DRAIN FLOW ARROW

![](_page_7_Picture_3.jpeg)

![](_page_7_Picture_4.jpeg)

![](_page_7_Figure_5.jpeg)

REVISION