REVISED DRAINAGE REPORT

For

THE ESTATES AT GLENDALE

Albuquerque, New Mexico

Prepared by

Rio Grande Engineering PO Box 93924 Albuquerque, New Mexico 87199

JANUARY 2015

David Soule P.E. No. 14522

TABLE OF CONTENTS

Purpose	.3
Introduction	3
Existing Conditions	.3
Exhibit A-Vicinity Map	4
Proposed Conditions	5
Summary	.5

<u>Appendix</u>

NAAMDP, Phase 1 asbuilt excerpts	A
Site Hydrology	B
Hydraulic calculations	C

Map Site Grading and Drainage Plan

PURPOSE

The purpose of this report is to provide the Drainage Management Plan for the development of a 14-lot subdivision located on Glendale Avenue between Wyoming Boulevard and Barstow Street NE. This plan was prepared in accordance with the City of Albuquerque design regulations, utilizing the City of Albuquerque's Development Process Manual drainage guidelines. This report will demonstrate that the grading does not adversely affect the surrounding properties, nor the upstream or downstream facilities.

INTRODUCTION

The subject of this report, as shown on the Exhibit A, is a 3.55-acre parcel of land located on the south side of Glendale Avenue between Wyoming Boulevard and Barstow Street NE. The legal description of this site is tracts A&B the Estates at Glendale Subdivision. As shown on FIRM map35013C0133H, the entire site is located within Flood Zone X. The site has had grading activities upon it over the past several years. The site contains a desiltation pond constructed with phase one and multiple stock piles of material have been deposited thru ought the site. Due to the upstream construction, the site is not affected by any upland flows from the north or east. The site is impacted by the adjacent lots to the south. The site currently free discharges to a large pond located at the northwest corner of the site. The development of the site will require the site to discharge at a rate equal to or less than the fully developed conditions assumed for this site in the governing North Albuquerque Acres Master Drainage Plan (NAAMDP), which relevant excerpts can be found in appendix A.

EXISTING CONDITIONS

The site currently does have ponds and stockpiles on it and has been impacted by human development over the years. The site is the second phase of the Estates at Glendale project. The site was initially designed by John Mackenzie by report found in city of Albuquerque drainage file. The site is impacted by minor upland flows from the 4 developed lots to the south. The site currently discharges all of its flow to the North West corner to a temporary retention pond

3

The site is located within basins 204.0 of the NAAMDP. The adjacent infrastructure improvements within Glendale were constructed with phase one of this development. Two 24" storm drain pipes were stubbed into the property with the initial phase. All downstream improvements are in place and accepted by the city of Albuquerque.

PROPOSED CONDITIONS

The proposed improvements consist of a new 14-lot subdivision serviced by private paved roadway. The lots shall free discharge to the roadway and be conveyed within the roadway to the available downstream storm drain. The subdivision is required to retain the first .34" of rain or 182 cubic feet per lot. The slopes of the lots preclude front vard ponds so an alternative underground catchment basin- stormtech DC780 is required. Due to the density of the lots the underground chambers will be increased to capture the excess in flow. The site contains 58% land treatment D. The basins are designed to capture the flow generated by 1600 square feet of impervious area of each lot, which constitutes 14% of the total site. To estimate the attenuated flow we have substituted the 14% type D treatment for type C. The resultant flow will be less than the calculated but this method was used to be conservative. The infiltrator systems details and specification have been added as a detail sheet. All the flow leaving the site will be conveyed via surface drainage to a set of double A inlets located at the intersection of North star lane and north star place. As shown on the drainage basin map and hydraulic spread sheet located in appendix B, the site is affected by 9 small basins from the adjacent property. The flow is allowed to enter the site and drain to the street through the new lots. The peak flow affecting each lot has been shown on the hydraulic spread sheet. The flow from basin I is currently captured by a concrete rundown constructed with unit 1. The spacing of the turned blocks allows the flows to easily pass thru the wall. Each lot is graded to allow the flow to enter the site and flow to the street via surface flow.

5

The onsite drainage contains 3 basins. Basin A is the majority of the lots and North star Place. This basin generated 9.67 and when combined with the upland flow discharges 14.96 CFS. Basin B contains the western portion of the subdivision and North star lane, this basin generated 3.53 cfs, and discharges 6.41 cfs when combined with upland basin. Basin C contains the rear yards of lots 11-14. This basin generates .88 cfs and 1,384 cubic feet of storm water. Due to the commitments to the adjacent properties within phase one we are not allowed to construct new retaining wall directly adjacent to the existing wall existing. Therefore we have placed the underground storage chambers in the rear yards to capture the flow generated from this basin. We have accounted for the emergency overflow by placing turned blocks and a sidewalk culvert at Glendale.

'n.

A street capacity calculation spreadsheet located in appendix C shows this flow is safely conveyed within the roadway. The inlets are in a sump condition and appendix C shows they have capacity, in the event of clogging the flow will raise to the flow line water block .56' above the grate and discharge down Glendale. As shown on the as built drawings located in appendix A, the HGL at the storm drain connection at main is 5405.50. The HGL's have not been calculated at this time, based upon manning's equation, each pipe will not flow full so the HGL slope will be less than the slope of the pipe therefore the HGL will be less than the top of pipe at each inlet. The proposed land treatment will conform to the residential density assumptions of the NAADMP. The site discharge is reduced to these master plan assumptions by the creation of water quality catchment basins.

SUMMARY AND RECOMMENDATIONS

This project is a development of residential subdivision with the North Albuquerque Acres Master Drainage plan. The development is consistent with the land use assumptions of the plan. The surrounding development diverted the majority of the upland flow. The minor flow from the developed lots to the south is allowed to pass thru the site. The discharge will enter the downstream storm drain where it was anticipated. The inlets, pipes and roadways have been shown to provide the required capacity. The site has been designed in accordance with City of Albuquerque Drainage ordinance. This drainage plan and report conforms to the governing drainage regulations of the City. Since the effected area site encompasses more than 1 acre, a NPDES permit will be required prior to any construction activity.

APPENDIX A

North Albuquerque Acres Master Drainage Plan

And

Excerpts of phase one as-builts

FINAL NORTH ALBUQUERQUE ACRES MASTER DRAINAGE PLAN

Prepared For:

City of Albuquerque

Prepared By:

ENGINEERS AND ENVIRONMENTAL SCIENTISTS 1720-B Randolph Road SE, Albuquerque, NM 87106 Telephone (505) 243-7300 Fax (505) 243-7400 rti@nmia.com

国合学生 11: DEC 21 1998 HYDROLOGY SECTION

October 1998

		TABLE A-4					
Basin ID	EL CAMINO ARRO Hydrologic	YO SUB-BASIN Basin Area	CHAR.	ACTER nd Tre	atment	<u>%</u>	TP
	Condition	(mi ²)	A	B	С	D	(hrs)
201	Existing Future	.1339 	95 95	0 0	0	5 5	.133 .133
200	Existing Future	.3030	65 65	20 20	15 15	0	.167 .167
202.1	Existing	.1031	84	0	8	8	.133
	Future	.1031	22	23	38	17	.133
202.2	Existing	.1099	70	5	15	10	.14
	Future	.1099	22	23	38	17	.14
202.3	Existing	.0684	60	10	15	15	.133
	Future	.0518	11	26	33	30	.133
203.1	Existing	.1258	80	0	10	10	.14
	Future	.1258	22	23	38	17	.14
203.2	Existing	.0485	80	0	10	10	.133
	Future	.0394	11	26	33	30	.133
203.3	Existing	.0558	80	0	10	10	.133
	Future	.1259	20	20	34	26	.133
¥ 204	Existing	.2119	80	0	10	10	.21
	Future	.0773	20	20	34	26	.133
204.2	Existing	.1333	80	0	10	10	.14
	Future	.0687	8	22	25	45	.14
204.1	Existing	.1484	80	0	10	10	.18
	Future	.1288	17	22	31	30	.18
204.3	Future	.0870	10	15	30	45	.133
204.4	Future	.0546	21	21	36	22	.133
205	Existing	.0459	10 ⁻	0	20	70	.133
	Future	.0543	0	10	20	70	.133
206.1	Existing	.1221	75	5	10	10	.150
	Future	.1221	0	20	30	50	.150
206.2	Existing	.0561	75	5	10	10	.133
	Future	.0561	0	20	30	50	.133
206.3	Existing Future	.0480 .0480	00	7 7	7 7	86 86	.133 .133
206.4	Existing	.0327	40	25	5	30	.133
	Future	.0327	0	20	30	50	.133

.

ţ

ŝ

•

APPENDIX B

SITE HYDROLOGY

•

Weighted E Method EAGLE CREST

Existing Developed Basins

											100-Year, 6-h		
Basin	Area	Area	Treatment	Ā	Treatment	В	Treatm	ent C	Treatmen	t D	Weighted E	Volume	Flow
	(sf)	(acres)	%	(acres)	%	(acres)	%	(acres)	%	(acres)	(ac-ft)	(ac-ft)	cfs
BASIN A	24002	0.551	20%	0.1102	20.0%	0.110	34.0%	0.18734	26%	0.143	1.368	0.063	1.86
BASIN B	1858	0.043	0%	0	0.0%	0.000	0.0%	0	100%	0.043	2.360	0.008	0.2
BASIN C	10260	0.236	20%	0.04711	20.0%	0.047	34.0%	0.08008	26%	0.061	1.368	0.027	0.79
BASIN D	897	0.021	20%	0.00412	20.0%	0.004	34.0%	0.007	26%	0.005	1.368	0.002	0.07
BASIN E	4927	0.113	20%	0.02262	20.0%	0.023	34.0%	0.03846	26%	0.029	1.368	0.013	0.38
BASIN F	25284	0.580	20%	0.11609	20.0%	0.116	34.0%	0.19735	26%	0.151	1.368	0.066	1.96
BASIN G	31607	0.726	20%	0.14512	20.0%	0.145	34.0%	0.2467	26%	0.189	1.368	0.083	2.48
BASIN H	5619	0.129	20%	0.0258	20.0%	0.026	34.0%	0.04386	26%	0.034	1.368	0.015	0.43
BASIN I	19312	0.443	20%	0.08867	20.0%	0.089	34.0%	0.15074	26%	0.115	1.368	0.051	<u>1.50</u>
ONSITE A	106556	2.446	0%	0	22.0%	0.538	34.0%	0.8317	44%	1.076	1.679	0.342	9.67
ONSITE B	38854	0.892	0%	0	22.0%	0.196	34.0%	0.30327	44%	0.392	1.679	0.125	3.53
ONSITE C	9890	0.227	0%	0	22.0%	0.050	34.0%	0.07719	44%	0.100	1.679	0.032	0.90
INFILTRATOR CAPTURE	1600	0.037	0%	0	0.0%	0.000	0.0%	0	100%	0.037	2.360	0.007	0.18
OTAL ONSITE PROPOSED	155300	3.565	0%	0	25.0%	0.891	37.0%	1.31912	38%	1.355	1.604	0.477	13.67
TOTAL ONSITE ALLOWED	155300	3.565	8%	0.28522	22.0%	0.784	25.0%	0.8913	45%	1.604	1.640	0.487	13.70

Equations:

Weighted E = Ea*Aa + Eb*Ab + Ec Impervious= 7*(((3.5*3.5)+(5*3.5))^ Volume = Weighted D * Total Area UPLAND FLOW BASED UPON N/ Flow = Qa * Aa + Qb * Ab + Qc * A	*Ac + Ec .5) AAMDP c + Qd *	I*Ad / (Tota ३१ Ad	I Area) 3 %						
Where for 100-year, 6-hour storm (zone 3)								
	Ea=	0.66		Qa=	1.87				
	Eb=	0.92		Qb=	2.6				
	Ec=	1.29		Qc=	3.45				
	Ed=	2.36		Qd=	5.02				
FLOW SUMMARY									
UPLAND	9.65	TOTAL							
AFFECTED LOT	0.00								
6	1.86	CFS							
7	0.28	CFS							
8	1.18	CFS							
9	1.96	CFS							
10	0.43	CFS							
11	2.45	CFS							
EX. CHANNEL ON LOT11	1.50	CFS							
ALLOWABLE DISCHARGE PER F ALLOWABLE DISCHARGE ONSIT EACH INFILTRATOR CAPTURES TOTAL IMPERVIOUS AREA CAPT PEAR YARD GENERATION	PREVIOU E TURED=	JS REPOR 22400 SF (T 314 CF DR 14% OF TO 0 22 CF		23.84 13.70 EQUAVA REA 346.03	CFS(UPL CFS LENT TO	AND AND ON ONSITE 1600 SF OF	ISITE) IMPERVIOUS ARI	EA
FIRST FLUSH REQUIREMENT (C	F)=	2552.0967	7 TOTAL 18	32.29	PER LOT				
STREET FLOW									
NORTH STAR PLACE	14.95	CFS	(ONSITEA+A+	B+C+	D+E+F)				
NORTH STAR LANE	6.41	CFS	(ONSITE B+G	+H)					
	04 AF							-	

APPENDIX C

HYDRAULIC CALCULATIONS

.

Street Capacity Calculations

NORTHSTAR PLACE

26' F-F Street Section with 4" curb

Slope= 0.03 Q=14.95 CFS

For water depths less than 0.0625 feet

Y≃	Water depth
Area =	16*Y^2
P=	SQRT(1025*Y^2) + Y
n=	0.017

Depth (ft)	Area (ft^2)	P (ft)	R (A/P)	Q (cfs)	2Q (cfs)	Vel (ft/s)	D*V	Fr	D2 (ft)
0.01	0.0016	0.33	0.00	0.00	0.00	0.43	0.00	0.76	0.00691
0.02	0.0064	0.66	0.01	0.00	0.01	0.69	0.01	0.86	0.01624
0.025	0.01	0.83	0.01	0.01	0.02	0.80	0.02	0.89	0.02136
0.035	0.0196	1.16	0.02	0.02	0.04	1.00	0.03	0.94	0.03228
0.045	0.0324	1.49	0.02	0.04	0.08	1.18	0.05	0.98	0.04391
0.052	0.043264	1.72	0.03	0.06	0.11	1.30	0.07	1.01	0.0524
0.06	0.0576	1.98	0.03	0.08	0.16	1.43	0.09	1.03	0.0624
0.0625	0.0625	2.06	0.03	0.09	<u>0.18</u>	1.47	0.09	1.04	0.06559

For water depths greater than 0.0625 ft but less than 0.3025 ft

Y1= Y-0.0625

A2= A1 + 2*Y1 + 25*Y1^2

P2= P1 + SQRT(2501*Y1^2)+Y1

Depth (ft)	Area (ft^2)	P (ft)	R (A/P)	Q (cfs)	2Q (cfs)	Vel (ft/s)	D*V_	Fr	D2 (ft)
0.063	0.063506	2.09	0.03	0.09	0.19	1.47	0.09	1.04	0.06598
0.1	0.172656	3.98	0.04	0.32	0.65	1.87	0.19	1.04	0.10566
0.13	0.311406	5.51	0.06	0.69	1.39	2.23	0.29	1.09	0.14572
0.16	0.495156	7.04	0.07	1.28	2.56	2.58	0.41	1.14	0.1894
0.2	0.810156	9.08	0.09	2.45	4.90	3.02	0.60	1.19	0.25153
0.207	0.873506	9.43	0.09	2.71	5.41	3.10	0.64	1.20	0.26277
0.2612	1.446942	12.20	0.12	5.29	10.58	3.65	0.95	1.26	0.35291
0.3025	1.9825	14.31	0.14	8.04	16.08	4.05	1.23	1.30	0.42471

For water depths greater than 0.3025 ft but less than 0.333 ft

Y2= Y - 0.3025 A3= A2 + Y2*13

P3= P2 + Y2

Depth (ft)	Area (ft^2)	P (ft)	R (A/P)	Q (cfs)	2Q (cfs)	Vel (ft/s)	D*V	Fr	D2 (ft)
0.303	1.9895	14.31	0.14	8.09	16.17	4.06	1.23	1.30	0.42622
0.3039	2.0021	14.31	0.14	8.17	16.34	4.08	1.24	1.30	0.42894
0.3062	2.0343	14.31	0.14	8.39	16.78	4.12	1.26	1.31	0.43588
0.31	2.0875	14.31	0.15	8.76	17.51	4.19	1.30	1.33	0.44737
0.3125	2.1225	14.32	0.15	9.00	18.00	4.24	1.33	1.34	0.45494
0.32	2.2275	14.32	0.16	9.75	19.51	4.38	1.40	1.36	0.47767
0.3317	2.3913	14.34	0.17	10.97	21.94	4.59	1.52	1.40	0.51325
0.333	2.4095	14.34	0.17	<u>11.11</u>	22.22	4.61	1.54	1.41	0.51721

For water depths greater than 0.333 ft but less than 0.513 ft

Y3=	Y - 0.333
A4=	A3 + 13 * Y3 + 25 * Y3^2
P4=	P3 + SQRT(2501 * Y3^2)

Depth (ft)	Area (ft^2)	P (ft)	R (A/P)	Q (cfs)	2Q (cfs)	Vel (ft/s)	D*V	Fr	D2 (ft)
0.335	2.4376	14.44	0.17	11.27	22.55	4.63	1.55	1.41	0.52038
0.3601	2.80726	15.69	0.18	13.49	26.99	4.81	1.73	1.41	0.56106
0.38	3.122725	16.69	0.19	15.47	30.94	4.95	1.88	1.42	0.59436
0.4196	3.809389	18.67	0.20	19.99	39.98	5.25	2.20	1.43	0.66299
0.4603	4.596832	20.70	0.22	25.52	51.04	5.55	2.56	1.44	0.73635
0.504	5.534525	22.89	0.24	32.52	65.05	5.88	2.96	1.46	0.81782
0.513	5.7395	<u>23.</u> 34	0.25	34.11	68.22	5.94	3.05	1.46	0.8349

Street Capacity Calculations

north star lane

28' F-F Street Section with 8" curb 0.005 Slope=

For water depths less than 0.125 feet Y= Water depth 8*Y^2 Area = P≃ SQRT(257*Y^2) + Y 0.017

n=

Depth (ft)	Area (ft^2)	P (ft)	R (A/P)	Q (cfs)	2Q (cfs)	Vel (ft/s)	D*V	Fr	D2 (ft)
0.01	0.00	0.17	0.00	0.00	0.00	0.17	_0.00	0.31	0.0016081
0.02	0.00	0.34	0.01	0.00	0.00	0.28	0.01	0.34	0.0039311
0.04	0.01	0.68	0.02	0.01	0.01	0.44	0.02	0.38	0.0095654
0.06	0.03	1.02	0.03	0.02	0.03	0.57	0.03	0.41	0.0160557
0.08	0.05	1.36	0.04	0.04	0.07	0.69	0.06	0.43	0.0231616
0.1	0.08	1.70	0.05	0.06	0.13	0.80	0.08	0.45	0.030757
0.12	0.12	2.04	0.06	0.10	0.21	0.91	0.11	0.46	0.0387629
0.125	0.13	2.13	0.06	0.12	0.23	0.93	0.12	0.47	0.0408217

For water depths greater than 0.125 ft but less than 0.365 ft

Y1=	Y-0.125
A2=	A1 + 2*Y1 + 25*Y1^2

A2≈ P2= P1 + SQRT(2501*Y1^2)+Y1

Depth (ft)	Area (ft^2)	P (ft)	R (A/P)	Q (cfs)	2Q (cfs)	Vel (ft/s)	D*V	Fr	D2 (ft)
0.13	0.14	2.38	0.06	0.12	0.25	0.91	0.12	0.45	0.0397601
0.16	0.23	3.91	0.06	0.21	0.42	0.92	0.15	0.41	0.0418764
0.2	0.42	5.95	0.07	0.44	0.87	1.05	0.21	0.41	0.0537489
0.24	0.69	8.00	0.09	0.82	1.65	1.20	0.29	0.43	0.0695702
0.2846	1.08	1 <u>0.</u> 27	0.11	1.49	2.98	1.38	0.39	0.46	0.0896739
0.32	1.47	12.08	0.12	2.22	4.44	1.52	0.48	0.47	0.1068876
0.3551	1.91	13.87	0.14	3.15	6.29	1.65	0.59	0.49	0.124804
0.365	2.05	14.37_	0.14	3.45	6.89	1.68	0.61	0.49	0.12999

For water depths greater than 0.365 ft but less than 0.667 ft

Y - 0.365 Y2=

A3= A2 + Y2*14

P2 + Y2 P3=

Depth (ft)	Area (ft ²)	P (ft)	R (A/P)	Q (cfs)	2Q (cfs)	Vel (ft/s)	D*V	Fr	D2 (ft)
0.37	2.12	14.38	0.15	3.64	7.29	1.72	0.64	0.50	0.1350191
0.4556	3.31	14.46	0.23	7.67	15.34	2.31	1.05	0.60	0.223263
0.4848	3.72	14.49	0.26	9.30	18.59	2.50	1.21	0.63	0.2541815
0.5	3.94	14.51	0.27	10.19	20.38	2.59	1.30	0.65	0.2704223
0.54	4.50	14.55	0.31	<u>12.</u> 70	<u>25.40</u>	2.83	1.53	0.68	0.3136088
0.5584	4.75	14.56	0.33	13.92	27.85	2.93	1.64	0.69	0.3336809
0.63	<u>5.76</u>	14.64	0.39	19.09	38.18	3.32	2.09	0.74	0.4129151
0.667	6.27	14.67	0.43	22.00	44.01	3.51	2.34	0.76	0.4545048

For water depths greater than 0.667 ft but less than 0.847 ft

Y3= Y - 0.667 A4= A3 + 14 * Y3 + 25 * Y3^2

P3 + SQRT(2501 * Y3^2) P4≈

Depth (ft)	Area (ft^2)	P (ft)	R (A/P)	Q (cfs)	2Q (cfs)	Vel (ft/s)	D*V	Fr	D2 (ft)
0.7	6.76	16.32	0.41	23.23	46.45	3.43	2.40	0.72	0.4471541
0.72	7.09	17.32	0.41	24.13	48.26	3.41	2.45	0.71	0.4451558
0.74	7.43	18.32	0.41	25.15	<u>50.</u> 30	3.39	2.51	0.69	0.4446941
0.76	7.79	19.32	0.40	26.28	52.56	3.37	2.56	0.68	0.4455653
0.78	8.17	20.32	0.40	27.53	55.06	3.37	2.63	0.67	0.4476018
0.8	8.58	21.32	0.40	28.89	57.78	3.37	2.69	0.66	0.4506645
0.847	9.60	23.68	0.41	32.52	65.05	3.39	2.87	0.65	0.4612712

DROP INLET CALCULATIONS

INLET	TYPE OF	AREA	Q	H	H ALLOW
	INLET	(SF)	(CFS)	(FT)	(FT)
1	DOUBLE 'A'	11.84	23	0.1628	0.56

ORIFICE EQUATION

Q = CA sqrt(2gH)	
C =	0.6
g =	32.2

Pipe Capacity

Pipe	D	Slope	Area	R	Q Provided	Q Required	Velocity
	(in)	(%)	(ft^2)		(cfs)	(cfs)	(ft/s)
24" RCP	24	1	3.14	0.5	22.68	21.35	6.80

<u>Manning's Equation:</u> Q = $1.49/n * A * R^{(2/3)} * S^{(1/2)}$

A = Area R = D/4 S = Slopen = 0.013

ACTUAL LOCATION OF UTILITIES & OTHER IMPROVEMENTS.

EROSION CONTROL NOTES: 1. CONTRACTOR IS RESPONSIBLE FOR OBTAINING A TOPSOIL DISTURBANCE

2. CONTRACTOR IS RESPONSIBLE FOR MAINTAINING RUN-OFF ON SITE DURING

3. CONTRACTOR IS RESPONSIBLE FOR CLEANING ALL SEDIMENT THAT GETS

4. REPAIR OF DAMAGED FACILITIES AND CLEANUP OF SEDIMENT ACCUMULATIONS ON ADJACENT PROPERTIES AND IN PUBLIC FACILITIES IS THE

5. ALL EXPOSED EARTH SURFACES MUST BE PROTECTED FROM WIND AND WATER EROSION PRIOR TO FINAL ACCEPTANCE OF ANY PROJECT. R-D NOR ESTE 1 and more details visit: http://www.caba.gov/gis VICINITY MAP MERISSA LN N SITE Carboy -SITE ANNUALCHANCE ORM DRAIN ORMAN AVE NE

RM MAP

LEGAL DESCRIPTION: TR. A AND B, THE ESTATES AT GLENDALE

NOTES:

1. ALL SPOT ELEVATIONS REPRESENT FLOWLINE ELEVATION UNLESS OTHERWISE NOTED.

ALBUQUEROUE

MOUNTAIN TRAII

- A 15-1

DESERT RIDGE TRAILS EAST

TRACT 1 UNIT 3

QUIVERA

ACRE

'R∔D⁴

3 DU

ст Ст

III R-D

B - 19 - Z

Vin Ca

35001C0133H (1

" " all a l

1996 B. A. MERCE (1977)

RE

MODESTO

LSO

2. ALL RETAINING WALL DESIGN SHALL BE BY OTHERS.

LEGEND

5414	EXISTING CONTOUR
- — — — — — — — — — — — — — — — — — — —	EXISTING INDEX CONTOUR
5414	PROPOSED CONTOUR
	PROPOSED INDEX CONTOUR
►	SLOPE TIE
1 4048.25	EXISTING SPOT ELEVATION
× 4048.25	PROPOSED SPOT ELEVATION
·	BOUNDARY
	CENTERLINE
	RIGHT-OF-WAY
	PROPOSED DRAINAGE EASEMENT
	PROPOSED CURB AND GUTTER
	EXISTING CURB AND GUTTER
	DRODOSED SCREEN WALL (18" MAY RETAINACE)
***************************************	PROPOSED SURLEIN WALL (10 MAX RETAINAGE)
·····	PROPOSED RETAINING WALL (HEIGHT VARIES-DESIGN BY OTHERS)
	EXISITNG SCREEN WALL

ENGINEER'S SEAL	ESTATES AT	GLENDALE	DRAWN ^{BY} WCWJ
CAVID SOUL			DATE 1-04-15
Recision to the second	GRADING AND DRAINAGE PLAN		21425-LAYOUT-12-18-14
PROFESSIONAL ET		Rio Grande	SHEET #
1/5/15		<i>Lingineering</i> 1606 central avenue se	
DAVID SOULE P.E. #14522		SUITE 201 ALBUQUERQUE, NM 87106 (505) 872–0999	JOB # 21425

ENGINEER'S SEAL	ESTATES AT GLENDALE	DRAWN ^{BY} WCWJ
QAVID SOUTH	GRADING AND	DATE 1-04-15
TO STATE AROFESSION AL	DRAINAGE DETAILS	21425-layout-12-18-14 SHEET #
1/5/14	<i>Rio Grande</i> <i>Engineering</i>	
DAVID SOULE P.E. #14522	SUITE 201 ALBUQUERQUE, NM 87106 (505) 872–0999	JOB # 21425