

City of Albuquerque

P.O. BOX 1293 ALBUQUERQUE, NEW MEXICO 87103

November 3, 2000

Angel Gomez, Owner/Builder 9600 Central SW, #104 Albuquerque, NM 87105

RE: Grading Plan Approval for residential building permit located at 8820 Florence NE, Lot 12, Block 16, Unit 3, North Albuquerque Acres, Engineer's stamped dated June 24, 1999, to address flood plain avulsion #5, NAA DMP.

Dear Mr. Gomez,

The referenced Grading Plan is approved for Building Permit.

Prior to Certificate of Occupancy, please submit an Engineer's Certification for building finished floor elevation and for lot grading contours/elevations for Hydrology approval.

If you have any questions, please call me at 924-3980.

Sincerely,

Loren D. Meinz, P.E.

Hydrology Division

xc: Whitney Reierson File

City of Albuquerque

P.O. BOX 1293 ALBUQUERQUE, NEW MEXICO 87103

November 3, 2000

Angel Gomez, Owner/Builder 9600 Central SW, #104 Albuquerque, NM 87105

RE: Grading Plan Approval for residential building permit located at 8820 Florence NE, Lot 12, Block 16, Unit 3, North Albuquerque Acres, Engineer's stamped dated June 24, 1999, to address flood plain avulsion #5, NAA DMP.

Dear Mr. Gomez,

The referenced Grading Plan is approved for Building Permit.

Prior to Certificate of Occupancy, please submit an Engineer's Certification for building finished floor elevation and for lot grading contours/elevations for Hydrology approval.

If you have any questions, please call me at 924-3980.

Sincerely,

Loren D. Meinz, P.E.

Hydrology Division

xc: Whitney Reierson

File

DRAINAGE PLAN		
The following items relating to the drainage plan for the property at 8820 Florence Avenue, N.E. are contained hereou:	OFFSITE FLOWS ONTO SUBJECT PROPERTY	FLOWS IN
1. Vicinity Map 2. Grading Plan 3. Calculations 4. FIRM mapping indicating subject lot.	For drainage basin affecting subject property see portion of AMAFCA map, Zone Atlas B-20 herein. Total drainage basin area = 0.55 acres, use 1.0 acres. Developed Land Treatments.	Field topogra- indicate that culverts wer Crossing from section, No co
AMAFCA topo map indicating subject lot. AMAFCA mapping indication Avulsion No. 5.	Treatment Area (acres) %	
	A 0.43 43.0	
The subject property is located at 8820 Florence Avenue, N.E. The legal description is Lot 12, Block 16, Tract 1, Unit 3 in North Albuquerque Acres. As shown on the Vicinity Map, subject property is the fifth lot west of the intersection of Florence and Ventura on the south side of Florence. The property is undeveloped at this time.	B 0.20 20.0 C 0.20 20.0 D 0.17 17.0	
As shown on Panel 4 of 50 of the National Flood Insurance Program's Flood Insurance Rate Map(FIRM) dated October 14, 1983, this site does not lie within a designated flood hazard zone. A flood hazard zone, associated with the El Camino Arroyo, has been identified to the south of the subject property. Based on	4. Peak Discharge From Equation A-10, DPM;	
associated with the 21 Camino activity, lab complete boundary of said arroyo lies to the south the above referenced flood map, the north floodplain boundary of said arroyo lies to the south approximately 170 feet from the south property line of this subject site. As calculated herein, the actual as thack of the proposed improvements from the floodplain exceed the minimum requirements for crossion setback.	$Q_0 = Q_{0x}A_{xx} + Q_{0x}A_{0x} + Q_{0x}A_{0x} + Q_{0x}A_{0x}$ $Q_0 = Q_{0x0} = 1.87(0.43) + 2.69(0.20) + 3.45(0.20) + 5.02(0.17)$ $= 2.87 \text{ cfs}, \text{ use } 3.0 \text{ cfs}$	
The Grading Plan hereon contains:	4. Voluaie	
 Existing grades shown by spot elevations with contours on 1.0 foot intervals developed from field topo survey dated 25 October 1998. 	$E_W = [E_y A_y + E_p A_0 + E_c A_c + E_p A_0] / A_T$	
Proposed final grades with contours at 1.0 foot intervals. Proposed building footprint for single family residence.	= (0.66(0.43) + 0.92(0.20) + 1.29(0.20) + 2.36(0.17) / 1.0 = 1.13 inches	
Limits of gravel surfaced private driveways. Offsite flows.	$V_{100} = (E_W/12) A_T$ = 0.0942 ac ft = 4,102 cu ft	
The calculations shown hereon present an analysis of the existing and proposed future developed conditions anticipated during the 100 year, 6 hour, flood event. Section 22.2, Hydrology, of the	TOTAL OF DEVELOPED ONSITE AND OFFSITE FLOWS	
Development Process Manual (DPM), Volume 2, Design Creata, catcal values 1997. both existing and proposed onsite flow conditions. A negligible increase of flows is anticipated due to the proposed development and will not effect properties downstream of this site.	3.0 cfs + 3.0 cfs = 6.0 cfs	•.
The subject property, containing 0.89 acres, is within Precipitation Zone 3 as defined in Table A-1 of the DPM. The property generally slopes from the southeast to the northwest at an approximate 4 percent grade	EROSION SETBACK FROM EL CAMINO - MAIN CHANNEL	
DPM. The property generally stopes from the sounces we use bothwest when are a of proposed and has native ground cover equating to a Land Treatment of "A". Drainage in the area of proposed development is sheet flow with the beginning of channelized flow at the northwest corner. No indication of crosion was evident during the field investigation and topo survey.	Using the "SEDIMENT AND EROSION DESIGN GUIDE", prepared for AMAFCA by Musetter, Lagasse and Harvey, dated November 1994, and a 100 year flood event flow of 3,500 cfs in the El Camino	
Offsite flows indicated hereon generated approximately 3.0 cfs in the developed condition. Offsite drainage basin contibuting flows to this property totals approximately 1.0 acres.	Arroyo, the erosion set back is calculated as follows: Equation 3.80 $^{\circ}$ Critical Slope $\approx S_c = 0.037 Q_0^{-0.133}$,	
	Equation 3.77 * where $Q_0 = dominant discharge = 0.20Q_{too}$ therefore, $Q_0 = 0.20(3,500) = 700$ efs, $Q_0 = 0.037(700)^{0.13} = 0.0155$ or 1.6%	
OLY CHY LTTONG	Slope in the El Camino Arroyo immediately to the south of this project is approximately 4.0%.	
CALCULATIONS	Therefore; The slope in El Camino Arroyo is greater than critical slope, use Equation 3.81b,	
ONSITE CONDITIONS - EXISTING	Maximum Lateral Erosion Distance = [0.92+4.6log(Q _D)]Q _D ^{0.4} = 192.5 ft, use 200 ft.	
Precipitation Zone 3 Land Treatment "A"	Actual setback is approximately 290 feet from the proposed structure to the northernmost floodplain boundary of the El Camino Arroyo.	
3. Peak Discharge	The Control of the State of the	10 September - Superfection and September 1
$Q_p = Q_{p,k}A_k$ $Q_p = Q_{100} = (1.87)(0.89) = 1.66 \text{ cfs}, \text{ use 2.0 cfs}$	FROSION SETBACK FROM POTENTIAL AVULSION NO. 5	
4. Volume $E_{W} = E_{\Lambda}(\Lambda_{\Lambda}) / \Lambda_{T}$	A potential avulsion has been identified by Resource Technology, Inc. in their "Report on North Albuquerque Acres Arroyo Avulsion Problems" that would affect this property. This potential avulsion is identified as No. 5 on mapping shown in above referenced document and shown hercon. While subject mapping indicates the avulsion would occupy Florence Avenue in the area of subject lot acrual field topo	
$E_W = 0.66(0.89) / 0.89 = 0.59$ in $V_{100} = (E_W / 12) \text{ Ay}$ $V_{100} = (0.59 / 12) 0.89 = 0.0438$ ac ft = 1,906 cu ft	indicates that the flow would be north of this property as indicated on the drainage plan herein. Flow in this potential avulsion No. 5 is estimated at 638 cfs as indicated in Table 2, Avulsion Matrix, page 8 of the report.	
$V_{100} = (0.59712) 0.89 = 0.0436 36 11 = 1,700 00 11.$	For drainage basin affecting subject property see portion of AMAFCA map, Zone Atlas B-20 herein.	
ONSITE CONDITIONS - PROPOSED	Total drainage basin area ≈ 30.0 acres. Developed Land Treatments.	
From Table A-5, DPM	Treatment Area (scres) %	
1. Percent Land Treatment "D" (Impervious)	A 12.9 43.0	
$D = 7((N)(N) + 5(N))^{1/2}$ $N = \text{Units} / \text{Acre} = 1.00$	B 6.0 20.0 C 6.0 20.0	
$D = 7[(1)(1) + 5(1)]^{1/2} \approx 17\%$	D 5.1 17.0	
Developed Land Treatments	4. Peak Discharge From Equation A-10, DPM;	
	$Q_p = Q_{pA}A_A + Q_{pB}A_B + Q_{pC}A_C + Q_{pD}A_D$	
Treatment Area (acres) % A 0.383 43.0	$Q_p = Q_{100} = 1.87(12.9) + 2.60(6.0) + 3.45(6.0) + 5.02(5.1)$ =134.6 cfs, use 135 cfs	
A 0.383 43.0 B 0.178 20.0 C 0.178 20.0		
D 0,151 17.0	5. Volume	
3. Peak Discharge	$E_W = (E_AA_1 + E_BA_2 + E_CA_2 + E_CA_3) / A_7$ = $(0.66(12.9) + 0.92(6.0) + 1.29(6.0) + 2.36(5.1) / 30.0$ = 1.13 inches	
From Equation A-10, DPM $Q_p = Q_{2p}A_{2p} + Q_{2p}A_{2p} + Q_{2p}A_{2p}$ $Q_p = Q_{300} = 1.87(0.383) + 2.60(0.178) + 3.45(0.178) + 5.02(0.151)$	$V_{100} = (E_W / 12) A_T$ = 2.83 ac ft = 123,057 cu ft	
≥ 2.6 cfs, use 3.0 cfs 4. Volume	Total flow = Q _{erobicines} + Peak discharge (Q ₀₀₀) = 638 cfs + 135 cfs = 773 cfs.	
$E_{\text{min}} = (E_1 A_1 + E_2 A_2 + E_3 A_4 + E_4 A_5) / A_7$		
$E_W \approx [0.66(0.383) + 0.92(0.178) + 1.29(0.178) + 2.36(0.151)] / 0.89$ = 1.13 inches	CALCULATION OF EROSION SETBACK FROM AVULSION No. 5	
$V_{109} = (E_W + 12) Ar_1$ = (1.13/12) 0.89 = 0.0838 ac Ω = 3,651 cu Ω	Equation 3.80 • Critical Slope = S _C = 0.037 Q _D -0.133, Equation 3.77 • where Q _D = Cominant discharge = 0.20Q ₁₀₀	
5. Evaluation	therefore, $Q_0 = 0.20(773) \approx 155$ cfs,	
a. Increase in peak discharge	Sc = 0.037(155) ⁰¹³³ = 0.0189 or 1.9%	
3.0 cfs - 2.0 cfs = 1.0 cfs increase	Slope in the arroyo immediately to the north of this project is approximately 4.0%. Therefore: The slope in subject arroyo is greater than critical slope, use Equation 3.81b.	
b. Increase in volume	Therefore; The slope in subject arroyo is greater than critical slope, use Equation 3.81b, Maximum Lateral Erosion Distance = $[0.92+4.6\log(Q_b)]Q_0^{0.4}$ = 82.6 ft, use 83 ft.	
3,651 cu ft - 1,906 cu ft = 1,745 cu ft increase	Actual setback is approximately 110 feet from the proposed structure to the southern most floodplain boundary (EGL) of the subject arroyo affected by avulsion No. 5.	
	The second secon	

N BAR/ROAD DITCH SOUTH SIDE OF FLORENCE AVENUE

graphic survey and investigation upstream (east of project site) along with AMAFCA mapping hat flows are carried from the south side of Florence Avenue to the north side. No existing were found on the south side of Florence Avenue east of the subject lot to Ventura Street, from Florence Avenue to driveway across existing road dirch will be by slight swale or dip to culvent(s) will be used.

Map No. 350002 0004 C Panel No. 4 of 50 FLOOD INSURANCE RATE MAP Scale: 1" = 500'

AMAFCA MAPPING — AVULSION #5
Not To Scale

