Table 4 Responsible Tracts for Facility Improvements

FACILITY	TRACT	FLOW CHARACTERISTICS	FUTURE * *
	RESPONSIBLE FOR	(CFS)	IMPROVEMENTS
	FUTURE		
	IMPROVEMENTS		
POND D	TRACT 1, UNIT 2	Q _{IN} : 146.48 CFS	Inlet And Outlet
	(North of Pond D)	Q _{BP} : 13.77 CFS	Improvements And
		Q _{Pin} : 132.71 CFS	Overflow Inlets
		Q _{Pout} : 5.93 CFS	
		Q ₀ : 19.70 CFS	TILLA IONILA
POND E	TRACT 9, UNIT 3A	Q _{IN} : 210.29 CFS	Inlet And Outlet
	(Northwest of Pond E)	Q _{BP} : 15.50 CFS	Improvements And
	(Q _{Pin} : 194.79 CFS	Overflow Inlets
		Q _{Pout} : 6.80 CFS	
		Q ₀ : 22.30 CFS	x 1 . 1 . 1 . 1
POND F	TRACT 9, UNIT 3A or	Q _{IN} : 261.94 CFS	Inlet And Outlet
	TRACT 2, UNIT 2 or	Q _{BP} : 6.20 CFS	Improvements And
	TRACT 3, UNIT 2*	Q _{Pin} : 255.74 CFS	Overflow Inlets
		Q _{Pout} : 17.66 CFS	
		Qo: 23.86 CFS	
POND G	TRACT 9, UNIT 3A or	Q _{IN} : 111.29 CFS	Inlet And Outlet
	TRACT 2, UNIT 2 or	Q _{BP} : 17.61 CFS	Improvements And
	TRACT 3, UNIT 2*	Q _{Pin} : 93.68 CFS	Overflow Inlets
		Q _{Pout} : 7.00 CFS	
		Qo: 24.61 CFS	- 1 · 1 · 1 · 1 · · · · · · · · · · · ·
POND H	TRACT 8, UNIT 2	Q _{IN} : 110.67 CFS	Inlet And Outlet
		Q _{BP} : 21.60 CFS	Improvements And
		Q _{Pin} : 89.07 CFS	Overflow Inlets
		Q _{Pout} : 5.20 CFS	
		Qo: 26.80 CFS	~ 1 . 1 . 0 . 1
POND J	TRACTS 1-4, UNIT 4	Q _{IN} : 167.52 CFS	Inlet And Outlet
		Q _{BP} : 26.34 CFS	Improvements And
		Q _{Pin} : 141.18 CFS	-Overflow-Inlets-
		Q _{Pout} : 6.05 CFS	
		Qo: 32.39 CFS	0 'C PI +
ANALYSIS POINT J	TRACT 3, UNIT 2	Qo: 32.39 CFS	Orifice Plate
POND K	TRACTS 1-4, UNIT 4	Q _{IN} : 240.23 CFS	Inlet And Outlet
		Q _{BP} : 44.91 CFS	Improvements And
		Q _{Pin} : 195.32 CFS	-Overflow-Inlets
		Q _{Pout} : 15.81 CFS	
		Q ₀ : 60.72 CFS	

Q_{IN}: System Inflow

Q_{BP}: Bypass at Pond Bottom Elevation Q_{Pin}: Pond Inflow (Surge) Rate (Q_{IN} - Q_{BP})

Q_{Pout}: Pond discharge (Routed Pond Surge Inflow)

Qo: Orifice Controlled Discharge & Overflow Capacity (QBP - QPout)

^{*} The first Tract developed will be responsible for the improvements to the pond.

^{* *} Any pond which requires an outlet, orifice restriction which is less than 24" diameter equivalent area, will require a sluice gate type restriction plate, or similar movable restriction to facilitate cleaning if the orifice becomes obstructed or clogged.