DRAINAGE REPORT FOR VALLE PRADO UNIT 3 AT THE TRAILS UNITS 3A SUBDIVISION

OCTOBER 2014

Prepared for:

Woodmont Paseo, LLC 6300 Riverside Plaza Lane. Suite 160

Bohannan A Huston

Engineering
Spatial Data
Advanced Technologies

DRAINAGE REPORT FOR VALLE PRADO UNIT 3 AT THE TRAILS UNIT 3A SUBDIVISION

OCTOBER 24, 2014

Prepared for:

WOODMONT PASEO, LLC 6300 RIVERSIDE PLAZA LANE, SUITE 160 ALBUQUERQUE, NM 87120

Prepared by:

BOHANNAN HUSTON, INC.

COURTYARD I

7500 JEFFERSON STREET NE
ALBUQUERQUE, NM 87109

Prepared By:

Scott J. Steffen, P.E.

Project Manager

Date

TABLE OF CONTENTS

PU	RPOSE	1
СО	NCEPTS AND METHODOLOGIES	1
SIT	E LOCATION AND CHARACTERISTICS	2
DE	VELOPED HYDRAULIC AND HYDROLOGIC CONDITIONS	2
Α.	Offsite Flows	2
B.	Onsite Flows	2
C.	First flush requirements	3
D.	Offsite storm drain improvements	3
СО	NCLUSION	4
	CO SIT DE A. B. C. D.	CONCEPTS AND METHODOLOGIES SITE LOCATION AND CHARACTERISTICS DEVELOPED HYDRAULIC AND HYDROLOGIC CONDITIONS A. Offsite Flows B. Onsite Flows C. First flush requirements D. Offsite storm drain improvements CONCLUSION

APPENDICES

APPENDIX A – DEVELOPED CONDITIONS AHYMO SUMMARY, OUTPUT, AND INPUT FILES

APPENDIX B - STREET HYDRAULICS AND STORM DRAIN INLET ANALYSIS

APPENDIX C - INROADS STORM DRAIN NETWORK FILE

EXHIBITS

EXHIBIT 1 – PRELIMINARY PLAT

EXHIBIT 2 - UNIT 3 BASIN MAP

EXHIBIT 3 - INLET AND STORM DRAIN NETWORK MAP

EXHIBIT 4 – GRADING PLAN

EXHIBIT 5 – SUPPLEMENTAL EXHIBITS FROM DMP

I. PURPOSE

This report establishes a drainage management plan for Valle Prado Unit 3 at the Trails Unit 3A. The proposed development consists of 24 single family detached residential lots on approximately 14.5 acres. This project is located within the Volcano Trails Sector Plan area, in northwest Albuquerque, east of Rainbow Blvd and north of Woodmont Avenue. Valle Prado Unit 3 is in the Trails Units 1-3 Drainage Master Plan (DMP) area and has discharge of developed flows to an existing storm drain system in Tree Line Avenue in the Santa Fe at the Trails Subdivision, just east of this proposed subdivision. The Trails drainage outfall is to the Boca Negra Dam through a storm drain in Universe Boulevard. Discharge to the Boca Negra Dam is limited by the Trails Universe storm drain capacity. Flows in excess of the storm drain capacity surge to detention ponds east of Universe Boulevard. This report is submitted in support of grading approval and preliminary plat approval by the DRB.

II. CONCEPTS AND METHODOLOGIES

Drainage conditions were analyzed utilizing the 100-year, 24-hour storm event (P_{60} =1.84 in, P_{360} =2.20 in, P_{1440} =2.66 in), in accordance with the City of Albuquerque DPM. The use of the 24-hour storm event is consistent with the Trails Units 1-3 DMP. The Aridlands Hydrologic Model (AHYMO) was utilized to determine peak flow rates for design of the storm drainage improvements within the project. The results are included in **Appendix A**. The storm drain inlets were sized using the 24-hour storm event (the 24-hour and 6-hour storm event produced the same Q). Street capacity and storm drain inlet calculations supporting this study are located in **Appendix B**.

The following document was referenced in the preparation of this report:

 Amendment to the Drainage Master Plan for the Trails Units 1, 2, and 3, prepared by Thompson Engineering Consultants, dated April 2014.

This amendment to the Drainage Management Plan (DMP) for the Trails "is to update the land use of the undeveloped parcels to match the density identified in the recently approved Volcano Trails Sector Development Plan (VTSDP) and to update the Developed Conditions Drainage Master Plan to adhere to the peak flow discharge from the previously approved Trails DMP". The DMP allows a discharge of 24.36 cfs from Valle Prado Unit 3.

III. SITE LOCATION AND CHARACTERISTICS

Valle Prado Unit 3 is currently undeveloped with grades ranging from one percent to three percent. The site generally slopes from west to east. It is bounded by Open Space Tract OS-2 to the north and west, Valle Prado Unit 2 to the south, and the Santa Fe at the Trails Subdivision to the east. Access to Valle Prado Unit 3 will be from Tree Line Avenue and Woodmont Avenue through Valle Prado Units 1 and 2.

IV. DEVELOPED HYDRAULIC AND HYDROLOGIC CONDITIONS

Valle Prado Unit 3 is a proposed single-family residential development with 24 lots on 14.5 acres. Proposed street and lot configurations are shown on the *Preliminary Plat*, **Exhibit 1.** Valle Prado Unit 3 is encompassed by Tract 10 at the Trails Unit 3A and labeled as Basin C with Q=24.36 cfs in the Trails Units 1-3 DMP. The DMP allows for full discharge of developed flows from Valle Prado Unit 3 to enter the existing storm drain in Tree Line Avenue.

The percent impervious land treatment for the proposed conditions is determined from Table A-5 of the DPM, Section 22.2. The Basin C percent impervious land treatment value used in the Trails DMP AHYMO analysis is 50 percent. The Valle Prado Unit 3 percent impervious land treatment calculated for this report has a cumulative impervious land treatment value of 28 percent.

A. OFFSITE FLOWS

No offsite flows reach Valle Prado Unit 3. Offsite flows from the west (Offsite Basin 1) are captured by Future Pond A6 as described in the DMP. Plates (exhibits) from the DMP have been included in this submittal as supplemental information, see **Exhibit 5**. For detailed analysis of the offsite flows and future ponds, please see the DMP. Valle Prado Unit 3 is higher in elevation than the undeveloped land to the north, and the Santa Fe at the Trails and Valle Prado Unit 2 Subdivisions to the east. Undeveloped land to the south (future phase of the Valle Prado development shown as Future Basin 3 in the Valle Prado Unit 1 and 2 Drainage Report) drains toward South Sky Street in the Valle Prado Unit 2 Subdivision.

B. ONSITE FLOWS

Developed flows from Valle Prado Unit 3 will be directed to the existing 36 in. storm drain in Tree Line Avenue that was constructed with the Santa Fe at the Trails Subdivision. DMP Basin C is 8.18 acres and follows the Tract 10, Unit 3A boundary. The Unit 3 lot/street

layout does not follow the Tract 10 boundary, which results in Basins 1-3 containing 9.1 acres. However, the lower percent impervious land in Unit 3 results in a total runoff that is less than the allowable runoff in the DMP. For reference, see **Exhibit 2** for Unit 3 basin locations and **Exhibits 3 and 4** for the storm drain and inlet locations.

Basins 1 (4.8 cfs) and 2 (11.6 cfs) drain to two Type A single grate inlets (Inlets #19 and 20) at a low point in Tree Line Avenue east of Longwalk Street. Inlets #19 and 20 are in a sump condition and there is no emergency spill way present, therefore the inlets have been sized to capture two times the 100-year storm event as shown in **Appendix B**. Runoff from Basin 3 (4.4 cfs) is intercepted by two Type A single grate inlets (Inlets #17 and 18) in Two Rock Road. Flow from these inlets is conveyed via storm drain to Tree Line Avenue where they combine with flows from Basins 1 and 2. The total runoff from Valle Prado Unit 3, 20.8 cfs, is less than the runoff, 24.36 cfs, allowed in the DMP.

C. FIRST FLUSH REQUIREMENTS

Valle Prado Unit 3 is required to meet the first flush requirements of the new City Drainage Ordinance. The Tree Line Avenue storm drain system passes through Ponds F and G. However, Ponds F and G are both surge ponds and have no storage capacity to hold the first flush from Valle Prado Unit 3. Therefore the first flush requirement for Valle Prado Unit 3 will be met with on lot ponding and is calculated as 0.34 in. (0.44 in. - 0.1 in. initial abstraction) times the roof area that can drain to the on lot pond (taken as one half the pad area). There are two pad sizes, 45 ft. x75 ft. and 50 ft. x75 ft., in Valle Prado Unit 3, with a first flush requirement of 48 and 53 cubic feet, respectively. See the first flush pond detail for the typical lot location in the *Grading Plan Details*, **Exhibit 4**.

D. OFFSITE STORM DRAIN IMPROVEMENTS

The Amended Trails Units 1-3 DMP, April 2014, requires modifications to the Pond F and G inlet and outlet structures to meet the revised inflow and outflow flow rates. The Pond F and G modifications will be constructed as part of the Valle Prado Unit 3 development to include the following:

- Provide outlet control (orifice) to limit the pond bypass flow plus routed discharge through the pond to a maximum of 23.9 and 24.6 cfs, for Ponds F and G, respectively, when the pond water surface is at the 100-year pond volume elevation.
- Provide pond inflow capacity to match the DMP inflow (bypass plus surge) of 261.9 and 111.3 cfs, for Ponds F and G, respectively.

V. CONCLUSION

This report provides a detailed study of the developed runoff and street capacities for the proposed Valle Prado Unit 3 at the Trails Unit 3A Subdivision. Included are the preliminary plat, basin map, grading plan, and all necessary hydrologic and hydraulic analyses. The proposed drainage plan for Valle Prado Unit 3 can be safely conveyed by the existing and proposed improvements in this drainage plan. This drainage plan maintains the overall drainage pattern of the area, is consistent with the Trails Units 1-3 DMP and allows for the safe management of storm runoff in the fully developed condition as well as interim conditions.

APPENDICES

APPENDIX A: DEVELOPED CONDITIONS AHYMO

SUMMARY, OUTPUT, AND INPUT

FILES

APPENDIX B: STREET HYDRAULICS AND

STORM DRAIN INLET ANALYSIS

APPENDIX C: INROADS STORM DRAIN

NETWORK FILE

APPENDIX A

DEVELOPED CONDITIONS AHYMO SUMMARY, OUTPUT, AND INPUT FILES

2014 1-AH	Н		00.	2.660								10.00		38.00	46.00		00.					
(MON/DAY/YR) =10/06/2014 AHYMO-S-9702c1BohanHu-AH	PAGE = NOTATION																=					
3) =1()2c1Bd	PAGE		TIME=	RAIN24=								PER IMP=		PER IMP=	PER IMP=		PER IMP=					
DAY/YI -S-97	N X X		Ë	Z								1.634 PI		2.550 PI	2.691 PI		1.170 PE		2.191		2.034	
(MON/) AHYMO	CFS PER ACRE											1.		2	2.		1		2		2.(
RUN DATE (MON/DAY/YR) =10/06/2014 SER NO.= AHYMO-S-9702c1BohanHu-AH	TIME TO PEAK (HOURS)											1.500		1.500	1.500		1.500		1.500		1.500	
RUN DATE USER NO.=	TIM P (HO																		Н			
	RUNOFF (INCHES)											.78776		1.41777	1.54813		.51355		1.17071		1.06283	
1997.02c	RU (IN											•		i.	1.		•		Ϊ.		ij	
	KUNOFF /OLUME (AC-FT)											192		.536	.208		.063		.728	v	.920	
- VERSION:	RUNOFF VOLUME (AC-FT										* * *	•	* * *			****				*******************	•	
- VE	더										****	m	**************************************	2.00 - 2 11.57	10	*****	1	TEMP A *****************	10	****	m	
	PEAK DISCHARGE (CFS)	SED									****	4.78	****	11.57	4.35	****	1.71	****	16.35	****	21.13	
	DIS	PROPOSED									****		****	* * * * *		****		****		****		
	AREA Q MI)	(D)									****	457	****	.00709	.00252	****	.00228	****	.01166	****	.01623	
	AREA (SQ MI)	BASIN (D)			*	*	*				****	.00457	****	00.	00.	****	00.	****	.01	****	.01	
1		DRAINAGE			****	ASINS	****				****		****	* * * *		****		****		***T		
97)	TO ION	DRAI	DEFAULT		****	ITE B	****				****	\vdash	****	× × × ×	m	****	10	MP A	20	TE AP	21	
AHYMO	FROM ID NO.	NOISI	DEF		****	E ONS	****				****	1	****	* * * *	1	****	I	TE TE	1& 2	CREA	AP 1&20 21	
BLE (RAPH	UBDIV			**************	*COMPUTE ONSITE BASINS*	***************				****	1.00	***	2.00	3.00	** T _	OFF.1	CREA	TEMP.A 1&	3 TO	AP	
ARY TA	HYDROGRAPH IDENTIFICATION	IT 3 SHOUR S			*	*	*				****		***	* * * *		BASIN	U) 2 TC	TE	A ANI		
SUMMA	F IDEN1	00 UN]		2							SIN 1		NI	O SIN 3	0	SITE	0	1 ANI		TEMP		
OGRAM LE = L		VALLE PRADO UNIT 3 SUBDI' 100 YEAR - 24 HOUR STORM "		TYPE=							E BAS	IM HYL	E BAS	IM HYI 'E BAS	IM HYL	E OFF	IM HYL	SNIS		SIINS		
AHYMO PROGRAM SUMMARY TABLE (AHYMO_97) INPUT FILE = DEV_Cond.HYM	COMMAND	VALLE PRADO UNIT 3 SUBDIVISION 100 YEAR - 24 HOUR STORM	LOCATION	RAINFALL *S							*S COMPUTE BASIN 1 ***********************************	COMPUTE NM HYD	*S COMPUTE BASIN	COMPUTE NM HYD *S COMPUTE BASIN	COMPUTE NM HYD	*S COMPUTE OFFSITE BASIN 1 ****************************	COMPUTE NM HYD	S ADD BASINS 1 AND 2 TO CREATE	HYD	*S ADD BASINS TEMP A AND 3 TO CREATE AP	HYD	HS.
AHYN INPU	COMP	* * * * 0	LOCA	RAIN *S	۲ «	κ ω	ა *	٠ دن	۲ «	ഗ *	S*	COME	× 8	COME *S C	COME	۰ د د د	COME	* S	ADD HYD	* S	ADD HYD	FINISH


```
AHYMO PROGRAM (AHYMO 97) -
                                                                                                                                                                             - Version: 1997.02c
                            RUN DATE (MON/DAY/YR) = 10/06/2014
                             START TIME (HR:MIN:SEC) = 09:47:01
                                                                                                                                               USER NO. = AHYMO-S-9702c1BohanHu-AH
                            INPUT FILE = DEV Cond.HYM
         VALLE PRADO UNIT 3 SUBDIVISION DRAINAGE BASIN (D) PROPOSED
         100 YEAR - 24 HOUR STORM
 *S
*S
 * CREATED OCTOBER 6, 2014
 *CONVERT TO NMHYMO
                                                                  TIME=0.0 HR PUNCH CODE=0
START
LOCATION
                                              NM
               Soil infiltration values (LAND FACTORS) for this location are not available.
                The following default values were used.
                Land Treatment Initial Abstr.(in)
                                                                                                                                                Unif. Infilt.(in/hour)
                                                                            0.65
                                  Α
                                                                                                                                                1.67
                                  В
                                                                         0.50
                                                                                                                                                1.25
                                  С
                                                                          0.35
                                                                                                                                                 0.83
                                  D
                                                                         0.10
                                                                                                                                                0.04
******************
*100 YEAR - 24 HOUR
RATNEALL
                                                                    TYPE=2 RAIN QUARTER=0
                                                                                   RAIN ONE=1.84 IN RAIN SIX=2.20 IN
                                                                                    RAIN DAY=2.66 IN DT=0.10 HRS
                                               COMPUTED 24-HOUR RAINFALL DISTRIBUTION BASED ON NOAA ATLAS 2 - PEAK AT 1.40 HR.
                                              DT = .100000 HOURS END TIME = 24.000000 HOURS .0000 .0060 .0124 .0193 .0266 .0347 .0435
                                                                                                                                                            .1071
                                                        .0532
                                                                                 .0640
                                                                                                         .0764
                                                                                                                                   .0908
                                                                                                                                                                                      .1906
                                                                                                                                                                                                                 .4476
                                                         .9796 1.3314 1.5028 1.6393 1.7527 1.8488 1.9308

    .9796
    1.3314
    1.5028
    1.6393
    1.7527
    1.8488
    1.9308

    1.9485
    1.9639
    1.9776
    1.9899
    2.0013
    2.0117
    2.0215

    2.0306
    2.0393
    2.0475
    2.0553
    2.0627
    2.0698
    2.0766

    2.0832
    2.0895
    2.0956
    2.1015
    2.1072
    2.1128
    2.1182

    2.1234
    2.1285
    2.1335
    2.1383
    2.1431
    2.1477
    2.1522

    2.1566
    2.1610
    2.1652
    2.1694
    2.1734
    2.1774
    2.1814

    2.1852
    2.1890
    2.1927
    2.1964
    2.2000
    2.2039
    2.2078

    2.2117
    2.2155
    2.2193
    2.2231
    2.2268
    2.2305
    2.2342

    2.2379
    2.2416
    2.2452
    2.2488
    2.2524
    2.2559
    2.2595

    2.2639
    2.2668
    2.2700
    2.2734
    2.2760
    2.2760
    2.2860

                                                     2.2630 2.2665 2.2700 2.2734
2.2870 2.2903 2.2937 2.2970
                                                                                                                                                          2.2768 2.2802 2.2836
                                                                                                                                                          2.3002 2.3035 2.3068

    2.3100
    2.3132
    2.3164
    2.3196
    2.3227
    2.3259
    2.3290

    2.3321
    2.3352
    2.3383
    2.3413
    2.3444
    2.3474
    2.3504

      2.3534
      2.3563
      2.3593
      2.3622
      2.3652
      2.3681
      2.3710

      2.3739
      2.3767
      2.3796
      2.3824
      2.3853
      2.3881
      2.3909

      2.3937
      2.3965
      2.3992
      2.4020
      2.4047
      2.4074
      2.4101

                                                                                                                                                          2.3652 2.3681 2.3710
                                                    2.4126 2.4127 2.4047 2.4101 2.4101 2.4101 2.4101 2.4101 2.4101 2.4128 2.4128 2.4235 2.4261 2.4287 2.4314 2.4340 2.4365 2.4391 2.4417 2.4442 2.4468 2.4493 2.4518 2.4543 2.4568 2.4593 2.4618 2.4643 2.4667 2.4692 2.4716 2.4740 2.4765 2.4789 2.4813 2.4837 2.4860 2.4884 2.4908 2.4931 2.4955 2.4978 2.4918 2.4928 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.4938 2.

    2.5001
    2.5024
    2.5047
    2.5070
    2.5093
    2.5116
    2.5139

    2.5161
    2.5184
    2.5206
    2.5229
    2.5251
    2.5273
    2.5295

                                                     2.5317 2.5339 2.5361 2.5383
                                                                                                                                                          2.5404 2.5426 2.5448
                                                     2.5469 2.5490 2.5512 2.5533
                                                                                                                                                          2.5554
                                                                                                                                                                                   2.5575 2.5596

      2.5617
      2.5638
      2.5659
      2.5680

      2.5762
      2.5782
      2.5803
      2.5823

                                                                                                                                                          2.5700 2.5721 2.5741
                                                                                                                                                          2.5843
                                                                                                                                                                                   2.5863 2.5883

      2.5903
      2.5923
      2.5943
      2.5963

      2.6041
      2.6061
      2.6080
      2.6099

                                                                                                                                                          2.5982 2.6002 2.6022
                                                                                                                                                          2.6119
                                                                                                                                                                                  2.6138
                                                                                                                                                                                                          2.6157

      2.6071
      2.6072
      2.6274
      2.6233
      2.6252
      2.6271
      2.6276

      2.6308
      2.6327
      2.6346
      2.6364
      2.6383
      2.6401
      2.6419

      2.6438
      2.6456
      2.6474
      2.6492
      2.6510
      2.6528
      2.6546

      2.6564
      2.6582
      2.6600
```

K = .093468HR TP = .171500HR K/TP RATIO = .545000 SHAPE CONSTANT, N = 7.106420 UNIT PEAK = 1.4027 CFS UNIT VOLUME = .9993 B = 526.28 P60 = 1.8400 AREA = .000457 SQ MI IA = .10000 INCHES INF = .04000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .100000

K = .178745HR TP = .171500HR K/TP RATIO = 1.042245 SHAPE CONSTANT, N = 3.387178 UNIT PEAK = 7.4842 CFS UNIT VOLUME = .9975 B = 312.00 P60 = 1.8400 AREA = .004114 SQ MI IA = .52500 INCHES INF = 1.32000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .100000

PRINT HYD ID=1 CODE=1

OUTFLOW HYDROGRAPH REACH 1.00

RUNOFF VOLUME = .78776 INCHES = .1920 ACRE-FEET
PEAK DISCHARGE RATE = 4.78 CFS AT 1.500 HOURS BASIN AREA = .0046 SQ. MI.

PRINT HYD ID=2 CODE=1

OUTFLOW HYDROGRAPH REACH 2.00

RUNOFF VOLUME = 1.41777 INCHES = .5360 ACRE-FEET
PEAK DISCHARGE RATE = 11.57 CFS AT 1.500 HOURS BASIN AREA = .0071 SQ. MI.

K = .152490HR TP = .171500HR K/TP RATIO = .889153 SHAPE CONSTANT, N = 3.989068 UNIT PEAK = 2.8168 CFS UNIT VOLUME = .9998 B = 354.44 P60 = 1.8400 AREA = .001363 SQ MI IA = .42500 INCHES INF = 1.04000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .100000

PRINT HYD ID=3 CODE=1

OUTFLOW HYDROGRAPH REACH 3.00

RUNOFF VOLUME = 1.54813 INCHES = .2084 ACRE-FEET
PEAK DISCHARGE RATE = 4.35 CFS AT 1.500 HOURS BASIN AREA = .0025 SQ. MI.

K = .193842HR TP = .171500HR K/TP RATIO = 1.130272 SHAPE CONSTANT, N = 3.131237 UNIT PEAK = 3.8901 CFS UNIT VOLUME = .9924 B = .292.35 P60 = 1.8400 AREA = .002282 SQ MI IA = .58250 INCHES INF = 1.48100 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .100000

ID=10 CODE=1

HYDROGRAPH FROM AREA OFF.1

RUNOFF VOLUME = .51355 INCHES = .0625 ACRE-FEET
PEAK DISCHARGE RATE = 1.71 CFS AT 1.500 HOURS BASIN AREA = .0023 SQ. MI.

*S ADD BASINS 1 AND 2 TO CREATE TEMP A ********************** ADD HYD ID=20 HYD=TEMP.A ID I=1 II=2
PRINT HYD TD=20 CODE=0

PRINT HYD ID=20 CODE=0

HYDROGRAPH FROM AREA TEMP.A

HRS CFS HRS CF										
.000	TIME	FLOW	TIME	FLOW	TIME	FLOW	TIME	FLOW	TIME	FLOW
100										
.200										
.3900										
.400										
1.500										
.600										
10,700										
800										
900										
1.000										
1.100										
1,200										
1.300 2.0 6.300 .1 11.300 .1 16.300 .0 21.300 .0 1.400 9.7 6.400 .1 11.400 .0 21.500 .0 1.500 16.3 6.500 .1 11.500 .1 16.500 .0 21.500 .0 1.700 9.7 6.700 .1 11.600 .1 16.500 .0 21.700 .0 1.800 6.5 6.800 .1 11.800 .1 16.800 .0 21.800 .0 2.000 3.4 7.000 .1 11.900 .1 17.000 .0 22.900 .0 2.300 1.6 7.200 .1 12.200 .1 17.200 .0 22.200 .0 2.300 1.6 7.200 .1 12.200 .1 17.200 .0 22.200 .0 2.300 1.2 7.300 .1 12.300 .1 17.300 .0										
1.400 9.7 6.400 .1 11.400 .1 16.400 .0 21.400 .0 1.500 16.3 6.500 .1 11.500 .1 16.500 .0 21.600 .0 1.600 14.3 6.600 .1 11.600 .1 16.600 .0 21.600 .0 1.700 9.7 6.700 .1 11.700 .1 16.700 .0 21.700 .0 1.900 4.5 6.900 .1 11.900 .1 16.900 .0 21.900 .0 2.100 2.5 7.100 .1 12.000 .1 17.100 .0 22.000 .0 2.200 1.6 7.200 .1 12.200 .1 17.200 .0 22.100 .0 22.100 .0 22.100 .0 22.300 .0 22.300 .0 22.400 .0 22.300 .0 22.100 .0 22.500 .0 22.500 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
1.500										
1.600 14.3 6.600 .1 11.600 .1 16.600 .0 21.600 .0 1.700 9.7 6.700 .1 11.700 .1 16.700 .0 21.700 .0 1.800 6.5 6.800 .1 11.800 .1 16.700 .0 21.900 .0 2.900 3.4 7.000 .1 12.000 .1 17.000 .0 22.000 .0 2.100 2.5 7.100 .1 12.100 .1 17.100 .0 22.100 .0 2.200 1.6 7.200 .1 12.200 .1 17.200 .0 22.200 .0 2.300 1.2 7.300 .1 12.300 .1 17.300 .0 22.300 .0 2.400 .9 7.400 .1 12.400 .1 17.400 .0 22.300 .0 2.500 .7 7.550 .1 12.500 .1							16.400	.0	21.400	.0
1.700 9.7 6.700 1 11.700 1 16.700 0 21.700 0 1.800 6.5 6.800 1 111.800 1 16.800 0 21.800 0 1.900 4.5 6.900 1 111.900 1 16.800 0 21.800 0 2.000 3.4 7.000 1 12.000 1 17.000 0 22.000 0 2.100 2.5 7.100 1 12.000 1 17.000 0 22.000 0 2.200 1.6 7.200 1 12.200 1 17.200 0 22.200 0 2.300 1.2 7.300 1 12.200 1 17.300 0 22.300 0 2.400 9 7.400 1 12.400 1 17.400 0 22.300 0 2.500 6 7. 7.500 1 12.500 1 17.500 0 22.500 0 2.500 6 7. 7.500 1 12.500 1 17.500 0 22.500 0 2.700 5 7. 7.00 1 12.500 1 17.500 0 22.500 0 2.700 5 7. 7.00 1 12.800 1 17.500 0 22.500 0 2.700 6 7 7 7.500 1 12.800 1 17.700 0 22.500 0 2.700 1.5 2 7.900 1 12.800 1 17.900 0 22.500 0 2.700 2.800 4 7.800 1 12.800 1 17.900 0 22.800 0 2.800 4 7.800 1 12.800 1 17.900 0 22.800 0 2.900 3 7.900 1 12.800 1 17.900 0 22.800 0 3.000 3 8.000 1 13.000 1 18.000 0 23.000 0 3.000 3 8.000 1 13.000 1 18.000 0 23.000 0 3.000 2 8.000 1 13.000 1 18.000 0 23.000 0 3.000 1 8.600 1 13.300 1 18.000 0 23.000 0 3.300 2 8.300 1 13.300 1 18.000 0 23.000 0 3.300 2 8.200 1 13.300 1 18.000 0 23.300 0 3.300 1 8.800 1 13.300 1 18.000 0 23.300 0 3.300 1 8.600 1 13.300 1 18.000 0 23.300 0 3.300 1 8.600 1 13.300 1 18.000 0 23.300 0 3.300 1 8.600 1 13.300 1 18.000 0 23.300 0 3.300 1 8.600 1 13.300 1 18.000 0 23.300 0 3.300 1 8.600 1 13.300 1 18.600 0 23.300 0 3.300 1 8.600 1 13.300 1 18.600 0 23.300 0 3.400 1 8.600 1 13.300 1 18.600 0 23.300 0 3.300 1 8.600 1 13.300 1 18.600 0 23.300 0 3.300 1 1 8.600 1 13.300 1 18.600 0 23.300 0 3.400 1 1 8.600 1 13.300 1 18.600 0 23.300 0 3.400 1 1 8.600 1 13.300 1 18.900 0 23.300 0 3.400 1 1 8.600 1 13.300 1 18.000 0 23.300 0 3.400 1 1 8.600 1 1 13.000 1 1 18.000 0 23.300 0 3.400 1 1 8.600 1 1 13.000 1 1 18.000 0 23.300 0 3.400 1 1 8.600 1 1 13.000 1 1 18.000 0 23.300 0 3.400 1 1 8.600 1 1 13.000 1 1 18.000 0 23.300 0 3.400 1 1 8.600 1 1 13.000 1 1 18.000 0 23.300 0 0 3.400 1 1 8.600 1 1 13.000 1 1 18.000 0 23.300 0 0 3.400 1 1 8.600 1 1 13.000 1 1 18.000 0 23.300 0 0 3.400 1 1 8.600 1 1 13.000 1 1 18.000 0 23.300 0 0									21.500	
1.800 6.5 6.800 .1 11.800 .1 16.800 .0 21.800 .0 1.900 4.5 6.900 .1 11.900 .1 16.900 .0 21.900 .0 2.000 3.4 7.000 .1 12.000 .1 17.000 .0 22.000 .0 2.200 1.6 7.200 .1 12.100 .1 17.100 .0 22.100 .0 2.300 1.2 7.300 .1 12.300 .1 17.300 .0 22.200 .0 2.400 .9 7.400 .1 12.400 .1 17.500 .0 22.300 .0 2.500 .7 7.500 .1 12.500 .1 17.500 .0 22.500 .0 2.500 .6 7.600 .1 12.600 .1 17.600 .0 22.500 .0 2.700 .5 7.700 .1 12.700 .1 17.800 .0 22.800 .0 2.800 .4 7.800 <							16.600	.0	21.600	
$ \begin{array}{c} 1.900 & 4.5 & 6.900 & .1 & 11.900 & .1 & 16.900 & .0 & 21.900 & .0 \\ 2.000 & 3.4 & 7.000 & .1 & 12.000 & .1 & 17.000 & .0 & 22.000 & .0 \\ 2.100 & 2.5 & 7.100 & .1 & 12.100 & .1 & 17.100 & .0 & 22.100 & .0 \\ 2.200 & 1.6 & 7.200 & .1 & 12.200 & .1 & 17.200 & .0 & 22.200 & .0 \\ 2.300 & 1.2 & 7.300 & .1 & 12.300 & .1 & 17.200 & .0 & 22.300 & .0 \\ 2.400 & .9 & 7.400 & .1 & 12.400 & .1 & 17.400 & .0 & 22.400 & .0 \\ 2.500 & .7 & 7.500 & .1 & 12.500 & .1 & 17.500 & .0 & 22.500 & .0 \\ 2.600 & .6 & 7.600 & .1 & 12.600 & .1 & 17.500 & .0 & 22.500 & .0 \\ 2.700 & .5 & 7.700 & .1 & 12.800 & .1 & 17.700 & .0 & 22.700 & .0 \\ 2.800 & .4 & 7.800 & .1 & 12.800 & .1 & 17.800 & .0 & 22.800 & .0 \\ 2.900 & .3 & 7.900 & .1 & 12.800 & .1 & 17.800 & .0 & 22.800 & .0 \\ 2.900 & .3 & 8.000 & .1 & 12.900 & .1 & 17.900 & .0 & 22.900 & .0 \\ 3.000 & .3 & 8.000 & .1 & 13.000 & .1 & 18.000 & .0 & 23.000 & .0 \\ 3.100 & .2 & 8.100 & .1 & 13.300 & .1 & 18.100 & .0 & 23.000 & .0 \\ 3.200 & .2 & 8.200 & .1 & 13.200 & .1 & 18.000 & .0 & 23.200 & .0 \\ 3.300 & .2 & 8.300 & .1 & 13.300 & .1 & 18.000 & .0 & 23.300 & .0 \\ 3.500 & .1 & 8.600 & .1 & 13.300 & .1 & 18.400 & .0 & 23.300 & .0 \\ 3.500 & .1 & 8.600 & .1 & 13.300 & .1 & 18.600 & .0 & 23.500 & .0 \\ 3.600 & .1 & 8.600 & .1 & 13.500 & .1 & 18.600 & .0 & 23.500 & .0 \\ 3.900 & .1 & 8.800 & .1 & 13.800 & .1 & 18.800 & .0 & 23.500 & .0 \\ 3.900 & .1 & 8.800 & .1 & 13.800 & .1 & 18.800 & .0 & 23.800 & .0 \\ 3.900 & .1 & 8.800 & .1 & 13.800 & .1 & 18.800 & .0 & 23.800 & .0 \\ 3.900 & .1 & 8.900 & .1 & 13.900 & .1 & 18.900 & .0 & 24.000 & .0 \\ 4.000 & .1 & 9.200 & .1 & 14.200 & .1 & 19.200 & .0 & 24.200 & .0 \\ 4.000 & .1 & 9.200 & .1 & 14.400 & .1 & 19.400 & .0 & 24.400 & .0 \\ 4.500 & .1 & 9.500 & .1 & 14.400 & .1 & 19.400 & .0 & 24.500 & .0 \\ 4.600 & .1 & 9.800 & .1 & 14.600 & .1 & 19.500 & .0 & 24.500 & .0 \\ 4.600 & .1 & 9.800 & .1 & 14.600 & .1 & 19.500 & .0 & 24.500 & .0 \\ 4.600 & .1 & 9.800 & .1 & 14.400 & .1 & 19.500 & .0 & 24.500 & .0 \\ 4.600 & .1 & 9.800 & .1 & 14.4000 & .1 & 19.500 & .0 & 24.500$							16.700	.0	21.700	.0
2.000 3.4 7.000 .1 12.000 .1 17.000 .0 22.000 .0 2.100 2.5 7.100 .1 12.100 .1 17.100 .0 22.000 .0 2.200 1.6 7.200 .1 12.200 .1 17.200 .0 22.200 .0 2.300 1.2 7.300 .1 12.300 .1 17.300 .0 22.300 .0 2.400 .9 7.400 .1 12.400 .1 17.400 .0 22.400 .0 2.500 .7 7.500 .1 12.500 .1 17.500 .0 22.500 .0 2.600 .6 7.600 .1 12.500 .1 17.600 .0 22.500 .0 2.700 .5 7.700 .1 12.700 .1 17.600 .0 22.500 .0 2.800 .4 7.800 .1 12.800 .1			6.800				16.800	.0	21.800	.0
2.100 2.5 7.100 .1 12.100 .1 17.100 .0 22.100 .0 2.200 1.6 7.200 .1 12.200 .1 17.200 .0 22.200 .0 2.300 1.2 7.300 .1 12.300 .1 17.300 .0 22.300 .0 2.400 .9 7.400 .1 12.400 .1 17.400 .0 22.400 .0 2.500 .7 7.500 .1 12.500 .1 17.500 .0 22.500 .0 2.600 .6 7.600 .1 12.600 .1 17.600 .0 22.600 .0 2.700 .5 7.700 .1 12.700 .1 17.700 .0 22.700 .0 2.800 .4 7.800 .1 12.900 .1 17.900 .0 22.900 .0 3.000 .3 8.000 .1 13.000 .1			6.900	.1	11.900	.1	16.900	.0	21.900	.0
2,200 1,6 7,200 .1 12,200 .1 17,200 .0 22,200 .0 2,300 1,2 7,300 .1 12,300 .1 17,300 .0 22,200 .0 2,400 .9 7,400 .1 12,400 .1 17,500 .0 22,500 .0 2,500 .7 7,500 .1 12,500 .1 17,500 .0 22,500 .0 2,600 .6 7,600 .1 12,600 .1 17,500 .0 22,500 .0 2,700 .5 7,700 .1 12,700 .1 17,700 .0 22,700 .0 2,800 .4 7,800 .1 12,800 .1 17,800 .0 22,800 .0 2,900 .3 7,900 .1 12,900 .1 17,900 .0 22,800 .0 3,100 .2 8,100 .1 13,000 .1		3.4	7.000		12.000		17.000	.0	22.000	.0
2.300		2.5	7.100	.1	12.100		17.100	.0	22.100	.0
2.400 .9 7.400 .1 12.400 .1 17.400 .0 22.400 .0 2.500 .7 7.500 .1 12.500 .1 17.500 .0 22.500 .0 2.600 .6 7.600 .1 12.500 .1 17.500 .0 22.500 .0 2.700 .5 7.700 .1 12.700 .1 17.700 .0 22.700 .0 2.800 .4 7.800 .1 12.800 .1 17.800 .0 22.800 .0 2.900 .3 7.900 .1 12.900 .1 17.900 .0 22.800 .0 3.000 .3 8.000 .1 13.000 .1 18.000 .0 22.900 .0 3.100 .2 8.100 .1 13.100 .1 18.100 .0 23.100 .0 3.200 .2 8.200 .1 13.200 .1 <				.1	12.200	.1	17.200	.0	22.200	.0
2.500 .7 7.500 .1 12.500 .1 17.500 .0 22.500 .0 2.600 .6 7.600 .1 12.600 .1 17.600 .0 22.500 .0 2.700 .5 7.700 .1 12.700 .1 17.700 .0 22.700 .0 2.800 .4 7.800 .1 12.800 .1 17.800 .0 22.800 .0 2.900 .3 7.900 .1 12.900 .1 17.900 .0 22.900 .0 3.000 .3 8.000 .1 13.000 .1 18.000 .0 23.000 .0 3.100 .2 8.200 .1 13.200 .1 18.200 .0 23.200 .0 3.400 .1 8.400 .1 13.400 .1 18.300 .0 23.300 .0 3.600 .1 8.500 .1 13.600 .1 <			7.300	.1	12.300		17.300	.0	22.300	.0
2.600	2.400	.9	7.400	.1	12.400	.1	17.400	.0	22.400	.0
2.700 .5 7.700 .1 12.700 .1 17.700 .0 22.700 .0 2.800 .4 7.800 .1 12.800 .1 17.800 .0 22.800 .0 2.900 .3 7.900 .1 12.900 .1 17.900 .0 22.900 .0 3.000 .3 8.000 .1 13.000 .1 18.000 .0 23.000 .0 3.100 .2 8.100 .1 13.100 .1 18.100 .0 23.100 .0 3.200 .2 8.200 .1 13.200 .1 18.200 .0 23.200 .0 3.400 .1 8.400 .1 13.300 .1 18.300 .0 23.300 .0 3.400 .1 8.400 .1 13.400 .1 18.400 .0 23.400 .0 3.500 .1 8.500 .1 13.500 .1 <	2.500		7.500	.1	12.500	.1	17.500	.0	22.500	.0
2.800 .4 7.800 .1 12.800 .1 17.800 .0 22.800 .0 2.900 .3 7.900 .1 12.900 .1 17.900 .0 22.900 .0 3.000 .3 8.000 .1 13.000 .1 18.000 .0 23.000 .0 3.100 .2 8.100 .1 13.100 .1 18.100 .0 23.100 .0 3.200 .2 8.200 .1 13.200 .1 18.200 .0 23.200 .0 3.300 .2 8.300 .1 13.300 .1 18.300 .0 23.300 .0 3.400 .1 8.400 .1 13.400 .1 18.400 .0 23.300 .0 3.500 .1 8.500 .1 13.500 .1 18.500 .0 23.500 .0 3.700 .1 8.700 .1 13.600 .1 18.600 .0 23.500 .0 3.800 .1 8.800 .1	2.600		7.600	.1	12.600	.1	17.600	.0	22.600	.0
2.900 .3 7.900 .1 12.900 .1 17.900 .0 22.900 .0 3.000 .3 8.000 .1 13.000 .1 18.000 .0 23.000 .0 3.100 .2 8.100 .1 13.100 .1 18.100 .0 23.100 .0 3.200 .2 8.200 .1 13.200 .1 18.200 .0 23.200 .0 3.300 .2 8.300 .1 13.300 .1 18.300 .0 23.300 .0 3.400 .1 8.400 .1 13.400 .1 18.400 .0 23.300 .0 3.500 .1 8.500 .1 13.500 .1 18.500 .0 23.500 .0 3.600 .1 8.600 .1 13.600 .1 18.600 .0 23.600 .0 3.700 .1 8.700 .1 13.700 .1 <	2.700	.5	7.700	.1	12.700	.1	17.700	.0	22.700	.0
3.000 .3 8.000 .1 13.000 .1 18.000 .0 23.000 .0 3.100 .2 8.100 .1 13.100 .1 18.100 .0 23.100 .0 3.200 .2 8.200 .1 13.200 .1 18.200 .0 23.200 .0 3.300 .2 8.300 .1 13.300 .1 18.300 .0 23.300 .0 3.400 .1 8.400 .1 13.400 .1 18.400 .0 23.400 .0 3.500 .1 8.500 .1 13.500 .1 18.500 .0 23.500 .0 3.600 .1 8.600 .1 13.600 .1 18.600 .0 23.500 .0 3.700 .1 8.700 .1 13.700 .1 18.600 .0 23.700 .0 3.800 .1 8.800 .1 13.800 .1 18.800 .0 23.800 .0 3.900 .1 13.900 .	2.800	. 4	7.800	.1	12.800	.1	17.800	.0	22.800	.0
3.000 .3 8.000 .1 13.000 .1 18.000 .0 23.000 .0 3.100 .2 8.100 .1 13.100 .1 18.100 .0 23.100 .0 3.200 .2 8.200 .1 13.200 .1 18.200 .0 23.200 .0 3.300 .2 8.300 .1 13.300 .1 18.300 .0 23.300 .0 3.400 .1 8.400 .1 13.400 .1 18.400 .0 23.400 .0 3.500 .1 8.500 .1 13.500 .1 18.500 .0 23.500 .0 3.600 .1 8.600 .1 13.600 .1 18.600 .0 23.500 .0 3.700 .1 8.700 .1 13.700 .1 18.600 .0 23.700 .0 3.800 .1 8.800 .1 13.800 .1 18.800 .0 23.800 .0 3.900 .1 13.900 .	2.900	.3	7.900	.1	12.900	.1	17.900	.0	22.900	.0
3.200 .2 8.200 .1 13.200 .1 18.200 .0 23.200 .0 3.300 .2 8.300 .1 13.300 .1 18.300 .0 23.300 .0 3.400 .1 8.400 .1 13.400 .1 18.400 .0 23.400 .0 3.500 .1 8.500 .1 13.500 .1 18.500 .0 23.500 .0 3.600 .1 8.600 .1 13.600 .1 18.600 .0 23.600 .0 3.700 .1 8.700 .1 13.700 .1 18.700 .0 23.700 .0 3.800 .1 8.800 .1 13.800 .1 18.800 .0 23.800 .0 3.900 .1 8.900 .1 13.900 .1 18.800 .0 23.800 .0 4.000 .1 9.000 .1 14.000 .1 <	3.000		8.000	.1	13.000	.1	18.000	.0	23.000	.0
3.200 .2 8.200 .1 13.200 .1 18.200 .0 23.200 .0 3.300 .2 8.300 .1 13.300 .1 18.300 .0 23.300 .0 3.400 .1 8.400 .1 13.400 .1 18.400 .0 23.400 .0 3.500 .1 8.500 .1 13.500 .1 18.500 .0 23.500 .0 3.600 .1 8.600 .1 13.600 .1 18.600 .0 23.600 .0 3.700 .1 8.700 .1 13.700 .1 18.700 .0 23.700 .0 3.800 .1 8.800 .1 13.800 .1 18.800 .0 23.800 .0 3.900 .1 8.900 .1 13.900 .1 18.900 .0 23.800 .0 4.000 .1 9.000 .1 14.000 .1 <	3.100	.2	8.100	.1	13.100	.1	18.100	.0	23.100	.0
3.400 .1 8.400 .1 13.400 .1 18.400 .0 23.400 .0 3.500 .1 8.500 .1 13.500 .1 18.500 .0 23.500 .0 3.600 .1 8.600 .1 13.600 .1 18.600 .0 23.600 .0 3.700 .1 8.700 .1 13.700 .1 18.700 .0 23.700 .0 3.800 .1 8.800 .1 13.800 .1 18.800 .0 23.700 .0 3.900 .1 8.900 .1 13.900 .1 18.900 .0 23.900 .0 4.000 .1 9.900 .1 14.900 .1 19.900 .0 24.900 .0 4.100 .1 9.100 .1 14.100 .1 19.100 .0 24.100 .0 4.200 .1 9.200 .1 14.200 .1 19.200 .0 24.200 .0 4.300 .1 9.300 .1	3.200	.2	8.200	.1	13.200	.1	18.200	.0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.300	.2	8.300	.1	13.300	.1	18.300	.0	23.300	.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.400	.1	8.400	.1	13.400	.1	18.400	.0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.500	.1	8.500	.1						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.600	.1	8.600							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.700	.1	8.700	.1						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.800	.1	8.800	.1						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.900	.1	8.900	.1	13,900	.1				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.000	.1								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4.100	.1	9.100	.1						
4.300 .1 9.300 .1 14.300 .1 19.300 .0 24.300 .0 4.400 .1 9.400 .1 14.400 .1 19.400 .0 24.400 .0 4.500 .1 9.500 .1 14.500 .1 19.500 .0 24.500 .0 4.600 .1 9.600 .1 14.600 .1 19.600 .0 24.600 .0 4.700 .1 9.700 .1 14.700 .1 19.700 .0 24.700 .0 4.800 .1 9.800 .1 14.800 .0 19.800 .0	4.200	.1								
4.400 .1 9.400 .1 14.400 .1 19.400 .0 24.400 .0 4.500 .1 9.500 .1 14.500 .1 19.500 .0 24.500 .0 4.600 .1 9.600 .1 14.600 .1 19.600 .0 24.600 .0 4.700 .1 9.700 .1 14.700 .1 19.700 .0 24.700 .0 4.800 .1 9.800 .1 14.800 .0 19.800 .0	4.300	.1	9.300							
4.500 .1 9.500 .1 14.500 .1 19.500 .0 24.500 .0 4.600 .1 9.600 .1 14.600 .1 19.600 .0 24.600 .0 4.700 .1 9.700 .1 14.700 .1 19.700 .0 24.700 .0 4.800 .1 9.800 .1 14.800 .0 19.800 .0										
4.600 .1 9.600 .1 14.600 .1 19.600 .0 24.600 .0 4.700 .1 9.700 .1 14.700 .1 19.700 .0 24.700 .0 4.800 .1 9.800 .1 14.800 .0 19.800 .0										
4.700 .1 9.700 .1 14.700 .1 19.700 .0 24.700 .0 4.800 .1 9.800 .1 14.800 .0 19.800 .0										
4.800 .1 9.800 .1 14.800 .0 19.800 .0										
The second of th									24.700	• •

4.900 .1 9.900 .1 14.900 .0 19.900 .0

RUNOFF VOLUME = 1.17071 INCHES = .7280 ACRE-FEET

PEAK DISCHARGE RATE = 16.35 CFS AT 1.500 HOURS BASIN AREA = .0117 SQ. MI.

HYDROGRAPH FROM AREA AP

TIME	FLOW	TIME	FLOW	TIME	FLOW	TIME	FLOW	TIME	FLOW
HRS	CFS	HRS	CFS	HRS	CFS	HRS	CFS	HRS	CFS
.000	.0	5.000	.1	10.000	.1	15.000	.1	20.000	.0
.100	.0	5.100	.1	10.100	.1	15.100	.1	20.100	.0
.200	.0	5.200	.1	10.200	.1	15.200	.1	20.200	.0
.300	.0	5.300	.1	10.300	.1	15.300	.1	20.300	.0
.400	.0	5.400	.1	10.400	.1	15.400	.1	20.400	.0
.500	.0	5.500	.1	10.500	.1	15.500	.1	20.500	.0
.600	.0	5.600	.1	10.600	.1	15.600	. 1	20.600	.0
.700	.0	5.700	.1	10.700	.1	15.700	.1	20.700	.0
.800	.0	5.800	.1	10.800	.1	15.800	.1	20.800	.0
.900	.0	5.900	.1	10.900	.1	15.900	.1	20.900	.0
1.000	.0	6.000	.1	11.000	.1	16.000	.1	21.000	.0
1.100	.0	6.100	.1	11.100	.1	16.100	.1	21.100	.0
1.200	.5	6.200	.1	11.200	.1	16.200	.1	21.200	.0
1.300	2.2	6.300	.1	11.300	.1	16.300	.1	21.300	.0
1.400	12.3	6.400	.1	11.400	.1	16.400	.1	21.400	.0
1.500	21.1	6.500	.1	11.500	.1	16.500	.1	21.500	.0
1.600	18.7	6.600	.1	11.600	.1	16.600	.1	21.600	.0
1.700	12.6	6.700	.1	11.700	.1	16.700	.1	21.700	.0
1.800	8.3	6.800	.1	11.800	.1	16.800	.1	21.800	.0
1.900	5.7	6.900	.1	11.900	.1	16.900	.1	21.900	.0
2.000	4.3	7.000	.1	12.000	.1	17.000	.1	22.000	.0
2.100	3.1	7.100	.1	12.100	.1	17.100	.1	22.100	.0
2.200	2.1	7.200	.1	12.200	.1	17.200	.1	22.200	.0
2.300	1.5	7.300	.1	12.300	.1	17.300	.1	22.300	.0
2.400	1.2	7.400	.1	12.400	.1	17.400	.1	22.400	.0
2.500	1.0	7.500	.1	12.500	.1	17.500	.1	22.500	.0
2.600	.8	7.600	.1	12.600	.1	17.600	.1	22.600	.0
2.700	.6	7.700	.1	12.700	.1	17.700	.1	22.700	.0
2.800	.5	7.800	. 1	12.800	.1	17.800	.1	22.800	.0
2.900	. 4	7.900	. 1	12.900	.1	17.900	.1	22.900	.0
3.000	.3	8.000	.1	13.000	.1	18.000	.1	23.000	.0
3.100	.3	8.100	.1	13.100	.1	18.100	.1	23.100	.0
3.200	. 2	8.200	.1	13.200	.1	18.200	.1	23.200	.0
3.300	. 2	8.300	.1	13.300	.1	18.300	.0	23.300	.0
3.400	.2	8.400	.1	13.400	.1	18.400	.0	23.400	.0
3.500	.2	8.500	.1	13.500	.1	18.500	.1	23.500	.0
3.600	.1	8.600	.1	13.600	.1	18.600	.0	23.600	.0
3.700	.1	8.700	.1	13.700	.1	18.700	.0	23.700	.0
3.800	.1	8.800	.1	13.800	. 1	18.800	.0	23.800	.0
3.900	.1	8.900	.1	13.900	.1	18.900	.0	23.900	.0
4.000	.1	9.000	.1	14.000	.1	19.000	.0	24.000	.0
4.100	. 1	9.100	.1	14.100	.1	19.100	.0	24.100	.0
4.200	.1	9.200	.1	14.200	.1	19.200	.0	24.200	.0
4.300	. 1	9.300	.1	14.300	.1	19.300	.0	24.300	.0
4.400	.1	9.400	.1	14.400	.1	19.400	.0	24.400	.0
4.500	.1	9.500	.1	14.500	.1	19.500	.0	24.500	.0
4.600	.1	9.600	.1	14.600	.1	19.600	.0	24.600	.0
4.700	.1	9.700	.1	14.700	.1	19.700	.0	24.700	.0
4.800	.1	9.800	.1	14.800	.1	19.800	.0		
4.900	.1	9.900	.1	14.900	.1	19.900	.0		

RUNOFF VOLUME = 1.06283 INCHES = .9200 ACRE-FEET
PEAK DISCHARGE RATE = 21.13 CFS AT 1.500 HOURS BASIN AREA = .0162 SQ. MI.

FINISH

NORMAL PROGRAM FINISH

END TIME (HR:MIN:SEC) = 09:47:01


```
*S VALLE PRADO UNIT 3 SUBDIVISION DRAINAGE BASIN (D) PROPOSED
*S 100 YEAR - 24 HOUR STORM
*S
* CREATED OCTOBER 6, 2014
*CONVERT TO NMHYMO
                 TIME=0.0 HR PUNCH CODE=0
LOCATION
          NM
*************
***************
*100 YEAR - 24 HOUR
RAINFALL
                 TYPE=2 RAIN QUARTER=0
                RAIN ONE=1.84 IN RAIN SIX=2.20 IN
                RAIN DAY=2.66 IN DT=0.10 HRS
*S
*S
                 *******
*S
                 *COMPUTE ONSITE BASINS*
*s
*S
*S
*S
COMPUTE NM HYD
                ID=1 HYD=1 AREA=0.004571 PER A=40 PER B=25
               PER C=25 PER D=10 TP=-0.1715 RAINFALL=-1
PRINT HYD
                 ID=1 CODE=1
*S COMPUTE BASIN 2 ******************************
COMPUTE NM HYD
               ID=2 HYD=2 AREA=0.007088 PER A=0 PER B=31
               PER C=31 PER D=38 TP=-0.1715 RAINFALL=-1
PRINT HYD
                 ID=2 CODE=1
COMPUTE NM HYD
               ID=3 HYD=3 AREA=0.002524 PER A=0 PER B=27
               PER C=27 PER D=46 TP=-0.1715 RAINFALL=-1
PRINT HYD
                ID=3 CODE=1
*S COMPUTE OFFSITE BASIN 1 **********************************
COMPUTE NM HYD
               ID=10 HYD=OFF.1 AREA=0.002282 PER A=70 PER B=15
               PER C=15 PER D=0 TP=-0.1715 RAINFALL=-1
PRINT HYD
                ID=10 CODE=1
*S ADD BASINS 1 AND 2 TO CREATE TEMP A ***************************
ADD HYD
               ID=20 HYD=TEMP.A ID I=1 II=2
PRINT HYD
               ID=20 CODE=0
*S ADD BASINS TEMP A AND 3 TO CREATE AP 1**************************
         ID=21 HYD=AP 1 ID I=20 II=3
ADD HYD
PRINT HYD
                ID=21 CODE=0
FINISH
```

APPENDIX B

STREET HYDRAULICS AND STORM DRAIN INLET ANALYSIS

Two Rock_sta 19+00.txt

MANNING'S	Ν	=	0.017	SLOPE	=	0.053
-----------	---	---	-------	-------	---	-------

POINT 1.0 2.0 3.0 4.0	DIST 0.0 0.9 8.9 0.7 9.3 0.7 9.5 0.0	Р	OINT DIS 5.0 11. 6.0 23. 7.0 35. 8.0 37.	5 0.1 5 0.4 5 0.1	1	INT DIST 9.0 37.7 0.0 38.1 1.0 47.0	0.7 0.7 0.7 0.9	
WSEL FT.	DEPTH INC	FLOW AREA SQ.FT.	FLOW RATE (CFS)	WETTED PER (FT)	FLOW VEL (FPS)	TOPWID PLUS OBSTRUCTIONS	TOTAL ENERGY (FT)	
0.050 0.100 0.150 0.200 0.250 0.350 0.400 0.450	0.100 0.150 0.200 0.250 0.300 0.350 0.400	0.039 0.156 0.366 0.795 1.476 2.408 3.591 4.981 6.391	0.065 0.414 1.104 2.715 5.950 11.244 19.007 31.171 47.124	1.645 3.290 6.318 11.423 16.527 21.631 26.735 28.839 28.942	1.668 2.648 3.020 3.415 4.032 4.670 5.293 6.259 7.373	2.484 4.048 6.996 12.021 17.047 22.072 27.098 29.123 29.148	0.093 0.209 0.292 0.381 0.503 0.639 0.786 1.009	CAPACITY
0.500 0.550 0.600 0.650 0.700 0.750	0.500 0.550 0.600 0.650 0.700 0.750	7.803 9.217 10.631 12.047 13.536 15.270 17.250	65.569 86.329 109.266 134.265 149.977 167.217 188.979	29.045 29.148 29.251 29.354 33.273 38.202 43.131	8.403 9.367 10.278 11.145 11.080 10.951 10.955	29.174 29.199 29.224 29.250 32.217 37.144 42.072	1.598 1.915 2.243 2.582 2.609 2.615 2.667	

BASIN 3 4.4 cfs < 31.2 cfs CAPACITY: OK

FLOW DEPTH @ 4.4 cfs 2023

INLET CAPACITY: SINGLE A INLET = 2.7 cfs (SEE NOMOGRAPH)

> Two A INLETS = 5.4 cfs > 4.4 cfc NO BY PASS FLOW

Chapter 22 - Drainage, Flood Control and Erosion Control

GRATING CAPACITIES FOR TYPE 'A' , 'C' and'D'

D=0.23' S=5.3% Q=2.7 cfs

PLATE 22.3 D-5

Tree Line Ave Sta 13+00.txt

			MANNI	NG'S N	= 0.01	L7 SLOPE	= 0.013		
POINT 1.0 2.0 3.0 4.0	0.0 8.9 9.3 9.5	0.5 0.3 0.3	P	POINT 5.0 6.0 7.0 8.0	DIST 11.5 23.5 35.5 37.5	0.1 0.4 0.1 0.0	1	INT DIST 9.0 37.7 0.0 38.1 1.0 47.0	0.3 0.3 0.5
WSE	L	DEPTH INC	FLOW AREA SQ.FT.	FLO RAT (CF	E	WETTED PER (FT)	FLOW VEL (FPS)	TOPWID PLUS OBSTRUCTIONS	TOTAL ENERGY (FT)
0.050 0.100 0.150 0.200 0.250 0.350 0.450 0.450		0.050 0.100 0.150 0.200 0.250 0.300 0.350 0.400 0.450 0.500	0.040 0.159 0.372 0.806 1.492 2.431 3.643 5.326 7.257 9.434	0.0 0.5 1.3 3.6 9.2 14.8 22.8	12 65 83 22 99 68 59 74	1.654 3.308 6.346 11.460 16.573 21.687 28.727 36.576 41.505 46.434	0.839 1.333 1.520 1.717 2.025 2.344 2.544 2.790 3.152 3.484	2.510 4.100 7.075 12.126 17.178 22.229 29.231 36.159 41.087 46.014	0.061 0.128 0.186 0.246 0.314 0.385 0.451 0.521 0.605 0.689

ROLL CURB CAPACITY 7.8cfs

FLOW @ LOT 12/13 25.0cfs

: Ray CURB OK

NO INLETS REQUIRED

Tree Line Ave Sta sump.txt

		-			700	01 01 01	
MANNTNG'S	N	= 0	.017	SLOPE =	Ω	016	

2.0 8	.0 0.9 .9 0.7 .3 0.7	Р	POINT DIS 5.0 11. 6.0 23. 7.0 35. 8.0 37.	5 0.1 5 0.4 5 0.1	1	INT DIST 9.0 37.7 0.0 38.1 1.0 47.0	0.7 0.7 0.7 0.9	
WSEL FT.	DEPTH INC	FLOW AREA SQ.FT.	FLOW RATE (CFS)	WETTED PER (FT)	FLOW VEL (FPS)	TOPWID PLUS OBSTRUCTIONS	TOTAL ENERGY (FT)	
0.050 0.100 0.150 0.200 0.250 0.300 0.450 0.500 0.550 0.600 0.650 0.700 0.750	0.050 0.100 0.150 0.200 0.250 0.300 0.350 0.400 0.550 0.650 0.650 0.700 0.750	0.039 0.156 0.366 0.795 1.476 2.408 3.591 4.981 6.391 7.803 9.217 10.631 12.047 13.536 15.270 17.250	0.035 0.225 0.599 1.474 3.230 6.103 10.316 16.918 25.576 35.586 46.854 59.302 72.870 81.398 90.754 102.565	1.645 3.290 6.318 11.423 16.527 21.631 26.735 28.839 28.942 29.045 29.148 29.251 29.354 33.273 38.202 43.131	0.905 1.437 1.639 1.853 2.188 2.534 2.873 3.397 4.002 4.560 5.084 5.578 6.049 6.013 5.943 5.946	2.484 4.048 6.996 12.021 17.047 22.072 27.098 29.123 29.148 29.174 29.199 29.224 29.250 32.217 37.144 42.072	0.063 0.132 0.192 0.253 0.324 0.400 0.478 0.579 0.699 0.823 0.952 1.084 1.219 1.262 1.299 1.350	CAPACITY

BASINS 1 = Z: 16.4 ds < 46.8 ds : OK

NET ANALYSIS:

FLOW DEPTH @ 16.4 cfs = 04

Single A INLET IN SUMP @ d=0.4': Q=7.7cfs

2 INLETS = 15.4 cfs < 16.4 cfs

.: WATER WILL POND TO 2 d=0.43

FOR Q= 16.4 cfs : OK.

NLET CAPACITY:

@ TOP OF CURB (d=0.83') Q = 17.2 ofs Z INLETS = 34.4 cfs > 32.8 cfs (Zx100HZ)

.. USE SINGLE A INLET

Page 1

ON PT TREE LINE AVE

(6/4)	(11 2) 6.944444	-2.541667	-0.802951 0 3315972	3 9314236)			(L)	7.5	-0.291667	-0.770833	-1.083333	9	11.354167											
(cvri)	00		-115.625				eir:	(in)	06				72			-	16.4 cts								
Calculation of open area:	Total Grate Area	Cross Bar Area	Supports (ends) Areas Counted Twice				Calculation of Length of Weir:)	Total Perimeter of Grate	Short Cross Bars	End Supports	Bearing Bars	Curb Openings			(1=731 SMSAST								
sides:	Control Q	70	0.96	1.77	2.72	3.80	5.00	6.30	7.70	9.19	10.76	12.41	14.14	15.26	15.84	16.39	16.93	17.45	17.96	18.45	18.93	19.40	19.85	20.30	20.74
ys on both	Orifice Q Co	7 23				9.46			11.97		13.39 10	14.04	14.66 14	15.26 1	15.84	16.39		17.45	17.96 1	18.45	18.93	19.40	19.85	20.30	20.74 20
pening 3	Ori	_	ļ. ιζ.	7	ω̈	ල	9	11	11	12	13	4	14	15	15	16	16	17	17	18	18	19	19	20	20
ith curb op 3.93 11.35	Weir Q	0 22	96.0	1.77	2.72	3.80	2.00	6.30	7.70	9.19	10.76	12.41	14.14	15.95	17.82	19.76	21.77	23.85	25.98	28.18	30.43	32.74	35.11	37.53	40.00
condition w	Head	(III) 0	1.2	1.8	2.4	ო	3.6	4.2	8.4	5.4	9	9.9	7.2	7.8	8.4	တ	9.6	10.2	10.8	4.11	12	12.6	13.2	13.8	14.4
Single A inlet, in sump condition with curb openings on both sides: Open Area (for orifice calc in sq. ft.): Length of Weir (feet): 11.35	Head	(II) 0 05	0.1	0.15	0.2	0.25	0.3	0.35	4.0	0.45	0.5	0.55	9.0	0.65	0.7	0.75	8.0	0.85	6.0	0.95	_	1.05	1.1	1.15	1.2

APPENDIX C INROADS STORM DRAIN NEWTOWRK FILE

InRoads Storm & Sanitary Design Log

Drainage File: P:\20150013\CDP\Control\Utility\20150013_SD.sdb

Design File: P:\20150013\CDP\HYDRO\DRAWING1.DWG

Display Log: P:\20150013\CDP\HYDRO\design.log Date: wednesday, October 22, 2014 2:36:19 PM

HGL/EGL Computations:

Table A:

٠,٧٤	7 1	77	77 88 98 4.	7 28
Rim_Elev	5494.77	5494.77	5494.77 5494.98 - 5495.76 5497.68	5497.68
HGLup F	1274 140 140 150 150 150 150 150 150 150 150 150 15	5490.27 5490.41 5491.40 5491.50 5491.50	5490.27 5490.35 5490.35 5490.23 5491.06 5491.61 5491.61 5493.50 5493.50	5493.50 5494.15 5494.81 5494.92 5494.92
	81 81 96 82 82 82 82	833 833 833 833		
S EGLup		5490. 5490. 5491. 5491. 5491.	\$ 5490.88 \$ 5490.89 \$ 5491.20 \$ 5491.20 \$ 5491.51 \$ 5491.51 \$ 5492.06 \$ 5495.09 \$ 5497.02 \$ 5497.02	5495.09 5495.73 5495.02 1 5495.13 5495.13
Tot_Loss	8.12 0.15 0.09	0.14	0	0
HGLdn	5482.15 5490.27 5491.40 5491.49	5490.27 5491.40 5491.50	5490.27 5490.33 5490.43 5490.48 5491.06 5491.61 5491.61 5493.50 5493.50	5493.50 5494.81 5494.92
EGLdn (ft)	0.0529 5483.65 5482.69 5 - 5490.81 5 0.0061 5491.60 5491.73 5	5490.81 54 5491.73 54 5491.83 54	5490.81 5491.32 5491.32 5490.93 5491.51 5492.06 5493.09 5495.36 5495.36	5495.09 5495.02 5495.13
offit I	3.65 54	- - 5, - 5,	5490.70 55 5491.86 55 5491.45 55 5492.45 55 5493.10 55 5494.69 55	- 54 - 54 - 54
Dn_S(+	9 548	1 549.	5490 5492 5493 5493 5493	- 5 - 5 19 5495.28 5
Sf (ft/1	0.052	0.00		0.0049
VA2/29	0.54	0.33	0.97 0.45 0.45 0.45 0.45 1.58	0.21
dc (ft)	1.46	11 11	0.73	0.56
ρ	1.50	1.1 1.1	0.47 0.61 0.61 0.39	0.56
(ft/s)	5.89	4.64	7.89 7.89 5.36 5.36 5.36 10.09	3.64
L (ft)	153.53	_ 16.19	45.12 66.88 63.33 41.90	21.99
o (cfs)	20.80 Jsed) 8.20	_ Jsed) 8.20	4.40 4.40 4.40 4.40 2.20	_ Jsed)
O (in)	Outfall 36 20.80 1 SDM44 36 20.80 1 SDMH20 - (Alternate HGL and EGL Used) SDP43 18 8.20	and EGL 1	New Branch -	New Branch SDWH1 - (Alternate HGL and EGL Used) SDPH3 18 2.20
	e HGL	e HGL		e HGL
t_ID	11 44 H20 ternat 43	ranch H20 ternat 42 9	ranch H20 41 H19 15 ction 19 H8 H1	ranch H1 ternat 13
Struc	Outfa SDP SDM SDM (Al SDP IN2	New B SDM (AT SDP IN1	New B SDM SDP SDP SDP SDP SDP SDP SDP INI	New B SDM (AT SDP INI

Table B:

×	0.277	0.256	0 .148
9	1.000	1.000	1.000
8	1,000	1.000	1.000
5	0.638	0.552	1.795
g	0.352	0.352	0 .352
TTS CD	1.000	1.000	1.000
SOEFFICEN Ko	1.234 1.	1.318	0.234
- LOSS_C Dstr	1.67	1.67	1.67
Total	8.12 0.15 0.09	0.14	Supercrt Sup
ŀΞ	1 1 1 1 1	1 1 1 1	
ЬH	11111	1111	
모	11111	1 1 1 1	
Hstr	0.15	0.14	000000000000000000000000000000000000000
모	1111	1111	
냺	8.12 0.09	0.10	0.11
LOSSES Str_ID	Outfall SDP44 SDMH20 SDP43 IN20	New Branch SDMH20 SDP42 IN19	New Branch SDMH20 SDMH19 SDPH19 SDP10 SDP10 SDP10 SDP9 IN17 New Branch SDMH1 SDMH1 SDMH1 SDMH1

EXHIBITS

EXHIBIT 1: PRELIMINARY PLAT

EXHIBIT 2: UNIT 3 BASIN MAP

EXHIBIT 3: INLET AND STORM DRAIN NETWORK

MAP

EXHIBIT 4: GRADING PLAN

EXHIBIT 5: SUPPLEMENTAL EXHIBITS FROM

DMP

EXHIBIT 1

PRELIMINARY PLAT

KEYED NOTES

- (A) 10' PUBLIC UTILITY EASEMENT. GRANTED BY THIS PLAT.
- B EXISTING 50' SOUTHERN UNION GAS COMPANY RIGHT OF WAY EASEMENT FILED SEPTEMBER 16, 1930 IN BOOK 112, PAGE 515 AND FILED MARCH 29, 1956 IN BOOK D346, PAGE 356 AS DOCUMENT NO. 90568 AND N.M. STATE LAND OFFICE DEED OF RIGHT OF WAY AND EASEMENT NO. 646, DATED OCTOBER 3, 1930.
- © EXISTING PUBLIC ROADWAY EASEMENT GRANTED TO THE CITY OF ALBUQUERQUE BY PLAT FILED DECEMBER 21, 2007 IN PLAT BOOK 2007C, PAGE 352. A PORTION TO BE VACATED WITH THIS PLAT
- D EXISTING 10'X 20' QWEST UNDERGROUND UTILITY EASEMENT GRANTED BY PLAT FILED MARCH 16, 2006 IN BOOK 2006C, PAGE 85
- E PRIVATE ACCESS EASEMENT FOR THE USE AND BENEFIT OF LOT 24 GRANTED WITH THIS PLAT.

		Boundary (Curve Table	
ID	ARC	RADIUS	DELTA	TANGENT
C1	49.83	651.00	04*23'10"	24.93'
C2	50.66	30.00'	96*45'03"	33.76'
C3	36.29'	25.00'	83'09'38"	22.18'
C4	8.58'	499.00'	00'59'06"	4.29'
C5	36.33'	394.00'	05"16'57"	18.18'
C6	39.27	25.00'	90'00'00"	25.00'
C7	39.27'	25.00'	90'00'00"	25.00'
C8	39.27	25.00'	90'00'00"	25.00'
C9	64.63	326.50'	11°20'31"	32.42'
C10	45.61'	25.00'	104°31'52"	32.31'
C11	33.46'	25.00'	76'41'22"	19.78'
C12	98.55'	373.50'	15°07'05"	49.56'

E	Boundary Tangen	t Table	1	E	Boundary Tanger	nt Table
ID	BEARING	LENGTH		ID	BEARING	LENGTH
T1	S04°25'48"W	249.53'		T15	N45°49'06"E	152.00'
T2	S00°00'00"E	803.67		T16	S44'10'54"E	12.24
T3	S44°10'54"E	169.01		T17	S48*19'15"E	50.60'
T4	N34°40'53"E	49.76		T18	N48°22'25"E	120.42
T5	N41°31'15"E	47.00'		T19	S27'16'28"E	60.99'
T6	N40'32'09"E	105.00'		T20	N00°05'44"E	399.19
T7	N44°10'54"W	172.00'		T21	N77°45'21"W	237.91
T8	N45°49'06"E	105.00']	T22	N27°16'30"W	174.90'
T9	N4410'54"W	67.71		T23	S89°01'47"W	250.90'
T10	N45°49'06"E	47.00'		T24	S64°57'37"W	33.00'
T11	N45'49'06"E	160.00'		T25	S51*14'55"W	50.59'
T12	N45°49'06"E	47.00'		T26	S32°26'33"W	57.66'
T13	N45°49'06"E	80.00'		T27	S12*11'46"W	153.58
T14	N44°10'54"W	325.79'		T28	S17°42'46"W	77.52'

LEGEND
SUBDIVISION BOUNDARY LINE
TRACT BOUNDARY
NEW LOT LINE
ADJOINING PROPERTY LINE
CENTERLINE MONUMENT TO BE INSTALLED
CITY OF ALBUQUERQUE SURVEY CONTROL MONUMENT

TRACT 5 Albuquerque Control Survey Monument TRACT OS-2 THE TRAILS UNIT 3A "UNION" THE TRAILS UNIT 3A New Mexico State Plane Coordinates, Central Zone (NAD 83) as published: N=1,523,503.475 FILED: DECEMBER 21, 2007 PLAT BOOK 2007C, PG. 0352 E=1.493.655.030 Ground to grid factor= 0.999664360

Delta Alpha= -0016'58.96

Elevation= 5524.950 TRACT E -TRACT B THE TRAILS (T25) THE TRAILS FILED: DECEBER 16, 2004 PLAT BOOK 2004G, PG. 391 TWO ROCK ROAD VALLE PRADO SOUTH SKY STREET TRACT C TRACT F VALLE PRADO UNIT 1 VALLE PRADO UNIT TRACT 6 THE TRAILS UNIT 3A FILED: DECEMBER 21, 2007 PLAT BOOK 2007C, PG. 0352 TRACT **WOODMONT AVENUE** THE TRAILS UNIT 3A FILED: DECEMBER 21, 2007 TRACT 7 PLAT BOOK 2007C, PG. 0352 THE TRAILS UNIT 3A FILED: DECEMBER 21, 2007 PLAT BOOK 2007C, PG. 0352

PRELIMINARY PLAT FOR VALLE PRADO UNIT 3 at the TRAILS UNIT 3A BEING A REPLAT OF TRACT F, VALLE PRADO UNIT 1 AND TRACT A, VALLE PRADO UNIT 2

NOVEMBER, 2014

LEGAL DESCRIPTION

Tract F, Valle Prado Unit 1 City of Albuquerque, Bernalillo County, New Mexico, as the same is shown and designated on the plat entitled "SUBDIVISION PLAT OF VALLE PRADO UNIT 1 (LOTS 1-32 & TRACTS A-F & OS-3A), CITY OF ALBUQUERQUE, BERNALILLO COUNTY, NEW MEXICO", filed in the office of the County Clerk of Bernalillo County, New Mexico, on _____, in Plat Book _____, Page _____, as Documnet No. _____ and Tract A, Valle Prado Unit 2 City of Albuquerque, Bernalillo County, New Mexico, as the same is shown and designated on the plat entitled "SUBDIVISION PLAT OF VALLE PRADO UNIT 2 (LOTS 1-29 & TRACT A), CITY OF ALBUQUERQUE, BERNALILLO COUNTY, NEW MEXICO", filed in the office of the County Clerk of Bernalillo County, New Mexico, on _____,

in Plat Book _____, Page _____, as Documnet No. _____.

GENERAL NOTES

- 1. EXISTING ZONING: SU-2, VTSL, VOLCANO TRAILS/SUBURBAN RESIDENTIAL SMALL LOT PROPOSED ZONING: SU-2, VTSL, VOLCANO TRAILS/SUBURBAN RESIDENTIAL SMALL LOT
- 2. PROPOSED ACREAGE: NUMBER OF LOTS:

MINIMUM LOT AREA:

14.50 AC

1.66 DU/AC

- PROPOSED DENSITY: 3. MIN. LOT DIMENSIONS:
- 55' X 105' 5,775 SQFT
- 4. SEWER AND WATER ARE PUBLIC TO BE OWNED AND MAINTAINED BY THE ALBUQUERQUE BERNALILLO COUNTY WATER UTILITY AUTHORITY. STREET AND STORM DRAIN IMPROVEMENTS ARE PUBLIC TO BE OWNED AND MAINTAINED BY THE CITY OF ALBUQUERQUE.
- 5. LOT SETBACKS SHALL CONFORM TO THE VOLCANO TRAILS SECTOR DEVELOPMENT PLAN.
- 6. WOODMONT AVENUE IMPROVEMENTS ACROSS TRACT C FRONTAGE FINANCIALLY GUARANTEED WITH VALLE PRADO UNIT 1.

SITE DATA

	A AA 7
ZONE ATLAS NO.	C-09-Z
ZONING	SU-2, VTSL
MILES OF FULL WIDTH STREETS CREATED	0.26 MILES
NO. OF EXISTING TRACTS	2
NO. OF LOTS CREATED	24
NO. OF HOA TRACTS CREATED	2
NO. OF REMAINDER TRACTS CREATED	1

SURVEY NOTES:

- ALL BOUNDARY CORNERS SHOWN (●)
 ARE FOUND REBAR W\CAP.
- 2. ALL STREET CENTERLINE MONUMENTATION SHALL BE INSTALLED AT ALL CENTERLINE PC'S, PTS, ANGLE POINTS, AND STREET INTERSECTIONS AND SHOWN THUS (A) AND WILL BE MARKED BY (4") ALUMINUM CAP STAMPED "CITY OF ALBUQUERQUE CENTERLINE MONUMENTATION MARKED, DO NOT DISTURB PLS 9750°.
- 3. THE SUBDIVISION BOUNDARY WILL BE TIED TO THE NEW MEXICO STATE PLANE COORDINATE SYSTEM AS SHOWN.
- 4. BASIS OF BEARINGS WILL BE NEW MEXICO STATE PLANE
- 5. DISTANCES SHALL BE GROUND DISTANCES.
- 6. MANHOLES WILL BE OFFSET AT ALL POINTS OF CURVATURE, TANGENCY STREET INTERSECTIONS, AND ALL OTHER ANGLE POINTS TO ALLOW USE OF CENTERLINE MONUMENTATION.

APPROVED

10/23/14 DATE

10-2114

KELLY CALHOUN MANAGER, WOODMONT-PASEO, LLC

DATE

Bohannan A Huston 800.877.5332 www.bhinc.com

P:\20150013\CDP\Plans\General\Pre-Plat\Unit 3\20150013_U3_PRE-PLAT.dwg October 21, 2014 - 1:36pm

EXHIBIT 2

UNIT 3 BASIN MAP

EXHIBIT 3

INLET AND STORM DRAIN NETWORK MAP

VALLE PRADO UNIT 3 INLET AND STORM DRAIN NETWORK MAP

	SUMMARY OF INLET FLOWS					
ID	STREET SLOPE	WATER DEPTH (ft)	STREET FLOW UPSTREAM OF INLET (cfs)	FLOW CAPTURED BY INLET (cfs)	STREET FLOW BYPASSING INLET (cfs)	
IN17	5.00%	0.23	2.2	2.2	0.0	
IN18	5.00%	0.23	2.2	2.2	0.0	
IN19	1.50%	0.43	8.2	8.2	0.0	
IN20	1.50%	0.43	8.2	8.2	0.0	

SUMMA	RY OF MANHOLES FLOWS
ID	STORM DRAIN FLOWRATE (cfs)
MH1	4.4
MH8	4.4
MH19	4.4
MH20	20.8

LEGEND PROPOSED STORM DRAIN PIPE PROPOSED STORM DRAIN MANHOLE • PROPOSED STORM DRAIN INLET

EXHIBIT 4

GRADING PLAN

EXHIBIT 5

SUPPLEMENTAL EXHIBITS FROM DMP

