CITY OF ALBUQUER

June 2, 2015

Bruce Stidworthy Bohannan-Huston, Inc. 7500 Jefferson St. NE Courtyard 1 Albuquerque, NM 87109

RE: Paseo del Norte Sports Complex, Tract A, Loop Industrial Park Grading and Drainage Plan Engineer's Stamp Date 5-20-2015 (File: C17-D008)

Dear Mr. Stidworthy:

Based upon the information provided in your submittal received 5-12-15, the above referenced plan can be approved for a building permit until the following comments are addressed:

PO Box 1293

Albuquerque

New Mexico 87103

www.cabq.gov

- 1) On the AHYMO output for the pond routing, show steps in 10-minute increments in lieu of 1-hour increments, and cut off the run after about 10 hours once the vast majority of the outflow has discharged from the pond. Also, provide an additional table showing how the outflow versus the elevations were derived for each of the ponds within the AHYMO input. (If the top of grate were set at 75.00 for the upstream pond, the pond would not have an outflow rate of 3.0 cfs at an elevation of 75.00.)
- 2) Make sure that the water surface elevation within the AHYMO run matches what is shown on Sheet C-001, and also provide the required and provided storage volumes along with the WSEL information. (There is a minor discrepancy of 77.28 in the AHYMO versus 77.41 on the plans for Pond "A".)
- 3) On Sheet C-100, show more spot elevations and a "top of pond boundary" defining the top of the Pond "A" if it is at an elevation of 77.85. It is not clear that the top of the pond is set at this top elevation within the grading plan itself. Provide similar information for the other pond.
- 4) For SD-1, SD-2, and SD-3 on Sheet C002, the actual flow is shown to exceed capacity. Revise as necessary.

- 5) For the Basin Data Table, add a column showing the 100-year flow for each of the basins. (This will make it easier to relate how the actual flow is derived for the capacity calculations.)
- 6) The storm drain along the east side of the building seems insufficient to handle runoff from Basins B2-A, B2-B, B2-C, and B2-D in addition to possible runoff from the building. Double-check, and also show all roof drain locations for building.
- 7) Provide concrete rundown details for rundowns R1 and R2. Also, make reference to them on Sheet C-001 by the same designation. (You have them called out as "RD-1", "RD-2", etc.)
- 8) For the each of the riprap details, call out sizing of riprap stones.
- 9) Provide capacity calculations for the on-site sidewalk culverts.
- 10) For the "Inlet Table", provide the parameters used to compute capacities whether it was based on the weir equation or the orifice equation.
- 11) Label existing storm drain information for the off-site flows of 26 cfs and 4 cfs including pipe size, slopes, and invert information.
- 12) The swale designated SW-2 will allow a lot of infiltration immediately adjacent to the building. It is recommended to change this from a riprap swale to a concrete swale or storm drain.
- 13) Provide another spot elevation on the west side of the waterblock at the entrance to the site at the curb location near the corner of the retaining wall. Also, show the existing curb elevations that the accessway is tying into.
- 14) Provide more grading information south of the new building to shown how the courts are draining.

If you have any questions, you can contact me at 924-3924.

Sincerely,

Jeanne Wolfenbarger, P.E. Senior Engineer, Planning Dept. Development Review Services

Orig: Drainage file c.pdf Addressee via Email

Project Title: DRB#:

City of Albuquerque

Planning Department

Development & Building Services Division

DRAINAGE AND TRANSPORTATION INFORMATION SHEET

(REV 02/2013)

Building Permit #: City Drainage #:

DRB#: EPC#:	Work Order#:
Legal Description:	
City Address:	
Engineering Firm:	Contact:
Address:	
Phone#: Fax#:	E-mail:
Owner:	Contact:
Address:	
Phone#: Fax#:	E-mail:
Architect:	Contact:
Address:	
Phone#: Fax#:	E-mail:
Surveyor:	Contact:
Address:	
Phone#: Fax#:	E-mail:
Contractor:	Contact:
Address:	-
Phone#: Fax#:	E-mail:
TYPE OF SUBMITTAL:	CHECK TYPE OF APPROVAL/ACCEPTANCE SOUGHT:
DRAINAGE REPORT	SIA/FINANCIAL GUARANTEE RELEASE
DRAINAGE PLAN 1st SUBMITTAL	PRELIMINARY PLAT APPROVAL
DRAINAGE PLAN RESUBMITTAL	S. DEV. PLAN FOR SUB'D APPROVAL
CONCEPTUAL G & D PLAN	S. DEV. FOR BLDG. PERMIT APPROVAL
GRADING PLAN	SECTOR PLAN APPROVAL
EROSION & SEDIMENT CONTROL PLAN (ESC	final plat approval
ENGINEER'S CERT (HYDROLOGY)	CERTIFICATE OF OCCUPANCY (PERM)
CLOMR/LOMR	CERTIFICATE OF OCCUPANCY (TCL TEMP)
TRAFFIC CIRCULATION LAYOUT (TCL)	FOUNDATION PERMIT APPROVAL
ENGINEER'S CERT (TCL)	BUILDING PERMIT APPROVAL
ENGINEER'S CERT (DRB SITE PLAN)	GRADING PERMIT APPROVAL SO-19 APPROVAL
ENGINEER'S CERT (ESC)	PAVING PERMIT APPROVAL ESC PERMIT APPROVAL
SO-19	WORK ORDER APPROVAL ESC CERT. ACCEPTANCE
OTHER (SPECIFY)	GRADING CERTIFICATION OTHER (SPECIFY)
WAS A PRE-DESIGN CONFERENCE ATTENDED:	Yes No Copy Provided
DATE SUBMITTED:	By:
•	

Requests for approvals of Site Development Plans and/or Subdivision Plats shall be accompanied by a drainage submittal. The particular nature, location, and scope to the proposed development defines the degree of drainage detail. One or more of the following levels of submittal may be required based on the followin

- 1. Conceptual Grading and Drainage Plan: Required for approval of Site Development Plans greater than five (5) acres and Sector Plans
- Drainage Plans: Required for building permits, grading permits, paving permits and site plans less than five (5) acres
- Drainage Report: Required for subdivision containing more than ten (10) lots or constituting five (5) acres or more
- Erosion and Sediment Control Plan: Required for any new development and redevelopment site with 1-acre or more of land disturbing area, including project less than 1-acre than are part of a larger common plan of development

May 20, 2015

Courtyard I 7500 Jefferson St. NE Albuquerque, NM 87109-4335

www.bhinc.com

voice: 505.823.1000 facsimile: 505.798.7988 toll free: 800.877.5332

Ms. Jeanne Wolfenbarger, PE Senior Engineer City of Albuquerque 600 2nd St NW Albuquerque, NM 87102

Re: Paseo Del Norte Sportsplex, Hydrology Re-Submittal

Dear Ms. Wolfenbarger:

Enclosed for your review is a copy of the revised grading plan and drainage management plan. The revisions are based on comments received in your letter dated April 3, 2015. Below is a brief description of how the comments were addressed:

- 1. A survey benchmark has been provided on the Grading Plan (C-100). The property line and easements are shown more clearly. Typical property line cross-sections are shown on the Grading Plan Detail Sheet (C-102) as well.
- 2. Emergency overflow for Pond "A" is to the North over the curb into the paved parking lot. Associated calculations for the overflow weir are shown on the Drainage Management Plan (C-001 & C-002). If Pond "A" overflows, it does not threaten other properties and will simply flow to Pond "B." The overflow capacity for this pond exceeds the peak inflow to Pond "A"; therefore, the one foot of freeboard is not necessary.
 - Pond "B" was adjusted to include one foot of freeboard. Calculations and associated AHYMO model can be found on the Drainage Management Plan (C-002).
- 3. The waterblock at the property line is now shown with more clarity. Additional details for the driveway grading have been provided as well. The Deceleration Lane runoff will flow along the proposed curb and gutter and continue west along the Paseo Del Norte Frontage Road. Spot elevations have been made more legible and an additional cross-section along the southern property line has been added to the Grading Plan Detail Sheet (C-101) for clarity.
- 4. RipRap details on sheet C-102 and keyed notes on C-101 have been updated to reflect different scenarios around the site.
- 5. Storm drainpipe sizing and slopes have been provided on the Drainage Management Plan (C-001 & C-002). All basin analysis and associated calculations (i.e. inlet, pipe, weir, rundown, and culverts) are shown on the Drainage Management Plan (C-001 & C-002).
- 6. Invert elevations are now provided throughout all storm drainpipe networks.

Engineering A

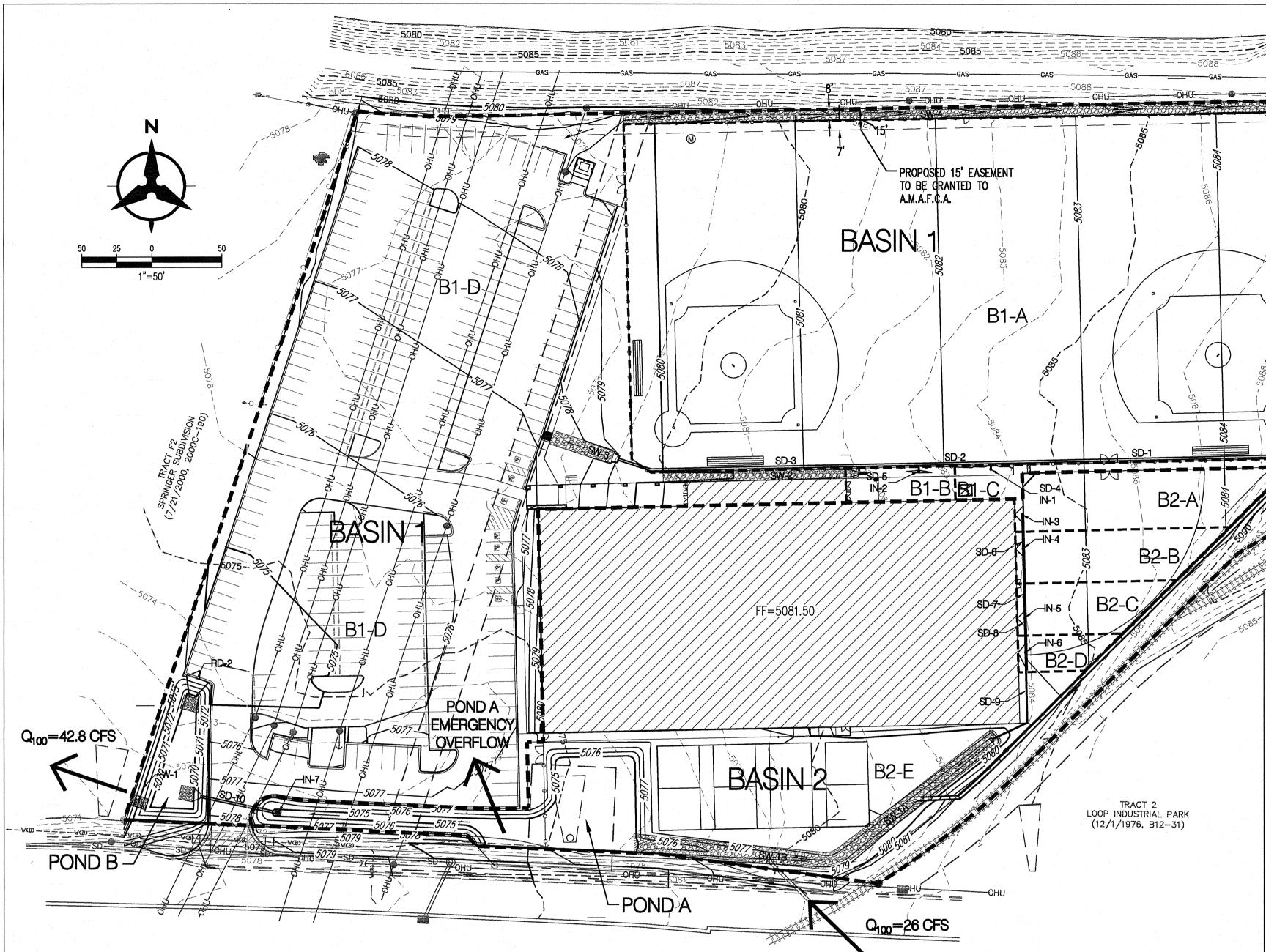
Spatial Data A

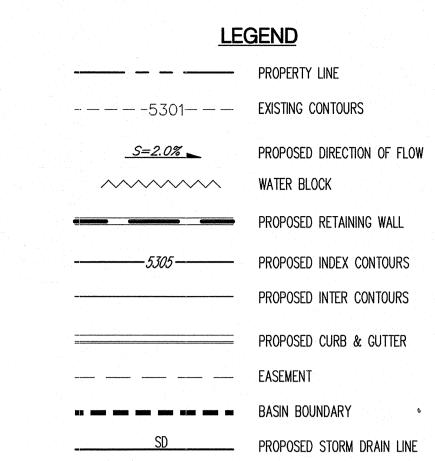
Advanced Technologies A

- 7. The concrete ribbon channel connection point is detailed on the Grading Plan Detail Sheet (C-102). All associated calculations are on the Drainage Management Plan (C-002).
- 8. Spot elevations have been included for more clarity in the parking lot and along the south and west sides of the building.
- 9. AHYMO input and output files are attached to this submittal. First Flush calculations are provided on the Drainage Management Plan (C-001).
- 10. Offsite drainage basin information has been provided and is described below:
 - a. An offsite basin map showing the Eastern Offsite Basin is shown on sheet C-002. The Southern Offsite Basin flow was determined from the "I-25 / Paseo Del Norte Interchange Reconstruction Design Build Project" Drainage Report dated December 2014; therefore, a basin map was not provided.
 - b. The runoff just south of the North Diversion Channel will ultimately outfall to the inlet just south of the AMAFCA North Diversion Channel. This inlet is now shown on the Drainage Management Plan (C-001).
- 11. The runoff along the east side of the building will be conveyed via a storm drain system that ultimately outfalls to Pond "A." Additional details and calculations have been provided on the Grading Plan (C-100) and Drainage Management Plan (C-001 & C-002).

With this resubmittal, we are requesting Hydrology Building Permit Approval. If you have any questions or require further information, please feel free to contact me.

Sincerely,


Matthew Satches, El


Engineer Intern

Community Development & Planning

MI

MHS/kp Enclosures

INTRODUCTION:

THE PROJECT IS LOCATED NORTH OF PASEO DEL NORTE BETWEEN THE NORTH DIVERSION CHANNEL AND WASHINGTON ST. THE PURPOSE OF THIS SUBMITTAL IS TO PROVIDE A DRAINAGE MANAGEMENT PLAN FOR THE DEVELOPMENT OF THE PASEO DEL NORTE SPORTS COMPLEX TO SUPPORT DRB SITE PLAN FOR BUILDING PERMIT APPROVAL AND FINAL BUILDING PERMIT APPROVAL.

EXISTING CONDITIONS:

THE SITE IS CURRENTLY UNDEVELOPED AND HAS PREVIOUSLY BEEN INCLUDED IN AN APPROVED DRAINAGE PLAN (C-17 / D019 OFFICE WAREHOUSE DATED 10/22/1997). THE SITE IS BORDERED BY A DESIGNATED FEMA FLOODZONE TO THE NORTH. THE SITE CURRENTLY DRAINS FROM NORTHEAST TO THE SOUTHWEST. THE HIGHEST POINT OF THE SIGHT IS IN THE NORTHEAST CORNER AT AN ELEVATION OF APPROXIMATELY 5095. THE LOW POINT OF THE SITE IS IN THE SOUTHWEST CORNER AT AN ELEVATION OF APPROXIMATELY 5072. TWO EXISTING STORM DRAINS OUTFALL ONTO THE SITE NEAR THE NORTHEAST CORNER OF THE SITE AND IN THE SOUTHEAST CORNER OF THE SITE. THE SITE FLOWS ONTO THE ADJACENT PROPERTY TO THE WEST AT AN UNDEVELOPED FLOW OF APPROXIMATELY 16.01 CFS (ONSITE FLOW PER THE PREVIOUSLY MENTIONED DRAINAGE MANAGEMENT PLAN), PLUS OFFSITE FLOWS OF 30 CFS (SEE "OFFSITE FLOWS" BELOW) FOR A TOTAL OF 46 CFS.

AMAFCA NORTH DOMINGO BACA ARROYO:

EXISTING INÎLETFOR __ OFFSIDE FLOWS

IMMEDIATELY NORTH OF THE SITE, FLOWS IN THE NORTH DOMINGO BACA ARROYO ARE CONTAINED VIA A LEVEE. AMAFCA HAS REQUESTED A 15' ACCESS EASEMENT TO ALLOW FOR INSPECTION OF THE TOE OF THE LEVEE. THE SITE PLAN HAS BEEN MODIFIED TO ACCOMMODATE THE REQUEST. SEE SECTION "C" ON GRADING PLAN FOR MORE DETAIL.

OFFSITE FLOWS:

THE OFFSITE FLOW OF 4.0 CFS FROM THE EAST WAS DETERMINED BY WALKING THE UPSTREAM AREA TO IDENTIFY THE DRAINAGE BASIN. THE BASIN RUNS BETWEEN THE RAILROAD TRACKS FROM THE SITE TO WASHINGTON. NO ROOF DRAINS FROM THE EXISTING WAREHOUSES DAYLIGHT INTO THE BASIN. IT IS CLEAR FROM THE EXISTING CONDITION OF THE 24" CULVERT THAT NOT MUCH FLOW IS CONVEYED ONTO OUR SITE. SEE SHEET C-002 FOR THE OFFSITE BASIN DELINEATION.

THE OFFSITE FLOW OF 26 CFS FROM THE SOUTH WAS DETERMINED FROM THE "PART 2 DRAINAGE REPORT FOR THE I-25 / PASEO DEL NORTE INTERCHANGE RECONSTRUCTION DESIGN BUILD PROJECT" PREPARED IN DECEMBER 2014. THE DRAINAGE NEAR THE PROPOSED SITE IS BASED ON EXISTING FLOWS AND FLOW PATTERNS.

METHODOLOGY:

THE HYDROLOGIC ANALYSIS PROVIDED WITH THIS DRAINAGE MANAGEMENT PLAN HAS BEEN PREPARED IN ACCORDANCE WITH SECTION 22.2 OF THE DPM. THE SITE IS LOCATED WEST OF THE RIO GRANDE WITHIN PRECIPITATION ZONE 2. ALTHOUGH THE SITE IS SMALL ENOUGH TO USE THE "SMALL WATERSHEDS" PROCEDURE GIVEN IN SECTION A.6, WE ELECTED TO USE AHYMO IN ORDER TO MODEL THE STORMWATER FLOWS THROUGH THE TWO PROPOSED PONDS ON THE SITE. LAND TREATMENT PERCENTAGES WERE CALCULATED BASED ON THE ACTUAL CONDITIONS IN EACH ONSITE BASIN AND ARE SUMMARIZED IN THE "AHYMO SUMMARY DATA TABLE" AND "BASIN DATA TABLE" SHEET C-002. PIPE SIZING BETWEEN POND "A" AND POND "B" WAS BASED ON THE ORIFICE EQUATION. THE WEIR OUTLET FOR POND "B" WAS BASED ON THE WEIR EQUATION.

PROPOSED CONDITIONS:

IT WAS DETERMINED THAT THE MAXIMUM ALLOWABLE DISCHARGE FROM OUR SITE IS APPROXIMATELY 46.0 CFS. THIS IS DERIVED FROM EXISTING ONSITE CONDITIONS PLUS THE ADDITIONAL OFFSITE FLOWS. THE OFFSITE FLOWS WILL BE CONVEYED THROUGH OUR SITE. BASIN 2 ALONG WITH THE OFFSITE FLOWS ARE CONVEYED TO POND "A" VIA A SWALE ALONG THE SOUTHERN PORTION OF THE SITE. POND "A" ULTIMATELY OUTFALLS INTO A 24" PIPE WHERE IT IS ROUTED TO POND "B". EMERGENCY OVERFLOW FROM POND "A" IS TO THE NORTH OVER THE CURB INTO THE PAVED PARKING LOT. THE LENGTH OF OVERFLOW WEIR IS GREATER THAN 100' AND THE OVERFLOW CAPACITY FAR EXCEEDS THE PEAK INFLOW TO THE POND. POND "B" MITIGATES THE DISCHARGE FROM BASIN 1 AND POND "A". A WEIR ON THE WEST SIDE POND "B" OUTFALLS TO THE ADJACENT PROPERTY AT A MAXIMUM DISCHARGE RATE OF 42.8 CFS WHICH IS LESS THAN EXISTING CONDITIONS. THE FIRST FLUSH DEVELOPED BY THE IMPERVIOUS AREA IS RETAINED IN POND "B". THE EMERGENCY OVERFLOW CAPACITY OF THE POND "B" WEIR IS APPROXIMATELY 57.7 CFS WHICH EXCEEDS THE PEAK INFLOW. ONCE THE SITE OUTFALLS ONTO THE ADJACENT PROPERTY, IT WILL CONTINUE ON ITS HISTORIC FLOW PATH.

POND "A":
BOTTOM OF POND: 5074.5 FT
TOP OF POND: 5077.85
MAXIMUM WATER SURFACE ELEVATION: 5077.41 FT

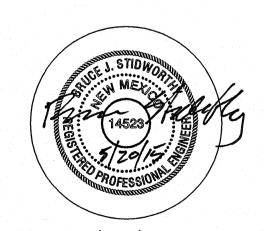
POND "B"
BOTTOM OF POND: 5070 FT
TOP OF POND: 5073.6
MAXIMUM WATER SURFACE ELEVATION: 5072.59 FT

FIRST FLUSH
IMPERVIOUS AREA = 110,794 SF
REQUIRED VOLUME = 4,062 CF
PROVIDED VOLUME (POND "A") = 2,554 CF
PROVIDED VOLUME (POND "B") = 1,849 CF
TOTAL PROVIDED VOLUME = 4,403 CF

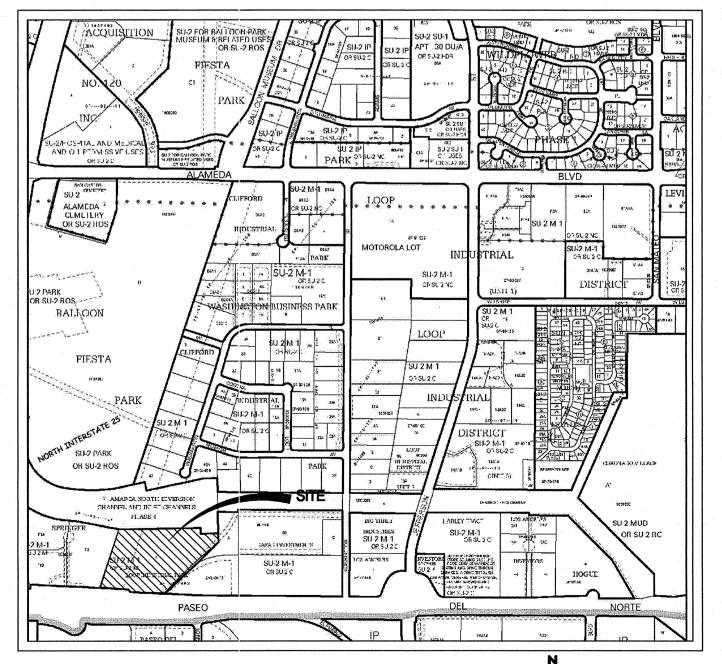
CONCLUSION:

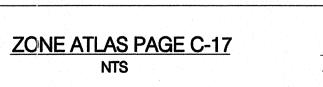
THE PEAK DISCHARGE FROM OUR SITE IS 42.8 CFS WHICH IS LESS THAN THE ALLOWABLE DISCHARGE OF 46.0 CFS. FURTHERMORE, THE GRADING PLAN AND THIS DRAINAGE MANAGEMENT PLAN DEMONSTRATE THAT WE ARE IN CONFORMANCE WITH THE CITY OF ALBUQUERQUE HYDROLOGY REQUIREMENTS. WE REQUEST BUILDING PERMIT APPROVAL.

SPORTSPLEX tract A, loop industrial park


loop industrial park Albuquerque, New Mexico

5 0 5 2 4 6 0 8 7 0


drainage management plan


slagleherr.com



revisions

date 5-20-15 sheet -200

FEMA FLOODPLAIN MAP 35001C0136G
NTS

PA	ISEO DE	LNORT	E SPOR	TSPLEX		
D	eveloped C	condition	s Basin Da	ta Table		
Thi	s table is bas	ed on the I	DPM Section	22.2, Zone:	2	
Basin	Area	Area	Land	d Treatme	nt Percent	ages
ID	(SQ. FT)	(AC.)	Α	В	С	D
PROPOSED BASINS						
BASIN 1	281759	6.47	0.0%	0.0%	80.2%	19.8%
B1-A	146368	3.36	0.0%	0.0%	100.0%	0.0%
B1-B	1881	0.04	0.0%	0.0%	25.0%	75.0%
B1-C	2318	0.05	0.0%	0.0%	12.0%	88.0%
B1-D	131192	3.01	0.0%	0.0%	60.0%	40.0%
BASIN 2	115739	2.66	0.0%	0.0%	52.6%	47.4%
B2-A	7134	0.16	0.0%	0.0%	98.0%	2.0%
B2-B	4954	0.11	0.0%	0.0%	96.0%	4.0%
B2-C	3511	0.08	0.0%	0.0%	94.0%	6.0%
B2-D	1586	0.04	0.0%	0.0%	93.0%	7.0%
B2-E	98554	2.26	0.0%	0.0%	45.0%	55.0%
TOTAL	397498	9.125		<u> </u>		- · · · · ·

BASIN & SUBBASIN DATA TABLE

	INLET TA	ABLE				
Inlet	Inlet	Basin	Actual	Avail	Capacity	
#	Туре		Flow	Head ft	CFS	
IN1	1-10" NYLOPLAST (DOME GRT)*	B1-C	0.24	0.30	1.00	
IN2	1-10" NYLOPLAST (DOME GRT)*	B1-B	0.19	0.30	1.00	
IN3	1-10" NYLOPLAST (DROP IN GRT)*	B2-A	0.52	0.20	0.55	
IN4	1-10" NYLOPLAST (DROP IN GRT)*	B2-B	0.36	0.20	0.55	
IN5	1-10" NYLOPLAST (DROP IN GRT)*	B2-C	0.26	0.20	0.55	
IN6	1-10" NYLOPLAST (DROP IN GRT)*	B2-D	0.12	0.20	0.55	
IN7	1-30" NYLOPLAST (DOME GRT)	B2-E	OR	FICE CON	rolled	
	* - INLET PLACED IN SUMP CONDITION	ON AND CA	PACITIES	BASED ON	LESSER OF	
	ORIFICE AND WIER EQUATIONS					

INLET TABLE

					ACTUAL
PIPE#	INLET/SD/BASIN	Size	Slope	Capacity*	FLOW
		in.		cfs	cfs
SD1	B1-A	18	0.50%	7.43	10.55
SD2	SD-1, SD-4	18	0.50%	7.43	10.79
SD3	SD-2, SD-5	18	0.50%	7.43	10.98
SD4	IN-1	10	1.50%	2.68	0.24
SD5	IN-2	10	1.50%	2.68	0.19
SD6	IN-3	10	0.50%	1.55	0.52
SD7	IN-4, SD-6	10	0.50%	1.55	0.88
SD8	IN-5, SD-7	10	0.50%	1.55	1.14
SD9	IN-6, SD-8	10	0.50%	1.55	1.26
SD10	IN-7	24	2.00%	31.99	22.8**

STORM DRAIN PIPE TABLE

CONCRET	E RUNDOWN TABL	.E								
Rundown		Rundown	Required	Weir	Weir	Weir	Channel	Channel	Minimum	Capacity*
# * * * * * * * * * * * * * * * * * * *	Basin ID	Туре	Flow	Height ft	Length ft	Capacity**	Width ft	Height ft	Slope	CFS
R1	EAST STORM DRAIN	Rectangle	4.00		N/A		2.00	0.50	1.00%	5.50
R2	Basin 1	Rectangle	22.31	0.67	16.00	24.00	6.00	0.50	33.00%	111.98
Capacity Base	d on Manning's Eq w/ N=0.0	013 - *				The second secon				
Mair Ea. 0-2	351 (h^1 5) - **									

RUNDOWN TABLE

SWALE	CAPACITY TABLE	The second of th			
Rundown #	Contributing Basins & Flows	Required Flow	Manning's Coefficient	Channel Slope	Stream Capacity*
SW-1A	B2-A, B2-B, B2-C, B2-D, 1/2-B2-E, OS-E	9.79	0.035	0.50%	29.29
SW-1B	B2-A, B2-B, B2-C, B2-D, B2-E, OS-E, OS-S	40.31	0.035	1.30%	47.22
SW-2	EXCESS B1-A FLOW	3.55	0.035	1.00%	6.17
SW-3	B1-A, B1-B, B1-C	10.98	0.035	0.50%	14.66
SW-4	MINIMAL OFFSITE FLOWS	1.11	0.035	1.50%	4.11

SWALE CAPACITY TABLE

WEIR	Contribution Desire & Flavor	Required	Weir Height	Weir	Weir	
#	Contributing Basins & Flows	Flow	Flow (FT)		Capacity*	
EMERGENCY OVERFLOW	BASIN 2, OFFSITE SOUTH, OFFSITE EAST	31.60	0.40	250.0	168.00	
W1	ENTIRE SITE	42.83	2.00	8.00	60.00	

WEIR CAPACITY TABLE

AHYMO PROGRAM	I SUMMARY TABLE (A	AHYMO-S4)		- Ver. S4	.01a, Rel: 0	1a RUN DA	TE (MON/I	DAY/YR) = 0	5/20/2015						
INPUT FILE = P:\20	150146\CDP\HYDRO\	\Building Pe	ermit\100	YR-BP-SUE	3.HYM	USI	ER NO.= Al	IYMO_Tem	np_User:20	122010				1.14	
		FROM		TO		PEAK	RUNOFF		TIME TO	CFS		PAGE	=	1	
	HYDROGRAPH	ID		ID	AREA	DISCHARGE	VOLUME	RUNOFF	PEAK	PER				1	
COMMAND	IDENTIFICATION	NO.		NO.	(SQ MI)	(CFS)	(AC-FT)	(INCHES)	(HOURS)	ACRE			NOTATIO	N	
		·		·			·. · · · ·								
	R ALBUQUERQUE SP	ORTS COM	PLEX - ALI	BUQUERQI	JE,NM , BH	PROJ # 20150	146			***************************************					
*S 100 YEAR - 6 HC	OUR STORM	· · · · · · · · · · · · · · · · · · ·	·		<u> </u>		· .								
*S													***		
	\20150146\CDP\HYD									<u> </u>					· · · · · · · · · · · · · · · · · · ·
	P:\20150146\CDP\H	YDRO\Build	ling Perm	it\100YR-B	P-SUB.OUT	•									
START	TIME= 0												,,		
LOCATION	ALBUQUERQUE	<u> </u>		 		·									
RAINFALL TYPE= 1 N	· · · · · · · · · · · · · · · · · · ·											-			
	******	******	******	*****	*****								<u> </u>		
*S									<u> </u>						
	N DEVELOPED COND	ITIONS						<u></u>	1		·		r		· · · · · · · · · · · · · · · · · · ·
*S														1	
*S BASIN 1				<u> </u>				<u> </u>	1						
COMPUTE NM HYD		B1	-	1 1	0.01011	23.87	0.748	1.38795	1.5			3.639 PER	IMP= 19.8	0	
*S BASIN 2	·		·	T		r	r		T						
COMPUTE NM HYD	is also also also also also also also als	B2	als als als als als als als als	2	0.00425	11.12	0.372	1.63935	1.5			4.087 PER	IMP= 47.9	0	
	******		****	*****	*****								***************************************		
····	SITE SOUTH TO BASI			T	T = =====	I	l	Г			· · · · · · · · · · · · · · · · · · ·				
ADD HYD		SOUTHB2	-	20	0.01284	37.19	1.316	1.92121	1.5						
	SITE EAST TO BASIN			T	T	T	Г	4 00000		***************************************					
ADD HYD	Apparent and a second	EASTB2	-	21	0.01468	41.22	1.434	1.83216	1.5						-
	OFFSITE EAST & SOL	T		T				T	T 4 65 1			V V (O) 10 45	- 0.467.1	C ET	·
ROUTE RESERVOIR	UD WANTO DACING	PONDA	-	10	0.01468	22.8	1.595	2.03672	1.65	·	MA.	X VOLUME	E = 0.467 A	C-FI	
*S ADDITION OF POI	ND "A" TO BASIN 1	I DADA I		T	T 0 00470	4440	2 242	4 77045	T are						
ADD HYD	2 20012 12 01 75	PAB1	- -	22	0.02479	44.13	2.343	1.77215	1.55						
	O POND "B". OUTFLO			T		42.02	2 242	4 77400	1.0		D 4 4	V) (OLL 18 45	- 0 1 40 4	C FT	· · · · · · · · · · · · · · · · · · ·
ROUTE RESERVOIR		PONDB	-	11	0.02479	42.83	2.343	1.77183	1.6		MA.	X VOLUME	= 0.143 A	C-FI	

AHYMO SUMMARY DATA TABLE

BASIN AND SUB-BASIN HYDROLOGIC ANALYSIS:

THE HYDROLOGIC ANALYSIS PROVIDED WITH THIS DRAINAGE MANAGEMENT PLAN HAS BEEN PREPARED IN ACCORDANCE WITH SECTION 22.2 OF THE DPM. BASIN AND SUB-BASIN BOUNDARIES ARE DELINEATED PER SHEET COO1. SUB-BASINS WERE DEFINED FOR ANALYSIS ON STORM DRAINS, INLETS, RUNDOWNS, AND SWALES. ANALYSIS OF THESE DRAINAGE STRUCTURES CAN BE FOUND ON THIS SHEET.

AHYMO ANALYSIS:

SEE NARRATIVE SHEET COO1.

INLET TABLE:

STORM DRAIN INLETS HAVE BEEN DESIGNED IN SUMP CONDITION. ALL NYLOPLAST INLET CAPACITIES ARE BASED ON NOMOGRAPHS PROVIDED BY THE MANUFACTURER SEE TABLE THIS SHEET FOR CAPACITIES AND CONTRIBUTING FLOWS.

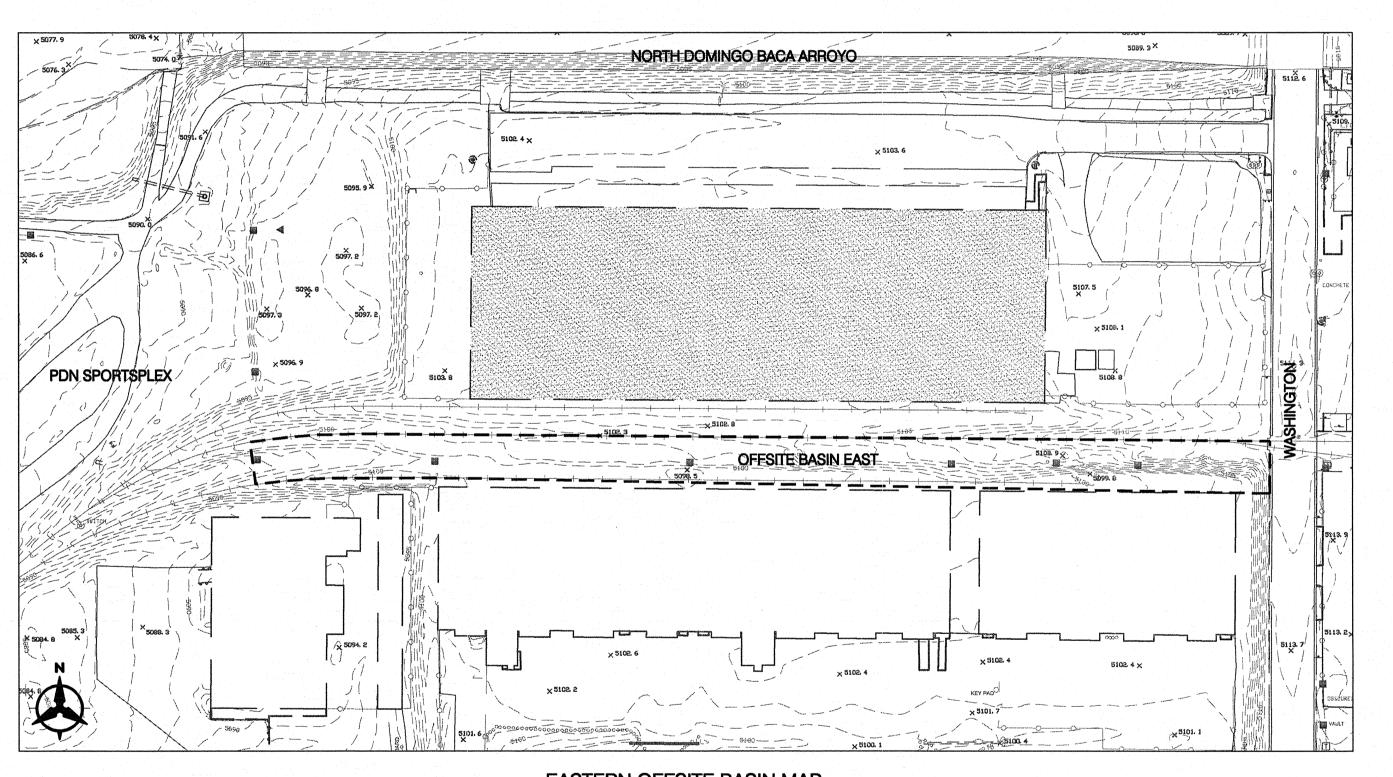
INLET 3 IS UNDERSIZED FOR THE SUB-BASIN IT IS INTENDED TO CONTAIN. ONCE CAPACITY IS REACHED, EXCESS FLOW WILL CONTINUE SOUTH TO INLET 4 WHICH HAS ENOUGH CAPACITY TO ACCEPT THE ADDITIONAL FLOWS.

STORM DRAIN TABLE:

STORM DRAINS WERE SIZED BASED ON MANNING'S EQUATION AND GRAVITY FLOW. SIZE OF STORM DRAINS RANGE FROM 10" TO 24". SEE TABLE THIS SHEET FOR ALL STORM DRAIN REACH ANALYSIS.

THE 18" STORM DRAIN REACH NORTH OF THE BUILDING IS UNDERSIZED. A MAJORITY OF THE RUNOFF FROM THE ATHLETIC FIELD WILL CONTINUE WEST INTO THE PARKING LOT AND WON'T REACH THE PIPE. THE PORTION OF RUNOFF THAT IS UNABLE TO FLOW TO THIS PIPE WILL CONTINUE SOUTH INTO A RIPRAP SWALE THAT WAS SIZED WITH ENOUGH CAPACITY TO COMPENSATE FOR THE EXCESS RUNOFF. SEE SWALE CAPACITY TABLE THIS SHEET FOR MORE INFORMATION.

RUNDOWN TABLE:


CONCRETE RUNDOWN HAVE BEEN DESIGNED USING MANNING'S EQUATION AND THE WEIR EQUATION. RUNDOWN "R1" IS DESIGNED TO CONTAIN THE OFFSITE FLOWS FROM THE EAST. RUNDOWN "R2" IS WEIR CONTROLLED AND ULTIMATELY OUTFALLS INTO POND "B".

SWALE CAPACITY TABLE:

ALL RIPRAP SWALES HAVE BEEN DESIGNED USING MANNING'S EQUATION. SEE TABLE THIS SHEET FOR CAPACITIES AND CONTRIBUTING FLOWS.

WEIR CAPACITY TABLE:

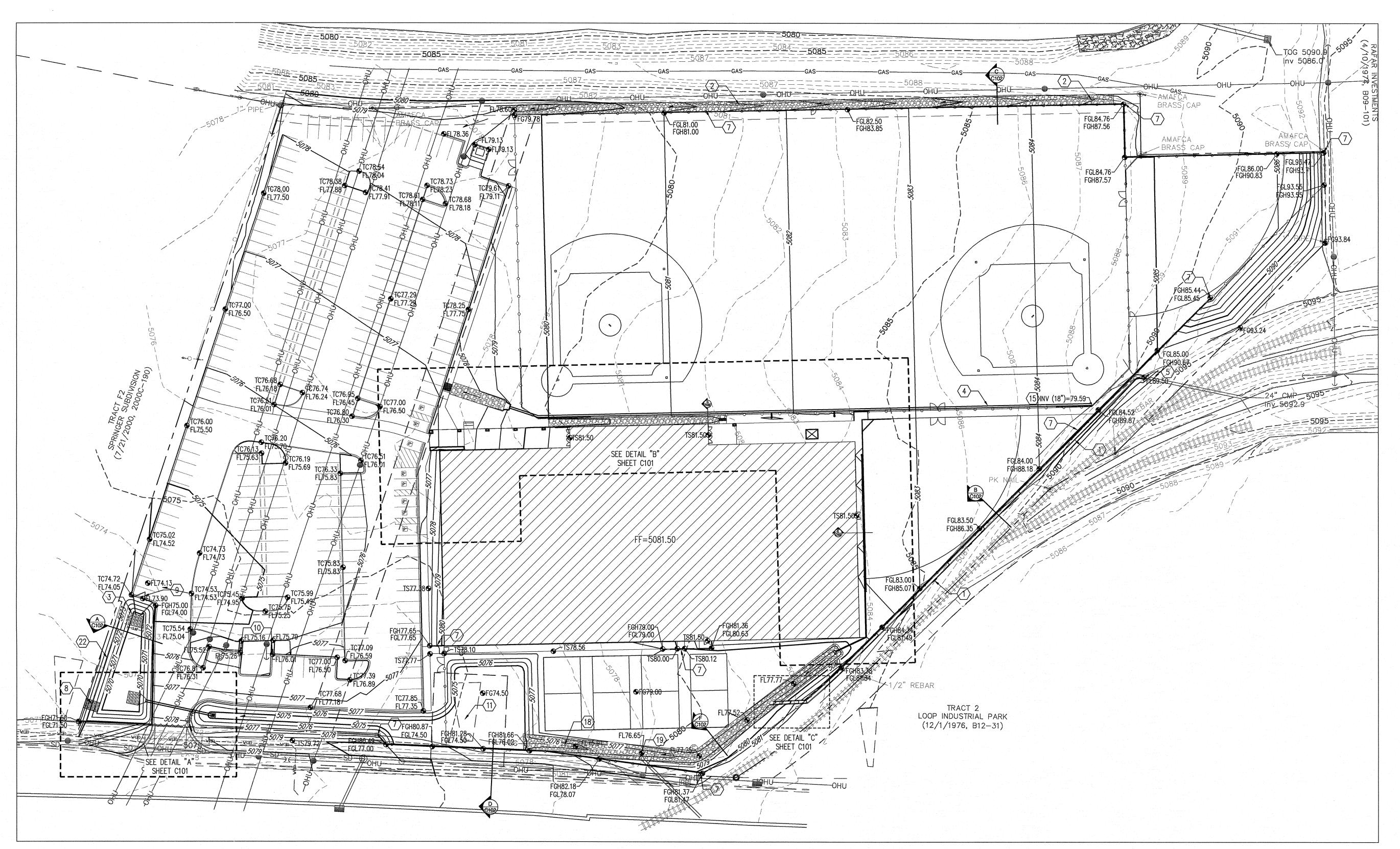
ALL WEIR CAPACITIES HAVE BEEN DESIGNED USING A WEIR COEFFICIENT OF 2.65. SEE TABLE THIS SHEET FOR CAPACITIES AND CONTRIBUTING FLOWS.

EASTERN OFFSITE BASIN MAP

SCALE 1"=100'


SPORTSPLEX tract A, loop industrial park Albuquerque, New Mexico

5 0 5 2 4 6 0 8 7 0


drainage management plan

slagleherr.com

Bohannan Huston
www.bhinc.com
800.877.5332

date 5-20-15 sheet -002

PROJECT BENCHMARK

Intersection of PDN & North Diversion Channel @ Southwest Quadrant of Bridge Abutment 3-1/4" Alum Disc ACS Monument "13_D16" NAD 1983CENTRAL ZONE X=1534181.325 Y=1518996.001 Z=5073.471 (NAVD 1988) G-G=0.999673570 Mapping Angle=-00°12'17.26"

GRADING NOTES

1. EXCEPT AS PROVIDED HEREIN, GRADING SHALL BE PERFORMED AT THE ELEVATIONS AND IN ACCORDANCE WITH THE DETAILS SHOWN ON THIS PLAN.

2. THE COST FOR REQUIRED CONSTRUCTION DUST AND EROSION CONTROL MEASURES SHALL BE INCIDENTAL TO THE PROJECT COST.

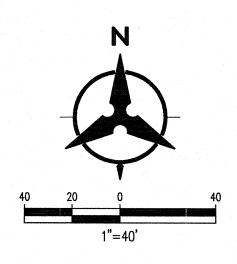
3. ALL WORK RELATIVE TO FOUNDATION CONSTRUCTION, SITE PREPARATION, AND PAVEMENT INSTALLATION, AS SHOWN ON THIS PLAN, SHALL BE CONSTRUCTED IN ACCORDANCE WITH THE "GEOTECHNICAL INVESTIGATION". ALL OTHER WORK SHALL, UNLESS OTHERWISE STATED OR PROVIDED FOR HEREON, BE CONSTRUCTED IN ACCORDANCE WITH THE PROJECT, (FIRST PRIORITY) SPECIFICATIONS, AND/OR THE CITY OF ALBUQUERQUE (COA) STANDARD SPECIFICATIONS FOR PUBLIC WORKS (SECOND PRIORITY).

4. EARTH SLOPES SHALL NOT EXCEED 3 HORIZONTAL TO 1 VERTICAL UNLESS SHOWN OTHERWISE.

5. IT IS THE INTENT OF THESE PLANS THAT THIS CONTRACTOR SHALL NOT PERFORM ANY WORK OUTSIDE OF THE PROPERTY BOUNDARIES EXCEPT AS REQUIRED BY THIS PLAN.

6. THE CONTRACTOR IS TO ENSURE THAT NO SOIL ERODES FROM THE SITE ONTO ADJACENT PROPERTY OR PUBLIC RIGHT-OF-WAY.

7. A DISPOSAL SITE FOR ANY & ALL EXCESS EXCAVATION MATERIAL, AND UNSUITABLE MATERIAL AND/OR A BORROW SITE CONTAINING ACCEPTABLE FILL MATERIAL SHALL BE OBTAINED BY THE CONTRACTOR IN COMPLIANCE WITH APPLICABLE ENVIRONMENTAL REGULATIONS AND APPROVED BY THE OBSERVER. ALL COSTS INCURRED IN OBTAINING A DISPOSAL OR BORROW SITE AND HAUL TO OR FROM SHALL BE CONSIDERED INCIDENTAL TO THE PROJECT AND NO SEPARATE MEASUREMENT OR PAYMENT SHALL BE MADE.


8. PAVING AND ROADWAY GRADES SHALL BE +/- 0.1' FROM PLAN ELEVATIONS. PAD ELEVATION SHALL BE +/- 0.05' FROM BUILDING PLAN ELEVATION.

9. ALL PROPOSED CONTOURS REFLECT TOP OF PAVEMENT ELEVATIONS IN THE PARKING AREA AND MUST BE ADJUSTED FOR MEDIANS AND ISLANDS.

10. VERIFY ALL ELEVATIONS SHOWN ON PLAN FROM BASIS OF ELEVATION CONTROL STATION PRIOR TO BEGINNING CONSTRUCTION.

LEGEND

---- EXISTING CONTOURS PROPOSED SPOT ELEVATION TC=TOP OF CURB, FL=FLOW LINE FGH=FINISHED GRADE HIGH, FGL=FINISHED GRADE LOW EX=EXISTING, TG=TOP OF GRATE FG=FINISHED GRADE PROPOSED DIRECTION OF FLOW S=2.0% WATER BLOCK PROPOSED RETAINING WALL PROPOSED INDEX CONTOURS PROPOSED INTER CONTOURS PROPOSED CURB & GUTTER EASEMENT PROPOSED STORM DRAIN LINE

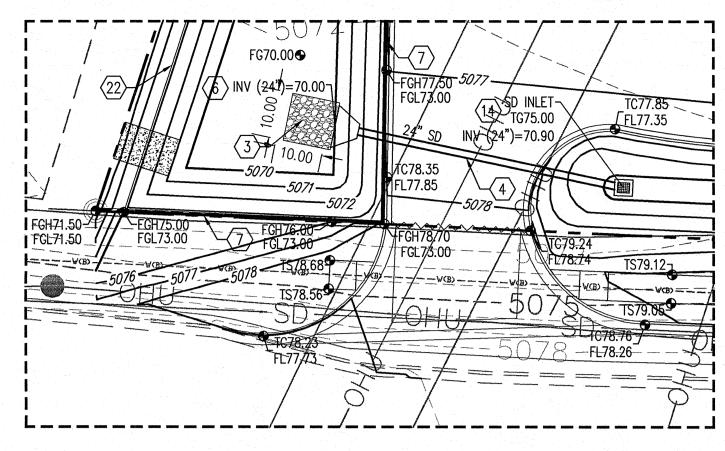
Bohannan A Huston
www.bhinc.com 800.877.5332

GRADING KEYED NOTES

- 1. INSTALL NEW CONCRETE RIBBON CHANNEL PER DETAIL "I" SHEET C102.
- 2. INSTALL NEW RIP RAP SWALE PER DETAIL "J" SHEET C102.
- 3. INSTALL NEW RIP RAP BLANKET PER DETAIL "L" SHEET C102.
- 4. INSTALL NEW STORM DRAIN. SEE PLAN FOR SIZE. TIE FIELD SUBDRAINS TO STORM DRAIN PER SUBDRAIN MANUFACTURER'S RECOMMENDATIONS
- 5. DAYLIGHT EXISTING CULVERT INTO NEW CONCRETE RIBBON CHANNEL. SEE DETAIL "M" SHEET C102.
- 6. INSTALL CMP STORM DRAIN END SECTION SEE PLAN FOR SIZE.
- 7. INSTALL RETAINING WALL, SEE STRUCTURAL SHEETS FOR DETAILS.
- 8. INSTALL NEW POND WEIR PER DETAIL "H" SHEET C102.
- 9. INSTALL NEW 16' WIDE CONCRETE RUNDOWN.
- 10. INSTALL CURB OPENING PER DETAIL "K" SHEET C102.
- 11. EXISTING BILLBOARD TO REMAIN. MATCH EXISTING GRADE WITHIN 5' OF BILLBOARD FOUNDATION. SEE DETAIL "D" SHEET C102.
- 12. INSTALL NEW 10" NYLOPLAST DOME INLET OR APPROVED EQUAL.
- 13. INSTALL NEW 10" NYLOPLAST DROP-IN INLET OR APPROVED
- 14. INSTALL NEW 30" NYLOPLAST DOME INLET OR APPROVED EQUAL.
- 15. INSTALL STORM DRAIN CAP.
- 16. INSTALL PRE-FABRICATED STORM DRAIN FITTING WITH WATER-TIGHT GASKET, SEE PLAN FOR SIZE.
- 17. CONSTRUCT NEW 24" SIDEWALK CULVERT PER COA STD DWG.
- 18. INSTALL NEW RIP RAP SWALE PER DETAIL "F" SHEET C102.
- 19. DAYLIGHT EXISTING STORM DRAIN INTO SWALE.
- 20. INSTALL PRE-FABRICATED STORM DRAIN BEND. SEE PLAN FOR SIZE.
- 21. CONSTRUCT NEW DOUBLE 24" SIDEWALK CULVERT PER COA STD DWG. 2236.
- 22. INSTALL CONCRETE HEADER CURB PER COA STD DWG. 2415.
- * NOT ALL KEYED NOTES USED ON THIS SHEET
- ** FOR TYPICAL CROSS-SECTIONS SEE SHEET C102

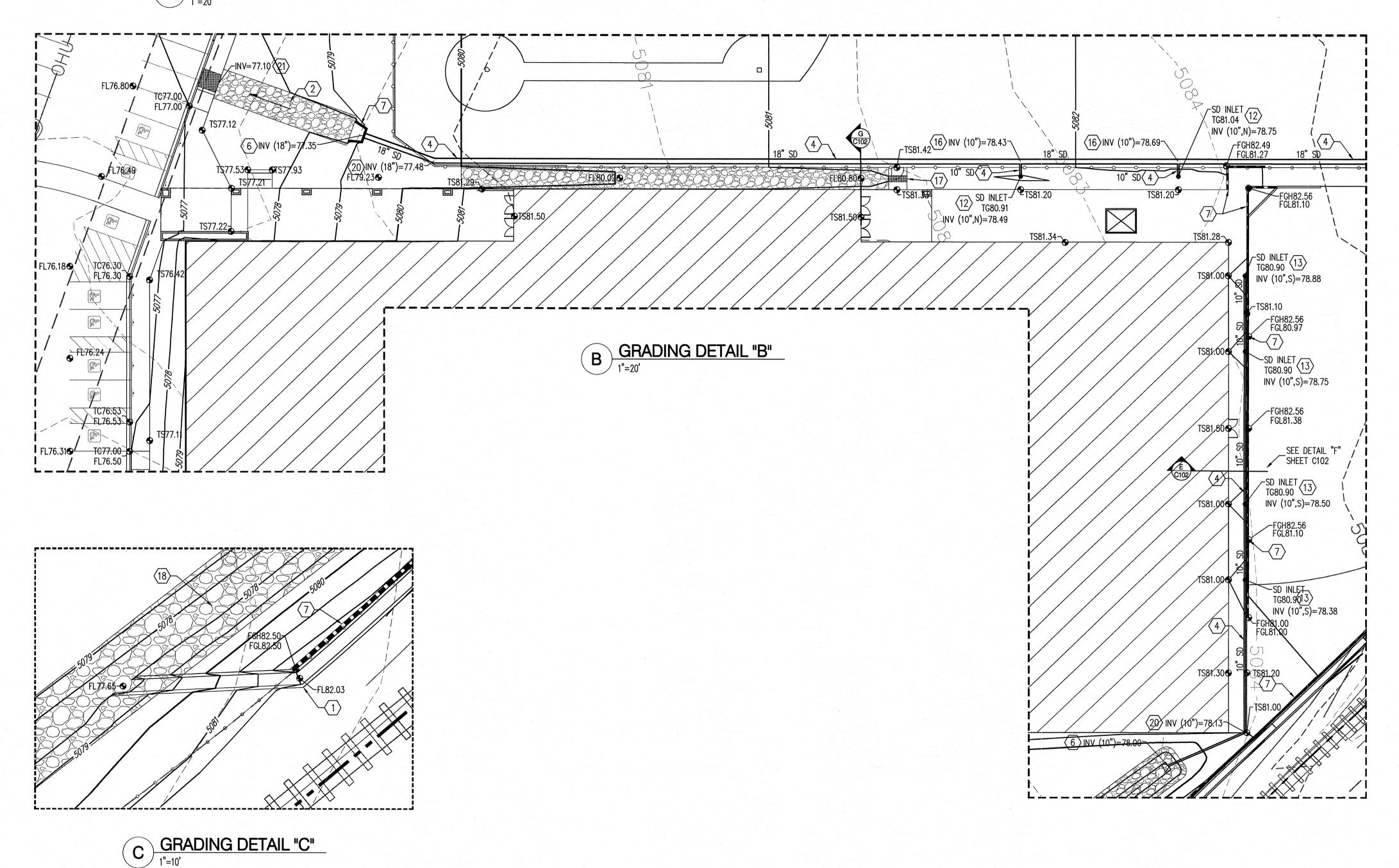
SPORTSPLEX

tract A, loop industrial park Albuquerque, New Mexico



slagleherr.com

grading and drainage plan



date 5-20-15 sheet

A GRADING DETAIL "A"

1"=20'

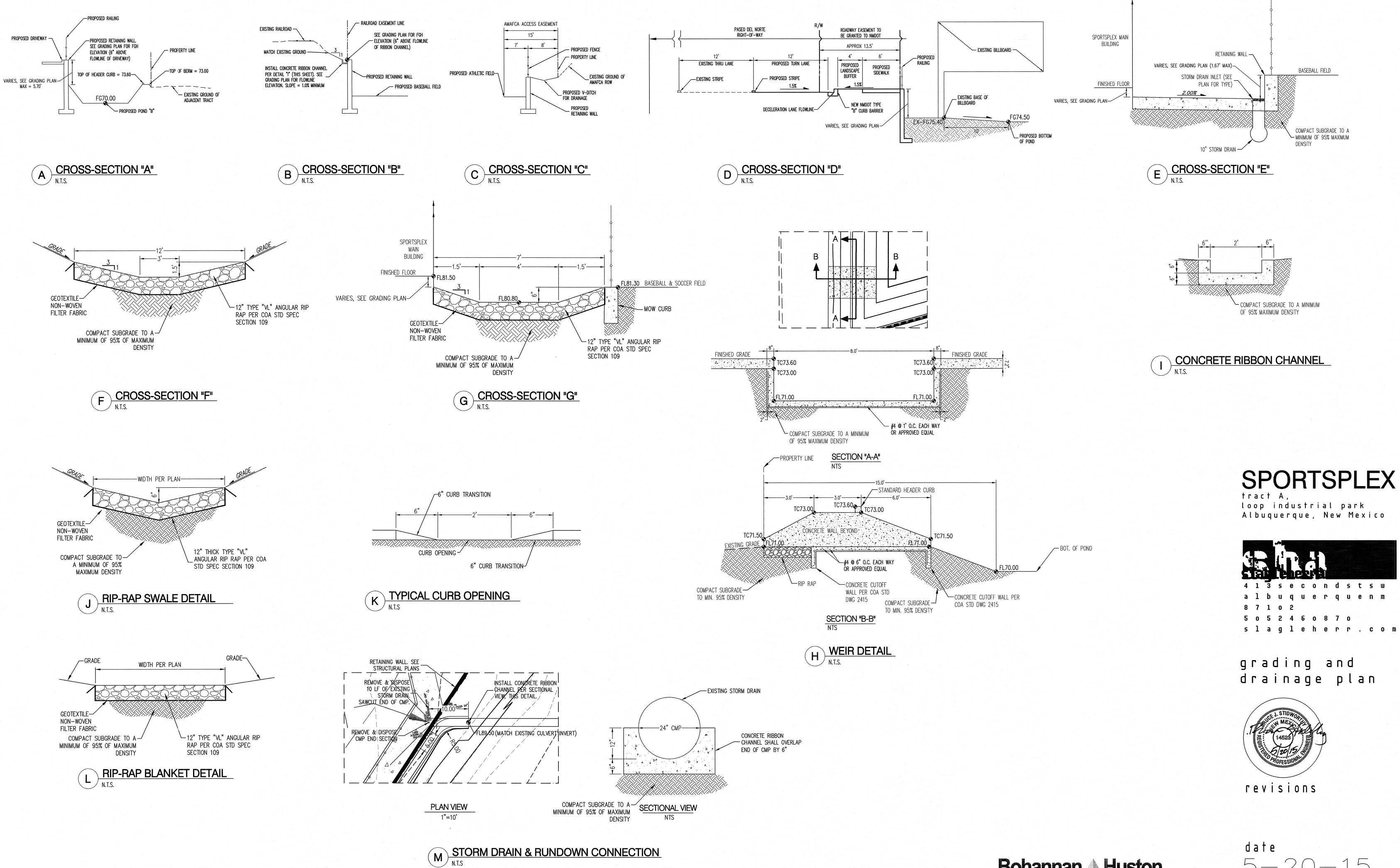
Bohannan A Huston
www.bhinc.com 800.877.5332

GRADING KEYED NOTES

- 1. INSTALL NEW CONCRETE RIBBON CHANNEL PER DETAIL "I" SHEET C102.
- 2. INSTALL NEW RIP RAP SWALE PER DETAIL "J" SHEET C102.
- 3. INSTALL NEW RIP RAP BLANKET PER DETAIL "L" SHEET C102.
- 4. INSTALL NEW STORM DRAIN. SEE PLAN FOR SIZE. TIE FIELD SUBDRAINS TO STORM DRAIN PER SUBDRAIN MANUFACTURER'S RECOMMENDATIONS
- 5. DAYLIGHT EXISTING CULVERT INTO NEW CONCRETE RIBBON CHANNEL. SEE DETAIL "M" SHEET C102.
- 6. INSTALL CMP STORM DRAIN END SECTION SEE PLAN FOR SIZE.
- 7. INSTALL RETAINING WALL, SEE STRUCTURAL SHEETS FOR DETAILS.
- 8. INSTALL NEW POND WEIR PER DETAIL "H" SHEET C102.
- 9. INSTALL NEW 16' WIDE CONCRETE RUNDOWN.
- 10. INSTALL CURB OPENING PER DETAIL "K" SHEET C102.
- 11. EXISTING BILLBOARD TO REMAIN. MATCH EXISTING GRADE WITHIN 5' OF BILLBOARD FOUNDATION. SEE DETAIL "D" SHEET C102.
- 12. INSTALL NEW 10" NYLOPLAST DOME INLET OR APPROVED EQUAL.
- 13. INSTALL NEW 10" NYLOPLAST DROP-IN INLET OR APPROVED
- 14. INSTALL NEW 30" NYLOPLAST DOME INLET OR APPROVED EQUAL.
- 15. INSTALL STORM DRAIN CAP.
- 16. INSTALL PRE-FABRICATED STORM DRAIN FITTING WITH WATER-TIGHT GASKET, SEE PLAN FOR SIZE.
- 17. CONSTRUCT NEW 24" SIDEWALK CULVERT PER COA STD DWG. 2236.
- 18. INSTALL NEW RIP RAP SWALE PER DETAIL "F" SHEET C102.
- 19. DAYLIGHT EXISTING STORM DRAIN INTO SWALE.
- 20. INSTALL PRE-FABRICATED STORM DRAIN BEND. SEE PLAN FOR SIZE.
- 21. CONSTRUCT NEW DOUBLE 24" SIDEWALK CULVERT PER COA STD DWG. 2236.
- 22. INSTALL CONCRETE HEADER CURB PER COA STD DWG. 2415.
- * NOT ALL KEYED NOTES USED ON THIS SHEET

 ** FOR TYPICAL CROSS—SECTIONS SEE SHEET C102

SPORTSPLEX


tract A, loop industrial park Albuquerque, New Mexico

grading and drainage plan

date 5-20-15 sheet -101

Harmon Rita T.

From:

Mazur, Lynn < lmazur@amafca.org>

Sent:

Friday, May 29, 2015 2:43 PM

To:

Wolfenbarger, Jeanne

Cc:

Harmon Rita T.; Bruce Stidworthy (bstidwor@bhinc.com); Matthew Satches

(msatches@bhinc.com)

Subject:

PdN Sportsplex

Re:

Paseo del Norte Sportsplex, City Project No. 1004205, ZAP C-17

Engineer's Stamp dated 5/20/15

AMAFCA approves release of building permit. The 15-foot easement along the toe of the Domingo Baca Channel has been granted to AMAFCA and recorded at the County Clerk's office.

Albuquerque Metropolitan Arroyo Flood Control Authority

Lynn M. Mazur, P.E., C.F.M.
Development Review Engineer
2600 Prospect Ave NE
Albuquerque, NM 87107

Office: (505) 884-2215 Mobile: (505) 362-1273

The unauthorized disclosure or interception of e-mail is a federal crime. See 18 U.S.C. § 2517(4). This e-mail is intended only for the use of those to whom it is addressed and may contain information which is privileged, confidential and exempt from disclosures under the law. If you have received this e-mail in error, do not distribute or copy it. Return it immediately with attachments, if any, and notify me by telephone at (505) 884-2215.

```
AHYMO PROGRAM (AHYMO-S4)
                                                    - Version: S4.01a - Rel: 01a
             RUN DATE (MON/DAY/YR) = 05/20/2015
             START TIME (HR:MIN:SEC) = 08:54:28
                                                    USER NO.=
AHYMO_Temp_User:20122010
             INPUT FILE = P:\20150146\CDP\Hydro\Building Permit\AHYMO
WORKAREA\100YR-BP-SUB.HYM
       AHYMO FILE FOR ALBUQUERQUE SPORTS COMPLEX - ALBUQUERQUE, NM , BH PROJ # 2015
       100 YEAR - 6 HOUR STORM
    *S
    *S
       INPUT FILE -- P:\20150146\CDP\HYDRO\AHYMO\100YR-BP-SUB.HYM
    *S
      OUTPUT FILE -- P:\20150146\CDP\HYDRO\AHYMO\100YR-BP-SUB.OUT
    *AHYMO FOR PROPOSED AND RESERVOIR ROUTING CONDITION.
    START
                          TIME=0.0 HR PUNCH CODE=0
    ********
    LOCATION
                        ALBUQUERQUE, NEW MEXICO
         City of Albuquerque soil infiltration values (LAND FACTORS) used for
computations.
         Land Treatment
                            Initial Abstr.(in)
                                                  Unif. Infilt.(in/hour)
                            0.65
                                                  1.67
              Α
               В
                            0.50
                                                  1.25
               C
                            0.35
                                                  0.83
              D
                            0.10
                                                  0.04
    ************************
      6 HR RAINFALL TABLE
    *******************
    *100 YEAR - 6 HOUR
                          TYPE=1 RAIN QUARTER=0.0
   RAINFALL
                                      RAIN ONE=2.01 IN RAIN SIX=2.35 IN
                                      RAIN DAY=2.75 IN DT=0.05 HRS
                   6-HOUR RAINFALL DIST. - BASED ON NOAA ATLAS 14 FOR CONVECTIVE
AREAS (NM & AZ) - D1
                         0.050000 HOURS
                                                              6.000000 HOURS
                  DT =
                                               END TIME =
                            0.0023
                                                     0.0099
                     0.0000
                                    0.0046
                                             0.0071
                                                             0.0127
                                                                     0.0159
                                                             0.0595
                     0.0203
                             0.0272
                                     0,0347
                                             0.0424
                                                     0.0509
                                                                     0.0684
                                     0.0974
                                             0.1084
                     0.0776
                             0.0870
                                                     0.1204
                                                             0.1437
                                                                     0.1728
                     0.2117
                             0.2559
                                     0.3104
                                             0.3831
                                                     0.4649
                                                             0.6062
                                                                     0.8258
                     1.2021
                                     1.6752
                                                                     1.9905
                             1.4666
                                             1.7800
                                                     1.8719
                                                             1.9379
                                             2.1259
                                                                     2.1629
                     2.0362
                             2.0697
                                     2.1005
                                                     2.1418
                                                             2.1530
                     2.1722
                             2.1803
                                     2.1879
                                             2.1953
                                                     2.2025
                                                             2.2084
                                                                     2.2118
                             2.2186
                     2.2152
                                             2.2247
                                                             2.2307
                                     2.2217
                                                     2.2278
                             2.2391
                                     2.2417
                     2.2363
                                             2.2443
                                                     2.2469
                                                             2.2494
                                                                     2.2518
                                                     2.2633
                                                             2.2654
                     2.2542
                             2.2565
                                     2.2588
                                             2.2611
                                                                     2.2676
                     2.2697
                             2.2717
                                     2.2738
                                             2.2758
                                                     2.2778
                                                             2.2798
                                                                     2.2817
                                             2.2893
                                                     2.2911
                                                             2.2930
                     2.2837
                             2.2856
                                     2.2874
                                                                     2.2948
                             2.2983
                     2.2965
                                     2.3000
                                             2.3017
                                                     2.3034
                                                             2.3051
                                                                     2.3068
                             2.3100
2.3210
                     2.3084
                                             2.3133
                                     2.3117
                                                     2.3148
                                                             2.3164
                                                                     2.3180
                     2.3195
                                                     2.3255
2.3355
                                                                     2.3284
                                     2.3225
                                             2.3240
                                                             2.3269
                             2.3313
                                     2.3327
                     2.3298
                                             2.3341
                                                             2.3368
                                                                     2.3382
                     2.3396
                             2.3409
                                     2.3422
                                             2.3436
                                                     2.3449
                                                             2.3462
                                                                     2.3474
                     2.3487
                             2.3500
```

Page 1

```
*S
ş.
*C***************************
*S* COMPUTE BASIN DEVELOPED CONDITIONS
*S
*S BASIN 1
                      ID=1 HYD=B1 AREA=.01011SQ MI
COMPUTE NM HYD
                            PER A=0 PER B=0 PER C=80.2 PER D=19.8
```

K = 0.072649HR TP = 0.133300HR K/TP RATIO = 0.545000 SHAPE CONSTANT, N = 7.106428UNIT PEAK = 7.9031 CFS UNIT VOLUME = 0.9978P60 = 2.0100AREA = 0.002002 SQ MI IA = 0.10000 INCHESINF = 0.04000INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = 0.050000

K = 0.107446HRTP = 0.133300HR K/TP RATIO = 0.806046 SHAPE CONSTANT, N = 4.440407UNIT PEAK = 23.329 CFS UNIT VOLUME = 1.001 B = 383.54 P60 = 2.01000.008108 SQ MI IA = 0.35000 INCHESAREA = INF = 0.83000INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = 0.050000

PRINT HYD ID=1CODE=20

HYDROGRAPH FROM AREA B1

TP=0.1333 HR MASS RAIN=-1

TIME	TIME FLOW	FLOW	TIME	TIME FLOW	FLOW	TIME	FLOW		
1 21/12	HRS	CFS	12111	HRS	CFS	HRS	CFS		
HRS	CFS		HRS	CFS					
	0.000	0.0		2.000	2.4	4.000	0.0		
6.000	0.0			2 000					
	1.000	0.3		3.000	0.1	5.000	0.0		
RUNOFF VOLUME = 1.38795 INCHES = 0.7484 ACRE-FEET									
0.0101	PEAK DISC SQ. MI.	HARGE RA	AIE =	23.87 CF	S) AT	1.500 HOURS B	ASIN AREA =		

^{*}S BASIN 2

COMPUTE NM HYD

ID=2 HYD=B2 AREA=.00425SQ MI

PER A=0 PER B=0 PER C=52.1 PER D=47.9
TP=0.1333 HR MASS RAIN=-1

K = 0.072649HRTP = 0.133300HRK/TP RATIO = 0.545000SHAPE CONSTANT, N = 7.106428UNIT PEAK = 8.0372 CFS UNIT VOLUME = 0.9978526.28 P60 = 2.0100AREA = INF = 0.040000.002036 SQ MI IA = 0.10000 INCHESINCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = 0.050000

K/TP RATIO = 0.806046K = 0.107446HR TP = 0.133300HRSHAPE CONSTANT, N = 4.440407UNIT PEAK = 6.3710CFS UNIT VOLUME = 0.9998383.54 B = P60 = 2.0100AREA = 0.002214 SQ MI IA = 0.35000 INCHESINF = 0.83000INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = 0.050000

PRINT HYD

ID=2 CODE=20

HYDROGRAPH FROM AREA B2

	TIME	FLOW	TIME	FLOW	TIME	FLOW
TIME	FLOW	TIME	FLOW			
LIDG	HRS	CFS	HRS	CFS	HRS	CFS
HRS	CFS	HRS	CFS	1 2	4 000	0.0
c 000	0.000	0.0	2.000	1.3	4.000	0.0
6.000	0.0	0.2	2 000	0 0	5 000	0.0
	1.000	0.3	3.000	0.0	5.000	0.0
	RUNOFF VO	LUME = 1.6	3935 INCHES	=	0.3716 ACR	E-FEET
	PEAK DISC	HARGE RATE =	/11.12 CF	AT (1.500 HOURS	BASIN AREA =
0.0043	SQ. MI.					

충

*S OFFSITE SOUTH

2

COMPUTE NM HYD

ID=3 HYD=B3 AREA=.00859SQ MI

PER A=0 PER B=0 PER C=5 PER D=95
TP=0.1333 HR MASS RAIN=-1

K = 0.072649 HR TP = 0.133300 HR K/TP RATIO = 0.545000 SHAPE CONSTANT, N = 7.106428 UNIT PEAK = 32.218 CFS UNIT VOLUME = 0.9988 B = 526.28 P60 = 2.0100

Page 3

IA = 0.10000 INCHES INF = 0.04000AREA = 0.008161 SQ MI INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT =

0.050000

K = 0.107446HRTP = 0.133300HR K/TP RATIO = 0.806046SHAPE CONSTANT, N = 4.440407UNIT PEAK = 1.2358 CFS UNIT VOLUME = 0.9924383.54 P60 = 2.01000.000430 SQ MI IA = 0.35000 INCHESINF = 0.83000AREA = INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT =

0.050000

PRINT HYD ID=3CODE=20

HYDROGRAPH FROM AREA B3

TIME	TIME FLOW	FLOW TIME	TIME FLOW	FLOW	TIME	FLOW
	HRS	CFS	HRS	CFS	HRS	CFS
HRS	CFS	HRS	CFS			
6 000	0.000	0.0	2.000	3.7	4.000	0.1
6.000	0.1 1.000	1.1	3.000	0.1	5.000	0.1
	1.000	1.1	3.000	0.1	3.000	0.1

RUNOFF VOLUME = 2.06074 INCHES 0.9441 ACRE-FEET = PEAK DISCHARGE RATE = 26.08 CFS AT 1.500 HOURS BASIN AREA = 0.0086 so. MI.

*S OFFSITE EAST

4

COMPUTE NM HYD

ID=4 HYD=B4 AREA=.00184S0 MI

PER A=0 PER B=0 PER C=100 PER D=0 TP=0.1333 HR MASS RAIN=-1

K = 0.107446HRTP = 0.133300HR K/TP RATIO = 0.806046SHAPE CONSTANT, N = 4.440407UNIT PEAK = 5.2941 CFS UNIT VOLUME = 0.9995B = 383.54 P60 = 2.0100AREA = IA = 0.35000 INCHESINF = 0.830000.001840 SQ MI INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = 0.050000

PRINT HYD ID=4 CODE=20

HYDROGRAPH FROM AREA B4

FLOW FLOW TIME FLOW TIME TIME Page 4

	100YR-BP-SUB.OUT								
TIME	FLOW	TIME	FLOW						
	HRS	CFS	HRS	CFS	HRS	CFS			
HRS	CFS	HRS	CFS						
	0.000	0.0	1.000	0.0	2.000	0.3			
3.000	0.0								

RUNOFF VOLUME = 1.21081 INCHES = 0.1188 ACRE-FEET PEAK DISCHARGE RATE = 4.02 CFS AT 1.500 HOURS BASIN AREA = 0.0018 SQ. MI.

* * .

. *

*S ADDITION OF OFFSITE SOUTH TO BASIN 2

ADD HYD ID=20 HYD=SOUTHB2 ID I=3 ID II=2 CODE=20 PRINT HYD ID=20 CODE=20

HYDROGRAPH FROM AREA SOUTHB2

TIME	TIME FLOW	FLOW TIME	TIME FLOW	FLOW	TIME	FLOW
1 21 12	HRS	CFS	HRS	CFS	HRS	CFS
HRS	CFS	HRS	CFS			
	0.000	0.0	2.000	5.1	4.000	0.1
6.000	0.2					
	1.000	1.3	3.000	0.1	5.000	0.1

RUNOFF VOLUME = 1.92121 INCHES = 1.3156 ACRE-FEET PEAK DISCHARGE RATE = 37.19 CFS AT 1.500 HOURS BASIN AREA = 0.0128 SQ. MI.

*

*S ADDITION OF OFFSITE EAST TO BASIN 2

ADD HYD ID=21 HYD=EASTB2 ID I=4 ID II=20 CODE=20 PRINT HYD ID=21 CODE=20

HYDROGRAPH FROM AREA EASTB2

TIME	TIME FLOW	FLOW TIME	TIME FLOW	FLOW	TIME	FLOW
1 1111	HRS	CFS	HRS	CFS	HRS	CFS
HRS	CFS 0.000	HRS 0.0	CFS 2.000	5.4	4.000	0.1
6.000	0.000	0.0	2.000	3.4	4.000	0.1
	1.000	1.3	3.000	0.2	5.000	0.1

RUNOFF VOLUME = 1.83216 INCHES = 1.4344 ACRE-FEET PEAK DISCHARGE RATE = 41.22 CFS AT 1.500 HOURS BASIN AREA = 0.0147 SQ. MI.

پ	*			.001K-BF-30B.	001		
	*S ROUTE BASI ROUTE RESERVO	IR		HYD=PONDA I	:NFLOW ID=2		ED ON 30" NYLOPL
		0	.010	0.0000	5	074.50	
Da 12	4	3	.0000	0.0586	5	075.00 🛶	1
2017		8 9	.250	0.1190	5	075.50 -	11/3
0 ((314))	2/322/3.1) 13	3.500	0.1996	5	076.00 ~	- King
0.60		17	7.000	0.2897	5	076.50	
(26	16 dr)	2:	1.250	0.3905	5	077.00	
		24	1.000	0.5269	5	077.50	To the same of the
		20	5.500	0.7450	5	078.00	D. Carlos
	* * * *	* * *	* * *	* * * *	* * *		D. D.
	TIME (HRS)	INFLOW (CFS)	ELEV (FEET)	VOLUME (AC-FT)	OUTFLOW (CFS)		
	0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 31.00	0.00 1.35 5.40 0.07 0.11 0.16 0.00	5074.50 5074.55 5074.59 5074.51 5074.50	0.000 0.006 0.238 0.010 0.001 0.002 0.003 0.000	0.00 0.29 15.01 0.52 0.07 0.10 0.15 0.01	in OI	n. Nor.

36.00 37.00 38.00 39.00 40.00 41.00 42.00 43.00 44.00 45.00 46.00 47.00 48.00 49.00 50.00 51.00 52.00 53.00 54.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	10 5074.50	0YR-BP-SUB. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	OUT 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.
TIME (HRS)	INFLOW (CFS)	ELEV (FEET)	VOLUME (AC-FT)	OUTFLOW (CFS)
56.00 57.00 58.00 59.00 60.00 61.00 62.00 63.00 64.00 65.00 66.00 67.00 70.00 71.00 72.00 73.00 74.00 75.00 76.00 77.00 78.00 79.00 80.00 81.00 82.00 83.00 84.00 85.00 89.00 89.00 89.00 90.00 91.00 92.00 93.00 94.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	5074.50 5074.50	0.000 0.000	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

. .

		10	OYR-BP-SUB.	OUT
95.00	0.00	5074.50	0.000	0.01
96.00	0.00	5074.50	0.000	0.01
97.00	0.00	5074.50	0.000	0.01
98.00 99.00	0.00 0.00	5074.50 5074.50	0.000	$\substack{0.01\\0.01}$
100.00	0.00	5074.50	0.000 0.000	0.01
101.00	0.00	5074.50	0.000	0.01
102.00	0.00	5074.50	0.000	0.01
103.00	0.00	5074.50	0.000	0.01
104.00	0.00	5074.50	0.000	0.01
105.00	0.00	5074.50	0.000	0.01
106.00 107.00	0.00 0.00	5074.50 5074.50	0.000 0.000	$0.01 \\ 0.01$
108.00	0.00	5074.50	0.000	0.01
109.00	0.00	5074.50	0.000	0.01
110.00	0.00	5074.50	0.000	0.01
111.00	0.00	5074.50	0.000	0.01
TIME	INFLOW	ELEV	VOLUME	OUTFLOW
(HRS)	(CFS)	(FEET)	(AC-FT)	(CFS)
112.00	0.00	5074.50	0.000	0.01
113.00 114.00	0.00 0.00	5074.50 5074.50	0.000	$\substack{0.01\\0.01}$
115.00	0.00	5074.50	0.000	0.01
116.00	0.00	5074.50	0.000	0.01
117.00	0.00	5074.50	0.000	0.01
118.00	0.00	5074.50	0.000	0.01
119.00 120.00	$0.00 \\ 0.00$	5074.50 5074.50	0.000 0.000	$\begin{array}{c} 0.01 \\ 0.01 \end{array}$
121.00	0.00	5074.50	0.000	0.01
122.00	0.00	5074.50	0.000	0.01
123.00	0.00	5074.50	0.000	0.01
124.00	0.00	5074.50	0.000	0.01
125.00 126.00	0.00 0.00	5074.50 5074.50	0.000 0.000	$0.01 \\ 0.01$
127.00	0.00	5074.50	0.000	0.01
128.00	0.00	5074.50	0.000	0.01
129.00	0.00	5074.50	0.000	0.01
130.00 131.00	0.00	5074.50	0.000	0.01
132.00	0.00 0.00	5074.50 5074.50	0.000 0.000	$\begin{array}{c} 0.01 \\ 0.01 \end{array}$
133.00	0.00	5074.50	0.000	0.01
134.00	0.00	5074.50	0.000	0.01
135.00	0.00	5074.50	0.000	0.01
136.00	0.00	5074.50	0.000	0.01
137.00 138.00	$0.00 \\ 0.00$	5074.50 5074.50	0.000 0.000	$\begin{array}{c} 0.01 \\ 0.01 \end{array}$
139.00	0.00	5074.50	0.000	0.01
140.00	0.00	5074.50	0.000	0.01
141.00	0.00	5074.50	0.000	0.01
142.00	0.00	5074.50	0.000	0.01
143.00 144.00	0.00 0.00	5074.50 5074.50	0.000 0.000	$\begin{array}{c} 0.01 \\ 0.01 \end{array}$
145.00	0.00	5074.50	0.000	0.01
146.00	0.00	5074.50	0.000	0.01
147.00	0.00	5074.50	0.000	0.01
148.00	0.00	5074.50	0.000	0.01
149.00 150.00	$0.00 \\ 0.00$	5074.50 5074.50	0.000 0.000	$\begin{array}{c} 0.01 \\ 0.01 \end{array}$
151.00	0.00	5074.50	0.000	0.01
152.00	0.00	5074.50	0.000	0.01
153.00	0.00	5074.50	0.000	0.01
			Page 8	

.

```
100YR-BP-SUB.OUT
   154.00
                   0.00
                           5074.50
                                           0.000
                                                        0.01
   155.00
                   0.00
                           5074.50
                                           0.000
                                                        0.01
                   0.00
                           5074.50
   156.00
                                           0.000
                                                        0.01
                           5074.50
                   0.00
   157.00
                                           0.000
                                                        0.01
                   0.00
                           5074.50
   158.00
                                           0.000
                                                        0.01
   159.00
                   0.00
                           5074.50
                                           0.000
                                                        0.01
                           5074.50
5074.50
   160.00
                   0.00
                                           0.000
                                                        0.01
   161.00
                   0.00
                                           0.000
                                                        0.01
   162.00
                           5074.50
                                           0.000
                   0.00
                                                        0.01
   163.00
                   0.00
                           5074.50
                                           0.000
                                                        0.01
   164.00
                           5074.50
                   0.00
                                           0.000
                                                        0.01
                           5074.50
   165.00
                   0.00
                                           0.000
                                                        0.01
   166.00
                   0.00
                           5074.50
                                           0.000
                                                        0.01
   167.00
                           5074.50
                   0.00
                                           0.000
                                                        0.01
    TIME
                INFLOW
                            ELEV
                                         VOLUME
                                                    OUTFLOW
                (CFS)
                            (FEET)
                                         (AC-FT)
    (HRS)
                                                     (CFS)
                   0.00
   168.00
                           5074.50
                                           0.000
                                                        0.01
   169.00
                   0.00
                           5074.50
                                           0.000
                                                        0.01
                           5074.50
   170.00
                   0.00
                                           0.000
                                                        0.01
                           5074.50
   171.00
                   0.00
                                           0.000
                                                        0.01
   172.00
                   0.00
                           5074.50
                                           0.000
                                                        0.01
                           5074.50
5074.50
5074.50
                                           0.000
   173.00
                   0.00
                                                        0.01
   174.00
175.00
                   0.00
                                           0.000
                                                        0.01
                   0.00
                                           0.000
                                                        0.01
   176.00
                           5074.50
                                           0.000
                   0.00
                                                        0.01
   177.00
                           5074.50
                   0.00
                                           0.000
                                                        0.01
   178.00
                   0.00
                           5074.50
                                           0.000
                                                        0.01
                   0.00
                           5074.50
   179.00
                                           0.000
                                                        0.01
                           5074.50
   180.00
                   0.00
                                           0.000
                                                        0.01
                           5074.50
5074.50
5074.50
5074.50
5074.50
   181.00
                   0.00
                                           0.000
                                                        0.01
   182.00
183.00
184.00
                   0.00
                                           0.000
                                                        0.01
                   0.00
                                           0.000
                                                        0.01
                   0.00
                                           0.000
                                                        0.01
   185.00
                   0.00
                                           0.000
                                                        0.01
   186.00
                   0.00
                           5074.50
                                           0.000
                                                        0.01
   187.00
                   0.00
                           5074.50
                                           0.000
                                                        0.01
   188.00
                   0.00
                           5074.50
                                           0.000
                                                        0.01
                   0.00
                           5074.50
   189.00
                                           0.000
                                                        0.01
                           5074.50
5074.50
5074.50
5074.50
5074.50
   190.00
                   0.00
                                           0.000
                                                        0.01
   191.00
                   0.00
                                           0.000
                                                        0.01
   192.00
193.00
                                                        0.01
                   0.00
                                           0.000
                   0.00
                                           0.000
                                                        0.01
   194.00
                   0.00
                                           0.000
                                                        0.01
   195.00
                   0.00
                           5074.50
                                           0.000
                                                        0.01
                           5074.50
   196.00
                   0.00
                                           0.000
                                                        0.01
                           5074.50
   197.00
                   0.00
                                           0.000
                                                        0.01
                           5074.50
   198.00
                   0.00
                                           0.000
                                                        0.01
                           5074.50 0.000 U.UI
22.796 CFS - PEAK OCCURS AT HOUR
ELEVATION = 5077.281
   199.00
                   0.00
 PEAK DISCHARGE =
                                                                        1.65
 MAXIMUM WATER SURFACE ELEVATION =
 MAXIMUM STORAGE =
                                                    INCREMENTAL TIME=
                                                                              0.050000HRS
*
*S ADDITION OF POND "A" TO BASIN 1.
                            ID=22 HYD=PAB1 ID I=1 ID II=10 CODE=20
ADD HYD
PRINT HYD
                                 ID=22 CODE=20
```

TT115	TIME	FLOW	77145	TIME	FLOW	TIME	FLOW
TIME	FLOW HRS	CFS	TIME	FLOW HRS	CFS	HRS	CFS
HRS	CFS 0.000	0.0	HRS	CFS 40.000	0.0	80.000	0.0
120.000	0.0 1.000	0.6	160.000	41.000	0.0	81.000	0.0
121.000	2.000	17.4	161.000	42.000	0.0	82.000	0.0
122.000	3.000	0.6	162.000	43.000	0.0	83.000	0.0
123.000	4.000	0.1	163.000	44.000	0.0	84.000	0.0
124.000	0.0 5.000	0.1	164.000	45.000	0.0	85.000	0.0
125.000	0.0 6.000	0.2	165.000	0.0 46.000	0.0	86.000	0.0
126.000	0.0 7.000	0.0	166.000	0.0 47.000	0.0	87.000	0.0
127.000	0.0 8.000	0.0	167.000	0.0 48.000	0.0	88.000	0.0
128.000	0.0 9.000	0.0	168.000	0.0	0.0	89.000	0.0
129.000	0.0	0.0	169.000	0.0	0.0	90.000	0.0
130.000	0.0	0.0	170.000	0.0	0.0	91.000	0.0
131.000	0.0	0.0	171.000	0.0	0.0	92.000	0.0
132.000	0.0	0.0	172.000	0.0	0.0	93.000	0.0
133.000	0.0		173.000	0.0	0.0	94.000	0.0
134.000	0.0	0.0	174.000	0.0			0.0
135.000	15.000	0.0	175.000	55.000	0.0	95.000	
136.000	16.000	0.0	176.000	56.000	0.0	96.000	0.0
137.000	17.000	0.0	177.000	57.000	0.0	97.000	0.0
138.000	18.000	0.0	178.000	58.000	0.0	98.000	0.0
139.000	19.000	0.0	179.000	59.000	0.0	99.000	0.0
140.000	20.000	0.0	180.000	60.000	0.0	100.000	0.0
	21.000	0.0		61.000	0.0	101.000	0.0
141.000	22.000	0.0	181.000	62.000	0.0	102.000	0.0
142.000	23.000	0.0	182.000	63.000	0.0	103.000	0.0
143.000	0.0	0.0	183.000	64.000	0.0	104.000	0.0
144.000	0.0	0.0	184.000	0.0	0.0	105.000	0.0
145.000	0.0	0.0	185.000		0.0	106.000	0.0
146.000	0.0		186.000	0.0	0.0	107.000	0.0
147.000	0.0	0.0	187.000	0.0			
148.000	28.000	0.0	188.000		0.0	108.000	0.0
				Page	10		

				100YR-BP-SUE	3.OUT		
	29.000	0.0		69.000	0.0	109.000	0.0
149.000	0.0	189	9.000	0.0 70.000	0.0	110 000	0 0
150 000	30.000	19	000	0.0	0.0	110.000	0.0
	31.000	0.0		71.000	0.0	111.000	0.0
151.000	0.0	19	1.000	0.0		442 000	
152 000	32.000			72.000	0.0	112.000	0.0
132.000	33.000	0.0	2.000	73.000	0.0	113.000	0.0
153.000	0.0	19	3.000	0.0			
154 000	34.000			74.000	0.0	114.000	0.0
154.000	0.0 35.000	0.0	14.000	0.0 75.000	0.0	115.000	0.0
155.000	0.0	19	5.000	0.0			
	36.000	0.0		76.000	0.0	116.000	0.0
	0.0 37.000	19	6.000	0.0 77.000	0.0	117.000	0.0
	0.0	19	7.000	0.0	0.0	117.000	0.0
	38.000	0.0		78.000	0.0	118.000	0.0
158.000	0.0	19	000.8	0.0	0.0	110 000	0 0
159 000	39.000	19	9 000	79.000	0.0	119.000	0.0
133.000	0.0	10		0.0			
	DINIOFE VOLUME	_	1 777	1 F THICKES	3	2420 ACDE EEE	_

RUNOFF VOLUME = 1.77215 INCHES = 2.3430 ACRE-FEET PEAK DISCHARGE RATE = 44.13 CFS AT 1.550 HOURS BASIN AREA = 0.0248 SQ. MI.

* *S ROUTE BASIN 1 TO POND "B". OUTFLOW BASED ON WEIR CALCULATIONS. ROUTE RESERVOIR ID=11 HYD=PONDB INFLOW ID=22 CODE=20 OUTFLOW (CFS) STORAGE(AC-FT) ELEV (FT) 0.010 0.0001 5070.00 0.015 0.0154 5070.50 0.020 0.0425 5071.00 7.495 0.0694 5071.50 21.200 0.1004 5072.00 38.947 0.1358 5072.50 59.963 0.1757 5073.00

TIME	INFLOW	ELEV	VOLUME	OUTFLOW
(HRS)	(CFS)	(FEET)	(AC-FT)	(CFS)
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00	0.00 0.56 17.40 0.61 0.09 0.12 0.18 0.01	5069.00 5070.08 5071.90 5071.05 5071.00 5071.01 5071.01	-0.031 0.003 0.094 0.045 0.043 0.043 0.042 Page 11	0.00 0.01 18.55 0.70 0.09 0.12 0.18 0.02

		100	OVP_RD_SHR	OUT
8.00 9.00 10.00 11.00 13.00 14.00 15.00 16.00 17.00 18.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00 40.00 41.00 42.00 43.00 40.00 41.00 42.00 43.00 40.00 41.00 41.00 42.00 43.00 40.00 50.0	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	5070.98 5070.97 5070.95 5070.92 5070.90 5070.88 5070.86 5070.84 5070.82 5070.84 5070.79 5070.78 5070.79 5070.75 5070.75 5070.70 5070.70 5070.69 5070.69 5070.65 5070.65 5070.65 5070.65 5070.65 5070.50 5070.50 5070.50 5070.50 5070.50 5070.50 5070.50 5070.50 5070.50 5070.50 5070.50 5070.50 5070.50 5070.50 5070.50 5070.50 5070.50 5070.50 5070.50 5070.60	0YR-BP-SUB. 6 0.042 0.041 0.040 0.039 0.038 0.037 0.036 0.035 0.035 0.031 0.031 0.030 0.029 0.029 0.029 0.028 0.027 0.026 0.025 0.026 0.025 0.024 0.024 0.023 0.023 0.021 0.020 0.021 0.020 0.021 0.020 0.019 0.019 0.018 0.017 0.016 0.016 0.015 0.015 0.015	0.02 0.02
TIME (HRS)	INFLOW (CFS)	ELEV (FEET)	VOLUME (AC-FT)	OUTFLOW (CFS)
56.00 57.00 58.00 59.00 60.00 61.00 62.00 63.00 64.00 65.00 66.00	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	5070.45 5070.44 5070.43 5070.42 5070.41 5070.38 5070.37 5070.36 5070.35	0.014 0.014 0.013 0.013 0.013 0.012 0.012 0.012 0.011 0.011 0.011	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

			OYR-BP-SUB.	TUC
67.00 68.00 69.00 70.00 71.00 72.00 73.00 74.00 75.00 76.00 77.00 78.00	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	5070.34 5070.33 5070.32 5070.31 5070.29 5070.29 5070.28 5070.27 5070.26 5070.26 5070.25	0.010 0.010 0.010 0.010 0.010 0.009 0.009 0.009 0.009 0.008 0.008 0.008	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
79.00 80.00 81.00 82.00 83.00 84.00 85.00 86.00 87.00 88.00 89.00 90.00 91.00	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	5070.24 5070.24 5070.23 5070.22 5070.21 5070.21 5070.20 5070.19 5070.19 5070.18 5070.18 5070.17	0.008 0.007 0.007 0.007 0.007 0.006 0.006 0.006 0.006 0.006 0.006	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
93.00 94.00 95.00 96.00 97.00 98.00 99.00 101.00 102.00 103.00 104.00 105.00 106.00 107.00 108.00 110.00 111.00	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	5070.17 5070.16 5070.16 5070.15 5070.15 5070.14 5070.14 5070.13 5070.13 5070.13 5070.12 5070.12 5070.12 5070.12 5070.11 5070.11 5070.11 5070.11	0.003 0.005 0.005 0.005 0.005 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.003 0.003 0.003	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
TIME (HRS)	INFLOW (CFS)	ELEV (FEET)	VOLUME (AC-FT)	OUTFLOW (CFS)
112.00 113.00 114.00 115.00 116.00 117.00 118.00 119.00 120.00 121.00 122.00 123.00 124.00 125.00	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	5070.10 5070.09 5070.09 5070.09 5070.09 5070.08 5070.08 5070.08 5070.08 5070.08 5070.07 5070.07	0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

		100	OYR-BP-SUB.	OUT	
126.00	0.01	5070.07	0.002	0.01	
127.00	0.01	5070.07	0.002	0.01	
128.00	0.01	5070.06	0.002	0.01	
129.00	0.01	5070.06	0.002	0.01	
130.00	0.01	5070.06	0.002	0.01	
131.00	0.01	5070.06	0.002	0.01	
132.00	0.01	5070.06	0.002	0.01	
133.00 134.00	0.01	5070.06 5070.06	0.002	0.01	
135.00	$\substack{0.01\\0.01}$	5070.05	0.002 0.002	$\substack{0.01\\0.01}$	
136.00	0.01	5070.05	0.002	0.01	
137.00	0.01	5070.05	0.002	0.01	
138.00	0.01	5070.05	0.002	0.01	
139.00	0.01	5070.05	0.002	0.01	
140.00	0.01	5070.05	0.002	0.01	
141.00	0.01	5070.05	0.001	0.01	
142.00	0.01	5070.04	0.001	0.01	
143.00	0.01	5070.04	0.001	0.01	
144.00	0.01	5070.04	0.001	0.01	
145.00	0.01	5070.04	0.001	0.01	
146.00 147.00	$\substack{0.01\\0.01}$	5070.04 5070.04	0.001	0.01	
148.00	0.01	5070.04	$0.001 \\ 0.001$	$\substack{0.01\\0.01}$	
149.00	0.01	5070.04	0.001	0.01	
150.00	0.01	5070.04	0.001	0.01	
151.00	0.01	5070.03	0.001	0.01	
152.00	0.01	5070.03	0.001	0.01	
153.00	0.01	5070.03	0.001	0.01	250
154.00	0.01	5070.03	0.001	0.01	
155.00	0.01	5070.03	0.001	0.01	
156.00	0.01	5070.03	0.001	0.01	
157.00	0.01	5070.03	0.001	0.01	
158.00 159.00	$\begin{array}{c} 0.01 \\ 0.01 \end{array}$	5070.03 5070.03	$0.001 \\ 0.001$	$\substack{0.01\\0.01}$	
160.00	0.01	5070.03	0.001	0.01	
161.00	0.01	5070.03	0.001	0.01	
162.00	0.01	5070.03	0.001	0.01	
163.00	0.01	5070.02	0.001	0.01	
164.00	0.01	5070.02	0.001	0.01	
165.00	0.01	5070.02	0.001	0.01	
166.00	0.01	5070.02	0.001	0.01	
167.00	0.01	5070.02	0.001	0.01	
TIME	INFLOW	ELEV	VOLUME	OUTFLOW	
(HRS)	(CFS)	(FEET)	(AC-FT)	(CFS)	
(IIIIO)	(6, 5)	(1 221)	(AC 11)	(613)	
168.00	0.01	5070.02	0.001	0.01	
169.00	0.01	5070.02	0.001	0.01	
170.00	0.01	5070.02	0.001	0.01	
171.00	0.01	5070.02	0.001	0.01	
172.00	0.01	5070.02	0.001	0.01	
173.00 174.00	0.01	5070.02	0.001	0.01	
175.00	$\substack{0.01\\0.01}$	5070.02 5070.02	$\substack{0.001\\0.001}$	$\substack{0.01\\0.01}$	
176.00	0.01	5070.02	0.001	0.01	
177.00	0.01	5070.02	0.001	0.01	
178.00	0.01	5070.02	0.001	0.01	
179.00	0.01	5070.02	0.001	0.01	
180.00	0.01	5070.02	0.001	0.01	
181.00	0.01	5070.02	0.001	0.01	
182.00	0.01	5070.02	0.001	0.01	
183.00	0.01	5070.01	0.001	0.01	
184.00	0.01	5070.01	0.001	0.01	
			Page 14		

2.6

```
100YR-BP-SUB.OUT
   185.00
                 0.01
                         5070.01
                                       0.001
                                                   0.01
   186.00
                 0.01
                         5070.01
                                       0.001
                                                   0.01
                         5070.01
   187.00
                 0.01
                                       0.001
                                                   0.01
   188.00
                 0.01
                         5070.01
                                       0.000
                                                   0.01
   189.00
                 0.01
                         5070.01
                                       0.000
                                                   0.01
   190.00
                 0.01
                         5070.01
                                       0.000
                                                   0.01
   191.00
                 0.01
                         5070.01
                                       0.000
                                                   0.01
   192.00
                 0.01
                         5070.01
                                       0.000
                                                   0.01
   193.00
                         5070.01
                 0.01
                                       0.000
                                                   0.01
   194.00
                 0.01
                         5070.01
                                       0.000
                                                   0.01
                         5070.01
   195.00
                 0.01
                                       0.000
                                                   0.01
   196.00
                 0.01
                         5070.01
                                       0.000
                                                   0.01
   197.00
                 0.01
                         5070.01
                                       0.000
                                                   0.01
   198.00
                         5070.01
                                       0.000
                 0.01
                                                   0.01
   199.00
                 0.01
                         5070.01
                                       0.000
                                                   0.01
                          42.833 CFS - PEAK OCCURS AT HOUR ELEVATION = 5072.592
 PEAK DISCHARGE =
                                                                 1.60
MAXIMUM WATER SURFACE ELEVATION =
MAXIMUM STORAGE =
                            0.1432 AC-FT
                                              INCREMENTAL TIME=
                                                                      0.050000HRS
*
*****
FINISH
```

END TIME (HR:MIN:SEC) = 08:54:28

NORMAL PROGRAM FINISH