

City of Albuquerque

P.O. BOX 1293 ALBUQUERQUE, NEW MEXICO 87103

March 8, 1999

Rick Beltramo, PE
Bohannan-Huston Inc.
7500 Jefferson NE
Albuquerque, NM 87109

RE: ENGINEER'S CERTIFICATION FOR OFFICE/WAREHOUSE (C-17/D19) RECEIVED JAN 19, 1999 FOR CERTIFICATE OF OCCUPANCY

ENGINEER'S STAMP DATED 1/18/99

Dear Mr. Beltramo:

Based on the information included in the submittal referenced above, City Hydrology accepts the Engineer's Certification for Certificate of Occupancy. Contact Vicki Chavez at Code Administration to obtain the Certificate of Occupancy for 3711 Paseo del Norte NE.

If I can be of further assistance, You may contact me at 768-2727.

Sincerely,

John P. Curtin, P.E.

Project Manager, PWD/Hyd

Notified

3-10-99

March 5, 1998

Jean Swalley
Bohannan-Huston, Inc.
7500 Jefferson NE
Albuquerque, NM 87109

RE: OFFICE - WAREHOUSE (C17-D19). GRADING AND DRAINAGE PLAN FOR BUILDING AND GRADING PERMIT APPROVALS. ENGINEER'S STAMP DATED 1-7-98.

Dear Ms. Swalley:

Based on the information provided on your January 12, 1998 submittal, the above referenced project is approved for Building Permit.

Prior to Certificate of Occupancy, a Engineer's Certification will be required. If I can be of further assistance, please feel free to contact me at 924-3984.

Sincefely,

Lisa Ann Manwill P.E.

Hydrology

c: Andrew Garcia

. . .

REVISED DRAINAGE REPORT FOR **BRADBURY & STAMM CONSTRUCTION**

OCTOBER 22, 1997

Prepared by:

BOHANNAN HUSTON COURTYARD I 7500 JEFFERSON NE ALBUQUERQUE, NEW MEXICO 87109

Prepared for:

BRADBURY & STAMM CONSTRUCTION 1217 1ST ST. NW ALBUQUERQUE, NM 87102

TRIGINGERS PLANNERS PROTOCKANASTRICIS 180 SCA. 189 SECTOR 1715

10.22.97

Date

PREPARED BY:

Jean Swalley, E.I.

PROFESSIONAL PROFESSIONAL UNDER THE SUPERVISION OF:

James R. Topmiller, P.E.

Date

9354

Cill MEER

H:\97284\CDP\A01-GRADE PLN\REPORTS\REVISED DRNG RPT.DOC

PEAK DISCHARGE (cfs/acre)

CURRENT CONDITIONS

BASIN	AREA		% LAND TF	REATMENT*	•	PEAK	PEAK DISCHARGE - (CFS/ACRE)**			
	(ACRES)	Α	В	C	Ď	Α	В	Ċ	Ď	UNDEVELOPEI (CFS)
1	9.60	85.00	15.00	0.00	0.00	1.56	2.28	3.14	4.7	16.01
2	4.10	85.00	15.00	0.00	0.00	1.56	2.28	3.14	4.7	6.84
3	1.68	85.00	15.00	0.00	0.00	1.56	2.28	3.14	4.7	2.80
4	2.94	85.00	15.00	0.00	0.00	1.56	2.28	3.14	4.7	4.90
5	2.96	85.00	15.00	0.00	0.00	1.56	2.28	3.14	4.7	4.94
										35.50

PHASE I CONDITIONS Construction of Office/Warehoue Only

BASIN AREA			% LAND TF	REATMENT'	•	PEAK	PEAK DISCHARGE - (CFS/ACRE)**			
	(ACRES)	A	В	C	D	Α	В	C	Ď	DEVELOPED (CFS)
1	9.60	85.00	15.00	0.00	0.00	1.56	2.28	3.14	4.7	16.01
2	4.10	85.00	15.00	0.00	0.00	1.56	2.28	3.14	4.7	6.84
3	1.68	0.00	15.00	15.00	70.00	1.56	2.28	3.14	4.7	6.89
4	2.94	0.00	10.00	30.00	60.00	1.56	2.28	3.14	4.7	11.73
5	2.96	0.00	20.00	30.00	50.00	1.56	2.28	3.14	4.7	11.09
										52.57

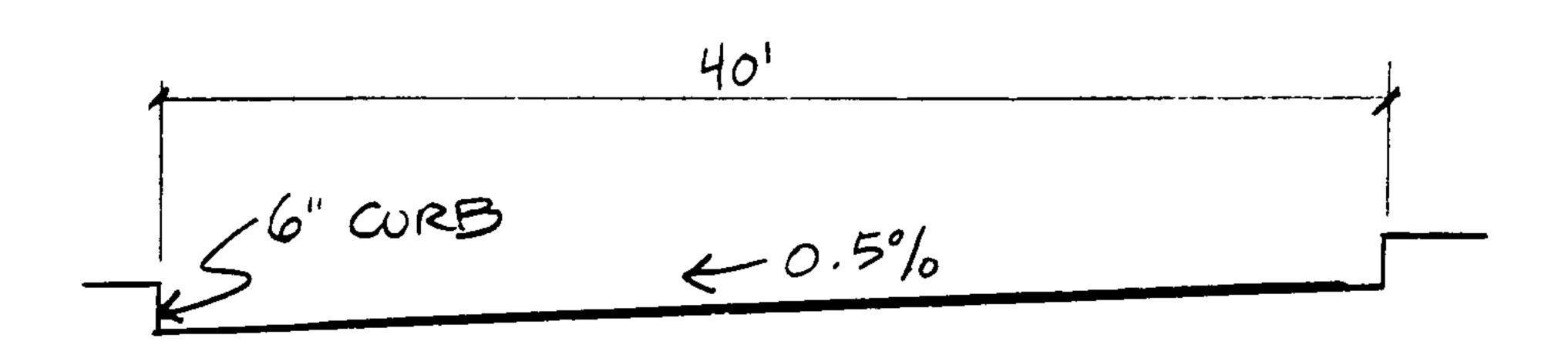
FULLY DEVELOPED CONDITIONS Construction of Office Building and East Side Development

BASIN	AREA		% LAND TREATMENT*				PEAK DISCHARGE - (CFS/ACRE)**			
	(ACRES)	A	В	С	D	Α	В	C	Ð	(CFS)
1	9.60	85.00	15.00	0.00	0.00	1.56	2.28	3.14	4.7	16.01
2	4.10	0.00	10.00	15.00	75.00	1.56	2.28	3.14	4.7	17.32
3	1.68	0.00	15.00	15.00	70.00	1.56	2.28	3.14	4.7	6.8 9
4	2.94	0.00	10.00	30.00	60.00	1.5 6	2.28	3.14	4.7	11.73
5	2.96	0.00	15.00	15.00	70.00	1.56	2.28	3.14	4.7	12.14
										64.10

NOTES:

Obtained from Section 22.2, Hydrology of the Development Process Manual, Volume 2, Design Criteria for the City of Albuquerque, Jan. 1993

^{*} Table A-4

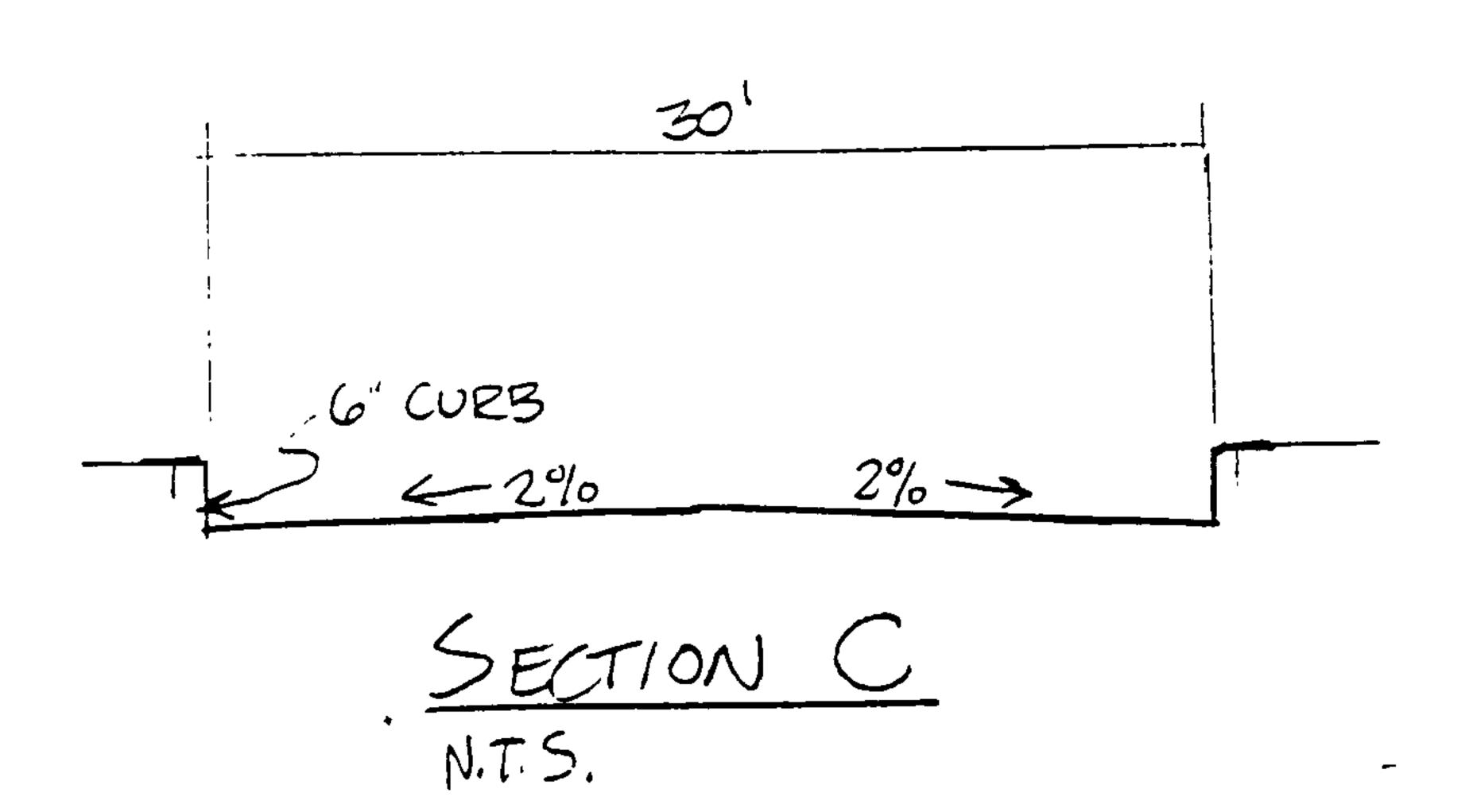

^{**} Table A-9

CUL-DE-SAC STREET HYDRAULICS

Manning's Co	efficient	0.017	(street)			
Slope		0.010	(minimum)			
Section Coordinates (ft.)		.5,0				
		0,0				
		.2,40				
		.7,40				
DEPTH	FLOW		FLOW	WETTED	FLOW	TOP
	AREA		RATE	PERIMETER	VELOCITY	WIDTH
INC	(SF)		(CFS)	(FT)	(FPS)	(FT)
0.10	1.00		1.20	20.10	1.20	20.00
0.20	4.00		7.50	40.20	1.90	40.00
			•		•	**
0.50	16.00		74.90	40.80	4.70	40.00

100-YEAR STORM FLOW

BASINS	B-2	(Phase III) (Phase III) (Phase III)	16.01 17.32 6.89	CFS =		
TOTAL FL	.OW		40.22	CFS	DEPTH = VELOCITY =	0.37 FT 3.65 FPS

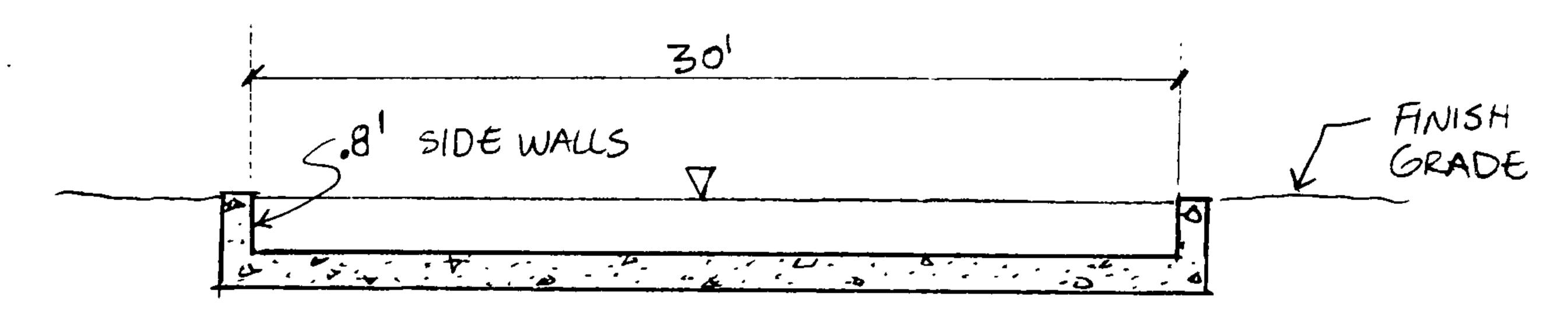

SECTION B N.T.S.

ACCESS STREET HYDRAULICS

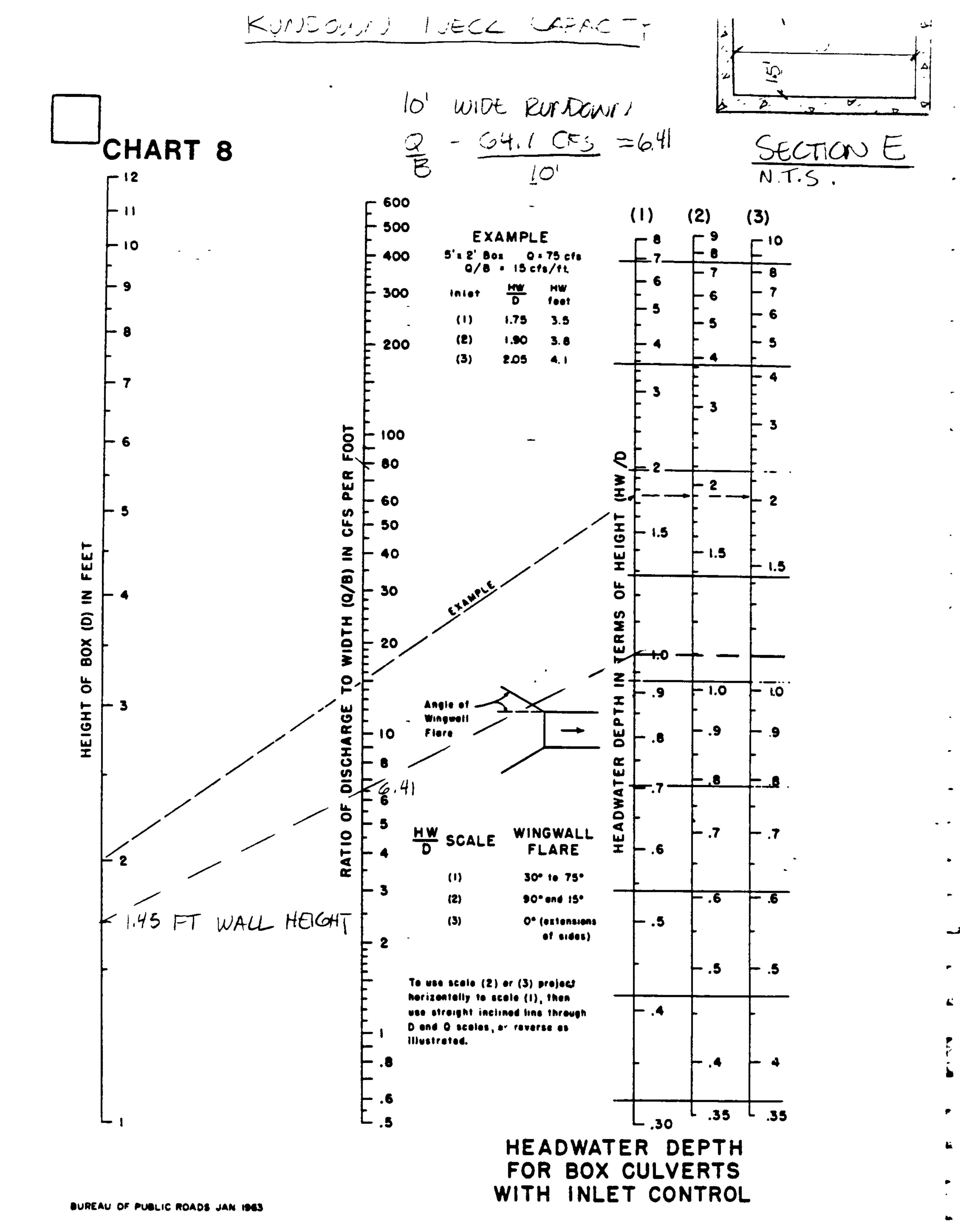
Manning's Co	afficient	0.017							
Manning's Coefficient Slope		0.017 0.010							
Section Coordinates (ft.)		.5,0							
		0,0							
		.3,15							
		0,30							
		.5,30							
DEPTH	FLOW		FLOW	WETTED	FLOW	TOP			
	AREA		RATE	PERIMETER	VELOCITY	WIDTH			
INC	(SF)		(CFS)	(FT)	(FPS)	(FT)			
0.10	0.50		0.60	10.20	1.20	10.00			
5020	and the state of t	ر . به کامار میسازند و اینکه با	3/12	and a larger of		2010			
		, 71 , 21	This has like	ACTIVATION OF THE PROPERTY OF	1 4 6 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Television			
0.40	7.50		25.60	30.80	3.40	30.00			
0.50	10.50		44.60	31.00	4.20	30.00			

100-YEAR STORM FLOW

BASINS	B-3 (Phase III)	6.89	_CFS		
TOTAL FLO	OW	6.89	CFS	DEPTH = VELOCITY =	0.25 FT 2.13 FPS


RUNDOWN WEIR OPENING

Weir Coefficient		3.000			
Section Coord	inates (ft.)	0, ع.			
	. ,	0,0			
		0,30			
		30, 8.			
DEPTH	FLOW		FLOW	FLOW	TOP
	AREA		RATE	VELOCITY	WIDTH
INC	<u>(SF)</u>		(CFS)	<u>(FPS)</u>	(FT)
0.10	3.00		2.85	0.95	30.00
0.20	6.00		8.05	1.34	30.00
0.30	9.00		14.79	1.64	30.00
0.40	12.00		22.77	1.90	30.00
0.50	15.00		31.82	2.12	30.00
0.60	18.00		41.83	2.32	30.00
;					
>					


100-YEAR STORM FLOW

		(1.1.455 111)		=
	B-5	(Phase III)	12.14	
	B-4	(Phase III)	11.73	
	B- 3	(Phase III)	6.89	
	B-2	(Phase III)	17.32	
BASINS	B-1	(Phase III)	16.01	CFS

TOTAL FLOW 64.09 CFS DEPTH = 0.797 FT VELOCITY = 2.68 FPS

SECTION D N.T.S.

1.5 FT WILL HE.G.T ACCOMMODATES FLOW OF 64,10 CFS IN THE 10' WIDE NECK.

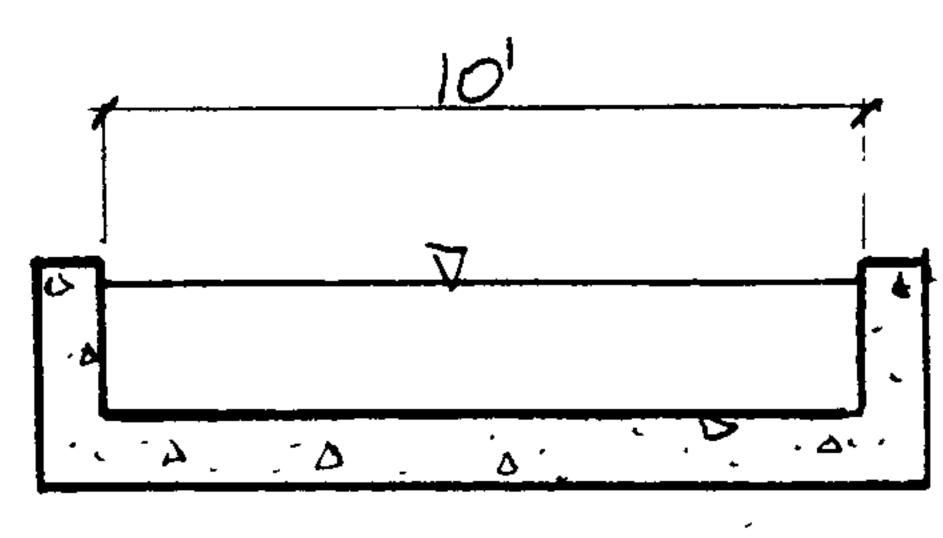
RUNDOWN STREAM CALCULATIONS

Manning's Coefficient Slope		0.013 0.0122	(concrete)			
Section Coord	inates (ft.)	1.5,0 0,0 0,10 1.5,10				
DEPTH	FLOW		FLOW	WETTED PERIMETER	FLOW	TOP WIDTH
INC	(SF)		(CFS)	(FT)	(FPS)	(FT)
0.10	1.00		2.70	10.20	2.70	10.00
0.20	2.00		8.40	10.40	4.20	10.00
0.30	3.00		16.30	10.60	5.40	10.00
0.40	4.00		26.00	10.80	6.50	10.00
0.50	5.00		37.30	11.00	7.50	10.00
0.60	6.00		50.00	11.20	8.30	10.00
0.90	9.00		94.90	11.80	10.50	10.00
1.00	10.00		111.80	12.00	11.20	10.00
1.10	11.00		129.60	12.20	11.80	10.00
1.20	12.00		148.20	12.40	12.40	10.00
1.30	13.00		167.60	12.60	12.90	10.00
1.40	14.00		187.60	12.80	13.40	10.00
1.50	15.00		208.30	13.00	13.90	10.00

100-YEAR STORM FLOW

 BASINS
 B-1 (Phase III)
 16.01 CFS

 B-2 (Phase III)
 17.32


 B-3 (Phase III)
 6.89

 B-4 (Phase III)
 11.73

 B-5 (Phase III)
 12.14

TOTAL FLOW 64.09 CFS

DEPTH = 0.702 FT VELOCITY = 9.12 FPS

SECTION F N.T.S.

97284\cdp\a01\Flow Calcs.xls - 9/9/97

CULVERT CALCULATIONS

FLOW CAPACITY

Manning's Coefficient

0.022 (corrugated steel)

Slope

0.01

Section

43" x 27" pipe-arch

Area

6.4 sf

Perimeter

Equivalent to a 36" circular pipe, or 9.42 ft

Hydraulic Radius (R)

Area/Perimeter = 6.4/9.42 = 0.68

Manning's Equation

 $Q_{cfs} = (1.49/n) A x R^{2/3} x S^{1/2}$

= $(1.49/.022) 6.4 \times 0.68^{2/3} \times 0.01^{1/2}$ = $(67.73) 6.4 \times 0.7723 \times 0.1$

 $= (67.73) 6.4 \times 0.7723 \times 0.1$

= 33.48 cfs

Velocity Equation

V = Q/A

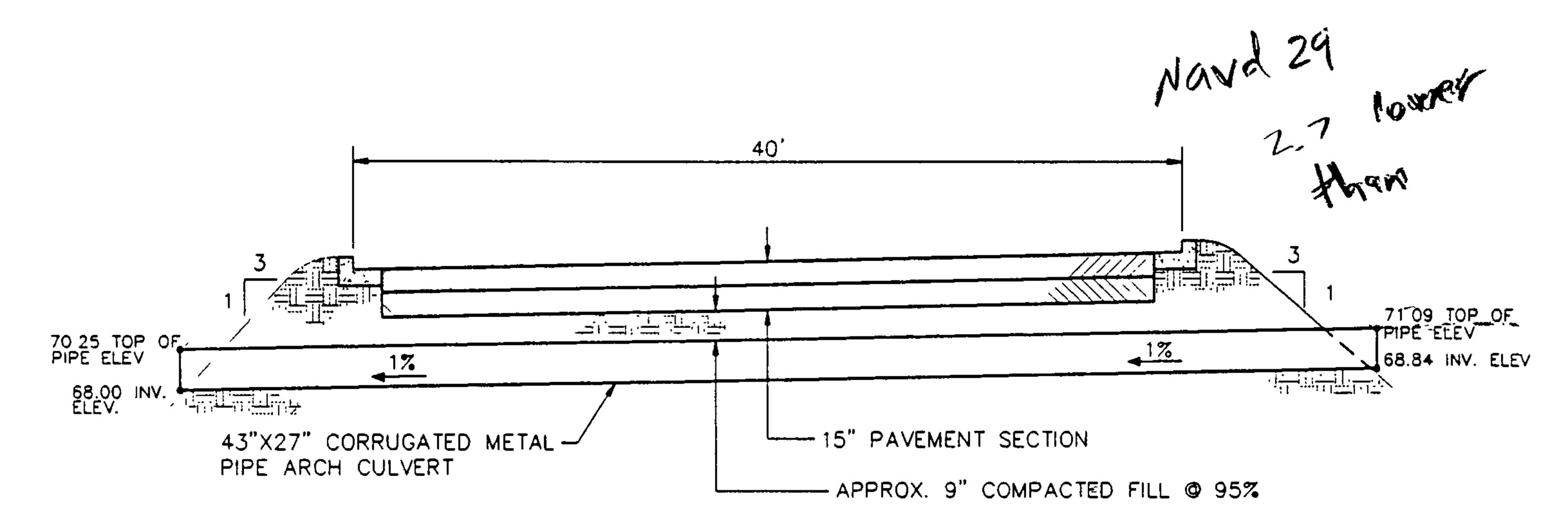
= 33.48/6.4

= 5.23 fps

100-YEAR STORM FLOW

BASINS E

B-1 (Phase III)


16.01 CFS

B-2 (Phase III)

17.32

TOTAL FLOW

33.33 CFS

SECTION G

CITY OF ALBUQUERQUE PLANNING DEPARTMENT DEVELOPMENT SERVICE / HYDROLOGY SECTION

DATE: /0-/3-/6 CONFERENCE RECAP

ZONE ATLAS PAGE NO:
DRAINAGE FILE: <u>C17/D019</u>
ZONING:
DRB: SUBJECT: Calibas
STREET ADDRESS (IF KNOWN):
SUBDIVISION NAME:
APPROVAL REQUESTED:
ATTENDANCE: Fred Ardman, Confis Cheme
FINDINGS:
Per Basin My/Curceptual Gradus Plan, 184I 16-22-97
Ver Dasin million
$\frac{1}{2}$
Ar site can discharge up to 17.32 cfs to the
Ju on on
1 eile Site Muset also
South west corner of the site. Site must also
accept 16 cfs undeveloped.
or c c c c c c c

THE UNDERSIGNED AGREES THAT THE ABOVE FINDINGS ARE SUMMARIZED ACCURATELY AND ARE SUBJECT TO CHANGE IF FURTHER INVESTIGATION REVEALS THAT THEY ARE NOT REASONABLE OR THAT THEY ARE BASED ON INACCURATE INFORMATION.

SIGNED: Curtic A. Charma

NAME (PRINT): Curtis A. Cherne

SIGNED: Jude C. When NAME (PRINT): FRED C. ARFMAN

^{**}NOTE** PLEASE PROVIDE A COPY OF THIS RECAP WITH YOUR DRAINAGE SUBMITTAL.

Cherne, Curtis

From: Cherne, Curtis

Sent: Friday, May 11, 2012 12:25 PM

To: 'Emily Johnson'

Cc: 'Imazur@amafca.org'; Firth, Deirdre M.; Dourte, Richard H.

Subject: RE: Albuquerque- Warehouse at NWC of Paseo Del Norte and Washington St. NE

Emily,

I am going through the drainage files (C17/D008 and C-17/D019)

I found some calcs for the 43"x27" cmp. They did not assume any pressure flow, just did a Manning's on it and came up with 33.48 cfs.

I am generating almost more questions than I have answers.

The Drainage Master Plan was done by Bohannon Huston in 1997. It doesn't specify a developed flow for this tract. It states "It is anticipated that generated flows form future development of parcels in Basin B-1 will be diverted to the existing culvert on the north side of the PDN frontage road or to the channel on the north side of the property."

The 16.3 cfs I told you on the phone for offsite flows was for a proposed site that did not develop. I searched the microfiche and determined the site near the southeast corner of this site has a retention pond. I don't have any info on the site for the large building north of the retention site mentioned above. It appears to drain north to the channel. AMAFCA may have the drainage plan for it.

I found a letter dated 8-15-06 from AMAFCA to Verlyn Miller P.E. of Miller Engineering Consultants concerning the ditch in the Paseo Del Norte (PDN) ROW has not been maintained well and the parking lot is being flooded. I believe this is the site with the culvert.

In conclusion,

This site (4001 PDN), the site to the west at 3801 PDN, and any offsite flows should drain through the culvert at 3701 PDN to the North Diversion Channel or with AMAFCA approval drain to the north. Your Conceptual Drainage Plan should demonstrate how this is to happen. Gravity flow would be preferred to pumping. There appears to be capacity issues with the channel downstream of the culvert in the DOT ROW. This should be addressed. In addition you should consult with AMAFCA since the North Diversion Channel is their facility. I have copied Lynn Mazur with AMAFCA on this e-mail.

Curtis Cherne, P.E., CFM Hydrology, COA 505-924-3986

From: Emily Johnson [mailto:ejohnson@colestl.com]

Sent: Thursday, May 03, 2012 8:19 AM

To: Cherne, Curtis

Subject: Albuquerque- Warehouse at NWC of Paseo Del Norte and Washington St. NE

Curtis-

Have you had a chance to review the attached property? We need to know if there are any detention requirements or water quality requirements.

Thanks,

Emily Johnson PE / LEED AP
Project Engineer III / ejohnson@colestl.com

cole

ST. LOUIS / ST. CHARLES / DALLAS
Cole / 10777 Sunset Office Dr / St. Louis / MO / 63127
314.984.9887 tel x126 / 314.984.0587 fax / www.colestl.com

From: Emily Johnson

Sent: Wednesday, April 25, 2012 4:51 PM

To: 'Cherne, Curtis '

Subject: Albuquerque- Warehouse at NWC of Paseo Del Norte and Washington St. NE

Thank you Curtis. Would you also be able to tell me the detention requirements and water quality requirements for a site located at the northwest corner of Paseo Del Norte and Washington St. NE? The property is shown on the attached drawing.

Thanks,

Emily Johnson PE/LEED AP

Project Engineer III / ejohnson@colestl.com

cole

ST. LOUIS / ST. CHARLES / DALLAS
Cole / 10777 Sunset Office Dr / St. Louis / MO / 63127
314.984.9887 tel x126 / 314.984.0587 fax / www.colestl.com

From: Cherne, Curtis [mailto:CCherne@cabq.gov]

Sent: Tuesday, April 24, 2012 9:31 AM

To: Emily Johnson

Subject: RE: Albuquerque- Warehouse at SEC of San Mateo and San Diego

Emily,

It means we still need a conceptual drainage plan for the area. The conceptual plan will include information whether detention is required or not.

Curtis

From: Emily Johnson [mailto:ejohnson@colestl.com]

Sent: Monday, April 23, 2012 2:39 PM

To: Cherne, Curtis

Subject: RE: Albuquerque- Warehouse at SEC of San Mateo and San Diego

Thank you Curtis. So does this mean that detention is required? Do you have any plans that you could send that go along with the letter?

Thanks,

Emily Johnson PE / LEED AP

Project Engineer III / ejohnson@colestl.com

cole

ST. LOUIS / ST. CHARLES / DALLAS
Cole / 10777 Sunset Office Dr / St. Louis / MO / 63127
314.984.9887 tel x126 / 314.984.0587 fax / www.colestl.com

From: Cherne, Curtis [mailto:CCherne@cabq.gov]

Sent: Monday, April 23, 2012 1:32 PM

To: Emily Johnson

Subject: RE: Albuquerque- Warehouse at SEC of San Mateo and San Diego

Emily,

Please see attached letter from April 2009. We are still trying to get a conceptual drainage plan for the area.

Curtis

From: Emily Johnson [mailto:ejohnson@colestl.com]

Sent: Monday, April 16, 2012 9:04 AM

To: Cherne, Curtis

Subject: Albuquerque- Warehouse at SEC of San Mateo and San Diego

Good Morning Curtis-

Per our phone conversation this morning, attached is a very conceptual site plan. We are just south of a large drainage ditch. If you could let me know if there will be any detention requirements and if so what they are, I'd appreciate it.

Thanks,

Emily Johnson PE / LEED AP
Project Engineer III / ejohnson@colestl.com

cole

ST. LOUIS / ST. CHARLES / DALLAS
Cole / 10777 Sunset Office Dr / St. Louis / MO / 63127
314.984.9887 tel x126 / 314.984.0587 fax / www.colestl.com

Electronic Media Warning: Transfer of Files, CADD Drawings, Letters, Etc.

In accepting, opening, copying, and/or using any drawings, reports or data in any form of electronic media generated and transmitted/furnished by Cole & Associates, Inc., the recipient agrees that all such electronic files are instruments of service of Cole & Associates, Inc., who shall be deemed the author, and shall retain all common law, statutory law and other rights, including copyrights. The recipient also agrees not to transfer these electronic files to others without the prior written consent of Cole & Associates, Inc. Cole & Associates makes no warranties, either expressed or implied, of correctness and fitness for use for any particular purpose. The recipient agrees that any use of these files is at their own risk. In no event shall Cole & Associates, Inc. be liable for direct, indirect or consequential damages as a result of the recipient's use or reuse of the electronic files. Cole & Associates, Inc. shall be held harmless against all damages, liabilities or costs, including reasonable attorneys' fees and defense costs, arising out of or resulting from use of these electronic files.

CITY OF ALBUQUERQUE

THE NIE NAME OF THE PARTY OF TH

August 9, 2006

Verlyn A. Miller, P.E. Miller Engineering Consultants 4800 Juan Tabo Blvd. NE Suite C Albuquerque, NM 87106

Re: Bradbury Stamm Construction Headquarters, Engineer's Stamp dated 7-28-06 Tract F2 of the Lands of Springer Building Materials Corporation (C17/D19)

Dear Mr. Miller,

Based on the information contained in your submittal received on July 28, 2006, there are some issues that must be addressed prior to Building Permit approval. Those items are detailed below.

- 1. The date you cite for FIRM panel 136F says 11-16-06.
- 2. Please utilize a standard zone atlas page to highlight the precise site location and give the legal description of the subject property on the plan.
- 3. The benchmark to which you give reference, 13-C17, was not only destroyed in 2001, but referenced an entirely different elevation. Please revise the narrative to reflect the true monument utilized along with the elevation and datum type.
- 4. The narrative refers to a "small amount" of offsite runoff from the north but does not give the magnitude of the flow. Please revise the narrative to quantify this amount and include the offsite, undeveloped flows from the east. Those flows should be graphically depicted on the plan as well.
- 5. Your plan discusses the existing CMP culvert as being both a 30-inch and a 36-inch. The Master Plan calls this pipe out as a 43 x 27 arch.
- 6. A detail of the proposed drainage swale structural cross section is required.
- 7. The existing earth lined ditch that conveys runoff to the North Diversion Channel has not been maintained and, as a result, is in very poor condition. Based on a site reconnaissance and discussion with AMAFCA, that ditch is deficient in its capacity to handle the existing flows and is transporting sediment into the existing parking lot. Improvements must therefore be made to that facility. Coordination with and approval by AMAFCA will also be necessary.

If you have any questions or need additional information, feel free to contact me at 924-3990.

www.cabq.gov

New Mexico 87103

P.O. Box 1293

Albuquerque

Jeremy Hoover

Sincerely,

Senior Engineer
Hydrology Section

Development and Building Services

cc: file C17/D19

file DRB #1000057

Lynn Mazur, P.E., C.F.M., AMAFCA

CITY OF ALBUQUERQUE

March 30, 2007

Arthur Blessen, PE J. Arthur Blessen Engineering 11930 Menaul Blvd. NE Suite 104 Albuquerque, NM 87112

Re: OGB Architectural Millwork TI and Improvement 3711 Paseo Del Norte Grading and Drainage Plan Engineer's Stamp dated 1/23/07 (C17/D019)

Dear Mr. Blessen,

P.O.Box 1293

Based upon the information provided in your submittal dated 3-19-07, the above referenced plan is approved for Building Permit. Please attach a copy of this approved plan to the construction sets prior to sign-off by Hydrology. Also, prior to Certificate of Occupancy release, Engineer Certification of the grading plan per the DPM checklist will be required.

Albuquerque

If you have any questions, you can contact me at 924-3977.

New Mexico 87103

www.cabq.gov

Rudy E. Rael, Associate Engineer

Planning Department.

Building and Development Services

C: file

RT3100005

Tim Eichenberg - Chair Danny Hernandez - Vice Chair Daniel F. Lyon - Secretary - Treasurer Ronald D. Brown - Assistant Secretary -Treasurer Janet Salers - Director

John P. Kelly, P.E. Executive Engineer

Albuquerque
Metropolitan
Arroyo
Flood
Control

Post-it® Fax Note 7671	Date 8-15 # of pages
TOJEREMY HOOVER	From LYNN MAZUR
Co./Dept. HYPROLOGY	CO. AMAFCA
Phone #	Phone #
Fax #	Fax #

Authority
2600 Prospect N.E., Albuquerque, NM 87107
Phone: (505) 884-2215 Fax: (505) 884-0214

August 15, 2006

Mr. Verlyn A. Miller, P.E. Miller Engineering Consultants P.O. Box 520 Edgewood, NM 87015

Re:

Bradbury Stamm Construction Headquarters, ZAP C-17

Engineer's Stamp Dated July 28, 2006

Dear Mr. Miller:

I received the Grading & Drainage Plan for the referenced property and the comment letter from the City of Albuquerque dated August 9, 2006. I would like to clarify some points in comment number 7 in the City letter. AMAFCA received several calls from Western Assurance after the recent rains that their parking lot was flooded. AMAFCA engineers determined that the ditch adjacent to Paseo del Norte was causing the problem. This ditch is in New Mexico Department of Transportation (NMDOT) right-of-way and is their maintenance responsibility, unless there is an agreement or permit for private maintenance. AMAFCA staff has contacted the NMDOT regarding the drainage issues with the ditch. If this site discharges to it, it will require some improvements. Any work in the ditch will require a permit from NMDOT.

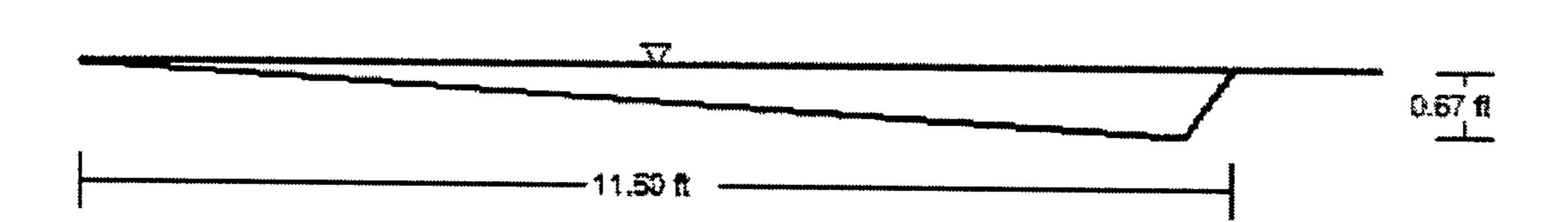
I have reviewed the plan with respect to drainage to the existing rundown on the North Diversion Channel (NDC) and offer the following comments:

- 1. Identify the 10-foot Drainage Easement onsite as "Private Drainage Easement". Is this easement existing, or will the property be replatted?
- 2. Provide a riprap detail for the NDC inlet with appropriate dimensions.

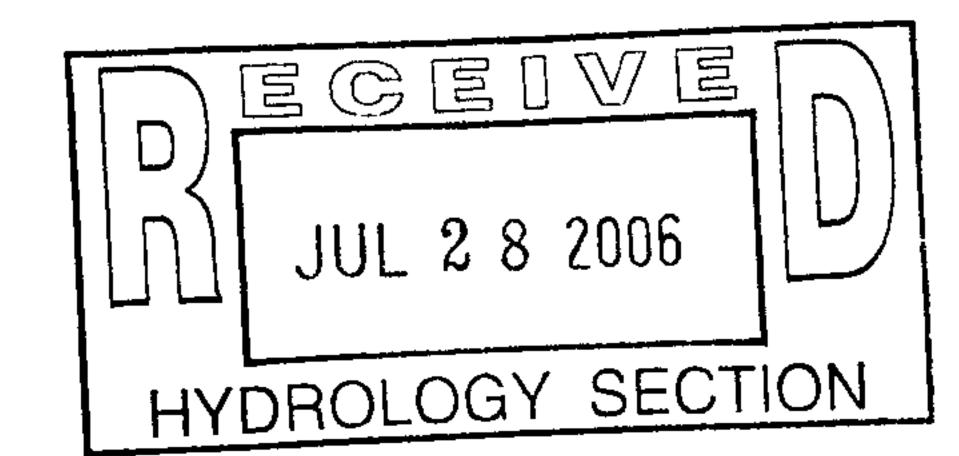
If you have any questions, please call me at 884-2215.

Sincerely, AMAFCA

Lynn M. Mazur, P.E., C.F.M.


Development Review Engineer

Cc: Jeremy Hoover, City Hydrology Kathy Trujillo, NMDOT, District 3


Parking Lot Flowline

Cross Section for Irregular Section - 1

Project Description		······y···y···y····
Flow Element	Irregular Section	**************************************
Friction Method:	Manning Formula	
Solve For:	Discharge	
Section Data		
Roughness Coefficient:	0.013	
Channel Slope:	0.00500 ASPHALT	ft/ft
Normal Depth ⁻	0.67	ft
Elevation Range:	0.00 to 0.67 ft	
Discharge:	13.59	ft³/s

V: 1 \(\frac{\text{\text{\text{\text{H: 1}}}}{\text{\text{H: 1}}}

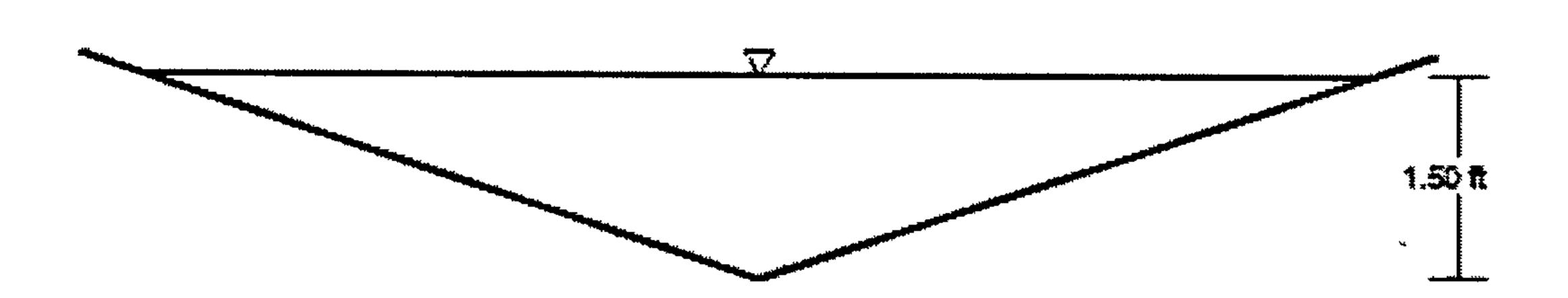
Worksheet for Irregular Section - 1

-0.67

0.00

0+00

D+11


ProjectiDescription		
Flow Element	Irregular Section	***************************************
Friction Method:	Manning Formula	
Solve For.	Discharge	
Input'Data		
Channel Slope	0.00500	ft/ft
Water Surface Elevation:	0.67	ft
Options		
Current Roughness Weighted Metho	ImprovedLotters	
Open Channel Weighted Roughnes:	improvedLotters	
Closed Channel Weighted Roughne	Hortons	
Results		
Roughness Coefficient	0.013	
Discharge:	13.59	ft³/s
Elevation Range:	0.00 to 0.67 ft	
Flow Area:	3.85	ft²
Wetted Perimeter:	13.36	ft
Top Width	11.50	ft
Normal Depth:	0.67	ft
Critical Depth ⁻	0.70	ft
Critical Slope	0.00374	ft/ft
Velocity:	3.53	ft/s
Velocity Head:	0.19	ft
Specific Energy:	0.86	ft
Froude Number:	1.07	
Flow Type:	Supercritical	
Segment Roughness		
Start Station End Station Coefficien	B	
(0+00, 0.67) (0+13, 0.67) (0.013		
Section Geometry		
Station Elevatron		

Worksheet for Irregular Section - 1

Station	Elèvation	The second secon
0+12	,D.67	
0+13	0.67	

V-Ditch Cross Section for Triangular Channel - 1

Project Description		
Flow Element:	Triangular Channel	
Friction Method:	Manning Formula	
Solve For.	Discharge	
Section Data		
Roughness Coefficient:	0.020	
Channel Slope.	0.00700	ft/ft
Normal Depth:	1.50	ft
Left Side Slope:	3.00	ft/ft (H:V)
Right Side Slope:	3.00	ft/ft (H:V)
Discharge:	33.44	ft³/s

Worksheet for Triangular Channel - 1

		1650 ME, 26 FOR	
Project Description		DIRTU/S	3 7145
Flow Element:	Triangular Channel		
Friction Method:	Manning Formula	WEGETATTE	>V)
Solve For:	Discharge		
nput Data			
Roughness Coefficient.	0.020 - GRWEL LINED		
Channel Slope:	0.00700	ft/ft	
Normal Depth:	1.50	fit	
_eft Side Slope:	3.00	ft/ft (H:V)	
Right Side Slope:	3.00	ft/ft (H:V)	
Results			
Discharge:	33 44	ft³/s	
Flow Area:	6.75	ft²	
Wetted Perimeter:	9.49	ft	
Top Width:	9.00	ft	
Critical Depth:	1.51	ft	
Critical Slope:	0.00687	ft/ft	
/elocity:	4.95	ft/s	
/elocity Head:	0.38	ft	
Specific Energy:	1.88	ft	
Froude Number:	1.01		
Flow Type:	Supercritical		
3VF Input Data			
Downstream Depth:	0.00	ft	
.ength [.]	0.00	ft	
Number Of Steps:	0		
SVF Output Data			
Jpstream Depth:	0.00	ft	
Profile Description:	N/A		
Profile Headloss	0.00	fit	
Downstream Velocity:	0.00	ft/s	
Jpstream Velocity:	0.00	ft/s	
lormal Depth:	1.50	ft	
•	1.51	ft	
Critical Depth		- -	
Critical Depth: Channel Slope:	0.00700	ft/ft	

PEAK DISCHARGE (cfs/acre)

CURRENT CONDITIONS

BASIN	AREA		% LAND TR	EATMENT'		PEAK	DISCHARG	E - (CFS/AC	RE)**	Q(100-YR) UNDEVELOPED
	(ACRES)	Α	В.	С	D	Α	B	C	D	(CFS)
1	9.60	85.00	15.00	0.00	0.00	1.56	2.28	3.14	4.7	16.01
2	4.10	85.00	15.00	0.00	0.00	1.56	2.28	3.14	4.7	6.84
3	1.68	85.00	15.00	0.00	0.00	1.56	2.28	3.14	4.7	2.80
4	2.94	85.00	15.00	0.00	0.00	1.56	2.28	3.14	4.7	4 90
5	2.96	85.00	15.00	0.00	0.00	1.56	2.28	3.14	47	4.94
										35.50

PHASE I CONDITIONS Construction of Office/Warehoue Only

BASIN AREA			% LAND TF	REATMENT*	•	PEAK	DISCHARG	E - (CFS/AC	RE)**	Q(100-YR) DEVELOPE!
DAG!! 1	(ACRES)	Α	В	С	D	_ A	В	C	D	(CFS)
1	9.60	85.00	15.00	0.00	0.00	1.56	2.28	3.14	4.7	16.01
2	4.10	85.00	15.00	0.00	0.00	1.56	2.28	3.14	4.7	6.84
-3	1.68	0.00	15.00	15.00	70.00	1.56	2.28	3.14	4.7	6.89
4	2.94	0.00	10.00	30.00	60.00	1.56	2.28	3.14	4.7	11.73
5	2.96	0.00	20.00	30.00	50.00	1.56	2.28	3.14	4.7	11.09
										52.57

FULLY DEVELOPED CONDITIONS Construction of Office Building and East Side Development

BASIN	AREA		% LAND TF	REATMENT*		PEAK	DISCHARG	E - (CFS/AC	RE)**	Q(100-YR) DEVELOPED
DAGIII	(ACRES)	Α	В	C	D	Α	В	C	D	(CFS)
1	9.60	85.00	15.00	0.00	0.00	1.56	2.28	3.14	4.7	16.01
2-2	4.10	0.00	10.00	15.00	75 . 00	1.5 6	2.28	3.14	4.7	17.32
3	1.68	0.00	15.00	15.00	70.00	1. 56	2.28	3.14	4.7	6.89
4	2.94	0.00	10.00	30.00	60.00	1.56	2.28	3.14	4.7	11.73
5	2.96	0.00	15.00	15.00	70.00	1.56	2.28	3.14	4.7	12.14
										64.10

NOTES:

Obtained from Section 22.2, Hydrology of the Development Process Manual, Volume 2, Design Criteria for the City of Albuquerque, Jan. 1993

^{*} Table A-4

^{**} Table A-9

CULVERT CALCULATIONS

FLOW CAPACITY

Manning's Coefficient

0.022 (corrugated steel)

Slope

0.01

Section

43" x 27" pipe-arch

Area

6.4 sf

Perimeter

Equivalent to a 36" circular pipe, or 9.42 ft

Hydraulic Radius (R)

Area/Perimeter = 6.4/9.42 = 0.68

Manning's Equation

 $Q_{cts} = (1.49/n) A x R^{2/3} x S^{1/2}$

= $(1.49/.022) 6.4 \times 0.68^{2/3} \times 0.01^{1/2}$ = $(67.73) 6.4 \times 0.7723 \times 0.1$

 $= (67.73) 6.4 \times 0.7723 \times 0.1$

 $= 33.48 \text{ cfs} \checkmark$

Velocity Equation

= Q/A

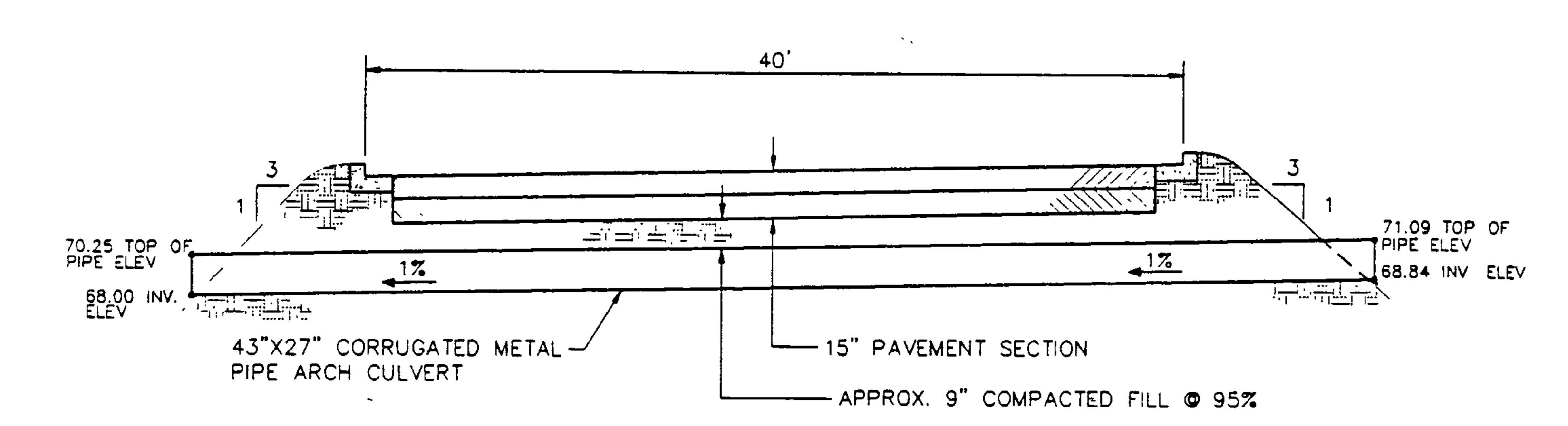
= 33.48/6.4

= 5.23 fps

100-YEAR STORM FLOW

BASINS B-1 (Ph

B-1 (Phase III)


16.01 CFS

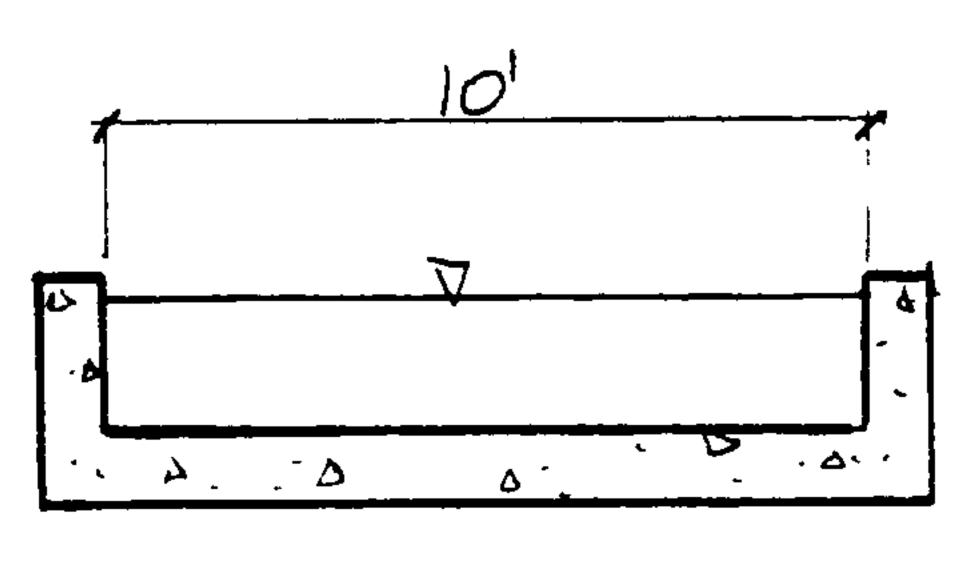
B-2 (Phase III)

17.32

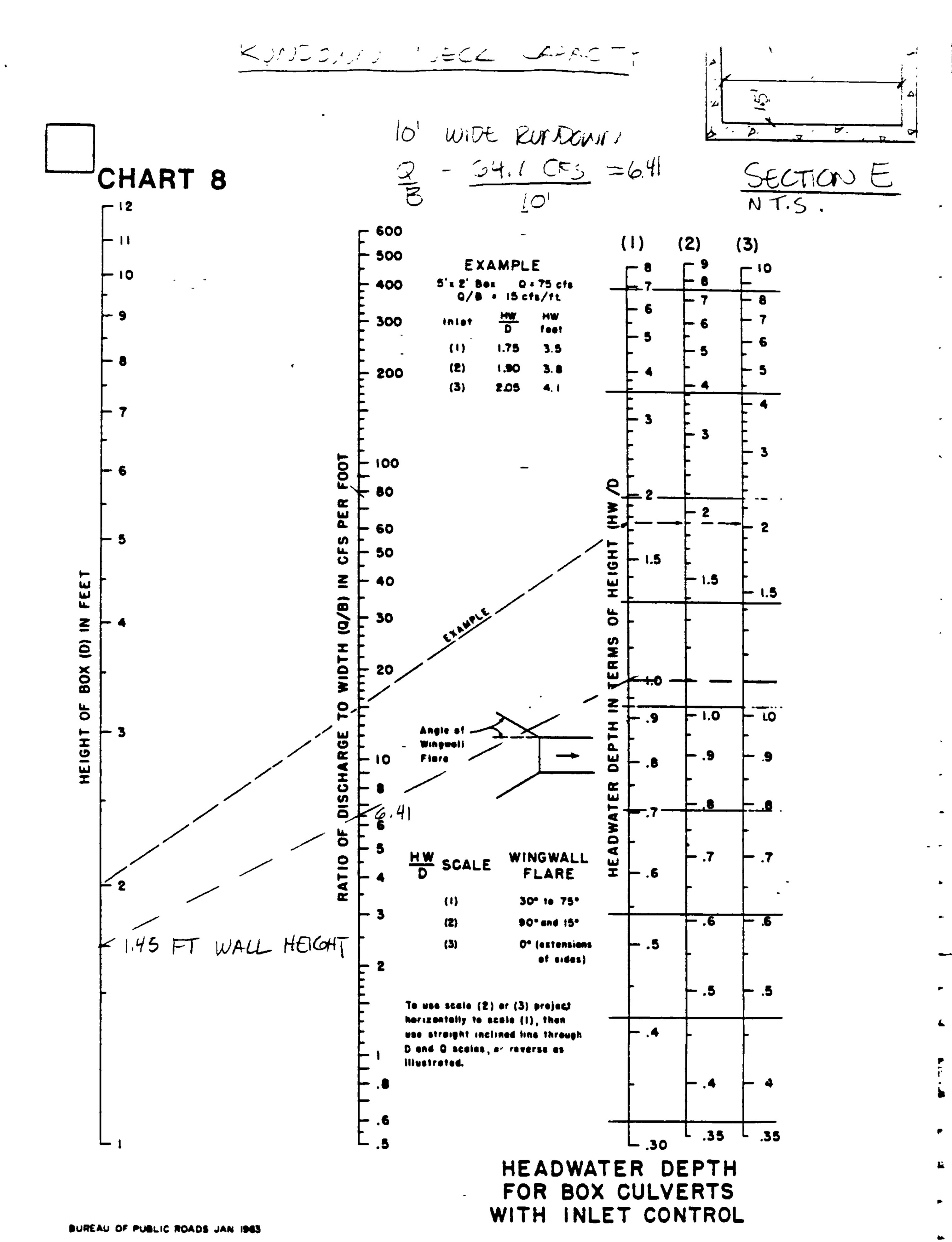
TOTAL FLOW

33.33 CFS

SECTION G


RUNDOWN STREAM CALCULATIONS

Manning's Coo Slope	efficient	0.013 0.0122	(concrete)			
Section Coord	inates (ft.)	1.5,0 0,0 0,10 1.5,10				
DEPTH	FLOW		FLOW	WETTED	FLOW	TOP
	AREA		RATE	PERIMETER	VELOCITY	WIDTH
INC	(SF)	_	(CFS)	<u>(FT)</u>	(FPS)	<u>(FT)</u>
0.10	1.00		2.70	10.20	2.70	10.00
0.20	2.00		8.40	10.40	4.20	10.00
0.30	3.00		16.30	10.60	5.40	10.00
0.40	4.00		26.00	10.80	6.50	10.00
0.50	5.00		37.30	11.00	7.50	10.00
0.60	6.00		50.00	11.20	8.30	10.00
0.90	9.00		94.90	11.80	10.50	10.00
1.00	10.00		111.80	12.00	11.20	10.00
1.10	11.00		129.60	12.20	11.80	10.00
1.20	12.00		148.20	12.40	12.40	10.00
1.30	13.00		167.60	12.60	12.90	10.00
1.40	14.00		187.60	12.80	13.40	10.00
1.50	15.00		208.30	13.00	13.90	10.00


100-YEAR STORM FLOW

BASINS	B-1	(Phase III)	16.01	CFS
	B-2	(Phase III)	17.32	
	B-3	(Phase III)	6.89	
	B-4	(Phase III)	11.73	
	B -5	(Phase III)	12.14	

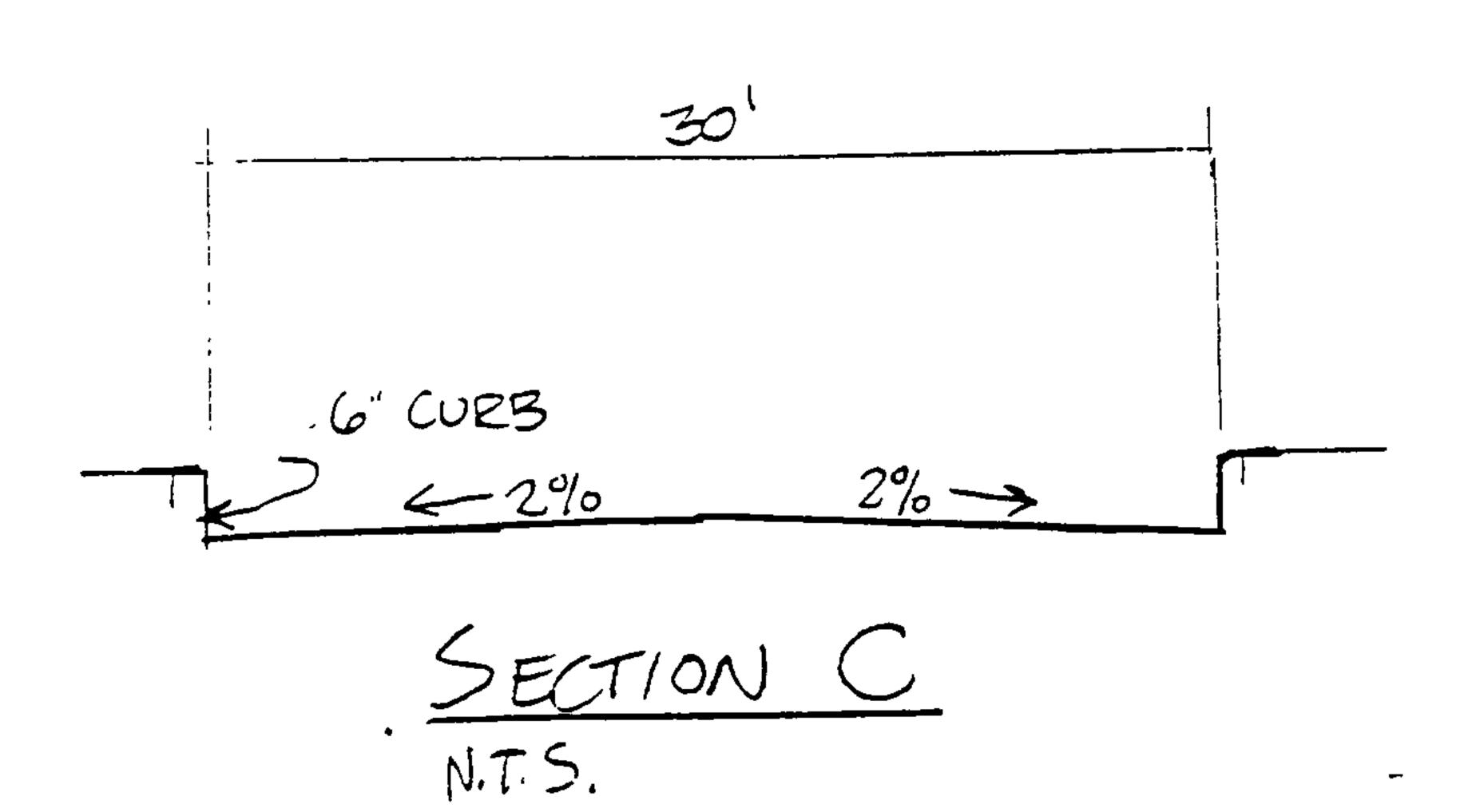
TOTAL FLOW 64.09 CFS DEPTH = 0.702 FT VELOCITY = 9.12 FPS

SECTION F

1.5 FT WILL HE.G.T ACCOMMODE STEELS FLOW OF 34,10 CFS IN THE 10' WIDE NECK.

ACCESS STREET HYDRAULICS

	4							
Manning's Co	efficient	0.017						
Slope		0.010						
Section Coordinates (ft.)		.5,0						
		0,0						
		.3,15						
		0,30						
		.5,30						
DEPTH	FLOW	FL	_OW	WETTED	F	LOW		TOP
	AREA	R	ATE	PERIMETER	VE	LOCITY		WIDTH
INC	(SF)	(C	CFS)	(FT)		(FPS)		(FT)
0.10	0.50	0	.60	10.20		1.20		10.00
202E	The same of the sa		1125		,	2 (2	· · ·	ELINO.
		`	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	~	•	211	. 8 -2	THE STATE OF THE S
0.40	7.50	25	5.60	30.80		3.40		30.00
0.50	10.50	4.	4.60	31.00		4.20		30.00

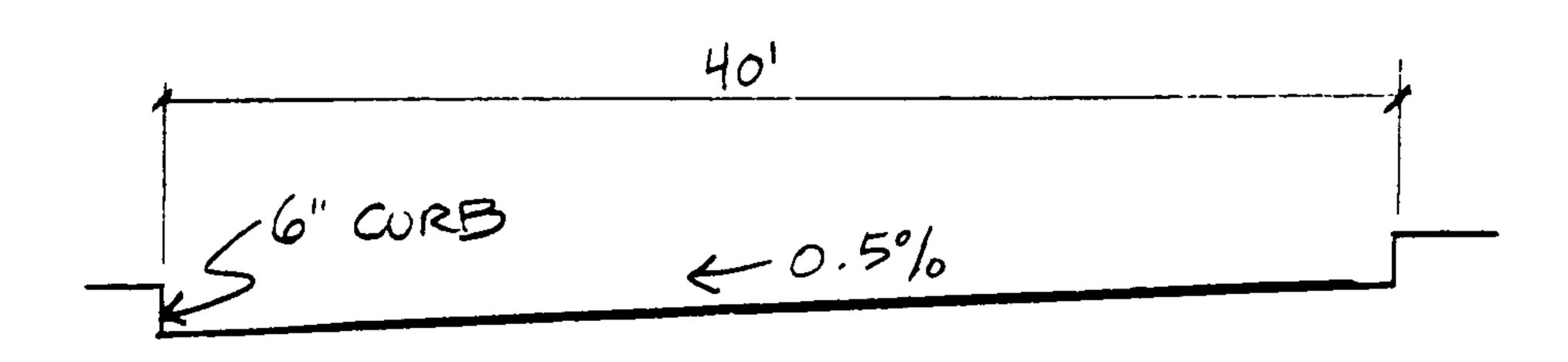

100-YEAR STORM FLOW

BASINS B-3 (Phase III) 6.89 CFS

TOTAL FLOW

6.89 CFS

DEPTH = 0.25 FT VELOCITY = 2.13 FPS



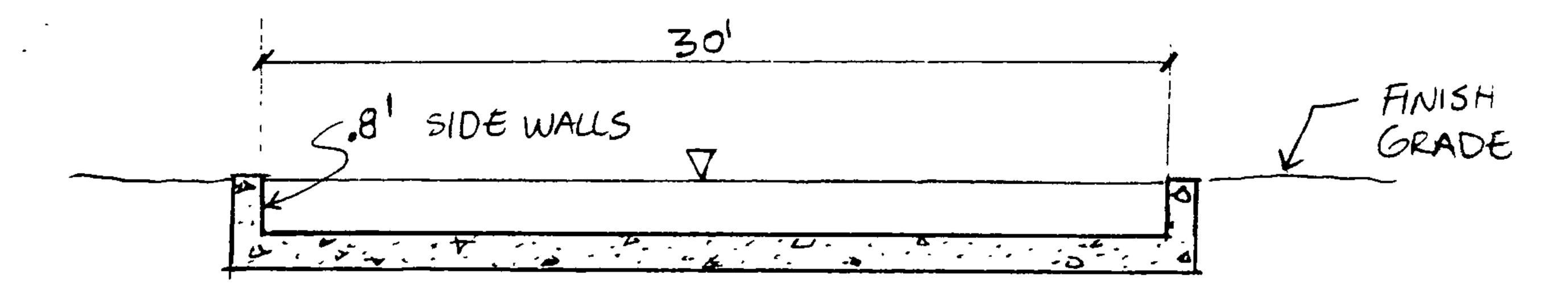
CUL-DE-SAC STREET HYDRAULICS

Manning's Coe	efficient C	0.017	(street)			
Slope		0.010	(minimum)			
Section Coordinates (ft.).		5,0				
),0				
		2,40				
	•	7,40				
DEPTH	FLOW		FLOW	WETTED	FLOW	TOP
	AREA		RATE	PERIMETER	VELOCITY	WIDTH
INC	(SF)		(CFS)	<u>(FT)</u>	(FPS)	(FT)
0.10	1.00		1.20	20.10	1.20	20.00
0.20	4.00		7.50	40.20	1.90	40.00
						**

100-YEAR STORM FLOW

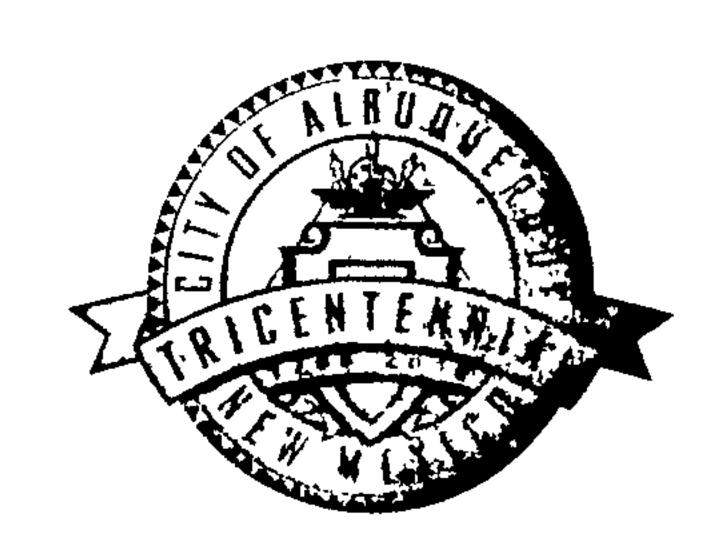
BASINS	B-1 (Phase III B-2 (Phase III B-3 (Phase III	17.32	CFS —		
TOTAL FL	.OW	40.22	CFS	DEPTH = VELOCITY =	0.37 FT 3.65 FPS

SECTION B N.T.S.


RUNDOWN WEIR OPENING

Weir Coefficient		3.000			
Section Coord	inates (ft.)	.8 ,0 0,0 0,30 .8 ,30			
DEPTH	FLOW AREA		FLOW	FLOW VELOCITY	TOP WIDTH
INC	(SF)		(CFS)	(FPS)	(FT)
0.10	3.00	-	2.85	0.95	30.00
0.20	6.00		8.05	1.34	30.00
0.30	9.00		14.79	1.64	30.00
0.40	12.00		22.77	1.90	30.00
0.50	15.00		31.82	2.12	30.00
0.60	18.00		41.83	2.32	30.00

100-YEAR STORM FLOW


BASINS	B-1	(Phase III)	16.01	CFS
	B-2	(Phase III)	17.32	
	B-3	(Phase III)	6.89	
	B-4	(Phase III)	11.73	
	B-5	(Phase III)	12.14	

TOTAL FLOW 64.09 CFS DEPTH = 0.797 FT VELOCITY = 2.68 FPS

SECTION D N.T.S.

CITY OF ALBUQUERQUE

April 3, 2007

Tate Fishburn, R.A. P.O. Box 2941 Corrales, NM 87048

Re:

Office / Warehouse, 3711 Paseo del Norte Blvd NE, Traffic Circulation Layout

Architect's Stamp dated 4-3-07 (C17-D19)

Dear Mr. Fishburn,

The TCL submittal received 3-16-07 is approved for Building Permit. The plan is stamped and signed as approved. A copy of this plan will be needed for each of the building permit plans. Please keep the original to be used for certification of the site for final C.O. for Transportation. Public infrastructure or work done within City Right-of-Way shown on these plans is for information only and is not part of approval. A separate DRC and/or other appropriate permits are required to construct these items.

P.O. Box 1293

If a temporary CO is needed, a copy of the original TCL that was stamped as approved by the City will be needed. This plan must include a statement that identifies the outstanding items that need to be constructed or the items that have not been built in "substantial compliance," as well as the signed and dated stamp of a NM registered architect or engineer. Submit this TCL with a completed Drainage and Transportation Information Sheet to Hydrology at the Development Services Center of Plaza Del Sol Building.

Albuquerque

When the site is completed and a final C.O. is requested, use the original City stamped approved TCL for certification. A NM registered architect or engineer must stamp, sign, and date the certification TCL along with indicating that the development was built in "substantial compliance" with the TCL. Submit this certification TCL with a completed Drainage and

Transportation Information Sheet to Hydrology at the Development Services Center of Plaza

Del Sol Building.

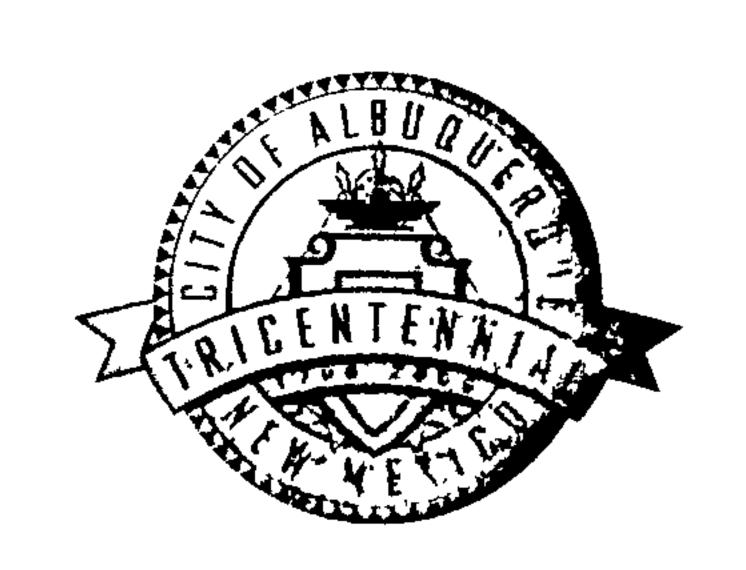
www.cabq.gov

New Mexico 87103

Once verification of certification is completed and approved, notification will be made to Building Safety to issue Final C.O. To confirm that a final C.O. has been issued, call Building Safety at 924-3306.

Sincerely,

Kristal D. Metro, P.E.


Senior Engineer, Planning Dept. Development and Building Services

11-2

C:

File

CITY OF ALBUQUERQUE

April 2, 2007

Tate Fishburn, R.A.

Tate Fishburn Architect
P.O. Box 2941
Corrales, NM 87048

Re: 3711 Paseo Del Norte NE, Lot F-1-A Lands of Springer, Traffic Circulation Layout, Architect's Stamp dated XXXXXX (C17-D19) 4-3-57

Dear Mr. Fishburn,

Based upon the information provided in your submittal received 03-16-06, the above referenced plan cannot be approved for Building Permit until the following comments are addressed:

P.O. Box 1293

1. Sign and date the plans.

If you have any questions, you can contact me at 924-3981.

Albuquerque

Sincerely,

New Mexico 87103

Kristal Metro, P.E. Senior Engineer

Development and Building Services

www.cabq.gov

file

DRAINAGE AND TRANSPORTATION INFORMATION SHEET OFFICE INARE House (Rev. 12/05)

PROJECT TITLE: OGB OFFICE ADDN	T KF ZONE MAP/DRG. FILE #
	ZONE MAP/DRG. FILE # C
LEGAL DESCRIPTION: F-1-A CANOS	OF SPRINGER
CITY ADDRESS: 371/ P45E0 DEL NOR	TE NF 87113
ENGINEERING FIRM: J. AUTITUR BUESSES	CONTACT:
ADDRESS:	PHONE:
CITY, STATE:	ZIP CODE:
OWNER: OGB ARCHITECTURAL MUWORK	
ADDRESS:	
CITY, STATE:	PHONE:
CITT, BIATE.	ZIP CODE:
ARCHITECT: TATE FISHRURN ARCHITECT	CONTACT: TATE FISHBURN
ADDRESS: Box 2941	PHONE: 899-9339
CITY, STATE: CONACES MM	ZIP CODE:
;	
SURVEYOR:	CONTACT:
ADDRESS:	PHONE:
CITY, STATE:	ZIP CODE:
CONTENT A CETOD. $A = A = A = A = A = A = A = A = A = A $	
CONTRACTOR: HART CONSTRUCTORY	CONTACT:
ADDRESS:	PHONE:
CITY, STATE:	ZIP CODE:
TYPE OF SUBMITTAL:	TYPE OF APPROVAL SOUGHT:
DRAINAGE REPORT	SIA/FINANCIAL GUARANTEE RELEASE
DRAINAGE PLAN 1 st SUBMITTAL	PRELIMINARY PLAT APPROVAL
DRAINAGE PLAN RESUBMITTAL	S. DEV. PLAN FOR SUB'D APPROVAL
CONCEPTUAL G & D PLAN	S. DEV. FOR BLDG. PERMIT APPROVA
GRADING PLAN	CECTODDIANIADDDONAI
EROSION CONTROL PLAN	FINAL PLAT APPROVAL
ENGINEER'S CERT (HYDROLOGY)	FOUNDATION PERMIT APPROVAL
CLOMR/LOMR	BUILDING PERMIT APPROVAL
XTRAFFIC CIRCULATION LAYOUT	CERTIFICATE OF OCCUPANCY (PERM)
ENGINEER/ARCHITECT CERT (TCL)	CERTIFICATE OF OCCUPANCY (TEMP)
ENGINEER/ARCHITECT CERT (DRB S.P.)	GRADING PERMIT APPROVAL
ENGINEER/ARCHITECT CERT (AA)	PAVING PERMIT APPROVAL
OTHER (SPECIFY)	WORK ORDER APPROVAL
	_OTHER (SPECIFY)
WAS A DDE DESIGN CONTENDENTOR A COURS TO SE	
WAS A PRE-DESIGN CONFERENCE ATTENDED:	NE CAU WHEN READY
YES PUS	
COPY PROVIDED	cel -463-6928 WENT OUER
	cel - 463-6928 WENT DUER
SUBMITTED BY: TAKE FISHBURN	DATE: 3/16/07 W/WILL FRED
Requests for approvals of Site Development Plans and/or Subdivision I	Plats shall be accompanied by a drainage submittal. The
particular nature, location and scope to the proposed development defin	e the degree of drainage detail. One or more of the following
evels of submittal may be required based on the following.	

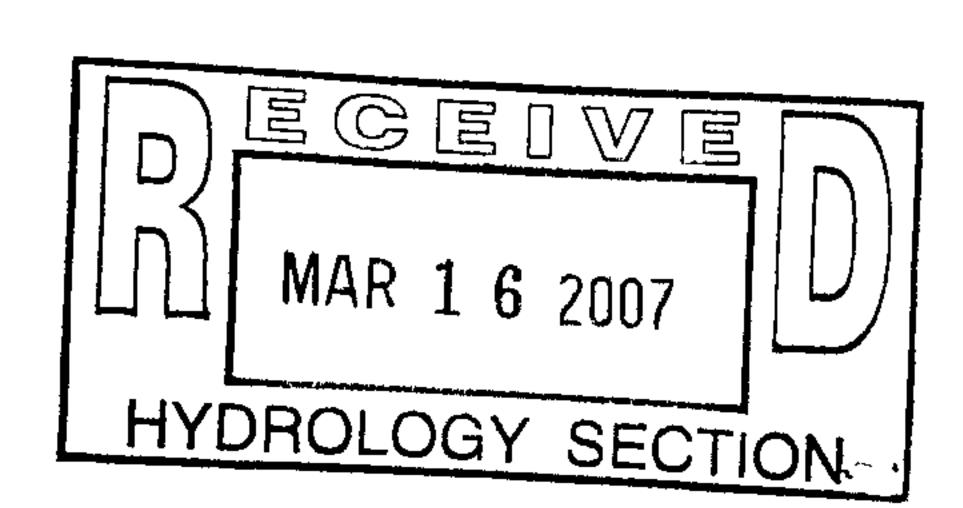
levels of submittal may be required based on the following:

- Conceptual Grading and Drainage Plan: Required for approval of Site Development Plans greater than five (5) acres and Sector Plans.
- Drainage Plans: Required for building permits, grading permits, paving permits and site plans less than five (5) acres.
- Drainage Report: Required for subdivision containing more than ten (10) lots or constituting five (5) acres or more.

TATEFISHBURNARCHITECT

March 16, 2007

Traffic Engineer
City of Albuquerque Planning Department
Plaza Del Sol Building
Albuquerque, NM


Ref: Traffic Circulation Layout

We are submitting a Traffic Circulation Layout for review. The project is an office addition to an existing building that produces architectural millwork. The site is existing and the new addition will have minimal impact on the existing conditions. We have added parking to accommodate the new addition including handicap parking spaces with striped accessible walkway to entrances and motorcycle parking with signage. All existing parking is to remain undisturbed. Please contact me with any questions or comments. We appreciate you assistance with this project.

Sincerely,

Tate Fishburn Architect

BOX 2941 CORRALES N M 87048 5058999338 FAX 899 9328

