

February 8, 2008

Shahab Biazar, P.E.
Advanced Engineering & Consulting
4416 Anaheim Ave. NE
Albuquerque, NM 87114

Re: 8810 Holly Ave. Building # 5,

Approval of Permanent Certificate of Occupancy (C.O.)

Engineer's Stamp dated 12/14/2006 (C-20/D048)

Certification dated 3-10-08

Mr. Biazar:

Based upon the information provided in your submittal received 3/11/2008, the above referenced certification is approved for release of Permanent Certificate of Occupancy by Hydrology.

P.O. Box 1293

If you have any questions, you can contact me at 924-3982.

Albuquerque

Sincerely,

New Mexico 87103

Timothy Sints

Plan Checker-Hydrology, Planning Dept.

Development and Building Services

www.cabq.gov

C: CO Clerk-Katrina Sigala

November 27, 2007

Shahab Biazar, P.E.
Advanced Engineering & Consulting
4416 Anaheim Ave. NE
Albuquerque, NM 87114

Re: 8850 Holly Ave. Building # 2,

Approval of Permanent Certificate of Occupancy (C.O.)

Engineer's Stamp dated 6/12/2006 (C-20/D048)

Certification dated 11/26/2007

Based upon the information provided in your submittal received 11/27/2007, the above referenced certification is approved for release of Permanent Certificate of Occupancy by Hydrology.

P.O. Box 1293

If you have any questions, you can contact me at 924-3982.

\$incerely,

Albuquerque

Timothy Sims

i illioury Silis

New Mexico 87103

Plan Checker-Hydrology, Planning Dept. Development and Building Services

www.cabq.gov

C: CO Clerk-Katrina Sigala

April 18, 2007

Shahab Biazar, P.E.
Advanced Engineering & Consulting
4416 Anaheim Ave. NE
Albuquerque, NM 87114

Re: 8810 Holly Ave. Building #3,

Approval of Permanent Certificate of Occupancy (C.O.)

Engineer's Stamp dated 2/02/2007 (C-18/D039B)

Certification dated 04/16/2007

Based upon the information provided in your submittal received 4/17/2007, the above referenced certification is approved for release of Permanent Certificate of Occupancy by Hydrology.

P.O. Box 1293

If you have any questions, you can contact me at 924-3982.

Sincerely,

Albuquerque

Timothy Sims

New Mexico 87103

Plan Checker-Hydrology, Planning Dept.

Development and Building Services

www.cabq.gov

C: CO Clerk-Katrina Sigala

March 14, 2007

Shahab Biazar, P.E.
Advanced Engineering and Consulting, LLC
4416 Anaheim Ave., NE
Albuquerque, NM 87114

Re: Ventura Place – Buildings 2,3 & 5 Grading Plan Engineer's Stamp dated 2-2-07 (C20/D48)

Dear Mr. Biazar,

Based upon the information provided in your submittal dated 3-12-07, the above referenced plan is approved for Building Permit. Please attach a copy of this approved plan to the construction sets prior to sign-off by Hydrology.

P.O. Box 1293

Prior to Certificate of Occupancy release, Engineer Certification per the DPM checklist will be required.

Albuquerque

If you have any questions, you can contact me at 924-3695.

New Mexico 87103

1. A

Sincerely,

www.cabq.gov

Curtis A. Cherne, E.I. Engineering Associate, Planning Dept. Development and Building Services

C: file

October 27, 2006

Mr. Shahab Biazar, P.E.

ADVANCED ENGINEERING AND
CONSULTING, LLC

4416 Anaheim Ave. NE
Albuquerque, NM 87113

Re: VENTURA PLACE, BUILDING 4

8910 Holly Ave. NE

Approval of Permanent Certificate of Occupancy (C.O.)

Engineer's Stamp dated 06/12/2006(C-20/D48)

Certification dated 09/13/2006

Dear Shahab:

CO Clerk

File

P.O. Box 1293

Based upon the information provided in your submittal received 10/27/2006, the above referenced certification is approved for release of Permanent Certificate of Occupancy by Hydrology.

Albuquerque

If you have any questions, you can contact me at 924-3982.

New Mexico 87103

www.cabq.gov

Sincerely,

Arlene V. Portillo

Plan Checker, Planning Dept. - Hydrology

Delen U. Portille

Development and Building Services

September 15, 2006

Mr. Shahab Biazar, P.E.

ADVANCED ENGINEERING AND
CONSULTING, LLC

4416 Anaheim Avenue NE
Albuquerque, NM 87114

Re: VENTURA PLACE, BUILDING 1 (JINJA BUILDING)

8900 HOLLY AVENUE NE

Approval of Permanent Certificate of Occupancy (C.O.)

Engineer's Stamp dated 06/12/2006 (C-20/D48)

Certification dated 09/13/2006

P.O. Box 1293 Dear Shahab:

Albuquerque Based upon the information provided in your submittal received 09/15/2006, the above referenced certification is approved for release of Permanent Certificate of Occupancy by Hydrology.

If you have any questions, you can contact me at 924-3982.

Sincerely,

www.cabq.gov

Arlene V. Portillo

Plan Checker, Planning Dept. - Hydrology

Development and Building Services

Releve V Portillo

C: CO Clerk File

Albuquerque Making History 1706-2006

June 16, 2006

Shahab Biazar, P.E.
Advanced Engineering and Consulting, LLC
4416 Anaheim Ave., NE
Albuquerque, NM 87114

Re: Ventura Place Overall Grading and Drainage Plan Engineer's Stamp dated 6-12-06 (C20/D48)

Dear Mr. Biazar,

Based upon the information provided in your submittal dated 6-12-06, the above referenced plan is approved for Building Permit. Please attach a copy of this approved plan to the construction sets prior to sign-off by Hydrology.

Also, prior to Certificate of Occupancy release, Engineer Certification per the DPM checklist will be required.

This project requires a National Pollutant Discharge Elimination System (NPDES) permit. If you have any questions feel free to call the Municipal Development Department Hydrology Section at 768-3654 (Charles Caruso).

If you have any questions, you can contact me at 924-3695.

Curtis A. Cherne, E.I.

Sincerely, Cutual a- cheme

Engineering Associate, Planning Dept. Development and Building Services

BUD

C: file

Charles Caruso, DMD

www.cabq.gov

P.O. Box 1293

Albuquerque

New Mexico 87103

-Albuquerque - Making History 1706-2006

CIII OF ALBUQUERQUE

May 31, 2006

Shahab Biazar, P.E.
Advanced Engineering and Consulting, LLC
4416 Anaheim Ave., NE
Albuquerque, NM 87114

Re: Ventura Place Overall Grading and Drainage Plan Engineer's Stamp dated 5-8-06 (C20/D48)

Dear Mr. Biazar,

C:

file

Charles Caruso, DMD

Based upon the information provided in your submittal dated 5-9-06, the above referenced plan is approved for Building Permit. Please attach a copy of this approved plan to the construction sets prior to sign-off by Hydrology.

Also, prior to Certificate of Occupancy release, Engineer Certification per the DPM checklist will be required.

This project requires a National Pollutant Discharge Elimination System (NPDES) permit. If you have any questions feel free to call the Municipal Development Department Hydrology Section at 768-3654 (Charles Caruso).

If you have any questions, you can contact me at 924-3695.

Curtis A. Cherne, E.I.

Sincerely,

Engineering Associate, Planning Dept.

Development and Building Services

BUD

P.O. Box 1293

Albuquerque

New Mexico 87103

www.cabq.gov

December 13, 2005

Mr. Shahab Biazar, P.E.

ADVANCED ENGINEERING AND
CONSULTING, LLC

4416 Anaheim Ave. NE
Albuquerque, NM 87113

Re: VENTURA PLACE, LOT 4, (TRADER JOE'S)

8928 Holly Ave. NE

Approval of Permanent Certificate of Occupancy (C.O.)

Approved Engineer's Stamp dated 06/28/2005

Submitted Engineer's Stamp dated 06/01/2005 (C-20/D48)

Certification dated 12/08/2005

P.O. Box 1293

Dear Shahab:

Albuquerque

Based upon the information provided in your submittal received 12/13/2005, the above referenced certification is approved for release of Permanent Certificate of Occupancy by Hydrology.

Sincerely,

New Mexico 87103

If you have any questions, you can contact me at 924-3982.

www.cabq.gov

Orlene V Portillo

Arlene V. Portillo

Plan Checker, Planning Dept. - Hydrology

Development and Building Services

C:

CO Clerk

August 24, 2005

Mr. Shahab Biazar, P.E.

ADVANCED ENGINEERING AND
CONSULTING, LLC

4416 Anaheim Ave. NE
Albuquerque, NM 871113

Re: VENTURA PLACE, LOT 4

8920 Holly Ave. NE

Approval of Permanent Certificate of Occupancy (C.O.)

Engineer's Stamp dated 04/09/2004 (C-20/D48)

Certification dated 08/24/2005

Dear Shahab:

P.O. Box 1293

Based upon the information provided in your submittal received 08/24/2005, the above referenced certification is approved for release of Permanent Certificate of Occupancy by Hydrology.

Albuquerque

If you have any questions, you can contact me at 924-3982.

New Mexico 87103

www.cabq.gov

Sincerely,

Arlene V. Portillo

Plan Checker, Planning Dept. - Hydrology

Development and Building Services

C: Phyllis Villanueva

July 15, 2005

Shahab Biazar, P.E.
Advanced Engineering & Consulting, LLC
4416 Anaheim Ave. NE
Albuquerque, NM 87113

Re: Ventura Place, Lots 1 thru 6, Ventura Place, Grading & Drainage Plan Engineer's Stamp dated 6-28-05 (C20-D48)

Dear Mr. Biazar,

Based upon the information provided in your submittal dated 6-28-05, the above referenced plan is approved for Building Permit. Please attach a copy of this approved plan to the construction sets prior to sign-off by Hydrology. Additionally, prior to release of the Certificate of Occupancy an Engineer's Certification of the grading plan per the DPM checklist will be required.

P.O. Box 1293

This project requires a National Pollutant Discharge Elimination System (NPDES) permit. Refer to the attachment that is provided with this letter for details. If you have any questions please feel free to call the Municipal Development Department Hydrology section at 768-3654 (Charles Caruso).

Albuquerque

New Mexico 87103

If you have any questions, you can contact me at 924-3990.

Sincerely,

www.cabq.gov

Phillip J. Lovato, E.I., C.F.M.

Engineering Associate, Hydrology,

Development and Building Services,

Planning Department

cc: Charles Caruso, DMD

file

January 27, 2005

Mr. Shahab Biazar, PE ADVANCED ENGINEERING AND CONSULTING, LLC 10205 Snowflake Ct. NW Albuquerque, NM 87114

RE: VENTURA PLACE (C-20/D48)

Engineers Certification for Release of Financial Guaranty

Engineers Stamp dated 02/19/2004

Engineers Certification dated 01/24/2005

Dear Shahab:

Based upon the information provided in your Engineer's Certification Submittal dated 01/27/2005, the above referenced plan is adequate to satisfy the Grading and Drainage Certification for Release of Financial Guaranty.

If you have any questions, you can contact me at 924-3982

Albuquerque

P.O. Box 1293

Ulene V. Portiblo

Sincerely,

New Mexico 87103

Arlene V. Portillo

Plan Checker, Planning Dept.- Hydrology Development and Building Services

www.cabq.gov

Marilyn Maldonado, COA# 719981

File !

City of Albuquerque P.O. BOX 1293 ALBUQUERQUE, NEW MEXICO 87103

April 9, 2004

Shahab Biazar PE
Advanced Engineering and Consulting
10205 Snowflake Ct NW
Albuquerque, NM 87114

Re: Lot 4, Ventura Place Grading and Drainage Plan

Engineer's Stamp dated 4-9-04 (C20/D48)

Dear Mr. Biazar,

Based upon the information provided in your submittal dated 4-9-04, the above referenced report is approved for Building Permit. Please attach a copy of this approved plan to the construction sets prior to sign-off by Hydrology.

This project requires a National Pollutant Discharge Elimination System (NPDES) permit. Refer to the attachment that is provided with this letter for details. If you have any questions please feel free to call the Municipal Development Department, Hydrology section at 768-3654 (Charles Caruso) or 768-3645 (Bryan Wolfe).

Prior to Certificate of Occupancy release, Engineer Certification per the DPM checklist will be required.

If you have any questions, you can contact me at 924-3986.

Sincerely,
Brads 2. BM

Bradley L. Bingham, PE

Principal Engineer, Planning Dept.

Development and Building Services

C: Chuck Caruso, CoA file

DRAINAGE REPORT FOR

VENTURA PLACE DRAINAGE BASIN MODIFICATIONS

Prepared by:

4416 Anaheim Avenue, NE
Albuquerque, New Mexico 87113

February, 2004

Shahab Biazar PE NO. 13479

Location

Ventura Place is located at the southwest corner of Ventura Street and Holly Avenue.

The site contains approximately 10 acres. See attached Zone Atlas page number C-20 for exact location.

Purpose

The purpose of this drainage report is to present a grading and drainage solution for the proposed sites. We are requesting rough grading approval, site development plan for subdivision purposes, site development plan for building permit, final plat and building permit approval.

Existing Drainage Conditions

The site drains east to west and then to north to Holly Avenue. From the east and the south (Ventura Street and Paseo Del Norte right-of-way) there is an offsite basin that drains to this site. Based on the revised FIRM map 35001C0141 E (revised April 2, 2002) the site no longer falls within a 100-year floodplain.

Proposed Conditions and On-Site Drainage Management Plan

The offsite runoff (4.50 cfs) will continue to drain to this site. Ventura Place falls within basin 419.10 of RTI's Master Drainage Map, which was adopted by AVID engineering when they prepared the drainage report for the Paseo Del Norte right-of-way improvements. See attached RTI's basin map from AVID's drainage report for Paseo Del Norte construction. Therefore, Ventura Place under the developed conditions will drain to Paseo Del Norte storm sewer system. The runoff from on-site along with the runoff from offsite (at the total runoff discharge of 53.78 cfs) drains to the west end of the property. From there the runoff is intercepted by two drop inlets and then discharge via a 30" storm sewer pipe to an exiting inlet located on the north side of the Paseo Del Norte. Then from there the runoff will drain south to the 72" storm sewer pipe. One inlet is located at the loading area (just east of the most westerly entrance) where it would collect the runoff, and then drain it to the inlets located on the west end of the property via a 18" pipe. The inlets each will have a drainage capacity of 51.75 cfs in sump conditions. A drainage channel (3' wide by 2' deep) is designed for emergency overflow, where the runoff will drain north along the westerly boundary to two sidewalk culverts along Holly Avenue. The runoff from the Holly Avenue will continue to drain west. The runoff from Holly Avenue was analyzed under the City Drainage number C20/D34, prepared by Jeff Mortensen and Assoc. Inc. Based on the Mortensen report it was determined that the runoff at west end of the Lot 26 is 22.10 cfs. They also had proposed that the runoff would be intercepted by storm sewer inlets once Lot

For Info. Only

26 is developed. See copy of the Jeff Mortensen Analysis Plan located in the map pocket. We have analyzed the drainage capacity of Holly to be at a flow rate of 72.00 cfs which is considerably larger than the proposed flows in Holly. Therefore, storm sewer inlets are needed at this time to intercept the runoff in Holly. Due to recent developments along Holly, considerable amount runoff has be diverted away from Holly.

Calculations

City of Albuquerque, Development Process Manuel, Section 22.2, Hydrology Section, revised January, 1993, was used for runoff calculations. See this report for Summary Table for runoff results. See also this report for AHYMO input and output files for runoff and other calculations.

RUNOFF CALCULATION RESULTS

BASIN	AREA (SF)	AREA (AC)	AREA (MI ²)
ON-SITE	449389.14	10.3166	0.016120
OFFSITE	75368.20	1.7302	0.002703

PROPOSED

BASIN	Q-100	Q-10	TREATMENT
	CFS	CFS	A, B, C, D
ON-SITE	49.28	32.14	0%, 10%, 0%, 90%
OFFSITE	4.50	2.02	0%, 100%, 0%, 0%

EXISTING / HISTORICAL

BASIN	Q-100	Q-10	TREATMENT
	CFS	CFS	A, B, C, D
ON-SITE	19.31	5.78	100%, 0%, 0%, 0%
OFFSITE	4.50	2.02	0%, 100%, 0%, 0%

RUNOFF DRAINAGE DATA

The site is @ Zone 3

DEPTH (INCHES) @ 100-YEAR STORM

 $P_{60} = 2.14$ inches

 $P_{360} = 2.60 \text{ inches}$

 $P_{1440} = 3.10 \text{ inches}$

DEPTH (INCHES) @ 10-YEAR STORM

 $P_{60} = 2.14 \times 0.667$ = 1.43 inches

 $P_{360} = 1.73$

 $P_{1440} = 2.07$

See the summary output from AHYMO calculations.

Also see the following summary tables.

SUMMARY OUTPUT FILE

AHYMO PROGRA		TABLE (AHYMO_	97) -		-	VERSION:	1997.02d	RUN DATE USER NO.=		/YR) =08/0 9702c01000	•
	HVDD		FROM	TO	ת כיו כיו א	PEAK	RUNOFF		TIME TO	CFS	PAGE =	1
	IDENTIFI	CATION	ID NO	ID NO	AREA (SO MI)	DISCHARGE	VOLUME		PEAK	PER	MAN	017
COMMAND	IDENITEI	CALLON	NO.	NO.	(SQ MI)	(CFS)	(AC-FT) (INCHES)	(HOURS)	ACRE	NOTATI	ON
START											TIME=	.00
RAINFALL TY	YPE= 1										RAIN6=	2.600
COMPUTE NM F	HYD	100.00	_	1	.01612	19.31	.563	.65514	1.533	1.872	PER IMP=	.00
COMPUTE NM I	HYD	101.00	-	1	.00270	4.50	.133	.92096	1.500	2.601	PER IMP=	.00
START											TIME=	.00
RAINFALL T	YPE= 1										RAIN6=	1.730
COMPUTE NM I	HYD	110.00	-	1	.01612	5.78	.162	.18834	1.533	.561	PER IMP=	.00
COMPUTE NM I	HYD	111.00	-	1	.00270	2.02	.051	.35547	1.533	1.169	PER IMP=	.00
START											TIME=	.00
RAINFALL T	YPE= 1										RAIN6=	2.600
COMPUTE NM I	HYD	100.20	-	1	.01612	49.28	1.902	2.21184	1.500	4.777	PER IMP=	90.00
COMPUTE NM I	HYD	101.20	-	1	.00270	4.50	.133	.92096	1.500	2.601	PER IMP=	.00
START											TIME=	.00
RAINFALL T	YPE= 1										RAIN6=	1.730
COMPUTE NM	HYD	110.20	-	1	.01612	32.14	1.188	1.38160	1.500	3.115	PER IMP=	90.00
COMPUTE NM I	HYD	111.20	-	1	.00170	1.28	.032	.3554	1.533	1.170	PER IMP=	.00

STORM DRAIN EXHIBIT

Open Channel - Uniform flow

Worksheet Name:

Comment: INLET A TO B

Solve For Actual Discharge

Given Input Data:

Diameter	1.50 ft
Slope	0.0154 ft/ft
Manning's n	0.012
Depth	1.50 ft

Computed Results:

Results:	
Discharge	14.12 cfs
Velocity	7.99 fps
Flow Area	1.77 sf
Critical Depth	1.38 ft -
Critical Slope	0.0134 ft/ft
Percent Full	100.00 %
Full Capacity	14.12 cfs
QMAX @.94D	15.19 cfs
Froude Number	FULL

Open Channel Flow Module, Version 3.12 (c) 1990 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct

Open Channel - Uniform flow

Worksheet Name:

Comment: INLET B TO C

Solve For Actual Discharge

Given Input Data:

2.50 ft Diameter..... 0.0096 ft/ft Slope....... 0.012 Manning's n....

2.50 ft Depth.....

Computed Results:

43.54 cfs Discharge..... 8.87 fps Velocity..... 4.91 sf Flow Area..... 2.20 ft Critical Depth... 0.0086 ft/ft Critical Slope... 100.00 % Percent Full....

43.54 cfs Full Capacity.... 46.83 cfs QMAX @.94D.... FULL

Froude Number....

Open Channel Flow Module, Version 3.12 (c) 1990 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct

Open Channel - Uniform flow

Worksheet Name:

Comment: INLET C TO EXISTING INLET IN STATE ROW

Solve For Actual Discharge

Given Input Data:

 Diameter.....
 2.50 ft

 Slope.....
 0.0154 ft/ft

 Manning's n....
 0.012

Manning's n.... 0.012 Depth.... 2.50 ft

Computed Results:

55.14 cfs Discharge..... 11.23 fps Velocity..... 4.91 sf Flow Area..... 2.36 ft Critical Depth... 0.0133 ft/ft Critical Slope... 100.00 웅 Percent Full.... 55.14 cfs Full Capacity.... 59.32 cfs QMAX @.94D.....

Froude Number.... FULL

STORM DROP INLET DRAINAGE CAPACITY Double 'A'

Area at the grate:

$$L = 88 \frac{3}{4}" - 2(6"_{ends}) - 6"_{center \, piece} - 14(\frac{1}{2})$$

$$= 63 \frac{3}{4}"$$

$$= 5.3125'$$

$$W = 25 \frac{1}{2}$$
" - $13(\frac{1}{2}$ " middle bars)
= 19"
= 1.5833'

Area =
$$5.3125' \times 1.5833'$$

= 8.41 ft^2

Effective Area =
$$8.41 - 8.41 (0.5_{clogging factor})$$

= 4.21 ft^2 at the grate

Area at the throat:

$$L = 10.95'$$

$$H = 10 \frac{3}{4}$$
" - 4 $\frac{1}{2}$ "
= 6 $\frac{1}{4}$ "
= 0.5208'

Area =
$$10.95' \times 0.5208'$$

= 5.70 ft^2 at the throat

H=1.25 Q= $CA\sqrt{2gH}$ Q=0.60(5.70) $\sqrt{2(32.2)(1.25)}$ Q=30 68 CFS

H=(1.25+0.89)/2=1.08 $Q=CA\sqrt{2gH}$ $Q=0.60(4.21)\sqrt{2(32.2)(1.08)}$ Q=21.07 CFS

Q=21.07+30.68=51.75 CFS

Rectangular Channel Analysis & Design Open Channel - Uniform flow

Worksheet Name:

Comment: EMERGENCY OVERLFOW CHANNEL

Solve For Discharge

Given Input Data:

Bottom Width... 3.00 ft Manning's n... 0.012

Channel Slope... 0.0100 ft/ft

Computed Results:

Discharge..... 56.38 cfs
Velocity..... 10.74 fps
Flow Area..... 5.25 sf
Flow Top Width... 3.00 ft
Wetted Perimeter. 6.50 ft
Critical Depth... 2.22 ft

Critical Slope... 0.0054 ft/ft

Froude Number.... 1.43 (flow is Supercritical)

Open Channel Flow Module, Version 3.12 (c) 1990 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct

STREET FLOW CAPACITY 60 ROW / 36 F-F

HALF STREET SECTION

FINDING STREET CAPACITY

 $Q = 1.49 / n A (A/P)^{2/3} S^{1/2}$

n =

0.017

SLOPE = 0.02400

V = VELOCITY (FT/S)

D = TOTAL FLOW DEPTH (FT) D2 = HYDRAULIC JUMP (FT)

HALF STREET CALCULATION

@Y<0.125

 $A1 = \frac{1}{2} Y (Y / 0.0625) = 8 Y^{2}$

 $P1 = SQRT(Y^2 + (Y / 0.0625)^2) + Y = SQRT(257 Y^2) + Y$

FULL STI	REET FLOW
•	

Y (FT)	Α	Р	(A/P) ² /3	Q	2Q	V	Fr	D*V	D2
0.025	0.0050	0.4258	0.0517	0.00	0.01	0.70	0.78	0.017	0.02
0.050	0.0200	0.8516	0.0820	0.02	0.04	1.11	0.88	0.056	0.04
0.125	0.1250	2.1289	0.1511	0.26	0.51	2.05	0.03	0.256	0.00

@ 0.125 < Y < 0.445 & Y1 = Y - 0.125

 $A2 = A1 + \frac{1}{2} Y1(Y1 / 0.02) + 2 Y1 = A1 + 25 Y1^2 + 2 Y1$

 $P2 = P1 + SORTIY1^2 + (Y1 / 0.01)^2 + Y1 = P1 + SORT(2501 Y1^2) + Y1$

	. – 1 1 1 0001		V.V 1 / 1 1 1				· · · · · · · · · · · · · · · · · · ·			····
	0.200	0.4156	6.0797	0.1672	0.94	1.88	2.26	0.89	0.453	0.17
	0.250	0.7656	8.6302	0.1989	2.06	4.12	2.69	0.95	0.673	0.23
-	0.350	1.8406	13.7312	0.2619	6.53	13.06	3.55	1.06	1.241	0.38
 	0.445	3.3250	18.5771	0.3176	14.30	28.60	4.30	1.14	1.914	0.53

@ $0.445 < Y \le 0.667 & Y2 = Y - 0.445$

@ 0.445 < Y < 0 A3 = A2 + 16 Y P3 = P2 + Y2		= Y - 0.445				Full	STree	r Cap	acity
0.500	4.2050	18.6321	0.3707	21.11	42.22	5.02	1.25	2.510	0.67
0.550	5.0050	18.6821	0.4156	28.17	56.33	5.63	1.34	3.095	0.80
0.600	5.8050	18.7321	0.4579	36.00	72.00	7 6.20	1.41	3.721	0.93
0.667	6.8717	18.7988	0.5112	47.57	95.15	6.92	1.49	4.615	1.11

@ $0.667 < Y \le 0.907 & Y3 = Y - 0.667$

 $A4 = A3 + 16 Y3 + \frac{1}{2} (Y3) (Y3 / 0.02) = A3 + 16 Y3 + 25 Y3^{2}$

 $P4 = P3 + SORT(Y3^2 + (Y3 / 0.02)^2) = P3 + SQRT(2501 Y3^2)$

	7 — 1 0 · OQi		<u> </u>							
	0.700	7.4328	20.4656	0.5090	51.24	102.47	6.89	1.45	4.825	1.13
1	0.751	8.3887	22.9911	0.5106	58.00	116.01	6.91	1.41	5.189	1.16
	0.856	10.7870	28.2472	0.5264	76.89	153.78	7.13	1.36	6.099	1.27
-	0.907	12.1610	30.8177	0.5380	88.60	177.20	7.29	1.35	6.608	1.33

RUNOFF CALCULATION RESULTS

BASIN	AREA (SF)	AREA (AC)	AREA (MI ²)
OF-A	53046.38	1.2178	0.001903
OF-B	8558.72	0.1965	- 0.000307
OF-C	59824.53	1.3734	0.002146
OF-D	13211.81	0.3033	0.000474
OF-E	9432.99	0.2166	0.000338
OF-F	31502.69	0.7232	0.001130
ON-A	22975.38	0.5274	0.000824
ON-B_	170013.95	3.9030	0.006098
ON-C	90972.97	2.0885	0.003263
ON-D	35135.45	0.8066	0.001260
ON-E	28017.78	0.6432	0.001005
ON-1	86909.90	1.9952	0.003117
ON-2	15394.52	0.3534	0.000552

UNDER THE PROPOSED CONDITIONS

BASIN	Q-100	TREATMENT
	CFS	A, B, C, D
OF-A	5.18	0%, 32%, 0%, 68%
OF-B	0.52	0%, 100%, 0%, 0%
OF-C	5.85	0%, 32%, 0%, 68%
OF-D	0.80	0%, 100%, 0%, 0%
OF-E_	0.57	0%, 100%, 0%, 0%
OF-F	1.89	0%, 100%, 0%, 0%
ON-A	2.54	0%, 10%, 0%, 90%
ON-B	18.65	0%, 10%, 0%, 90%
ON-C	9.99	0%, 10%, 0%, 90%
ON-D	3.87	0%, 10%, 0%, 90%
ON-E	3.09	0%, 10%, 0%, 90%
ON-1	9.54	0%, 10%, 0%, 90%
ON-2	1.71	0%, 10%, 0%, 90%

SUMMARY OUTPUT FILE

AHYMO PROGR INPUT FILE	AM SUMMARY TABLE (= 2250NEWA	OMYHA)	97) -		_	VERSION: 199			(MON/DAY/Y AHYMO-I-97	•	12/2004 DR31-AH
		FROM	TO	ţ	PEAK	RUNOFF		TIME TO	CFS	PAGE =	= 1
•	HYDROGRAPH	ID	ID	AREA	DISCHARGE	VOLUME	RUNOFF	PEAK	PER		
COMMAND	IDENTIFICATION	NO.	NO.	(SQ MI)	(CFS)	(AC-FT)	(INCHES)	(HOURS)	ACRE	NOTAT	ION
START	; !					; !			Tr.	IME=	. O Ø
ŧ	YPE= 1				1	•				AIN6=	2.600
COMPUTE NM		-	1	.00190	5.18	.192	1.89630	1.500		ER IMP=	
COMPUTE NM		_	1	.00031	. 52	.015	.92096	1.500	2.647 P		.00
COMPUTE NM	↓	_	1	.00215	5.85	.217	1.89630	1.500	4.257 P		68.00
COMPUTE NM		_	1	.00047	.80	.023	.92096	1.500	2.626 P	ER IMP=	.00
COMPUTE NM		_	1	.00034	.57	.017	.92096	1.500	2.639 P	ER IMP=	.00
COMPUTE NM	HYD 105.00	_	1	.00113	1.89	.056	.92096	1.500	2.609 P	ER IMP=	.00
COMPUTE NM	HYD 106.00	-	1	.00082	2.54	.097	2.21184	1.500	4.812 P	ER IMP=	90.00
COMPUTE NM	HYD 107.00	-	1	.00610	18.65	.719	2.21184	1.500	4.780 P	ER IMP=	90.00
COMPUTE NM	HYD 108.00	-	1	.00326	9.99	.385	2.21185	1.500	4.784 P	ER IMP=	90.00
COMPUTE NM	HYD 109.00	-	1	.00126	3.87	.149	2.21185	1.500	4.798 P	ER IMP=	90.00
COMPUTE NM	HYD 110.00	-	1	.00101	3.09	.119	2.21184	1.500	4.806 P	ER IMP=	90.00
COMPUTE NM	HYD 111.00	-	1	.00312	9.54	.368	2.21185	1.500	4.784 P	ER IMP=	90.00
COMPUTE NM	HYD 112.00	-	1	.00055	1.71	.065	2.21184	1.500	4.833 P	ER IMP=	90.00
FINISH									į		
;	<u> </u>				•				;		ļ
į	•					;			Ł		,
	•			1	1			!		1	
	i 4			•	‡ •					•	
				i				į			
	•			1				,		•	
				ı		ı					
						i i					1
											_
						• • • • • • • • • • • • • • • • • • •			•		•
<u> </u>	‡				<u> </u>	₹ }			!		1
;)				1	1			ļ		
	i			!	į	‡ 1		1		1	t .
				į				i			

_ -----

FLOW-CHART.DWG

Open Channel - Uniform flow

Worksheet	Name:
-----------	-------

Comment: MH-A TO SIN-B

Solve For Actual Depth

Given Input Data:

Diameter.... 2.50 ft

Slope.......... 0.0077 ft/ft

Manning's n.... 0.012 Discharge..... 41.92 cfs

Computed Results:

Flow Area..... 4.76 sf Critical Depth... 2.17 ft

Critical Slope... 0.0081 ft/ft

Percent Full.... 92.93 %
Full Capacity.... 38.99 cfs
QMAX @.94D..... 41.94 cfs

Fröude Number.... 0.81 (flow is Subcritical)

Open Channel - Uniform flow

Worksheet Name:					
Comment: IN-E TO MH-A					
Solve For Actual Depth					
	2.00 ft 0.0120 ft/ft 0.012 28.06 cfs				
Computed Results: Depth Velocity Flow Area Critical Depth Critical Slope Percent Full Full Capacity QMAX @.94D Froude Number	1.74 ft 9.69 fps 2.89 sf 1.83 ft 0.0114 ft/ft 86.76 % 26.85 cfs 28.88 cfs 1.17 (flow is Supercritical)				

Open Channel - Uniform flow

Worksheet Name:	
Comment: IN-B TO IN-E	
Solve For Actual Depth	
Given Input Data: Diameter Slope Manning's n Discharge	2.00 ft 0.0086 ft/ft 0.012 24.40 cfs
Computed Results: — Depth Velocity Flow Area Critical Depth Critical Slope Percent Full Full Capacity QMAX @.94D Froude Number	1.84 ft 8.06 fps 3.03 sf 1.75 ft 0.0090 ft/ft 92.13 % 22.73 cfs 24.45 cfs 0.85 (flow is Subcritical)

Open Channel - Uniform flow

Worksheet Name: —	
Comment: IN-A TO IN-B	
Solve For Actual Depth	
Given Input Data: Diameter Slope Manning's n Discharge	0.0280 ft/ft 0.012
Computed Results: Depth Velocity Flow Area Critical Depth Critical Slope Percent Full Full Capacity QMAX @.94D Froude Number	

Circular Channel Analysis & Design Solved with Manning's Equation

Open Channel - Uniform flow

Comment: IN-CA TO MH-A

Solve For Actual Depth

Given Input Data:

Diameter	2.00 ft
Slope	0.0028 ft/ft
Manning's n	0.012
Discharge	13.86 cfs.

Computed Results:

Depth	1.81 ft
Velocity	4.63 fps
Flow Area	2.99 sf
Critical Depth	1.34 ft
Critical Slope	0.0051 ft/ft
Percent Full	90.66 %
Full Capacity	12.97 cfs
QMAX @.94D	13.95 cfs

Circular Channel Analysis & Design Solved with Manning's Equation

Open Channel - Uniform flow

Worksheet	Name:	

Comment: IN-C TO INC-A

Solve For Actual Depth

Given Input Data:

Diameter..... 2.00 ft

Slope.... 0.0028 ft/ft

Manning's n.... 0.012

Discharge..... 13.86 cfs

Computed Results:

Velocity..... 4.63 fps Flow Area..... 2.99 sf

Critical Depth... 1.34 ft

Critical Slope... 0.0051 ft/ft

90.66 % Percent Full.... Full Capacity.... 12.97 cfs

QMAX @.94D..... 13.95 cfs

Froude Number.... 0.51 (flow is Subcritical)

Open Ch

Circular Channel Analysis & Design Solved with Manning's Equation

Open Channel - Uniform flow

Worksheet Name:	
Comment: IN-D TO IN-C	
Solve For Actual Depth	10-11-11 III
Given Input Data: Diameter Slope Manning's n Discharge	1.00 ft 0.0089 ft/ft 0.012 3.87 cfs
Velocity	0.89 ft 5.22 fps 0.74 sf 0.84 ft 0.0097 ft/ft 89.42 % 3.64 cfs 3.92 cfs 0.84 (flow is Subcritical)

Open Cha

,

Holly Avenue Street Flow Analysis

Based on the revised grading plan we are proposing to discharge some of the runoff from on-site to Holly Avenue. Therefore, we have to analyzed Holly for its drainage capacity. Holly was analyzed for flow capacity under three different conditions, the Proposed Conditions, Future Alternative Conditions, and Future Conditions (most conservative conditions).

Attached basin shows the areas that contribute to the runoff in Holly Avenue. Basin B-1 and B-3 are from JMA for Desert Ridge Place. The following are the conclusion for three drainage conditions mentioned above:

Proposed Conditions

Under the proposed conditions the runoff from our site Basins ON-1 and ON-2 along with Basins B-1 and B-3 drain to point AP-1 at a flow rate of 26.87 cfs. At point AP-1 the runoff is intercepted by four existing inlets and only 4.27 cfs pass the exiting inlets. From there the runoff from basins OF-1 (at existing flow rate of 4.33 cfs) and OF-2 (at existing flow rate of 17.78 cfs) enter Holly Avenue (basin OF-3 with flow rate of 7.51 cfs). The runoff from AP-1 (4.27 cfs) along with other from Basin OF-1, OF-2, and OF-3 drains west on Holly Avenue. From there the entire runoff at a total runoff of 33.89 cfs to Barstow Street to Basin OF-4 (with flow rate of 4.29 cfs). The runoff from Holly and Barstow then drains south to an existing SD/WK culvert were then drains to an exiting pond with an existing inlet which drains the entire runoff to Paseo drainage system. The exiting inlet has to be modified to a 7-2' and 1-2' SD/WK culvert in order to drain the runoff into the pond properly, otherwise the runoff will over flow the SD/WK culvert over the pedestrian sidewalk and then into the pond.

Future Conditions (Alternative Condition)

Some assumptions were done under this analysis. We had assumed that under future conditions once basins OF-1 will drain to the existing inlet along the west side of the basin and that only 30% of the future development of Basin OF-2 will drain to Holly and the other 70% would drain to the existing inlet along Paseo Del Norte. The runoff passed AP-1 will be the same as developed conditions with runoff of 4.27 cfs. Therefore, the total runoff entering the Barstow will be only 22.91 cfs. From there the 22.91 cfs along with the runoff in Barstow (4.29 cfs) will drain to the existing SD/WK culvert at a flow rate of 27.20 cfs. The existing culvert has to be modified to 5-2' and 1-1' SD/WK culverts in order to drain the runoff to the exiting pond.

Future Conditions (Most Conservative Condition)

Under this assumption we have assumed that the entire developed runoff flow from Basis OF-1 and OF-2 will drain to Holly under the developed conditions. The runoff passed AP-1-will be the same as developed conditions with runoff of 4.27 cfs. Therefore, the total runoff entering Barstow will be 59.35 cfs. From there the 59.35 cfs along with the runoff in Barstow (4.29 cfs) will drain to the existing SD/WK culvert at a flow rate of 63.64 cfs. The existing culvert has to be modified to 12-2' and 1-1' SD/WK culverts in order to drain the runoff to the exiting pond.

Conclusion

Based on the proposed conditions, we are proposing to modify the existing sidewalk culvert to 7-2' and 1-1' culverts. Once OF-1 and OF-2 are developed additional inlets will be required to be placed on Barstow in order to drain the runoff into the exiting pond. We also have analyzed street flow capacity of Holly to be at a flow rate of 86.86 cfs which is larger than the future conditions of 59.35 cfs.

See the following basin map and flow chart analysis under different drainage conditions.

RUNOFF CALCULATION RESULTS

BASIN	AREA (SF)	AREA (AC)	AREA (MIA)
B-1	108900.00	2.5000	0.003906
B-3	38768.40	0.8900	0.001391
-QN-1	58724.53	1.3481	0.002106
ON-2	12902.19	0.2962	0.000463
OF-1	100492.49	2 3070	0.003605
OF-2	-356297.15	8.1795	
OF-3	68310.97	1.5682	0.002450
OF-4	38974.55	0.8947	0.001398

ULTIMATE CONDITIONS

BASIN	Q-100	Q-10	TREATMENT
	CFAs	CFAs	A, B, C, D
B-1	4.69	32.14	0%, 20%, 0%, 80%
B-3	4.27	32.14	0%, 10%, 0%, 90%
ON-1	2.53	32.14	0%, 10%, 0%, 90%
ON-2	0.56	32.14	0%, 10%, 0%, 90%
OF-1	4.33	32.14	0%, 20%, 0%, 80%
OF-2	39.08	32.14	0%, 20%, 0%, 80%
OF-3	3.42	32.14	_ 90%, 0%, 0%, 10%
OF-4	4.29	32.14	0%, 10%, 0%, 90%

PROPOSED CONDITIONS

BASIN	Q-100	Q-10	TREATMENT
	CFAs	CFAs	A, B, C, D
B-1	19.31	5.78	100%, 0%, 0%, 0%
B-3	4.50	2.02	0%, 10%, 0%, 90%
ON-1	4.50	2.02	100%, 0%, 0%, 0%
ON-2	4.50	2 02	100%, 0%, 0%, 0%
OF-1	4.50	2.02	100%, 0%, 0%, 0%
OF-2	4.50	2.02	0%, 10%, 0%, 90%
OF-3	4.50	2.02	90%, 0%, 0%, 10%
OF-4	4.50	2.02	0%, 10%, 0%, 90%

SUMMARY OUTPUT FILE

AHYMO PROGRAM SUMMARY TABLE (AHYMO_97) INPUT FILE = 2250-NEW

FINISH

- VERSION: 1997.02d

RUN DATE (MON/DAY/YR) =02/19/2004 USER NO.= AHYMO-I-9702c01000R31-AH

	HYDROGRAPH	FROM	TO ID		AREA	PEAK DISCHARGE	RUNOFF VOLUME (AC-FT)	RUNOFF	TIME TO PEAK (HOURS)	CFS PER ACRE	PAGE =		
COMMAND	IDENTIFICATION	NO.	NO.		(SQ MI)	(CFS)	(AC-LI)	(IIICIIII)	(1100100)	HOND	1401111		
START	į						i				TIME=	.00	1
	PE= 1										RAIN6=	2.600	
COMPUTE NM HY		_	1	i	.00391	4.69	.136	.65514	1.533	1.875	PER IMP=	.00	
COMPUTE NM HY	1	_	1		.00139	4.27	.164	2.21184	1.500	4.797	PER IMP=	90.00	
COMPUTE NM HY		-	1		.00312	3.74	.109	.65514	1.533	1.875	PER IMP=	.00	
COMPUTE NM HY		_	1		.00055	.67	.019	.65514	1.533	1.895	PER IMP=	.00	
COMPUTE NM HY		_ i	1		.00361	4.33	.126	.65514	1.533	1.875	PER IMP=	.00	
COMPUTE NM HY		_	1		.01278	17.78	.562	.82515	1.500	2.173	PER IMP=	10.00	
COMPUTE NM HY		-	1		.00245	7.51	.289	2.21184	1.500	4.787	PER IMP=	90.00	
COMPUTE NM HY		_	1		.00140	4.29	.165	2.21185	1.500	4.797	PER IMP=	90.00	
START											TIME=	.00	
	PE= 1	,						•	•		RAIN6=	1.730	
COMPUTE NM HY		-	1		.00391	1.40	.039	.18834	1.533	. 562	PER IMP=	.00	
COMPUTE NM HY		-	1		.00139	2.78	.102	1.38160	1.500	3.126	PER IMP=	90.00	
COMPUTE NM HY		-	1		.00312	1.12	.031	.18834	1.533		PER IMP=	.00	
COMPUTE NM HY		-	1		.00055	.20	.006	.18834	1.533		PER IMP=	.00	
COMPUTE NM HY		-	1		.00361	1.30	.036	.18834	1.533		PER IMP=	.00	
COMPUTE NM HY	YD 115.00	-	1		.01278	6.76	.217	.31907	1.500		PER IMP=	10.00	
COMPUTE NM HY	ZD 116.00	-	1	1	.00245	4.89	.181	1.38160	1.500		PER IMP=	90.00	
COMPUTE NM HY	ZD 117.00	-	1		.00140	2.80	.103	1.38160	1.500	3.126	PER IMP=	90.00	
START	ł	•					i	•			TIME=	.00	
RAINFALL TYPE	PE= 1	1 1 P				1					RAIN6=	2.600	
COMPUTE NM HY	YD 100.10	-	1		.00391	11.35	.431	2.06841	1.500		PER IMP=	80.00	
COMPUTE NM HY	YD , 101.10	- '	1		.00139	4.27	.164	2.21184	1.500		PER IMP=	90.00	
COMPUTE NM HY	YD : 102.10	-	1		.00312	9.54	.368	2.21185	1.500		PER IMP=	90.00	
COMPUTE NM H	YD 103.10	-	1		.00055	1.71	.065	2.21184	1.500		PER IMP=	90.00	
COMPUTE NM HY	YD 104.10	-	1		.00361	10.48	.398	2.06841	1.500		PER IMP=	80.00	
COMPUTE NM HY	YD 105.10	-	1	į	.01278	37.09	1.410	2.06841	1.500		PER IMP=	80.00	
COMPUTE NM HY	YD 106.10	-	1	į	.00245	7.51	.289	2.21184	1.500	4.787		90.00	
COMPUTE NM HY	YD 107.10	-	1	1	.00140	4.29	.165	2.21185	1.500	4.797		90.00	
START	•	:		1	‡ †			; ,	i i		TIME=	.00	
RAINFALL TYPE	PE= 1						264	1 26750	1 500	2 000	RAIN6=	1.730	
COMPUTE NM HY	YD ' 110.10	-	1		.00391	7.25	.264	1.26758	1.500		PER IMP=	90.00	
COMPUTE NM HY	YD 111.10	_	1		.00139	2.78	.102	1.38160	1.500		PER IMP-	90.00	
COMPUTE NM H			1		.00312	6.22	.230	1.38159	1.500		PER IMP= PER IMP=	90.00	
COMPUTE NM HY			1		.00055	1.11	.041	1.38160	1.500 1.500		PER IMP=	80.00	
COMPUTE NM H			1		.00361	6.69	.244	1.26758 1.26758	1.500		PER IMP=	80.00	
COMPUTE NM H			1		.01278	23.69	.864 .181	1.38160	1.500		PER IMP=	90.00	
COMPUTE NM H			1		.00245	4.89 2.80	.103	1.38160	1.500		PER IMP=	90.00	
COMPUTE NM H	YD 117.10	-	T		.00140	2.00	. 105	1.50100		J. 12 U			

HOLLY-FLOW-CHART.DWG

HOLLY-FLOW-CHART.DWG

STREET FLOW CAPACITY (HOLLY AVENUE) @ AP-1 60 ROW / 36 F-F

HALF STREET SECTION

FINDING STREET CAPACITY

 $Q = 1.49 / n A (A/P)^{2/3} S^{1/2}$

n =

0.017

 $P4 = P3 + SQRT(Y3^2 + (Y3 / 0.02)^2) = P3 + SQRT(2501 Y3^2)$

20.4656

22.9911

28.2472

30.8177

7.4328

8.3887

10.7870

12.1610

0.7000

0.7505

0.8556

0.9070

SLOPE =

0.03500

V = VELOCITY (FT/S)

D = TOTAL FLOW DEPTH (FT)

D2 = HYDRAULIC JUMP (FT)

HALF STREET	CALCULAT	<u>ION</u>			FULL STR	REET FLO	W					
@Y 0.125												
$A1 = \frac{1}{2} Y (Y / 0.$	$0625) = 8 Y^2$											
$P1 = SQRT[Y^2 +$	- (Y / 0.0625) ²	$^{2}] + Y = SQR^{2}$	$T(257 Y^2) + Y$									
Y (FT)	Α	Р	(A/P) ^{2/3}	Q	2Q	V	Fr	D*V	D2			
0.0250	0.0050	0.4258	0.0517	0.00	0.01	0.84	0.94	0.021	0.02			
0.0500	0.0200	0.8516	0.0820	0.03	0.05	1.34	1.06	0.067	0.05			
0.1250	0.1250	2.1289	0.1511	0.31	0.62	2.47	0.03	0.309	0.00			
@ 0.125 < Y 0	.445 & Y1	= Y - 0 125										
$A2 = A1 + \frac{1}{2} Y1$	(Y1 / 0.02) + 3	2 Y1 = A1 + :	25 Y1 ² + 2 Y1								DEPTH (Y)=0.33' &
P2 = P1 + SQR	$T[Y1^2 + (Y1)]$	0.01) ²] + Y1 =	= P1 + SQRT(2	2501 Y1 ²)) + Y1				1 · 7 - 1 · 1 - 2 1 · 1		, Q=13.27 (CFS
0.2000	0 4156	6.0797	0.1672	1.14	2.27	2.73	1.08	0.547	0.22			
0.2500	0.7656	8.6302	0.1989	2.49	4.98	3.25	1.15	0.813	0.30			
0.3324	1.6152	12.8334	0.2511	6.63	13.27	4.11	1.26	1.365	0.45	K		
0.3500	1.8406	13.7312	0.2619	7.88	15.77	4.28	1.28	1.499	0.48			
0.3919	2.4402	15.8700	0.2870	11.45	22.91	4.69	1.32	1.840	0.56			
0.4200	2.8906	17.3019	0.3033	14.34	28.68	4.96	1.35	2.083	0.62			
0.4117	2.7533	16.8785	0.2985	13.44	26.88	4.88	1.34	2.010	0.60		DEPTH (Y)=0.41' &
0.4400	3.2356	18.3221	0.3148	16.66	33.31	5.15	1.37	2.265	0.66		~ Q=26.87	CFS
0.4423	3.2757	18.4368	0.3160	16.93	33.86	5.17	1.37	2.286	0.66			
0.4450	3.3250	18.5771	0.3176	17.27	34.54	5.19	1.37	2.311	0.67			
@ 0.445 < Y 0	.667 & Y2	= Y - 0.445						<u>-</u>				
A3 = A2 + 16 Y2	2											
P3 = P2 + Y2												
0.5000	4.2050	18.6321	0.3707	25.49	50.98	6.06	1.51	3.031	0.85			
0.5253	4.6092	18.6574	0.3937	29.68	59.35	6.44	1.57	3.382	0.93			
0.6000	5.8050	18.7321	0.4579	43.47	86.95	7.49	1.70	4.493	1.18			
0.6667	6.8717	18.7988	0.5112	57.45	114.90	8.36	1.80	5.574	1.40			
@ 0.667 < Y 0	.907 & Y3	= Y - 0.667										
A4 = A3 + 16 Y3	3 + ½ (Y3) (Y3	3/0.02) = A	3 + 16 Y3 + 25	Y32								
		•	. 00007/0504									

61.87

70.05

92.85

0.5380 106.99 213.98

123.75

140.09

185.70

8.32

8.35

8.61

8.80

0.5090

0.5106

0.5264

1.42

1.47

1.60

1.68

5.827

6.267

7.365

7.980

1.75

1.70

1.64

1.63

STREET FLOW CAPACITY (HOLLY AVENUE) @ AP-2 60 ROW / 36 F-F

HALF STREET SECTION

FINDING STREET CAPACITY

 $Q = 1.49 / n A (A/P)^{2/3} S^{1/2}$

n = 0.017

SLOPE = 0.02000 V = VELOCITY (FT/S)

D = TOTAL FLOW DEPTH (FT)

D2 = HYDRAULIC JUMP (FT)

HALF STREET	CALCULATI	ON			FULL STR	REET FLO	W				
@Y 0.125 A1 = $\frac{1}{2}$ Y (Y / 0	0625) - 8 V2										
$P1 = SQRT[Y^2]$	•	1 + V = SORT	7(257 Y²) + Y								
Y (FT)	Δ	P DGIV	(A/P)^2/3	0	2Q	V	Fr	D*V	D2		
0.0250	0.0050	0.4258	0.0517	0.00	0.01	0.64	0.71	0.016	0.02		
0.0500	0.0200	0.4235	0.0820	0.02	0.04	1.01	0.80	0.051	0.04		
0.1250	0.1250	2.1289	0.0020	0.23	0.47	1.87	0.03	0.233	0.00		
<u> </u>		= Y - 0.125			<u> </u>		0.00	0.200	0.00		
$A2 = A1 + \frac{1}{2} Y1$			5 Y1 ² + 2 Y1								
P2 = P1 + SQR	•			2501 Y1²)	+ Y1						
0.2000	0.4156	6.0797	0.1672	0.86	1.72	2.07	0.81	0.413	0.15		FUTURE ALTERNATIVE
0.2500	0.7656	8.6302	0.1989	1.88	3.77	2.46	0.87	0.615	0.21		CONDITIONS
0.3324	1.6152	12.8334	0.2511	5.01	10.03	3.10	0.95	1.032	0.31		DEPTH (Y)=0.43' &
0.3500	1.8406	13.7312	0.2619	5.96	11.92	3.24	0.96	1.133	0.33		Q=22.91 CFS
0.3919	2.4402	15.8700	0.2870	8.66	17.32	3.55	1.00	1.391	0.39		
0.4200	2.8906	17.3019	0.3033	10.84	21.68	3.75	1.02	1.575	0.43		
0.4273	3.0134	17.6717	0.3075	11.45	22.91	3.80	1.02	1.624	0.44		
0.4400	3.2356	18.3221	0.3148	12.59	25.18	3.89	1.03	1.712	0.46		PROPOSED
0.4423	3.2757	18.4368	0.3160	12.80	25.60	3.91	1.04	1.728	0.46		✓ CONDITIONS
0 4450	3.3250	18.5771	0.3176	13.05	26.11	3.93	1.04	1.747	0.47		DEPTH (Y)=0.48' &
@ 0.445 < Y C).667 & Y2	= Y - 0.445						•			Q=33.86 CFS
A3 = A2 + 16 Y	2										
P3 = P2 + Y2			, — <u>-</u>		· · · · · · · · · · · · · · · · · · ·	······································	<u>. </u>		_		
0.4803	3.8890	18.6124	0.3521	16.93	33.86	4.35	1.11	2.090	0.55		
0.5788	5.4660	18.7109	0.4403	29.75	59.50	5.44	1.26	3.150	0.78		FUTURE CONDITIONS
0.6000	5.8050	18.7321	0.4579	32.86	65.72	5.66	1.29	3.397	0.83		MOST CONSERVATIVE
0.6667	6.8717	18.7988	0.5112	43.43	86.86	6.32	1.36	4.213	1.00	•	DEPTH (Y)=0.58' &
@ 0.667 < Y (0.907 & Y3	= Y - 0.667		·							Q=59.50 CFS
A4 = A3 + 16 Y	3 + ½ (Y3) (Y3	3/0.02) = A3	3 + 16 Y3 + 25	5 Y32							
P4 = P3 + SQR	RT(Y32 + (Y3 / 1	$0.02)^2$) = P3 -	+ SQRT(2501	Y3 ²)							
0.7000	7.4328	20.4656	0.5090	46.77	93.54	6.29	1.33	4.405	1.01		
0.7505	8.3887	22.9911	0.5106	52.95	105.90	6.31	1.28	4.737	1.04	\	DEPTH (Y)=0.67' &
0.8556	10.7870	28.2472	0.5264	70.19	140.38	6.51	1.24	5.567	1.13	`	\ Q=86.86 CFS
0.9070	12.1610	30.8177	0.5380	80.88	161.76	6.65	1.23	6.032	1.19		(HOLLY AVE. FULL
					•						FLOW CAPACITY)

Sidewalk Culvert Flow Calculations @ AP-3

Orifice Equation: $Q=CA\sqrt{(2gh)}$ Q=? cfs (maximum runoff) C=0.6 g=32.20 h=0.67'Curb Opening = 1.00' $A=2.00 \times 0.67 = 1.34$ sf $Q=0.60 \times 1.34\sqrt{(2 \times 32.2 \times 0.67)}$ Q=5.28 cfs (existing flow capacity of the sidewalk culvert on Barstow St.)

Sidewalk Culvert Improvement Requirement on Barstow St.

<u>Under The Proposed Conditions</u>

Q=38.18 cfs, Solve for A A=Q/(CV(2gh))/A=38.18/(0.6 V(2x32.2x.67))A=9.69 sf, W=9.69/0.67, W = 14.46', : 7-2' & 1-1' Sidewalk culvert is required

Under The Alternative Future Conditions

Q=27.20 cfs, Solve for A & W (width of the sd/wk culvert) A=Q / (C\((2gh))/ A=27.20 / (0.6 \((2x32.2x.67))/ A=6.90 sf, W=6.90 / 0.67, W = 10.30', \therefore 5-2' & 1-1' Sidewalk culvert is required

Under The Future Conditions (most conservative conditions)

Q=63.64 cfs, Solve for A & W (width of the sd/wk culvert) A=Q / (CV(2gh))/ A=63.64 / (0.6 V(2x32.2x.67) A=16.15 sf, W=16.15 / 0.67, W = 24.10', \therefore 12-2' & 1-1' Sidewalk culvert is required

We propose to build 7-2' & 1'1' sidewalk culverts based on the analysis under the proposed conditions (38.15 cfs). In the future conditions, if any of the basin (as shown on the Holly / Barstow Basin Map) are proposed to drain full developed runoff to Holly more sidewalk culverts are needed. Most conservative number of sd/wk culverts required is based on the Future Conditions (most conservative conditions) which requires 12-2' & 1-1" sidewalk culverts.

Planning Department Transportation Development Services Section

February 20, 2008

Christopher R. Gunning, Registered Architect 6801 Jefferson NE, Ste. 100 Albuquerque, NM 87109

Re:

Certification Submittal for Final Building Certificate of Occupancy for

Ventura Place, Bldg 5, [C-20 / D048]

8810 Holly Ave. NE

Architect's Stamp Dated 05/16/08

Dear Mr. Gunning:

P.O. Box 1293

The TCL / Letter of Certification submitted on February 20, 2008 is sufficient for acceptance by this office for final Certificate of Occupancy (C.O.). Notification has been made to the Building and Safety Section.

Albuquerque

Sincerely

New Mexico 87103

www.cabq.gov

Nile E. Salgado-Férnandez, P.E.

Senior Traffic Engineer

Development and Building Services

Planning Department

c:

Engineer
Hydrology file

CO Clerk

Planning Department Transportation Development Services Section

November 15, 2007

Christopher R. Gunning, Registered Architect 7601 Jefferson NE, Ste. 100 Albuquerque, NM 87109

Re: Certification Submittal for Final Building Certificate of Occupancy for

Ventura Place Bldg 2, [C-20 / D48]

8850 Holly Ave NE

Architect's Stamp Dated 11/14/07

Dear Mr. Gunning:

P.O. Box 1293

The TCL / Letter of Certification submitted on November 15, 2007 is sufficient for acceptance by this office for final Certificate of Occupancy (C.O.). Notification has been made to the Building and Safety Section.

Albuquerque

New Mexico 87103

www.cabq.gov

Nilo E. Salgado-Fernandez, P.E.

Senior Traffig Engineer

Development and Building Services

Planning Department

c: Engineer

Sincerely,

Hydrology file

CO Clerk

TRAFFIC CERTIFICATION

I, Christopher R. Gunning, NMRA 3203, of the firm Dekker/Perich/Sabatini, hereby certify that this project is in substantial compliance with and in accordance with the design intent of the approved plan dated the 4th of April The record information edited onto the original design document has been obtained by Dekker/Perich/Sabatini. I further certify that Dekker/Perich/Sabatini visited the project site on 11/14/07 and has determined by visual inspection that the survey data provided is representative of actual site conditions and is true and correct to the best of my knowledge and belief.

This certification is submitted in support of a request for Certificate of Occupancy.

The record information presented hereon is not necessarily complete and intended only to verify substantial compliance of the traffic aspects of this project. Those relying on the record document are advised to obtain independent verification of its accuracy before using it for any other purpose.

Engineer's or Architect's Stamp

Signature of Engineer or Architect

Date

CHRISTOPHER R. GUNNING

Planning Department Transportation Development Services Section

May 16, 2007

Christopher R Gunning, Registered Architect 7601 Jefferson NE, Ste. 100 Albuquerque, NM 87109

Re:

Certification Submittal for Final Building Certificate of Occupancy for

Ventura Place Bldg 3, [C-20 / D48]

8810 Holly NE

Architect's Stamp Dated 05/16/07

Dear Mr. Gunning:

P.O. Box 1293

The TCL / Letter of Certification submitted on May 16, 2007 is sufficient for acceptance by this office for final Certificate of Occupancy (C.O.). Notification has been made to the Building and Safety Section.

Albuquerque

New Mexico 87103

Nilo E. Salgado Fernandez, P.E.

Senior Traffic Engineer

www.cabq.gov Development and Building Services

Sincerely,

Planning Department

c: Engineer

Hydrology file CO Clerk

TRAFFIC CERTIFICATION

I, Christopher R. Gunning, NMRA 3203, of the firm Dekker/Perich/Sabatini, hereby certify that this project has is in substantial compliance with and in accordance with the design intent of the approved plan dated the 1st of August 2006. The record information edited onto the original design document has been obtained by Dekker/Perich/Sabatini. I further certify that Dekker/Perich/Sabatini visited the project site on 05/04/07 and has determined by visual inspection that the survey data provided is representative of actual site conditions and is true and correct to the best of my knowledge and belief.

This certification is submitted in support of a request for Certificate of Occupancy.

The record information presented hereon is not necessarily complete and intended only to verify substantial compliance of the traffic aspects of this project. Those relying on the record document are advised to obtain independent verification of its accuracy before using it for any other purpose.

Engineer's or Architect's Stamp

Signature of Engineer or Architect

Date

60

Planning Department Transportation Development Services Section

November 16, 2006

Christopher R. Gunning, Registered Architect 7601 Jefferson NE, Ste. 100 Albuquerque, NM 87109

Re: Certification Submittal for Final Building Certificate of Occupancy for

Ventura Place - Bldg 4, [C-20 / D48]

8910 Holly Ave. NE

Architect's Stamp Dated 11/14/06

Dear Mr. Gunning:

P.O. Box 1293

The TCL / Letter of Certification submitted on November 15, 2006 is sufficient for

acceptance by this office for final Certificate of Occupancy (C.O.). Notification

has been made to the Building and Safety Section.

Albuquerque

-/.//

Sincerely,

New Mexico 87103

Nilo E. Salgado-Fernandez, P.E.

Senior Traffic Engineer

Development and Building Services

Planning Department

www.cabq.gov

c: Engineer

Hydrology file

CO Clerk

TRAFFIC CERTIFICATION

1. I, Christopher R. Gunning, NMRA 3203, of the firm Dekker/Perich/Sabatini, hereby certify that this project has is in substantial compliance with and in accordance with the design intent of the approved plan dated 31st March 06. The record information edited onto the original design document has been obtained by Dekker/Perich/Sabatini. I further certify that Dekker/Perich/Sabatini visited the project site on 11/14/06 and has determined by visual inspection that the survey data provided is representative of actual site conditions and is true and correct to the best of my knowledge and belief.

This certification is submitted in support of a request for Certificate of Occupancy.

The record information presented hereon is not necessarily complete and intended only to verify substantial compliance of the traffic aspects of this project. Those relying on the record document are advised to obtain independent verification of its accuracy before using it for any other purpose.

Engineer's or Architect's Stamp

Signature of Engineer or Architect

Date

Planning Department Transportation Development Services Section

October 20, 2006

Christopher R. Gunning, Registered Architect, Dekker/Perich/Sabatini 7601 Jefferson NE, Ste. 100 Albuquerque, NM 87109

Re:

Approval of Final Certificate of Occupancy (C.O.) for

Ventura Place Bldg 1, [C-20 / D48]

8900 Holly Ave. NE

Architect's Stamp Dated 10/19/06

Dear Mr. Gunning:

Sincérely.

The AA/DRB letter of certification submitted on October 19, 2006 is sufficient for acceptance by this office for Final Certificate of Occupancy (C.O.). Notification has been made to the Building and Safety Section.

P.O. Box 1293

Albuquerque

Nilo E. Salgado-Fernandez, P.E.

Senior Traffic Engineer

New Mexico 87103

Development and Building Services

Planning Department

C:

Engineer

www.cabq.gov

Hydrology file CO Clerk

TRAFFIC CERTIFICATION

I, Christopher R. Gunning, NMRA 3203, of the firm Dekker/Perich/Sabatini, hereby certify that this project has is in substantial compliance with and in accordance with the design intent of the approved plan dated 30th June 05. The record information edited onto the original design document has been obtained by Dekker/Perich/Sabatini. I further certify that Dekker/Perich/Sabatini visited the project site on 9/13/06 to determine by visual inspection that the survey data provided is representative of actual site conditions and is true and correct to the best of my knowledge and belief, and to verify that all conditions noted below were completed during this final inspection conducted on 9/13/06.

- 1. The HC signs were too short and are being lengthened and installed on 9/11/06. Verified, was completed on 9/11/06.
- 2. The crosswalk leading to the main access street, Holly Ave., is cut out but not installed yet due to weather. Will be installed on 9/12/06, weather permitting. Verified, was installed on 9/12/06.
- 3. The bike rack was not installed, but is scheduled to be installed on 9/11/06. Verified, was installed on 9/11/06.

This certification is submitted in support of a request for Certificate of Occupancy.

The record information presented hereon is not necessarily complete and intended only to verify substantial compliance of the traffic aspects of this project. Those relying on the record document are advised to obtain independent verification of its accuracy before using it for any other purpose.

Signature of Engineer or Architect

Engineer's or Architect's Stamp

10/10/01

Date

CHRISTOPHER B.

GUNNING

NO. 3203

10/19/06

D) 国 G 国 V 国 D) OCT 19 2006 D) HYDENIOGY, SECTION

Planning Department Transportation Development Services Section

December 22, 2005

Shahab Biazar, Registered Architect 4416 Anaheim Ave. NE Albuquerque, NM 87113

Re: Certification Submittal for Final Building Certificate of Occupancy for

Trader Joe's (Lot 5), [C-20 / D48]

8928 Hollly Ave NE

Engineer's Stamp Dated 12/13/05

Dear Mr. Biazar:

Sincerely,

P.O. Box 1293

The TCL / Letter of Certification submitted on December 21, 2005 is sufficient for acceptance by this office for final Certificate of Occupancy (C.O.). Notification has been made to the Building and Safety Section.

Albuquerque

New Mexico 87103

www.cabq.gov

Nilo E. Salgado-Fernandez, P.E.

Senior Traffic Engineer

Development and Building Services

Planning Department

c:

Engineer Hydrology file

CO Clerk

ADVANCED ENGINEERING and CONSULTING, LLC

Consulting
Design
Development
Management
Inspection
Surveying

December 13, 2005

Mr. Nilo Salgado, P.E. City Transportation Department 600 Second Street NW Albuquerque, New Mexico 87102

Re: SITE PLAN CERTIFICATION FOR FINAL CERTIFICATION OF OCCUPANCY FOR LOT 5, VENTURA PLACE (C20/D48)

Dear Mr. Salgado:

We are requesting Final Certification of Occupancy with this submittal. Enclosed please find copy of the as-built Site Plan for the above mentioned site. This project was administratively approved with approval date of 06/17/2005. The project was inspected by Advanced Engineering and Consulting, LLC on December 12, 2005. I certify that the project was built in substantial compliance to the approved site plan. Minor striping was left in the parking lot. The trailer within the parking lot was being removed in order to complete the striping for the parking spaces.

Sincerely,

Should you have any questions, please do not hesitate to contact our office.

Shahab Biazar, P.E.

Planning Department Transportation Development Services Section

August 30, 2005

Shahab Biazar, P.E. 4416 Anaheim Ave NE Albuquerque, NM 87113

Re:

Certification Submittal for Final Building Certificate of Occupancy for Lot 4, Ventura(Sandia Lab Federal Credit Union), [C-20 / D48]

8920 Hollly Ave NE

Engineer's Stamp Dated 08/24/05

Dear Mr. Biazar:

P.O. Box 1293

The TCL / Letter of Certification submitted on August 24, 2005 is sufficient for acceptance by this office for final Certificate of Occupancy (C.O.). Notification has been made to the Building and Safety Section.

Albuquerque

Sincerely, //

New Mexico 87103

www.cabq.gov

Nilo E. Salgádo-Fernandez, P.E.

Senior Traffic Engineer

Development and Building Services

Planning Department

C:

Engineer
Hydrology file
CO Clerk