Cherne, Curtis

From:

MacKenzie, John

Sent:

Thursday, August 14, 2014 11:35 AM

To:

Cherne, Curtis

Subject:

FW: American Gypsum

Attachments:

DOT PdN Drainage Concurrence Ltr.pdf

His number is at the bottom of this string.

John MacKenzie, PE City of Albuquerque Department of Municipal Development Engineering Division (505) 768-3965

From: MacKenzie, John

Sent: Friday, August 01, 2014 8:02 AM

To: 'Billy McCarty'

Subject: RE: American Gypsum

Billy,

Yes, the construction will intercept off-site flows from the east and along El Pueblo Road. Attached is a letter confirming as such, signed by the DOT. All you should have to consider is the on-site generated runoff.

John MacKenzie, PE City of Albuquerque Department of Municipal Development Engineering Division (505) 768-3965

From: Billy McCarty [mailto:mccarty.b.o@gmail.com]

Sent: Thursday, July 31, 2014 5:32 PM

To: MacKenzie, John

Subject: Re: American Gypsum

Thanks for the drawings.

I am planning a site visit toward the end of next week so I can determine by visual inspection how the site splits the flow to each of the ponds so I can do the site calculations and determine the runoff to each pond in order to design the spillways. This trip will answer a lot of my questions but I understand that the street is under construction in front of this facility and I that there are offsite flows entering the site from the street. If that is the case, I need to quantify the offsite flow as well.

Do you know if this construction is going to intercept the offsite flow and divert it on a permanent bases?

Thanks

Billy McCarty

Here is the G & D for when the plant expanded in 1998. That's the only topo I know of. What's needed is for flow from $\frac{1}{100}$, the upstream basins to be measured so that spillway proposed for the ponds can be sized.

John MacKenzie, PE

City of Albuquerque

Department of Municipal Development

Engineering Division

(505) 768-3965

From: Billy McCarty [mailto:mccarty.b.o@gmail.com]

Sent: Thursday, July 31, 2014 2:06 PM

To: MacKenzie, John Subject: American Gypsum

American Gypsum has agreed to let us do a Drainage Study for their property in order to adequately quantify the runoff into each of their retention ponds. However, I have been unable to obtain adequate topography of the entire site and offsite runoff from Tiburon St.

Can you help me obtain drainage studies and/or construction plans that identify the street runoff adjacent to the American Gypsum Site in order for me to address offsite flows entering this site?

Do you have access to 1' contour maps of this area?

I appreciate any assistance you can give me in these matters.

Thanks,

Billy O. McCarty, PE

P.O. Box 487

Reserve, NM 87830

(cell) <u>505-235-9588</u> (phone) <u>575-533-6574</u>

(fax) <u>575-533-6631</u>

(email) mccarty.b.o@gmail.com

City of Albuquerque

P.O. Box 1293 Albuquerque, New Mexico, 87103

Department of Municipal Development Engineering Division

Richard J. Berry, Mayor

June 24, 2014

Mr. Michael J. Smelker, PE
Paseo and I-25 Reconstruction Project Manager
New Mexico Department of Transportation
1120 Cerrillos Road
Santa Fe, NM 87504-1149

Re:

PDN/I-25 Proposed Drainage Improvements

Journal Center near El Pueblo Road and Tiburon Street

Dear Mr. Smelker:

As you know, the Engineering Division of the City's Department of Municipal Development (DMD) is in the process of designing roadway and drainage improvements on El Pueblo Road from approximately the North Diversion Channel to just east of Lorraine Court. Our EOP station coincides with your BOP station for El Pueblo Road.

The purpose of this letter is to obtain confirmation from NMDOT and the PDN Design Consultant regarding the final drainage conditions that will exist upon completion of the Paseo/I-25 project work involving El Pueblo Road. It is our understanding that due to the nature of the design/build process the final drainage documentation/reports for the PDN project will not be available for some time and this information is important so that we can continue to move forward with our project.

Over the past several months we have met with you and your design team to coordinate where the two projects overlap and to make sure that the two drainage plans are consistent with one another.

It is our understanding, via the City's representative for the PDN/I25 project, that the drainage basin upstream of Tiburon St. is being completely intercepted in Tiburon St. and routed to the new surge ponds being constructed on the southwest corner of Jefferson St. and Paseo del Norte. Secondly, it is our understanding that the surge ponds will fully contain the 100-year storm and will not discharge any flow west along El Pueblo. Finally, all the roadside and roadway flow in El Pueblo between your BOP and the surge ponds will be collected by new drop inlets east of your BOP, resulting in virtually no discharge at your BOP (see attachments).

It would be greatly appreciated if you can confirm our understanding of the final drainage conditions resulting from the PDN/I25 project by signing on the concurrence line provided below. This will allow us to move forward with the design of the storm drain within El Pueblo west of the PDN/I25 project limits.

Mr. Smelker Page 2 June 24, 2014

Please contact me if you need any further information regarding this request.

Sincerely,

Melissa Lozoya, PE Engineering Division Manager

Attachments

Nicole Friedt, PE, New Mexico Department of Transportation CC:

Bert Thomas, PE, Bohannan Huston, Inc.

AA 1003477 Hydrology Curtis Cherne 924-3986

This site was brought to my attention by DMD as they were planning their roadway and drainage improvements for El Pueblo Road. During their drainage research, it was discovered that the drainage plan for this facility was never certified by an engineer to be in compliance with their drainage plan. As it is a large site, the impacts downstream can be significant.

It is Hydrology's understanding that the City has been in contact with the property owner concerning the drainage and that the property owner has engaged an engineer to evaluate the drainage at the site.

Hydrology will approve the Administrative Amendment. A grading and drainage plan will be required for Building Permit approval that should address items to bring the site into compliance with its drainage plan "To maintain peak outflow from the entire site at or below historical conditions."

March 4, 1998

Tucker Green, P.E.
Per Se Engineering
9109 La Barranca NE
Albuquerque, NM 87111

RE: CENTEX IMPROVEMENTS (D17-D76). UPDATED GRADING AND DRAINAGE PLAN FOR BUILDING PERMIT APPROVAL. ENGINEER'S STAMP DATED FEBRUARY 20, 1998.

Dear Mr. Green:

Based on the information provided on your February 19, 1998 submittal, the above referenced project is approved for Building Permit.

Prior to Certificate of Occupancy approval, an Engineer's Certification will be required upon project completion.

If I can be of further assistance, please feel free to contact me at 924-3984.

Sincerely,

Lisa Ann Manwill, P.E.

Hydrology

c: Andrew Garcia
File _____

City of Albuquerque P.O. BOX 1293 ALBUQUERQUE, NEW MEXICO 87103

December 24, 1997

Tucker Green, P.E.
Per Se Engineering
9109 La Barranca NE
Albuquerque, NM 87111

RE: CENTEX IMPROVEMENTS (D17-D76). DRAINAGE REPORT FOR BUILDING AND SO #19 PERMIT APPROVALS. ENGINEER'S STAMP DATED DECEMBER 8, 1997.

Dear Mr. Green:

Based on the information provided on your December 8, 1997 submittal, the above referenced project is approved for Building and SO #19 Permits.

Please attach a copy o this approved plan to the construction sets prior to sign-off by Hydrology.

A separate permit is required for construction within City right-of-way. A copy of this approval letter must be on hand when applying for the excavation permit.

Prior to Certificate of Occupancy approval, and Engineer's Certification will be required.

If I can be of further assistance, please feel free to contact me at 924-3984.

Sincerely

Lisa Ann Manwill, P.E.

Hydrology

c: Arlene Portillo Andrew Garcia

GARY E. JOHNSON GOVERNOR

COMMISSION

Holm Bursum, III Chairman, Socorro

Edward T. Begay Vice-Chairman, Gallup

Peter T. Mocho. Sr. Secretary, Albuquerque

Sherry Galloway Member, Farmington

Albert N. Sanchez Member, Santa Rosa

Sidney G. Strebeck Member, Portales

DEPARTMENT

Secretary Pete K. Rahn

General Office P.O. Box 1149 Santa Fe, NM 87504-1149 505-827-5100

P.O. Box 231
P.O. Box 231
Deming, NM
88031-0231
505-546-2603

District Two Office P.O. Box 1457 Roswell, NM 88202-1457 505-624-3300

District Three Office P.O. Box 91750 Albuquerque, NM 87199-1750 505-841-2700

District Four Office P.O. Box 30 Las Vegas, NM 87701-0030 505-454-3600

District Five Office P.O. Box 4127 Coronado Station Santa Fe, NM 87502-4127 505-827-9500

District Six Office P.O. Box 2159 Milan, NM 87021 505-285-3200

NEW MEXICO STATE HIGHWAY AND TRANSPORTATION DEPARTMENT

AN EQUAL OPPORTUNITY EMPLOYER

December 16, 1997

Mr. Tucker Green
Per Se Engineering
9109 La Barranca NE
Albuquerque, New Mexico 87111

Subject: Centex American Gypsum Site
Paseo Del Norte at Jefferson/Tiburon
Albuquerque, New Mexico

Dear Mr. Tucker:

I received the plan and details of the pond on Centex American Gypsum site located at the southwest section of Paseo Del Norte and Jefferson Street. I do not have any further comments.

This is to confirm the drainage approval on the subject project. Please call me at 827-5323, if I can be of further assistance.

Sincerely,

Raymunda A. Van Hoven, PE

Drainage Engineer

XC: George Herrera Kathy Trujillo

Martin J. Chávez, Mayor

November 25,1997

Tucker Green
Per Se Engineering
9109 La Barranca NE
Albuquerque, New Mexico 87111

RE: DRAINAGE PLAN FOR CENTEX IMPROVEMENTS (D17-D76) ENGINEER'S PLAN DATED10/31/97

Dear Mr. Green:

Based on the information provided on your November 3,1997 submittal, the above referenced site is approved for Foundation and Grading /Paving Permit.

Please be advised that the final refined submittal will need to be submitted and approved prior to the release of the Building Permit. Also, the concurrence from the State Highway Department must be included with the submittal.

If I can be of further assistance, please feel free to contact me at 924-3986.

C: Andrew Garcia
Tom Fulgham
File

Sincerely

Bernie J. Montoya CE Associate Engineer

Amendment to Drainage Report and Calculations

Centex Improvements Drainage File D17-D75

The cover letter to the previously approved drainage plan & report (Engineer's stamp 12-8-97) for the entire 50+ acre site noted the possibility of decreasing the size of the proposed office addition, which affected only a small portion of the site. Now the owners have in fact decided on a somewhat smaller office addition. However, discussion with City staff as to parking layout and setback requirements led to a larger paved area at the office. The result is that the office portion of the site is "the same only different".

How different, in terms of hydrology? A comparison of proposed impervious areas between the current and previous layouts indicates an increase of approximately 1085 sf, at the expense of what would have been landscaping. According to City of Albuquerque DPM small watershed procedures), for the site's location in Rain Zone 2, the increase in 100-year peak flow rate is (1085/43560)(4.70-2.28)=0.06 cfs, a very small change. The general pattern and location of drainage from the office area remains the same.

The office area drains to the uncontrolled-discharge part of the site. However, as noted on page 2 of the approved 12-8-97 report, the controlled-discharge part of the site controls outflow from the entire site to a rate well below that required. The small increase associated with the revised office addition does not warrant re-analysis of the entire site or any change in construction.

Two procedural notes: (1) Only the revised plan sheet is being submitted. (2) The plan sheet retains a signature block for S.O.-19 approval, but the only work in the City right of way is a new driveway entrance. If the signature block is not needed, please ignore it.

SCHER H. GAN

10731

Jul

FEB 1 9 1998

HYDROLOGY SECTION

END OF REPORT

Tucker Green P.E.

D:\Acad14\Ps\cxofcrv.dwg DATE: 02/19/98 TIME: 19:18 T. GREEN

sf5,342 > W 'ORIGINAL' 12-8-97 IMPERULOUS:
AREAS FOR COMPARISON sf345 PARKING sf15,444

Total SF this page = 21,131

Drainage Report and Calculations for CENTEX IMPROVEMENTS

Tiburon St. NW and Paseo Del Norte South Frontage Road
Albuquerque, New Mexico
Map D-17

Prepared by Per Se Engineering
December, 1997

PER SE ENGINEERING

9109 La Barranca NE Albuquerque NM 87111 (505) 275-0451/239-7855 mobile

December 8, 1997

Mr. Bernie J. Montoya
City if Albuquerque
Public Works Dept/Hydrology
One Stop Shop/Plaza del Sol
POBox 1293
Albuquerque NM 87103

Re: Drainage Plan for Centex Improvements

D17-D75

Dear Mr. Montoya or other reviewer:

This letter accompanies a drainage submittal which addresses work associated with the addition and also with the office addition. The submittal includes a complete plan set and a second copy of Sheet 8 for the use of the SO19 inspector in regard to the office addition.

There has been some discussion about decreasing the size of the office addition and the associated parking. If the change is significant a new submittal may be required for that part. The effect on the overall project would be small, and would tend to reduce both the amount and peak rate of runoff.

As you probably recall, entrance to the manufacturing plan is from the Paseo del Norte Frontage Rd, which is State of New Mexico right of way. Part of the drainage plan involves reconstructing the entrance to provide the water block required by City standards. Attached to this letter is a fax from the New Mexico State Highway Department indicating their concurrence with the drainage concepts on which this project is based. Per their request, I am submitting details of the pond to them. I will send you a copy of any further approvals from them.

Feel free to call if you have any questions regarding this submittal.

Sincerely,

Tucker Green, P.E.

DRAINAGE PLAN & REPORT for IMPROVEMENTS & ADDITIONS at CENTEX AMERICAN GYPSUM, ALBUQUERQUE NM

LEGAL DESCRIPTION: (Lands of) American Gypsum Company

LOCATION: Tiburon St. NW and Paseo Del Norte south frontage Rd. NW, approximately at the northwest corner of Jefferson St. and Paseo Del Norte. Albuquerque Map D-17.

FLOOD ZONE: The site is not in a 100-year flood zone (FEMA maps 136,137).

SITE DESCRIPTION: The eastern portion of the roughly 54-acre site is developed as a wallboard manufacturing plant with associated sales and office facilities. The site is served by a railroad spur, part of which separates it from a largely undeveloped PNM site to the west. Generally, the site slopes down toward the west but with a northward tendency. The result is that, in large storms, runoff tends to butt up against the railroad tracks on the west and then slide north to the frontage road. From the exit point flow is either in the road or, at least partly, in a storm drain associated with Paseo Del Norte, which is a New Mexico State Highway. In either case, runoff quickly reaches AMAFCA's North Diversion Channel, located about 1/2 mile west. With a trivial exception as noted below (water block at frontage road entrance) there is no offsite flow, the main barriers being a railroad spur on the south, existing roads with curb, gutter, and storm sewer on the east, and Paseo Del Norte improvements and grades on the north.

A portion of site - near the northeast corner of the wall board plant - is currently drained by an existing storm drain that consists of 3 inlets and a pipe that discharges to a brushy area between the current plant entrance and the perimeter fence around the manufacturing area. It is this flow that the proposed culvert will convey. There will be less flow to this system under proposed conditions than under current ones.

SPECIAL SITE HISTORY: My understanding is that, when the site was annexed to the City, there were special provisions exempting the site from some site development criteria, provided that any increment of development was less than a specified percentage. My further understanding is that the currently proposed development is well below that percentage. I have not seen the actual document.

PROPOSED DEVELOPMENT: The 4 major pieces of the project are: (1) a long (+/- 900 ft), narrow (30 ft) manufacturing addition along the east side of the wallboard plant. Most of the addition will be built over existing paved areas, but the addition does extend some 185' south of the existing building; (2) a private access road around the west side of the plant. This is for slow (10 mph) one-way truck traffic; (3) additional employee parking near this access route; and (4) an additional office building and parking revisions along Tiburon St.

A small part of the proposed development involves reconstructing the entrance from the frontage road to provide a water block per normal City requirements. There is essentially zero water block now, but then there is essentially zero offsite flow to block; the only offsite runoff comes from approximately 400 ft of frontage road pavement west of Jefferson St.

DRAINAGE CONCEPTS: Review of the Construction Plans for Paseo Del Norte, obtained from the State Highway Dept., indicates that there probably is not available capacity for a significant increase in flows, if any. Hence the decision to maintain the peak discharge from the site at or below existing conditions level.

This will be accomplished by considering the flow in two parts. Most of the site will continue to discharge freely as it does now. down toward the railroad tracks then north to the frontage road. Flow from the northeast portion of the site will be controlled in a detention pond so that the overall outflow rate from the entire site is less than or equal conditions. Although outflow from the pond will eventually reach the Frontage Road (the historical location) the initial direction of flow is away from the Frontage Road and the 'path' is overland.

To maintain peak outflow from the entire site at or below historical conditions, the allowable outflow rate from the pond is (Existing, entire site) - (Proposed, south part), or 131.14 - 104.40 = 27.64 cfs. Peak infow to the pond for the basin analyzed is 36.54 cfs per AHYMO, or slightly higher at 37.05 cfs per City "DPM" methods for small areas. Per AHYMO, the peak outfow from the pond is 8.48 cfs for an 18-inch CMP (corrugated metal pipe) outlet, or 11.61 cfs for the optional 24-inch CMP. Both of these are much less than the 27.64 allowed. Outflow is down to 0.1 cfs approximately 3 hours after the first flow reaches the pond.

The basin analyzed is about 0.6 acres larger than the area that contributes to the pond as finally designed. This amount of open field has a peak runoff of roughly 1 cfs in the 100-year, 6-hour design storm. So the actual reduction in peak flow is actually about 1 cfs less than the calculations indicate.

It is clear that the present design controls site outflow to a lower level than required. Part of the reason for providing the excess reduction was to allow for future additional development of the site without construction of additional facilities. Supporting calculations would be provided.

A word about the proposed onsite road. The road is designed with a uniform cross-slope - rather than a crown - with drainage being on the surface across the road, primarily at dip sections. The crossing at the on-site railroad spur will use treated timbers according to final details to be supplied by a contractor to Centex.

END OF REPORT

ALBUQUERQUE, NM (1/93) CRITERIA - SIMPLE PROCEDURE FOR <= 40 ACRES

PX100-6 = PRECIPITATION EXCESS FROM 100-YEAR 6-HOUR STORM

VOLIOD = VOLUME OF RUNOFF FROM 100-YEAR 10-DAY STORM

TRIMIT CLASS A=UNDISTURBED, B=LAWNS, C=UNPAVED ROADS, D=ROOFS, PAVEMENT: SEE DPM 22.2 P A-5

***** PROJECT INFO *****

CenteX plant at SW corner of Paseo Del Norte, Jefferson, Tiburon Total site apx 54.30 ac, Developed (east) portion apx 35.72 ac, west apx 18.58 ac

RAIN ZONE SEE DPM P 22.2-2 100-YEAR PRECIPTATION (P) DEPTHS, INCHES 1 HR 6 HR 24 HR 4 DAY 10 DAY 2.01 2.35 2.75 3.30 3.95

			•		•					
08/08/97	10:53 AM	EXISTING	CONDITION	S - EAST	PART OF S	ITE			SF TOT	1556050
TRIMI	AREA SQUARE FEET	AREA		QP100-6 CFS/AC	•	VOL6HR AC-FT	VOL1D AC-FT	VOL4D AC-FT	VOL10D AC-FT	TRIMI
A B C D	691557.00 40006.00 431921.00 392566.00	15.8760 0.9184 9.9155 9.0121	0.78	1.56 2.28 3.14 4.70	24.767 2.094 31.135 42.357	0.701 0.060 0.934 1.592	0.701 0.060 0.934 1.893	0.701 0.060 0.934 2.306	0.701 0.060 0.934 2.794	44.44 2.57 27.76 25.23
TOTAL	1556050.00	35.7220	AVG Q/AC=	2.809	100.352 CU FT	3.287 143170	3.587 156256	4.000 174248	4.488 195512	100.00
08/08/97	10:53 AM	د د	EST P	4PT					SF TOT	809246
TRTMT	10:53 AM AREA SQUARE FEET	AREA	PX100-6		- ▼	VOL6HR AC-FT	VOL1D AC-FT	VOL4D AC-FT	VOL10D	809246 TRTMT PERCENT
TRTMT	AREA SQUARE FEET	AREA	PX100-6	QP100-6		•			VOL10D	TRTMT
TRTMT CLASS A B C	AREA SQUARE FEET 769246.00 0.00 30000.00 10000.00	AREA ACRES 17.6595 0.0000 0.6887 0.2296	PX100-6 IN/AC 0.53 0.78 1.13	QP100-6 CFS/AC 1.56 2.28 3.14 4.70	27.549 0.000 2.163	AC-FT 0.780 0.000 0.065	AC-FT 0.780 0.000 0.065	AC-FT 0.780 0.000 0.065	VOL10D AC-FT 0.780 0.000 0.065	TRIMT PERCENT 95.06 0.00 3.71

181737

195156

213607

235412

LAND TRTMT 'A' - NATURAL/NATIVE LAND TRTMT 'A' - APX 691,557 SF

LEATEX
LABEL "I" AREAS
AREAS TO CULVERT - BY POLYLINE (AUTOCAN)

TOTAL: 1708735F = 3.923AC

4: 14,117

13: 13,997

C: 7170 873 - 5 OTHERS = 170873-129813 = 41,060

D: 91,050+1,329+3,423+38+5,859 = 101699

RAN ZERE - Z OPA TABLE A-9, AMERINA Q= (14,117×1.56.)+(13,997-2.28 x+(41060+3,14)+(101,699 x4,70) + 43562 S=/AC

= 660 849.38/43560

= 15.17 CES

+ LATER VENSION OF PUYUNE 61055 170854 1= 195F N 0.11% OK

70742 (D) 170,873 5F

JS 5 1/5 5 = 3 71/12/

· - ΣΒΙ'ΣΙ=Ζ'	カノミのターコントとかって	
	96241	7
	1-65'-	5
フタリセのノ = =	524/t 71/41	7:0
2 22 35 = 3	581 'E1 570'52	フシン
22+425=3	カクら'と, 55七'9十	7:8
9911/51 = 3	991151	1:6-

(+02) +224 98 Earme 24 1, WELL 11 68 120 100 00 100 000 100 000 100 000 100 000 100 000 100 000 100 000 100 000 000 100 00

THINMOOTS OF SMOTH E" F" HOW A SUNTHING TO SMOTH X

992 41 61 901'SS 02065 つ2クマト 01311762009-3 507 tz 5+2 46/1=3

25 / SURDH ,S, 7=3847, X + 5-05-01 X=(N=)

75 2+2 1251 = (E) 74124

901125 47 2

55 72 = (0/2/1) + B+521) 582 7 BS CNO 20124EU 201 4 224M2 ALZHO OL SCNOON

555311 = 53091+992/201 =3 ZOS\$ 105

TIS131=22211 +1500 = 3 のクタチュラのミ

153715 =

+ 51 5 - 185: ba 311'=5 (3=8)-(6-1)=

2010 TUNDY 30 HADOS TODE 3 30 TM3 Tryps and in the darker all at enthalteren

8台9年2

Q45177

£55 (401

151'00 = 3 22201

=15 / 1~17 5-4224 , E, ZZEWY

75-05-01 X 262 10-31-97

COMPARE TOTAL LAND TREAMENT AREAS TO

LABRET 1 170,873
2 331,283
3 1,921,272

LABRET DATA 2,423,425

SITE BOUNDARY Z, 365, 296 N

 $\begin{array}{r}
LABEL - 517E = 2423428 \\
 - 2365296 \\
\hline
 58,1325F \\
 \hline
 2423428 \\
 \hline
 2423428 \\
 \hline
 2423428 \\
 \hline
 20240 \\
 2173
 \end{array}$

MOST OF THIS DIFFERENCE OCCURS NEAR

THE NORTH EAST CORNER OF THE SITE, WHERE
A MINOR AMOUNT OF LANDSCAPED ANDA—

APPARENTLY NOT PART OF THE SITE PROPER—

CONTRIBUTES FLOW TO LABEL 2 MEAS.

NOTE THAT THE CARGER 'ADDED AREA' IS USED FOR CALCS, AND THUS IS CONSORVATIVE ALBUQUERQUE, NM (1/93) CRITERIA - SIMPLE PROCEDURE FOR <= 40 ACRES

PX100-6 = PRECIPITATION EXCESS FROM 100-YEAR 6-HOUR STORM

VOLIOD = VOLUME OF RUNOFF FROM 100-YEAR 10-DAY STORM

TRIMIT CLASS A-UNDISTURBED, B-LAWNS, C-UNPAVED ROADS, D-ROOFS, PAVEMENT: SEE DPM 22.2 P A-5

***** PROJECT INFO *****

CenteX plant at SW corner of Paseo Del Norte, Jefferson, Tiburon

RAIN ZONE SEE DPM P 22.2-2 100-YEAR PRECIPTATION (P) DEPTHS, INCHES

1 HR 6 HR 24 HR 4 DAY 10 DAY

2.75 3.30

						COURTUI G	DETENTION		SF TOT		
TRTMT	AREA SQUARE FEET	AREA ACRES		QP100-6 CFS/AC	QP100-6 CFS	VOL6HR AC-FT	VOL1D AC-FT	VOL4D AC-FT	VOLIOD AC-FT	TRTMT PERCENT	Qo toral to
A B C D	14117.00 13997.00 41060.00 101699.00	0.3241 0.3213 0.9426 2.3347		1.56 2.28 3.14 4.70	0.506 0.733 2.960 10.973	0.014 0.021 0.089 0.412	0.014 0.021 0.089 0.490	0.014 0.021 0.089 0.597	0.014 0.021 0.089 0.724	8.26 8.19 24.03 59.52	15.17+2188 -37.05 UPS
TOTAL	170873.00	3.9227	AVG Q/AC=	3.867	15.171 CU FT	0.536 23367	0.614 26757	0.721 31418	0.848 36926	100.00	

AT'AY LE LUCLOSED COUDITIONS - WHERS .Y.: IN DRIENTION' NOT IN COPARKI SF TUT

											<i>1</i>
TRIMI	AREA SQUARE FEET	AREA	PX100-6 IN/AC	QP100-6 CFS/AC	QP100-6 CFS	VOL6HR AC-FT	VOLID AC-FT	VOL4D AC-FT	VOL10D AC-FT	TRIMT	
A B C D	131166.00 54723.00 38232.00 107162.00	3.0112 1.2563 0.8777 2.4601	0.53 0.78 1.13 2.12	1.56 2.28 3.14 4.70	4.697 2.864 2.756 11.562	0.133 0.082 0.083 0.435	0.133 0.082 0.083 0.517	0.133 0.082 0.083 0.629	0.133 0.082 0.083 0.763	39.59 16.52	Qp DDTAZ SIRG 37.05+104.40 2141.45
TOTAL	331283.00	7.6052	AVG Q/AC=	2.877	21.880 CU FT	0.732 31882	0.814 35454	0.927 40366	1.060 46171	100.00	

10/31/97	01:42 PM PROPOSED CONDITIONS	- AREAS	131:	DISCHARGE TO	UNDEVELOPED	PART	SF TOT
----------	------------------------------	---------	------	--------------	-------------	------	--------

TRIMI	AREA SQUARE FEET		PX100-6 IN/AC		••	VOL6HR AC-FT	VOLID AC-FT	VOL4D AC-FT	VOL10D AC-FT	TRIMI
A B C D	1197243.00 71849.00 352049.00 300131.00	1.6494	0.53 0.78 1.13 2.12	1.56 2.28 3.14 4.70	42.876 3.761 25.377 32.383	1.214 0.107 0.761 1.217	1.214 0.107 0.761 1.447	1.214 0.107 0.761 1.763	1.214 0.107 0.761 2.136	62.32 3.74 18.32 15.62
TOTAL	1921272.00	44.1063	AVG Q/AC=	2.367		3.299 143723	3.529 153727	3.845 167483		100.00

= : Qp 642 = 141.45 Compare EVETE 131.14 UOL614e 55,7249 1000 DERENTION EXIST ZAHR 215,938 62,211 195157 10-1244 266,857 234512 83097

CF DVOL, 24 Hours: 215 938-195156 (5x) > 50,782 CF THIS IS LESS THAN 62/211 TO DETENTION.

10/31/97	01:42 PM	PROPOSED	CONDITION	S - MAX	O PAVED	SWALE EAST	OF MFG B	LDG	SF TOT	
TRIMI	AREA SQUARE FEET	AREA	_	QP100-6 CFS/AC	~	VOL6HR AC-FT	VOLID AC-FT	VOL4D AC-FT	VOL10D AC-FT	TRTMT
A B C D	0.00 51495.00 18317.00 118359.00	0.0000 1.1822 0.4205 2.7171	0.78 1.13	1.56 2.28 3.14 4.70	0.000 2.695 1.320 12.771	0.077	0.000 0.077 0.040 0.571	0.000 0.077 0.040 0.695	0.000 0.077 0.040 0.842	0.00 27.37 9.73 62.90
TOTAL	188171.00	4.3198	AVG Q/AC=	3.886	16.786 CU FT	0.596 25982	0.687 29927	0.812 35352	0.959 41763	100.00
								0000		
10/31/97	01:42 PM	PROPOSED	CONDITIONS	S - MAX T		WALE SOUTH			SF TOT	
TRTMT	01:42 PM I	AREA	PX100-6	QP100-6	O EARTH S	WALE SOUTH			SF TOT VOLIOD	TRIMT
TRTMT	AREA	AREA	PX100-6	QP100-6	O EARTH S QP100-6	WALE SOUTH VOLGHR	OF MFG B	LDG VOL4D	SF TOT VOLIOD	

Tile=CXCHANS.WQ1 - CenteX CHANnels using Manning's equation
b=bottom width (=0 for triangles), m=sideslope H:V (=0 for rectangles)
P=wetted perimeter; R=A/P; Q=flow(cfs); Ev=velocity energy; Fr=Froude no.
Es=specific energy=y+v^2/2g; Ms=specific momentum=Q^2/gA+A*ybar
** WARNING ** ORIGINAL EQNS IN COLS Y AND Z (+-). DO NOT DELETE OR ERASE **

COMMENT: CENTEX AMERICAN GYPSUM WALLBOARD PLANT: ALBUQUERQUE NM

	EARTH CHANNEL	SOUTH SIDE OF PLANT	ASPHALT SWALE	EAST SIDE OF PLAN	NT EARTH CHAN
	CAPCITY	DESIGN Q	CAPCITY	DESIGN Q	CULVERT OUT
n	0.0350	0.0350	0.0170	$0.017\tilde{0}$	0.0350
S	0.00500	0.00500	0.00500	0.00500	0.00900
M1	3.0000	3.0000	8.0000	8.0000	4.0000
M2	3.0000	3.0000	9.0000	9.0000	4.0000
В	14.0000	14.0000	2.0000	2.0000	12.0000
Y	0.7500	0.6638	0.7500	0.6700	0.4820
T	18.5000	17.9830	14.7500	13.3900	15.8558
A	12.1875	10.6156	6.2813	5.1556	6.7130
P	18.7434	18.1984	14.8382	13.4688	15.9745
R	0.6502	0.5833	0.4233	0.3828	0.4202
Q	27.462	22.250	21.888	16.800	15.170
V	2.25	2.10	3.48	3.26	2.26
Ev	0.079	0.068	0.189	0.165	0.079
Es	0.83	0.73	0.94	0.84	0.56
Fr (Y)	0.46	0.45	0.71	0.70	0.57
Fr(A/T)	0.49	0.48	0.94	0.93	0.61
Ms	6.28	4.83	4.13	3.00	2.61

.

N=1017 QP=16.8

V=3.26 FP= PG=0.67 + RAMP B DOORS

S=0.005 1/1

C'MIN UARIES

VARIES

TO GTR

MACHES

AS REGUIRED

MAIN SWALE EAST OF MANUFACTURING ADDITION NO SCALE

> EARTH CHANNEL SOUTH OF BLOC RECEIVES PLOW FROM ASPINIT SWARE U= .035 GP= ZZ.ZS S=.cos/, U= Z.10 FPS @ Y= 0.661

VARIES G.4

O.3 TYD

O.3 TYD

O.4 MAY

O.7 MAY

O.3

SLOW SPEED PRIVATE TRUCK PAWE MENT SECTION

3" ASPHALT OVER BY COMPACTED SCIBGRADCE; NTS

•

.

Det	sign Discharge	·	15.17	cfs	Check E	ischarge	· · · · · · · · · · · · · · · · · · ·	20.00	cfs
Gra	des Model: Inverts								
Inve	ert Upstream		13.30	ft	Invert De	wnstream		11.80	ft
Len	gth	•	100.00	ft	Slope		•	0.015000	ft/ft
Drop			1.50	ft	-				
···									
	vater Conditions: (water Elevation	Constant Tailwater	0.00	ft <	5 6 5	Asot	2:	·	
	water Elevation	Constant Tailwater	0.00	ft <	≤€	NOT	2:		
		Constant Tailwater Desc	0.00	ft de Discharg		M Elev	€: • Velocity		
	water Elevation		0.00		je ŀ				
	water Elevation Name	Desc	0.00	Dischar	je i-	W Elev	 Velocity 	- L Sa	·
Tail	water Elevation Name Trial-2	Desc 1-24 inch Circular	0.00	Discharg	je i-	W Elev 5.83 ft	Velocity6.44 ft/s	u. Sa	·

TAILWATER NOTE:

SEPARATE CALCS (NOT SHOWN) FOR TAILWATER DEPTHS
UP TO 2 FT (2 TO TOP OF PIPE) SHOWED NO EFFECT
ON HEADWATER REQUIRED.

ACTUAL TAILWATER DEPTH, AS FLOW EXPANDS INTO
THE EARTH CHANGEL, WILL BE CONSIDERABLY
LESS THAN 21, ON THE ORDER OF GINCHES
AT NORMAL DEPTH POR GRADING SHOWN.

ELECTRECENTER ALBUQUERQUE GENERAL CONTROL CONT

For Se Engineering

Design:Trial-1

Solve For: Headwater Elevation

Culvert Summary					•
Allowable HW Elevation	17.00	π	Storm Event	Design	
Computed Headwater Elevation	15.65	π	Discharge	15.17	cfs
Headwater Depth/ Height	1.18		Tailwater Elevation	0.00	ft
Inlet Control HW Elev	15.52	π	Control Type	Outlet Control	
Outlet Control HW Elev	15.65	ñ		<u> </u>	
Grades			•		
Upstream Invert	13.30	ft	Downstream Invert	11.80	π
Length	100.00	ft	Constructed Slope	0.015000	
Hydraulic Profile				•	
Profile	M2		Depth, Downstream	1.40	ft
Slope Type	Mild		Normal Depth	1.66	ft
Flow Regime	Subcritical	•	Critical Depth	1.40	ft
Velocity Downstream	6.44	ft/s	Critical Slope	0.021699	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1			·	
Outlet Control Properties	•	· · · · · · · · · · · · · · · · · · ·			·
Outlet Control HW Elev	15.65	π	Upstream Velocity Head	. 0.46	ft
Ke	0.50		Entrance Loss	0.23	
Inlet Control Properties		<u>-</u>			
Inlet Control HW Elev	15.52	πt	Flow Control	Unsubmerged	
Inlet Type	Headwall		Area Fuli	3.1	ft²
K	0.00780		HDS 5 Chart	2	
M	2.00000		HDS 5 Scale	1	
C	0.03790		Equation Form	1	
Y	0.69000				

Project Title: CENTEX, ALBUQUERQUE

c:\haestad\cvm\centex1.cvm

11/02/97 08:10:57 PM

Per Se Engineering

C Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666

Project Engineer: Tucker Green

CulvertMaster v1.0

Page 3 of 5

Design:Trial-2

Solve For: Headwater Elevation

Culvert Summary					
Allowable HW Elevation	17.00	π	Storm Event	Design	
Computed Headwater Elevation	15.83	π	Discharge	15.17	cfs
Headwater Depth/ Height	1.27		Tailwater Elevation	0.00	π
Inlet Control HW Elev	15.76	ft	Control Type	Outlet Control	
Outlet Control HW Elev	15.83	ft			
Grades					
Upstream Invert	13.30	ft	Downstream Invert	11.80	ft
Length	100.00	ft	Constructed Slope	0.015000	
Hydraulic Profile	•		•		
Profile	M2		Depth, Downstream	1.40	π
Slope Type	Mild		Normal Depth	1.66	ft
Flow Regime	Subcritical		Critical Depth	1.40	ft
Velocity Downstream	6.44	ft/s	Critical Slope	0.021699	ft/ft
Section		<u> </u>			
Section Shape	Circular		Mannings Coefficient	0.024	. <u> </u>
Section Material	CMP		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1	, ·· · = - -			
Outlet Control Properties					
Outlet Control HW Elev	15.83	ft	Upstream Velocity Head	0.46	ft
Ke	0.90		Entrance Loss	0.41	îŧ
Inlet Control Properties					<u>-</u>
Inlet Control HW Elev	15.76	ft	Flow Control	Unsubmerged	
Inlet Type	Projecting		Area Full	3.1	ft²
K	0.03400		HDS 5 Chart	2	
M	1.50000		HDS 5 Scale	3	
C	0.05530	•	Equation Form	1	
Y	0.54000				

Project Title: CENTEX, ALBUQUERQUE c:\haestad\cvm\centex1.cvm

Per Se Engineering

Project Engineer: Tucker Green CulvertMaster v1.0

C Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666

Page 2 of 5

Design:Trial-3

Solve For: Headwater Elevation

Culvert Summary			•		
Allowable HW Elevation	17.00	ft	Storm Event	Check	
Computed Headwater Eleva	ation 17.19	π	Discharge	20.00	cfs
Headwater Depth/ Height	1.94		Tailwater Elevation	0.00	ft
Inlet Control HW Elev	16.20	ft	Control Type	Outlet Control	
Outlet Control HW Elev	17.19	π		•	
Grades					,
Upstream Invert	13.30	ft	Downstream Invert	11,80	ft
Length	100.00	ft	Constructed Slope	0.015000	ft/ft
Hydraulic Profile			•		
Profile	CompositeM2Pressure		Depth, Downstream	1.61	ft
Slope Type	Mild		Normal Depth	. N/A	
Flow Regime	Subcritical		Critical Depth	1.61	ft
Velocity Downstream	7.40	ft/s	Critical Slope	0.027674	ft/ft
Section					-
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1				
Outlet Control Properties			•		
Outlet Control HW Elev	17.19	ft	Upstream Velocity Head	0.63	ñ
Ke	0.50		Entrance Loss	0.31	
Inlet Control Properties					
Inlet Control HW Elev	16.20	ft	Flow Control	Submerged	
Inlet Type	Headwall		Area Fuli	3.1	fl²
K	0.00780		HDS 5 Chart	2	
M	2.00000		HDS 5 Scale	. 1	
C	. 0.03790		Equation Form	1	
Y	0.69000				

Project Title: CENTEX, ALBUQUERQUE c:\haestad\cvm\centex1.cvm

Per Se Engineering

Project Engineer: Tucker Green
CulvertMaster v1.0

Design:Trial-4

Solve For: Headwater Elevation

Cuivert Summary					
Allowable HW Elevation	17.00	ft	Storm Event	Check	
Computed Headwater Elevat	ion 17.44	π	Discharge	20.00	cfs
Headwater Depth/ Height	. 2.07		Tailwater Elevation	0.00	ft
Inlet Control HW Elev	16.61	ft	Control Type	Outlet Control	
Outlet Control HW Elev	17.44	π			·
Grades		· • • • • • • • • • • • • • • • • • • •			
Upstream Invert .	13.30	ft	Downstream Invert	11.80	π
Length	100.00	ft	Constructed Slope	0.015000	ft/ft
Hydraulic Profile			•		
Profile	ompositeM2Pressure		Depth, Downstream	1.61	ft
Slope Type	Mild		Normal Depth	N/A	π
Flow Regime	Subcritical		Critical Depth	1.61	ft
Velocity Downstream	7.40	ft/s	Critical Slope	0.027674	ft/ft
Section		 			
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1		· · · · · · · · · · · · · · · · · · ·		
Outlet Control Properties					<u> , </u>
Outlet Control HW Elev	17.44	πŧ	Upstream Velocity Head	0.63	π
Ke	0.90		Entrance Loss	0.57	π
Inlet Control Properties					· · · · ·
Inlet Control HW Elev	16.61	π	Flow Control	Submerged	
Inlet Type	Projecting		Area Full	3.1	ff²
K	0.03400		HDS 5 Chart	2	
M	1.50000		HDS 5 Scale	3	
C	0.05530		Equation Form	1	
Υ .	0.54000			•	

Project Title: CENTEX, ALBUQUERQUE c:\haestad\cvm\centex1.cvm

11/02/97 08:10:57 PM

Per Se Engineering

Project Engineer: Tucker Green
CulvertMaster v1.0

© Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666

Page 5 of 5

ALBUQUERQUE, NM (1/93) CRITERIA - SIMPLE PROCEDURE FOR <= 40 ACRES PX100-6 = PRECIPITATION EXCESS FROM 100-YEAR 6-HOUR STORM

VOLIOD = VOLUME OF RUNOFF FROM 100-YEAR 10-DAY STORM

TRIMIT CLASS A=UNDISTURBED, B=LAWNS, C=UNPAVED ROADS, D=ROOFS, PAVEMENT: SEE DPM 22.2 P A-5

***** PROJECT INFO *****

CenteX plant at SW corner of Paseo Del Norte, Jefferson, Tiburon

RAIN ZONE 2 SEE DPM P 22.2-2 100-YEAR PRECIPTATION (P) DEPTHS, INCHES . 1 HR 6 HR 24 HR 4 DAY 10 DAY

1 HR 6 HR 24 HR 4 DAY 10 DAY 2.01 2.35 2.75 3.30 3.95

				•						
11/24/97	05:39 PM	PROPOSED	CONDITION	S - AREAS	'1': TO	CULVERT &	DETENTI	ON	SF TOT	
TRTMT	AREA SQUARE FEET	AREA CRES		QP100-6 CFS/AC	QP100-6 CFS	VOL6HR AC-FT	VOLID AC-FT		VOL10D AC-FT	
A B C D	14117.00 13997.00 41060.00 101699.00	0.3241 0.3213 0.9426 2.3347	0.78 1.13	1.56 2.28 3.14 4.70	0.506 0.733 2.960 10.973	0.021	0.014 0.021 0.089 0.490	0.021	0.014 0.021 0.089 0.724	8.19 24.03
TOTAL	170873.00	3.9227	AVG Q/AC=	3.867	15.171 CU FT		0.614 26757	0.721	0.848 36926	100.00
11/24/97	05:39 PM	PROPOSED	CONDITIONS	S - AREAS	'2': TO	DETENTION,	NOT TO	CULVERT	SF TOT	
TRIMI	AREA SQUARE FEET		PX100-6 IN/AC	QP100-6 CFS/AC	QP100-6 CFS	VOL6HR AC-FT	VOLID AC-FT	VOL4D AC-FT	VOL10D AC-FT	TRTMT
A B C D	131166.00 54723.00 38232.00 107162.00	3.0112 1.2563 0.8777 2.4601	0.53 0.78 1.13 2.12	1.56 2.28 3.14 4.70	4.697 2.864 2.756 11.562	0.133 0.082 0.083 0.435	0.133 0.082 0.083 0.517	0.133 0.082 0.083 0.629	0.133 0.082 0.083 0.763	39.59 16.52 11.54 32.35
TOTAL	331283.00	7.6052	AVG Q/AC=	2.877	21.880 CU FT	0.732 31882	0.814 35454	0.927 40366	1.060 46171	100.00
11/24/97	05:39 PM	PROPOSED	CONDITIONS	- TOTAL	TO DETEN	TIONT			SF TOT	
TRIMI	AREA SQUARE FEET	AREA	PX100-6 IN/AC	QP100-6 CFS/AC	QP100-6 CFS	VOL6HR AC-FT	VOLID AC-FT	VOL4D AC-FT	VOL10D AC-FT	TRIMI
A B C D	145283.00 68720.00 79292.00 208861.00	3.3352 1.5776 1.8203 4.7948	0.53 0.78 1.13 2.12	1.56 2.28 3.14 4.70	5.203 3.597 5.716 22.536	0.147 0.103 0.171 0.847	0.147 0.103 0.171 1.007	0.147 0.103 0.171 1.227	0.147 0.103 0.171 1.486	28.93 13.68 15.79 41.59
TOTAL	502156.00	11.5279	AVG Q/AC=	3.214	37.051	1.268	1.428	1.648	1.908	100.00

11.5279 AC = 0.01801 SQ Mi

CU FT

NOTE: TOP Z CASES THIS PAKE SAME AS THE LO-31-97 RUN
INCLUDED IN THE POUNDATION PERMIT SUBMITIAL,
ALSO PERRIMED EARLIER THIS SUBMITIAL

55249

62211

71784

83097

GET ALLOWARLE OUTFLOW FOR DETENTION TOND

= (EXISTING, ENTIRE SIRE) - (PROPOSED, SOUTH PART)

= (131.14) - (104.40)
(CXHYD.WRI 8-8-97) (CXHYD.WRI 10-31-97)

= 26.74 CFS

~ INFLOW TO DETENTION POND (CXHYD.WOI 10-31-97)
37.05 CFS, peak 100-yr, 64r
64Ke UOLUME 23367+31882=55,249 GF ~ 1.27 AF
241m " 26757+35-454=62,211 CF ~ 1.43 AF

FILE=CXPOND.WQ1 CENTEX DETENTION	POND -	4600 PASEO PYRAMID	11/24/97 DEL NORTE, A	05:24 PM LBUQUERQUE	7.1	END AREA	
ELEV FT 10 9	AREA 51,926 38,132	DVOL CONE 44,852 29,816	VOL FT^3 . 95,030 50,178	VOL AC-FT 2.1816 1.1519	DVOL AV AREA 45,029	VOL FT^3 96,587	VOL AC-FT 2.2173
8 · 7 6	22,213 9,539 1,480	15,436 4,925	20,362 4,925	0.4674 0.1131	30,173 15,876 5,510	51,558 21,386 5,510	1.1836 0.4909 0.1265

•

•

•

Rating Table Report

CEUTEX

Range Data:				
	Minimum	Maximum	Increment	·
Allowable HW Eleva	6.00	10.00	0.50 ft	

ACFF ELEV

HW Elev (ft)	Trial-1 - Discharge (cfs)	Trial-2 - Discharge (cfs)		•
6.00	0.00	0.00	0	6
6.50	0.68	0.79	•	•
7.00	2.47	2.91	6.1765	
7.50	5.10	6.15		
<u>8.00</u>	7.82	10.31	0.4909	<i>Q</i> ₂
8.50	9.08	14.88		
9.00	10.14	18.30	1.1936	a .
9.50	11.14	20.23		
10.00	12.08	22.10	2.2173	10

184 CMP 244 CM

BOTH PIPES: 1.5% SLOPE

PROJECTING ENTRANCE

: INVERT @ 6.00 NOMINAT

Culvert Design Report Trial-1

					
Culvert Summary	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
Allowable HW Elevation	N/A	ft	Storm Event	Design	
Computed Headwater Eleva	tion 8.23	ft	Discharge	8.48	cfs
Headwater Depth/ Height	1.49		Tailwater Elevation	N/A	ft
Inlet Control HW Elev	8.09	ft	Control Type	Outlet Control	
Outlet Control HW Elev	8.23	ft			
Grades					
Upstream Invert	6.00	ft	Downstream Invert	5.40	ft
Length	40.00	ft	Constructed Slope	0.015000	ft/ft
Hydraulic Profile				, · · · · · · · · · · · · · · · · · · ·	
Profile	CompositeM2Pressure		Depth, Downstream	1.13	ft
Slope Type	Mild		Normal Depth	N/A	ft
Flow Regime	Subcritical		Critical Depth	1.13	ft
Velocity Downstream	5.95	ft/s	Critical Slope	0.026554	ft/ft
Section				- 	- ·
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	1.50	ft
Section Size	18 inch		Rise	1.50	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev	8.23	ft	Upstream Velocity Head	0.36	ft
Ke	0.90	·	Entrance Loss	0.32	ft
Inlet Control Properties		· ·		•	
Inlet Control HW Elev	8.09	ft	Flow Control	Transition	
Inlet Type	Projecting		Area Fuli	1.8	ft²
K	0.03400		HDS 5 Chart	2	
M	1.50000		HDS 5 Scale	3	
C	0.05530		Equation Form	1	
Y	0.54000				

NOTE: Q design = 8.48 CFS taken from AHYMO run, which used a Hoestad Methods Cultured Master (thus mogram) rating curve so part of its input. Attemo gare slightly higher required boadwater—8.28 chomp to 9.23. Clove english—OK.

Per Sa Engineering

Project Engineer. Hadde Steel

11/25/97 D6:36:57 AM

CHARGE NEWFORK FOR THE Brookside Road Walebury ET 0570B USA (203) 755-1696

Culvert Design Report Trial-2

Solve For: Headwater Elevation	CENTEX - 244	CMP - CPTIONAL
--------------------------------	--------------	----------------

Culvert Summary					
Allowable HW Elevation	N/A	ft	Storm Event	Check	
Computed Headwater Elevation	8.14	ft	Discharge	11.61	cfs
Headwater Depth/ Height	1.07		Tailwater Elevation	N/A	ft
Inlet Control HW Elev	8.01	ft	Control Type	Outlet Control	
Outlet Control HW Elev	8.14	ft	•	•	
				<u>-</u>	
Grades					
Upstream Invert	6.00	ft	Downstream Invert	5.40	ft
Length	40.00	ft	Constructed Slope	0.015000	ft/ft
Hydraulic Profile					
Profile	M2		Depth, Downstream	1.22	ft
Slope Type	Mild		Normal Depth	1.32	ft
Flow Regime	Subcritical		Critical Depth	1.22	ft
Velocity Downstream	5.77	ft/s	Critical Slope	0.018759	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.024	•
Section Material	CMP		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev	8.14	ft	Upstream Velocity Head	0.43	ft
Ke	0.90		Entrance Loss	0.39	
Inlet Control Properties					
Inlet Control HW Elev	8.01	ft	Flow Control	Unsubmerged	<u> </u>
Inlet Type	Projecting		Area Full	3.1	ft²
K	0.03400		HDS 5 Chart	2	
M	1.50000		HDS 5 Scale	3	
С .	0.05530		Equation Form	1	
Y	0.54000				

NOTE: Q design = 11.61 cfs from Attymo run bosed partly on rating curve from this Culvert master Brognan. At Qp, headwater elev Attymo was 216' comp to 2.14' here. OK Hwelev 2.16' => Hw depth = 7.00'

-: MAN 197 09 42:03 AM

```
START TIME (HR:MIN:SEC) = 19:14:38
                                            USER NO. = PERSEENG. 194
         INPUT FILE = CXPOND.DAT
                  CONTROL CODES AT START = 027 038 107 050 083
                  CONTROL CODES AT END = 0 0 0 0 0
                  00000 00000 00000
* CONTROL CODES ABOVE FOR HP DESKJET 540 INKJET PRINTER, START IN COL 21
*C PRINT CODES: 0=ALL; 1=TOTALS ONLY; 2=EVERY 2ND + TOTALS; 3,5,10,20 SIMILAR
*C RATING CURVE ID NEGATIVE => COMPUTE BUT NOT PRINT RATING CURVE
*C RATING CURVE n NEGATIVE => FLOODPLAIN SLOPE, n POSITIVE => CHANNEL SLOPE
*S FILE CXPOND = Centex POND, DETENTION POND AT 4600 PASEO DEL NORTE, ALBO NM
*S RAIN ZONE 2 FOR SMALL WATERSHED METHODS - USE HERE
                                                                   * Qo PONDIN 36.54 cfs
*S 100-yr 6hr STORM
                            REG = 16.31 CFS
*S
*S FOR RESERVOIR ROUTING, NEED Qout AT LEAST 10.31cfs LESS THAN Qin
                                                                          PONDOUT.18 9.48
*C
*S FLOW IS **NOT** BULKED FOR SEDIMENT, UNLESS SPECIFICALLY NOTED.
*C
                                                                                       1 = 28.06 ox
*C BASIN & CHANNEL ROUTING PARAMETERS REFLECT THE JUDGMENT OF THE ENGINEER,
*C AND MAY DIFFER FROM OTHER STUDIES IN THE AREA.
                                                                             ws eleve 8.28'
*C
                                                                               (4=2.281)
*C REVISION NOTES: ORIGINAL FILE CREATED 11-24-97 BY TUCKER GREEN P.E.
*C
* RAINFALLS PER ALBUQUERQUE NM DPM - COMMENT OUT THOSE THAT DON'T APPLY
                                                                        24'
Qp PONDIN 36,54
* TYPE 1 IS 6-HR STORM PER NOAM ATLAS 2 W PEAK INTENSITY @ 1.4 HRS (EQ C1-C5)
    FOR 6-HR USE DT = 0.0333333 HR = 2 MINUTES
* TYPE 2 IS 24-HR STORM PER NOAA ATLAS 2 W PEAK INTENSITY @ 1.4 HRS (EQ C1-C6)
                                                                         appora out. 24/1.61
    FOR 24-HR USE DT = 0.0500 HR = 5 MINUTES
* RAIN QUARTER = 0.0 EXCEPT FOR TYPE 3 (6-HR PMP: SEE AHYMO MANUAL)
*** !!! RAINFALL 100YR-TYPE2 NOT ADJUSTED, BUT NOT USED, EITHER. !!!
*** !!! RAINFALL 10YR-TYPE1 NOT ADJUSTED, BUT NOT USED, EITHER. !!!
                                                                             ws Erevæ8.16
                       RAINFALL AMOUNTS, INCHES
* RAINFALL
                    HUNDRED TYPE= 2 RAIN QUARTER= 0.0
                                                        RAIN ONE= 2.23
                     RAIN SIX= 2.95
                                    RAIN DAY= 3.76
                                                   DT=
                                                        .033333 HR
RAINFALL
                   HUNDRED TYPE= 1
                                     0.0 2.01
                                                 2.35
                                                        2.75
             COMPUTED 6-HOUR RAINFALL DISTRIBUTION BASED ON NOAA ATLAS 2 - PEAK AT 1.40 HR.
                     .033333 HOURS
                                       END TIME =
                                                     5.999940 HOURS
                .0000
                               .0033
                        .0016
                                      .0049
                                                            .0102
                                              .0066
                                                     .0084
                .0120
                               .0158
                        .0139
                                       .0178
                                              .0199
                                                     .0219
                                                             .0241
                                                                   * AHYMO GIVES SUGUTLY
SMALLER GREEKS THAN
                .0263
                        .0286
                               .0309
                                      .0333
                                              .0358
                                                             .0411
                                                     .0384
                .0439
                        .0467
                               .0497
                                                             .0631
                                       .0529
                                              .0561
                                                     .0596
                .0669
                        .0709
                                                            .1066
                               .0751
                                                     .0930
                                       .0807
                                              .0866
                .1372
                        .1842
                               .2517
                                      .3438
                                              .4648
                                                     .6192
                                                            .8114
                                                                     OPM SMALL WATERSUED
               1.0459
                      1.2628
                              1.3536
                                     1.4303
                                            1.4985
                                                                    METHOD, WHICH GAVES !
± 37.05 CES POR SAME
                              1.7667
                                     1.8104
                                            1.8516
               1.9624
                      1.9955
                              2.0269
                                     2.0568
                                            2.0851
                                                    2.0915 2.0976
               2.1034 2.1088 2.1141 2.1191
                                            2.1239
               2.1373 2.1414 2.1455 2.1494 2.1532 2.1569 2.1604
               2.1639 2.1673 2.1707 2.1739 2.1771 2.1802 2.1832
               2.1862 2.1891 2.1920 2.1948 2.1975 2.2002 2.2028
               2.2054 2.2080 2.2105 2.2130 $.2154 2.2178 2.2202
               2.2225 2.2248 2.2271 2.2293 2.2315 2.2336 2.2358
               2.2379 2.2400 2.2420 2.2440 2.2460 2.2480 2.2500
               2.2519 2.2538 2.2557 2.2576 2.2594 2.2613 2.2631
               2.2649 2.2666 2.2684 2.2701 2.2718 2.2736 2.2752
```

AHYMO PROGRAM (AHYMO194) - AMAFCA Hydrologic Model - January, 1994

RUN DATE (MON/DAY/YR) = 11/24/1997

```
      2.2769
      2.2786
      2.2802
      2.2818
      2.2834
      2.2850
      2.2866

      2.2882
      2.2897
      2.2913
      2.2928
      2.2943
      2.2958
      2.2973

      2.2988
      2.3002
      2.3017
      2.3031
      2.3046
      2.3060
      2.3074

      2.3088
      2.3102
      2.3116
      2.3129
      2.3143
      2.3156
      2.3170

      2.3183
      2.3196
      2.3209
      2.3222
      2.3235
      2.3248
      2.3261

      2.3273
      2.3286
      2.3299
      2.3311
      2.3323
      2.3336
      2.3348

      2.3360
      2.3372
      2.3384
      2.3396
      2.3408
      2.3420
      2.3431

      2.3443
      2.3454
      2.3466
      2.3477
      2.3489
      2.3500
```

* RAINFALL

TENYEAR TYPE= 1 0.0 1.23 1.48 1.78 0.033333

COMPUTE NM HYD

ID= 1 HYD= PONDIN

DA=0.01801 SQ MI

PER A= 28.93 B= 13.68 C= 15.79 D= 41.60

TP = -0.13333 HRS RAIN = -1

K = .072665HR TP = .133330HR K/TP RATIO = .545000 SHAPE CONSTANT, N = 7.106420 UNIT PEAK = 29.573 CFS UNIT VOLUME = .9990 B = 526.28 P60 = 2.0100 AREA = .007492 SQ MI IA = .10000 INCHES INF = .04000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .033333

K = .139360HR TP = .133330HR K/TP RATIO = 1.045227 SHAPE CONSTANT, N = 3.377625 UNIT PEAK = 24.556 CFS UNIT VOLUME = .9995 B = 311.29 P60 = 2.0100 AREA = .010518 SQ MI IA = .53375 INCHES INF = 1.34450 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .033333

PRINT HYD

ID= 1 CODE= 5

HYDROGRAPH FROM AREA PONDIN

TIME HRS	FLOW CFS	TIME	FLOW CFS	TIME	FLOW	TIME	FLOW CFS	TIME	FLOW
.000	.0	1.500	36.5	3.000	.4	4.500	1	6.000	CF3
.167	.0	1.667	19.6	3.167	.3	4.667	.1	6.167	1
.333	.0	1.833	10.4	3.333	.2	4.833	.1	6.333	.0
.500	.0	2.000	7.0	3.500	.2	5.000	.1	6.500	.0
.667	.0	2.167	3.4	3.667	. 2	5.167	.1	6.667	.0
.833	.0	2.333	1.8	3.833	.2	5.333	.1	6.833	.0
1.000	.0	2.500	1.1	4.000	.1	5.500	.1	0.000	
1.167	.1	2.667	.7	4.167	.1	5.667	.1		
1.333	7.3	2.833	.5	4.333	.1	5.833	.2		

RUNOFF VOLUME = 1.29765 INCHES = 1.2464 ACRE-FEET
PEAK DISCHARGE RATE = 36.54 CFS AT 1.500 HOURS BASIN AREA = .0180 SQ. MI.

*S HYD PONDOUT.18 IS FOR 18" CMP. PROJECTING ENTRANCE, 1.5% SLOPE ROUTE RESERVOIR HYD=PONDOUT.18 INFLOW ID=1 CODE=5. OUTFLOW CFS STORAGE AC-FT ELEVATION FT 0.00000 0.0000 2.47 0.1265 7.82 0.4909 10.14 1.1836 12.08 2.2173

* * * * * * * * * * * * * *

TIME	INFLOW	ELEV	VOLUME (AC-FT)	OUTFLOW
(HRS)	(CFS)	(FEET)		(CFS)
.00	.00	6.00 6.00	.000	.00

```
.33
                    .00
                             6.00
                                          .000
        .50
                    .00
                             6.00
                                          .000
                                                     .00
        .67
                    .00
                             6.00
                                          .000
                                                     .00
       .83
                   .00
                             6.00
                                         .000
                                                     .00
      1.00
                   .00
                             6.00
                                         .000
                                                     .00
      1.17
                   .07
                             6.00
                                         .000
                                                     .00
      1.33
                  7.30
                             6.26
                                         .033
                                                     .64
      1.50
                 36.54
                             7.48
                                         .301
                                                    5.04
      1.67
                 19.55
                             8.16
                                         .600
                                                    8.19
      1.83
                 10.42
                             8.28
                                         .682
                                                    8.46
      2.00
                  6.96
                             8.28
                                         .682
                                                    8.46
      2.17
                  3.40
                             8.22
                                         .640
                                                   8.32
      2.33
                  1.75
                             8.10
                                         .560
                                                    8.05
      2.50
                  1.12
                             7.95
                                         .471
                                                   7.53
      2.67
                   .75
                             7.72
                                         .389
                                                   6.32
      2.83
                   .52
                            7.52
                                         .318
                                                   5.27
      3.00
                   .38
                             7.36
                                         .257
                                                   4.39
      3.17
                   .29
                            7.22
                                        .207
                                                   3.65
      3.33
                   .23
                            7.10
                                         .164
                                                   3.03
      3.50
                   .19
                            7.01
                                        .129
                                                   2.51
      3.67
                   .17
                            6.80
                                        .101
                                                   1.97
      3.83
                   .15
                            6.63
                                        .079
                                                   1.54
      4.00
                   .14
                            6.49
                                        .062
                                                   1.22
     4.17
                   .13
                            6.39
                                        .049
                                                    .96
     4.33
                  .13
                            6.31
                                        .039
                                                    .77
     4.50
                  .13
                            6.25
                                        .031
                                                    .61
     4.67
                  .13
                            6.20
                                        .026
                                                    .50
     4.83
                  .13
                            6.17
                                        .021
                                                    .41
     5.00
                  .13
                            6.14
                                                    .35
                                        .018
     5.17
                  .13
                            6.12
                                        .015
                                                    .30
     5.33
                  .14
                            6.10
                                        .013
                                                    .26
     5.50
                  .14
                           6.09
                                        .012
                                                    .23
     5.67
                  .15
                            6.08
                                        .011
                                                    .21
     5.83
                  .15
                            6.08
                                        .010
                                                    .20
     6.00
                  .16
                           6.08
                                        .010
                                                    .19
     6.17
                  .06
                           6.07
                                        .009
                                                    .17
     6.33
                  .02
                           6.06
                                        .007
                                                    .14
     6.50
                  .01
                           6.04
                                        .006
                                                   .11
     6.67
                  .00
                           6.03
                                        .004
                                                    .08
     6.83
                  .00
                           6.03
                                       .003
                                                   .07
     7.00
                  .00
                           6.02
                                       .003
                                                   .05
     7.17
                  .00
                           6.02
                                       .002
                                                   .04
     7.33
                  .00
                           6.01
                                       .001
                                                   .03
     7.50
                  .00
                           6.01
                                       .001
                                                   .02
     7.67
                  .00
                           6.01
                                       .001
                                                   .02
 7.83
                  .00
                           6.01
                                       .001
                                                   .01
    8.00
                 .00
                           6.00
                                       .001
                                                   .01
    8.17
                 .00
                           6.00
                                       .000
                                                   .01
    8.33
                 .00
                           6.00
                                       .000
                                                   .01
    8.50
                 .00
                           6.00
                                       .000
                                                   .00
PEAK DISCHARGE =
                         8.480 CFS - PEAK OCCURS AT HOUR
                                                                1.90
MAXIMUM WATER SURFACE ELEVATION =
                                            8.284
MAXIMUM STORAGE =
                           .6878 AC-FT
                                              INCREMENTAL TIME=
                                                                      .033333HRS
                     ID=3 HYD=PONDOUT.18 INFLOW ID=1
                                                              CODE=5.
                     OUTFLOW CFS
                                     STORAGE AC-FT
                                                      ELEVATION FT
                      0.00000
                                     0.0000
```

*S *S HYD PONDOUT. 24 IS FOR 24" CMP. PROJECTING ENTRANCE, 1.5% SLOPE *S REUSE INFLOW HYD W ID=1 = HYD PONDIN ROUTE RESERVOIR 2.91 0.1265 10.31 0.4909 18.30 1.1836 22.10 2.2173

TIME (HRS)	INFLOW (CFS)	ELEV (FEET)	VOLUME (AC-FT)	OUTFLOW (CFS)		
	` `	•	,	•		
.00	.00	6.00	.000	.00		
.17	.00	6.00	.000	.00		
.33 .50	.00	6.00 6.00	.000	.00	•	•
.67	.00	6.00	.000	.00		
.83	.00	6.00	.000	.00		
1.00	.00	6.00	.000	.00		
1.17	.07	6.00	.000	.00		
1.33	7.30	6.26	.033	.75		
1.50	36.54	7.46	.294	6.31		
1.67	19.55	8.10	.563	11.14		
1.83	10.42	8.16	.602	11.59		
2.00	6.96	8.10	.561	11.12		
2.17	3.40	7.99	.487	10.24		
2.33 2.50	1.75 1.12	7.73 7.50	.393	8.31	•	
2.67	.75	7.50 7.31	.309 .241	6.62 5.23		
2.83	.52	7.16	.185	4.11		
3.00	.38	7.04	.141	3.21		
3.17	.29	6.84	.107	2.46		
3.33	.23	6.64	.081	1.86		
3.50	.19	6.49	.061			
3.67	.17	6.37	.047	1.08		
3.83	.15	6.28	.036	.83		
4.00	.14	6.22	.028	.64		
4.17	.13	6.17	.022	.51		
4.33	.13	6.14	.018	.40		
4.50 4.67	.13 .13	6.11 6.09	.014 .012	.33		
4.83	.13	6.08	.012	.27		
5.00	.13	6.07	.009	.23		
5.17	.13	6.06	.008	.19		
5.33	.14	6.06	.007	.17		
5.50	.14	6.06	.007	.16		
5.67	.15	6.05	.007	.16		
5.83	.15	6.05	.007	.16		
6.00	.16	6.05	.007	.16		
6.17	.06	6.05	.006	.15		
6.33 6.50	.02 .01	6.04 6.03	.005 .004	.12		
6.67	.00	6.02	.003	.09		
6.83	.00	6.02	.002	.05		
7.00	.00	6.01	.002	.04		
7.17	.00	6.01	.001	.03	•	
7.33	.00	6.01	.001	.02		
7.50	.00	6.00	.001	.01		
7.67	.00	6.00	.000	.01		
7.83	.00	6.00	.000	.01		
8.00 9.17	.00	6.00	.000	.01		
8.17 EAK DISCHARG	.00 :E =	6.00 11 606 CE	.000. . yraq _ 2	.00 OCCURS AT HOUR	1 00	
AXINUM WATER				B.162	1.80	
AXIMUM STORA		.6032		INCREMENTAL TI	ME=	.033333HRS
			-			

*
FINISH

NORMAL PROGRAM FINISH

END TIME (HR:MIN:SEC) = 19:14:47

CENTEY EMERCEACY SPICCHAY AT DETENTION POND

Qp = Qp 100 INTO POND (NEGGET OUTPLUN \$
STURAGE)

36.54 CFS AHUMO

= 37.05 CFS DPM SAME WATER SIKED

USE 37.05

SPICLWAY SECTION MONG BANK

THE SOLL STORM APRAGO DIRT TO

PRITECT ASPHALT

Q=C.L.432

- ASSUME C=3 APX AZZURATES

37.05 = 3.30.43/2 on

H= (37.05) 2/3 = 0.551 (6/6 Nat)

H= Water saface in pond back of Spillway - depth over crest is 655

WATER SURFARE ASSUMING THE 4" DIRT DOESN'T ZRODE PRIOR TO ARRIVAL OF GRAK - CONSERVATIVE

WATER TOIRT = 0.55 to.33 = 0.88 < 1.0 AUAGBLE

Cherne, Curtis

From:

Cherne, Curtis

Sent:

Monday, June 09, 2014 10:45 AM

To:

MacKenzie, John

Subject:

RE: Centex's American Gypsum Wallboard Plant

John,

I trust you to just work with him on behalf of the City.

Please provide as-builts and your best guess at the flows leaving the site.

Thanks, Curtis

From: MacKenzie, John

Sent: Friday, June 06, 2014 9:03 AM

To: Cherne, Curtis

Subject: RE: Centex's American Gypsum Wallboard Plant

Curtis,

The owner has agreed to provide as-built surveying. He is also cooperating with us on his other on-site ponds that are connected to his MSGP (which he has verbally agreed to install spillways on – if you can believe that). We think that ultimately there will be significant downstream reductions in peak discharge once all these ponds (there are about 3 or 4) are measured and routed. We are negotiating with him now so that in the end we know to what extent the new El Pueblo storm drain needs to be sized for.

Can you trust us to just work with him on behalf of the City and just send the final outcome documentation to your office? If we can avoid having another City department go out there and perform an inspection (and potentially make him more nervous) I recommend you not go out to the site at this time.

John MacKenzie, PE City of Albuquerque Department of Municipal Development Engineering Division (505) 768-3965

From: Cherne, Curtis

Sent: Tuesday, April 22, 2014 10:46 AM

To: MacKenzie, John

Subject: RE: Centex's American Gypsum Wallboard Plant

John,

Would it be possible to get some as-builts (just survey data would be acceptable)?

If the property owner would like Hydrology to do an inspection, we can accommodate them, else, the as-builts will suffice.

Curtis

From: MacKenzie, John

Sent: Thursday, April 17, 2014 8:26 AM

To: Cherne, Curtis

Subject: Centex's American Gypsum Wallboard Plant

Curtis,

I think the owner will be having the Paseo/I-25 contractor perform work on this site uncertified pond to get it in compliance with the approved plan.

Given that it's been approximately 16 years since the pond appears to have been wrongly constructed, do you still want a formal engineer's certification, or can your office perform a quick inspection to determine if did an adequate job? I'm not sure that the contractor or the owner would have an engineer available to certify a pond like this, although I suppose he could go out and hiring one for this particular task (that would be weird).

John MacKenzie, PE
City of Albuquerque
Department of Municipal Development
Engineering Division
(505) 768-3965

Cherne, Curtis

From:

MacKenzie, John

Sent:

Wednesday, May 14, 2014 8:25 AM

To:

Cherne, Curtis

Subject:

RE: Centex's American Gypsum Wallboard Plant

We're getting as-builts, but we know it's out of compliance so we'll be pushing for subsequent remedial action.

John MacKenzie, PE
City of Albuquerque
Department of Municipal Development
Engineering Division
(505) 768-3965

From: Cherne, Curtis

Sent: Tuesday, April 22, 2014 10:46 AM

To: MacKenzie, John

Subject: RE: Centex's American Gypsum Wallboard Plant

John,

Would it be possible to get some as-builts (just survey data would be acceptable)?

If the property owner would like Hydrology to do an inspection, we can accommodate them, else, the as-builts will suffice.

Curtis

From: MacKenzie, John

Sent: Thursday, April 17, 2014 8:26 AM

To: Cherne, Curtis

Subject: Centex's American Gypsum Wallboard Plant

Curtis,

I think the owner will be having the Paseo/I-25 contractor perform work on this site uncertified pond to get it in compliance with the approved plan.

Given that it's been approximately 16 years since the pond appears to have been wrongly constructed, do you still want a formal engineer's certification, or can your office perform a quick inspection to determine if did an adequate job? I'm not sure that the contractor or the owner would have an engineer available to certify a pond like this, although I suppose he could go out and hiring one for this particular task (that would be weird).

John MacKenzie, PE
City of Albuquerque
Department of Municipal Development
Engineering Division
(505) 768-3965