DRAINAGE INFORMATION SHEET

ADDRESS: SURVEYOR: SOUTHWEST SURVEYING CDNTACT: Dan Graney ADDRESS: ADDRESS: N/A CONTACT: ADDRESS: N/A CONTACT: ADDRESS: PHONE: CONTACT: PHONE: PHONE: PHONE: PROJ. NO. COPY OF CONFERENCE RECAP SHEET PROVIDED TYPE OF SUBMITTAL: DRAINAGE REPORT DRAINAGE PLAN CONCEPTUAL GRADING & DRAINAGE PLAN CONCEPTUAL GRADING & DRAINAGE PLAN EROSION CONTROL PLAN EROSION CONTROL PLAN EROSION CONTROL PLAN ENGINEER'S CERTIFICATION CERTIFICATE OF OCCUPANCY APPROVAL ROUGH GRADING PERMIT APPROVAL ROUGH GRADING PERMIT APPROVAL GRADING/PAVING PERMIT APPROVAL		E-14/04
Tract 1-1, Monroe Enterprises C1TY ADDRESS: Mark Goodwin and Assoc. ADDRESS: ADDRE		
CONTRACTOR: ADDRESS: ADDRESS: ADDRESS: ADDRESS: ADDRESS: ADDRESS: ADDRESS: ADDRESS: ADDRESS: A	Tract 1-B, Monroe Enterprise	S
ENGINEERING FIRM ADDRESS: P.O. Box 21307 Alb. 87154 PHONE: ADDRESS: ADDRES: ADDRESS: ADDRES: ADDRESS: ADDRE	6225 Fourth St. NW	W. J. O. Amira, D. F.
ADDRESS: OWNER: Charles Monroe CONTACT: Same ADDRESS: ADDRESS: ADDRESS: ADDRESS: ADDRESS: ADDRESS: SURVEYOR: ADDRESS: N/A CONTACT: PHONE: ADDRESS: ADDRESS: ADDRESS: ADDRESS: PHONE: ADDRESS: ADDRESS: PHONE: ADDRESS: PHONE: ADDRESS: ADDRESS: ADDRESS: PHONE: ADDRESS: ADDRESS: PHONE: ADDRESS: AD	Mark Goodwin and Assoc.	CONTACT:
CONTACT: Same ADDRESS: 4501 Bogan NE Alb. 87109 ARCHITECT: N/A ADDRESS: Southwest Surveying ADDRESS: Southwest Surveying ADDRESS: ONTACT: Dan Graney ADDRESS: N/A CONTACT: Dan Graney ADDRESS: N/A CONTACT: Dan Graney CONTACT: Dan Gr	P.O. Box 21307 Alb. 87154	PHONE: 294-9961
ADDRESS: 4501 Bogan NE Alb. 87109 PHONE: 884-0370. ARCHITECT: N/A CONTACT: ADDRESS: SOUTHWEST SURVEYING CONTACT: Dan Graney ADDRESS: 333 Lomas NE Alb. 87102 PHONE: 247-4444 CONTACTOR: N/A CONTACT: ADDRESS: PHONE: PHONE: ADDRESS: PHONE: PHONE: DEC 19 1986 PMB NO. Y YES PHONE: PHONE: ON HYDROLOGY SECTER NO. PROJ. NO. COPY OF CONFERENCE RECAP PROJ. NO. TYPE OF SUBMITTAL: CHECK TYPE OF APPROVAL SOUGHT: SKETCH PLAT APPROVAL DRAINAGE REPORT PROLING PROJ. PROJ. NO. CONCEPTUAL GRADING & DRAINAGE PLAN SITE DEVELOPMENT PLAN APPROVAL E GRADING PLAN SITE DEVELOPMENT PLAN APPROVAL E GRADING PLAN SITE DEVELOPMENT PLAN APPROVAL E GRADING PLAN SUBLIDING PERMIT APPROVAL ENGINEER'S CERTIFICATION FOUNDATION PERMIT APPROVAL GRADING PROVING PERMIT APPROVAL GRADING/PAVING PERMIT APPROVAL GRADING/PAVING PERMIT APPROVAL GRADING/PAVING PERMIT APPROVAL GRADING/PAVING PERMIT APPROVAL OTHER (SPECIFY)		CONTACT: Same
ARCHITECT: N/A CONTACT: ADDRESS: SOUTHWEST SURVEYING CONTACT: Dan Graney ADDRESS: 333 Lomas NE Alb. 87102 PHONE: 247-4444 CONTRACTOR: N/A CONTACT: ADDRESS: PHONE: ADDRESS: PHONE: ADDRESS: PHONE: PRE-DESIGN MEETING: PHONE: YES NO HYDROLOGY SECTED NO. X COPY OF CONFERENCE RECAP PROJ. NO. X COPY OF CONFERENCE RECAP PROJ. NO. X COPY OF CONFERENCE RECAP PROJ. NO. X COPY OF SUBMITTAL: CHECK TYPE OF APPROVAL SOUGHT: DRAINAGE REPORT SKETCH PLAT APPROVAL X DRAINAGE PLAN SITE DEVELOPMENT PLAN APPROVAL X GRADING PLAN SITE DEVELOPMENT PLAN APPROVAL ENGINEER'S CERTIFICATION FOUNDATION PERMIT APPROVAL ROUGH GRADING PERMIT APPROVAL ROUGH GRADING PERMIT APPROVAL GRADING/PAVING PERMIT APPROVAL GRADING/PAVING PERMIT APPROVAL GRADING/PAVING PERMIT APPROVAL OTHER (SPECIFY)	4501 Bogan NE Alb. 87109	PHONE: 884-0370
ADDRESS: SURVEYOR: SOUTHWEST SURVEYING CONTACT: ADDRESS: 333 Lomas NE Alb. 87102 PHONE: 247-4444 CONTRACTOR: ADDRESS: N/A CONTRACT: ADDRESS: N/A CONTRACT: ADDRESS: PHONE: PHONE: 247-4444 CONTRACTOR: ADDRESS: PHONE: ADDRESS: PHONE:	ADDRESS:	CONTACT:
ADDRESS: SURVEYOR: SOUTHWEST SURVEYING ADDRESS: ADDRESS: N/A CONTACTOR: ADDRESS: N/A CONTACTOR: ADDRESS: PHONE: PHONE	ARCHITECT: N/A	-
ADDRESS: ADDRESS: N/A CONTACTOR: N/A CONTACT: ADDRESS: PHONE: PRE-DESIGN MEETING: YES NO HYDROLOGY SECTEON NO. COPY OF CONFERENCE RECAP SHEET PROVIDED TYPE OF SUBMITTAL: DRAINAGE REPORT DRAINAGE PLAN CONCEPTUAL GRADING & DRAINAGE PLAN EROSION CONTROL PLAN EROSION CONTROL PLAN ENGINEER'S CERTIFICATION DATE SUBMITTED: 12/19/BB. DEC 19 1986 PRE-DESIGN NO. PROJ. NO. PROJ. NO. CHECK TYPE OF APPROVAL SOUGHT: SKETCH PLAT APPROVAL PRELIMINARY PLAT APPROVAL SITE DEVELOPMENT PLAN APPROVAL FUNDATION PERMIT APPROVAL GRADING PLAN ENGINEER'S CERTIFICATION CERTIFICATE OF OCCUPANCY APPROVAL GRADING/PAVING PERMIT APPROVAL GRADING PERMIT APPROVAL GRADING PERMIT APPROVAL GRAD		Dan Graney
ADDRESS: N/A CONTACT: ADDRESS: PHONE: ADDRESS: PHONE: PRE-DESIGN MEETING: YES NO HYDROLOGY SECTED NO. COPY OF CONFERENCE RECAP SHEET PROVIDED TYPE OF SUBMITTAL: DRAINAGE REPORT X DRAINAGE PLAN CONCEPTUAL GRADING & DRAINAGE PLAN EROSION CONTROL PLAN EROSION CONTROL PLAN ENGINEER'S CERTIFICATION DATE SUBMITTED: N/A CONTACT: PHONE: PHONE: PHONE: PHONE: PHONE: PHONE: PHONE: PROJ. NO. PROJ. NO. SKETCH PLAT APPROVAL SKETCH PLAT APPROVAL PRELIMINARY PLAT APPROVAL FINAL PLAT APPROVAL FINAL PLAT APPROVAL GRADING PERMIT APPROVAL CERTIFICATE OF OCCUPANCY APPROVAL GRADING/PAVING PERMIT APPROVAL	SURVEYOR:	
ADDRESS: PRE-DESIGN MEETING: YES NO HYDROLOGY SECTRON NO. COPY OF CONFERENCE RECAP SHEET PROVIDED TYPE OF SUBMITTAL: DRAINAGE REPORT X DRAINAGE PLAN CONCEPTUAL GRADING & DRAINAGE PLAN EROSION CONTROL PLAN ENGINEER'S CERTIFICATION DATE SUBMITTED: 12/19/2024 PHONE: PREJEMENT SUBMITTAL: SKETCH PLAT APPROVAL FINAL PLAT APPROVAL FINAL PLAT APPROVAL FOUNDATION PERMIT APPROVAL GRADING/PAVING PERMIT APPROVAL GRADING GRADING GRADING GRADING GRADING GRADING	ADDRESS: 333 Lomas NE Alb. 87102	_ PHONE:
PRE-DESIGN MEETING: YES NO HYDROLOGY SECTERN NO. X COPY OF CONFERENCE RECAP SHEET PROVIDED TYPE OF SUBMITTAL: DRAINAGE REPORT DRAINAGE PLAN CONCEPTUAL GRADING & DRAINAGE PLAN GRADING PLAN EROSION CONTROL PLAN GRADING PERMIT APPROVAL GRADING PERMIT APPROVAL GRADING/PAVING PERMIT APPROVAL	CONTRACTOR: N/A	·CONTACT:
PRE-DESIGN MEETING: YES NO HYDROLOGY SECTED NO. COPY OF CONFERENCE RECAP SHEET PROVIDED TYPE OF SUBMITTAL: DRAINAGE REPORT DRAINAGE PLAN CONCEPTUAL GRADING & DRAINAGE PLAN GRADING PLAN EROSION CONTROL PLAN ENGINEER'S CERTIFICATION DATE SUBMITTED: DEC 19 1986 PRE-DESIGN MEETING: DEC 19 1986 PRE-DESIGN MEETING: DEC 19 1986 PRE-DESIGN NO. PROJ. NO. CHECK TYPE OF APPROVAL SOUGHT: SKETCH PLAT APPROVAL PRELIMINARY PLAT APPROVAL SITE DEVELOPMENT PLAN APPROVAL FOUNDATION PERMIT APPROVAL GRADING PERMIT APPROVAL GRADING/PAVING PERMIT APPROVAL OTHER OTHER (SPECIFY)	ADDRESS:	PHONE:
DRAINAGE REPORT X DRAINAGE PLAN CONCEPTUAL GRADING & DRAINAGE PLAN X GRADING PLAN EROSION CONTROL PLAN ENGINEER'S CERTIFICATION DATE SUBMITTED: DATE SUBMITTED: SKETCH PLAT APPROVAL PRELIMINARY PLAT APPROVAL SITE DEVELOPMENT PLAN APPROVAL FINAL PLAT APPROVAL X BUILDING PERMIT APPROVAL FOUNDATION PERMIT APPROVAL GRADING/PAVING PERMIT APPROVAL OTHER (SPECIFY)		86 No
and I of Line	DRAINAGE REPORT X DRAINAGE PLAN CONCEPTUAL GRADING & DRAINAGE PLAN X GRADING PLAN EROSION CONTROL PLAN ENGINEER'S CERTIFICATION	SKETCH PLAT APPROVAL PRELIMINARY PLAT APPROVAL SITE DEVELOPMENT PLAN APPROVAL FINAL PLAT APPROVAL BUILDING PERMIT APPROVAL FOUNDATION PERMIT APPROVAL CERTIFICATE OF OCCUPANCY APPROVAL ROUGH GRADING PERMIT APPROVAL GRADING/PAVING PERMIT APPROVAL
	and by Line	

City of Albuquerque

P.O. BOX 1293 ALBUQUERQUE, NEW MEXICO 87103

January 8, 1987

Mark Goodwin DMG & Associates Post Office Box 21307 Albuquerque, New Mexico 87154

RE: REVISED DRAINAGE PLAN FOR SIRLOIN STOCKADE @ 6225 FOURTH STREET, NW (E-14/D4) RECEIVED DECEMBER 19, 1986

Dear Mark:

I have reviewed the above referenced submittal and hereby approve it for obtaining a building permit.

I have also approved your plan for the sidewalk culvert and have forwarded it to the appropriate permit section.

Please attach a copy of the revised plan, dated December 18, 1986, to the construction sets prior to Hydrology sign-off. Also, please advise the contractor that he will be required to show proof of permit and acceptance of the sidewalk culvert for Hydrology to sign-off on the Certificate of Occupancy.

Should you have any questions, or if this office can be of further assistance, please call me at 768-2650.

Cordially,

Billy & Goolsby, P.E.

C.E./Hydrology Section

cc: Rick Duran, Drainage Inspector Charles Monroe

BJG/bsj

City of Albuquerque

P.O. BOX 1293 ALBUQUERQUE, NEW MEXICO 87103

Ken Schultz Mayor

UTILITY DEVELOPMENT DIVISION HYDROLOGY SECTION (505) 768-2650

August 12, 1987

Chuck Monroe 4501 Bogan Avenue, NE Albuquerque, New Mexico 87109

RE: SIRLOIN STOCKADE RESTAURANT, 6225 FOURTH STREET, NW

Dear Mr. Monroe:

On July 27, 1987, a complaint was filed with our office pertaining to flooding caused by runoff from the above referenced site. It is my understanding that a revised plan was submitted to our section for review and approval. On July 28, 1987, a survey was conducted to determine what type of problem exists. We found that:

- 1. New top of wall grades of 4980.0 elevation were not constructed.
- 2. The emergency spillway elevation should have been located at the drivepad into Solar Road.
- Emergency spillway as it exists is directly in front of Mr. Wayne Ciddio's backyard, thus causing flooding within his backyard.

Please provide this office with confirmation as to what will be done to correct this problem. Also, you are welcome to have a copy of our survey notes.

If I can be of any assistance to you, please call me at 768-2650.

Cordially,

Bernie J. Montoya, CE Engineering Assistant

Burnie J. Menteya

cc: Mr. Wayne Ciddio 6212 Sabre Court, NW

PUBLIC WORKS DEPARTMENT

Walter Nickerson, P.E., City Engineer

ENGINEERING GROUP

Telephone (505) 768-2500

City of Albuquerque

P.O. BOX 1293 ALBUQUERQUE, NEW MEXICO 87103

Ken Schultz Mayor

UTILITY DEVELOPMENT DIVISION HYDROLOGY SECTION (505) 768-2650

December 8, 1987

Charles L. Monroe, III Sirloin Stockade Restaurants 4501 Bogan, NE Suite A-1 Albuquerque, New Mexico 87109

RE: DRAINAGE PROBLEMS, SIRLOIN STOCKADE RESTAURANT 6225 FOURTH STREET, NW (E-14/D4)

Dear Mr. Monroe:

Thank you for taking your time to meet with Carlos Montoya and me on the site last Friday. This letter will summarize our discussion and the conclusions we reached.

We agreed that the simplest and most effective means of controlling the storm runoff within the areas designated for it would be as follows:

- raise the header curb by twelve inches all along the west boundary and for approximately forty feet along the north boundary, starting from the northwest corner;
- remove the plastic liner from the graveled swale ditch, and regrade the ditch to drain to the street; and
- 3. plant a ground cover or grass in the ponding area and swale ditch to improve the permeability of the soil.

You said that you would schedule work to begin right after the first of the new year, and expect to have things completed by January 30, 1988.

PUBLIC WORKS DEPARTMENT

Walter Nickerson, P.E., City Engineer

ENGINEERING GROUP

Telephone (505) 768-2500

Charles L. Monroe, III December 8, 1987 Page 2

I appreciate your cooperation, and anticipate that this should end the problems of your runoff entering Mr. Ciddio's backyard. If you have any questions, please do not hesitate to call me at 768-2650.

Cordially,

G. Stuart Reeder, P.E. C.E./Hydrology Section

xc: Wayne Ciddio

Vincent E. Griego, Councillor Dist. 2 Adelia W. Kearny, Asst. City Attorney File

GSR/bsj

CITY OF ALBUQUERQUE

ALBUQUERQUE, NEW MEXICO

HYDROLOGY SECTION

REF. NO.

INTER-OFFICE CORRESPONDENCE

October 26, 1987

TO:

Stuart Reeder, Civil Engineer, Hydro. Sec., PWD

FROM:

Adelia W. Kearny, Assistant City Attorney

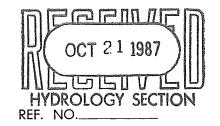
SUBJECT:

Sirloin Stockade Drainage Question

As we discussed on October 22, Fred Aguirre called me on October 6 to discuss the Sirloin Stockade situation and the fact that the City had issued a Certificate of Occupancy, but the agreed-upon drainage features had not been constructed according to the drainage plan. I researched the issue and back a result of called Fred on October 8. As conversation Fred agreed that Hydrology would check the facts in more detail and Hydrology would draft a letter requiring the owner to cause the work to be completed according to the plan. The letter would suggest to the owner that he may have recourse against the contractor, or the contractor's warranty bond, if necessary. The draft letter was to be submitted to me for review. I gather you have been assigned the job and will be sending me the draft soon.

Please call if you have any questions or if I can be of assistance.

AWK/mlg


cc: Fred Aguirre, Hydrologist, Hydro. Section, PWD Vincent E. Griego, Councillor, District 2 Mac deVesty, Assistant City Attorney

CITY OF ALBUQUERQUE

ALBUQUERQUE, NEW MEXICO

INTER-OFFICE CORRESPONDENCE

October 16, 1987

TO:

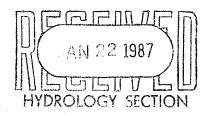
Fred Aguirre, Hydrologist, Public Works Department Vincent & Bree-

FROM:

Vincent E. Griego, Councillor, District 2

SUBJECT:

Drainage - 6225 4th St., N.W. - Sirloin Stockade


It is my understanding that the drainage associated with the remodeling of the Sirloin Stockade at the above location was never built as per the approved plans. A City inspector, however, provided final approval to the project and the restaurant was issued a certificate of occupancy. In the meantime, during the last heavy rainfall, runoff from the Sirloin Stockade caused a problem to the adjacent property, 6212 Sabre Ct., N.W., owned by Mr. Wayne Ciddio.

I am told that the Legal Department has been requested to provide advice on how the City should proceed since the owner of the restaurant has not been inclined to correct the problem. By copy of this correspondence, I would request the Legal Department to expedite their review of this matter. It is of the utmost importance that the drainage situation be corrected before any further damage results to Mr. Ciddio's property.

Please feel free to call on me if I can be of assistance.

VEG:bg 52

cc: James Foley, City Attorney Wayne Ciddio, 6212 Sabre Ct., N.W.

January 19, 1987

Mr. Fred Aguirre
Design Hydrologist
Engineering Division
Municipal Development Department
City of Albuquerque
P.O. Box 1293
Albuquerque, NM 87103

Dear Mr. Aguirre:

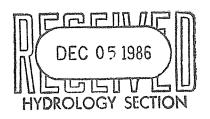
Two months have passed since Mr. Charles Monroe, III, owner of the Sirloin Stockade restaurants, wrote in a letter to you that he was looking into solving the drainage problem that has caused repeated flooding of my backyard at 6212 Sabre Court, N.W. Aside from a visit by two representatives of a surveying firm to my home several weeks ago, nothing further has been done to correct the problem.

Nevertheless, during the same two month time period since his last letter to you, Mr. Monroe has found the time and the resources to undertake an extensive remodeling and expansion of the Fourth Street restaurant. Did the city division charged with issuing Mr. Monroe the necessary building permits know that Mr. Monroe's current facility is in violation of the drainage code? I suspect not.

I would remind you that it has now been three months since the City became re-involved in this matter -- and more than two years since the City initially told me they couldn't help me -- and the problem remains unsolved.

I would appreciate hearing from you at your earliest convenience.

Sincerely,


Wayne W. Ciddio

6212 Sabre Court, N.W. Albuquerque, NM 87107

Ofc. Tel. 842-0220

Res. Tel. 345-3282

culad 18 por vine land

FAMILY STEAKHOUSES & RESTAURANTS

EXECUTIVE OFFICES
PHONE: (505) 884-0370

4501 BOGAN, N.E., SUITE A-1 ALBUQUERQUE, NEW MEXICO 87109

November 18,1986

Mr. Fred Aguirre City of Albuquerque Hydrology Section 123 Central Avenue Albuquerque, N.M. 87102

Re: Sirloin Stockade Restaurant 6225 4th Street, N.W.

Dear Mr. Aguirre,

I would like to confirm our conversation of Novemeber 14, and assure you that I will investigate the drainage situation at the above referenced location. I will have an engineering firm survey the lot and make a recommendation to me, hopefully based on the current ordinance, as the plan formed under the ordinance in effect in 1978 has apparently not been satisfactory in handling the off site flows, particularly to the West. As soon as I have a recommendation, I will get in touch with you, so that you and Mr. Duran and myself can get together to discuss same.

Please be assured that I am very interested in curing any problem at this site and am sure that we can form a plan that will accomplish our desired objectives.

Sincerely yours,

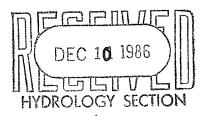
GRANTS

Charles L. Monroe III

CLM/mh

cc Mr. Richard Duran

Mr. Wayne Ciddio Mr. Chris Huston



D. MARK GOODWIN & ASSOC.

CONSULTING ENGINEERS

JOB	doin Stock	s de
	Drainage	
	•/	SHEET / OF /
BY		DATE 12/5/06
CHECKED		DATE

DISCUSSION

Owner proposes to construct an addition of approx. 500 S.F. to an existing 300 S.F. restourant. Proposed addition will not increase runoff since addition will occur into on existing paved area (see Grading Plan).

Site was initially constructed in 1972 reportedly whitzing a Grading & Orainage Plan prepared by Enchantment Engineering (City File E14/D4). Topographic Survey obtained 12/4/86 clearly indicates that the site improvements were not constructed in accordance with the approved plan. Therefore, the approved plan will not be analyzed.

currently, the existing site grading breaks
the site into 3 subdrainage areas. Oranage
areas 2 & 3 comprise approx 1/3 of the total
site area and do not contribute to any
problems we are aware of. Oranage area 1
comprising approx 2/3 of the site drains
to the northwest into a landscaping / Ponding
area that does not have a large
enough volume to control the stormwaters
that reaches it. The excess volume is
spilling over into a residential area
adjacent to the pond. This is the
problem we will rectify with this plan.

Method of analysis will stilled the lational tormula so as to remain consistent with the original plan.

dma	D. MARK GOODWIN & ASSOC.
	CONSULTING ENGINEERS

JOB Sim	oin Stock	de
SUBJECT	Drainage	
JOB NO		SHEET 2 OF 6
BY	100	DATE 12/7/86
CHECKED_		DATE

RUNDEF CALCULATIONS

IN addition to calculating runoff for O.A. Al, We will provide the flow rates for D.A. Z'E O.A. 3 for informational purposes. There are no offsite flows.

Total site Arca = 0.781 Ac.

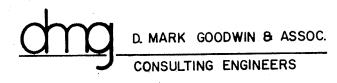
Area D.A. #1 = 0.541 Ac. (includes proposed addition)

Arca D. A. #2 = 0.21 Ac.

Arca D.A. #3 = 0.03 Ac.

P(100 4-64+) = 22 in.

TE = 10 min. (minimum value) for all 3 arcos


In= 4.65 in /hr. for all 3 Areas

Defermine Composite "C" Values :

Orainage Area 41: (includes proposed addition)

CA SURFACE . 472 148 PAVED Areas 0.95 Looks 0.90 .033 ,037 .008 Condscaped 0.25 .032 0.541

Composite "c" = .90

JOB	loin Stoc	kade
SUBJECT	Drainage	
JOB NO		SHEET 3 OF 6
BY	MG	DATE 12/7/86
CHECKED		DATE

ORAINAGE AREA # 2:

SURTACE	<u>C</u>	<u>A</u>	CA
Paved	0.95	0.129	. 123
ROSF	0.95	.037	- 033
Landscaped	0.25	,044	.011
		0.210	0.167

composite "C" = .80

paved parking area - Composite "C"= 0.95

Ochermine Pack Robe of Runoff & Volume

DEAMAGE AREA A 1:

Q=CTA = 0.90 (4.65)(0.541) = 23 c/s Vol. = COA = 0.90 (2.2)(.541)(12)(43,500) = 3900 CU. Ff.

DEAWAGE AREA AZ

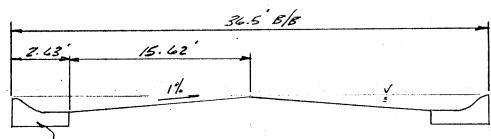
Q= 0.20 (4.65)(0.210) = 1 c/s Vol. = 0.20 (2.2)(0.210) (1) (43560) = 1350 cu. ff.

d	$ \uparrow $	77
<u> </u>	<u> </u>	<u> </u>

D. MARK GOODWIN & ASSOC.

CONSULTING ENGINEERS

JOB Sirlon	n Stock	ade
SUBJECT	Orainago	SHEET 4 OF 6 DATE 12/1/86
JOB NO		SHEET 4 OF 4
BY	MG	DATE
CHECKED		DATE


DEAMAGE AREA \$ 3:

Q= 0.95 (4.65)(0.03) = 0.1 cfs Vol. = 0.95(2.2)(0.03) (1) (43560) = 230 cu. ff.

This plan will not address the runoff from D.A. 2 & D.A. 3. We will resolve the problems associated with D.A. #1. The ideal solution will be to collect the runoff from D.A. #1 in the western landscaped area to be conveyed to Solar ld. to the south. In order for this scheme to work, Solar Rd. will have to have the Capacity to carry the additional floor.

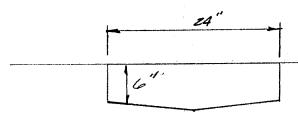
site is located 55' from high point in solar - site is at the top of contributory drainage area.

Defermine Capacity of Solar Ed. :

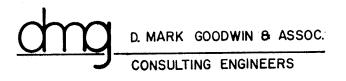
Curb Tipe

nlaspholt) = . 016 5(aug.) = 0.5%

D. MARK GOODWIN & ASSOC.


CONSULTING ENGINEERS

JOB SIM	in Stockso	le
	Drainage	
JOB NO	4	SHEET 5 OF 6
BY	MG	DATE 12/7/84
CHECKED		DATE


Sidein Stockade site contributes 1/4 of capacity of Solar Id yet comprises more than 1/2 of drainage area. Direct discharge certainly seems justified.

Method of discharge will have to be accomplished via modified sidewalk culverts. Colverts will be modified since they will terminate at mountable roll type curb. Proposed culvert(s) will be 612" deep

Ochermine Capacity of 1 colvert, 24" wide:

n= 0.015 (concrete) 5 (aug.) = 0.5 %

JOB Siri	oin Stock	esde
SUBJECT	Drainage	
JOB NO		SHEET 6 OF 6 DATE 12/7/86
BY	MG	DATE 12/7/86
CHECKED		DATE

Area = 0.5(2) + (0.042)(2) = 1.084 Sg. Ff.

$$WP^{2} = 3.002'$$

$$V = 1.486 \frac{1.084}{3.002} \frac{213}{3.002} (.005)^{1/2} = 3.55 fps$$

$$Q = 1.084(3.55) = 3.85 cfs$$

for design Q = 2.3 cfs need 1-24" sidewalk colvert

JOB Sirlain	Stockade
SUBJECT Dra	inage Kevisions
JOB NO	
BY	MG DATE 12/18/86
CHECKED	DATE

Octomine Capacity of Sidewalk Culvert

Culvert will act as a wier

Q = CLH^{3/2}

L = 2.0'

C = 2.95 from king

H = 0.5'

Q= 2.95(20)(0.5)3/2 = 2.1 cfs close to 2.3 o.k.

Volumes to be Calculated per modified SCS

HYDROGRAPH COMPUTATION WORKSHEET

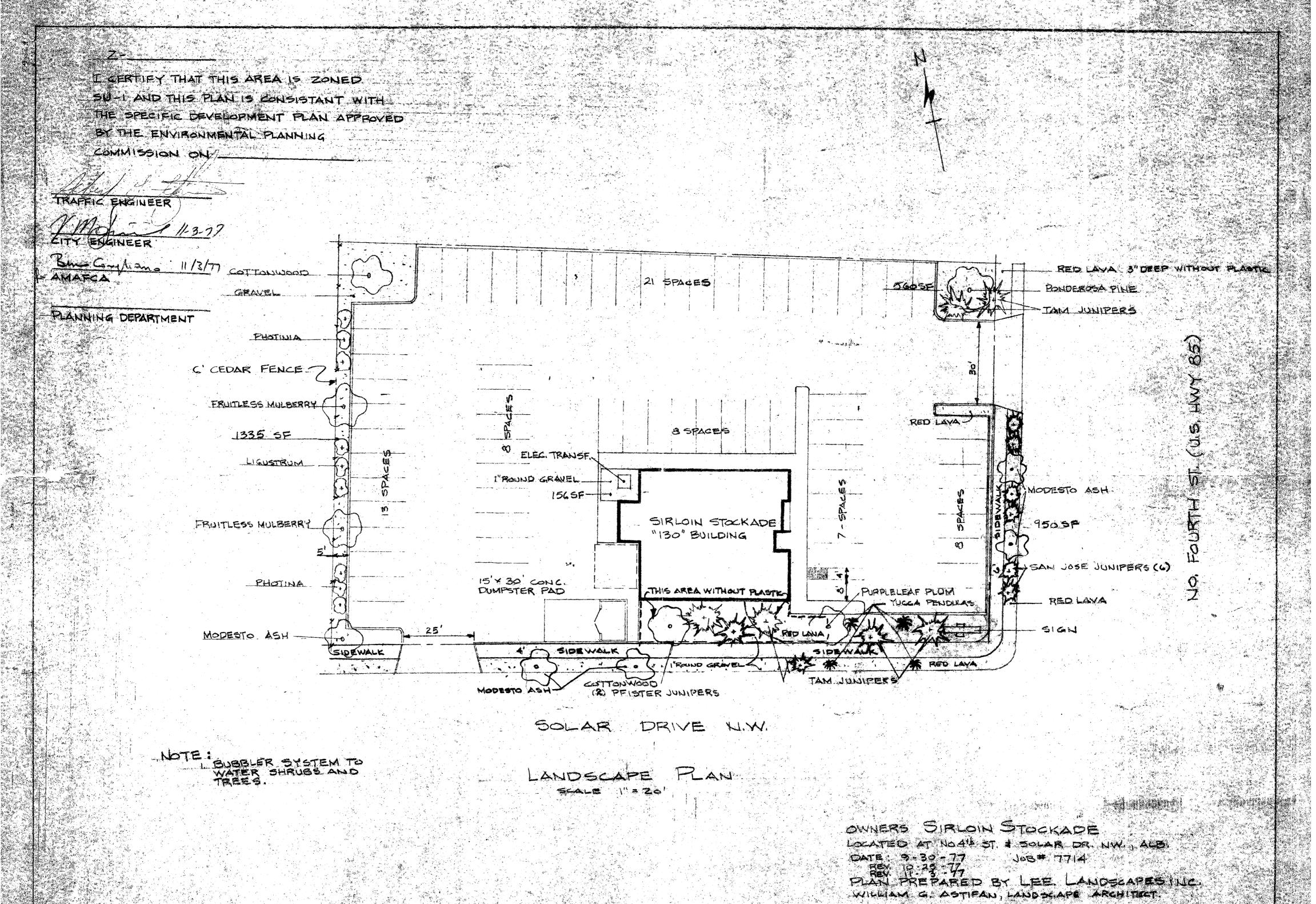
DATE 12/18/86
COMPUTED BY MG
CHECK BY

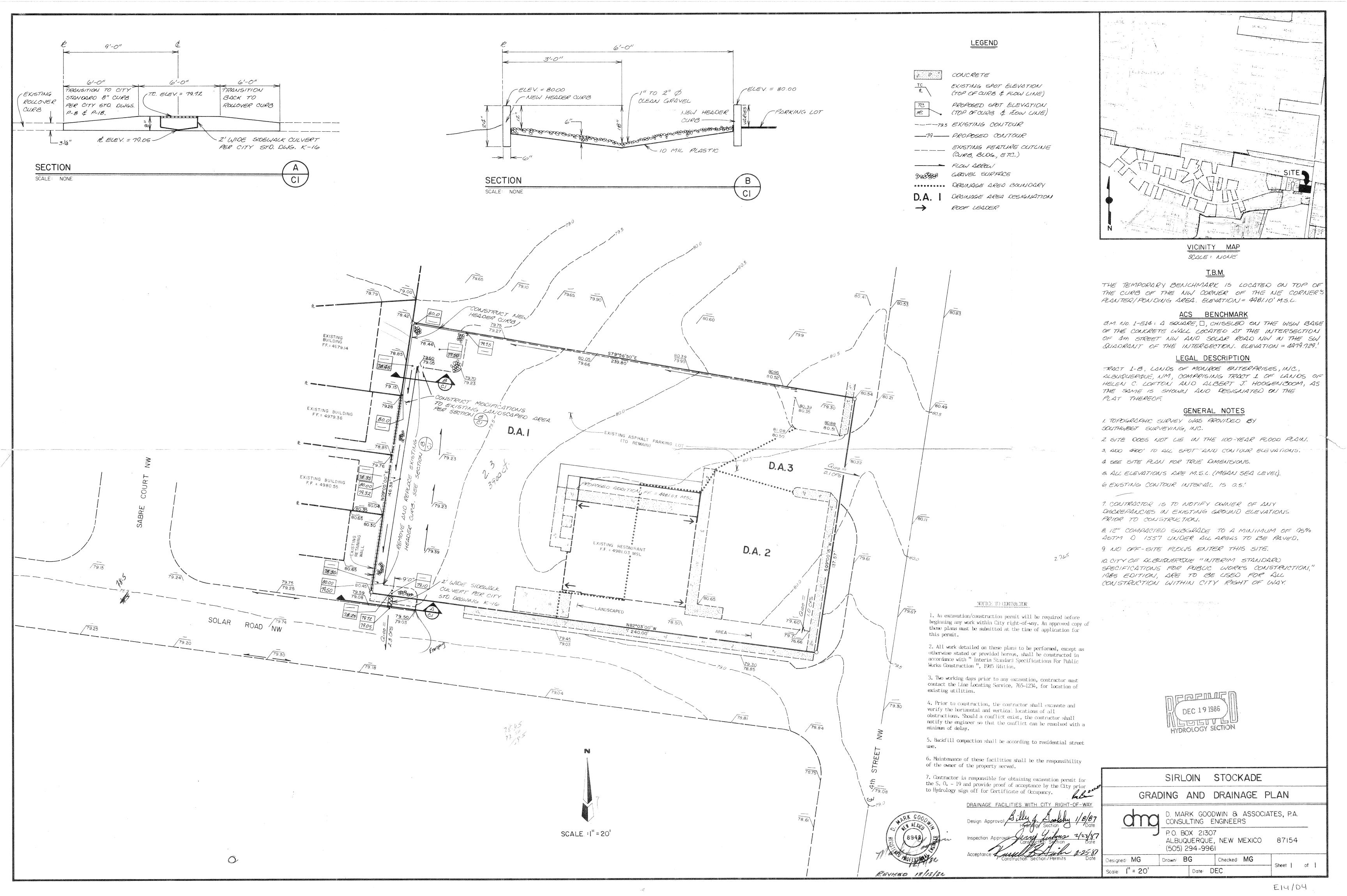
·					ŀ
PROJECT <u>Sirloin</u> Stockade.		(t/T _p)	t (min.)	У	Q (cfs)
LOCATION N 4th Street]	0	0	0	0
LUCATION	2	.1		.10	
ANALYSIS POINT #	<u>3</u> 4	.3		.190	
2 (1 /) 0055	5	.4		.310	
(DR. AREA) A = $0.54/$ ACRES	6	.5		.470	
T _C /O MIN	7	.6		.660	
IC	8	.7		.820	
POINT RAINFALL ZZ IN. FROM PLATE 22.2 D-1	9	.8		.930	
	10	.9		.990	
CN = 88 FROM PLATES 22.2 C-2, 22.2 C-3	11	1.0		1.00	
	12	1.1	ļ	.990	ļ
RUNOFF VOLUME R = 1.2 IN. FROM PLATE 22.2 C-4	13	1.2		.930	
Konori Vocone ii Zi		1.3		.860	
COMPUTED $T_n = 1/2$ MIN. $T_n = T_c$	15	1.4		.780	
COMPUTED $T_p = \frac{10 \text{ MIN.}}{\text{(Rounded to even minute)}}$	16	1.5		.680	
	17	1-1-9		.560 .460	
$q_p = \frac{45.4A}{I_p} = \frac{2.4}{CFS./INCH OF RUNOFF}$	18	1.7		.390	
4p - In	19	1.8		.330	
, P	20	1.9		.280	
$(R \times q_p) = Q_{peak} = 2.8$ CFS	21	2.0		.207	
	22	2.4		.147	-
$t(COLUMN)=(t/T_p)$ $t=T_p(t/T_p)$	23	2.6	_	107	
	24	2.8		.077	
	25			.055	
$y = Q Q = y(Q_{peak})$	26	3.0			
Qpeak	27	3.2		.040	
, peun	28	3.4			
	29	3.6		.021	
	30	3.8		.015	_
	31	4.0		.011	_
	32	4.5		.005	<u> </u>

Vol. = RA(1/2)(43560) = 2360 ff3

PROJECT <u>Sirloin</u> Stockade		(t/T _p)	t (min.)	У	Q (cfs)	,
	1	0	0	0	0	
LOCATION	2	.1		.03		-
ANALYSIS POINT #	3	.2		.10		1
	5	.3		.310]
(DR. AREA) $A = \frac{0.21}{\text{ACRES}}$	6	.5		.470		7
•	7	.6		.660		4
Tc MIN	8	.7		.820		┥
POINT RAINFALL Z.Z IN. FROM PLATE 22.2 D-1	9	.8		.930	 	٦
	10	.9		1.00	 	٦
CN = 84 FROM PLATES 22.2 C-2, 22.2 C-3	11	1.0		.990		
	12	1.2	-	.930		
RUNOFF VOLUME R = 0.9 IN. FROM PLATE 22.2 C-4	13	1:3		.860		
·	15	1.4		.780		4
COMPUTED $T_p = \frac{10 \text{ MIN.}}{\text{(Rounded to even minute)}}$	16	1.5		.680		4
(Konuded to each william)	17_	1.6		.560 .460		-
$q_p = \frac{45.4A}{I_p} = \frac{/}{CFS./INCH QF RUNOFF}$	18	11./		390	-	
q _p * 45.4A =	19	1.8	_	.330		-
· · · · · · · · · · · · · · · · · · ·	20	2.0		.280		
$(R \times q_p) = Q_{peak} = $ CFS	21	2.2		.207		
	22	2.4	_	.147		
$t(COLUMN)=(t/T_p)$ $t=T_p(t/T_p)$	23 24	2.6		.107		_
f(corount)(a) .h)h h.		$\frac{2.8}{2.8}$.077		
	25			.055		
$y = 0$ $0 = v(0_{neak})$	26	3.0		.040	_	
$y = \frac{Q}{Q_{peak}}$ $Q = y(Q_{peak})$	27	3.2		.029		
чреак	28			.021		
\mathbf{e}	29	3.6	_	.015		
	30	3.8		1:011		
	31	4.0		.005		
	コーマン	1 4 7	1	1.000	1 .	

Vol. = 0.9(0.21)(1/2)(43,560) = 690 ff 3


PLATE 22.2 F-1


HYDROGRAPH COMPUTATION WORKSHEET

DATE /	2/	13/86
COMPUTED	BY	MG
CHECK BY		

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$m{e}_{i}$, which is the state of the sta					
LOCATION $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	PROJECT Sirloin Stockade		(t/T _p)	t (min.)	y .	Q (cfs)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•]	0	0	1	0
ANALYSIS POINT # $\frac{3}{4}$.3 .190 (DR. AREA) A = $\frac{3}{4}$.3 .310 TC $\frac{1}{4}$.3 .310 TC $\frac{1}{4}$.3 .310 TC $\frac{1}{4}$.3 .310 TO $\frac{1}{4}$.3 .3 .100 TO $\frac{1}{4}$.3 .30 TO $\frac{1}{4}$.9 .990 TO $\frac{1}{4}$.1 .1 .1 .990 TO $\frac{1}{4}$.1 .1 .9 .990 TO $\frac{1}{4}$.1 .1 .9 .990	LOCATION					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3				1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ANALYSIS PUINT #			ļ		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(OR AREA) A = 0.03 ACRES		1	 		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	 	1	
POINT RAINFALL ZZ IN. FROM PLATE 22.2 D-1 Q .8 Q .990 Q .	T _C MIN	8	1.7			
$ \begin{array}{c} \text{CN} = \underline{\mbox{\mbox{$ 97$}}} \text{FROM PLATES } 22.2 \; \text{C-2}, \; 22.2 \; \text{C-3} \\ \text{RUNOFF VOLUME R} = \underline{\mbox{\mbox{$ /9$}}} \text{In. FROM PLATE } 22.2 \; \text{C-4} \\ \text{RUNOFF VOLUME R} = \underline{\mbox{\mbox{$ /9$}}} \text{In. FROM PLATE } 22.2 \; \text{C-4} \\ \text{Id. } 1.3 & 1.2 & .930 \\ \text{Id. } 1.3 & 1.2 & .930 \\ \text{Id. } 1.3 & .860 \\ \text{Id. } 1.5 & .680 \\ \text{Id. } 1$		9				
$\begin{array}{c} \text{CN} = \begin{array}{c} 97 \\ \text{FROM PLATES} \end{array} \begin{array}{c} 22.2 \text{ C-2}, \ 22.2 \text{ C-3} \\ \end{array} \begin{array}{c} 11 \\ 12 \\ 1.1 \\ \end{array} \begin{array}{c} 1.3 \\ 1.2 \\ \end{array} \begin{array}{c} 990 \\ \end{array} \end{array} \\ \end{array}$		10				
RUNOFF VOLUME R = $//9$ IN. FROM PLATE 22.2 C-4 13 1.2 930 14 1.3 .860 .860	CN - 97 FROM PLATES 22.2 C-2, 22.2 C-3					
RUNOFF VOLUME R = $\frac{1}{2}$ IN. FROM PLATE 22.2 L-4 I				-		
COMPUTED $T_p = 1000000000000000000000000000000000000$	RUNOFF VOLUME R = 1.9 IN. FROM PLATE 22.2 C-4	13				
COMPUTED $T_p = \frac{1}{R} MIN$. (Rounded to even minute) $\frac{16}{1.5} = \frac{1.5}{1.6} = $	T = T	15				
$\begin{array}{c} q_p = \frac{45.4A}{T_p} = \frac{2.7}{CFS./INCH\ OF\ RUNOFF} \\ \hline (R\ X\ Q_p) = Q_{peak} = \frac{2.2}{Q_{peak}} \ CFS \\ \hline t(COLUMN) = (t/T_p) & t = T_p(t/T_p) \\ \hline y = \frac{Q}{Q_{peak}} & Q = y(Q_{peak}) \\ \hline Q_{peak} & \frac{20}{22} & \frac{1.9}{2.2} & \frac{.330}{.24} \\ \hline 21 & 2.0 & .280 \\ \hline 22 & 2.2 & .207 \\ \hline 23 & 2.4 & .147 \\ \hline 24 & 2.6 & .107 \\ \hline 25 & 2.8 & .077 \\ \hline 26 & 3.0 & .055 \\ \hline 27 & 3.2 & .040 \\ \hline 29 & 3.6 & .021 \\ \hline 30 & 3.8 & .015 \\ \hline 31 & 4.0 & .011 \\ \hline 32 & 4.5 & .005 \\ \hline \end{array}$	COMPUTED Tp = /0 MIN. 1p - 'C		1.5			
$\begin{array}{c} q_{p} = \frac{45.4A}{T_{p}} = \frac{2.7}{CFS./INCH\ OF\ RUNOFF} \\ \hline (R\ X\ q_{p}) = Q_{peak} = \frac{2.2}{Q_{peak}} \\ \hline (COLUMN) = (t/T_{p}) \\ \hline (COLUMN) = (t/T_{p}) \\ \hline (COLUMN) = Q_{peak} \\ \hline (COLUMN) $	(Kounded to even minute)	17	1-1-9	_	1.480	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 45.4A = Ø. / CFS./INCH OF RUNOFF		1 1 8			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$q_p = \frac{1}{T_p}$					
$t(\text{COLUMN}) = (t/T_p) \qquad t = T_p(t/T_p) \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$t(\text{COLUMN}) = (t/T_p) \qquad t = T_p(t/T_p) \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(R \times q_p) = Q_{peak} = \frac{2.2}{1.2}$					
$y = Q Q = y(Q_{peak})$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$t = T_0(t/T_0)$					
y = Q Q = y(Qpeak) Qpeak Qpeak Q = y(Qpeak) 26	f(corount)=(c) ib)					
y = Q Q = y(Qpeak) Qpeak Q = y(Qpeak) 27				_		
Qpeak 28 3.4 .029 .021 .021 .015 .015 .011	$v = 0$ $Q = y(Q_{\text{neak}})$					
29 3.6 .021 30 3.8 .015 31 4.0 .011 32 4.5 .005	Qneak			_		
30 3.8 .015 31 4.0 .011 32 4.5 .005	·µoun				.021	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
1 32 1 4.3						
33 5.0 .000	•					
		33	5.0		000.	

Vol = 1.9(.03)(1/2)(45,560) = 210 ff5

