

February 10, 1998

Bryan J. Bobrick
C.L. Weiss
P.O. Box 97
Sandia Park, NM 87047

RE: G. BLAKE CHANSLOR ADDITION (E18-D51). GRADING AND DRAINAGE PLAN FOR BUILDING AND SO #19 PERMIT APPROVALS. ENGINEER'S STAMP DATED JANUARY 4, 1998.

Dear Mr. Bobrick:

Based on the information provided on your January 15, 1998 submittal, the above referenced project is approved for Building and SO #19 Permits.

Please attach a copy of this approved plan to the construction sets prior to sign-off by Hydrology. A separate permit is required for construction within the City right-of-way. A copy of this approval letter must be on hand when applying for the excavation permit.

Prior to Certificate of Occupancy approval, and Engineer's Certification will be required.

If I can be of further assistance, please feel free to contact me at 924-3984.

Sincerely,

Lisa Ann Manwill, P.E.

Hydrology

c: Arlene Portillo
Andrew Garcia

CALCULATIONS:

Calculations are based on the Drainage Design Criteria for City of Albuquerque, Section 22,2, DPM, Vol 2, dated Jan., 1993

ON-SITE

AREA OF SITE: Upper portion only 31554 SF 0.724Ac.

HISTORIC FLOWS:

DEVELOPED FLOWS:

EXCESS PRECIPITATION:

On-Site Historic	Land Condition

Area a	=	()	SF
Area b	=	31554	SF
Area c	=	()	SF
Area d	==	()	SF
Total Area	=	31554	SF

On-Site Developed Land Condition		
Area a	=	0
Area b		17046
Area c	=	0

Area b		17046
Area c	=	0
Area d	=	14508
Total Area	=	31554

Precip. Zone Ea = 0.53

Eb = 0.78

SF

SF

SF

SF

SF

Ec = 1.13Ed = 2.12

On-Site Weighted Excess Precipitation (100-Year, 6-Hour Storm)

Weighted E =

EaAa + EbAb + EcAc + EdAd

Aa + Ab + Ac + Ad

Historic E =	0.78 in.	Developed E	=	1.4() i	n.
On-Site Volume of Runoff: V3	60 = E*A / 1	2			
Historic V360 =	2051 CF	Developed V360	==	3671	CF
On-Site Peak Discharge Rate: 0	Qp = QpaAa + Qpb	Ab+QpcAc+QpdAd	/ 43,560		
For Precipitation Zone 2					
Qpa = 1.56		Opc	= 3.14		

≺1′ Qbb 2.28 4.70 Qpd

Historic Qp **CFS** 1.7 Developed Qp 2.5 CFS

FLOWS TO BE DIRECTED TO STORM DRAIN INLET

Area of sub-basin flows 11442 SF Precip. Zone 0.3Ac.

The following calculations are based on Treatment areas as shown in table to the right

Sub-basin Weighted Excess Precipitation (see formula above)

Weighted E =	1.23 in.
Sub-basin Volume of Runoff	(see formula above)
V36() =	1168 CF
Sub-basin Peak Discharge R	ate: (see formula abov
Qp =	0.8 cfs

TREATMENT		
A =	0%	
B =	67%	
C =	()%	
D =	33%	

to be routed to storm drain through back of existing inlet in San Antonio

SUMMARY The Historic Discharge Date 17 CEC

The Developed Discharge Rate	<u> </u>	2.5	CFS
The mistoric Discharge Rate	-	1./	C12

Difference to be routed to storm drain 0.8 CFS see calculations above

The flows to San Pedro Blvd. will not be increased. A storm drain inlet will be constructed as shown to capture all building roof flows and a portion of the surrounding site (see basin key).

6" dia storm drain to existing storm drain within San Antonio

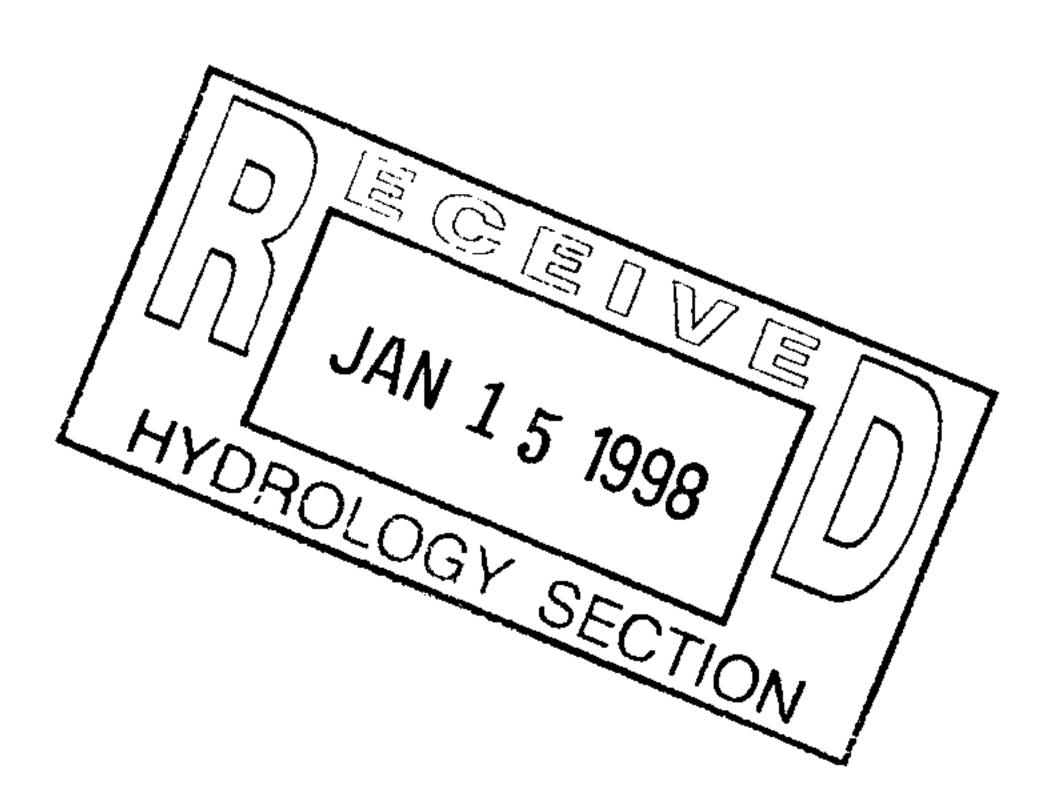
INPUT INFORMATION

This is a Round Culvert

Pipe diameter = 0.50 ft

Entrance Shape:

Sharp Flush


Culvert Length = 27.00 ft
Culvert Slope = 0.0200 ft/ft
Roughness Coef. = 0.0100
Orifice Coef. of Discharge = 0.700
Entry Loss Coef. 'Ke' = 0.500

Water Head above bottom of Culv. at entrance = 2.00 ft

Output:

Flow Capacity 'Q' = 1.36 cfs > 0.8 CFS RER'O OKI

Under Pressure

