CITY OF ALBUQUERQUE

Planning Department Alan Varela, Director

Mayor Timothy M. Keller

June 10, 2025

Mike Walla, P.E. Walla Engineering 6501 Americas Pwky NE, Suite 301 Albuquerque, NM 87110

RE: Harvey-Abruzzo Residence 9902 Masters Drive NE Grading & Drainage Plan Engineer's Stamp Date: 6/5/25 Hydrology File: E21D036 Case # HYDR-2025-00202

Dear Mr. Walla:

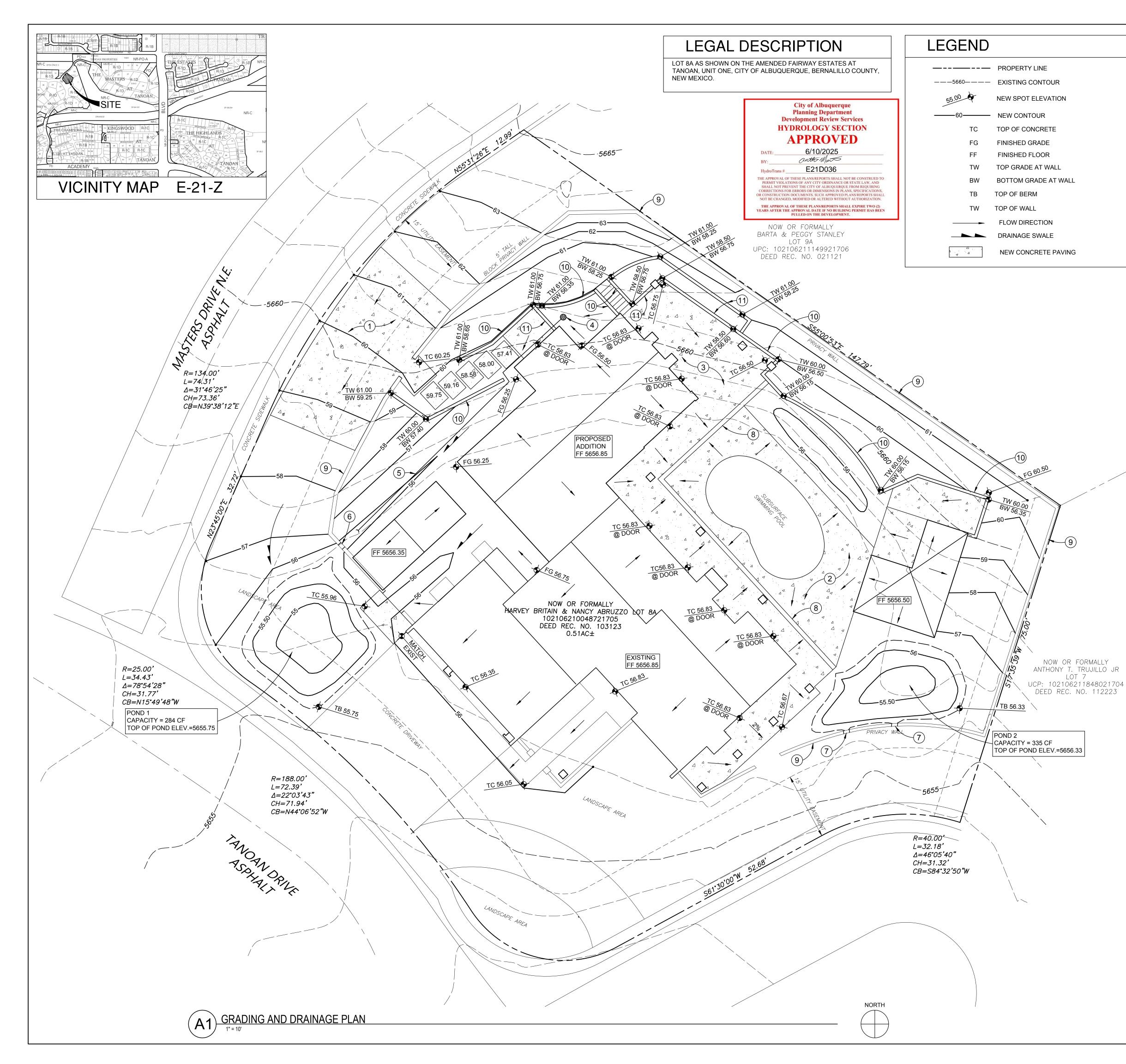
PO Box 1293 Based upon the information provided in your submittal received 06/05/2025, the Grading & Drainage Plan is approved for Building Permit and Grading Permit. Please attach a copy of this approved plan in the construction sets for Building Permit processing along with a copy of this letter.

Albuquerque **PRIOR TO CERTIFICATE OF OCCUPANCY:**

1. Engineer's Certification, per the DPM Part 6-14 (F): *Engineer's Certification Checklist For Non-Subdivision* is required.

As a reminder, if the project total area of disturbance (including the staging area and any work within the adjacent Right-of-Way) is 1 acre or more, then an Erosion and Sediment Control (ESC) Plan and Owner's certified Notice of Intent (NOI) is required to be submitted to the Stormwater Quality Engineer (Doug Hughes, PE, jhughes@cabq.gov, 505-924-3420) 14 days prior to any earth disturbance.

If you have any questions, please contact me at 505-924-3314 or amontoya@cabq.gov.


Sincerely,

NM 87103

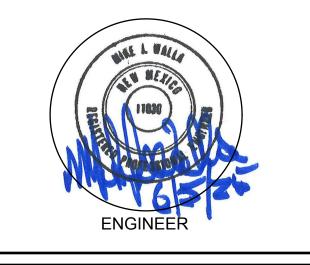
www.cabq.gov

anthe Mart

Anthony Montoya, Jr., P.E. CFM Senior Engineer, Hydrology Planning Department, Development Review Services

SHEET GENERAL NOTES

A PROVIDE SPLASH BLOCKS AT ALL ROOF DOWN SPOUTS AND DRAINS AT GRADE


SHEET KEYNOTES

- 1 NEW CONCRETE PARKING
- 2 NEW CONCRETE POOL DECK
- 3 NEW CONCRETE PATIO
- 4 NYLOPLAST AREA DRAIN WITH 4"Ø PVC OUTLET PIPE TOP OF GRATE ELEVATION = 56.25
- 5 4"Ø PVC DRAIN LINE DAYLIGHT AT GRADE
- 6 6"x16" DRAIN BLOCK IN WALL AT GRADE INVERT = 55.67 +/-
- 7 6"X16" DRAIN BLOCK IN WALL AT GRADE INVERT = 56.33
- 8 POOL DECK DRAIN
- 9 EXISTING CMU WALL TO REMAIN
- 10 NEW CONCRETE RETAINING WALL PER DETAIL A1/C-201
- 11 NEW CONCRETE RETAINING WALL PER DETAIL A2/C-201

500 Marquette Avenue NW • Suite 1500 Albuquerque • New Mexico • 87102 (505) 881-3008

CONTRACTOR

HARVEY-ABRUZZO RESIDENCE

9902 MASTERS DRIVE NE ALBUQUERQUE, NEW MEXICO 87111

MARK DATE REVISION -0125

PROJECT NO:	A65-0
CAD DWG FILE:	
DRAWN BY:	LEK
CHECKED BY:	MJW

SHEET TITLE

GRADING and DRAINAGE PLAN

Hydrology Calculations

9902 Masters Dr. NE – Site Area = 0.51 acres

Precipitation Zone Excess Precipitatio	-		ble 6.2.7 and Fi	gure 6.2.3	
Peak Discharge for	•		ble 6.2.14		
PRE-DEVELOPED C	ONDITIONS	– Entire Site			
Land Treatment	Area (ac)	Excess Preci	o. 'E" (in) Peak	Q (cfs/ac) Coe	efficient (
А	0.000	0.67	1.84	Ļ	0.37
В	0.382	0.86	2.49)	0.50
С	0.000	1.09	3.17	,	0.64
D	0.128	2.58	4.49)	0.91
Weighted E: [(0.38	2 x 0.86) + (0.128 x 2.58)]/	0.510 = 1.292 ir	1	
V360 = 1.292 x 0.51	0 x 43560/1	.2 = 2392 CF			
Total Qp = (0.382 x	(2.49) + (0. 2	128 x 4.49) = 1.	53 CFS		
POST-DEVELOPED					
Land Treatment	Area (ac)	Excess Preci	<u>o. 'E" (in) Peak</u>	Q (cfs/ac) Coe	efficient
А	0.000	0.67	1.84	Ļ	0.37
В	0.273	0.86	2.49)	0.50
С	0.000	1.09	3.17	,	0.64
	0.237	2.58			0.91
D		0 007 0 0011	'0 510 - 1 650 in		
Weighted E: [(0.27			0.510 - 1.055 1	1	
Weighted E: [(0.27 V360 = 1.659 x 0.51	0 x 43560/1	2 = 3072 CF		1	
Weighted E: [(0.27 V360 = 1.659 x 0.51	0 x 43560/1	2 = 3072 CF		1	
Weighted E: [(0.27 V360 = 1.659 x 0.51 Total Qp = (0.273 x	0 x 43560/1 < 2.49) + (0.2	2 = 3072 CF 237 x 4.49) = 1.	74 CFS		
Weighted E: [(0.27 V360 = 1.659 x 0.51 Total Qp = (0.273 x Rational Method C	0 x 43560/1 (2.49) + (0.2 Check: 12-m	2 = 3072 CF 237 x 4.49) = 1. inute Peak Inte	74 CFS nsity, I = 4.96 in	/hr	
Weighted E: [(0.27 V360 = 1.659 x 0.51 Total Qp = (0.273 x Rational Method C	0 x 43560/1 (2.49) + (0.2 Check: 12-m	2 = 3072 CF 237 x 4.49) = 1. inute Peak Inte	74 CFS nsity, I = 4.96 in	/hr	
Weighted E: [(0.27 V360 = 1.659 x 0.51 Total Qp = (0.273 x Rational Method C Q = CIA = (0.50 x 4	0 x 43560/1 < 2.49) + (0.2 Check: 12-m I.96 x 0.273	2 = 3072 CF 237 x 4.49) = 1. inute Peak Inte) + (0.91 x 4.96	74 CFS nsity, I = 4.96 in	/hr	
Weighted E: [(0.27 V ₃₆₀ = 1.659 x 0.51 Total Qp = (0.273 x Rational Method C Q = CIA = (0.50 x 4 Storm Water Quali	0 x 43560/1 < 2.49) + (0.2 heck: 12-m I.96 x 0.273 ity Volume,	2 = 3072 CF 237 x 4.49) = 1. inute Peak Inte) + (0.91 x 4.96	74 CFS nsity, I = 4.96 in	/hr	
Weighted E: $[(0.27) V_{360} = 1.659 \times 0.51)$ Total Qp = (0.273×0.51) Rational Method C Q = CIA = (0.50×4) Storm Water Quali Impervious Area =	0 x 43560/1 < 2.49) + (0.7 Check: 12-m I.96 x 0.273 ity Volume, 0.237 ac	2 = 3072 CF 237 x 4.49) = 1. inute Peak Inte) + (0.91 x 4.96 (SWQV)	74 CFS insity, I = 4.96 in 5 x 0.237) = 1.75	/hr	
Weighted E: $[(0.27)$ V ₃₆₀ = 1.659 x 0.51 Total Qp = $(0.273 \times$ Rational Method C Q = CIA = (0.50×4) Storm Water Quali Impervious Area =	0 x 43560/1 < 2.49) + (0.7 Check: 12-m I.96 x 0.273 ity Volume, 0.237 ac	2 = 3072 CF 237 x 4.49) = 1. inute Peak Inte) + (0.91 x 4.96 (SWQV)	74 CFS insity, I = 4.96 in 5 x 0.237) = 1.75	/hr	
Weighted E: [(0.27 V ₃₆₀ = 1.659 x 0.51 Total Qp = (0.273 x Rational Method C Q = CIA = (0.50 x 4 Storm Water Quali Impervious Area = BMP Volume Requ	0 x 43560/1 < 2.49) + (0.2 Check: 12-m 1.96 x 0.273 ity Volume, 0.237 ac iired: 0.26"	2 = 3072 CF 237 x 4.49) = 1. inute Peak Inte) + (0.91 x 4.96 (SWQV)	74 CFS insity, I = 4.96 in 5 x 0.237) = 1.75	/hr	
Weighted E: [(0.27 V ₃₆₀ = 1.659 x 0.51 Total Qp = (0.273 x Rational Method C Q = CIA = (0.50 x 4 Storm Water Quali Impervious Area = BMP Volume Requ	0 x 43560/1 < 2.49) + (0.2 Check: 12-m 1.96 x 0.273 ity Volume, 0.237 ac iired: 0.26"	2 = 3072 CF 237 x 4.49) = 1. inute Peak Inte) + (0.91 x 4.96 (SWQV) x 0.237 x 43560	74 CFS insity, I = 4.96 in 5 x 0.237) = 1.75 D/12 = 224 CF	/hr CFS OK	
Weighted E: [(0.27 V ₃₆₀ = 1.659 x 0.51 Total Qp = (0.273 x Rational Method C Q = CIA = (0.50 x 4 Storm Water Quali Impervious Area = BMP Volume Requ	0 x 43560/1 < 2.49) + (0.2 Check: 12-m 1.96 x 0.273 ity Volume, 0.237 ac iired: 0.26"	2 = 3072 CF 237 x 4.49) = 1. inute Peak Inte) + (0.91 x 4.96 (SWQV) x 0.237 x 43560 <u>Contour</u>	74 CFS insity, I = 4.96 in 5 x 0.237) = 1.75 D/12 = 224 CF Area	/hr CFS OK	
Weighted E: $[(0.27) V_{360} = 1.659 \times 0.51)$ Total Qp = (0.273×0.51) Rational Method C Q = CIA = (0.50×4) Storm Water Quali Impervious Area = BMP Volume Requ	0 x 43560/1 < 2.49) + (0.2 Check: 12-m 1.96 x 0.273 ity Volume, 0.237 ac iired: 0.26"	2 = 3072 CF 237 x 4.49) = 1. inute Peak Inte) + (0.91 x 4.96 (SWQV) x 0.237 x 43560 <u>Contour</u> 55.75	74 CFS ensity, I = 4.96 in 5 x 0.237) = 1.75 D/12 = 224 CF <u>Area</u> 621 SF	/hr CFS OK Volume	
Weighted E: $[(0.27) V_{360} = 1.659 \times 0.51)$ Total Qp = (0.273×0.51) Rational Method C Q = CIA = (0.50×4) Storm Water Quali Impervious Area = BMP Volume Requ	0 x 43560/1 < 2.49) + (0.2 Check: 12-m 1.96 x 0.273 ity Volume, 0.237 ac iired: 0.26"	$2 = 3072 \text{ CF}$ $237 \times 4.49) = 1.$ inute Peak Intervention (SWQV) $x 0.237 \times 43560$ $\frac{\text{Contour}}{55.75}$ 55.50	74 CFS ensity, I = 4.96 in 5 x 0.237) = 1.75 D/12 = 224 CF <u>Area</u> 621 SF 440 SF	/hr CFS OK Volume 132 CF 152 CF	
Weighted E: [(0.27 V360 = 1.659 x 0.51 Total Qp = (0.273 x	0 x 43560/1 < 2.49) + (0.2 Check: 12-m 1.96 x 0.273 ity Volume, 0.237 ac iired: 0.26"	$2 = 3072 \text{ CF}$ $237 \times 4.49) = 1.$ inute Peak Intervention (SWQV) $x 0.237 \times 43560$ $\frac{\text{Contour}}{55.75}$ 55.50	74 CFS ensity, I = 4.96 in 5 x 0.237) = 1.75 0/12 = 224 CF <u>Area</u> 621 SF 440 SF 168 SF	/hr CFS OK Volume 132 CF 152 CF	
Weighted E: $[(0.27) V_{360} = 1.659 \times 0.51)$ Total Qp = (0.273×0.51) Rational Method C Q = CIA = (0.50×4) Storm Water Quali Impervious Area = BMP Volume Requ	0 x 43560/1 < 2.49) + (0.2 Check: 12-m I.96 x 0.273 ity Volume, 0.237 ac iired: 0.26" LUME:	$2 = 3072 \text{ CF}$ $237 \times 4.49) = 1.$ inute Peak Intervention (SWQV) $x 0.237 \times 43560$ $\frac{\text{Contour}}{55.75}$ 55.50	74 CFS ensity, I = 4.96 in 5 x 0.237) = 1.75 0/12 = 224 CF <u>Area</u> 621 SF 440 SF 168 SF	/hr CFS OK Volume 132 CF 152 CF	
Weighted E: [(0.27 V ₃₆₀ = 1.659 x 0.51 Total Qp = (0.273 x Rational Method C Q = CIA = (0.50 x 4 Storm Water Quali Impervious Area = BMP Volume Requ SWQV POND 1 VO	0 x 43560/1 < 2.49) + (0.2 Check: 12-m I.96 x 0.273 ity Volume, 0.237 ac iired: 0.26" LUME:	$2 = 3072 \text{ CF}$ $237 \times 4.49) = 1.$ inute Peak Inter $+ (0.91 \times 4.96)$ (SWQV) $\times 0.237 \times 43560$ $\frac{\text{Contour}}{55.75}$ 55.50 55.00	74 CFS ensity, I = 4.96 in 5 x 0.237) = 1.75 0/12 = 224 CF <u>Area</u> 621 SF 440 SF 168 SF SUB TOTA	/hr CFS OK <u>Volume</u> 132 CF <u>152 CF</u> L 284 CF	

 119 SF
 150 CF

 SUB TOTAL
 335 CF

119 SF

55.50

SWQV Total: 284 CF + 335 CF = 619 CF > 224 CF OK

C-101