cHECk-RAS Report

HEC-RAS Project: Plan File: Geometry File: Flow File: Report Date: pinoarroyobox.prj pinoarroyobox.p29 pinoarroyobox.g07 pinoarroyobox.f01 6/30/2015

Message ID	Message	Cross sections affected	Comments
NT TL 02	Contraction and expansion loss coefficients are \$cc\$ and \$ce\$, respectively. However, this cross section is not at a hydraulic structure. They should be equal to 0.1 and 0.3 according to page 5-8 of the HEC-RAS Hydraulic Reference Manual (HEC, 2010).	1168.85; 1237.93; 1239.93; 1251.03; 1310.72; 1370.42; 1426.03; 1481.63; 1500; 1550; 1629.49; 1700; 1729.49; 1750; 1763.38; 1765.9; 1770.07; 1807.37; 1828.98; 1850; 1854.79; 1858.11; 1887.96; 1899.08; 1942.35; 1960.26; 1960.84; 1980; 2162; 2183.05; 2183.63; 2200	
XS DT 02L	The Left overbank distance of \$lob\$ is greater than the channel distance of \$chl\$ by more than two times. The Left overbank distance may be in error. Please review the creation of left overbank, channel and right overbank distances. The HEC-RAS geometry file may need to be recreated using a GIS program. Please resolve the differences between the distances.	1239.93; 2350	
XS DT 02R	The Right overbank distance of \$rob\$ is greater than the channel distance of \$chl\$ by more than two times. The Right overbank distance may be in error. Please review the creation of left overbank, channel and right overbank distances. The HEC-RAS geometry file may need to be recreated using a GIS program. Please resolve the differences between the distances.	1239.93; 2200	
XS FR 02	The profile is computed as mixed flow regime. It is acceptable if part of the stream is an engineered channel. For Flood Insurance Studies a subcritical flow regime should be selected, for natural streams. Supercritical flow regime should be selected if the entire stream is an engineered channel. The flow regime should be changed appropriately or justify the selection of mixed flow regime.		
XS GD 01	'Cross Section Lid' option is used for this section. Instead, the bridge or culvert option should be used. Cross Section Lid option may be used to model small obstructions, such as, pipe crossing or if the type of flow through the lid sections and the main stream is in super critical flow, or if there is lateral weir flow between Sections 3 and 2 of a structure.	1239.93; 1251.03; 1310.72; 1370.42; 1426.03; 1481.63; 1500; 1550; 1629.49; 1700; 1729.49; 1960.84; 1980; 2162; 2183.05	