CITY OF ALBUQUE ROUE PLANNING DEPARTMENT – Development Review Services

Richard J. Berry, Mayor

January 20, 2015

Brian Patterson, PE
Yolanda Padilla Moyer, PE
BOHANNAN-HUSTON, INC.
7500 Jefferson Street NE Courtyard I
Albuquerque, NM 87109

RE: Sevilla @ Andalucia - (File: F11D015C) Drainage Management Plan, Engineer's Stamp Date 1-19-2015 Grading and Drainage Plans, Engineer's Stamp Date 1-19-2015

Dear Mr. Patterson, Ms. Moyer:

Based upon the information provided in your submittals received 1-20-14, the above referenced submittals are approved for Preliminary Plat, Site Plan for Subdivision, and Site Plan for Building Permit action by the DRB with the following condition:

1. Open space tract *m* Basin D-1 should drain to cul-de-sac at far south end via turned blocks or other means.

PO Box 1293

The Grading and Drainage Plans cannot be approved for Grading Permit until DRB approval. A separate letter will be written with any exception or comment after DRB approval.

Albuquerque

www.cabq.gov

If you have any questions, you can contact me at 924-3695.

New Mexico 87103

Sincerely,

Rita Harmon, P.E. Senior Engineer, Planning Dept. Development Review Services

Orig: Drainage file c.pdf Addressee via Email, Monica Ortiz

City of Albuquerque

Planning Department

Development & Building Services Division

DRAINAGE AND TRANSPORTATION INFORMATION SHEET

(REV 02/2013)

Project Title:	Building Permit #:	City Drainage #:
DRB#: EPC#:		Work Order#:
Legal Description:		
City Address:		
Engineering Firm:		Contact:
Address:		
Phone#: Fax#:		E-mail:
Owner:		Contact:
Address:		
Phone#: Fax#:		E-mail:
Architect:		Contact:
Address:		
Phone#: Fax#:		E-mail:
Surveyor:		Contact:
Address:		
Phone#: Fax#:		E-mail:
Contractor:		Contact:
Address:		
Phone#: Fax#:		E-mail:
TYPE OF SUBMITTAL:	CHECK TYPE OF APPROV	AL/ACCEPTANCE SOUGHT:
DRAINAGE REPORT	SIA/FINANCIAL GUARAN	TEE RELEASE
DRAINAGE PLAN 1st SUBMITTAL	PRELIMINARY PLAT APPI	ROVAL
DRAINAGE PLAN RESUBMITTAL	S. DEV. PLAN FOR SUB'D	APPROVAL
CONCEPTUAL G & D PLAN	S. DEV. FOR BLDG. PERMI	IT APPROVAL
GRADING PLAN	SECTOR PLAN APPROVAL	_
EROSION & SEDIMENT CONTROL PLAN (ESC)	FINAL PLAT APPROVAL	
ENGINEER'S CERT (HYDROLOGY)	CERTIFICATE OF OCCUPA	ANCY (PERM)
CLOMR/LOMR	CERTIFICATE OF OCCUPA	ANCY (TCL TEMP)
TRAFFIC CIRCULATION LAYOUT (TCL)	FOUNDATION PERMIT AP	PROVAL
ENGINEER'S CERT (TCL)	BUILDING PERMIT APPRO	DVAL
ENGINEER'S CERT (DRB SITE PLAN)	GRADING PERMIT APPRO	VAL SO-19 APPROVAL
ENGINEER'S CERT (ESC)	PAVING PERMIT APPROV	AL ESC PERMIT APPROVAL
SO-19	WORK ORDER APPROVAL	ESC CERT. ACCEPTANCE
OTHER (SPECIFY)	GRADING CERTIFICATION	N OTHER (SPECIFY)
WAS A PRE-DESIGN CONFERENCE ATTENDED:	Yes No Co	ppy Provided
DATE SUBMITTED:	By:	

Requests for approvals of Site Development Plans and/or Subdivision Plats shall be accompanied by a drainage submittal. The particular nature, location, and scope to the proposed development defines the degree of drainage detail. One or more of the following levels of submittal may be required based on the following

1. Conceptual Grading and Drainage Plan: Required for approval of Site Development Plans greater than five (5) acres and Sector Plans

2. Drainage Plans: Required for building permits, grading permits, paving permits and site plans less than five (5) acres

3. **Drainage Report**: Required for subdivision containing more than ten (10) lots or constituting five (5) acres or more

4. Erosion and Sediment Control Plan: Required for any new development and redevelopment site with 1-acre or more of land disturbing area, including project less than 1-acre than are part of a larger common plan of development

Bohannan 🔔 Huston

January 15, 2015

Courtyard I 7500 Jefferson St. NE Albuquerque, NM 87109-4335

www.bhinc.com

Engineering 🔺

Spatial Data 🔺

Advanced Technologies A

Voice: 505.823.1000 facsimile: 505.798.7988 toll free: 800.877.5332

Ms. Rita Harmon, P.E. City of Albuquerque Planning Department 600 2nd Street NW Albuquerque, NM 87103

Re: Response to Comments Drainage Master Plan for Sevilla @ Andalucia

Dear Ms. Harmon:

Based on the letter we received from you dated January 13, 2015 and the email dated January 14, 2015 which provided comments for the Drainage Management Plan for Sevilla @ Andalucia, below are our responses to each of your comments and how they have been addressed.

Letter dated January 13, 2015:

- 1. Address the first flush.
 - Done. As stated in the report, the required retention of 5771 CF could not be accomplished due to the site restraints. As shown in the report, we maximized all available areas are able to retain a volume of 2311 CF. As stated on the latest EPA MS4 Permit on sheet 10, "Where both the 90thpercentile storm event capture requirement and flood control requirements on site cannon be met due to site conditions, the 90th percentile storm event capture requirements may be met through a combination of onsite and offsite controls". The existing AMAFCA water harvesting facility just downstream of our site on the San Antonio Arroyo provides an additional water quality feature and thus meets the intent of the MS4 permit.
- 2. Address offsite flows in the report. Do any flows from Coors enter Sevilla Ave.?
 - There are no offsite flows that enter the site. This has been addressed in the report.
- 3. Grading plan does not show the existing elevations of Sevilla Ave. It seems to show historic contours. Show existing contours and flowline of Sevilla Ave. Is there a water block from Coors into Sevilla Ave?
 - Yes, there is a water block just east of Coors on Sevilla. The grading plan has been revised to with additional spots confirming the water block.
- According to report, portions of Existing Basin 1 are conveyed to separate low points. Therefore, Existing Basin 1 should be divided accordingly to reflect this.
 - · Yes, as indicated in Appendix B, the flows are divided equally to each low point.
- Note in the report what portion the Q₁₀₀ flowrate of Existing Basin 1 contributes to each of the separate lowpoints. Please verify that each portion adds up to the total Q₁₀₀ for that basin as there seems to be a 0.4 cfs discrepancy
 - Done.

P/20150130\CDP\Reports\Sevilla @ Andalucia DMP, RHarmon Comments Response, 1-15-15.docx

- 6. Adjust basin boundaries so that water blocks in Calle Espana coincide with basin boundaries.
 - The water blocks in Calle Espana near Sevilla Ave are not true water blocks. There are highpoints located at these locations but during the 100 year storm event, water from Sevilla (Ex. Basin 1) spills over the highpoint where it ultimately collected by the inlets in the sump conditions.
- 7. Show an existing basin east of Existing Basin 1? Report and calculations should show that the 36" existing Storm drain has the capacity to convey the developed flows to its discharge location. What offsite basins contribute to flows in the existing 36" Storm Drain?
 - Previous DMP excepts have been included in the report with this information.
- 8. The contours, elevations and line work showing Coors Blvd, the curb and gutter are unclear.
 - Grading Plan has been revised to more clear show Coors Blvd Line Work. Flowline elevations have also been shown for reference
- 9. Do flows on East side of Coors (in meandering sidewalk area) drain to this site? Particularly north of Sevilla Ave? The developed basin map shows flow arrows pointing west, but the contours do not support this. There seems to be some ponding in this area. Where is the R.O.W.? Where is the property line? How does this area drain?
 - Area west of the wall in Coors Blvd drains towards Coors Blvd. Basin Map and Grading Plan have been updated to show this. ROW has been labeled on Grading Plan.
- 10. Is the Retaining wall along Coors existing or proposed? Are both walls shown retaining walls? Site Plan for Subdivision suggests that the wall closer to wall is a decorative wall.
 - The wall along Coors Blvd south of Sevilla is existing and has a 4' retaining wall built into the wall, where the development site is lower than Coors. On the north side of Sevilla, a portion of the wall is built for approximately 150' to the north and also has a 4' retaining wall built into it similar to the south side. The wall is proposed to continue from the existing terminus of the wall to the north property boundary. Grading Plan notes have been added to reflect this.
- 11. How do Open space tracts drain? Particularly the larger ones such as Basins D-1 and H?
 - They both are conveyed east to the adjacent streets by a swale located just north of the proposed retaining walls.
- 12. Show proposed contours.
 - Grading Plan has been revised to reflect this.
- 13. Show top and bottom of wall elevations on Retaining walls on Grading Plan.
 - Grading Plan has been revised to reflect this.
- 14. Legend shows existing storm drain system with hatched pattern, but is actually faded on plan.
 - This has been updated.
- 15. Please provide documentation which indicates which developed basins are allowed to free discharge into the San Antonio Arroyo.
 - AMAFCA will also be reviewing and approving this report, thus concurring the statement of free discharge into the San Antonio Arroyo which is an AMAFCA facility.

- 16. Is there a Master Drainage Plan for this area? If so, please provide relevant excerpts.
 - The report references the Drainage Report for Andalucia at La Luz Phase 1 and excerpts are provided.
- 17. AMAFCA approval is required. The earth lined swales to discharge to San Antonio Arroyo may need an easement. , as well as discharge from any "Turned blocks".
 - We have been in constant contact with AMAFCA on this issue. It is our understanding that and agreement will need to take place for this drainage and maintenance.
- Show on the Grading Plan the earth lined swales that Basins B and F and K drain to as indicated in the report.
 - Grading Plan has been revised to reflect this.
- 19. Indicate location and opening area of "Turned blocks" on the grading plan.
 - Grading Plan has been revised to reflect this.
- 20. Clearly show AMAFCA Floodway and easements as well as the boundary of the SFHA A flood zone.
 - Preliminary Plat is enclosed which shows the AMAFCA Easement. A FEMA Map has also been included in the appendix of the Drainage Report for information.
- 21. Show slopes of roadway on Grading.
 - Grading Plan has been revised to reflect this.
- 22. Provide Road cross sections. .
 - Grading Plan has been revised to reflect this.
- 23. Indicate on the Grading plan where standard curb and mountable curb will be used.
 - Note has been added to the grading plan that all curb and gutter is Standard.
- 24. Sump in north side (Tract B-2) shows 2 inlets on the Storm Drain Network map, but only 1 inlet on the Grading Plan. The report states that a double grate inlet will be used, but is not indicted elsewhere. Further, the Calculations state that the required capacity is 26.8 cfs, but the Allowable Capacity is for one inlet is 14.5 cfs. Similar comment is for the sump inlet in the south side (Tract A-1-A).
 - The grading plan has been updated to shows 2 inlets. The total flow at inlets 1 and 2 is 20.9 cfs and due to there not emergency spill way present, these inlets have been sized to capture two times the 100-year storm event. See Appendix B for additional analysis.
- 25. At sump in north side (Tract B-2), flowline elevations indicate that the road is super elevated. Provide street capacity calculations showing the super elevated street has capacity.
 - The analysis provided in Appendix B is for a super elevated roadway.
- 26. For the storm drain analysis, provide a graphic representation showing the storm drain, the grade, the HGL and the pipe ID's used in the InRoads program.
 - Plan and profile sheets have been included in the report with the above information.

P/20150130/CDP/Reports/Sevilla @ Andalucia DMP, Rillarmon Comments Response, 1-15-15.docx

Email dated January 14, 2015:

1. Show the Table in Appendix A on the Developed Basin Map

Done

- 2. There is a typo on page 1 of report stating site is 38 Acres.
 - Sheet 1 has been revised.
- 3. How do lots 29, 30, 31 drain? Turned blocks on back side of lot? Are drive pads on west side of lots?
 - These lots drain back through turn blocks. These turn blocks are referenced on the grading plan. These lots front and access from Calle Parasol.
- 4. A short retaining wall is needed between lots 39 & 40
 - Lot 40 has been revised and no retaining wall is needed
- 5. Lot 40 seems to be in Basin F
 - Lot 40 has been revised and drains though the front yard and is within Basin E.
- 6. Are the contours between Berm St. and the retaining wall existing contours or historic? Show some spot elevations along Berm St. Is there a curb along Berm St?
 - Existing elevations are provided at the property line adjacent to Berm St. There
 retaining walls are proposed. There are currently now walls along the La Luz
 Subdivision. Elevations that we have are shown. There is no curb and gutter along
 Berm St only edge of pavement.
- There is a 10' difference in elevation between the retaining wall and Sevilla Ave. on South side of Sevilla, near the Arroyo.
 - Grading Plan has been revised to correct this.
- 8. In regards to comment 24 in the letter: I see that the capacity for 1 inlet is 26.11 as opposed to 14.47cfs as stated. However, the calculation for the head is based on there being 2 inlets capturing the flow rather than one. The depth is 0.58' so the capacity is about 20.5 cfs, still less than the required 26.8 cfs for the North Basin. This same comment applies to the South Basin (basin South of Sevilla Ave).
 - The head for each inlet (100 year event) is approximately 0.37'. As indicated in the report as well as in Appendix B, since there is not an emergency spillway present, 2 x 100 year event is required for these inlets. With this stated, the head for the 2 x 100 year event is approximately 0.57'.
- 9. In regards to comment 25: I see that the street capacity calculation does take into account the superelevation; however, it is assuming to separate inlets in both the North and South basins.
 - The analysis provides the depths for both sides of the inlet in sump as well as the required head to for the total flow at the inlet. The head for each inlet (100 year event) is approximately 0.36'. As indicated in the report as well as in Appendix B, since there is not an emergency spillway present, 2 x 100 year event is required for these inlets. With this stated, the head for the 2 x 100 year event is approximately 0.57'.

10. I will wait till I get the other comments addressed before I review the SD analysis in more depth.
 Noted.

The Drainage Management Plan for Sevilla @ Andalucia 1 is attached. Please feel free to contact me at 823-1000 with questions or comments.

Sincerely, 0

Brian C. Patterson, P.E. Project Engineer Community Development and Planning

BCP/ Enclosures

cc: Yolanda Moyer, BHI

P\20150130\CDP\Reports\Sevilla @ Andalucla DMP, RHarmon Comments Response, 1-15-15.docx

Bohannan 🛦 Huston

January 19, 2015

Courtyard I 7500 Jefferson St. NE Albuquerque, NM 87109-4335

www.bhinc.com

voice: 505.823.1000 facsimile: 505.798.7988 toll free: 800.877.5332

Ms. Rita Harmon, P.E. City of Albuquerque Planning Department 600 2nd Street NW Albuquerque, NM 87103

Re: Response to Comments Drainage Master Plan for Sevilla @ Andalucia

Dear Ms. Harmon:

This letter is in response to our meeting with you on January 16, 2015 for the Drainage Management Plan for Sevilla @ Andalucia. In reviewing our responses with you, additional information or clarifications were needed to satisfy your comments, see below as well as the revised Grading and Drainage Report for this information.

- 1. COA Hydrology suggested that to utilize the front yards for potential water harvesting areas. It was suggested to add a 6" deep ponding area between the back of curb and sidewalk.
 - The Grading Plan and Drainage report have been revised to incorporate this. A small pond at each lot has a capacity to retain 42 CF. With the ponding areas located in the front and rear yards as indicated in Appendix E. With the front and back yard ponding areas, Pond 2 and Pond 3, a retention volume of 4396 CF is available onsite. Although this subdivision does not meet the full retention volume requirements, this site does maximize all available areas of pond and this meets the intent of the ordinance.
- 2. Clearly show AMAFCA Floodways and easement as well as the boundary of SFHA A flood zone.
 - The grading plan has been revised to show and label AMAFCA's easement. A FEMA Firm has been added and is located in Appendix G which shows the location of the flood zone.
- 3. Provide additional information to verify that offsite flows from Coors Blvd do not impact this site.
 - Drainage Management Plan Coors Boulevard Improvements, prepared by Bohannan Huston, Inc., dated September 2005 was added and referenced in the report. This drainage management plan provides drainage analysis for the Coors Boulevard Improvements, which is located just west of our site. This DMP provides detailed analysis for offsite basins located in Coors Blvd and more importantly provides analysis that flows from Coors Blvd do not enter Sevilla Ave and this project.

Engineering **A**

- Spatial Data 🔺
- Advanced Technologies **A**

- 4. Provide additional information for the Q_{allowable} vs. Q_{design} for the existing 36" storm drain network in Sevilla Ave.
 - As shown in the Andalucia at La Luz Unit 1 as-built for the above mentioned storm drain, the flow from the previously approved plans discharging to the existing 36" storm drain network is Q=34.6 cfs. As shown in this report, Sevilla @ Andalucia has a Q=31.6 cfs entering the storm drain network, thus there is no adverse effect to the existing storm drain network with this development. The asbuilt plan and profile sheet has been added as Exhibit 5
- 5. A short retaining wall is needed between lots 39 & 40.
 - The grading plan has been revised to show a short retaining wall.
- 6. There is a 10' difference in elevation between the retaining wall and Sevilla Ave on South side of Sevilla, near the Arroyo
 - The grading plan has been revised to show retaining walls, existing bridge wingwalls and contours to show more clarification in this location.

Comments received from AMAFCA on January 16, 2015:

- 1. Please make the swales cobble lined instead of earthlined.
 - Grading Plan and Drainage Report have been revised to reflect a cobble lined swale.

The Drainage Management Plan for Sevilla @ Andalucia 1 is attached. Please feel free to contact me at 823-1000 with questions or comments.

Sincerely,

Brian C. Patterson, P.E. Project Engineer Community Development and Planning

BCP/ Enclosures

cc: Yolanda Moyer, BHI

From:	<u>Mazur, Lynn</u>
To:	Harmon Rita T.; Cherne, Curtis
Cc:	Yolanda Padilla Moyer
Subject:	Andalucia Unit 4
Date:	Tuesday, January 20, 2015 1:44:01 PM

I approve Preliminary Plat for Andalucia Unit 4. I met with Kevin Patton on Friday to discuss the swale for back lot drainage next to the San Antonio Arroyo. We allowed this for Andalucia Unit 3 on the south side of the arroyo.

AMAFCA Lynn Mazur, P.E. Development Review Engineer

DRAINAGE MASTER PLAN FOR SEVILLA @ ANDALUCIA

(REPLAT OF TRACT A-1-A & B-2 OF ANDALUCIA AT LA LUZ)

JANUARY 2015

Prepared for:

Pulte Homes of New Mexico 7601 Jefferson St NE – Suite 320 Albuquerque, NM 87109

Prepared by:

Bohannan 🛦 Huston

Engineering Spatial Data Advanced Technologies

DRAINAGE MANAGEMENT PLAN FOR SEVILLA @ ANDALUCIA (REPLAT OF TRACT A-1-A & B-2, ANDALUCIA AT LA LUZ)

JANUARY 19, 2015

Prepared for: PULTE HOMES OF NEW MEXICO 7601 JEFFERSON BLVD. NE, SUITE 320 ALBUQUERQUE, NM 87109

> Prepared by: BOHANNAN HUSTON, INC. COURTYARD I 7500 JEFFERSON STREET NE ALBUQUERQUE, NM 87109

Prepared by:

Brian C. Patterson, P.E. Design Engineer

Date

1-19-15

TABLE OF CONTENTS

I.	PURPOSE	.1
II.	CONCEPTS AND METHODOLOGIES	.1
III.	SITE LOCATION AND CHARACTERISTICS	. 2
IV.	EXISTING HYDRAULIC AND HYDROLOGIC CONDITIONS	. 2
V.	DEVELOPED HYDRAULIC AND HYDROLOGIC CONDITIONS	.2
VI.	CONCLUSION	. 4

APPENDICES

APPENDIX A:	BASIN CALCULATIONS
APPENDIX B:	STREET HYDRAULICS AND STORM DRAIN INLET ANALYSIS
APPENDIX C:	INROADS STORM DRAIN OUTPUT FILES
APPENDIX D:	SWALE ANALYSIS
APPENDIX E:	WATER HARVESTING CALCULATIONS
APPENDIX F:	PREVIOUS DMP'S EXCERPTS
APPENDIX G:	FEMA FIRM

EXHIBITS

- EXHIBIT 1 PRELIMINARY PLAT
- EXHIBIT 2 EXISTING BASINS MAP
- EXHIBIT 3 PROPOSED BASIN MAP
- EXHIBIT 4 STORM DRAIN NETWORK MAP
- EXHIBIT 5 STORM DRAIN PLAN AND PROFILE
- EXHIBIT 6 GRADING PLAN

I. PURPOSE

The purpose of this report is to provide a Drainage Management Plan for Sevilla @ Andalucia. Sevilla @ Andalucia encompasses Tract A-1-A and B-2 of the Andalucia at La Luz Subdivision and will consist of 45 single family residential lots on approximately 11.7 acres. This report will provide drainage analysis to support proposed site specific drainage infrastructure in order to obtain approval of the preliminary/final plat and grading plan by the City of Albuquerque.

II. CONCEPTS AND METHODOLOGIES

Drainage conditions were analyzed utilizing the 100-year, 6-hour storm event in accordance with the City of Albuquerque Drainage Ordinance and the *Development Process Manual (DPM), Volume 2 Design Criteria, Section 22.2, Hydrology, The City of Albuquerque*, January 2002. The property as described in the "Purpose" section above is approximately 11.7 acres, therefore Part A of the DPM, Section 22.2, which provides a simplified procedure for projects with sub-basins smaller than 40 acres, was used.

Per the City of Albuquerque and EPA requirements, retention of the 90th percentile storm event is required and will be utilized by onsite ponds. The infiltration time utilizing these retention ponds, will be 96 hours or less, per City requirements.

The following document was referenced in the preparation of this report:

 Drainage Report for Andalucia at La Luz – Phase 1, prepared by Bohannan Huston, Inc., dated September 11, 2003.

This drainage report provides drainage analysis for Phase 1, which is located just east of our site. This report provides detailed analysis for the storm drain network that will be tied to with this development. Excerpts from this report are provided in the appendix.

> Drainage Management Plan – Coors Boulevard Improvements, prepared by Bohannan Huston, Inc., dated September 2005.

This drainage management plan provides drainage analysis for the Coors Boulevard Improvements, which is located just west of our site. This DMP provides detailed analysis for offsite basins located in Coors Blvd and more importantly provides analysis that flows from Coors Blvd do not enter Sevilla Ave and this project. Excerpts from this report are provided in the appendix. Free discharge from the site into the fully improved San Antonio Arroyo located south of the site will be utilized as per discussions with AMAFCA and as stated by the San Antonio Arroyo LOMR prepared by this office dated September 8, 1997 which delineates developed basins which discharge into the arroyo.

III. SITE LOCATION AND CHARACTERISTICS

Andalucia is a development located east of Coors Boulevard. The project is located near the San Antonio Arroyo. More specifically, Sevilla @ Andalucia is bordered by Coors Boulevard to the north, San Antonio Arroyo to the west and San Antonio Arroyo and Andalucia at La Luz, Phase 1 to the south. The site will be accessible from Coors Boulevard by Sevilla Ave. The site has been previously rough graded.

IV. EXISTING HYDRAULIC AND HYDROLOGIC CONDITIONS

The land comprising of Sevilla @ Andalucia is partially undeveloped. Tracts A-1-A and B-2 have been previously mass graded, while Sevilla Ave which splits these two tracts has been constructed. As demonstrated in Exhibit 2-Existing Basins Map, there are three (3) existing basins that encumber this site. **Basin Tract A-1-A (A=4.2 acres, Q=8.5 cfs)** encompasses all of Tract A-1-A and currently discharges directly into the San Antonio Arroyo by means of sheet flowing. **Ex. Basin 1 (A=0.8 acres, Q=3.2 cfs)** encompasses a portion of Sevilla Ave. and currently discharges east into the existing storm drain system. **Basin Tract B-2 (A=7.5 acres, Q=15.2 cfs)** encompasses all of Tract B-2 and currently discharges directly into the San Antonio Arroyo by means of sheet flowing Antonio Arroyo by means of sheet flowing. As stated in *Drainage Management Plan – Coors Boulevard Improvements* and shown in Appendix F, no offsite flows from Coors Blvd impact this site.

V. DEVELOPED HYDRAULIC AND HYDROLOGIC CONDITIONS

As demonstrated in Exhibit 3-Proposed Basins Map, there are thirteen (13) developed basins that are within the site. There are no offsite flows that enter the site. Developed flows were calculated based on du/ac as shown on Table A-5 in Chapter 22, Section 2 of the City of Albuquerque's Development Process Manual. Basin A (A=2.7 acres, Q=8.2 cfs), landscaped Basin D-1 (A=0.2 acres, Q=0.7 cfs), landscaped Basin D-2 (A=0.02 acres, Q=0.1 cfs) and a portion of Ex. Basin 1 (A=0.8 acres, Q=3.2 cfs) are all conveyed to a low-point in Calle Espana, south of Sevilla, where a double grate, double wing Type "A" inlet (inlet #1) captures all of the flow of Q=10.6 cfs. Basin E (A=5.9 acres, Q=17.8 cfs), landscaped Basin H (A=0.5 acres, Q=1.3 cfs) and a portion of Ex. Basin 1 (A=0.8 acres, **Q=3.2 cfs)** are all conveyed to a low-point in Calle Espana, north of Sevilla, where two double grate, double wing Type "A" inlet (inlets #2 and #3) captures all of the flow of Q=20.9 cfs. Please note that since inlets #1, #2 and #3 are in a sump condition and there is not an emergency spill way present, thus these inlets have been sized to capture two times the 100-year storm event. Landscaped Basins D-1 and H are both conveyed east to the adjacent streets. Landscaped Basin I (A=0.01 acres, Q=0.1 cfs) and Basin J (A=0. 2 acres, Q=0.1 cfs) discharge north to Berm St. Landscaped Basin C (A=0.06 acres, Q=0.2 cfs) and landscaped Basin G (A=0.1 acres, Q=0.3 cfs) discharge directly into Sevilla Ave where they are collected and conveyed by the existing storm drain infrastructure system.

As shown in the Andalucia at La Luz – Unit 1 as-builts, located in Exhibit 5, the flow from the previously approved plans impacting the existing 36" storm drain network is Q=34.6 cfs . As shown in this report, Sevilla @ Andalucia has a Q=31.6 cfs entering the storm drain network, thus there is no adverse effect to the existing storm drain network with this development.

Basin F (A=0.9 acres, Q=2.7 cfs) discharges east through the back of the lots via turn blocks where the flows combine with Basin K (A=0.2 acres, Q=0.5 cfs). The combined flow of Q=3.2 cfs is conveyed by a cobble-lined swale to ultimately enter the San Antonio Arroyo at a single discharge point. Basin B (A=1.2 acres, Q=3.7 cfs) discharges east through the back of the lots via turn blocks and is conveyed by an earth-lined swale to ultimately enter the San Antonio Arroyo at a single discharge point. Please see Appendix D-Swale Analysis as well as Exhibit 6-Grading Plan for additional swale analysis.

The required onsite retention of the 90th percentile storm event was calculated to be 5771 CF. Pond 2 has an available retention volume of 605 CF and pond 3 has an available retention volume of 744 CF. Due to lots 1-8 and 41-45 draining through the backyard and out via a turn block that is set 4" above finished ground per the standard detail, each lot has an available retention volume of 74 CF. Additional ponding areas can also be accomplished in the front yards of each lot. A 6" depression will be added between the back of curb and sidewalk of each lot, which in turn can create an available retention volume of 42 CF per lot. With the front and back yard ponding areas, Pond 2 and Pond 3, a retention volume of 4396 CF is available onsite. Although this subdivision does not meet the full retention volume requirements, this site does maximize all available areas of pond and this meets the intent of the ordinance. Please see Appendix E for additional information.

3

VI. CONCLUSION

This report has provided hydrologic and hydraulic considerations of the proposed development of Sevilla @ Andalucia. This Design Analysis Report is in accordance with section 22.2 of the *COA Development Process Manual (DPM)*, where the flows can be safely conveyed by the improvements proposed in this drainage plan to proposed drainage facilities, which have adequate capacity to accept such runoff. Erosion and dust control, consisting of erosion control berms, silt fencing and sedimentation basins, are proposed to mitigate soil washing or blowing into paved streets, storm drains, and existing developed areas. This drainage plan maintains the overall drainage pattern of the area and allows for the safe management of storm runoff in the fully developed condition as well as interim conditions.

APPENDICES

APPENDIX A: BASIN CALCULATIONS

APPENDIX B: STREET HYDRAULICS AND STORM DRAIN INLET ANALYSIS

APPENDIX C: INROADS STORM DRAIN OUTPUT FILES

APPENDIX D: SWALE ANALYSIS

APPENDIX E: WATER HARVESTING CALCULATIONS

APPENDIX F: PREVIOUS DMP'S EXCERPTS

APPENDIX F: FEMA FIRM

APPENDIX A BASIN CALCULATIONS

	BASIN SUMMARY FOR THE ANDALUCIA										
		HYDR	OLOGICAL	L VO	LUMETRIC	C& DISCHA	ARGE DATA	۱.			
BAON									DIOCUL		
BASIN	AREA				•	% LAND II	REAIMENI	P	DISCHA		
I.D.	(AC)		#	<u> </u>	A	В	し し		10 fR	1001R	
	HINDU				DISCHAR			ALCULATE	.0)		
EX Basin 1	0.76	Г			0.0%	0.0%	10.0%	90.0%	2.09	3.21	
Tract A-1-A	4.20				0.0%	100.0%	0.0%	0.0%	3.17	8.49	
Tract B-2	7.50				0.0%	100.0%	0.0%	0.0%	5.65	15.16	
TOTAL	12.46								10.91	26.85	
	Н	IYRDOLOGI	CAL VOLU	МЕТ	RIC & DISC	CHARGE D	ATA (DEVE	LOPED)			
BASINS											
Basin A	2.70	0.00422	9		0.0%	56.4%	0.0%	43.6%	4.55	8.22	
Basin B	1.21	0.00189	8		0.0%	56.4%	0.0%	43.6%	2.04	3.69	
Basin C	0.06	0.00009	0		0.0%	0.0%	100.0%	0.0%	0.09	0.17	
Basin D-1	0.23	0.00036	0		0.0%	0.0%	100.0%	0.0%	0.34	0.66	
Basin D-2	0.02	0.00003	0		0.0%	0.0%	100.0%	0.0%	0.03	0.06	
Basin E	5.89	0.00920	23		0.0%	56.4%	0.0%	43.6%	9.92	17.94	
Basin F	0.88	0.00138	5		0.0%	56.4%	0.0%	43.6%	1.48	2.68	
Basin G	0.10	0.00016	0		0.0%	0.0%	100.0%	0.0%	0.15	0.29	
Basin H	0.45	0.00070	0		0.0%	0.0%	100.0%	0.0%	0.66	1.29	
Basin I	0.01	0.00002	0		0.0%	0.0%	100.0%	0.0%	0.01	0.03	
Basin J	0.02	0.00003	0		0.0%	0.0%	10.0%	90.0%	0.05	0.08	
Basin K	0.18	0.00028	0		0.0%	0.0%	100.0%	0.0%	0.27	0.52	
TOTAL	11.75		45						19.60	35.63	
NOTES			Impon <i>i</i> lous na	reant	agos woro ca	culated from t		tion A 4 with th	o romaining parcar	tagos	
NUTLS.			diatributed to l		ayes were ca		relatively flat t	IIOIT A-4, WIIIT II	le remaining percer	liages	
		N		ianu u	reatment type	B, due to the	relatively flat to	errain			
	0/ D	IN=		.) \\ /=*I	=	4.Z	0/				
	%D=		/ SUKT((N^N *Table 1 4	i)+(5^l	N)) =	43.6	70				
			1 able A-4								
			Table A-TT								

APPENDIX B STREET HYDRAULICS AND STORM DRAIN INLET ANALYSIS

							44FT	ROW_2per	cross	slope_0	UTPUT.txt
				MANNI	NG'S N	= 0.01	.7 SLOF	PE = 0.00	6		
I	POINT 1.0 2.0 3.0 4.0	DIST 0.0 8.8 9.3 9.5	ELEV 1.4 1.2 1.2 0.6	Ρ	OINT 5.0 6.0 7.0 8.0	DIST 11.5 32.5 34.5 34.7	ELEV 0.6 0.1 0.0 0.7	F	0INT 9.0 10.0	DIST 35.2 44.0	ELEV 0.7 0.9
	WSEL FT.	_	DEPTH INC	FLOW AREA SQ.FT.	FL(RA (CI	OW TE FS)	WETTED PER (FT)	FLOW VEL (FPS)	TO: PI OBSTI	PWID LUS RUCTIONS	TOTAL ENERGY (FT)
	$\begin{array}{c} 0.050\\ 0.100\\ 0.150\\ 0.200\\ 0.250\\ 0.300\\ 0.350\\ 0.400\\ 0.450\\ 0.550\end{array}$		0.050 0.100 0.200 0.250 0.300 0.350 0.400 0.450 0.500 0.550	0.020 0.078 0.183 0.398 0.738 1.204 1.796 2.513 3.356 4.324 5.418	0.0 0. 0. 1. 3. 4. 7. 10. 13.	011 069 185 456 998 886 189 969 288 202 288 202 2765	0.822 1.645 3.159 5.711 8.263 10.815 13.368 15.920 18.472 21.024 23.576	0.560 0.889 1.013 1.146 1.353 1.567 1.776 1.978 2.172 2.359 2.540	3 4 8 11 13 16 18 21 23 26	.782 .564 .038 .551 .063 .576 .089 .601 .114 .627 .140	0.055 0.112 0.166 0.220 0.278 0.338 0.399 0.461 0.523 0.587 0.650
	0.600 0.650 0.700 0.750 0.800		0.600 0.650 0.700 0.750 0.800	6.676 7.935 9.232 10.653 12.196	18.4 24.4 29.9 35.9 42.0	413 491 957 904 571	25.679 25.782 27.826 30.331 32.836	2.758 3.086 3.245 3.370 3.499	26 26 27 30 32	.165 .190 .680 .145 .611	0.718 0.798 0.864 0.927 0.990

$$\frac{13.8 - 10.2}{0.55 - 0.50} = \frac{13.9 - 12.9}{0.55 - \chi} \Longrightarrow \frac{3L}{0.05} = \frac{0.9}{0.55 - \chi} \Longrightarrow 0.045 = 1.98 - 3.6 \times 0.55 - \chi = 0.55 - \chi$$

44FT ROW_2per cross slope_2.90UTPUT.txt

			MANNIN	IG'S N	= 0.0	17 SLOPE	= 0.029			
POINT 1.0 2.0 3.0 4.0	DIST 0.0 8.8 9.3 9.5	ELEV 1.4 1.2 1.2 0.6	PC	5.0 5.0 6.0 7.0 8.0	DIST 11.5 32.5 34.5 34.7	ELEV 0.6 0.1 0.0 0.7	POJ 9 10	NT 1 0.0	DIST 35.2 44.0	ELEV 0.7 0.9
WSE FT.	EL	DEPTH INC	FLOW AREA SQ.FT.	FLC RAT (CF	W E S)	WETTED PER (FT)	FLOW VEL (FPS)	TOPW PLUS OBSTRUG	ED S CTIONS	TOTAL ENERGY (FT)
0.05 0.10 0.20 0.25 0.30 0.35	50 50 50 50 50 50 50 50	$\begin{array}{c} 0.050 \\ 0.100 \\ 0.150 \\ 0.200 \\ 0.250 \\ 0.300 \\ 0.350 \\ 0.400 \end{array}$	0.020 0.078 0.183 0.398 0.738 1.204 1.796 2.513	0.0 0.1 0.4 1.0 2.1 4.1 7.0 10.9	24 53 07 01 .95 .47 010 25	0.822 1.645 3.159 5.711 8.263 10.815 13.368 15.920	1.231 1.953 2.227 2.519 2.974 3.445 3.904 4.348	3.78 4.50 6.03 8.55 11.00 13.55 16.08 18.60	32 54 58 51 53 76 39 01	0.074 0.159 0.227 0.299 0.388 0.485 0.587 0.694
0.4 0.5 0.6 0.6 0.6 0.7 0.7 0.8	50 50 50 50 50 50 50 50 50	0.450 0.500 0.550 0.600 0.650 0.700 0.750 0.800	3.356 4.324 5.418 6.676 7.935 9.232 10.653 12.196	16.0 22.4 30.2 40.4 53.8 65.8 78.9 93.8	23 29 63 80 42 60 35 12	18.472 21.024 23.576 25.679 25.782 27.826 30.331 32.836	4.775 5.187 5.585 6.064 6.786 7.134 7.410 7.692	21.1 23.6 26.1 26.1 26.1 27.6 30.1 32.6	14 27 40 55 90 30 45 11	0.805 0.918 1.035 1.172 1.366 1.492 1.604 1.720

$$\frac{578427}{10.9-7} \xrightarrow{(0.9-3)}{=} \xrightarrow{7.9} \xrightarrow{7.9}{0.1} \xrightarrow{7.9} \xrightarrow{7.9} 0.29 \cdot 7.64 - 3.97} = \frac{10.9-3}{0.69-7} \xrightarrow{7.9} 0.69-7 \xrightarrow{7.9} 0.29 \cdot 7.64 - 3.97}{\chi = 0.62^{\circ} \chi 0.05^{\circ} \sqrt{0k}}$$

$$\frac{45EL}{10.9-3} = \frac{10.9-3}{0.4-5} \Rightarrow \frac{3.9}{0.05} = \frac{2.9}{0.4-5} \Rightarrow 0.145 \approx 1.56 - 3.9 \times 2.9 \times 0.35 = 0.4 \times 0.35 = 0.35 \times 0.35 = 0.35 \times 0.35 = 0.35 \times 0.35 = 0.35 \times 0.35 \times 0.35 = 0.35 \times 0.3$$

Page 1

METS 廿2 春 ±3	CFS / 2 = 10.5 CFS / INEET	zua cfs/Inlet			2000 13.888889 700 E 000000	-132 -0.802333	-100 -0.694444	<u>70.5</u> 0.4895833	1122.875 7.7977431			Weir:		130 10.833333	-7 -0.583333	-13 -1.083333	-9.25 -0.770833	<u>-5 -0.416667</u>	110 7.9791667									
THIELS	QTUTAL = 20.9	2× 100 42 -	Calculation of onen area		Total Grate Area	Cross bar Area Supports (ends)	(middle)	Areas Counted Twice				Calculation of Length of		Total Perimeter of Grate	Short Cross Bars	Bearing Bars	End Supports	Middle Supports										
		.7977431 .9791667 0.6 3	l Q Minc	cfs)	0.54	2.78	4.29	5.99	7.88	9.93	12.13 100YR	14.47	16.95	19.55	22.28 ZYIWJYR	25.12	26.11	28.08	31.14	34.30	10.10	44.39	47.94	51.58	55.31	59.12	20.47	
			Contro Sel Wind T	ogi vilig t (cfs)	0.40	1. 14 2.09	3.21	4.49	5.91	7.44	9.09	10.85	12.71	14.66	16.70	18.83	19.58	21.05	23.34	25.71 28.46	20.69	33.28	35.94	38.67	41.46	44.32	15.34	
	a condition:	alc in sq. ft.):	rate Orifico O	(cfs)	8.40 44.07	11.07 14.54	16.79	18.77	20.56	22.21	23.75	25.19	26.55	27.84	29.08	30.27	30.66	31.41	32.52	33.58 24 62	34.02 35 60	36.60	37.55	38.47	39.38	40.26	28.27	
	inlet. in surr	a (for orifice o Weir (feet): eficient icient	G	ven e (cfs)	0.27	0.70 1.39	2.14	2.99	3.93	4.96	6.06	7.23	8.46	9.76	11.13	12.54	13.04	14.02	15.55	17.13	0/00	22.16	23.94	25.76	27.62	29.52	10.22	
	Double A	Open Area Length of Orifice Co	1 Wing	(cfs)	0.13	0.70	1.07	1.50	1.97	2.48	3.04	3.62	4.24	4.89	5.58	6.29	6.54	7.03	7.79	8.59	9.40 10 05	11 11	12.00	12.91	13.84	14.80	5.12	
				(in)	0.6	1.1	2.4	с С	3.6	4.2	4.8	5.4	9	6.6	7.2	7.8	8.0	8.4	ი	9.6	10.7	114	12	12.6	13.2	13.8	6.804	
				(ff)	0.05	0.15 0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5	0.55	0.6	0.65	0.667	0.7	0.75	0.8	0.0	0.95		1.05	1.1	1.15	0.567	

B-3

						44FT R	.OW_2per d	cross slo	pe_OUTPUT.tx1	t
			MANNI	NG'S N	= 0.017	SLOPE	= 0.006			
POINT 1.0 2.0 3.0 4.0	DIST 0.0 8.8 9.3 9.5	ELEV 1.4 1.2 1.2 0.6	F	POINT 5.0 6.0 7.0 8.0	DIST 11.5 32.5 34.5 34.7	ELEV 0.6 0.1 0.0 0.7	POJ 9 10	INT DI 0.0 35 0.0 44	ST ELEV .2 0.7 .0 0.9	
WSEL FT.	-	DEPTH INC	FLOW AREA SQ.FT.	FL RA (C	OW W TE FS)	VETTED PER (FT)	FLOW VEL (FPS)	TOPWID PLUS OBSTRUCT	TOTAL ENERGY IONS (FT)	
0.050 0.100 0.200 0.250 0.300 0.350 0.400 0.450		0.050 0.100 0.150 0.200 0.250 0.350 0.350 0.400 0.450	0.020 0.078 0.183 0.398 0.738 1.204 1.796 2.513 3.356	0. 0. 0. 1. 3. 4. 7.	011 069 185 456 998 886 1 189 1 969 1 288 1	0.822 1.645 3.159 5.711 8.263 10.815 13.368 15.920 18.472	0.560 0.889 1.013 1.146 1.353 1.567 1.776 1.978 2.172	3.782 4.564 6.038 8.551 11.063 13.576 16.089 18.601 21.114	$\begin{array}{c} 0.055\\ 0.112\\ 0.166\\ 0.220\\ 0.278\\ 0.338\\ 0.399\\ 0.461\\ 0.523\\ \end{array}$	
0.50(0.55(0.60(0.65(0.70(0.75(0.80(0.500 0.550 0.600 0.650 0.700 0.750 0.800	4.324 5.418 6.676 7.935 9.232 10.653 12 196	10. 13. 18. 24. 29. 35.	202 2 765 2 413 2 491 2 957 2 904 3 671 3	21.024 23.576 25.679 25.782 27.826 30.331	2.359 2.540 2.758 3.086 3.245 3.370	23.627 26.140 26.165 26.190 27.680 30.145	0.587 0.650 0.718 0.798 0.864 0.927 0.990	-

$$\frac{5126ET}{7.3-5.0} = \frac{7.3-6.6}{0.52-5} \Rightarrow \frac{2.3}{0.06} = \frac{0.7}{0.52-5} \Rightarrow 0.042=1.196 - 2.35$$

$$0.52-0.46 = 0.52-5$$

WSEL

$$\frac{7.3-5.0}{0.45\cdot0.4} = \frac{7.3-6.L}{0.45\times} = \frac{2.3}{0.05} = \frac{0.7}{0.45\times} = 0.035 = 1.035 - 2.3 \times 2.05$$

Page 1

44FT ROW_2per cross slope_1.00UTPUT.txt

			MANNI	NG'S N	= 0.01	L7 SLOPE	= 0.010			
POINT 1.0 2.0 3.0 4.0	DIST 0.0 8.8 9.3 9.5	ELEV 1.4 1.2 1.2 0.6	Ρ	OINT 5.0 6.0 7.0 8.0	DIST 11.5 32.5 34.5 34.7	ELEV 0.6 0.1 0.0 0.7	P0: 1	INT 9.0 0.0	DIST 35.2 44.0	ELEV 0.7 0.9
WSE FT.	L	DEPTH INC	FLOW AREA SQ.FT.	FLO RAT (CF	W E S)	WETTED PER (FT)	FLOW VEL (FPS)	TOP PL OBSTR	WID US UCTIONS	TOTAL ENERGY (FT)
0.05 0.10 0.15 0.20 0.25 0.30 0.35	0 0 0 0 0 0 0	0.050 0.100 0.150 0.200 0.250 0.300 0.350	0.020 0.078 0.183 0.398 0.738 1.204 1.796	0.0 0.0 0.2 0.5 1.2 2.4 4.1	14 90 39 88 89 35 17	0.822 1.645 3.159 5.711 8.263 10.815 13.368	0.723 1.147 1.308 1.479 1.746 2.023 2.293	3. 4. 6. 11. 13. 16.	782 564 038 551 063 576 089	0.058 0.120 0.177 0.234 0.297 0.364 0.432
0.40 0.45 0.50 0.60 0.65 0.70 0.75 0.80	0 0 0 0 0 0 0 0 0 0 0 0	0.400 0.450 0.500 0.550 0.600 0.650 0.750 0.750 0.800	2.513 3.356 4.324 5.418 6.676 7.935 9.232 10.653 12.196	6.4 9.4 13.1 17.7 23.7 31.6 38.6 46.3 55.0	15 09 71 71 71 17 74 52 88	15.920 18.472 21.024 23.576 25.679 25.782 27.826 30.331 32.836	2.553 2.804 3.046 3.280 3.561 3.985 4.189 4.351 4.517	18. 21. 23. 26. 26. 27. 30. 32.	601 114 627 140 165 190 680 145 611	0.501 0.572 0.644 0.717 0.797 0.897 0.973 1.044 1.117

SWITH JULET-SWITHS, DE

43% BASIN A - 3.5 GFS 55% BASIN D-1 - 0.4 eFS 100% BASIN D-2 - 0.1 a2S 4.0 cFS

	cfs	13.88889 -5.083333 -0.694444 -0.694444 0.4895833 7.7977431 10.83333 -0.583333 -0.583333 -0.583333 -0.770833 7.9791667 7.9791667	
TNLE	E: 21.2	2000 -732 -115.625 -100 1122.875 -7. -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	
QTHAL	2×191	Calculation of open area: Total Grate Area Cross Bar Area Supports (ends) (middle) Areas Counted Twice Calculation of Length of V Calculation of Length of V Total Perimeter of Grate Short Cross Bars Bearing Bars End Supports Middle Supports	
		10 42 10 42	
	7.7977431 7.9791667 0.6	rol Q Dbl Wing (cfs) 0.54 1.52 2.78 4.29 5.99 5.93 12.13 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 11.14 16.95 11.14 16.95 12.12 25.12 25.12 25.12 25.12 25.12 25.13 25.25.25.25.25.25.25.25.25.25.25.	20.47
		Cont Sgl Wing (cfs) (cfs) 0.40 1.14 1.14 2.09 3.21 14.66 12.71 14.66 12.71 14.66 12.71 12.71 12.71 12.73 19.09 33.28 33.28 33.28 33.28 33.58 33.58 33.58 33.58 33.58 33.59 41.46 41.46 41.46 33.58 33.58 33.58 33.58 33.59 44.32 24.45 33.58 56 33.58 57 33.58 56 57 37 57 57 58 57 58 58 57 58 58 58 58 58 58 58 58 58 58 58 58 58	15.34
	o condition: Ic in sq. ft.):	ate Orifice Q (cfs) 8.40 14.54 14.54 14.54 14.54 18.77 20.56 22.21 25.19 25.19 25.19 25.19 25.19 25.19 25.19 25.19 25.19 25.55 33.55 35 35 35 35 35 35 35 35 35 35 35 35 3	28.27
	ilet, in sump for orifice ca eir (feet): icient ent	Grave State	10.22
	Double A in Open Area (Length of W Orifice Coef Weir Coefici	1 Wing Weir Q (cfs) 0.13 0.13 0.70 1.07 1.07 1.07 1.07 2.48 3.62 4.24 4.24 4.24 4.28 6.29 6.54 6.29 9.40 9.40 9.40 9.40 12.00 12.00 12.00 12.00 12.00	5.12
		Head (in) (in) (in) (in) (in) (in) (in) (in)	6.804
		Head (ff) (ff) (15 0.05 0.15 0.15 0.15 0.15 0.15 0.25 0.25 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.3	0.567

SOUTH ZNUET

1

B-6

APPENDIX C INROADS STORM DRAIN OUTPUT FILES

InRoads output file.txt

Design Log				
InRoads Storm & Sani	tary Design	Log		
Drainage File: P:\2	0150130\CDP	Control \Dat	ta\20150130SD. sdb	
Design File: P:\201	50130\CDP\DE	ESI GN\201501	130UTI LI TYO1. DWG	
Di spl ay Log: P: \201	50130\CDP\DE	ESIGN∖desigr	n. I og	
Date: Thursday, Jan	uary 15, 20 [°] =====	15 4:02:38 F	PM ====================================	
Designing inlet sout WARNING: Inlet f	h inlet orced to cap	oture all fl	ow, ignoring capa	city calculations.
Results: Gutter Flow:	10. 6000	cfs	Flow From:	Injected Storm
Status: Inlet Length: Flow_Downstream:	Fi xed 6. 5000 10. 6000	ft cfs	Inlet Width: Bypass To:	2.0000 ft 0.0000 cfs
Percent Cap: Spread: Depth in Gutter:	100.0000 2.4117 0.9647	% ft ft	Capacity: Assigned Bypass:	0.0000 CTS N/A
Designing pipe SDP9 WARNING: Full fl	ow velocity	is greater	than maximum (0.0	000)
Results:	10 (000	6		
Iotal Flow:	10. 6000	cts	Flow From:	Upstream
Pipe Width: Depth of Flow: Critical Depth:	18.0000 1.5000 1.5000	in ft ft	Pipe Height: Flow Status: Capacity:	0.0025 11/11 18.0000 in Full 5.2522 cfs
Velocity: Froude Number:	5. 9984 0. 0000	ft/s	Flow Regime:	Subcritical
Designing manhole SD	MH7			
Total Flow:	10. 6000	cfs	Flow From:	Upstream
Status: Chamber Width:	Fi xed 4. 0000	ft	Chamber Length:	4.0000 ft
Designing pipe SDP8 WARNING: Full fl	ow velocity	is greater	than maximum (0.0	000)
Results: Total Flow:	10. 6000	cfs	Flow From:	Upstream
Status:	Fi xed	i n	SI ope:	0.0025 ft/ft
Depth of Flow:	1.5360	ft ft	Flow Status:	24.0000 Th Partial 11.3112 cfs
Velocity: Froude Number:	4. 0916 0. 5825	ft/s	Flow Regime:	Subcri ti cal
Designing manhole SD	MH6		-	
Results: Total Flow:	10, 6000	cfs	Flow From:	Upstream
Status: Chamber Width:	Fi xed 4. 0000	ft	Chamber Length:	4.0000 ft
Designing pipe SDP7			there may have (0, 0)	200)
Results:	ow verocity	is greater		000)
Total Flow:	10.6000	cfs	Flow From:	Upstream
Status: Pipe Width:	Fi xed 24. 0000	in	SIope: Pipe Height:	0.0025 ft/ft 24.0000 in
Critical Depth:	1.5360	ft ft	Capacity:	Partial 11.3112 cfs
Froude Number:	0. 5825	11/5	Flow Regime:	Subcritical
Designing manhole SD	MH1			
Results: Total Flow:	10. 6000	cfs	Flow From:	Upstream
Status: Chamber Width:	Fi xed 4. 0000	ft	Chamber Length:	4.0000 ft
Designing pipe exSDP WARNING: Full fl	6 ow velocity	is greater	than maximum (0.0	000)
Results: Total Flow:	10. 6000	cfs	Flow From:	Upstream
Status:	Fi xed	in	SI ope:	0.0025 ft/ft
Depth of Flow: Critical Depth	1.5360	ft ft	Flow Status: Capacity	Partial 11.3112 cfs
Velocity: Froude Number:	4. 0916 0. 5825	ft/s	Flow Regime:	Subcritical

InRoads output file.txt Designing inlet north inlet 2 WARNING: Inlet forced to capture all flow, ignoring capacity calculations. Results: Gutter Flow: 10.5000 cfs Flow From: Injected Storm Status: Inlet Length: Flow Downstream: Percent Cap: Spread: Depth in Gutter: Fi xed 6.5000 ft 10.5000 cfs 100.0000 % 0.0000 ft 0.0000 ft 2.0000 ft 0.0000 cfs 0.0000 cfs Inlet Width: Bypass To: Capacity: Assi gned Bypass: N/A Designing pipe SDP3 WARNING: Full flow velocity is greater than maximum (0.0000) Results: Total Flow: 10.5000 cfs Flow From: Upstream Fixed 18.0000 in 1.5000 ft 1.5000 ft 5.9418 ft/s Status: Pipe Width: Depth of Flow: Critical Depth: Velocity: SI ope: Pipe Height: Flow Status: Capacity: 0.0060 ft/ft 18.0000 in Full 8.1366 cfs Froude Number: 0.0000 Flow Regime: Subcritical Designing inlet NorthInlet 1 WARNING: Inlet forced to capture all flow, ignoring capacity calculations. WARNING: Pipe Too large for valid connection to inlet. Results: Gutter Flow: 10.5000 cfs Flow From: Injected Storm Status Fi xed Flow Downstream: Percent Cap: 6.5000 ft 21.0000 cfs 100.0000 % 0.0000 ft 0.0000 ft Inlet Width: Bypass To: Capacity: 2.0000 ft 0.0000 cfs 0.0000 cfs Spread: Depth in Gutter Assi gned Bypass: N/A Designing pipe SDP4 WARNING: Full flow velocity is greater than maximum (0.0000) Results: Total Flow: 21.0000 cfs Flow From: Upstream Fixed 24.0000 in 2.0000 ft 2.0000 ft 6.6845 ft/s 0.0000 SI ope: Pipe Height: Flow Status: Capacity: 0.0060 ft/ft 24.0000 in Full Status: Pipe Width: Depth of Flow: Critical Depth: Velocity: 17.5189 cfs Froude Number: Flow Regime: Subcritical WARNING: Pipe Too large for valid connection to inlet. Designing manhole SDMH2 Results: Total Flow: 21.0000 cfs Flow From: Upstream Status: Chamber Width: Fi xed 4.0000 ft Chamber Length: 4.0000 ft Designing pipe SDP2 WARNING: Full flow velocity is greater than maximum (0.0000) Results: Total Flow: 21.0000 cfs Flow From: Upstream Status: Pipe Width: Depth of Flow: Critical Depth: Velocity: Froude Number: Fixed 36.0000 in 2.0530 ft 1.4700 ft 4.0716 ft/s 0.5280 SI ope: Pipe Height: Flow Status: Capacity: 0.0015 ft/ft 36.0000 in Partial 25.8322 cfs Flow Regime: Subcritical Designing pipe exSDP1 WARNING: Full flow velocity is greater than maximum (0.0000) Results: Total Flow: 21.0000 cfs Flow From: Upstream Status: Pipe Width: Depth of Flow: Critical Depth: Velocity: Froude Number: Slope: Pipe Height: Flow Status: Capacity: Fi xed 0.0015 ft/ft 36.0000 in Partial 25.8322 cfs 36.0000 in 2.0530 ft 1.4700 ft 4.0716 ft/s 0. 5280 Flow Regime: Subcritical Designing manhole exSDMH1 Results: Total Flow: 31.6000 cfs Flow From: Upstream Status: Chamber Width: Fi xed 6.0000 ft Chamber Length: 6.0000 ft Designing pipe exSDP10 WARNING: Full flow velocity is greater than maximum (0.0000) Results: Total Flow: 31.6000 cfs Flow From: Upstream 0.0019 ft/ft 36.0000 in Page 2 Status: Pipe Width: Fixed 36.0000 in SI ope: Pipe Height:

Depth of Flo Critical Dept Velocit Froude Numbe	w: 3.00 h: 3.00 y: 4.47 r: 0.00	00 ft 00 ft 05 ft/ 00	's	FI o FI o	InRoads w Status: Capacity: w Regime:	output F 29.1 Subcrit	file.tx ull 175 cfs ical	t						
Designing pipe SDP WARNING: Full	12 flow veloci	tyis	greater	than max	imum (0.0	000)								
Results: Total Flo	w: 1.70	00 cfs	5	F	low From:	I nj ecte	d Storm							
Statu Pipe Widt Depth of Flo Critical Dept Velocit Froude Numbe	s: Fix h: 18.00 w: 0.05 h: 0.49 y: 73.51 r: 65.64	ed 00 in 80 ft 00 ft 55 ft/ 90	's	Pi p Fl o Fl o	SI ope: e Height: w Status: Capacity: w Regime:	32.1 18.0 Part 595.7 SuperCr	700 ft/1 0000 in 1al 914 cfs itical	ft						
Designing pipe SDP WARNING: Full	13 flow veloci	tyis	greater	than max	imum (0.0	000)								
Results: Total Flo	w: 1.70	00 cfs	5	F	low From:	Injecte	d Storm							
Statu Pipe Widt Depth of Flo Critical Dept Velocit Froude Numbe	s: Fix h: 18.00 w: 0.23 h: 0.49 y: 9.60 r: 4.21	ed 00 in 40 ft 00 ft 31 ft/ 12	's	Pi p Fl o Fl o	SI ope: e Height: w Status: Capacity: w Regime:	0.0 18.0 Part 32.1 SuperCr	938 ft/1 000 in ial 714 cfs itical	ft						
Designing manhole	SDMH9													
Results: Total Flo	w: 35.00	00 cfs	;	F	low From:	Upstr	eam							
Statu Chamber Widt	s: Fix h: 4.00	ed 00 ft		Chambe	r Length:	4.0	000 ft							
Designing pipe SDP	11													
WARNING: Full Results:	flow veloci	ty is	greater	than max	imum (0.0	000)								
Total Flo	w: 35.00	00 cfs	5	F	Iow From:	Upstr	eam	F+						
Pipe Widt Depth of Flo Critical Dept Velocit Froude Numbe	h: 36.00 w: 3.00 h: 3.00 y: 4.95 r: 0.00	00 in 00 ft 00 ft 15 ft/ 00	's	Pi p Fl o Fl o	e Height: w Status: Capacity: w Regime:	36. 0 F 24. 9 Subcri t	000 in Tull 1563 cfs Tical							
HGL/EGL Computatio Table A:	ns:													
Struct_ID	D	Q	L	V	d	de	V^2/2a	Sf I	Dn_Soffit	t EGLdn	HGLdn	Tot_Loss	EGLup	
(ft)	(in)	(cfs)	(ft)			uc	v 2/29							HGLup
Outfall	(,		(11)	(ft/s)	(ft)	uc (ft)	(ft)	(ft/ft) (ft)	(ft)	(ft)	(ft)	(ft)	HGLup (ft)
	-	-	-	(ft/s) -	(ft) -	uc (ft) -	(ft) -	(ft/ft) -) (ft) -	(ft) -	(ft) -	(ft) -	(ft) -	HGLup (ft) 5038.85
- (Alternate HGL SDP11	- and EGL Us 36	- ed) 35.00	- 64.00	(ft/s) - 4.95	(ft) - -	(ft) - -	(ft) - 0.38	(ft/ft) - 0.0028) (ft) - 5038.85	(ft) - 5039.23	(ft) - 5038.8	(ft) - 5 0.18	(ft) - 5039.23 5039.41	HGLup (ft) 5038.85 5038.85 5039.03
- (Al ternate HGL SDP11 - SDMH9	- and EGL Us 36 -	- ed) 35.00 -	- 64.00 -	(ft/s) - 4.95 -	(ft) - -	uc (ft) - - -	(ft) - 0.38 -	(ft/ft) - 0.0028 -) (ft) - 5038.85 -	(ft) - 5039.23 5039.41	(ft) - 5038.8 5039.0	(ft) - 5 0.18 3 0.06	(ft) - 5039.23 5039.41 5039.47	HGLup (ft) 5038.85 5038.85 5039.03 5039.09
- Al ternate HGL SDP11 - SDMH9 5046.21 exSDP10	- and EGL Us 36 - 36	- ed) 35.00 - 31.60	- 64.00 - 87.95	(ft/s) - 4.95 - 4.47	(ft) - - -	(ft) - - - -	(ft) - 0.38 - 0.31	(ft/ft) - 0.0028 - 0.0022) (ft) - 5038.85 - 5039.04	(ft) - 5039. 23 5039. 41 5039. 47	(ft) - 5038.8 5039.0 5039.0	(ft) - 5 0.18 3 0.06 9 0.20	(ft) - 5039.23 5039.41 5039.47 5039.67	HGLup (ft) 5038.85 5038.85 5039.03 5039.03 5039.36
(AI ternate HGL SDP11 SDMH9 5046.21 exSDP10 exSDP10 exSDMH1 5047.11	- and EGL Us 36 - 36 -	- ed) 35.00 - 31.60 -	- 64.00 - 87.95 -	(ft/s) - 4.95 - 4.47 -	(ft) - - - -	(ft) - - - - -	(ft) - 0.38 - 0.31 -	(ft/ft) - 0.0028 - 0.0022 -) (ft) - 5038.85 - 5039.04 -	(ft) - 5039. 23 5039. 41 5039. 47 5039. 67	(ft) - 5038.89 5039.00 5039.00 5039.30	(ft) - 5 0.18 3 0.06 9 0.20 6 0.14	(ft) - 5039. 23 5039. 41 5039. 47 5039. 67 5039. 81	HGLup (ft) 5038.85 5038.85 5039.03 5039.09 5039.36 5039.50
(Al ternate HGL SDP11 - 5046.21 exSDP10 - exSDMH1 5047.11 exSDP1 -	- and EGL Us 36 - 36 - 36	- ed) 35.00 - 31.60 - 21.00	64.00 - 87.95 - 26.07	(ft/s) - 4.95 - 4.47 - 2.97	(ft) - - - - - -	ut (ft) - - - - - - -	(ft) - 0.38 - 0.31 - 0.14	(ft/ft) - 0.0028 - 0.0022 - 0.0010) (ft) - 5038.85 - 5039.04 - 5039.30	(ft) - 5039. 23 5039. 41 5039. 47 5039. 67 5039. 81	(ft) - 5038.89 5039.00 5039.00 5039.30 5039.30	(ft) - 5 0.18 3 0.06 9 0.20 6 0.14 0 0.03	(ft) - 5039. 23 5039. 41 5039. 47 5039. 67 5039. 81 5039. 83	HGLup (ft) 5038. 85 5039. 03 5039. 09 5039. 36 5039. 50 5039. 50 5039. 70
(AI ternate HGL SDP11 - SDMH9 5046.21 exSDP10 - - SDMH1 5047.11 exSDP1 - Junction -	- and EGL Us 36 - 36 - 36 - 36 -	- ed) 35.00 - 31.60 - 21.00 -	64.00 - 87.95 - 26.07	(ft/s) - 4.95 - 4.47 - 2.97 -	(ft) - - - - - - -	ut (ft) - - - - - - -	(ft) - 0.38 - 0.31 - 0.14	(ft/ft) - 0.0028 - 0.0022 - 0.0010 -) (ft) - 5038.85 - 5039.04 - 5039.30 -	(ft) - 5039. 23 5039. 41 5039. 47 5039. 67 5039. 81 5039. 83	(ft) 5038. 89 5039. 00 5039. 00 5039. 30 5039. 50 5039. 70	(ft) - 5 0.18 3 0.06 9 0.20 6 0.14 0 0.03 0 0.00	(ft) 	HGLup (ft) 5038. 85 5038. 85 5039. 03 5039. 09 5039. 36 5039. 50 5039. 70 5039. 70
(Al ternate HGL SDP11 5046.21 exSDP10 exSDP10 exSDMH1 5047.11 exSDP1 Juncti on SDP2	- and EGL Us 36 - 36 - 36 - 36 - 36	- 35.00 - 31.60 - 21.00 - 21.00	- 64.00 - 87.95 - 26.07 - 215.55	(ft/s) - 4.95 - 4.47 - 2.97 - 2.97	(ft) - - - - - - - - - -	ut (ft) - - - - - - - - - -	(ft) - 0.38 - 0.31 - 0.14 - 0.14	(ft/ft) - 0.0028 - 0.0022 - 0.0010 - 0.0010) (ft) - 5038.85 - 5039.04 - 5039.30 - 5039.34	(ft) 5039. 23 5039. 41 5039. 47 5039. 47 5039. 87 5039. 83 5039. 83	(ft) 5038. 89 5039. 00 5039. 00 5039. 30 5039. 50 5039. 70 5039. 70	(ft) - 5 0.18 3 0.06 9 0.20 6 0.14 0 0.03 0 0.03 0 0.00 0 0.21	(ft) 5039.23 5039.41 5039.67 5039.67 5039.81 5039.83 5039.83 5039.05	HGLup (ft) 5038. 85 5038. 85 5039. 03 5039. 09 5039. 36 5039. 50 5039. 70 5039. 70 5039. 91
(AI ternate HGL SDP11 SDMH9 5046.21 exSDP10	- and EGL Us 36 - 36 - 36 - 36 - 36 -	- ed) 35.00 - 31.60 - 21.00 - 21.00	- 64. 00 - 87. 95 - 26. 07 - 215. 55 -	(ft/s) - 4. 95 - 4. 47 - 2. 97 - 2. 97 -	(ft) - - - - - - - - - -	(ft) - - - - - - - - - -	(ft) - 0.38 - 0.31 - 0.14 - 0.14	(ft/ft) - 0.0028 - 0.0022 - 0.0010 - 0.0010 -) (ft) - 5038.85 - 5039.04 - 5039.30 - 5039.34 -	(ft) - 5039. 23 5039. 41 5039. 47 5039. 67 5039. 81 5039. 83 5039. 83 5040. 05	(ft) 5038.84 5039.03 5039.04 5039.34 5039.50 5039.70 5039.70 5039.97	(ft) - 5 0.18 3 0.06 9 0.20 6 0.14 0 0.03 0 0.00 0 0.21 1 0.09	(ft) - 5039. 2: 5039. 41 5039. 47 5039. 87 5039. 83 5039. 83 5040. 05 5040. 14	HGLup (ft) 5038. 85 5039. 03 5039. 03 5039. 09 5039. 36 5039. 50 5039. 70 5039. 70 5039. 91 5039. 91
Alternate HGL SDP11 SDMH9 5046.21 exSDP10 exSDMH1 5047.11 exSDP1 Junction SDP2 SDMH2 5042.43 SDP4	- and EGL Us 36 - 36 - 36 - 36 - 36 - 24	- ed) 35.00 - 31.60 - 21.00 - 21.00 - 21.00	- 64. 00 - 87. 95 - 26. 07 - 215. 55 - 25. 55	(ft/s) - 4. 95 - 4. 47 - 2. 97 - 2. 97 - 6. 68	(ft) - - - - - - - - - - - -	ut (ft) - - - - - - - - - - - - -	(ft) - 0.38 - 0.31 - 0.14 - 0.14 - 0.69	(ft/ft) - 0.0028 - 0.0022 - 0.0010 - 0.0010 - 0.0010) (ft) - 5038.85 - 5039.04 - 5039.30 - 5039.34 - 5038.76	(ft) 5039. 23 5039. 41 5039. 47 5039. 67 5039. 81 5039. 83 5039. 83 5040. 05 5040. 14	(ft) 5038.81 5039.00 5039.30 5039.30 5039.50 5039.70 5039.70 5039.90	(ft) - 5 0.18 3 0.06 9 0.20 6 0.14 0 0.03 0 0.00 0 0.21 1 0.09 0 0.22	(ft) 	HGLup (ft) 5038. 85 5039. 85 5039. 03 5039. 09 5039. 36 5039. 50 5039. 70 5039. 70 5039. 70 5039. 91 5040. 00 5039. 66
Alternate HGL SDP11 SDMH9 5046.21 exSDP10 exSDMH1 5047.11 Junction SDP2 SDMH2 5042.43 SDP4 NorthInlet 1 5041.25	- and EGL Us 36 - 36 - 36 - 36 - 24 -	- ed) 35.00 - 31.60 - 21.00 - 21.00 - 21.00 -	- 64.00 - 87.95 - 26.07 - 215.55 - 25.55 -	(ft/s) - 4.95 - 4.47 - 2.97 - 2.97 - 6.68 -	(ft) - - - - - - - - - - - - - -	ut (ft) - - - - - - - - - - - - -	(ft) - 0.38 - 0.31 - 0.14 - 0.69 -	(ft/ft) - 0.0028 - 0.0022 - 0.0010 - 0.0010 - 0.0086 - -) (ft) - 5038.85 - 5039.04 - 5039.30 - 5039.30 - 5039.34 - 5038.76 -	(ft) 5039. 23 5039. 23 5039. 41 5039. 47 5039. 81 5039. 83 5039. 83 5040. 05 5040. 14 5040. 36	(ft) 5038.85 5039.00 5039.00 5039.30 5039.50 5039.70 5039.70 5039.9 5040.00	(ft) - 5 0.18 3 0.06 9 0.20 6 0.14 0 0.03 0 0.03 0 0.00 0 0.21 1 0.09 0 0.22 6 0.47	(ft) 	HGLup (ft) 5038. 85 5039. 03 5039. 03 5039. 09 5039. 36 5039. 70 5039. 70 5039. 70 5039. 70 5039. 91 5040. 00 5039. 66 5040. 13
Alternate HGL SDP11 SDMH9 5046.21 exSDP10 exSDMH1 5047.11 exSDP1 Junction SDP2 SDMH2 5042.43 SDP4 NorthInlet 1 5047.95 SDP3 Orthinlet 2	- and EGL Us 36 - 36 - 36 - 36 - 36 - 24 - 18 -	- ed) 35.00 - 31.60 - 21.00 - 21.00 - 21.00 - 10.50	- 64.00 - 87.95 - 26.07 - 215.55 - 25.55 - 20.63	(ft/s) - 4.95 - 4.47 - 2.97 - 2.97 - 6.68 - 5.94	(ft) - - - - - - - - - - - - - - -	ut (ft) - - - - - - - - - - - - - -	(ft) - 0.38 - 0.31 - 0.14 - 0.14 - 0.69 - 0.55 -	(ft/ft) - 0.0028 - 0.0010 - 0.0010 - 0.0086 - 0.0100 -) (ft) - 5038.85 - 5039.04 - 5039.30 - 5039.34 - 5038.76 - 5038.48	(ft) 5039. 23 5039. 41 5039. 47 5039. 47 5039. 83 5039. 83 5039. 83 5040. 05 5040. 14 5040. 36 5040. 82 5041. 03	(ft) 5038. 89 5039. 00 5039. 00 5039. 30 5039. 50 5039. 70 5039. 70 5039. 9 5040. 00 5039. 60 5039. 60	(ft) - 5 0.18 3 0.06 9 0.20 6 0.14 0 0.03 0 0.00 0 0.21 1 0.09 0 0.22 6 0.47 3 0.21 8 -	(ft) 5039.25 5039.41 5039.47 5039.67 5039.81 5039.83 5040.05 5040.14 5040.36 5040.82 5041.03 5041.03	HGLup (ft) 5038. 85 5039. 03 5039. 03 5039. 09 5039. 36 5039. 70 5039. 70 5039. 70 5039. 70 5039. 01 5039. 41 5040. 04 5040. 48
Alternate HGL SDP11 SDMH9 5046.21 exSDP10 exSDMH1 5047.11 exSDP1 Junction SDP2 SDMH2 5042.43 SDP4 NorthInlet 1 5041.95 SDP3 north inlet 2 5041.78	- and EGL Us 36 - 36 - 36 - 36 - 24 - 24 - 18 -	- ed) 35.00 - 31.60 - 21.00 - 21.00 - 21.00 - 10.50	- 64. 00 - 87. 95 - 26. 07 - 215. 55 - 25. 55 - 20. 63 -	(ft/s) - 4.95 - 4.47 - 2.97 - 2.97 - 6.68 - 5.94 -	(ft) - - - - - - - - - - - - - - - -	ut (ft) - - - - - - - - - - - - - - - -	(ft) - 0.38 - 0.31 - 0.14 - 0.69 - 0.55 -	(ft/ft) - 0.0028 - 0.0022 - 0.0010 - 0.0010 - 0.0086 - 0.0100 -) (ft) - 5038. 85 - 5039. 04 - 5039. 30 - 5039. 34 - 5038. 76 - 5038. 48 -	(ft) 5039. 23 5039. 41 5039. 47 5039. 47 5039. 87 5039. 83 5039. 83 5040. 05 5040. 14 5040. 36 5040. 82 5041. 03	(ft) 5038. 89 5039. 00 5039. 00 5039. 00 5039. 70 5039. 70 5039. 70 5039. 70 5039. 70 5039. 60 5039. 60 5040. 11 5040. 40	(ft) - 5 0.18 3 0.06 9 0.20 6 0.14 0 0.03 0 0.00 0 0.21 1 0.09 0 0.22 6 0.47 3 0.21 8 -	(ft) 	HGLup (ft) 5038. 85 5039. 03 5039. 03 5039. 09 5039. 36 5039. 70 5039. 70 5039. 70 5039. 70 5039. 40 5039. 66 5040. 13 5040. 48 5040. 48
Alternate HGL SDP11 SDMH9 5046.21 exSDP10 exSDP10 5047.11 Junction SDP2 SDMH2 5042.43 SDP4 5042.43 SDP4 5041.95 SDP4 northinlet 1 5041.95 SDP3 north inlet 2 5041.78 New Branch	- and EGL Us 36 - 36 - 36 - 36 - 24 - 24 - 18 - -	ed) 35.00 - 31.60 - 21.00 - 21.00 - 21.00 - 10.50 - -	- 64. 00 - 87. 95 - 26. 07 - 215. 55 - 25. 55 - 25. 55 - 20. 63 - -	(ft/s) - 4.95 - 4.47 - 2.97 - 2.97 - 6.68 - 5.94 - 5.94 -	(ft) - - - - - - - - - - - - - - - -	ut (ft) - - - - - - - - - - - - - -	(ft) - 0.38 - 0.31 - 0.14 - 0.69 - 0.55 - -	(ft/ft) - 0.0028 - 0.0022 - 0.0010 - 0.0010 - 0.0086 - 0.0100 - - - -) (ft) - 5038.85 - 5039.04 - 5039.30 - 5039.34 - 5038.76 - 5038.48 - 5038.48 -	(ft) 5039. 23 5039. 41 5039. 47 5039. 81 5039. 83 5039. 83 5040. 05 5040. 14 5040. 36 5040. 14 5040. 36	(ft) 5038.88 5039.00 5039.00 5039.34 5039.50 5039.70 5039.70 5039.97 5040.00 5039.64 5040.11 5040.48	(ft) - 5 0.18 3 0.06 9 0.20 6 0.14 0 0.03 0 0.03 0 0.00 0 0.21 1 0.09 0 0.22 6 0.47 3 0.21 8 - -	(ft) - 5039.22 5039.41 5039.67 5039.83 5039.83 5039.83 5040.05 5040.14 5040.36 5040.32 5041.03 5041.03 5039.41	HGLup (ft) 5038. 85 5039. 03 5039. 09 5039. 30 5039. 70 5039. 70 5039. 70 5039. 70 5039. 11 5040. 00 5040. 13 5040. 48 5040. 48 5039. 03
Alternate HGL SDP11 SDMH9 5046.21 exSDP10 exSDP10 exSDMH1 5047.11 Junction SDP2 5042.43 SDP4 NorthInlet 1 5041.95 SDP3 north inlet 2 5041.78 New Branch SDMH9 5046.21	- and EGL Us 36 - 36 - 36 - 36 - 36 - 18 - 18	- ed) 35.00 - 31.60 - 21.00 - 21.00 - 21.00 - 10.50 - - - -	- 64.00 - 87.95 - 26.07 - 215.55 - 25.55 - 20.63 - - -	(ft/s) - 4. 95 - 4. 47 - 2. 97 - 2. 97 - 6. 68 - 5. 94 - - -	(ft) - - - - - - - - - - - - - - - - - - -	ut (ft) - - - - - - - - - - - - - - -	(ft) - 0.38 - 0.31 - 0.14 - 0.14 - 0.55 - - -	(ft/ft) - 0.0028 - 0.0010 - 0.0010 - 0.0086 - 0.0100 - - - - - -) (ft) - 5038.85 - 5039.04 - 5039.30 - 5039.34 - 5038.76 - 5038.48 - 5038.48	(ft) 5039. 23 5039. 41 5039. 47 5039. 67 5039. 81 5039. 83 5039. 83 5040. 05 5040. 14 5040. 36 5040. 82 5041. 03	(ft) 5038.83 5039.00 5039.00 5039.50 5039.70 5039.70 5039.97 5040.00 5039.60 5040.13 5040.13	(ft) - 5 0.18 3 0.06 9 0.20 6 0.14 0 0.03 0 0.03 0 0.21 1 0.09 0 0.22 6 0.47 3 0.21 8 - - 3 0.10	(ft) 	HGLup (ft) 5038. 85 5039. 03 5039. 09 5039. 30 5039. 70 5039. 70 5039. 70 5039. 70 5039. 01 5040. 00 5040. 13 5040. 48 5040. 48 5040. 13
Alternate HGL SDP11 SDMH9 5046.21 exSDP10 exSDP10 exSDMH1 5047.11 Junction SDP2 SDMH2 5042.43 SDP4 NorthInlet 1 5041.95 SDP3 north inlet 2 5041.78 New Branch SDMH9 5046.21 SDP12 -	- and EGL Us 36 - 36 - 36 - 36 - 36 - 24 - 18 - 18 - 18 - 18	ed) 35.00 - 31.60 - 21.00 - 21.00 - 21.00 - 10.50 - - - 1.70	- 64. 00 - 87. 95 - 26. 07 - 215. 55 - 25. 55 - 20. 63 - - - - 318. 90	(ft/s) - 4.95 - 4.47 - 2.97 - 2.97 - 6.68 - 5.94 - - - 73.52	(ft) - - - - - - - - - - - - - - - - - - -	ut (ft) - - - - - - - - - - - - - - - - - - -	(ft) - 0.38 - 0.31 - 0.14 - 0.69 - 0.55 - - 83.99	(ft/ft) - 0.0028 - 0.0010 - 0.0010 - 0.00086 - 0.0100 - - - - - 0.0100) (ft) - 5038. 85 - 5039. 04 - 5039. 30 - 5039. 34 - 5038. 76 - 5038. 48 - 5038. 48 - 5037. 44	(ft) 5039. 23 5039. 41 5039. 47 5039. 47 5039. 83 5039. 83 5040. 05 5040. 14 5040. 36 5040. 82 5041. 03 - 5039. 41 5039. 51	(ft) 5038. 89 5039. 00 5039. 00 5039. 30 5039. 70 5039. 70 5039. 70 5039. 70 5039. 00 5039. 60 5040. 11 5040. 40 5040. 12 5040. 12 5040. 11 5040. 11	(ft) - 5 0.18 3 0.06 9 0.20 6 0.14 0 0.03 0 0.00 0 0.21 1 0.09 0 0.22 6 0.47 3 0.21 8 - - 3 0.10 3 -	(ft) 5039.25 5039.41 5039.47 5039.67 5039.83 5039.83 5040.05 5040.14 5040.36 5040.82 5041.03 5041.03 5039.41 5039.51 5374.40	HGLup (ft) 5038. 85 5039. 03 5039. 09 5039. 30 5039. 50 5039. 70 5039. 70 5039. 70 5039. 70 5039. 01 5040. 48 5040. 48 5040. 48 5040. 48 5040. 48
Alternate HGL SDP11 SDMH9 5046.21 exSDP10 exSDP10 5047.11 exSDP1 Junction SDP2 5042.43 SDP4 NorthInlet 1 5041.95 SDP3 north inlet 2 5041.78 New Branch SDP12 - SDMH9 5046.21 SDP12 - New Branch	- and EGL Us 36 - 36 - 36 - 36 - 36 - 18 - 18 - 18 - 18 - 18 - 18 - 18 - 1	- - - - - - - - - - - - - -	- 64. 00 - 87. 95 - 26. 07 - 215. 55 - 25. 55 - 20. 63 - - 318. 90 -	(ft/s) - 4.95 - 4.47 - 2.97 - 2.97 - 2.97 - 5.97 - 5.94 - - 73.52 -	(ft) - - - - - - - - - - - - - - - - - - -	ut (ft) - - - - - - - - - - - - - - - - - - -	(ft) - 0.38 - 0.31 - 0.14 - 0.69 - 0.55 - - 83.99 -	(ft/ft) - 0.0028 - 0.0010 - 0.0010 - 0.0086 - 0.0100 - - - - 0.0003 -) (ft) - 5038. 85 - 5039. 04 - 5039. 30 - 5039. 34 - 5038. 76 - 5038. 48 - 5038. 48 - 5038. 48 - 5037. 44	(ft) 5039. 23 5039. 41 5039. 47 5039. 47 5039. 83 5039. 83 5040. 05 5040. 05 5040. 14 5040. 36 5040. 82 5041. 03 - 5039. 41 5039. 51	(ft) 5038.88 5039.00 5039.00 5039.30 5039.70 5039.70 5039.70 5039.00 5040.01 5040.48 5040.48 5040.11 5040.48	(ft) - 5 0.18 3 0.06 9 0.20 6 0.14 0 0.03 0 0.00 0 0.21 1 0.09 0 0.22 6 0.47 3 0.21 8 - - 3 0.10 3 - -	(ft) - 5039.2: 5039.41 5039.47 5039.67 5039.83 5040.05 5040.14 5040.36 5040.82 5041.03 5041.03 5039.41 5039.41 5039.41	HGLup (ft) 5038. 85 5039. 03 5039. 09 5039. 30 5039. 70 5039. 70 5039. 70 5039. 71 5040. 00 5039. 66 5040. 13 5040. 48 5040. 48 5040. 48 5040. 48 5040. 48 5040. 48
Alternate HGL SDP11 SDMH9 5046.21 exSDP10 exSDP10 Junction SDP2 5042.43 SDP4 5042.43 SDP4 5042.43 SDP4 5041.95 SDP3 north inlet 1 5041.95 SDP3 North inlet 2 5041.78 New Branch SDMH9 5046.21 SDP12 - New Branch	- and EGL Us 36 - 36 - 36 - 36 - 36 - 36 - 18 - 18 - 18 - 18 - 18 - 18 - 18 18 - 18 18 18	- - - - - - - - - - - - - -	- 64. 00 - 87. 95 - 26. 07 - 215. 55 - 25. 55 - 25. 55 - 20. 63 - - - 3118. 90 -	(ft/s) - 4.95 - 4.47 - 2.97 - 2.97 - 6.68 - 5.94 - - 73.52 - -	(ft)	ut (ft) - - - - - - - - - - - - - - - - - - -	(ft) - 0.38 - 0.31 - 0.14 - 0.69 - 0.55 - - 83.99 - -	(ft/ft) - 0.0028 - 0.0022 - 0.0010 - 0.0010 - 0.0086 - 0.0100 - - - - - 0.0003 - - - - - - - -) (ft) - 5038. 85 - 5039. 04 - 5039. 30 - 5039. 34 - 5038. 48 - 5038. 48 - 5038. 48 - 5037. 44 - 5037. 44	(ft) 5039. 23 5039. 41 5039. 47 5039. 47 5039. 83 5039. 83 5040. 05 5040. 14 5040. 36 5040. 82 5041. 03 	(ft) 5038.83 5039.00 5039.00 5039.00 5039.70 5039.70 5039.70 5039.70 5039.60 5040.00 5040.40 5040.41 5040.41 5040.41 5040.41 5040.11 5040.41 5040.01 5040.01 5040.01 5040.01 5039.01	(ft) - 5 0.18 3 0.06 9 0.20 6 0.14 0 0.03 0 0.00 0 0.21 1 0.09 0 0.22 6 0.47 3 0.21 8 - - 3 0.10 3 - 3 0.10	(ft) - 5039. 2: 5039. 41 5039. 47 5039. 67 5039. 83 5039. 83 5040. 05 5040. 14 5040. 36 5040. 32 5040. 02 5040. 32 5040. 32 5040. 32 5041. 03 5039. 41 5039. 41 5039. 41 5039. 43	HGLup (ft) 5038. 85 5039. 03 5039. 09 5039. 30 5039. 70 5039. 70 5039. 70 5039. 70 5039. 70 5039. 41 5040. 48 5040. 48 5040. 48 5040. 48 5040. 48 5040. 48 5040. 48 5040. 48 5040. 48 5040. 48
Alternate HGL SDP11 SDMH9 5046.21 exSDP10 exSDP10 exSDMH1 5047.11 Junction SDP2 SDMH2 5042.43 SDP4 NorthInlet 1 5041.95 SDP4 NorthInlet 1 5041.78 New Branch SDMH9 5046.21 New Branch SDMH9 5046.21 SDP13 -	- and EGL Us 36 - 36 - 36 - 36 - 36 - 18 - 18 - 18 - 18 - 18 - 18 - 18 - 1	- ed) 35.00 - 21.00 - 21.00 - 21.00 - 21.00 - 1.70 - 1.70	- 64. 00 - 87. 95 - 26. 07 - 215. 55 - 20. 63 - - 318. 90 - - 31. 28	(ft/s) - 4. 95 - 4. 47 - 2. 97 - 2. 97 - 2. 97 - 5. 94 - - 73. 52 - - 73. 52 - - 9. 60	(ft)	ut (ft) - - - - - - - - - - - - - - - - - - -	(ft) - 0.38 - 0.31 - 0.14 - 0.14 - 0.55 - - 83.99 - 1.43	(ft/ft) - 0.0028 - 0.0010 - 0.0010 - 0.0006 - 0.0100 - 0.0006 - 0.0003 - 0.0003) (ft) - 5038. 85 - 5039. 04 - 5039. 30 - 5039. 34 - 5038. 76 - 5038. 48 - 5038. 48 - 5037. 44 - 5037. 54	(ft) 5039. 23 5039. 41 5039. 47 5039. 47 5039. 83 5039. 83 5040. 05 5040. 14 5040. 36 5040. 82 5040. 82 5040. 14 5040. 36 5040. 51 - 5039. 41 5039. 41 5039. 43	(ft) 5038. 83 5039. 00 5039. 00 5039. 50 5039. 70 5039. 70 5039. 70 5039. 70 5039. 00 5040. 12 5040. 12 5039. 02 5039. 12 5039. 12	(ft) - 5 0.18 3 0.06 9 0.20 6 0.14 0 0.03 0 0.00 0 0.21 1 0.09 0 0.22 6 0.47 3 0.21 8 - 3 0.10 3 - 3 0.02 5 -	(ft) 	HGLup (ft) 5038. 85 5039. 03 5039. 09 5039. 30 5039. 70 5039. 70 5039. 70 5039. 70 5039. 70 5039. 41 5040. 48 5040. 48 5040. 48 5040. 48 5040. 48 5039. 03 5039. 13 5290. 41 5039. 03 5039. 57

					I nRoad	ls output	file.t	xt				500	
New Branch	-	-	-	-	-	-	-	-	-	-	-	- 5039	9.67 5039.36
exSDMH1 5047.11	-	-	-	-	-	-	-	-	- 503	9.67 5039	9.36	0.07 5039	9.74 5039.42
exSDP6	24	10.60	80.15	3.37	-	-	0. 18	0.0022 5039	9.19 503	9.74 5039	9.42	0.18 5039	9.91 5039.73
SDMH1	-	-	-	-	-	-	-	-	- 503	9.91 5039	9. 73	0.02 5039	9.93 5039.75
SDP7	24	10.60	101.63	3.37	-	-	0. 18	0.0022 5039	9.39 503	9.93 5039	9. 75	0.22 5040	D. 15 5039. 98
SDMH6	-	-	-	-	-	-	-	-	- 504	0.15 5039	9. 98	0.05 5040	0. 20 5040. 03
SDP8	24	10.60	127.46	3.37	-	-	0. 18	0.0022 5039	9.68 504	0.20 5040	0. 03	0.28 5040	0.48 5040.31
- SDMH7	-	-	-	-	-	-	-	-	- 504	0.48 5040). 31	0.11 504(0. 59 5040. 41
5043.17 SDP9	18	10.60	19.67	6.00	-	-	0.56	0.0102 5039	9.54 504	0.59 5040	D. 41	0.20 504(0. 79 5040. 23
south inlet 5042.47	-	-	-	-	-	-	-	-	- 504	0.79 5040). 23	- 5040	0. 79 5040. 23
Table B:													
LOSSES Str_ID Cb K	Ħf	Н	Hstr	Нc	He	Нj	Total	- LOSS_0 Dstr	COEFFICE Ko	NTS CD	Cd	Cq	Ср
Outfal I	-	-	-	-	-	-	-	-	-	-	-	-	-
SDP11	0. 18	-	-	-	-	-	0. 18	-	-	-	-	-	-
SDMH9	-	-	0.06	-	-	-	0.06	3.09	0. 281	1.000	0. 509	1.135	1.000
1.000 0.162 exSDP10	0. 20	-	-	-	-	-	0. 20	-	-	-	-	-	-
exSDMH1	-	-	0. 14	-	-	-	0. 14	3.16	1.553	1.000	0. 516	0.559	1.000
1.000 0.448 exSDP1	0.03	-	-	-	_	-	0.03	-	-	_	_	_	-
 Junction	_	0 00	_	_	_	_	0 00	-	_	_	_	_	_
	0.21	-		_	_	_	0.21	I -	_	_	_	_	
 SDM2	0.21		0.00				0.00	2.25	1 222	1 000	0 525	1 000	1 000
1. 000 0. 647	-	-	0.09	-	-	-	0.07	3.25	1. 232	1.000	0. 525	1.000	1.000
 NorthInlot 1	0.22	-	-	-	-	-	0.22		-	-	-	-	-
1.000 0.670	-	-	0.47	-	-	-	0.47	2.78	1. 100	1.000	0. 609	1.000	1.000
SDP3	0.21	-	-	-	-	-	0.21	-	-	-	-	-	-
north inlet 2	-	-	-	-	-	-	-	3.41	-	-	-	-	-
New Branch	-	-	-	-	-	-	-	-	-	-	-	-	-
SDMH9 1.000 0.271	-	-	0.10	-	-	-	0.10	3.09	1.1/5	1.000	0.509	0.453	1.000
SDP12	0. 08	-	-	-	-	-	0.08	-	-	-	-	-	-
New Branch	-	-	-	-	-	-	-	-	-	-	-	-	-
SDMH9	-	-	0. 02	-	-	-	0. 02	3.09	1.443	1.000	0. 509	0.063	1.000
1.000 0.046 SDP13 	0. 01	-	-	-	-	-	0. 01	-	-	-	-	-	-
New Branch	-	-	-	-	-	-	-	- 1	-	-	-	-	-
exSDMH1	-	-	0.07	-	-	-	0.07	3.16	1. 553	1.000	0. 516	0.264	1.000
1.000 0.212 exSDP6	0. 18	-	-	-	-	-	0. 18	-	-	-	-	-	-
 SDMH1	-	_	0. 02	-	-	_	0.02	2.36	0.200	1,000	0. 552	1,000	1.000
1.000 0.110 SDP7	0. 22	-	_	-	-	-	0. 22		-	_	-	_	_
SDMH6	_	_	0.05	_	_	_	0.05	2 34	0 495	1 000	0 549	1 000	1 000
1.000 0.272 SDP8	0.28	_	-	_	_	_	0.28	-	-	-	-	-	-
	-	_	0 11	_	-	_	0 11	 2.21	1 125	1 000	0 514	1 000	1 000
1. 000 0. 614 SDP9	0. 20	-	-	-	-	-	0. 20	-	-	-	-	-	-
south inlet	-	-	-	-	-	-	-	2.15	-	-	-	-	-

APPENDIX D SWALE ANALYSIS

							2FT swal	e_0.6p	ercent.	txt
			MANNI	NG'S N	= 0.0	45 SLOP	E = 0.006	5		
POINT 1.0	DIST 0.0	ELEV 2.0	P	OINT 2.0	DIST 6.0	ELEV 0.0	PC	DINT 3.0	DIST 12.0	ELEV 2.0
WSE FT.	L	DEPTH INC	FLOW AREA SQ.FT.	FL RA (C	OW TE FS)	WETTED PER (FT)	FLOW VEL (FPS)	TOF PL OBSTF	WID .US RUCTIONS	TOTAL ENERGY (FT)
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90	0 0 0 0 0 0 0 0	$\begin{array}{c} 0.100\\ 0.200\\ 0.300\\ 0.400\\ 0.500\\ 0.600\\ 0.700\\ 0.800\\ 0.900\\ \end{array}$	0.030 0.120 0.270 0.480 0.750 1.080 1.470 1.920 2.430	0. 0. 0. 0. 1. 1. 2.	010 064 188 405 735 195 803 574 524	0.632 1.265 1.897 2.530 3.162 3.795 4.427 5.060 5.692	0.335 0.532 0.697 0.845 0.980 1.107 1.227 1.341 1.450	0. 1. 2. 3. 4. 4.	600 200 800 400 000 600 200 800 400	0.102 0.204 0.308 0.411 0.515 0.619 0.723 0.828 0.933
1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90	0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 1.000\\ 1.100\\ 1.200\\ 1.300\\ 1.400\\ 1.600\\ 1.600\\ 1.600\\ 1.700\\ 1.800\\ 1.900\\ \end{array}$	3.000 3.630 4.320 5.070 5.880 6.750 7.680 8.670 9.720 10.830	4. 6. 7. 9. 11. 13. 16. 19. 22. 25.	667 018 590 395 448 761 345 213 376 847	6.325 6.957 7.589 8.222 8.854 9.487 10.119 10.752 11.384 12.017	1.556 1.658 1.757 1.853 1.947 2.039 2.128 2.216 2.302 2.387	6. 6. 7. 8. 9. 10. 10. 11.	000 600 200 800 400 000 600 200 800 400	1.038 1.143 1.248 1.353 1.459 1.565 1.670 1.776 1.882 1.989

							:	2FT SW	ale_1p	ercent.t	xt	
			MANNI	NG'S N	= 0.0	45 S	LOPE =	= 0.01	.0			
POINT	DIST	ELEV	F	POINT	DIST	ELI	EV	P		DIST 12 0	ELEV 2 0	
1.0	0.0	2.0		2.0	0.0	v	.0		5.0	12.0	2.0	
WSFI		DEPTH	EL OW	FLO	w	WETTE	D	EL OW	то	PWTD	τοτα	L
HDL.	-	INC	AREA	RAT	Ē	PER		VEL	P	LUS	ENER	ĞΥ
FT.			SQ.FT.	(CF	s)	(FT)		(FPS)	OBST	RUCTIONS	(FT)
0.100)	0.100	0.030	0.0	13	0.63	2	0.433	0	.600	0.103	
0.200)	0.200	0.120	0.0	82	1.26	5	0.687	1	.200	0.207	
0.300	2	0.300	0.270	0.2	43	1.89	7	0.900	1		0.313	
0.400	, ,	0.400	0.480	0.5	23	2.55	0	1 265	2 3	.400	0.410	
0.50	ň	0.500	1 080	1 5	43	3 79	5	1 429	3	600	0.632	
0.700	5	0.700	1.470	2.3	28	4.42	7	1.583	4	.200	0.739	
0.800	5	0.800	1.920	3.3	23	5.06	0	1.731	. 4	.800	0.847	
 0.900)	0.900	2.430	4.5	50	5.69	2	1.872	5	.400	0.955	
1.000	2	1.000	3.000	6.0	25	6.32	5	2.008	6	.000	1.063	
1.100	2	1.100	3.630	7.7	69	6.95	2	2.140	6	.600	1.1/1	
1.200	2	1.200	4.320	9./	98	/.50	9	2.200	· /	200	1 380	
1 400	5	1 400	5 880	14 7	29 80	8 85	4	2 514	, 's	400	1 498	
1.500	ň	1,500	6.750	17.7	65	9.48	7	2.632	ğ	.000	1.608	
1.600	ŏ	1.600	7.680	21.1	ŏĩ	10.11	9	2.748	9	.600	1.717	
1.70	Ō	1.700	8.670	24.8	04	10.75	2	2.861	. 10	.200	1.827	
1.800)	1.800	9.720	28.8	88	11.38	4	2.972	10	.800	1.937	
1.900)	1.900	10.830	33.3	68	12.01	.7	3.081	. 11	. 400	2.048	

SOUTH SWALE

WSEL d= 0.25

APPENDIX E WATER HARCESTING CALCULATIONS

BASIN	AREA	UNITS	GICAL VOLUM	% LAND T	REATMENT	DATA	90TH PERCENTIL VOLUME
I.D.	(AC)	#	Α	В	C	D	(CF)
	HYRDO	LOGICAL	OLUMETRIC 8	& DISCHAR	GE DATA (DEVELOPED)
BASINS							
Basin A	2.70	9	0.0%	56.4%	0.0%	43.6%	1453
Basin B	1.21	8	0.0%	56.4%	0.0%	43.6%	651
Basin C	0.06	0	0.0%	0.0%	100.0%	0.0%	0
Basin D-1	0.23	0	0.0%	0.0%	100.0%	0.0%	0
Basin D-2	0.02	0	0.0%	0.0%	100.0%	0.0%	0
Basin E	5.89	23	0.0%	56.4%	0.0%	43.6%	3171
Basin F	0.88	5	0.0%	56.4%	0.0%	43.6%	474
Basin G	0.10	0	0.0%	0.0%	100.0%	0.0%	0
Basin H	0.45	0	0.0%	0.0%	100.0%	0.0%	0
Basin I	0.01	0	0.0%	0.0%	100.0%	0.0%	0
Basin J	0.02	0	0.0%	0.0%	10.0%	90.0%	22
Basin K	0.18	0	0.0%	0.0%	100.0%	0.0%	0
TOTAL	11.75	45					5771

E-2

POND Z Hauguloste = 605 CF

Elevation	Incremental Volume	Cumulative Volume	pond3 volumes.	txt Surface Area
Lievación	incrementar vorume			ca ft
	cu rt	cu ft		Sqii
5030.1000	5.6658	5.6658	0.0001	63.7732
5030.2000	7.1343	12.8000	0.0003	79.1396
5030.3000	8.7393	21.5393	0.0005	95.8716
5030.4000	10.4809	32.0202	0.0007	113.9709
5030.5000	12.3589	44.3792	0.0010	133.4351
5030.6000	14.3735	58.7527	0.0013	154.2649
5030.7000	16.5247	75.2774	0.0017	176.4568
5030.8000	18.8123	94.0897	0.0022	200.0161
5030.9000	21.2365	115.3261	0.0026	224.9390
5031.0000	23.7971	139.1233	0.0032	251.2307
5031.1000	32.0477	171.1710	0.0039	349.1394
5031.2000	37.5774	208.7483	0.0048	402.5547
5031.3000	43.0625	251.8109	0.0058	459.4431
5031.4000	48.9768	300.7877	0.0069	520.8245
5031.5000	55,3342	356.1219	0.0082	586.5920
5031.6000	62.1304	418.2523	0.0096	656.7458
5031.7000	69.3652	487.6175	0.0112	731.2893
5031.8000	77.0388	564.6562	0.0130	810.2190
5031.9000	85.1510	649.8072	0.0149	893.5356
5032.0000	93.7020	743.5092	0.0171	981.2434

POND 3 Havaible = 744 CF

E-4

APPENDIX F PREVIOUS DMP'S EXCERPTS

BHI JOB NO, O3 0187

COPYRIGHT BOHANNAN HUSTON, INC. 2003

SEPTEMBER, 2005

1/17/2015

Courtvard I 7500 Jefferson St. NE Albuquerque, NM 87109-4335 ENGINEERING 🖾 SPATIAL DATA 🔺 ADVANCED TECHNOLOGIES APPENDIX G FEMA FIRM

EXHIBITS

- EXHIBIT 1: PRELIMINARY PLAT
- **EXHIBIT 2: EXISTING BASINS MAP**
- EXHIBIT 3: DEVELOPED BASINS MAP
- **EXHIBIT 4: STORM DRAIN NETWORK MAP**
- **EXHIBIT 5: STORM DRAIN PLAN AND PROFILE**
- **EXHIBIT 6: GRADING PLAN**

EXHIBIT 1 PRELIMINARY PLAT

					T	angent Data		I FGAL DESCRI
					ID E	BEARING	DISTANCE 7.19'	
					T2	N44°03'56"W	7.02'	FILED: APRIL
			n - Sana Angelang Angelang Nangelang		T3 T4	N47°41'20"W	6.86'	(2008C-93) TRACT A-1-
$\cdot \setminus \setminus \bigcup / $					T5	N52°49'40"W	63.23'	FILED: APRIL 2 (2008C-93)
DO NMSHC	BRASS DISC	STAMPED "NM448-	-N6A"		T6	N45°46'16"W	<u>164.75'</u>	
© GEOGRA 37'41"F 36.39' GEOGRA	PHIC POSITION	n (nad 1983) Ordinates (centi	RAL ZONE)		T8	N40°14'36"W	49.34'	PROPOSED 2
NORTHII GROUNE	$NG = 1507370$ $TO \ GRID \ FA0$).768 EASTING = CTOR = 0.999682	1506886.591 224		T9	S72°03'36"W	127.68'	2. AREAS
DELTA DATUM:	ALPHA = -00 NAVD 1988	"15'25.58" ELEVATION = 506"	.638		T10	N51°12'02"W	59.20'	EXIST EXIST
					T12	S50'44'27"W	12.03'	PROP
PPOPO	SED 20'				 T14	N52'49 40 W	51.07 7.05'	
WATERI	LINE EASEME	٧T			T15	N57°19'00"W	7.00'	
R=400'					116 T17	N60°03'26"W	<u> </u>	
R=120'	O' WATERLINI				T18	N76*50'35"W	73.84'	nde an
TRACT I EASEMENT	TO REMAIN			L	T19	S33'33'08"W	107.06'	
₹ 32				Curve Dat	a			
R=75'	ID .	DELTA	TANGENT	ARC	RADIUS	CHORD	CHORD BRG	
33	C1 C2	01'04'35"	<u> </u>	<u>69.79'</u> 10.77'	3714.20'	69.78'	S50°29'35"W	τοται α
R=200	C3	14*54'36"	31.52'	62.68'	240.85'	62.50'	S54°50'16"W	
	C4	02°28'16"	80.10'	160.18'	3714.20'	160.17'	S47°35'45"W	3. TOTAL NUMB PROPOSED [
	C5	09°13'34"	25.48 19.51'	38.94'	240.85	38.90'	<u>S40°22'13"W</u>	4. THIS PRELIMI
35 LA LUZ OESTE UNITS 1 THRU 3	C7	01°31'01"	49.17'	98.33'	3714.20'	98.33'	S44°13'29"W	EPC APPROV
R/W 9 FILED: DECEMBER 28, 1973	C8	12°02 55 14°30'27"	5.28	<u> </u>	240.85'	<u> </u>	<u>S49°29'27"W</u> S48°15'41"W	
56 ∞	C10	02°28'36"	80.29'	160.55'	3714.20'	160.54'	S41°08'03"W	5. ALL STREETS PUBLIC, TO
<u>ج</u> 37 م	C11	14°50'03" 12°17'18"	<u> </u>	62.36'	240.85'	62.18'	S33°54'24"W	CITY OF ALB
	C13	01°00'46"	32.83'	65.66'	3714.20'	65.66'	S38'16'17"W	6. TRACTS 1 - I
W TeAct 3 W 38	C14	07°03'24"	43.16'	86.21'	700.00'	86.16'	S49°17'58"E	CEXCERT T
EXISTING 44' FLOATING PUBLIC	C16	09°26'09"	23.93'	47.76'	290.00'	47.70'	S41°03'12"E	7. ALL SANITAR R/W ARE TC
39 WATERLINE EASEMENT AND	C17	17°53'22"	20.07'	39.81'	127.50'	39.65'	N63°06'55"E	MAINTENANC
TO BE CONFINED AND DEFINED	C18	03 50 19	37.00'	73.90'	600.00'	73.85'	N49'17'58"W	8. THIS SUBDIVI
40 WILMIN DEDICATED PUBLIC RIGHT OF WAY GRANTED WITH THE FINAL	C20	05*55'40"	1.55'	3.10'	30.00'	3.10'	N55°47'30"W	ON THE CITY
PLAT TRACT 6A TO BE OWNED	C21 C22	00°41′45″	22.50	45.00 [°]	200.00'	<u>45.00′</u> 27.78'	S35*52'11"W S39*30'15"W	WATER AND
AND MAINTAINED BY THE	C23	07*56'03"	29.57'	59.04'	426.36'	58.99'	S39*31'10"W	ALBUQUERQU
TOACIGA CODOSS HATCHED ADEA	C24	01°30'37" 11°45'19"	48.84'	97.68'	3705.45'	97.67'	S33°25'51"W	OWNER:
42 DESIGNATES EXISTING 25'	C26	08*52'28"	24.79	49.42	275.00'	49.55'	S26°49'24"W	LPP MORTGAGE
PUBLIC WATER EASEMENT AND A 25' PUBLIC SANITARY SEWER	C27	00°52'02"	28.04'	56.09'	3705.45'	56.08'	S30°49'37"W	BY: PROPERTY
43 EASEMENT TO BE VACATED	C28	21°27'18"	29.33	53.81'	143.70'	<u> </u>	S36°20'56"W	A
WITT FINAL PLAT	C30	00°47'33"	25.68'	51.37'	3714.20'	51.37'	S28°17'28"W	KENT TI
TRACT F-1 TRACT 6B	C32	<u> </u>	<u> </u>	<u> </u>	28.00'	55.93	<u>N78°53 38 E</u> N52°24'03"E	Anthoriz
ALUCIA AT LA LUZ ED: APRIL 21, 2008 NON SHADED PORTION OF	C33	09°27'25"	23.99'	47.87'	290.00'	47.81'	N50°18'38"W	
EXISTING 25' PUBLIC WATER EASEMENT AND A 25' PUBLIC SANITARY SEWER EASEMENT REMAIN								
TO REMAIN							' R/W	
EXISTING 25' PUBLIC WATER).5'			25.0'	9.5
EASEMENT AND A 25' PUBLIC SANITARY SEWER EASEMENT TO B S				 5.5' 	1	2.5'	 12.5'	 5.5'
VACATED WITH FINAL PLAT			2%		2%		2%	
에는 사망가 가지 않는 것이 있는 것이 있는 것이 가지 않는 것이 있는 것이 가지 않는 것이 있는 것이 있다. 가지 않는 것이 있는 것이 있는 것이 있는 것이 있다. 이 사망가 같은 것이 있는 것이 같은 것이 있는 것이 있다. 같은 것은 것은 것이 있는 것이 같은 것이 같은 것이 있는 것이 있는 것이 같은 것이 있는 것			- Stork	×				
	4 SIDE WAIVER	WALK (SEE SIDEW) EXHIBIT FOR EXA	ALK – / CT		CURB &	GUTTER	CURB & GUTTER	
	LOCATI)				STREET S	ECTION A-A	
	12 SOIL COMPACT	SUBGRADE @ 955 TON (TYP)	δ MIN.—́			NUT TO SC/	₹LE	
			n na statistik slav Naslave statistik Millionen slave					
				-		42' R _/	/W	
			9.	0'	د می در بارد میکند - از این این این است میکند کرد - این هر این	, CL	-24.0'	9.0'
			4				12.0	
			2%	,	2	7	2%	
		4' SIDEWA			V	an a		7
	12" SOIL COMPACTI	SUBGRADE @ 95% ON (TYP)	MIN.		└──CURB &	GUTTER STREET S NOT TO SCA	CURB & GUTTER	

EXHIBIT 2

EXISTING BASINS MAP

EXHIBIT 3 DEVELOPED BASINS MAP

EXHIBIT 4

STORM DRAIN NETWORK MAP

OSED	STORM	DRAIN	PIPE	
OSED	STORM	DRAIN	MANHOLE	O
OSED	STORM	DRAIN	INLET	
ING ST	form D	RAIN		

SEVILLA AT ANDALUCIA

ID	STREET SLOPE	STREET FLOW DEPTH (ft)	STREET FLOW UPSTREAM OF INLET (cfs)	FLOW CAPTURED BY INLET (cfs)	STREET FLOW BYPASSING INLET (cfs)
IN1	SUMP	0.43	10.6	10.6	N/A
IN2	SUMP	0.54	10.5	10.5	N/A
IN3	SUMP	0.46	10.5	10.5	N/A

ID	STORM DRAIN FLOWRATE (cfs)
MH1	10.6
MH2	10.6
MH3	21.0

SUMMARY OF PIPE FLOWS									
	CI7E	SLOPE	Q (cfs)	Q (cfs)					
טו	SIZE	(%)	ALLOWABLE	ACTUAL					
SDP1	18"	0.25	5.3	10.6					
SDP2	24"	0.25	11.3	10.6					
SDP3	24"	0.25	11.3	10.6					
SDP4	36"	0.15	25.8	21.0					
SDP5	24"	0.60	17.5	21.0					
SDP6	18"	0.60	8.1	10.5					

EXHIBIT 5

STORM DRAIN PLAN AND PROFILE

SEVILLA AT ANDALUCIA STORM DRAIN NETWORK PLAN & PROFILE

01/2015

LEGEND

PROPOSED STORM DRAIN PIPE	
PROPOSED STORM DRAIN MANHOLE	0
PROPOSED STORM DRAIN INLET	
EXISTING STORM DRAIN	

Bohannan Huston www.bhinc.com 800.877.5332

					-					-
SHALL INSTALL POLYMER BRIDGE E NEW CURB AND GUTTER AND NUNECT TO ENSTING AT NEW DETAIL, SHEET 5.	NOTES 1. THE CONTRACTOR SHALL FIELD VERIFY ALL EXISTING UTILITY LOCATIONS AND NOTIFY THE ENGINEER IMMEDIATELY OF OF ANY DISCREPANCIES.	RMATION		DATE	. DATE	DATE	DRMATION	DATE		- -
+84, 16'LT OM STD. CURB & GUTTER (11/2" GUTTER D. CURB & GUTTER (1/2" GUTTER INVERT) H64, 16' LT MM MODIFIED STD. CURB & GUTTER (1/2"	 ALL CURB RETURN RADII SHALL BE 25' UNLESS OTHERWISE SPECIFIED. ALL CURVE DATA AND DIMENSIONS REFER TO FACE OF CURB UNLESS OTHERWISE SPECIFIED. 	T INFO		,	Ι BY		ILM INFO			
B RETURN BELOWLINE DATA FOR CURB RETURN	4. GRADE ELEVATIONS, WHERE NOTED, ARE ALONG FLOWLINE OF STANDARD CURB UNLESS OTHERWISE SPECIFIED.	S-BUIL	TRACTOR K	REU BY PECTOR'S EPTANCE B	LD IFICATION	WINGS RECTED BY	I CRO-F	ORDED BY		
$\begin{array}{c} PC & 43.39 \\ \hline 1 & 43.53 \\ \hline 2 & 43.66 \\ \hline 3 & 43.80 \end{array} D = 90^{\circ}59'03'' \\ R = 25.00' \\ T = 25.43' \end{array}$	 5. CONTRACTOR IS TO INSTALL A 4" X 4" X 5' POST AND EMD AT THE END OF EACH SANITARY SEWER SERVICE. 6. CONTRACTOR IS RESPONSIBLE FOR 	AS	H" CON	INS	F IE VER	DRA COR	Σ	REC		
$\begin{array}{c} PT & 43.93 \\ PT & 43.93 \\ PI & 43.70 \\ PI & 43.70 \\ PC & STA. 5+83.39, 24.85' LT. \\ PL & STA & 5+60.96, 52.57' LT \\ PL & STA & 5+60.96, 50.57' LT \\ PL & STA & 5+60.95' LT \\ PL & STA &$	REPAIR AND/OR REPLACEMENT OF ALL UTILITY CONDUITS AND EXISTING LINES. 7. ANY ADDITIONAL GRADING REQUIRED TO MATCH PROPOSED STREET CRADES	S	1920L" (NATES	6.82		113.852			
00' LT. PI STA. 5+58.08, 27.30' LT. 00' LT. RAD STA. 5+85.80, 49.73' LT.	SHALL BE INCIDENTAL TO PAVING ITEMS. 8. CONTRACTOR SHALL PROVIDE THE INSPECTORS, (CITY AND PRIVATE) WITH	MARK	STAMPE	COORDI	=366 • 68(I ON = 5			
B RETURN (D) FLOWLINE DATA FOR CURB RETURN '45'' PC 45.861 45.802 $45.74R = 25.00'$	PLAN. THE PLAN MUST BE APPROVED BEFORE TESTING OPERATIONS BEGIN. 9. CONTRACTOR SHALL PARK EQUIPMENT	BENCH	TABLET	E PLANE	ZONE) X	46.75	ELEVAT			
$\begin{array}{c} 2 & 135.69 \\ \hline 3 & 45.69 \\ \hline PT & 45.63 \\ \hline PI & 45.06 \end{array} T = 24.04' \\ L = 38.29' \\ C = 34.66' \end{array}$	AND VEHICLES AS NOT TO INTERFERE WITH NORMAL ACTIVITIES OF RESIDENTS OR OTHER CONTRACTORS ON SITE. 10. ANY DAMAGE TO THE EXISTING FACILITIES		S BRASS	M. STAT	ENTRAL	=1.502.2	SVD 1929			
67' RT. PC STA. 4+77.37, 33.00' RT. 69' RT. PT STA. 5+02.35, 57.02' RT. 85' RT. PI STA. 5+01.41, 33.00' RT. 58' RT. RAD STA. 4+77.37, 58.00' RT.	(CURB & GUTTER), PAVEMENT, CONDUITS, LANDSCAPING, UTILITY LINES, ETC.) DURING CONSTRUCTION SHALL BE REPLACED AT THE CONTRACTORS' EXPENSE.	NO	AC AC		(C	= <u>\</u>	ž			
5- SLOPE FROM +2% TO -2%	 REMOVAL OF THE EXISTING CURB AND GUTTER SHALL BE AS PER COA STD. DWG. 2415 (SAWCUT ONLY). WHEELCHAIR RAMPS SHALL BE 	RMATI	OTES							-
	CONSTRUCTED PRIOR TO ACCEPTANCE OF CURB & GUTTER. 13. ALL EXCAVATION, TRENCHING AND SHORING ACTIVITIES MUST BE CARRIED-DUT IN	INFO	ELD N							
	ACCORDANCE WITH OSHA 29 CFR 1926.650 SUBPART P.	JRVEY		•			-			-
50 25 0 50 SCALE: 1"=50'	1INSTALL WHEELCHAIR RAMP AS PER MODIFIED STD. DWG. 2441 CASE II AS PER DETAIL SHEET 5.	EAL SI		2						
	2 2A 2B INSTALL WHEELCHAIR RAMP AS PER DETAIL SHEET 5.	'S SI		1 St	IST 1A	N J ME	Star	2115	\ \	
5070	AS PER STD. DWG. 2415A [4] MEDIAN CURB & GUTTER	EER	ан Маралар	Light	(1624	4		b	
	AS PER STD. DWG. 2415B 5 MOUNTABLE CURB ROLL TYPE AS PER STD. DWG. 2415A	NG I N	1	UN N	nie g.	14-	on			
5060	6 INSTALL 6' CONCRETE VALLEY GUTTER AS PER STD. DWG. 2420		S	SL SL				003	203	
	7 DEFERRED 4' SIDEWALK		j j j	2	B	х.		10/20	10/20	
5050	AS PER STD. DWG. 2430			EET		A		DATE	DATE	
	AS PER STD. DWG. 2430			HIS SH						
5040	AS PER STD. DWG. 2430			DED TI	S	INS				
	12 2' ALLEY GUTTER AS PER STD. DWG. 2415A	-		• AD AD	MARK	ISIC	SIGN			
5030	13 6' ASPHALT TRAIL TO BE BUILT BY OTHERS WITH LANDSCAPE PLANS		24	No I	REI	REV	DE			
	14 INSTALL 10' CONCRETE VALLEY GUTTER PER STD. DWG 2422		EWS .	REVIS				0		
5020	15 DEPRESSED CURB AND GUTTER AS PER STD, DWG, 2415B		DESIGN P	DESIGN			· · · · · · · · · · · · · · · · · · ·	S C	C C C	-
	Bohannan 🔺 Huston		50-1-	-05 -05	ATE			BY	BΥ	
5010	Courtyard I 7500 Jefferson St. NE Albuquerque, NM 87109-4335 ENGINEERING A SPATIAL DATA ADVANCED TECHNOLOGIES		A 12-		ND. D			DESIGNED	CHECKED	
5000	CITY OF ALBUQ PUBLIC WORKS DEPAR ENGINEERING DEVELO	U RT DP	E I ME ME	RC N'	J [r r	J E G	F RC)U	P	
	ANDALUCIA AT LA LUZ PAVING PLAN & PRO	 FILE	UN	IT	1	•				
4990	SEVILLA AVENUE STA. 0+00	00.C) — (0./D	3 + 6 <u>AY / Y</u>	34 .4 R.	17 · M	0./()AY/	YR.	
	PPROVED OCT 2 7 2005 DCT 2 7 7 0 CITY ENGINEER ISP							· · · · · · · · · · · · · · · · · · ·		
SCALE: 1" = 50' (HORIZ.)	C TY PROJECT NO.	•	SHE	ET			0	F		1
1" = 10' (VERT.)	730881 F-11				6	A		2	17	

EXHIBIT 6 GRADING PLAN

										×		
GENERAL NOTES 1. ALL WORK DETAILED ON THESE PLANS A PROJECT SPECIFICATIONS AND THE PROJECT STANDARDS SHALL APPLY.	AND PERFORMED UNDER THIS CONTRA GEOTECHNICAL REPORT. WHERE APPI	ct shall be construct Icable, city of albuqu	ed in accordance with Erque public works	THE	ATION	DATE	DATE	DATE	DATE	MATION	DAIE	DAIE
2. THE CONTRACTOR SHALL ABIDE BY ALL LOCAL, STATE, AND FEDERAL LAWS, RULES AND REGULATIONS WHICH APPLY TO THE CONSTRUCTION OF THESE IMPROVEMENTS, INCLUDING EPA REQUIREMENTS WITH RESPECT TO STORM WATER DISCHARGE.										NF OR		
3. PRIOR TO CONSTRUCTION, THE CONTRACTOR SHALL FIELD VERIFY THE HORIZONTAL AND VERTICAL LOCATIONS OF ALL POTENTIAL OBSTRUCTIONS INCLUDING ALL UNDERGROUND UTILITIES. SHOULD A CONFLICT EXIST, THE CONTRACTOR SHALL NOTIFY THE CONSTRUCTION OBSERVER OR ENGINEER SO THAT THE CONFLICT CAN BE RESOLVED WITH A MINIMUM AMOUNT OF DELAY.							37	37		FILM		
4. TWO (2) WORKING DAYS PRIOR TO ANY EXISTING UTILITIES.	EXCAVATION, THE CONTRACTOR SHAL	L CONTACT LINE LOCATIN	g service for location	I OF		ACTOR	TOR'S	ATION I	VCS CTED B		DEU BY	
5. ALL ELECTRICAL, TELEPHONE, CABLE TV CONSTRUCTION THAT REQUIRE RELOCATION, COORDINATION OF ALL NECESSARY UTILITY INCONVENIENCES CAUSED BY UTILITY COMPA ALLOW UTILITY CREWS TO PERFORM THEIR R	, GAS AND OTHER UTILITY LINES, CAB SHALL BE COORDINATED WITH THAT U ADJUSTMENTS. NO ADDITIONAL COMPI NY WORK CREWS. THE CONTRACTOR REQUIRED WORK.	Les, and appurtenance JTILITY. The contracto Ensation will be allow May be required to r	S Encountered During R Shall be responsibli Ed for delays or Eschedule his activitie	e for - s to	Ă	D 1969" CONTR WORK	INSPEC	FIELD	CORRE		NO	NU
6. THE CONTRACTOR IS RESPONSIBLE FOR EXISTING FACILITIES CAUSED BY CONSTRUCT APPROVED BY THE CONSTRUCTION OBSERVE	PROTECTING ALL EXISTING UTILITY LIN ION ACTIVITY SHALL BE REPAIRED OR R.	ES WITHIN THE CONSTRUC REPLACED AT THE CONT	:TION AREA. ANY DAMA' RACTOR'S EXPENSE AND	GE TO	KS	0 "REWAR 83)	ATES		319	5005 6"	19.688))))))
7. CONSTRUCTION ACTIVITY SHALL BE LIMIT RESULTING FROM THE CONSTRUCTION PROCE	ied to the property and/or proji ESS shall be repaired or replace	ECT LIMITS. ANY DAMAGI D AT THE CONTRACTOR'S	TO ADJACENT PROPERT EXPENSE.	IES	MAR	TAMPEI (NAD	ORDIN		91190.8	.99967 1717 7	= 53	}
8. OVERNIGHT PARKING OF CONSTRUCTION CONTRACTOR SHALL NOT STORE ANY EQUIP	EQUIPMENT SHALL NOT OBSTRUCT DR MENT OR MATERIAL WITHIN THE PUBLI	IVEWAYS OR DESIGNATED C RIGHT-OF-WAY.	TRAFFIC LANES. THE		NCT	DISC S	NE CO		E=149		VATION	
9. THE CONTRACTOR SHALL OBTAIN ALL TI BARRICADING, TOPSOIL DISTURBANCE, EXCAN	HE NECESSARY PERMITS FOR THE PRO VATION PERMITS, EPA STORM WATER F)JECT PRIOR TO COMMEN(PERMITS, ETC.).	ING CONSTRUCTION (I.E.,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ШШ	SRASS HIC PO	LE PLA	ZONE	54.063	TO GRI		2
10. ALL PROPERTY CORNERS DESTROYED D PROPERTY CORNERS MUST BE RESET BY A	JURING CONSTRUCTION SHALL BE REPL REGISTERED LAND SURVEYOR.	ACED AT THE CONTRACT	or's expense. All		*	C&GS E DGRAPH	I. STAT	NTRAL	148736		VD 198	-
11. THE CONTRACTOR SHALL PREPARE A C FROM THE CITY OF ALBUQUERQUE, TRAFFIC ADJACENT TO EXISTING STREETS.	ONSTRUCTION TRAFFIC CONTROL AND ENGINEERING DEPARTMENT, PRIOR TO	SIGNING PLAN AND OBTA BEGINNING ANY CONSTRI	in approval of such i Jotion Work on or	PLAN -		A TE GE(N.N.	EC (C	<u>_</u>	GR DEI	NA I	
12. ALL BARRICADES AND CONSTRUCTION S	SIGNING SHALL CONFORM TO APPLICAE	BLE SECTIONS OF THE "M	anual on uniform trai	FIC	NOIL			2.0				
CONTROL DEVICES" (MUTCD), US DEPARTMENT OF TRANSPORTATION, LATEST EDITION. 13. THE CONTRACTOR SHALL MAINTAIN ALL CONSTRUCTION BARRICADES AND SIGNING AT ALL TIMES. THE CONTRACTOR SHALL VERIFY					ORM A	OTES						
THE PROPER LOCATION OF ALL BARRICADING AT THE END AND BEGINNING OF EACH DAY. 14. THE CONTRACTOR SHALL TAKE ALL STEPS NECESSARY TO CONFORM WITH EPA REQUIREMENTS, INCLUDING COMPLIANCE WITH NPDES					L Z							
GRADING NOTES 1. EXCEPT AS PROVIDED HERIN, GRADING SH	HALL BE PERFORMED AT THE ELEVATION	ons and in accordance	. with the details sho	MN ON	SURVEY). T			•			
2. CONTRACTOR SHALL OBTAIN AND ABIDE HEALTH DIVISION, PRIOR TO CONSTRUCTION. INCIDENTAL TO THE PROJECT COST. THE CO MEASURES AND REQUIREMENTS AND WILL BE ADDROVALS	BY A TOPSOIL DISTURBANCE PERMIT F The Cost for required construct NTRACTOR SHALL CONFORM TO ALL C E RESPONSIBLE FOR PREPARING AND	Rom the city of Albuc Ton dust and erosion XTY, county, state, and Obtaining all necessaf	UERQUE ENVIRONMENTAL Control measures sha) Federal Dust Contro Y Applications and	ILL BE	SEAL	Ž		JDA P	ADIL	90		
3. ALL WORK RELATIVE TO FOUNDATION CON SHALL BE CONSTRUCTED IN ACCORDANCE W UNLESS OTHERWISE STATED OR PROVIDED F (FIRST PRIORITY), AND/OR THE CITY OF ALE	ISTRUCTION, SITE PREPARATION, AND ITH THE SOILS REPORT PREPARED BY OR HEREON, SHALL BE CONSTRUCTED BUQUERQUE (COA) STANDARD SPECIFIC	PAVEMENT INSTALLATION, X8EVINYARD DATED JUL' IN ACCORDANCE WITH TH CATIONS FOR PUBLIC WOR	AS SHOWN ON THIS PLA (22, 2013. All other v Ie project specificatio KS (second priority).	N, (NORK, 1 NS 1	SINEER'S	Yel	NO LICENT		6035	S CO	WINTER BY	Y
4. TWO WORKING DAYS PRIOR TO EXCAVATION EXISTING UTILITIES.)N, CONTRACTOR MUST CONTACT LINE	LOCATING SERVICE (765	-1264) FOR LOCATION O	F					ESIO			
5. PRIOR TO GRADING, ALL VEGETATION DEBRIS, AND NEAR SURFACE ORGANICALLY CONTAMINATED SOIL SHALL BE STRIPPED FROM ALL AREAS TO BE GRADED. VEGETATION AND DEBRIS SHALL BE DISPOSED OF OFF-SITE OR STOCK-PILED FOR USE IN PLANTERS AND NON-STRUCTURAL FILLS.								ΒY		12015	/2015	/2015
6. EARTH SLOPES SHALL NOT EXCEED 4 HORIZONTAL TO 1 VERTICAL UNLESS SHOWN OTHERWISE. 7. IT IS THE INTENT OF THESE PLANS THAT THIS CONTRACTOR SHALL NOT PERFORM ANY WORK OUTSIDE OF THE PROPERTY										A TF 01	ATE 01	ATE 01,
BOUNDARIES EXCEPT AS REQUIRED BY THIS PLAN. 8. THE CONTRACTOR IS TO ENSURE THAT NO SOIL ERODES FROM THE SITE ONTO ADJACENT PROPERTY OR PUBLIC RIGHT-OF-WAY THIS							an the Sec			Ċ		i d
8. THE CONTRACTOR IS TO ENSURE THAT N SHOULD BE ACHIEVED BY CONSTRUCTING TE EROSION.	O SOIL ERODES FROM THE SITE ONTO MPORARY BERMS AT THE PROPERTY I	ADJACENT PROPERTY OF INES WETTING THE SOIL	PUBLIC RIGHT-OF-WAY. TO PROTECT IT FROM WIN	this 1D								
9. A DISPOSAL SITE FOR ALL EXCESS EXCAVATION AND UNSUITABLE MATERIAL SHALL BE OBTAINED BY THE CONTRACTOR IN COMPLIANCE WITH APPLICABLE ENVIRONMENTAL REGULATIONS AND APPROVED BY THE OBSERVER. ALL COSTS INCURRED IN OBTAINING A DISPOSAL SITE AND HAUL THERETO SHALL BE CONSIDERED INCIDENTAL TO THE PROJECT, AND NO SEPARATE MEASUREMENT OR PAYMENT SHALL BE MADE.			NG A	anno an			EMARKS	SIONS	SIGN			
10. PAVING AND ROADWAY GRADES SHALL E Plan Elevations.	3e +/- 0.1' FROM PLAN ELEVATIONS	; pad elevation shall	BE +/- 0.05' FROM BUI	LDING					REV	DE		
11. ALL SPOT ELEVATIONS ARE TO FLOWLINE ELEVATION.	. UNLESS OTHERWISE NOTED. VALLEY	GUTTER ELEVATIONS ARE	SHOWN AT FLOWLINE									
2"										Md	ARR	PM
4 ^{**}								ATE -		л Д		BΥ
SAN ANTONIO ARROYO	Bohan	nan 🛦	Husto	n -				0. D/		SIGNED	AWN B	ECKED
FILTER FABRIC	www.bhinc.com	ITY OF	800.877.53			20		Z F	<u> </u>			<u> </u>
		PARTME UNICIPAL	NT OF DEVELO	PME	N'	ſ		-				
5'		SEVIL	LA AT ANDA VERALL GRADING PLAN									
4' 2%	DESIGN REVIEW COMMIT		INEER APPROVAL			MO. /[)AY/	YR.	MO.	/DAY/	<u>'YR.</u>	к.,
4' SIDEWALK (SEE SIDEWALK WAIVER EXHIBIT FOR EXACT LOCATION)				LAST DESIGN UPDATE								
└──12" SOIL SUBGRADE @ 95% MIN		en de la 🖡 de la compañía de		1 1				1				
COMPACTION (TYP)	CITY PROJECT NO.		ZONE MAP	NO.		SHEET		لی۔۔۔۔ ا	OF		3	

									1		
	LEGEND			NO							
	PROPOSED SPOT ELEVAT	ION • 52	35.25	MAT	DATE	DATE	DATE	DATE	DATE	DATE	
	EXISTING SPOT ELEVAT	10N 0 52	35.25	ORI					5		
	EXISTING CONTOUR		5860	N					Ξ		
	DIRECTION OF FLOW	<u>S=2.0.</u> SD		UILT			ВY				
	PROPOSED STORM DRAIN				ACTOR	DBY TOR'S					
	PROPOSED STORM DRAIN			A	SON TR/	STAKED NSPEC	ACCEP FIELD VERIFIC	CORRECC	SECORI	Ģ	
	PROPOSED STORM DRAIN	MANHOLE O			969"						
62:15-	PROPOSED WATER BLOCK (HIGH POINT)	~~~	a et a	RD 1						
<u>62.16</u> <u>62.12</u> <u>61.21</u>	RETAINING WALL			S S	"REWA		2		2	.688	
62,00 (S) 152 60.69	PROPOSED WATER (LOW	POINT)		ARK	PED			0.819	2.26"	5319	
	TURNED BLOCK SEE DET Sheet 1	AIL TB		Ň	STAM			49119	017'1	I N	
				NCF	DISC	NF				VATIC	
37.11 26.2				ШШ	ASS		ZONE	4.063	HA =	3 ELE	
13,49 35					GS BF		RAL	87364	ALP	1985	
	NOTE :]		JSC&(N N	CENT	V=14	JELTA	IAVD	
	ALL CURB IS STAND	ARD CURB & GUITER							$\frac{1}{1}$		
the property of the second sec				NO		AU AU					
				MAT	S I S						
				OR	LON NOT					· . •.	
			• . *	N		ח		-			
				VEY							
				SUR							
			•			ž					
									٦N		
				SE/	U	e k	WE A	APE:		Â	NY
				R'S	0			6035		년 년	P
				NER NER		E.	je	-1	Z		
				NG			PROF	FESION	AL		
									1		
			•				ВҮ		2015	2015	2015
									101	-01/	101
									DATI	DATI	DATI
		1.					RKS	S			
	Ľ						-MA	NOIS	NDI N		
							R	E < C			
	X						4 1	R			
	40 20	0 40									
	1	"=40°				-			Md	I RR	Md
			ана стана 1977 - Салан С 1977 - Салан Са						ا عر	~	7
	hanna		atan				DA		ED	N BY	ED
			151011				<u>ŏ</u>		ESIGN	RAWN	HECK
			BIIOI		R (IE IE				
	DEPAL	RTMENT O	F								
		SEVILLA AT	ANDALU		<u>#</u>						
		GRAD	ING PLAN					:			
DESIGN	REVIEW COMMITTEE	CITY ENGINEER APP	PROVAL		MO.	/DAY	/YR.	MO./	DAY/1	/R.	
			DESIGN								
				5							· · · · · · · · · · · · · · · · · · ·
			TONE MAD NO		CI 10	ст.					
OUT PROJE			LUNE WAT INU.		SHE	-'	3			3	