

P.O. BOX 1293 ALBUQUERQUE, NEW MEXICO 87103

Public Works Department Transportation Development Services Section

July 1, 2002

Sara Lavy, PE 8509 Jefferson NE Albuquerque, NM 87113

Re:

Certification Submittal for Final Building Certificate of Occupancy for

Bob Turner Ford Used Car Expansion, [F16 / D5C]

1221 Renaissance Boulevard, NE

Engineer's Stamp Dated June 24, 2002

Dear Mr. Lavy:

The TCL / Letter of Certification submitted on June 24, 2002 is sufficient for acceptance by this office for final Certificate of Occupancy (C.O.). Notification has been made to Building and Safety and final C.O. has been logged in by Vicki Chavez in the Building Safety Section downstairs.

Sincerely,

Richard Dourte, PE Traffic Engineer

Development and Building Services

Public Works Department

c: Engineer

Hydrology file Mike Zamora 8509 Jefferson NE Albuquerque, NM 87113 (505) 858-3100 fax (505) 858-1118 twllc@tierrawestllc.com 1-800-245-3102

June 24, 2002

Mr. Mike Zamora
Development and Building Services
Public Works Department
PO Box 1293
Albuquerque, NM 87103

RE: Final Traffic Certification for Certificate of Occupancy

Bob Turner Ford Used Car Expansion, 1221 Renaissance Blvd, NE

Dear Mr. Zamora:

We are requesting Final Traffic Certification of the Site Plan for the above referenced site located in the Renaissance Center. Enclosed please find one copy of the amended Site Plan for Building Permit with as-built information and information sheet for the above referenced project. Jaynes Corporation completed the on-site paving, curb and gutter and sidewalks. Field verification of the Site Plan was completed by our office. It is our understanding that the owner requested the double deep parking areas not be striped and these areas were reviewed by you and Ed Avila. The only parking areas striped are in front of the office building and in front of the car sales canopy area. With the exception of the striping noted, all paving, curb work and striping is in substantial compliance with the approved Site Plan.

If you have any questions regarding this matter, please do not hesitate to call me.

Sincerely,

Sara Lavy,

Enclosure/s

CC:

James K Trump, Jr.

Gary Chilcoat

JN: 21098

sci

A. S. Free ...

21098: 2198 Final CO traffic ltr.doc

P.O. BOX 1293 ALBUQUERQUE, NEW MEXICO 87103

December 14, 2000

Ron Bohannan, PE
Tierra West LLC
8509 Jefferson NE
Albuquerque, NM 87113

Re: Turner Ford Site revisions (F16/D5A)

Engineer Stamp date 7-12-00

Certification date 9-23-00

Dear Mr. Bohannan,

Based on information provided in your submittal dated 10-16-00 and 12-13-00, the above referenced plan is approved for Certificate of Occupancy.

If you have any questions, you can contact me at 924-3986.

Sincerely

Bradley L. Bingham, PE

Sr. Engineer, Hydrology

C: file

CITY OF ALBUQUERQUE Public Works Department

INTER-OFFICE CORRESPONDENCE

December 28, 2000

TO:

Bradley L. Bingham, PE, One Stop

FROM:

Glenn Jurgensen, Superintendent, Storm Prainage Maint - PWD

SUBJECT:

SO-19 PERMIT (F16/D5A)

Afinal inspection was conducted on (F16/D5A) SO-19 project. The project was found to be in compliance with all City requirements for drainage. The request for a Certificate of Occupancy should be approved.

If you have any questions, please feel free to contact me at 291-6214.

c: file

P.O. BOX 1293 ALBUQUERQUE, NEW MEXICO 87103

March 5, 1999

Ronald R. Bohannan, P.E. Tierra West LLC 4421 McLeod Rd. NE, Suite D Albuquerque, NM 87109

RE: BOB TURNER FORD (F16-D5A). GRADING AND DRAINAGE PLAN FOR SITE DEVELOPMENT PLAN FOR BUILDING PERMIT, BUILDING PERMIT, AND GRADING PERMIT APPROVALS. ENGINEER'S STAMP DATED FEBRUARY 19, 1999.

Dear Mr. Bohannan:

Based on the information provided on your February 19, 1999 submittal, the subject plan is approved for Site Development for Building Permit, Building Permit, and Grading Permit.

Please attach a copy of this approved plan to the construction sets prior to sign-off by Hydrology.

Prior to Certificate of Occupancy approval, an Engineer's Certification per the DPM will be required.

If I can be of further assistance, please feel free to contact me at 924-3984.

Sincerely,

John P. Murray, P.E.

Hydrology

c: Andrew Garcia File

July 24,1998

Shahab Biazar
Tierra West LLC
4421 McLeod Rd. NE, Suite D
Albuquerque, New Mexico 87109

RE: REVISED DRAINAGE PLAN FOR BOB TURNER (F16-D5A) RECEIVED 7/7/98

Dear Mr. Bohannan:

Based on the information provided on your July 7,1998 resubmittal, any changes made to the plan drawing requires that the stamp date be changed to reflect the new submittal.

Please change the stamp date and resubmit.

If I can be of further assistance, please feel free to contact me at 924-3986.

C: Andrew Garcia
File

Sincerely

Bernie J. Montoya CE
Associate Engineer

July 13, 2000

Ronald R. Bohannan, P.E. Tierra West, LLC 8509 Jefferson, NE Albuquerque, NM 87113

RE: GRADING & DRAINAGE PLAN FOR TRACT 1C, NORTH RENAISSANCE, BOB TURNER FORD (F-16/D005A) ENGINEERS STAMP DATED JULY 12, 2000 SUBMITTED FOR SO 19

Dear Mr. Bohannan,

Based upon the information provided in your July 13, 2000, submittal, the project, referred to above, is approved for SO 19. A copy of this approval letter must be on hand when applying for the excavation permit.

Prior to release of the Certificate of Occupancy, an Engineer Certification, per the DPM checklist, will be required.

If you have any questions, please call me at 924-3988.

Sincerely,

Stuart Reeder, P.E.

Hydrology Division

xc: Pam Lujan, Permits w/attachment

Shrait KEEdER, PE.

Whitney Reierson

File

P.O. BOX 1293 ALBUQUERQUE, NEW MEXICO 87103

April 6, 2000

Ron Bohannan, PE Tierra West LLC 8509 Jefferson NE Albuquerque, NM 87113

Turner Ford Site revisions (F16/D5A) Re:

Engineer Stamp date – not stamped

Dear Mr. Bohannan,

I have received your letter and drawing submittal dated 4-26-00 and accept your response and proposed modifications to the access ramp. Please keep this office and Storm Drain Maintenance informed of the construction schedule so that we can facilitate inspection and acceptance.

If you have any questions, you can contact me at 924-3986.

Bradley S. Bingham, PE

Hydrology Review Engineer

Fred Aguirre, w/o att Glen Jurgensen w/ att

file

DRAINAGE REPORT

for

Bob Turner Ford

Prepared by

Tierra West, LLC 4421 McLeod Road NE, Suite D Albuquerque, New Mexico 87109

Prepared for

James K. Trump, Jr.
Union Pension Transaction Trust 93-2 NM
4411 McLeod Rd, NE Suite G
Albuquerque, New Mexico 87109

February 1999

BOHAMA

7868

EISTERED

ENGINEER

Ronald R. Bohannan P.E. No. 7868

Location

Bob Turner Ford is located at the northwest corner of Montano and Renaissance
Boulevard. It is the proposed location of a car dealership and service shop. The site is
identified as Tract 1C of the North Renaissance Center and contains approximately 12.22
acres. The purpose of this report is to provide the drainage analysis and management plan for
the subdivision.

Existing Drainage Conditions

The site is currently undeveloped. The runoff from the site sheet flows from east to west. There is a temporary desilting pond located in the southwest corner of the site. Runoff from the site enters the desilting pond and then overflows to an existing concrete rundown, Renalssance located on the west side of the site. The concrete rundown drains to the existing Montano Detention Pond. There are no offsite flows entering the site from the south or the east as Montano and Renaissance Boulevards capture any flows from those directions. The natural topography of the site prevents any flows from entering the site from the west. The north side of the site will have a berm and temporary detention pond to divert any offsite flows from entering the site. When the site to the north is developed the detention pond will be removed.

FEMA Map and Soil Conditions

The site is located on FIRM Map 35001C0138 D as shown on the attached excerpt.

The map shows that the site does not lie within any 100 year flood plains.

The site contains one soil type from the Soil Conservation Service Soil Survey of Bernalillo County. The soil is a Bluepoint-Kokan Association which is a loamy fine sand that has slow runoff, rapid permeability, and a moderate to severe hazard of water erosion.

FEMA MAP 35001C0138

On-Site Drainage Management Plan

The site is located in the Renaissance Center and must follow the guidelines of the Renaissance Master Drainage Plan. The site is allowed to discharge 0.1 cfs per acre. There are approximately 11.09 acres discharging to the existing storm drain system. This is an allowable discharge of 1.11 cfs.

There are six proposed basins on the site. Five of the basins will drain to parking lot ponds and the drainage will be released at controlled discharge rates. The runoff will be conveyed via a new storm drain system to an existing 84" storm drain line. The existing 84" line will carry the runoff to the existing Montano Detention Pond. Basin 6 will continue the existing drainage pattern and drain to the Montano Detention Pond via an existing concrete rundown located on the west side of the site.

The proposed on-site storm drain system will convey the allowable discharge rate to the existing 84" storm drain. Basin 1 has a developed discharge rate of 5.36 cfs. This basin will drain to a parking lot pond (Pond 1) that will limit the runoff with a 2.5" orifice plate to 0.34 cfs. Basin 5 has a developed discharge rate of 23.20 cfs and will drain to Pond 5. This pond will control the discharge to 0.79 cfs with a 3.5" orifice plate. The developed discharge rate of 1.55 cfs for Basin 4 will drain to Pond 4. The discharge from the pond will be released at a rate of 1.3 cfs via a 5.25" orifice plate. Pond 5 and Pond 4 will both drain to Pond 3. Basin 3, with a discharge rate of 1.53 cfs, also drains to Pond 3. A 6-1/12" orifice plate will limit the flow from the pond to 2.87 cfs. Pond 3 drains to Pond 2. Basin 2 also drains to Pond 2 with a developed discharge rate of 5.95 cfs. Pond 2 limits the flow leaving the site to 1.04 cfs via a 3.25" orifice plate. The site is designed to discharge 1.04 cfs which is less that the allowable discharge of 1.11 cfs.

There is a temporary detention pond located north of the site. This pond will capture the flows entering the site from Tract 1B of the North Renaissance Center. The pond will limit the

release to the allowable 0.1 cfs/acre. The tract contains approximately 10.03 acres. This is an allowable discharge rate of 1.00 cfs. The pond will discharge 0.93 cfs which is less than the 1.00 cfs allowed. The pond will also act as a parking area for the Bob Turner Ford site.

Summary

There are six proposed basins on the site. Five of the proposed basins drain to parking lot ponds and a proposed storm drain system that will limit the flows to the allowable discharge rate. The sixth basin consists of the entrance to the site and will drain west via an existing concrete rundown to the Montano Detention Pond.

RUNOFF CALCULATIONS

The site is @ Zone 2

LAND TREATMENT

Proposed

B = 90%

D = 10 %

Existing

B = 100%

DEPTH (INCHES) @ 100-YEAR STORM

 $P_{60} = 2.01$ inches

 $P_{360} = 2.35 \text{ inches}$

 $P_{1440} = 2.75 \text{ inches}$

DEPTH (INCHES) @ 10-YEAR STORM

 $P_{60} = 2.01 \times 0.667$

= 1.34 inches

 $P_{360} = 1.57$

 $P_{1440} = 1.83$

Drainage Basins

Undeveloped

BASIN	AREA (SF)	AREA (AC)	AREA (MI ²)
1	532174.41	12.2170	0.019089

Proposed

BASIN	AREA (SF)	AREA (AC)	AREA (MI ²)
1	69928.25	1.6053	0.002508
2	77687.12	1.7835	0.002787
3	10531.80	0.2418	0.000378
4	19955.36	0.4581	0.000716
5	303870.56	6.9759	0.010900
6	19799.54	0.4545	0.000710
Total	501772.63	11.5191	0.017999

Runoff Calculation Results

Undeveloped

BASIN	Q-100	Q-10	V-100	V-10
	CFS	CFS	AC-FT	AC-FT
1	17.83	10.63	0.792	0.455

Proposed

BASIN	Q-100	Q-10	V-100	V-10
	CFS	CFS	AC-FT	AC-FT
1	5.36	3.95	0.305	0.208
2	5.95	4.39	0.338	0.231
3	0.82	0.61	0.046	0.031
4	1.55	1.14	0.087	0.059
5	23.20	17.13	1.323	0.905
6	1.53	1.13	0.086	0.059
Total	38.41	28.35	2.185	1.493

POND 1

Ab - Bottom Of The Pond Surface Area

At - Top Of The Pond Surface Area

D - Water Depth

Dt - Total Pond Depth

C - Change In Surface Area / Water Depth

Volume =
$$Ab * D + 0.5 * C * D^2$$

 $C = (At - Ab) / Dt$
 $Ab = 6.80$
 $At = 13,851.28$
 $Dt = 1.38$
 $C = 10032.23$

ACTUAL	DEPTH	VOLUME	Q
ELEV.	(FT)	(AC-FT)	(CFS)
24.55	0	0	0.000
27.50	2.95	0.0005	0.277
27.70	3.15	0.0051	0.286
27.90	3.35	0.0189	0.296
28.10	3.55	0.0420	0.305
28.30	3.75	0.0743	0.313
28.50	3.95	0.1158	0.322
28.70	4.15	0.1665	0.330
28.88	4.33	0.2200	0.337

Orifice Equation Q = CA SQRT(2gH)

C = 0.6Diameter (in 2.5
Area (ft^2)= 0.034088 g = 32.2

H (Ft) = Depth of water above center of orifice

Q(CFS)= Flow

POND 2

Ab - Bottom Of The Pond Surface Area

At - Top Of The Pond Surface Area

D - Water Depth

Dt - Total Pond Depth

C - Change In Surface Area / Water Depth

Volume =
$$Ab * D + 0.5 * C * D^2$$

 $C = (At - Ab) / Dt$
 $Ab = 6.80$
 $At = 32,989.54$
 $Dt = 1.50$
 $C = 21988.49$

ACTUAL	DEPTH	VOLUME	Q
ELEV.	(FT)	(AC-FT)	(CFS)
13.85	0	0	0.000
26.50	12.65	0.0020	0.981
26.70	12.85	0.0121	0.989
26.90	13.05	0.0424	0.997
27.10	13.25	0.0929	1.005
27.30	13.45	0.1636	1.012
27.50	13.65	0.2545	1.020
27.70	13.85	0.3656	1.027
27.90	14.05	0.4969	1.035
28.00	14.15	0.5701	1.038

Orifice Equation Q = CA SQRT(2gH)

C = 0.6Diameter (in 3.25
Area (ft^2)= 0.05761 g = 32.2

H (Ft) = Depth of water above center of orifice

Q(CFS) = Flow

POND 3

Ab - Bottom Of The Pond Surface Area

At - Top Of The Pond Surface Area

D - Water Depth

Dt - Total Pond Depth

C - Change In Surface Area / Water Depth

Volume =
$$Ab * D + 0.5 * C * D^2$$

 $C = (At - Ab) / Dt$
 $Ab = 2.82$
 $At = 1,176.39$
 $Dt = 0.68$
 $C = 1725.84$

ACTUAL	DEPTH	VOLUME	Q
ELEV.	(FT)	(AC-FT)	(CFS)
15.3	0	0	0.0000
26.04	10.74	0.0007	3.1472
26.14	10.84	0.0009	3.1621
26.24	10.94	0.0015	3.1770
26.34	11.04	0.0025	3.1919
26.44	11.14	0.0039	3.2066
26.54	11.24	0.0057	3.2213
26.64	11.34	0.0079	3.2360
26.72	11.42	0.0099	3.2476

Orifice Equation Q = CA SQRT(2gH)

$$C = 0.6$$
Diameter (in 6.083333
Area (ft^2)= 0.201842
 $g = 32.2$

H (Ft) = Depth of water above center of orifice

Q(CFS)= Flow

POND 4

Ab - Bottom Of The Pond Surface Area

At - Top Of The Pond Surface Area

D - Water Depth

Dt - Total Pond Depth

C - Change In Surface Area / Water Depth

Volume =
$$Ab * D + 0.5 * C * D^2$$

 $C = (At - Ab) / Dt$
 $Ab = 6.80$
 $At = 533.67$
 $Dt = 0.50$
 $C = 1053.74$

ACTUAL	DEPTH	VOLUME	Q
ELEV.	(FT)	(AC-FT)	(CFS)
17.94	0	0	0.00
20.94	3	0.0005	1.21
21.04	3.1	0.0006	1.23
21.14	3.2	0.0010	1.25
21.24	3.3	0.0016	1.27
21.34	3.4	0.0025	1.29
21.44	3.5	0.0036	1.31

Orifice Equation Q = CA SQRT(2gH)

C = 0.6Diameter (in 5.25 Area (ft^2)= 0.15033 g = 32.2

H (Ft) = Depth of water above center of orifice

Q(CFS)=Flow

POND 5

Ab - Bottom Of The Pond Surface Area

At - Top Of The Pond Surface Area

D - Water Depth

Dt - Total Pond Depth

C - Change In Surface Area / Water Depth

Volume =
$$Ab * D + 0.5 * C * D^2$$

 $C = (At - Ab) / Dt$
 $Ab = 13.60$
 $At = 91,993.08$
 $Dt = 1.00$
 $C = 91979.48$

ACTUAL	DEPTH	VOLUME	Q
ELEV.	(FT)	(AC-FT)	(CFS)
18.85	0	0	0.000
24.00	5.15	0.0016	0.720
24.20	5.35	0.0439	0.734
24.40	5.55	0.1707	0.748
24.60	5.75	0.3819	0.762
24.80	5.95	0.6776	0.775
25.00	6.15	1.0577	0.788

Orifice Equation
Q = CA SQRT(2gH)

C = 0.6Diameter (in 3.5
Area (ft^2)= 0.066813 g = 32.2

H (Ft) = Depth of water above center of orifice

Q(CFS)=Flow

Pipe Capacity

Pipe	D	Slope	Area	R	Q Provided	Q Required	Velocity
	(in)	(%)	(ft^2)		(cfs)	(cfs)	(ft/s)
CB1 to CB2	8	1	0.35	0.17	1.43	NA	0.00
CB2 to MH1	8	1	0.35	0.17	1.43	0.79	2.26
CB3 to MH1	10	0.6	0.55	0.21	2.01	1.30	2.38
MH1 to MH2	12	0.6	0.79	0.25	3.27	2.09	2.66
MH2 to CB5	12	0.6	0.79	0.25	3.27	2.87	3.65
CB4 to CB5	6 3.81		0.20	0.13 1.30		0.34	1.73
CB5 to Existing 84"	12	0.6	0.79	0.25	3.27	1.04	1.32

Manning's Equation: $Q = 1.49/n * A * R^{2/3} * S^{1/2}$

A = Area

R = D/4

S = Slope

n = 0.011

AHYMO SUMMARY TABLE (AHYMO194) - AMAFCA Hydrologic Model - January, 1994
INPUT FILE = A:UND-POND.DAT

RUN DATE (MON/DAY/YR) =02/19/1999 USER NO.= R_BOHANN.IO1

COMMAND	HYDROGRAPH IDENTIFICATION	FROM ID NO.	TO ID NO.	AREA (SQ MI)	PEAK DISCHARGE (CFS)	RUNOFF VOLUME (AC-FT)	RUNOFF (INCHES)	TIME TO PEAK (HOURS)	CFS PER ACRE	PAGE =	
START RAINFALL TY COMPUTE NM H ROUTE RESERV FINISH	_	-1	1 10	.01567	14.64	.650 .651	.77808 .77852	1.632 2.631		TIME= RAIN24= PER IMP= AC-FT=	.00 2.750 .00 .503

AHYMO SUMMARY TABLE (AHYMO194) - AMAFCA Hydrologic Model - January, 1994 INPUT FILE = A:9795E.DAT

RUN DATE (MON/DAY/YR) =02/16/1999 USER NO.= R_BOHANN.I01

COMMAND	HYDROGRAPH IDENTIFICATION	FROM ID NO.	TO ID NO.	AREA (SQ MI)	PEAK DISCHARGE (CFS)	RUNOFF VOLUME (AC-FT)	RUNOFF (INCHES)	TIME TO PEAK (HOURS)	CFS PER ACRE	PAGE =	
COMPUTE NM HYI START		-	1	.01909	17.83	.792	.77808	1.632	1.460	TIME= RAIN24= PER IMP= TIME=	.00 2.750 .00
RAINFALL TYPE COMPUTE NM HYI FINISH			1	.01909	10.63	. 455	.44688	1.633	.870	RAIN6= PER IMP=	1.930

AHYMO SUMMARY TABLE (AHYMO194) - AMAFCA Hydrologic Model - January, 1994 INPUT FILE = A:9795P.DAT

RUN DATE (MON/DAY/YR) =02/16/1999 USER NO.= R_BOHANN.IO1

COMMAND	HYDROGRAPH IDENTIFICATION	FROM ID NO.	TO ID NO.	AREA (SQ MI)	PEAK DISCHARGE (CFS)	RUNOFF VOLUME (AC-FT)	RUNOFF (INCHES)	TIME TO PEAK (HOURS)	CFS PER ACRE	PAGE =	
START										TIME=	.00
RAINFALL TY	YPE= 2									RAIN24=	2.750
COMPUTE NM F	HYD 100.10	_	1	.00251	5.36	.305	2.27657	1.598	3.337	PER IMP=	90.00
COMPUTE NM F	HYD 100.20	-	1	.00279	5.95	.338	2.27656	1.598	3.335		90.00
COMPUTE NM F	1YD 100.30	-	1	.00038	.82	.046	2.27686	1.598	3.399		90.00
COMPUTE NM F	HYD 100.40	-	1	.00072	1.55	.087	2.27671	1.598	3.373		90.00
COMPUTE NM F	IYD 100.50	_	1	.01090	23.20	1.323	2.27651	1.598		PER IMP=	90.00
COMPUTE NM H	HYD 100.60	-	1	.00071	1.53	.086	2.27673	1.598		PER IMP=	90.00
START							_,_,	1.000	3.373	TIME=	_
RAINFALL TY	PE= 1									RAIN6=	.00 1.930
COMPUTE NM H	HYD 110.10	_	1	.00251	3.95	.208	1.55658	1.600	2 463	PER IMP=	90.00
COMPUTE NM H	HYD 110.20	_	1	.00279	4.39	.231	1.55658	1.600		PER IMP=	
COMPUTE NM H	IYD 110.30	-	1	.00038	.61	.031	1.55658	1.600		PER IMP=	90.00
COMPUTE NM E	HYD 110.40	_	1	.00072	1.14	.059	1.55658	1.600			90.00
COMPUTE NM H	HYD 110.50	_	1	.01090	17.13	.905	1.55658	1.600		PER IMP	90.00
COMPUTE NM H	IYD 110.60		1	.00071	1.13	.059	1.55658	1.600		PER IMP	90.00
FINISH							1.0000	1.000	2.409	PER IMP=	90.00

```
BOB TURNER FORD
                    PONDING CALCULATIONS
        100-YEAR, 24-HR STORM (UNDER PROPOSED CONDITIONS)
START
                    TIME=0.0
******
* BASIN 1
*****
RAINFALL
                    TYPE=2 RAIN QUARTER=0.0 IN
                    RAIN ONE=2.01 IN RAIN SIX=2.35 IN
                    RAIN DAY=2.75 IN DT=0.0333 HR
COMPUTE NM HYD
                    ID=1 HYD NO=100.1 AREA=0.002508 SQ MI
                    PER A=0.00 PER B=10.00 PER C=0.00 PER D=90.00
                    TP=-0.24 HR MASS RAINFALL=-1
PRINT HYD
                    ID=1 CODE=1
ROUTE RESERVOIR
                    ID=10 HYD NO=501.1 INFLOW ID=1 CODE=24
                    OUTFLOW (CFS)
                                   STORAGE (AC-FT)
                                                      ELEVATION (FT)
                      0.00
                                      0.0000
                                                         24.55
                      0.277
                                      0.0005
                                                         27.50
                      0.286
                                      0.0051
                                                         27.70
                      0.296
                                      0.0189
                                                         27.90
                      0.305
                                      0.0420
                                                         28.10
                      0.313
                                      0.0743
                                                         28.30
                      0.322
                                      0.1158
                                                         28.50
                      0.330
                                      0.1665
                                                         28.70
                      0.337
                                      0.2200
                                                         28.88
PRINT HYD
                    ID=10 CODE=1
*****
* BASIN 4
******
*
COMPUTE NM HYD
                   ID=4 HYD NO=100.4 AREA=0.000716 SQ MI
                    PER A=0.00 PER B=10.00 PER C=0.00 PER D=90.00
                   TP=-0.24 HR MASS RAINFALL=-1
PRINT HYD
                    ID=4 CODE=1
ROUTE RESERVOIR
                    ID=40 HYD NO=500.4 INFLOW ID=4 CODE=24
                    OUTFLOW (CFS)
                                   STORAGE (AC-FT)
                                                      ELEVATION (FT)
                     0.00
                                      0.0000
                                                         17.94
                     1.21
                                      0.0005
                                                         20.94
                     1.23
                                      0.0006
                                                         21.04
                     1.25
                                      0.0010
                                                         21.14
                     1.27
                                      0.0016
                                                         21.24
                     1.29
                                      0.0025
                                                         21.34
                     1.31
                                      0.0036
                                                         21.44
PRINT HYD
                   ID=40 CODE=1
*****
* BASIN 5
*******
COMPUTE NM HYD
                   ID=5 HYD NO=100.5 AREA=0.010900 SQ MI
                   PER A=0.00 PER B=10.00 PER C=0.00 PER D=90.00
                   TP=-0.24 HR MASS RAINFALL=-1
PRINT HYD
                   ID=5 CODE=1
ROUTE RESERVOIR
                   ID=50 HYD NO=500.5 INFLOW ID=5 CODE=24
                   OUTFLOW (CFS)
                                   STORAGE (AC-FT)
                                                     ELEVATION (FT)
                     0.000
                                      0.0000
                                                        18.85
```

AHYMO SUMMARY TABLE (AHYMO194) - AMAFCA Hydrologic Model - January, 1994 INPUT FILE = a:pond.dat

RUN DATE (MON/DAY/YR) =02/18/1999 USER NO.= R_BOHANN.IO1

COMMAND	HYDROGRAPH IDENTIFICATION	FROM ID NO.	TO ID NO.	AREA (SQ MI)	PEAK DISCHARGE (CFS)	RUNOFF VOLUME (AC-FT)	RUNOFF (INCHES)	TIME TO PEAK (HOURS)	CFS PER ACRE	PAGE =	
START									•	TIME=	.00
	PE= 2								•	RAIN24=	2.750
COMPUTE NM H		-	1	.00251	5.36	.305	2.27657	1.598	3.337	PER IMP=	90.00
ROUTE RESERV		1	10	.00251	.34	.304	2.27622	2.664	.209	AC-FT=	.206
COMPUTE NM H		_	4	.00072	1.55	.087	2.27671	1.598		PER IMP=	90.00
ROUTE RESERV		4	40	.00072	1.30	.087	2.27663	1.698	2.845		.003
COMPUTE NM H		-	5	.01090	23.20	1.323	2.27651	1.598		PER IMP=	90.00
ROUTE RESERV		5	50	.01090	.79	1.188	2.04443	2.997		AC-FT=	.972
COMPUTE NM H	IYD 100.30		3	.00038	.82	.046	2.27686	1.598		PER IMP=	90.00
ADD HYD	104.30	40& 3	43	.00109	2.11	.133	2.27671	1.632	3.007		20.00
ADD HYD	105.30	43&50	53	.01199	2.86	1.321	2.06562	1.632	.373		
ROUTE RESERV		53	24	.01199	2.87	1.321	2.06536	1.632		AC-FT=	.001
COMPUTE NM H	YD 100.20	-	2	.00279	5.95	.338	2.27656	1.598		PER IMP=	90.00
ADD HYD	101.20	10& 2	12	.00530	6.26	. 643	2.27640	1.598	1.847		50.00
ADD HYD	102.30	24&12	23	.01729	9.10	1.964	2.12999	1.632	.822		
ROUTE RESERV FINISH	OIR 501.20	23	13	.01729	1.04	1.592	1.72646	12.121		AC-FT=	.499

