

City of Albuquerque

P.O. BOX 1293 ALBUQUERQUE, NEW MEXICO 87103

April 27, 1999

Mr. John A. Andrews
The Larkin Group
Consulting Engineers
8500 Menaul Blvd NE - Suite A-440
Albuquerque, NM 87112

Re: Calmat Business Park (F16/D14) Conceptual Grading and Drainage Plan, dated February 19, 1999 for Site Development Plan for Subdivision

Dear Mr. Andrews:

The referenced drainage submittal is approved for site development plan for subdivision. Prior to approval of a Site Development Plan for building permit, preliminary plat or building permits, an approved drainage report will be required. This report will need to include street design and storm drain requirements.

Sincerely,

Fred J. Agairre, P.E.

City Hydrologist


Public Works Department

c: Andrew Garcia File

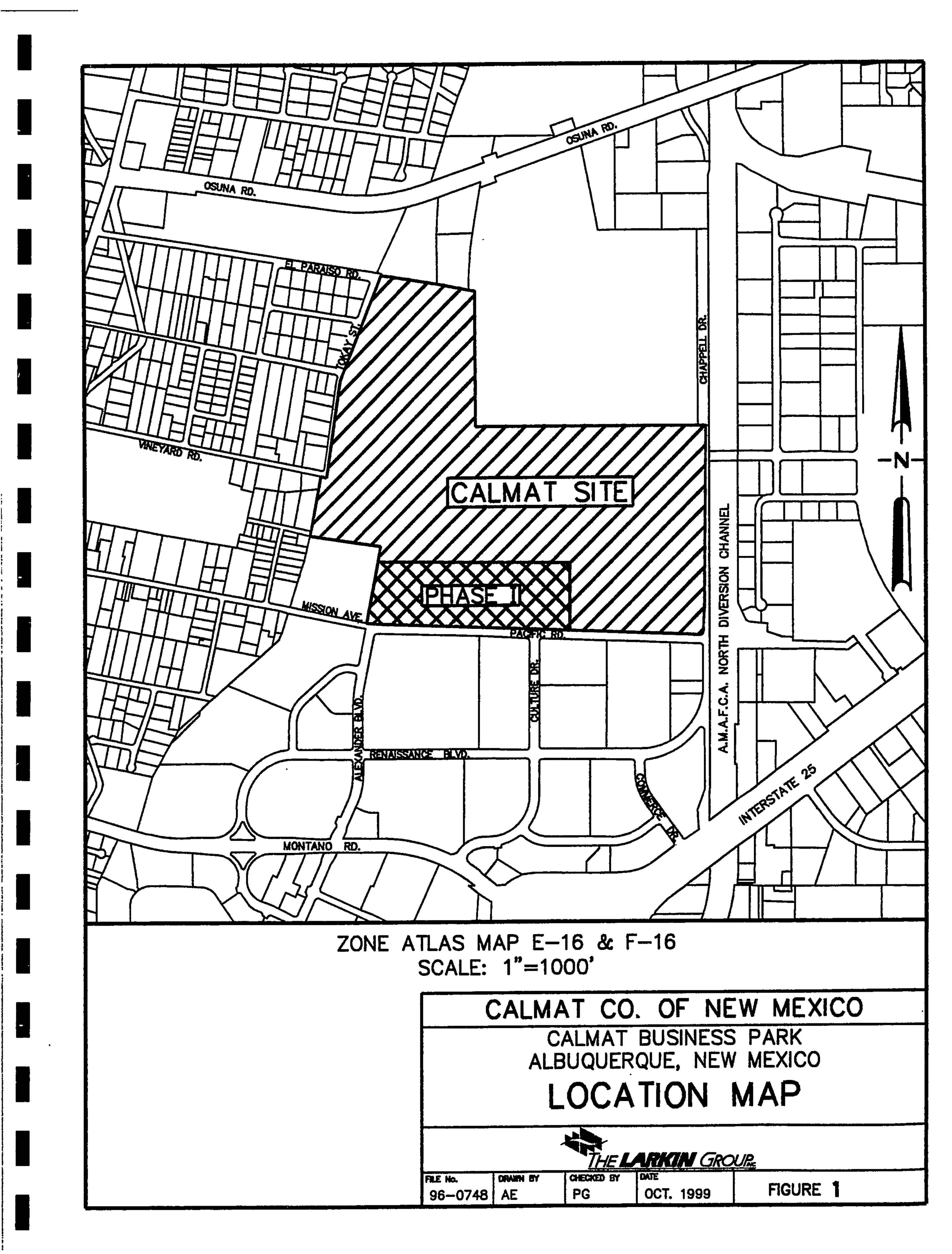
Calmat of New Mexico

DRAINAGE ANALYSIS FOR CALMAT BUSINESS PARK – PHASE I STORM DRAIN IMPROVEMENTS

Revised October 25, 1999

8500 Menaul Boulevard NE, Suite A-440 Albuquerque, New Mexico 87112

Section I


INTRODUCTION

Calmat of New Mexico proposes to develop a tract of land, currently used for sand and gravel extraction and processing, in a phased planning and construction sequence. This project is located in the northeast quadrant of the Albuquerque Metropolitan area, west of the North Diversion Channel, east of Tokay Street NE, north of Mission Road NE and south of Osuna Road NE. See Figure 1 – Calmat Business Park Location Map. The Phase I project involves the development of five lots adjacent to Mission Road NE for light industrial uses. Phase I also includes the widening of Chappell Drive and all existing intersections along the east boundary of the Calmat Tract. This report, with enclosed maps, provides a site specific Drainage Plan for Phase I improvements and a Master Drainage Plan for the entire Calmat Business Park.

The land on which the Phase I project lies has previously been mined of gravel and all mining activities have ceased in the immediate project area. The Phase I land will require significant regrading, as the earthen berm at the southern boundary of the gravel excavation operation will be moved north of the proposed Phase I lots. The proposed storm drain improvements to Calmat Business Park Phase I include the installation of catch basins, storm drain and channel from Mission Road to a detention basin at the southwest corner of the Calmat tract. The proposed storm drain facilities will discharge into the proposed detention basin. Improvements to Chappell Drive require storm drain inlets that will outlet to AMAFCA's North Diversion Channel. This hydrologic and hydraulic analysis of the watershed and proposed drainage facilities within the area of the Calmat Business Park was performed, with the

assistance of the current AHYMO hydrologic modeling program and Hydraflow 7.0, respectively. The drainage areas and runoff values affecting the site under developed conditions and the location of the proposed storm drain improvements are shown on Figure 2, Figure 3A, and Figure 3B. No portion of the entire 161-acre Calmat Tract is within a FEMA designated floodplain. Figure 8, enclosed

Guidelines for this analysis are based upon Section 22.2, Hydrology, of the Development Process Manual (DPM), Design Criteria for the City of Albuquerque, New Mexico, July 1997. The AHYMO, January 1994 version, hydrologic modeling program was also used in this analysis. The model runs are located in **Appendix A**, page A-1.

Section II

EXISTING CONDITIONS

A. GENERAL

The 161-acre Calmat tract is bounded by the North Diversion Channel on the east, Mission Road on the south, Tokay Street on the west and existing lots south of Osuna Road on the North. The land use zoning designation for the site is SU-1 for gravel excavation and processing. Under current conditions, most of the stormwater generated from excess precipitation flows toward a constructed sump area near the southwest corner of the tract and is retained on-site. However, throughout the site there are numerous, active sand and gravel extraction pits. Therefore, the exact volume of runoff and peak flow of any design storm under existing conditions is not able to be determined due to the ever-changing topography of the site.

B. OFF-SITE GENERATED RUNOFF

The Calmat tract receives stormwater runoff from the Renaissance Center development to the south and from Mission Hills Elementary School at the southwest corner of the Calmat tract. The volume and peak flows of runoff from these two areas are restricted by independent drainage covenants between Renaissance Center and Calmat and Albuquerque Public Schools and Calmat. The individual drainage characteristics of these basins are described further on pages 5,6 and 7 of this report. Please refer to **Figure 2**.

1. Renaissance Center Stormwater Runoff

Renaissance Center is a commercial and industrial park located south of Calmat. The vast majority of stormwater runoff generated in this area is handled through its own storm drainage system that outlets to a detention basin west of Renaissance Center. The Master Drainage Plan for the Renaissance Center, prepared by Andrews, Asbury and Robert, Inc., allows a 100-year runoff of approximately 64 cubic feet per second to be discharged to the Calmat tract. The resulting volume of the 100-year design storm contributes a total of 6.7 acre-feet to the Calmat tract. These runoff calculations were used in the Drainage Covenant that exists between Renaissance Center and Calmat. This runoff is conveyed to the Calmat tract through a 48-inch reinforced concrete pipe running normal to Mission Road and approximately 200 feet east of Alexander Boulevard. The pipe terminates approximately 170 feet north of Mission Road. An earthen channel conveys the runoff from the pipe outlet to the existing retention area of the Calmat tract near the southwest corner of the tract. Please refer to Figure 2 and Figure 3A, enclosed.

2. Mission Hills Elementary School Stormwater Runoff

In general, runoff from the Mission Hills Elementary School tract flows from south to north. Investigation of the Drainage Plan on file with the City of Albuquerque, Drainage Plan F16/D12, reveals the following drainage characteristics. Calmat has granted a drainage easement to Albuquerque Public Schools for the purpose of draining a maximum of 2 acre-feet of stormwater runoff per 100-year storm event from the Mission Hills Elementary tract. A subsurface storm drain system collects and conveys runoff, via numerous inlets, from the Mission Hills tract. This storm drain system discharges to a

constructed retention basin on the Calmat tract. Fencing surrounds the retention basin. Please refer to Figure 2 and Figure 3A, enclosed.

3. Off-Site Areas Not Contributing Runoff to the Calmat Tract

The Universal Industrial Park is situated north of the Calmat tract. Please refer to Figure 2, enclosed. Currently, this land is also being used for gravel extraction and processing. The drainage plan for this tract, on file with the City of Albuquerque's Hydrology Division, describes the future use and drainage of this area. The drainage plan for Universal Industrial Park, Lot 4B-1 is filed under City of Albuquerque Drainage Plan E16/D13 and details that all runoff is to be retained on-site. This Drainage Plan, dated February 1995 and prepared by Bohannon-Huston, describes a developed condition with a retention pond at the southeast section of the tract. This retention pond is designed to retain two, 6-hour precipitation events of the 100-year frequency. Specifically, the pond will have a total surface area of 11.7973 acres and a total volume capacity of 27.4573 acre-feet.

The area immediately west of the Calmat Tract is downstream of the project area. Runoff in this area is ultimately collected by the storm drainage improvements in Edith Boulevard, which were completed in the spring of 1994. This system, designed by Boyle Engineering Corporation, was designed and built to receive the detained runoff from the Calmat Tract. Please reference the enclosed Record Drawings of the Construction Plans for Widening of Edith Boulevard Phase I, From Montano Road to Osuna Road (in back pocket of this report). The outfall of the proposed Calmat Business Park Detention Basin is to connect into the Edith Boulevard storm drain system at the intersection of Vineyard Road and Edith Boulevard. The Record Drawings for this project indicate a 30-inch diameter reinforced

concrete pipe stub-out in Vineyard Road. This stub-out terminates approximately 160 feet east of the centerline of Edith Boulevard. The invert of the pipe at this location is at 4978.81. The drainage report for this project, also prepared by Boyle Engineering, indicates that the detained runoff from Calmat Business Park must not be greater than five cubic feet per second. Please reference the enclosed Record Drawings for the Edith Boulevard improvements.

C. CONCLUSIONS

Under developed conditions, the Calmat Tract will continue to receive stormwater runoff from Mission Hills Elementary School and the Renaissance Center Business Park. The North Diversion Channel diverts runoff from off-site areas east of the Calmat tract. North of the Calmat Tract, runoff will be retained on the site of Universal Industrial Park.

Ш

DEVELOPED CONDITIONS

A. Proposed Development of Calmat Business Park – Phase I

Calmat of New Mexico proposes to develop its 161-acre tract of land in three phases. Therefore, a Master Drainage Plan for the proposed Business Park is required in order to address peak runoff rates and total volume of runoff generated by a 100-year design storm event under fully developed conditions. The phases of development are indicated on **Figure 2**, enclosed.

1. Calmat Business Park Master Drainage Plan

Figure 2, Calmat Business Park Master Drainage Plan, indicates the drainage basins and peak flow rates for the entire Calmat Business Park under fully developed conditions. As the Business Park is developed, each phase will likely be zoned for light industrial land use. In accordance with the City of Albuquerque Development Process Manual, Section 22.2, light industrial land use requires a hydrologic model using seventy-percent land type: "D:" The land types used in the AHYMO hydrologic model for the entire 161-acre tract were typically seventy percent land type "D" with the remaining a mixture of fifteen percent "B" and fifteen percent "C:" Please refer to Table A-5, page 22-11, COA, DPM Section 22.2. The AHYMO hydrologic models are included in Appendix A. The Master Drainage Plan includes storm drainage improvements for Phase I development. Improvements to Phase II and Phase III will be further designed after land use, lot size and lot layout are more fully defined. The future detention basin and related outlet works shown in Figure 2 and Figure 4 are designed to detain the 100-year runoff event with the entire Calmat Business Park fully developed for light industrial land use. The

drainage basin areas and land types used in the AHYMO hydrologic model are listed in **Table 1**. The time of concentration for each of the basins was calculated using the Upland Method, as described in the DPM. The resulting peak runoffs of a 100-year storm event, under developed conditions, are listed for several analysis points in **Table 2**. The location of each analysis point is shown in **Figure 2**, enclosed.

The preliminary calculations for the outlet works for the detention basin have been included in Appendix A of this report. The outlet standpipe, a 16-inch outer diameter, Schedule 40, steel pipe; in the detention pond is designed to discharge a maximum of 5 cubic feet per second at the maximum water level storage stage of 5028.43. Hydraulic calculations are included in Appendix A. At this stage the pond detains a maximum 26.4 acre-feet of stormwater runoff. Due to the depth and storage of this detention basin, a State Engineer's Filing Sheet describing the basin and its hydraulic functions will be required with submittal of preliminary plans for a permit to construct. The detention basin should completely convey the detained runoff in the required 96 hours following the 100-year, 24-hour precipitation event. The standpipe will discharge to a proposed manhole at the intersection of Vineyard Road and Tokay Street. Please refer to the enclosed Figure 4 and Record Drawings for the Widening of Edith Boulevard, Phase I. An 18-inch reinforced concrete pipe storm drain is required to discharge the runoff from the proposed manhole to the 30-inch diameter stub-out from Edith Boulevard Storm Drain.

Table 1 – Master Drainage Plan

AHYMO Modeled Basin Characteristics for Developed Conditions (See Figure 2)

AHYMO I	Modeled Basin Char	racteristics for	Developed Co	nditions (See	figure 2)
Basin	Area (Square Miles)	Land Treatment "A" (Percent)	Land Treatment "B" (Percent)	Land Treatment "C" (Percent)	Land Treatment "D" (Percent)
A-1	0.00364	0	15	15	70
A-1.1	0.00088	0	65	30	5
A-2	0.00338	0	15	15	70
A-2.1	0.00073	0	65	30	5
A-3	0.00344	0	15	15	70
A-3.1	0.00069	0	65	30	5
A-4	0.00328	0	15	15	70
A-4.1	0.00072	0	65	30	5
A-5	0.00394	0	15	15	70
A-5.1	0.00091	0	65	30	5
A-6	0.00433	0	50	15	35
A-7	0.00663	30	20	45	5
B-1	0.02766	0	15	15	70
B-2	0.03266	0	15	15	70
B-3	0.01984	0	15	15	70
B-4	0.00688	50	35	15	0
C-1	0.01188	0	15	15	70
C-2	0.01172	0	15	15	70
C-3	0.01297	. 0	15	15	70
C-4	0.02297	0	15	15	70
C-5	0.01047	0	15	15	70
C-6	0.00566	0	15	15	70
C-7	0.00891	0	15	15	70
C-8	0.00922	0	15	15	70
C-9	0.02672	0	15	15	70
C-10	0.01313	0	. 15	15	70
C-11	0.00475	0	0	10	90

Table 2 – Master Drainage Plan
Peak Flow / Volume of Runoff Generated by a 100 Year, 24-hour Event
Developed Conditions (See Figure 2)

Analysis Point	Peak Discharge, Q _p , for a 100-Year, 24 hour Event	Volume of Runoff Generated from 100-Year, 24 Hour Event
AP-A	77.4 cfs	3.807 acre-feet
AP-B	57.8 cfs	2.434 acre-feet
AP-C	112.4 cfs	5.679 acre-feet
AP-D	244.1 cfs	11.757 acre-feet
AP-E	204.5 cfs	9.005 acre-feet
AP-F	447.1 cfs	20.934 acre-feet
AP-G	35.2 cfs	1.433 acre-feet
AP-H	523.8 cfs	24.530 acre-feet
AP-I	100.5 cfs	6.571 acre-feet
AP-J	607.7 cfs	31.350 acre-feet

2.0 Calmat Business Park, Phase I

Calmat of New Mexico proposes to develop five lots (Lot 1 through Lot 5, Phase I) along Mission Road NE, the southerly boundary of its tract of land, adjacent to Renaissance Center commercial and industrial park. This development will constitute Phase I of Calmat Business Park. Each of these proposed lots is 2.5 to 2.9 acres in size. The proposed zoning and land use for these lots as well as Phase II and Phase III of Calmat Business Park is light industrial. The site development plan for the Calmat Business Park indicates that all lots are to have a landscaped border at all areas near the major streets. The land use factors for these areas have been adjusted accordingly. The storm drainage improvements outlined in this report include permanent and temporary improvements. The Drainage Plan for the proposed, Phase I, developed conditions is shown on Figure 3A and Figure 3B, enclosed.

This drainage plan establishes the major drainage facilities to be constructed at the time the infrastructure for Phase I of the project is to be constructed. The drainage facilities required for Phase I construction are catch basins and a 48-inch diameter RCP storm drain from Mission Road NE, a drainage channel, and a temporary retention basin. Chappell Drive, under Phase I development, is to be improved to four lanes and include a median. Stormwater catch basins are required on the southbound lanes of Chappell Drive and will discharge to AMAFCA's North Diversion Channel at exiting rundowns to the channel. It is understood that AMAFCA's approval is required. Hydrologic and hydraulic calculations of catch basin layout and capacity are located in the last section of Appendix A in this report. Phase I drainage plans include the use of the existing drainage channel flowing in a north-northwesterly direction from the low point of Mission Road NE. Phase I plans also include the continued use of the existing retention basin for the Calmat site and the existing retention basin for the Mission Hills Elementary School also located on the Calmat site (See Figure 3A).

2.1 Phase I Stormwater Collection and Conveyance System

Figure 3A shows the catch basin placement at Mission Road NE, storm drain and outflow channel to the proposed Calmat Detention Basin. Calculations for catch basin capacity and the hydraulic grade line for the storm drain and drainage channel are included in Appendix A. Catch basin placement for Chappell Drive NE is shown on Figure 3B. Calculations for catch basin capacity are included in Appendix A.

Two drainage easements for the purpose of draining the Phase I Lots and City of Albuquerque right-of-way are required for Phase I drainage improvements. A drainage easement between Lot 1 and

Lot 2 will be required for the installation and maintenance of the 48-inch storm drain collecting offsite runoff from Mission Road NE and Renaissance Center. Another drainage easement for the purpose of stormwater drainage will be required for Lots 2 through 5 and the collection of stormwater from the extension of Culture Drive NE of the Phase I development. This is proposed as a 40-foot easement directly north of Lots 1-4 of Phase I. Approximately eighty percent of these lots will drain northward to the easement. A drainage channel will be placed in the easement. Stormwater will flow westward to the terminus of the proposed 48-inch storm drain. The swale is to discharge into the proposed drainage channel at the terminus. The confluence of the drainage swale and storm drain will be connected to the existing drainage channel. Runoff will continue to flow in a northwesterly direction to the existing retention basin, Pond #1. It is proposed that stormwater drainage from lots in Phases II and III is to be covered by a blanket cross-lot drainage easement. The hydrologic model, for Phase I improvements, assumes that all excess runoff from the Calmat site will discharge to the existing retention basin. Assuming a 25 percent land treatment "B" and a 75 percent land treatment "C" for land areas in Phases II and III, the existing Pond #1 will retain all stormwater runoff generated, 17.945 acre-feet, with Phase I fully developed and Phases II and III undeveloped. This is a conservative estimate as there are numerous active gravel extraction and processing pits within the Calmat site and not all runoff will be delivered to the existing retention basin. Pond #2, Pond #3, and Pond #4 add 9.2 acre-feet, 4.0 acre-feet, and 3.6 acre-feet, respectively. All four existing ponds have the capacity to retain two 100-year, 24-hour precipitation events.

2.2 Calmat Business Park Retention Basin

The existing retention basin is of sufficient size and capacity to retain all on-site runoff from the

Calmat Business Park as well as the runoff from Renaissance Center for a 100-year, 24-hour precipitation event. The calculations for stage and volume of the existing retention basin are included in **Appendix A**. The AHYMO hydrologic model indicates that the total volume of runoff from these areas is 18.5 acre-feet when the Phase I of the Calmat Business Park is complete. The existing retention basin has a capacity of approximately 21 acre-feet. The retention basin is to be reshaped and converted into a detention basin as Phases II and/or III are developed. The proposed detention basin, described in Section III.A.1, will be 10 to 11.5 feet in depth and covers an area of approximately 4.4 acres.

B. Calmat Business Park Outline for Phasing of Infrastructure

Improvements for Phase II and Phase III provided as information only and are subject to change prior to their development.

I. Phase I

A. Alexander Boulevard

- 1. Extension 400 ft North of Mission Avenue
 - a. 4-Lane Roadway Section
 - b. 86 ft ROW
 - c. 6 ft Bikelanes North and Southbound
 - d. 60 ft Flowline to Flowline
- 2. COA Standard Private Entrance for Mission School
 - a. 20 ft radius on curb returns
 - b. COA Standard Wheelchair Access Ramps, Each Curb Return
- 3. Extension of 10-inch Waterline 400 ft North
- 4. Extension of Gas Line

B. Culture Drive

- 1. Extension 400 ft North of Mission Avenue
 - a. 4-Lane Roadway Section, 12 ft Lanes
 - b. 68 ft ROW
 - c. 48 ft Flowline to Flowline
- 2. Valley Gutter
- 3. COA Standard Wheelchair Access Ramps at NE and NW corners of Intersection
- 4. 25 ft Curb Returns
- 5. Extension of 10-inch and 12-inch Waterlines 400 ft Northward
- 6. Extension of Gas Line

C. Chappell Drive

- 1. Widen existing 2-Lane roadway to 4-lanes with 16 ft Median from Mission Avenue to Singer Blvd.
 - a. Reconstruct intersection at Mission

- b. Reconstruct Intersection at Singer
- c. Reconstruct Intersection at Private Entrance
- d. 25 ft Curb Returns
- e. Provide Left Turn Bays as Necessary
- f. 86 to 91 ft ROW
- g. Transition from 4-Lane to 2-Lane North of Private Entrance
- 2. Extension of Waterline
- 3. Extension of Sewer
- 4. Extension of Gas Line
- 5. Installation of 2 Type C, Single Grate Storm Drain inlets and RCP SD Piping to Outlet into North Diversion Channel at Existing Rundowns

D. Mission Road

- 1. Eastbound to Northbound Left Turn Bay at intersection of Mission Road and Culture Drive.
- 2. Installation of battery of storm drain inlets, 2 Type A, Double Grate; 4- Type C Double Grate and RCP Storm Drain Pipe Connections

E. Drainage Channel

1. Trapezoidal drainage channel parallel to Mission Road, armored with rip-rap of one foot depth.

II. Phase II

A. Alexander Boulevard

- 1. Extension from North Lot Line of Phase I to 450 ft North of Proposed Intersection of Alexander and Singer
 - a. 4-Lane Roadway Section, 12-st Lane Width
 - b. 86-ft ROW
 - c. 6-st Bikelanes North and Southbound
 - d. 60-st Flowline to Flowline
- 2. Construct Storm Drain System; Collecting Phase I, Renaissance and Mission Hills Elementary Stormwater Runoff and Outletting to Calmat Business Park Detention Pond

- 3. Construct T-Intersection of Alexander and Singer
 - a. 25-st radius on curb returns
 - b. COA Standard Wheelchair Access Ramps, Each Curb Return
- 4. Construct 2-Lane Roadway (1/2 of 4-Lane) from 450 ft North of Proposed Intersection of Alexander and Singer to 900 ft East of El Paraiso Rd. NE
- 5. Extension of 10-inch Waterline Northward to 900 ft East of El Paraiso Rd. NE
- 6. Extension of Gas Line Northward to 900-ft East of El Paraiso Rd. NE
- B. Construct Calmat Business Park Detention Basin
 - 1. Construct Outlet Riser
 - 2. Construct Manholes
 - 3. Construct RCP outlet storm drain from Vineyard and Tokay intersection westward to 36" RCP Stub-out at Edith Boulevard
 - 4. Construct Storm Drainage Rundowns into Detention Pond
 - 5. Fill and Compact Earthen Drainage Ditch

III. Phase III Infrastructure

A. Culture Drive

- 1. Extension from North Lot Line of Phase I to Proposed Intersection of Culture and Singer
 - a. 4-Lane Roadway Section, 12-st Lane Width
 - b. 68-ft ROW
 - c. 48-st Flowline to Flowline
- 2. Construct Storm Drain System; Collecting Phase III and Outletting to Calmat Business Park Detention Pond
- 3. Construct T-Intersection of Culture and Singer
 - a. 25-ft radius on curb returns
 - b. COA Standard Wheelchair Access Ramps, Each Curb Return
- 5. Extension of 10-inch and 12-inch Waterlines Northward to Proposed Intersection of Culture and Singer
- 6. Extension of Gas Line Northward to Proposed Intersection of Culture and Singer

B. Singer Avenue

- 1. Extension from Chappell Drive to Proposed Alexander Boulevard
 - a. 4-Lane Roadway Section, 12-ft Lane Width
 - b. 86-ft ROW
 - c. 60-st Flowline to Flowline
- 2. Construct Storm Drain System; Collecting Phase III and Outletting to Calmat Business Park Detention Pond
- 3. Construct T-Intersection of Singer and Chappell Drive
 - a. 25-ft radius on curb returns
 - b. COA Standard Wheelchair Access Ramps, Each Curb Return
- 4. Extension of 10-inch and 12-inch Waterlines
- 5. Extension of Gas Line

IV

REFERENCES

- 1. North Edith Boulevard Improvements, prepared by Boyle Engineering Corporation, for the County of Bernalillo, New Mexico, November 1990.
- 2. Section 22.2 of the Development Process Manual, Volume 2, Design Criteria for the City of Albuquerque, New Mexico in Cooperation with Bernalillo County, New Mexico and the Albuquerque Metropolitan Arroyo Flood Control Authority. July 1997.
- 3. Section 22.3, Hydraulic Design, of the Development Process Manual, Volume 2, Design Criteria for the City of Albuquerque, New Mexico in Cooperation with Bernalillo County, New Mexico and the Albuquerque Metropolitan Arroyo Flood Control Authority. March 1982.

THE LEGISLAND THE STATE OF THE PARTY OF THE

STIH

HOISSIM POINT Q Z × AHYMO SUMMARY TABLE (AHYMO194) - AMAFCA Hydrologic Model - January, 1994
INPUT FILE = C:\projects\748\AHYMO\MASTER\100MSTR4.DAT

RUN DATE (MON/DAY/YR) =10/26/1999
USER NO.= ANASRONM.IO1

	HYDROGRAPH	FROM ID	TO ID	AREA	PEAK DISCHARGE	RUNOFF	RUNOFF	TIME TO PEAK	CFS PER	PAGE =	1
COMMAND	IDENTIFICATION	NO.		(SQ MI)	(CFS)	(AC-FT)	(INCHES)	(HOURS)	ACRE	NOTATI	ON
START										TIME=	.00
	ITE - 100 YR - 24				FULLY DEVELOR	PED					
	ITE MASTER DRAINAG				EVELOBED COMPI	TIONS					
	D CONDITIONS *** D	EAFFOR	ED COM	DIIIONS D	EAEFOLED COMP.	LITONS				RAIN24=	2.750
,	YPE= 2 6 - LOT NO.10,11 A	ND 12	DHASE	7 T T							
COMPUTE NM	-		1	.00433	8.95	.331	1.43272	1.500	3.230	PER IMP=	35.00
_ , , ,	5.1 - LOT NO.5 PHA		•								
COMPUTE NM			2	.00091	1.55	.046	.95736	1.500	2.672	PER IMP=	5.00
	N A-5.1 AND BASIN										
ADD HYD	A-50.HYD		50	.00523	10.50	.376	1.34696	1.500	3.134		
*S BASIN A-	4.1 - LOT NO. 4 PH	IASE I							•		
COMPUTE NM	HYD A-4.1_HYD	-	3	.00072	1.23	.037	.95736	1.500	2.679	PER IMP=	5.00
*S ADD A-4.	1_HYD AND A-50.HYD)									
ADD HYD	A-51.HYD	3&50	51	.00595	11.73	.412	1.29697	1.500	3.079		
	3.1 - LOT NO. 3 PH		<u>,</u>	00010	. 4.40	075	05774	1 500	2 491	PER IMP=	5.00
COMPUTE NM			4	.00069	1.18	.035	.95736	1.500	2.001	PER IMP-	3.00
	1_HYD AND A-51.HYD		52	_00664	12.91	.446	1.25925	1.500	3.037		
ADD HYD	A-52.HYD 2.1 - LOT NO. 2 PH		26	-00004	12.71	• 440		,,,,,,	J. 05.		
COMPUTE NM			5	.00073	1.26	.037	.95736	1.500	2.679	PER IMP=	5.00
	1_HYD AND A-52.HYD		_			-					
ADD HYD	A-53.HYD		53	.00738	14.17	.483	1.22678	1.500	3.002		
	1.1 - LOT NO. 1 PH										
COMPUTE NM	HYD A-1.1_HYD	-	6	.00088	1.50	.045	.95736	1.500	2.672	PER IMP=	5.00
*S ADD A-1.	1_HYD AND A-53.HYD	•									
ADD HYD	AP-A.PTL1	6&53	54	.00825	15.66	·· .526	1.19565	1.500	2.967		
*S RENAISSA	NCE CENTER OFF-SIT					7 004	75//0	4 (50	4 207	DED IMD-	F 00
COMPUTE NM		-	7	.08152	66.92	3.281	.75468	1.650	1.283	PER IMP=	5.00
	.PTL1 AND REN.HYD	705/	e e	00077	77.44	3.807	.79520	1.600	1.348		
ADD HYD	AP-A.TTL			.08977	11.44	3.007	.17320	1.000	1.570		
	P-A.TTL VIA 48" RCF AP-A.RTE			-08977	77.06	3.807	.79521	1.600	1.341		
ROUTE	5 - LOT NO. 5 PHAS		JU	-00711	77.00	5.007	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	HYD A-5.HYD		11	.00394	10.20	.429	2.04282	1.500	4.046	PER IMP=	70.00
	4 - LOT NO. 4 PHAS		• •								
COMPUTE NM			12	.00328	8.50	.357	2.04282	1.500	4.048	PER IMP=	70.00
*S ADD A-5.	HYD AND A-4.HYD										
ADD HYD	A-60.HYD	11&12	60	.00722	18.70	.786	2.04273	1.500	4.047		
*S BASIN A-	3 - LOT NO. 3 PHAS	SE I									
COMPUTE NM	HYD A-3.HYD	-	13	.00344	8.90	.375	2.04282	1.500	4.047	PER IMP=	70.00
*S ADD A-3.	HYD AND A-60.HYD				4.0. 70	70/	2 0/277	4 500	. 0/7		
ADD HYD	A-61.HYD		61	.00722	18.70	.786	2.04273	1.500	4.047		
	2 - LOT NO. 2 PHAS			00770	0 7/	.368	2.04282	1.500	/ O/7	PER IMP=	70.00
COMPUTE NM			14	.00338	8.74	.300	2.04202	1.500	4.047	PER INF-	10.00
	SOGRAPHS A-2.HYD &			.01059	27.44	1.154	2.04273	1.500	4.047		
ADD HYD	A-62.HYD 1 - LOT NO. 1 PHAS		02	.01037	21.44	10127		,	,		
COMPUTE NM			15	.00364	9.43	.397	2.04282	1.500	4.047	PER IMP=	70.00
- +•••	OGRAPHS A-1.HYD &				· -						
		_									

	HYDROGRAPH	FROM ID	ID	AREA	PEAK Discharge	RUNOFF VOLUME	RUNOFF	TIME TO PEAK	CFS PER	PAGE =	
COMMAND	IDENTIFICATION	NO.	NO.	(SQ MI)	(CFS)	(AC-FT)	(INCHES)	(HOURS)	ACRE	NOTATI	NO1
ADD HYD	A-63.HYD	15&62	63	.01424	36.87	1.551	2.04273	1.500	4.047		
*S BASIN A-7	- DRAINAGE WAY	PHASE 1	Ţ.								
COMPUTE NM H	YD A-7.HYD	-	16	.00663	8.64	.321	.90979	1.550	2.038 F	PER IMP=	
*S ADD HYDRO	GRAPHS A-7.HYD &	A-63.	HYD								
ADD HYD	AP-C.PTL1	16&63	64	.02086	44.57	1.872	1.68290	1.500	3.338		
*S ADD HYDRO	GRAPHS AP-C.PTL1	& AP-/	A.RTE								
ADD HYD	AP-C.TTL	64&56	65	.11063	112.45	5.679	.96259	1.550	1.588		
*S ROUTE HYD	ROGRAPH AP-C.TTL	TO ANA	ALYSIS	POINT AP-D							
ROUTE	AP-C.RTE	65	66	.11063	112.53	5.679	.96259	1.550	1.589		
*S BASIN C-1	0 LOT NOS. 10, 1'	I AND '	12 PHAS	EIII							
COMPUTE NM H	YD C-10.HYD	•	21	.01313	33.95	1.430	2.04282	1.500	4.042	PER IMP=	
*S BASIN C-8	LOT NOS. 8 AND	10 PHAS	SE III								
COMPUTE NM H	YD C-8.HYD	-	22	.00922	23.85	1.004	2.04282	1.500	4.043 (PER IMP=	
*S ADD HYDRO	GRAPHS C-8.HYD &	C-10.1	HYD								
ADD HYD	AP-B.TTL	21&22	70	.02234	57.80	2.434	2.04279	1.500	4.042		
*S BASIN C-6	LOT NO. 6 PHASE	III					•				
COMPUTE NM H				.01047	27.08	1.141	2.04282	1.500	4.042	PER IMP=	
*S ADD HYDRO	GRAPHS AP-B.TTL	& C-6.1	HYD								
ADD HYD	A-71.HYD	23&70	71	.03281	84.89	3.575	2.04279	1.500	4.042		
*S ROUTE HYD	ROGRAPH A-71.HYD	TO ANA	ALYSIS					4			
ROUTE	AP-71.RTE	71	72	.03281	81.09	3.575	2.04281	1.550	3.861		
*S BASIN C-4	LOT NO. 4 PHASE	III						4	,		
COMPUTE NM H				.02297	50.50	2.502	2.04282	1.550	3.435	PER IMP=	
*S ADD HYDRO	GRAPH C-4.HYD & A	4-71.R	TE								
ADD HYD	AP-D.PTL1	24&72	73	.05578	131.59	6.077	2.04279	1.550	3.686		
*S ADD HYDRO	GRAPHS AP-D.PTL1	& AP-0	C.RTE								
ADD HYD	AP-D.TTL		74	.16641	244.12	11.757	1.32469	1.550	2.292		
	1 CHAPPELL DRIVE							4 500	, , ,		
COMPUTE NM H			25	.00475	13.61	.602	2.37805	1.500	4.4/6	PER IMP=	
	LOT NO. 9 PHASE					0.044	0.04000	4 550	7 504 1	DED 140-	
COMPUTE NM H			26	.02672	61.41	2.911	2.04282	1.550	3.591	PER IMP=	
	LOT NO. 3 PHASE			~ ~ ~ ~ ~		4 147	0.04000	4 500		.co .uo_	
COMPUTE NM H			27	.01297	33.55	1.413	2.04282	1.500	4.042	PER IMP=	
	GRAPHS C-11.HYD 8			A=A / A	A7 7A	, 70,	2 0/200	4 500	7 /77		
ADD HYD	A-76.HYD		<i>1</i> 6	.03969	93.30	4.324	2.04280	1.500	3.673		
	LOT NO. 7 PHASE		86	00004	A7 AF	A74	2 0/202	4 500	, 617 .	SED THE-	
COMPUTE NM H			28	.00891	23.05	.971	2.04282	1.500	4.U45	PER IMP=	
	GRAPH A-76.HYD &			01010		F 30F	2.0/200	4 500	7 7/4		
ADD HYD	A-77.HYD		77	.04860	116.36	5.295	2.04280	1.500	3.741		
	LOT NO. 2 PHASE			44470	70 70	4 077	2 0/202	4 500	/ 0/2 /	555 IKD-	
COMPUTE NM H			29	.01172	30.32	1.277	2.04282	1.500	4.042	PER IMP=	
	GRAPH C-2.HYD & A				444 47	,	2 0/200	4 500	7 000		
ADD HYD	A-78.HYD		78	.06032	146.67	6.571	2.04280	1.500	3.800		
	LOT NO. 5 PHASE					4 4 4 6	0.04000	4 500			
COMPUTE NM H			30	.01047	27.07	1.140	2.04282	1.500	4.042	PER IMP=	
	GRAPH C-5.HYD & A				4 ——		A 445	4 77.4.4	- ^		
ADD HYD	A-78.HYD		79	.07078	173.75	7.712	2.04279	1.500	3.835		
	LOT NO. 1 PHASE		 -					4 =	4 - 4 -		
COMPUTE NM H				.01188	30.72	1.294	2.04282	1.500	4.042	PER IMP=	,
	GRAPH C-1.HYD & A	1-79.HY	YD					1.500	3.865		
*S ADD HYDRO ADD HYD	AP-E.TTL		<u> </u>	.08266	204.46	9.005	2.04279				

		FROM			PEAK	RUNOFF		TIME TO	CFS	PAGE =	= 3
	HYDROGRAPH	ID	ID	AREA	DISCHARGE	VOLUME	RUNOFF	PEAK	PER		
COMMAND	IDENTIFICATION	NO.	NO.	(SQ MI)	(CFS)	(AC-FT)	(INCHES)	(HOURS)	ACRE	NOTAT	LON
ROUTE	AP-E.RTE	80	81	.08266	199.59	9.005	2.04280	1.550	3.773		
*S ADD HYDR	OGRAPH AP-E.RTE &	AP-D.T	TL								
ADD HYD	AP-F.PTL1	74&81	82	.24907	443.71	20.762	1.56300	1.550	2.784		
*S BASIN C-	12 ALEXANDER BOULE	EVARD N	E								
COMPUTE NM	HYD AP-C.HYD	-	1	.00136	3.90	.172	2.37805	1.500	4.489 F	PER IMP=	90.00
*S ADD HYDR	OGRAPH AP-F.PTL1 8	€ C-12.	HYD								
ADD HYD	AP-F.TTL	1&82	2	.25042	447.12	20.934	1.56743	1.550	2.790		
*\$ AP-G - M	IISSION HILLS ELEME	NTARY	SCHOOL	OFF-SITE RUNG	OFF						
COMPUTE NM	HYD AP-G.HYD	-	3	.01563	35.20	1.433	1.71970	1.500	3.520 F	PER IMP=	55.00
*S ADD HYDR	ROGRAPH AP-G.HYD TO	AP-F.	TTL								
ADD HYD	AP-H.PTL1	2& 3	4	.26605	478.55	22.368	1.57637	1.550	2.810		
*S B-3 - LC	T NO. 3 PHASE II										
COMPUTE NM	HYD B-3.HYD	-	5	.01984	51.32	2.162	2.04282	1.500	4.041 F	PER IMP=	70.00
*S ADD HYDR	ROGRAPHS B-3.HYD TO	AP-H.	PTL1								
ADD HYD	AP-H.TTL	4& 5	6	.28589	523.84	24.530	1.60874	1.550	2.863		
*S BASIN B-	·1										
COMPUTE NM	HYD B-1.HYD	•	7	.02766	46.10	3.013	2.04282	1.650	2.605 F	PER IMP=	70.00
*S BASIN B-	2										
COMPUTE NM	HYD B-2.HYD	-	8	03266	54.43	3.558	2.04282	1.650	2.604 F	PER IMP=	70.00
*S ADD HYDR	OGRAPHS B-1.HYD TO	B-2.H	YD								
ADD HYD	AP-I.TTL	7 & 8	9	.06031	100.53	6.571	2.04280	1.650	2.604		
*S BASIN B-	4										
COMPUTE NM	HYD B-2.HYD	-	10	.00688	8.72	.249	.68033	1.500	1.983 F	PER IMP=	.00
*S ADD HYDR	OGRAPH AP-I.TTL TO	B-4.H	YD								
ADD HYD	AP-J.PTL1	9&10	11	.06719	105.91	6.820	1.90338	1.650	2.463		
*S ADD HYDR	OGRAPH FROM AP-J.P	PTL1 TO	AP-H.	TTL							
ADD HYD	AP-J.TTL	11& 6	12	.35308	607.70	31.350	1.66481	1.550	2.689		
ROUTE RESER	VOIR DETFAC.RTE	12	13	.35308	4.67	10.423	.55351	4.100	.021 A	C-FT=	25.927

AHYMO SUMMARY TABLE (AHYMO194) - AMAFCA Hydrologic Model - January, 1994
INPUT FILE = C:\projects\748\AHYMO\PHASE_1\PHASE1.DAT

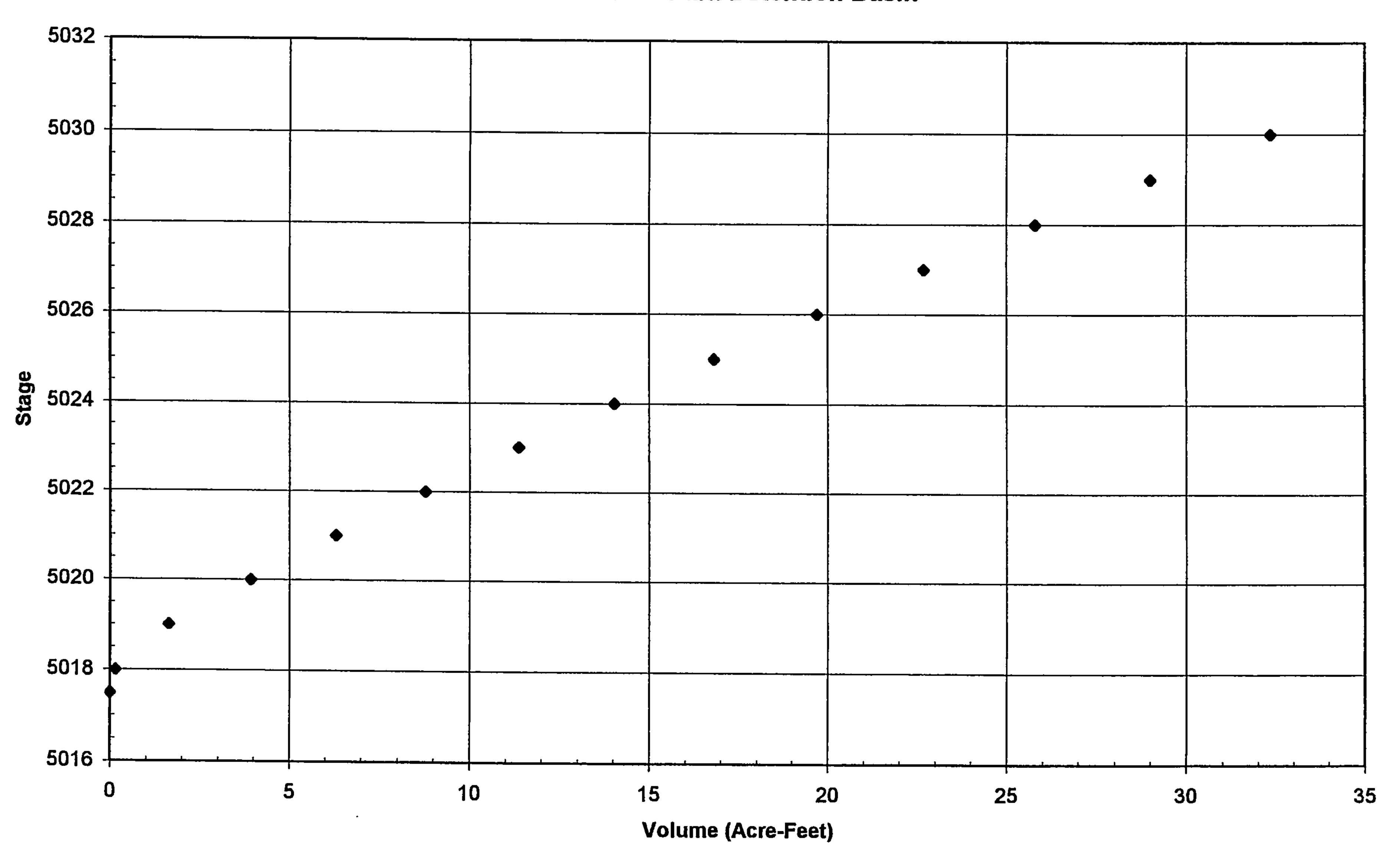
*S BASIN A-1 - LOT NO. 1 PHASE I

RUN DATE (MON/DAY/YR) =10/26/1999
USER NO.= ANASRONM.IO1

PAGE = TIME TO CFS RUNOFF PEAK FROM TO PER PEAK VOLUME RUNOFF DISCHARGE AREA ID HYDROGRAPH ACRE NOTATION (HOURS) (AC-FT) (INCHES) (CFS) (SQ MI) NO. IDENTIFICATION NO. COMMAND .00 TIME= START *S CALMAT SITE - 100 YR - 24 HR STORM EVENT WITH BASIN FULLY DEVELOPED *S CALMAT BUSINESS PARK - PHASE I - DRAINAGE PLAN HYDROLOGIC MODEL *S PHASE I - LOTS 1 THROUGH 5 DEVELOPED *S ALL OTHER ON-SITE AREAS UNDER EXISTING CONDITIONS *S RENAISSANCE CENTER FULLY DEVELOPED RAIN24= 2.750 RAINFALL TYPE= 2 *S BASIN A-6 - LOT NO.10,11 AND 12 PHASE III .00 1.500 2.686 PER IMP= .93603 .216 7.44 .00433 A-6.HYD COMPUTE NM HYD *S BASIN A-5.1 - LOT NO.5 PHASE I 5.00 .95736 1.500 2.672 PER IMP= 1.55 .046 .00091 A-5.1_HYD -COMPUTE NM HYD *S ADD BASIN A-5.1 AND BASIN A-6 1.500 2.684 .93629 8.99 .261 .00523 A-50.HYD 1& 2 50 ADD HYD *S BASIN A-4.1 - LOT NO. 4 PHASE I 2.679 PER IMP= .95736 1.500 .037 1.23 .00072 A-4.1_HYD -COMPUTE NM HYD *S ADD A-4.1_HYD AND A-50.HYD 1.500 2.683 .297 .93590 10.22 A-51.HYD 3&50 51 .00595 ADD HYD *S BASIN A-3.1 - LOT NO. 3 PHASE I 1.500 2.681 PER IMP= 5.00 .95736 .035 1.18 .00069 COMPUTE NM HYD A-3.1_HYD -*S ADD A-3.1_HYD AND A-51.HYD 1.500 2.683 .93559 .331 11.40 .00664 A-52.HYD 4&51 52 ADD HYD *S BASIN A-2.1 ~ LOT NO. 2 PHASE I 2.679 PER IMP= 5.00 1.500 .95736 .037 1.26 .00073 COMPUTE NM HYD A-2.1_HYD -*S ADD A-2.1_HYD AND A-52.HYD .93533 1.500 2.683 .368 12.66 A-53.HYD 5&52 53 .00738 ADD HYD *S BASIN A-1.1 - LOT NO. 1 PHASE I 1.500 2.672 PER IMP= .045 .95736 5.00 1.50 .00088 A-1.1_HYD -COMPUTE NM HYD *S ADD A-1.1_HYD AND A-53.HYD .93511 .411 14.16 -00825 AP-A.PTL1 6&53 54 ADD HYD *S RENAISSANCE CENTER OFF-SITE CONTRIBUTION TO CALMAT SITE 1.650 1.283 PER IMP= 5.00 .75468 3.281 66.92 .08152 REN.HYD COMPUTE NM HYD *S ADD AP-A.PTL1 AND REN.HYD 1.334 .77125 1.600 3.692 .08977 76.64 AP-A.TTL 7&54 55 ADD HYD *S ROUTE AP-A.TTL VIA 48" RCP TO AP-C .77126 1.600 1.327 3.692 76.21 .08977 55 56 ROUTE AP-A.RTE *S BASIN A-5 - LOT NO. 5 PHASE I .429 2.04282 1.500 4.046 PER IMP= 70.00 10.20 .00394 11 COMPUTE NM HYD A-5.HYD *S BASIN A-4 - LOT NO. 4 PHASE I 4.048 PER IMP= 70.00 2.04282 1.500 .357 8.50 12 .00328 A-4.HYD COMPUTE NM HYD *S ADD A-5.HYD AND A-4.HYD 2.04273 1.500 4.047 18.70 .786 .00722 A-60.HYD 11&12 60 ADD HYD *S BASIN A-3 - LOT NO. 3 PHASE I 1.500 2.04282 4.047 PER IMP= 70.00 .375 8.90 13 .00344 COMPUTE NM HYD A-3.HYD *S ADD A-3.HYD AND A-60.HYD 1.500 2.04273 4.047 18.70 .786 .00722 A-61.HYD 11&12 61 ADD HYD *S BASIN A-2 - LOT NO. 2 PHASE I 2.04282 1.500 4.047 PER IMP= 70.00 8.74 .368 .00338 14 A-2.HYD COMPUTE NM HYD *S ADD HYDROGRAPHS A-2.HYD & A-61.HYD A-62.HYD 14&61 62 1.154 2.04273 .01059 27.44

	HYDROGRAPH	FROM ID	TO ID	AREA	PEAK DISCHARGE	RUNOF F VOLUME	RUNOFF	TIME TO PEAK	CFS PER	PAGE =	2
COMMAND	IDENTIFICATION	NO.	NO.	(SQ MI)	(CFS)	(AC-FT)	(INCHES)	(HOURS)	ACRE	ITATON	ON
COMPUTE NM	HYD A-1.HYD OGRAPHS A-1.HYD &		15 IYD	.00364	9.43	.397	2.04282	1.500	4.047	PER IMP=	70.00
ADD HYD	A-63.HYD 7 - DRAINAGE WAY F	15&62	63	.01424	36.87	1.551	2.04273	1.500	4.047		
COMPUTE NM		-	16	.00663	8.64	.321	.90979	1.550	2.038	PER IMP=	5.00
	OGRAPHS A-7.HYD &			02007	// 57	1 073	1 69200	1 EAA	7 770		
ADD HYD *S ADD HYDR	AP-C.PTL1 OGRAPHS AP-C.PTL1			.02086	44.57	1.872	1.68290	1.500	3.338		
ADD HYD	AP-C.TTL			.11063	111.19	5.565	.94316	1.550	1.570		
	DROGRAPH AP-C.TTL				111 74	E E/E	.94316	1 400	1 577		
ROUTE *S RASIN C-	AP-C.RTE 10 LOT NOS. 10, 11			.11063 SF III	111.36	5.565	.74310	1.600	1.573		
COMPUTE NM				.01313	24.27	.718	1.02578	1.500	2.890	PER IMP=	.00
*S BASIN C-	8 LOT NOS. 8 AND 1	O PHAS	SE III								
COMPUTE NM			22	.00922	17.05	.504	1.02578	1.500	2.890	PER IMP=	.00
*S ADD HYDR ADD HYD	OGRAPHS C-8.HYD & AP-B.TTL			.02234	41.32	1.222	1.02577	1.500	2.890		
	6 LOT NO. 6 PHASE		10	.02234	71036	1.266	1.02311	1.300	L.070		
COMPUTE NM	HYD C-6.HYD	-	23	.01047	19.36	.573	1.02578	1.500	2.890	PER IMP=	.00
	OGRAPHS AP-B.TTL 8			07201	60.69	1.795	1.02577	1.500	2.890		
ADD HYD *S ROUTE HY	A-71.HYD DROGRAPH A-71.HYD			.03281 POINT AP-D	00.07	1.773	1.02377	1.500	2.070		
ROUTE	AP-71.RTE			.03281	59.45	1.795	1.02579	1.550	2.831		
*S BASIN C-	4 LOT NO. 4 PHASE	III									
COMPUTE NM		- . 74 DI	24 ·-	.02297	33.78	1.257	1.02578	1.550	2.298	PER IMP=	.00
ADD HYD	OGRAPH C-4.HYD & A AP-D.PTL1		_	.05578	93.23	3.052	1.02577	1.550	2.611		
	OGRAPHS AP-D.PTL1										
ADD HYD	AP-D.TTL	73&66	74	.16641	204.49	8.616	.97085	1.550	1.920		
	11 CHAPPELL DRIVE		25	00/75	47 /4	(03	2 77005	4 500	1 170	DED IND-	00 00
COMPUTE NM *S BASIN C-	HYD C-11.HYD 9 LOT NO. 9 PHASE		25	.00475	13.61	.602	2.37805	1.500	4.470	PER IMP=	90.00
COMPUTE NM	_		26	.02672	42.66	1.462	1.02578	1.550	2.495	PER IMP=	.00
*S BASIN C-	3 LOT NO. 3 PHASE										
COMPUTE NM	HYD C-3.HYD OGRAPHS C-3.HYD &			.01297	23.98	.710	1.02578	1.500	2.890	PER IMP=	.00
ADD HYD	A-76.HYD			.03969	64.79	2.171	1.02577	1.550	2.551		
*S BASIN C-	7 LOT NO. 7 PHASE	III									
COMPUTE NM			28	.00891	16.48	.487	1.02578	1.500	2.890	PER IMP=	.00
*S ADD HYDRO ADD HYD	OGRAPH C-7.HYD & A A-77.HYD			.04860	80.51	2.659	1.02577	1.500	2.589		
	2 LOT NO. 2 PHASE		* *	.04660	00.31	2.037	1.02377	1.500	2.307		
COMPUTE NM			29	.01172	21.67	.641	1.02578	1.500	2.890	PER IMP=	.00
*S ADD HYDRO	OGRAPH C-2.HYD & A										
ADD HYD	A-78.HYD 5 LOT NO. 5 PHASE		78	.06032	102.19	3.300	1.02577	1.500	2.647		
COMPUTE NM I			30	.01047	19.36	.573	1.02578	1.500	2.890 F	PER IMP=	.00
	OGRAPH C-5.HYD & A			,-			~ ~ ~ ~ ~		•		-
ADD HYD	A-79.HYD		79	-07078	121.54	3.872	1.02577	1.500	2.683		
_	1 LOT NO. 1 PHASE	-	71	04400	21 04	∠E ∩	1 02570	1 E00	၁ 200 r	SED TMD-	00
*S ADD HYDRO	HYD C-1.HYD OGRAPH C-1.HYD & A		31 D	.01188	21.96	.650	1.02578	1.500	4.07U }	PER IMP=	.00

32


•

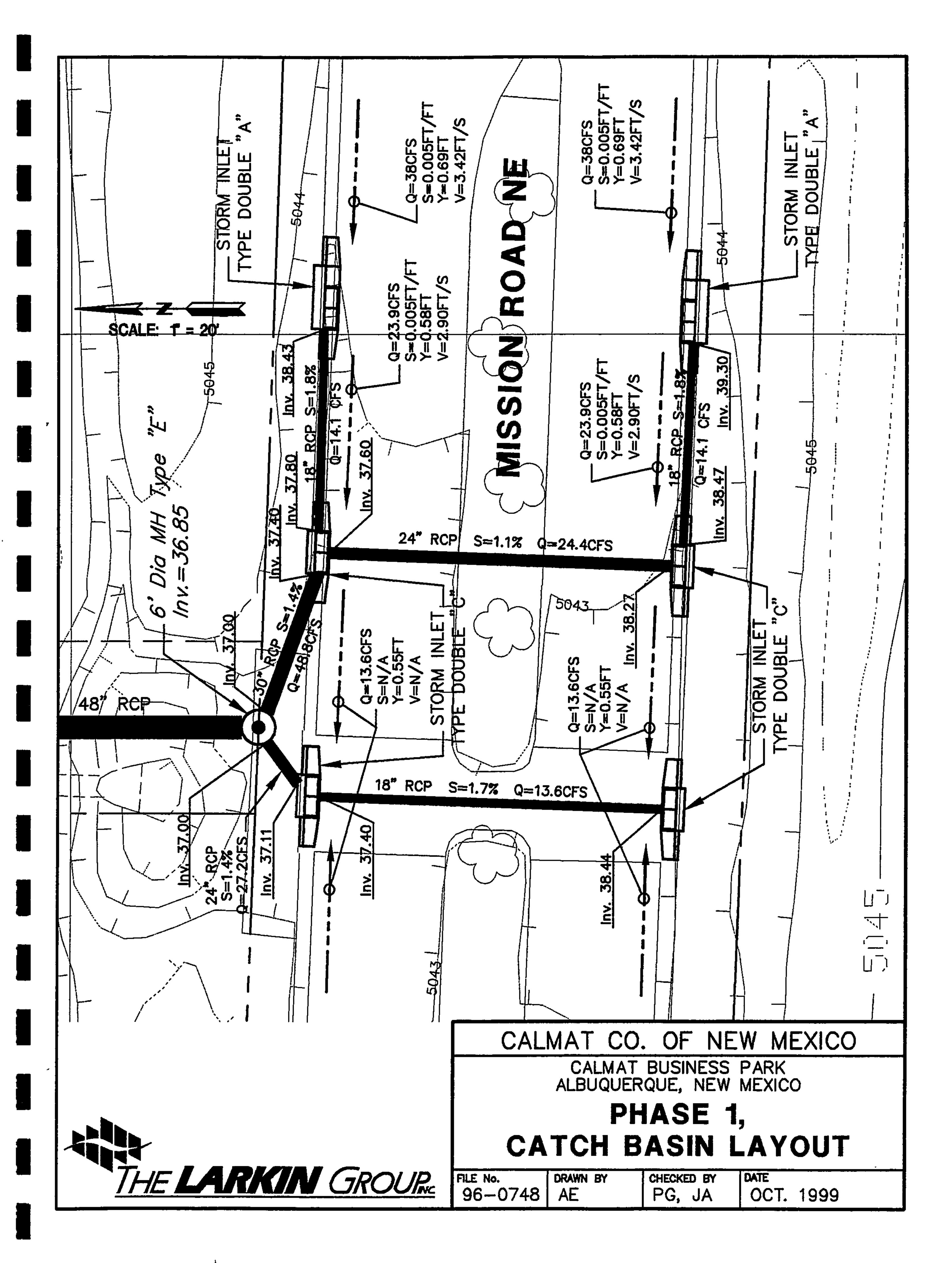
		FROM			PEAK	RUNOFF		TIME TO	CFS	PAGE =	3
	HYDROGRAPH		ID	AREA	DISCHARGE	VOLUME	RUNOFF	PEAK	PER		0 14
COMMAND	IDENTIFICATION	NO.	NO.	(SQ MI)	(CFS)	(AC-FT)	(INCHES)	(HOURS)	ACRE	NOTATI	UN
ADD HYD	AP-E.TTL	31&79	80	.08266	143.51	4.522	1.02577	1.500	2.713		
*S ROUTE H	YDROGRAPH AP-E.TTL	TO ANA	LYSIS	POINT AP-F							
ROUTE	AP-E.RTE	80	81	.08266	144.59	4.522	1.02578	1.550	2.733		
*S ADD HYD	ROGRAPH AP-E.RTE &	AP-D.T	TL								
ADD HYD	AP-F.PTL1	74&81	82	.24907	349.07	13.138	.98908	1.550	2.190		
*S BASIN C	-12 ALEXANDER BOULI	EVARD N	E								
COMPUTE NM	HYD AP-C.HYD	-	1	.00136	3.90	.172	2.37805	1.500	4.489 F	ER IMP=	90.00
*S ADD HYD	ROGRAPH AP-F.PTL1	& C-12.	HYD								
ADD HYD	AP-F.TTL	1&82	2	.25042	352.48	13.311	.99661	1.550	2.199		
*S AP-G -	MISSION HILLS ELEM	ENTARY	SCHOO	L OFF-SITE RUN	IOFF						
COMPUTE NM	HYD AP-G.HYD	-	3	.01563	35.20	1.433	1.71970	1.500	3.520 F	ER IMP=	55.00
*S B-3 - L	OT NO. 3 PHASE II										
COMPUTE NM	HYD B-3.HYD	-	5	.01984	36.69	1.086	1.02578	1.500	2.889 F	ER IMP=	-00
*S ADD HYD	ROGRAPHS B-3.HYD TO	O AP-F.	TTL								
ADD HYD	AP-H.TTL	2& 5	6	.27027	386.34	14.396	.99875	1.550	2.234	•	•
*S BASIN B	1-1 - LOT NO. 1 PHAS	SE 2									
COMPUTE NM	HYD B-1.HYD	-	7	.02766	28.81	1.513	1.02578	1.700	1.627 F	ER IMP=	.00
*S BASIN B	-2 - LOT NO. 2 PHAS	SE 2									
COMPUTE NM	HYD B-2.HYD	-	8	.03266	34.01	1.787	1.02578	1.700	1.627 F	ER IMP=	.00
*S ADD HYD	ROGRAPHS B-1.HYD TO	D B-2.H	YD								
ADD HYD	AP-I.TTL	7& 8	9	.06031	62.82	3.300	1.02577	1.700	1.627		
*S BASIN B	-4 - EXISTING RETE	NTION B	ASIN	AND PROPOSED D	ETENTION BASIN	ł					
COMPUTE NM	HYD B-2.HYD	-	10	.00688	8.72	.249	.68033	1.500	1.983 F	ER IMP=	.00
*S ADD HYD	ROGRAPH AP-I.TTL TO	D B-4.H	YD								
ADD HYD	AP-J.PTL1	9&10	11	.06719	66.91	3.549	.99042	1.650	1.556		
*S ADD HYD	ROGRAPH FROM AP-J.	PTL1 TO	AP-H	.TTL							
ADD HYD	AP-J.TTL	11& 6	12	.33746	439.98	17.945	.99709	1.550	2.037		
FINISH											

Elevation	Surface Area	Incremental Volume	Total Volume	Surface Area
	(SQ FT)	(Acre-Feet)	(Acre-Feet)	(Acres)
5018	15238		0	0.349811
5020	19869	0.803589	0.80	0.456125
5022	32531	1.191051	1.99	0.746809
5024	48549	1.849112	3.84	1.114532
5026	62169	2.535298	6.38	1.427202
5028	70035	3.033192	9.41	1.607783
5030	78466	3.407287	12.82	1.801337
5032	88322	3.826711	16.65	2.027604
5034	99102	4.300306	20.95	2.275076

Existing Pond # 1/Sump Area

Stage vs. Volume Calmat Business Park Detention Basin

Elevation	Surface Area (SQ FT)	Incremental Volume (Acre-Feet)	Total Volume (Acre-Feet)	Surface Area (Acres)
5002	6536	•	0	0.150046
5016	59659	9.207097	9.21	1.369582


Existing Pond # 2/Sump Area

Elev	ration	Surface Area	Incremental Volume	Total Volume	Surface Area
		(SQ FT)	(Acre-Feet)	(Acre-Feet)	(Acres)
	5028	20030		0	0.459825528
	5034	40097	4.061835	4.06	0.920500459

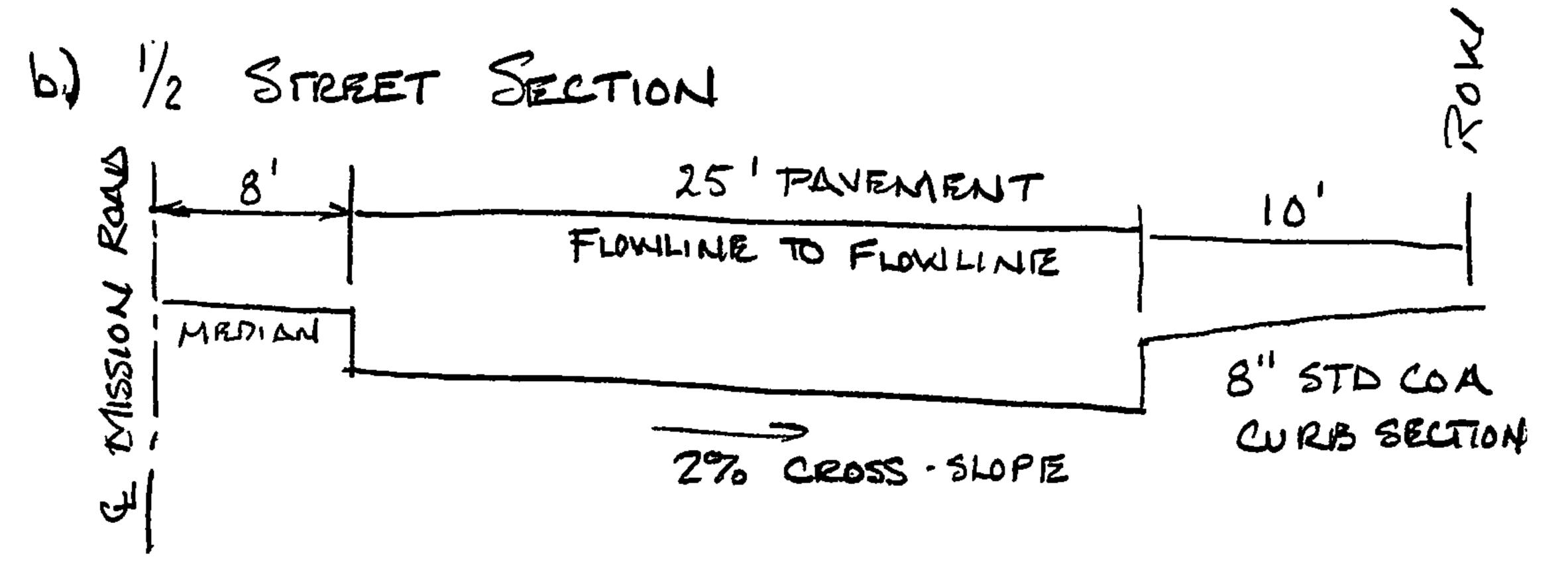
Existing Pond # 3/Sump Area

Elevation	Surface Area	Incremental Volume	Total Volume	Surface Area
	(SQ FT)	(Acre-Feet)	(Acre-Feet)	(Acres)
5024	20001		0	0.45916
5030	33082	3.618274	3.62	0.759458

Existing Pond # 4/Sump Area

THE LARKIN GROUP.

CONSULTING ENGINEERS AND SURVEYORS


8500 Menaul Boulevard NE, Suite A-440 Albuquerque, New Mexico 87112

> Phone: 505-275-7500 Fax: 505-275-0748

e-mail: albmail@larkin-grp.com

Date 10/18/99 Page / of 4
client CALMAT
JOB NO. AL96-0748
JOB TITLE CALMAT BUSINESS PARK, PHASE!
Made By P. GONZALES
Chkd. By

- 1. TYPE ZA INLET CAPACITY CALCULATIONS
- 2. PURPOSE DETERMINE CAPACITY OF TYPE ZA
 INLET WITH CONDITIONS CONSTRAINED BY
 MISSION ROAD GEOMETRY AND HYDRAULIC SECTION
- 3. REFERENCES COA, DPM SECTION 22.3
 FLOWMASTER V. 6.0
- 4. ASSUMPTIONS:
 - a) RENAISSANCE CENTER AND ON-SITE CALMAT 100-YR PEAK FLOW IS APPROXIMATELY 76 CFS. AND DISCHARGES TO MISSION ROAD SUMP AREA, 450 FEET EAST OF ALEXANDER BLUD CENTERLINE. 1/2 STREET SECTION CARRIES 38 CFS.

LONGITUDINAL SHOPE = 0.0050 FT/FT

MANNINGS ROUGHNESS = 0.017 AS PER COA

- 5. CALCULATIONS
 - 2) DEPTH OF FLOW IN STREET SECTION IS 0.69 FT AS PER FLOWINGSTER CALCS PROVIDED

CONSULTING ENGINEERS AND SURVEYORS

8500 Menaul Boulevard NE, Suite A-440 Albuquerque, New Mexico 87112

Phone: 505-275-7500

Fax: 505-275-0748

e-mail: albmail@larkin-grp.com

Date 10/18/99 Page 2 of 4
Client CAMAT
Job No
Job Title
Made By
Chkd. By

5. CALCULATIONS

6) TYPEZA INLET CAPACITY

GRATE CAPACITY: COA DPM 22.3, PLATE 22.3 D-6

AT A DRPTH OF 0.69 FT, BRATE HAS A CAPACITY OF 10 CFS = QBRATE

THROAT CAPACITY: LENGTH OF THROAT = 3.5 FT

> WEIR EQUATION = Q = CLH 3/2 C= 3.3 - NREMAH L= 7.0 FT H= 0.69 FT

QTHROAT = 3.3 (3.5) (0.69) 3/2 = 6.6. CFS

TOTAL CAPACITY

QGEATE + QTHEOAT = QTOTAL

6.6 + 10 = 16.6 CFS

REDUCED CAPACITY DUE TO CLOGGING
15% REDUCTION

QREDUED = (1-0.15) Q TOTAL = (0.85) (16.6) = 14.1 CFS

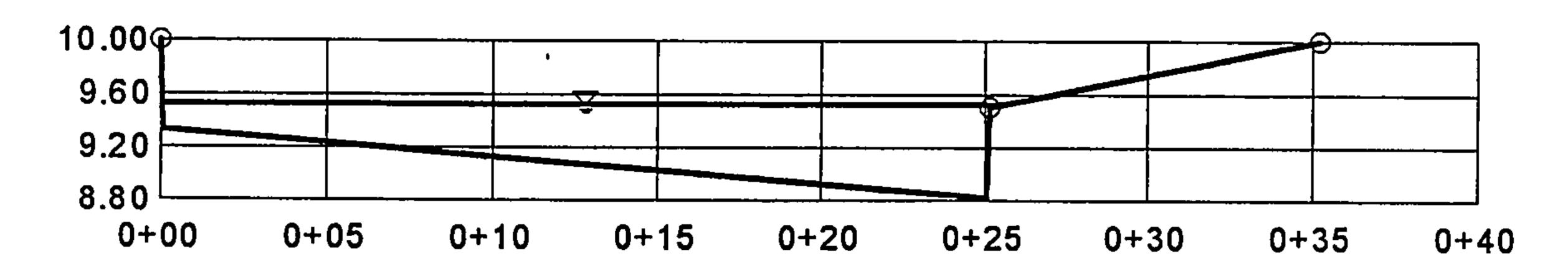
BYPASSED FLOW

 $Q_{BP} = 38 - 14.1 = 23.9 CFS$

Worksheet Worksheet for Irregular Channel

Project Des	cription		
Worksheet			Irregular Channel - 1
Flow Eleme	ent		Irregular Channel
Method			Manning's Formula
Solve For			Channel Depth
Input Data			
Slope	0.005000	ft/ft	
Discharge	38.00	cfs	

	Options			
•	Current Roughness Method	Improved Lotter's Method		
	Open Channel Weighting Metho	Improved Lotter's Method		
	Closed Channel Weighting Meth	Horton's Method		


Results	
Mannings Coefficient	0.017
Water Surface Elevation	9.52 ft
Elevation Range	8.83 to 10.00
Flow Area	11.1 ft²
Wetted Perimeter	26.33 ft
Top Width	25.56 ft
Actual Depth	0.69 ft
Critical Elevation	9.50 ft
Critical Slope	0.006052 ft/ft
Velocity	3.42 ft/s
Velocity Head	0.18 ft
Specific Energy	9.70 ft
Froude Number	0.92
Flow Type	Subcritical

Roughness Segments		
Start Station	End Station	Mannings Coefficient
0+00	0+25	0.017
0+25	0+35	0.030

Natural Channel Points		
	Elevation (ft)	Station (ft)
	19:00 9.53	0+00
	9.33	0+00
_	8.83	0+25
202	9.50	0+25
110	40.00	0+35
	9.60	

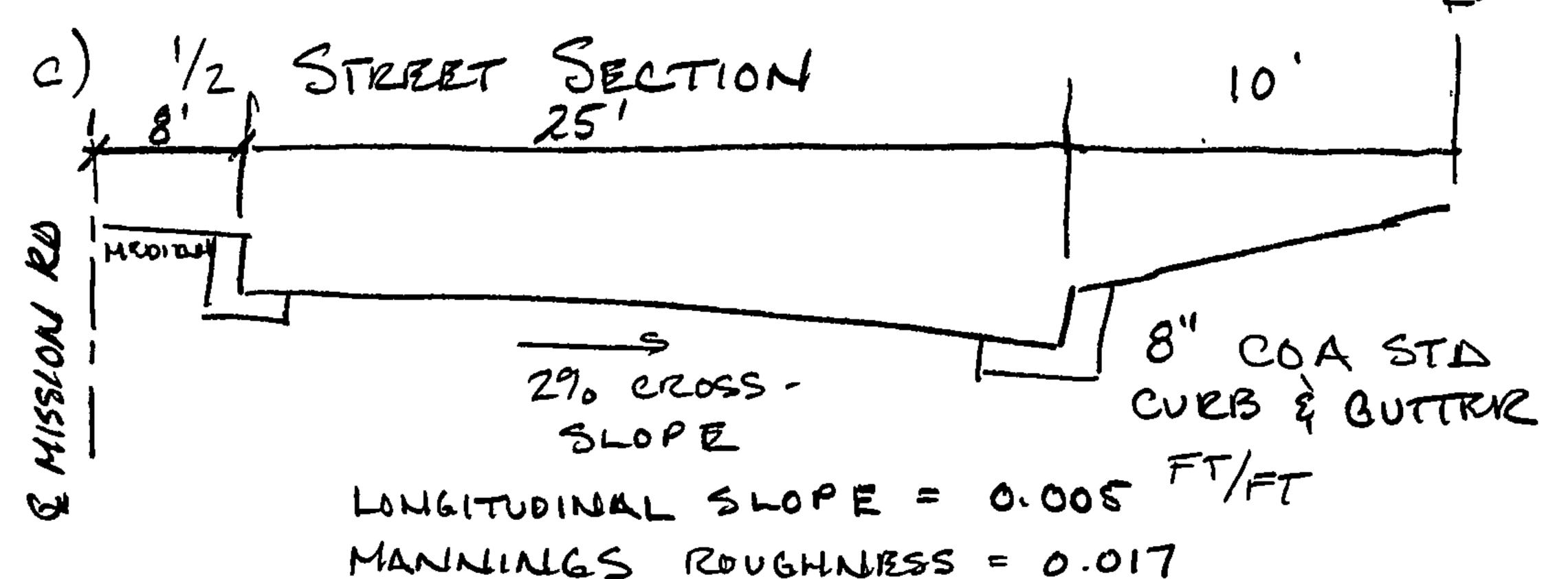
Cross Section Cross Section for Irregular Channel

Project Description	
Worksheet	Irregular Channel - 1
Flow Element	Irregular Channel
Method	Manning's Formula
Solve For	Channel Depth
Mannings Coefficient	0.017
Section Data	
Slope	0.005000 ft/ft
Water Surface Elevation	9.52 ft
Elevation Range	8.83 to 10.00
Discharge	38.00 cfs

V:4.0 H:1 NTS

THE LARKIN GROUP.

CONSULTING ENGINEERS AND SURVEYORS


8500 Menaul Boulevard NE, Suite A-440 Albuquerque, New Mexico 87112

> Phone: 505-275-7500 Fax: 505-275-0748

e-mail: albmail@larkin-grp.com

Date 10/18/99 Page / 0F
Client_CALMAT
JOB NO. 4496-0748
Job Title
Made By
Chkd. By

- 1. TYPE 20 INLET CAPACITY CALCULATIONS
- 2. DETERMINE CAPACITY OF TYPE ZC INLET WITH CONDITIONS CONSTRAINED BY MISSION ROAD GEOMETRY AND HYDRAULIC SECTION
- 3. REFERENCES COA, DPM SECTION 22.3
 FLOW MASTER V. U.O
- 4. ASSUMPTIONS
 - 2) TYPE ZA INLET UPSTREAM OF TYPE ZC INLET. TYPE ZC INLETS ARE 30 FT DOWNSTERMY
 - b) PEAK FOW IN STREET IS APPROXIMATELY 23.9 CFS

CALCULATIONS

a) DEPTH OF FLOW = 0.58 FT

AS CALCULATED WITH FLOWINGSTER.

CALCULATIONS PROVIDED.

THE LARKIN	GROUP

8500 Menaul Boulevard NE, Suite A-440 Albuquerque, New Mexico 87112 Phone: 505-275-7500

Fax: 505-275-0748

e-mail: albmail@larkin-grp.com

Date 10/18/99 Page 2 OF 4 Client CALMAT
Job No
Job Title
Made By
Chkd. By

5. CALCULATIONIS b) TYPE 2C INLET CAPACITY

GRATE CAPACITY: COA, DPM 223, PLATE ZZO3 D-6 AT A DEPTH OF 0.58 FT, GRATE HAS A CAPACITY OF APPROXIMATRLY 8 CFS = QGRATE

THROAT CAPACITY:

ASSUME 1/2 LENGTH OF INLET FUNCTIONS AS A WIEIR.

QTHROAT = CLH 3/2

C= 3.3 - NREMAN L= 3.5 FT

H = 0.50 FT

QTHEORT = 3.3 (3.5) (0.5) 3/2

OTHERAT = 4.1 CFS

TOTAL CAPACITY

OTOTAL = QUEATE + OTHEOUT = 8 CFS + 4.1 CFS = 12.1 CFS

REDUCED CAPACITY DUE TO 15% CLOGGING

QERDUCED = $(1-0.15)(Q_{TOTAL}) = (0.85)(12.1)$ = 10.3 CFS

BYPASSED FLOW

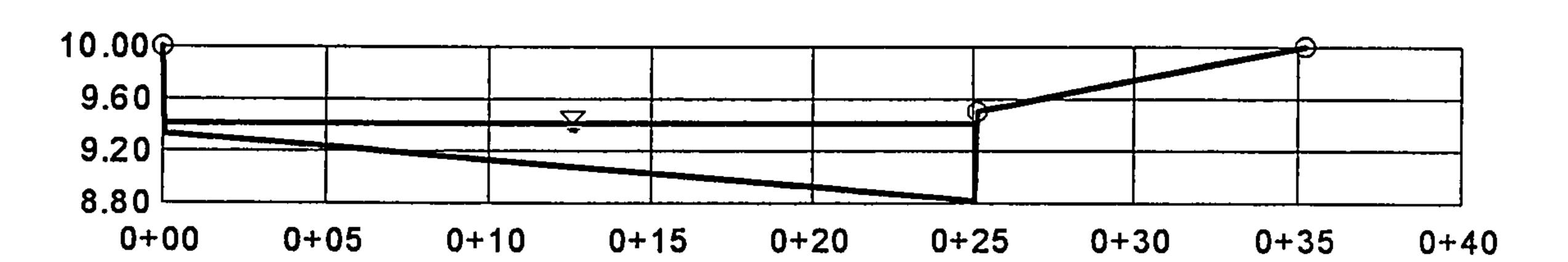
 $Q_{BP} = 23.9 - 10.3 = 13.6 C= 5$

Worksheet Worksheet for Irregular Channel

Project Des	cription		
Worksheet		· · · · · · · · ·	Irregular Channel - 1
Flow Eleme	ent		Irregular Channel
Method			Manning's Formula
Solve For			Channel Depth
1			
Input Data			
Slope	0.005000	ft/ft	
Discharge	23.90	cfe	

Current Roughness Method	Improved Lotter's Method
Open Channel Weighting Metho	Improved Lotter's Method
Closed Channel Weighting Meth	Horton's Method

Results		
Mannings Coefficient	0.017	
Water Surface Elevation	9.41	ft
Elevation Range	8.83 to 10.00	
Flow Area	8.2	ft²
Wetted Perimeter	25.67	ft
Top Width	25.08	ft
Actual Depth	0.58	ft
Critical Elevation	9.38	ft
Critical Slope	0.006441	ft/ft
Velocity	2.90	ft/s
Velocity Head	0.13	ft
Specific Energy	9.54	ft
Froude Number	0.89	
Flow Type	Subcritical	


Roughness Segments		
Start Station	End Station	Mannings Coefficient
0+00	0+25	0.017
0+25	0+35	0.030

Natural Channel Points			
	Station (ft)	Elevation (ft)	
	0+00	10:00	7.83
	0+00	9.33	
	0+25	8.83	
	0+25	9.50	
	0+35	1 0:0 0~	9.60

The Larkin Group inc.

Cross Section Cross Section for Irregular Channel

Project Description		
Worksheet	irregular Channel - 1	
Flow Element	Irregular Channel	
Method	Manning's Formula	
Solve For	Channel Depth	
Section Data		
Mannings Coefficient	0.017	
Slope	0.005000 ft/ft	
Water Surface Elevation	9.41 ft	
Elevation Range	8.83 to 10.00	
Discharge	23.90 cfs	

V:4.0 H:1 NTS

Project Engineer: The Larkin Group Inc.

8500 Menaul Boulevard NE, Suite A-440 Albuquerque, New Mexico 87112

Phone: 505-275-7500 Fax: 505-275-0748

e-mail: albmail@larkin-grp.com

Date 10/18/99 Page 1 of 2.
Client_CALMAT_
JOB NO. AL96-0748
COLMAT BUSINESS PARK Job Title PHASE I
Made By P. GONZALES
Chkd. By

- 1. TYPE 20 INLET CAPACITY CALCULATIONS
- 2. PURPOSE-FIND DEPTH OF FLOW IN STREET SECTION THAT WILL CAPTURE REMAINING 13.6 CFS OF STORMATER FLOW IN MISSION ROADSUMP AREA.
- 3. REFERRACES -COA, DPM SECTION 22.3 FLOWMASTER 4, 6,0
- 4. ASSUMPTIONS
 - 2) NEED TO CAPTURE REMAINING 13.6 CFS
 - b) FULL THROAT SECTION ACTS AS A WELR IN PONIDING SITUATIONS
 - C) NO CLOGGING DUR TO TWO UPSTERAM INLETS AND FLOW FROM WEST ON MISSION 15 NEGLIGIBLE.
- 5. CALCULATIONS

ITRRATIVE PROCESS : ASSUME DEPTH, CALCULATE GRATE AND THROAT CAPACITY

ASSUME DEPTH IS 0.50 FT

GRATE CAPACITY! COA, DPM SECTION 22.3, PLATE D-6

QGRATE 3 SCFS

THROAT CAPACITY: RROUGE DRATH O.1 FT DUZ! TO GRATE FLOW $Q_{\text{THROAT}} = CLH^{3/2}$ C=3.3, L=7.0 FT $Q_{\text{THROAT}} = 5.8 \text{ CFS}$ H=0.4 FT

QTOTAL = 5+5.8 = 10.8 CFS - INSUFFICIENT

THEL	ARKIN	GROUP.

8500 Menaul Boulevard NE, Suite A-440 Albuquerque, New Mexico 87112

> Phone: 505-275-7500 Fax: 505-275-0748

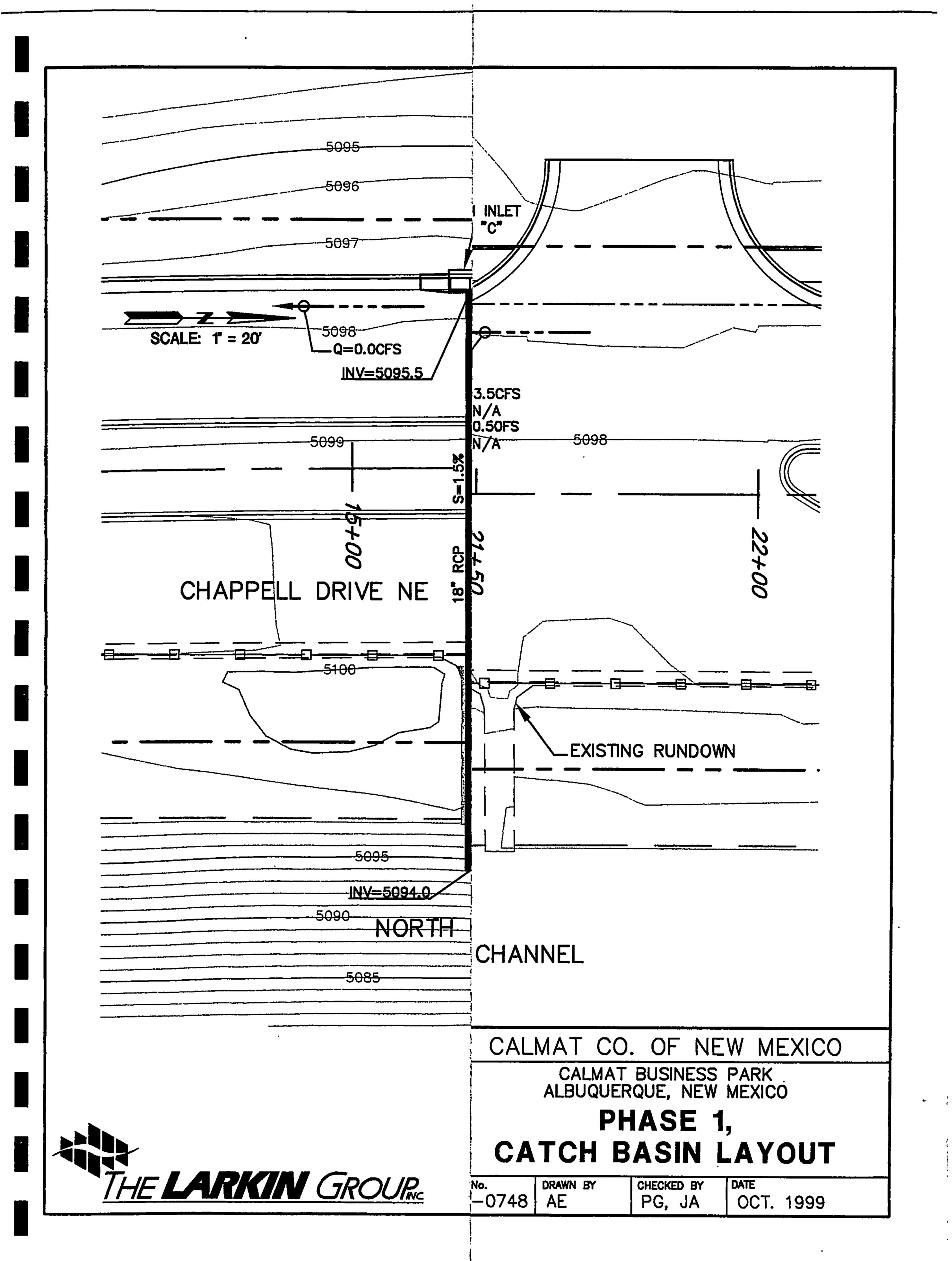
e-mail: albmail@larkin-grp.com

Date 10/18/99 Page Z SF 2
Client_CALMAT
Job No
Job Title
Made By
Chkd. By

5. CALCULATIONS

ASSUME DEPTH IS 0.55 FT

GRATE CAPACITY, QUERTE & 6.4 CFS


TELEORT CAPACITY, REDUCE DRPTH 0.1 FT $Q_{\text{THRCAT}} = 3.3 (7.0) (0.45)^{3/2} = 7.0 \text{ CFS}$

TOTAL CAPACITY, QTOTAL

QTOTAL = QGRATE + QTHROLT = 6.4 + 7.0 = 13.4 CFS

QTOTAL = 13.4 2 13.6 = QBP

-. DEPTH OF PONDING APPROXIMATELY. 0.55 FT AT FLOWILING OF MISSION ROAD

THE LARKIN	GROUP

8500 Menaul Boulevard NE, Suite A-440 Albuquerque, New Mexico 87112

Phone: 505-275-7500

Fax: 505-275-0748

e-mail: albmail@larkin-grp.com

Date 10/18/99 Page / 0 = 2
client CALMAT
JOB NO. AL96-0748 CALMAT BUSINESS PARK
Job TitlePHASE I
Made By P. GONZALES
Chkd. By

CHAPPELL DRIVE CATCH BASIN CALCULATIONS

- 1. TYPE | C INLET CALCUEATIONS
- 2. PURPOSE FIND PEAK FLOW AT INLET LOCATIONS. CALCULATE DEPTH OF FLOW REQUIRED TO CAPTURE PEAK FLOW.
- 3. REFERENCES COA, DPM SECTION 22.2, 22.3 AHYMO MODEL CALCULATIONS FOR CALMAT BUSINESS PARK, PHASE I
- 4. 2) CAPTURE FLOWS FROM 4 STREET TO ROW. 6) AHYMO CALCULATES A PEAK FLOW RATIO OF 4.5 CFS/ACRE
- 5. CALCULATIONS

A. INLET @ STA 15+25 CHAPPELL DRIVE

DRAINAGE AREA EXTENIOS 265' NORTHWARD WIDTH OF DEALNAGE AREA 43'

AREA = 265' x 43' = 11395 SOFT 2 0.262 AC

QP15+25 = 0.262 AC × 4.5 OFS/AC = 1.2 CFS

DEPTH OF FLOW GIVEN! (FLOWMASTER)

Q= 1.2 CFS 5 = 0.0074 FT/FT1/2 STRRET SECTION n = 0.017

V=0-18 FT

8500 Menaul Boulevard NE, Suite A-440
Albuquerque, New Mexico 87112

Phone: 505-275-7500 Fax: 505-275-0748

e-mail: albmail@larkin-grp.com

Date 10/18/99 Page ZoF 2
Client CALMAT
JOB NO. AL96-0748 CALMAT BUSINESS PARK JOB TITLE PHASE I
Job Title PHASE I
Made By F. GONZALES
Chkd. By

TYPE IC INLET

GRATE CAPCITY & 1.0 CFS COADPM PLATE 22.3

D-5

1.0 CFS CAPACITY 2 1.2 CFS PEAK FLOW
ASSUME BYPASS FLOW, IF ANY IS NEGLIGIBLE.

B. INLET AT STA 21+50, IN SAG VERTICAL CURVE.

DRAINAGE AREA

LENGTH = 795 FT

WIDTH = 43' FT

 $\Delta REA = 795' \times 43' = 34185 \text{ SQ FT } = 0.785 \text{ AC}$ $Q_{P21450} = 0.785 \text{ AC} \left(4.5 \text{ CFS/AC}\right) = 3.5 \text{ CFS}$

DEPTH OF FLOW TO DISCHARGE 3.5 CFS THROUGH GRATE OF TYPE IC INLET

COA, DPM PLATE 22.3, D-5 INDICATES

AT APPROXIMATELY 0.5 FT DEPTH A TYPEIC

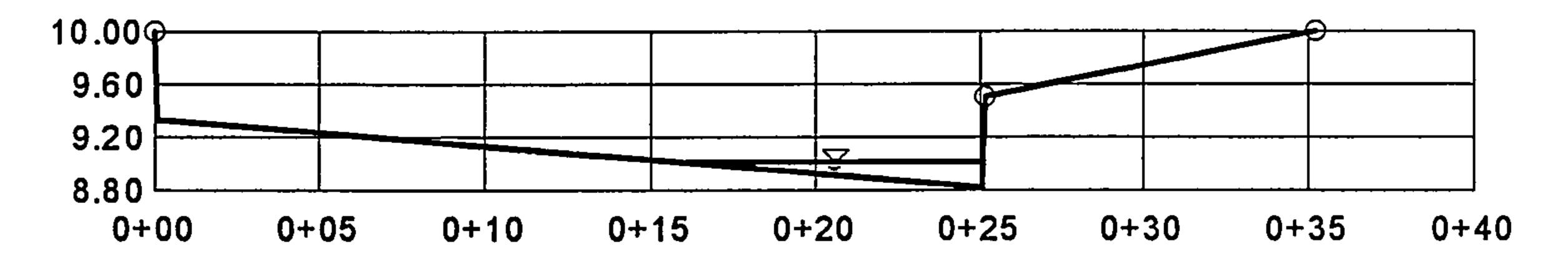
GRATE WILL DISCHARGE 3.5 CFS

Worksheet Worksheet for Irregular Channel

Project Description	
Worksheet	Irregular Channel - 1
Flow Element	Irregular Channel
Method	Manning's Formula
Solve For	Channel Depth

Input Data		
Slope	0.007400	ft/ft
Discharge	1.20	cfs

Options	
Current Roughness Method	Improved Lotter's Method
Open Channel Weighting Metho	Improved Lotter's Method
Closed Channel Weighting Meth	Horton's Method


Results		
Mannings Coefficient	0.017	
Water Surface Elevation	9.01	ft
Elevation Range	8.83 to 10.00	
Flow Area	8.0	ft²
Wetted Perimeter	9.15	ft
Top Width	8.99	ft
Actual Depth	0.18	ft
Critical Elevation	9.00	ft
Critical Slope	0.009804	ft/ft
Velocity	1.49	ft/s
Velocity Head	0.03	ft
Specific Energy	9.04	ft
Froude Number	0.88	
Flow Type	Subcritical	

Roughness Segments		
End Station	Mannings Coefficient	
0+25	0.017	
0+35	0.030	
	End Station 0+25	

Natural Channel Points		
Station Elevation (ft) (ft)		
0+00 10.00		
0+00	9.33	
0+25	8.83	
0+25 9.		
0+35	10.00	

Cross Section Cross Section for Irregular Channel

Project Description	
Worksheet	Irregular Channel - 1
Flow Element	irregular Channel
Method	Manning's Formula
Solve For	Channel Depth
Mannings Coefficient	0.017
Manninga Coefficient	0.017
Slope	0.007400 ft/ft
Water Surface Elevation	9.01 ft
Elevation Range	8.83 to 10.00
2.014	

V:4.0 H:1 NTS

LARKIN ASSOCIATES CONSULTING ENGINEERS, INC.

9233 WARD PARKWAY, SUITE 300 KANSAS CITY, MISSOURI 64114 TELEPHONE 816/361-0440 FAX 816/361-0045

Page
Date August 10, 1998
Job No. AL96 - 0748
Made By P. GONZALES
Chkd. By

CLIENT CALMAT OF NEW MEXICO JOB CALMAT BUSINESS PARK PHASE 1

DETENTION BASIN STANDPIPE

				و ودو مستشور	•
	16-INCH DIAMETE	e		77 D = 50.2.	*·· }
•	SCHROULR 40				
	STEEL PIPE	<u> </u>			
	(15-INCH INNER DIAMETER)				
	MYX, HM		5029.0		
	5028.65			~ ?ous -	
	HW				
	2 SLOTS	The state	5023.5	SLOT DIMENSION	1:
	2 SLOTS		5:072.5		•
	2 SLOTS		*:021. C		•
	6 SLOTS	Civil de la Constantina del Constantina del Constantina de la Cons	5676.5		•
	6 SLOTS				•
•	<i></i>		0,	FL FLE	1 5018.50
			1 1 2	ETE FOUNDATION	
TO MANHOLE		7.	Δ	COLLAR	•
TOKAY ST NO VINEYARD RO		-	· · · · · · · · · · · · · · · · · · ·	<u> </u>	•
MIN GIRLINGED INC.			· · · · · · · · · · · · · · · · · · ·		
		η. Δ	· <u>^ ^ '</u>		
			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		

Calmat Business Park Detention Basin

Basin Riser Flow Calculations

Dasin Kiser	Plow Calculations	Orifice Equation:	C =	0.6	
		Q=C*a*SQRT(2*g*h)	. a = g =	0.020833	1" x 3" Orifice
		Flow Rate	Total		
Head		per Orifice	Flow Rate		
(FT)	Number of Orifices	•	(CFS)		
9	~				
8	6	0.300936	1.806		
7	6 2	0.283725	1.702		
/ @	2	0.265401	0.531		
6 5	2	0.245713	0.491		
.	4.	0.224304	0.449 SUM 4.979		Elevation 5028 5
8	6	0.283725	1.702		
7	6	0.265401	1.592		
6	2	0.245713	0.491		
5	2	0.224304	0.449		
4	2	0.200624	0.401		******
			SUM 4.636		Elevation 50275
7	6	0.265401	1.592		
6	6	0.245713	1.474		
5	2	0.224304	0.449		
4	2	0.200624	0.401		
3	2	0.173745	0.347		~~~~
			SUM 4 264		Elevation 5026.5
6	6	0.245713	1.474		
5	f 6	0.224304	1.346		
4	2	0.200624	0.401		
3	2	0.173745	0.347		
2	2	0.141863	0.284		V2222288888888888888888888888888888888
			SUM 3.853		Elavation 5025 5
5	6	0.224304	1.346		
4	6	0.200624	1.204		•
3	2	0.173745	0.347		
2	2	0.141863	· 0.284		
1	2	0.100312	0.201		**************************************
			SUM 3.381		Eleveton #0245
4	6	0.200624	1.204		
3	6	0.173745	1.042		
2	2	0.141863	0.284		
1	2	0.100312	0.201	_	
			SUM 2.731	3	Elevation 50235
3	6	. 0.173745 ·	1.042		
2	6	0.141863	0.851		
1	2	0.100312	0.201	_	
			SUM 2.094	\$ \$	Elevation 50225
2	6	0.141863	0.851		
1	6	0.100312	0.602		
			SUM 1.453	***	Elevation 50215
1	6	0.100312	0.602		
			SUM 0.602	***	Elevation 50205
				**	

CALMAT DRAINAGE ANALYSIS PHASE-I Worksheet for Circular Channel

Project Description	
Worksheet	Circular Channel - 1
Flow Element	Circular Channel
Method	Manning's Formula
Solve For	Channel Depth
Input Data	<u> </u>
Mannings Coefficient	0.013
Slope	0.005000 ft/ft
Diameter	48 in
Discharge	76.60 cfs
Results	
Depth	2.59 ft
Flow Area	8.6 ft ²
Wetted Perimeter	7.49 ft
Top Width	3.82 ft
Critical Depth	2.65 ft
Percent Full	64.9 %
Critical Slope	0.004710 ft/ft
Velocity	8.88 ft/s
Velocity Head	1.23 ft
Specific Energy	3.82 ft
Froude Number	1.04
Maximum Dischar	109.25 cfs
Discharge Full	101.57 cfs
Slope Full	0.002844 ft/ft
Flow Type	Supercritical

Worksheet Worksheet for Trapezoidal Channel

Project Description	
Worksheet	Trapezoidal Channel - 1
Flow Element	Trapezoidal Channel
Method	Manning's Formula
Solve For	Channel Depth
Input Data	
Mannings Coefficie	nt 0.030
Slope	0.005000 ft/ft
Left Side Slope	0.33 V:H
Right Side Slope	0.33 V:H
Bottom Width	8.00 ft
Discharge	110.00 cfs
Results	
Depth	1.91 ft
Flow Area	26.3 ft ²
Wetted Perimeter	20.18 ft
Top Width	19.57 ft
Critical Depth	1.48 ft
Critical Slope	0.013215 ft/ft
Velocity	4.18 ft/s
Velocity Head	0.27 ft
Specific Energy	2.18 ft
Froude Number	0.64
Flow Type	Subcritical

Worksheet Worksheet for Trapezoidal Channel

Project Description	
Worksheet	Trapezoidal Channel - 1
Flow Element	Trapezoidal Channel
Method	Manning's Formula
Solve For	Channel Depth
Input Data	
Mannings Coefficie	nt 0.030
Slope	0.005000 ft/ft
Left Side Slope	0.33 V:H
Right Side Slope	0.33 V:H
Bottom Width	8.00 ft
Discharge	120.00 cfs
Results	·
Depth	2.00 ft
Flow Area	28.0 ft ²
Wetted Perimeter	20.73 ft
Top Width	20.09 ft
Critical Depth	1.56 ft
Critical Slope	0.013049 ft/ft
Velocity	4.28 ft/s
Velocity Head	0.28 ft
Specific Energy	2.28 ft
Froude Number	0.64
Flow Type	Subcritical

Page 1 of 1