CITY OF ALBUQUERQUE

Planning Department
Brennon Williams, Director

November 6, 2019

Scott Eddings, PE Huitt-Zollers Inc. 6561 Americas Parkway NE Albuquerque, NM 87110

RE: Albuquerque Repro Graphics Expansion

4716 McLeod Rd NE

Permanent C.O. - Accepted

Engineer's Certification Date: 10/18/19

Engineer's Stamp Date: 05/01/19

Hydrology File: F17D070A

PO Box 1293 Dear Mr. Eddings:

Based on the Certification received 11/04/2019 and site visit on 11/06/19, this certification is

approved in support of Permanent Release of Occupancy by Hydrology.

Albuquerque

If you have any questions, please contact me at 924-3995 or rbrissette@cabq.gov.

NM 87103

Sincerely,

www.cabq.gov

Renée C. Brissette, P.E. CFM Senior Engineer, Hydrology

Renée C. Brissette

Planning Department

City of Albuquerque

Planning Department

Development & Building Services Division

DRAINAGE AND TRANSPORTATION INFORMATION SHEET (REV 6/2018)

Project Title: Albuquerque Repro Graphics	Building Permit #:	Hydrology File #: F17						
DRB#: Lot 1 Blk G Cashway Su	EPC#:	Work Order#:						
	ibaivision							
City Address: 4716 McLeod Rd NE								
		Contact: Jeff Foss						
Address: 4716 McLeod Rd NE								
Phone#: 505-892-5141								
Other Contact: Huitt-Zollars, Inc. Address: 333 Rio Rancho Blvd, Rio Rancho,	NM 87124	Contact: Scott Eddings						
Address: 505 Rio Raheno Bivd, Rio Raheno,	14141 07 124	anddings@buitt gallars.com						
Phone#: 505-235-7211	Fax#:	E-mail: seddings@nuitt-zonars.com						
TYPE OF DEVELOPMENT: PLAT (# of lots) RESIDENCE	DRB SITE X _ ADMIN SITE						
IS THIS A RESUBMITTAL? Yes	X No							
DEPARTMENT TRANSPORTATION	X HYDROLOGY/DRAINAGE							
Check all that Apply: TYPE OF SUBMITTAL: X ENGINEER/ARCHITECT CERTIFICATION PAD CERTIFICATION CONCEPTUAL G & D PLAN X GRADING PLAN	BUILDING PER CERTIFICATE (PRELIMINARY SITE PLAN FOR	PLAT APPROVAL R SUB'D APPROVAL						
DRAINAGE REPORT DRAINAGE MASTER PLAN	SITE PLAN FOI FINAL PLAT A	R BLDG. PERMIT APPROVAL PPROVAL						
FLOODPLAIN DEVELOPMENT PERMIT A ELEVATION CERTIFICATE CLOMR/LOMR TRAFFIC CIRCULATION LAYOUT (TCL)	SIA/ KELEASE							
TRAFFIC IMPACT STUDY (TIS) STREET LIGHT LAYOUT OTHER (SPECIFY) PRE-DESIGN MEETING?		O CERTIFICATION APPROVAL DEVELOPMENT PERMIT						
DATE SUBMITTED: November 4, 2019		FY)						
COA STAFF:	ELECTRONIC SUBMITTAL RECEIVED:							

FEE PAID:____

HYDROLOGY

PROPOSED PEAK DISCHARGE:

RESULTS

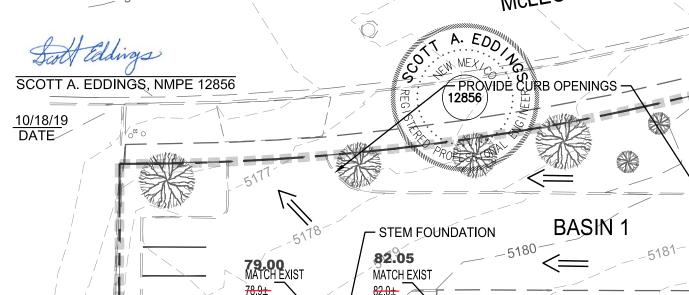
	Albuquerque F	Repro	AREA	=	0.99	ac														
Latitude	BASIN 1																			
Description	NOAA Atlas 14																			
PRECIPITATION: 360 = 2.33 in. 1140 = 2.77 in. 10day = 4.13 in. 10day = 4.10 cfs/ac. 10day = 4.70 c	Latitude		35	.13	71															
1140 = 2.77 in. 10day = 4.13 in.	Longitude		-10	6.59	05															
10day	PRECIPITATION	1:	36	0 =	2.33	in.														
EXCESS PRECIPITATION: PEAK DISCHARGE: TREATMENT A 0.53 in. 1.56 cfs/ac. 2.28 cfs/ac. TREATMENT D 1.13 in. 3.14 cfs/ac. TREATMENT D 2.12 in. 4.70 cfs/ac. EXISTING CONDITIONS: PROPOSED CONDITIONS: PROPOSED CONDITIONS: AREA TREATMENT B 0.22 ac. 0.22 ac. TREATMENT B 0.22 ac. 0.22 ac. TREATMENT D 0.774 ac. 0.774 ac. 0.774 ac. EXISTING EXCESS PRECIPITATION: Weighted E = (0.53 x(0.00)+(0.78 x(0.22)+(1.13 x(0.00)+(2.12 x(0.77)/ 0.99 ac. EXISTING PEAK DISCHARGE: Q100 = (1.56 x(0.00)+(2.28 x(0.22)+(3.14 x(0.00)+(4.70 x(0.77)/ 0.99 ac. PROPOSED EXCESS PRECIPITATION: Weighted E = (0.53 x(0.00)+(0.78 x(0.22)+(1.13 x(0.00)+(4.70 x(0.77)/ 0.99 ac. EXISTING PEAK DISCHARGE: Q100 = (1.56 x(0.00)+(0.78 x(0.22)+(1.13 x(0.00)+(4.70 x(0.77)/ 0.99 ac. EXISTING PEAK DISCHARGE: Q100 = (1.56 x(0.00)+(0.78 x(0.22)+(1.13 x(0.00)+(4.70 x(0.77)/ 0.99 ac. EXISTING PEAK DISCHARGE: Q100 = (0.53 x(0.00)+(0.78 x(0.22)+(1.13 x(0.00)+(2.12 x(0.77)/ 0.99 ac. EXISTING PEAK DISCHARGE: Q100 = (1.56 x(0.00)+(0.78 x(0.22)+(1.13 x(0.00)+(2.12 x(0.77)/ 0.99 ac. EXISTING PEAK DISCHARGE: Q100 = (0.53 x(0.00)+(0.78 x(0.22)+(1.13 x(0.00)+(2.12 x(0.77)/ 0.99 ac. EXISTING PEAK DISCHARGE: Q100 = (0.53 x(0.00)+(0.78 x(0.22)+(1.13 x(0.00)+(2.12 x(0.77)/ 0.99 ac. EXISTING PEAK DISCHARGE: Q100 = (0.53 x(0.00)+(0.78 x(0.22)+(1.13 x(0.00)+(2.12 x(0.77)/ 0.99 ac. EXISTING PEAK DISCHARGE: Q100 = (0.53 x(0.00)+(0.78 x(0.22)+(1.13 x(0.00)+(2.12 x(0.77)/ 0.99 ac. EXISTING PEAK DISCHARGE: Q100 = (0.53 x(0.00)+(0.78 x(0.00)+(0.78 x(0.00)+(0.79 x(114	0 =	2.77	in.														\Box
TREATMENT A			10day	=	4.13	in.														
TREATMENT B		EXCE	SS PRE	CIPI	TATION	J:			PEAK	DI:	SCHAF	RGE	<u>.</u>							
TREATMENT B																				
TREATMENT C TREATMENT D TREATMENT A TREATMENT A TREATMENT B TREATMENT B TREATMENT C TREATMENT C TREATMENT C TREATMENT C TREATMENT D TREATM																				
TREATMENT D 2.12 in. 4.70 cfs/ac. EXISTING CONDITIONS: AREA AREA TREATMENT A 0 ac. 0 ac. 1. 1. 1 ac. 1. 1												•								
EXISTING CONDITIONS: AREA TREATMENT A 0 ac. 0 ac. 0 ac. TREATMENT B 0.22 ac. 0.22 ac. 0.774 ac. EXISTING EXCESS PRECIPITATION: Weighted E = (0.53)x(0.09)y 12 = 0.151040 ac-ft = 6579 cf EXISTING PEAK DISCHARGE: Weighted E = (0.53)x(0.00)+(0.78)x(0.22)+(1.13)x(0.00)+(4.70)x(0.77)y 0.99 ac EXISTING PEAK DISCHARGE: Weighted E = (0.53)x(0.00)+(0.78)x(0.22)+(3.14)x(0.00)+(4.70)x(0.77)= 4.14 cf PROPOSED EXCESS PRECIPITATION: Weighted E = (0.53)x(0.00)+(0.78)x(0.22)+(1.13)x(0.00)+(4.70)x(0.77)= 4.14 cf PROPOSED EXCESS PRECIPITATION: Weighted E = (0.53)x(0.00)+(0.78)x(0.22)+(1.13)x(0.00)+(2.12)x(0.77)y 0.99 ac = 1.82 in. V100-360 = (1.82)x(0.99)y 12.0 = 0.151040 ac-ft = 6579 cf V100-1440 = (0.15)+(0.77)x(2.77 - 2.33)y 12 = 0.179420 ac-ft = 7816 cf																				
TREATMENT A 0 ac. 0 ac. 0.22 ac. 1.22 ac. 1.24 ac. 1.24 ac. 1.25 a	TREATMENT D		2.1	2 in.					4.70		cfs/ac									
TREATMENT A	EXISTING CONI	IOITIC	NS:				PROPO	SEI	O CON	DIT	IONS:									
TREATMENT B 0.22 ac. 0.22 ac. 0.22 ac. 0.22 ac. TREATMENT C 0 ac. 0.774 ac. 0.774 ac. EXISTING EXCESS PRECIPITATION: Weighted E = (0.53)x(0.00)+(0.78)x(0.22)+(1.13)x(0.00)+(2.12)x(0.77)/ 0.99 ac. EXISTING PEAK DISCHARGE: Q100 = (1.56)x(0.00)+(2.28)x(0.22)+(3.14)x(0.00)+(4.70)x(0.77)/ 0.99 ac. EXISTING PEAK DISCHARGE: Weighted E = (0.53)x(0.00)+(0.78)x(0.22)+(1.13)x(0.00)+(4.70)x(0.77)/ 0.99 ac. EXISTING PEAK DISCHARGE: Q100 = (1.56)x(0.00)+(0.78)x(0.22)+(1.13)x(0.00)+(4.70)x(0.77)/ 0.99 ac. EXISTING PEAK DISCHARGE: University of the control			AREA				AREA													Т
TREATMENT C	TREATMENT A			0 ac			0	ac.												\vdash
TREATMENT D	TREATMENT B		0.2	2 ac			0.22	ac.												
EXISTING EXCESS PRECIPITATION: Weighted E = (0.53)x(0.00)+(0.78)x(0.22)+(1.13)x(0.00)+(2.12)x(0.77)/ 0.99 access in. V100-360 = (1.82)x(0.99)/ 12 = 0.151040 ac-ft = 6579 cf EXISTING PEAK DISCHARGE: Q100 = (1.56)x(0.00)+(2.28)x(0.22)+(3.14)x(0.00)+(4.70)x(0.77)= 4.14 cf PROPOSED EXCESS PRECIPITATION: Weighted E = (0.53)x(0.00)+(0.78)x(0.22)+(1.13)x(0.00)+(2.12)x(0.77)/ 0.99 access in the second of the se	TREATMENT C			0 ac			0	ac.												T
Weighted E = (0.53)x(0.00)+(0.78)x(0.22)+(1.13)x(0.00)+(2.12)x(0.77)/ 0.99 acceptable in the second of the secon	TREATMENT D		0.77	4 ac			0.774	ac.												
= 1.82 in. V100-360 = (1.82)x(0.99) 12 = 0.151040 ac-ft = 6579 cf EXISTING PEAK DISCHARGE: Q100 = (1.56)x(0.00)+(2.28)x(0.22)+(3.14)x(0.00)+(4.70)x(0.77)= 4.14 cft PROPOSED EXCESS PRECIPITATION: Weighted E = (0.53)x(0.00)+(0.78)x(0.22)+(1.13)x(0.00)+(2.12)x(0.77)/ 0.99 ac = 1.82 in. V100-360 = (1.82)x(0.99)/ 12.0 = 0.151040 ac-ft = 6579 cf V100-1440 = (0.15)+(0.77)x(2.77 - 2.33)/ 12 = 0.179420 ac-ft = 7816 cf	EXISTING EXCE	SS P	RECIPITA	ATIC	N:															
= 1.82 in. V100-360 = (1.82)x(0.99) 12 = 0.151040 ac-ft = 6579 cf EXISTING PEAK DISCHARGE: Q100 = (1.56)x(0.00)+(2.28)x(0.22)+(3.14)x(0.00)+(4.70)x(0.77)= 4.14 cft PROPOSED EXCESS PRECIPITATION: Weighted E = (0.53)x(0.00)+(0.78)x(0.22)+(1.13)x(0.00)+(2.12)x(0.77)/ 0.99 ac = 1.82 in. V100-360 = (1.82)x(0.99)/ 12.0 = 0.151040 ac-ft = 6579 cf V100-1440 = (0.15)+(0.77)x(2.77 - 2.33)/ 12 = 0.179420 ac-ft = 7816 cf	Weighted E -		(0.5	3 \v	0.00	\ + (0.78	\v/	0.22	۱+/	1 13	\v/	0.00	\ + (2 12	\v/	0.77	V	0.00	20
EXISTING PEAK DISCHARGE: Q100 = (1.56)x(0.00)+(2.28)x(0.22)+(3.14)x(0.00)+(4.70)x(0.77)= 4.14 cf PROPOSED EXCESS PRECIPITATION: Weighted E = (0.53)x(0.00)+(0.78)x(0.22)+(1.13)x(0.00)+(2.12)x(0.77)/ 0.99 ac = 1.82 in. V100-360 = (1.82)x(0.99)/ 12.0 = 0.151040 ac-ft = 6579 cf V100-1440 = (0.15)+(0.77)x(2.77 - 2.33)/ 12 = 0.179420 ac-ft = 7816 cf	TOTAL STATE OF THE PARTY OF THE	1.82		J)A	0.00).(0.70)^(0.22).(1.10)^(0.00).(2.12	<i>)</i> ^(0.11	<i>)</i> י	0.55	ac
Q100 = (1.56)x(0.00)+(2.28)x(0.22)+(3.14)x(0.00)+(4.70)x(0.77)= 4.14 cf PROPOSED EXCESS PRECIPITATION: Weighted E = (0.53)x(0.00)+(0.78)x(0.22)+(1.13)x(0.00)+(2.12)x(0.77)/ 0.99 ac = 1.82 in. V100-360 = (1.82)x(0.99)/ 12.0 = 0.151040 ac-ft = 6579 cf V100-1440 = (0.15)+(0.77)x(2.77 - 2.33)/ 12 = 0.179420 ac-ft = 7816 cf	V100-360 =		(1.8	2)x	0.99)/	12	=	0.1510	040	ac-ft	=	6	579	cf					
PROPOSED EXCESS PRECIPITATION: Weighted E = (0.53)x(0.00)+(0.78)x(0.22)+(1.13)x(0.00)+(2.12)x(0.77)/ 0.99 acceptable in. V100-360 = (1.82)x(0.99)/ 12.0 = 0.151040 ac-ft = 6579 cf V100-1440 = (0.15)+(0.77)x(2.77 - 2.33)/ 12 = 0.179420 ac-ft = 7816 cf	EXISTING PEAR	C DISC	CHARGE																	
Weighted E = (0.53)x(0.00)+(0.78)x(0.22)+(1.13)x(0.00)+(2.12)x(0.77)/ 0.99 ac = 1.82 in. V100-360 = (1.82)x(0.99)/ 12.0 = 0.151040 ac-ft = 6579 cf V100-1440 = (0.15)+(0.77)x(2.77 - 2.33)/ 12 = 0.179420 ac-ft = 7816 cf	Q100 =		(1.5	6)x	0.00)+(2.28)x(0.22)+(3.14)x(0.00)+(4.70)x(0.77)=	4.14	c fs
Weighted E = (0.53)x(0.00)+(0.78)x(0.22)+(1.13)x(0.00)+(2.12)x(0.77)/ 0.99 ac = 1.82 in. V100-360 = (1.82)x(0.99)/ 12.0 = 0.151040 ac-ft = 6579 cf V100-1440 = (0.15)+(0.77)x(2.77 - 2.33)/ 12 = 0.179420 ac-ft = 7816 cf	PROPOSED EX	CES	S PRECIF	PITA	TION:															H
= 1.82 in. V100-360 = (1.82)x(0.99)/ 12.0 = 0.151040 ac-ft = 6579 cf V100-1440 = (0.15)+(0.77)x(2.77 - 2.33)/ 12 = 0.179420 ac-ft = 7816 cf																				
V100-360 = (1.82)x(0.99)/ 12.0 = 0.151040 ac-ft = 6579 cf V100-1440 = (0.15)+(0.77)x(2.77 - 2.33)/ 12 = 0.179420 ac-ft = 7816 cf	-	4.00	•	3)x	0.00)+(0.78)x(0.22)+(1.13)x(0.00)+(2.12)x(0.77)/	0.99	ac
		1.82		2)x	0.99)/	12.0	=	0.1510	040	ac-ft	=	6	579	cf					
V100-10day = (0.15)+(0.77)x(4.13 - 2.33)/ 12 = 0.267140 ac-ft = 11637 cf	V100-1440 =		(0.1	5)+	0.77)x (2.77	-	2.33)/	12	=	0.179	420	ac-ft	=	78	16	cf	
	V100-10day =		(0.1	5)+	0.77)x (4.13	-	2.33)/	12	=	0.267	140	ac-ft	=	116	37	cf	

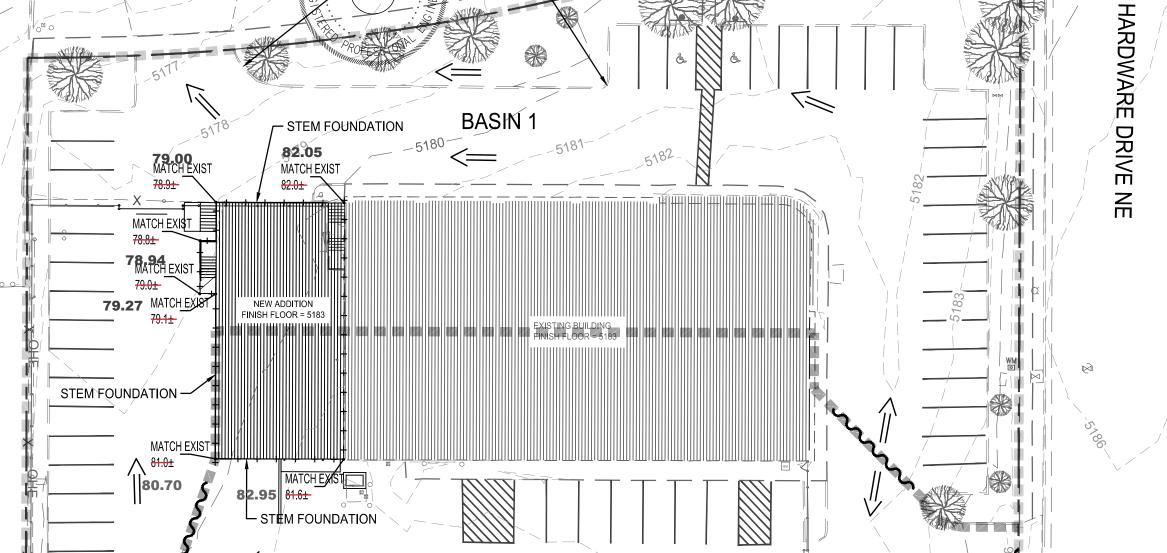
1.56 |x(0.00)+(2.28)x(0.22)+(3.14)x(0.00)+(4.70)x(0.77)=4.14 cfs

Ponding Requirement

4.14 - 4.14 = 0.00 cfs Increase in peak discharge

6579 - 6579 = 0 cf


= 1.93 in.	Albuquerque F	Repro	AREA =		0.6	ac														
Latitude Longitude 35.1371 -106.5905 PRECIPITATION: 360 = 2.33 in. 1140 = 2.77 in. 10day = 4.13 in. EXCESS PRECIPITATION: PEAK DISCHARGE: TREATMENT A 0.53 in. 1.56 cfs/ac. TREATMENT B 0.78 in. 2.28 cfs/ac. TREATMENT D 2.12 in. 4.70 cfs/ac. EXISTING CONDITIONS: AREA AREA AREA AREA TREATMENT B 0.083 ac. 0 ac. 0 ac. TREATMENT B 0.083 ac. 0.083 ac. 0 ac. TREATMENT D 0.512 ac. EXISTING EXCESS PRECIPITATION: Weighted E = (0.53) x(0.00) +(0.78) x(0.08) +(1.13) x(0.00) +(2.12) x(0.51) y 0.66 EXISTING PEAK DISCHARGE: Q100 = (1.93) x(0.00) +(0.78) x(0.08) +(3.14) x(0.00) +(2.12) x(0.51) y 0.66 EXISTING PEAK DISCHARGE: Weighted E = (0.53) x(0.00) +(0.78) x(0.08) +(1.13) x(0.00) +(2.12) x(0.51) y 0.66 EXISTING PEAK DISCHARGE: Q100 = (1.93) x(0.00) +(0.78) x(0.08) +(1.13) x(0.00) +(2.12) x(0.51) y 0.66 EXISTING PEAK DISCHARGE: Q100 = (1.93) x(0.00) +(0.78) x(0.08) +(1.13) x(0.00) +(2.12) x(0.51) y 0.66 EXISTING PEAK DISCHARGE: Q100 = (1.93) x(0.00) +(0.78) x(0.08) +(1.13) x(0.00) +(2.12) x(0.51) y 0.66 EXISTING PEAK DISCHARGE: Q100 = (1.93) x(0.00) +(0.78) x(0.08) +(1.13) x(0.00) +(2.12) x(0.51) y 0.66 EXISTING PEAK DISCHARGE: Q100 = (0.53) x(0.00) +(0.78) x(0.08) +(1.13) x(0.00) +(2.12) x(0.51) y 0.66 EXISTING PEAK DISCHARGE: Q100 = (0.53) x(0.00) +(0.78) x(0.08) +(0.11) x(0.00) +(0.51) x(0.51) x 0.66 EXISTING PEAK DISCHARGE: Q100 = (0.53) x(0.00) +(0.78) x(0.08) +(0.78) x(BASIN 2																			
No.	NOAA Atlas 14																			
PRECIPITATION: 360 = 2.33 in. 1140 = 2.77 in. 10day = 4.13 in. EXCESS PRECIPITATION: PEAK DISCHARGE: TREATMENT A 0.53 in. 1.56 cfs/ac. TREATMENT B 0.78 in. TREATMENT C 1.13 in. EXISTING CONDITIONS: PROPOSED CONDITIONS: AREA TREATMENT B 0.083 ac. TREATMENT B 0.083 ac. TREATMENT D 0.512 ac. 0 ac. 0 ac. TREATMENT D 0.512 ac. EXISTING EXCESS PRECIPITATION: Weighted E = (0.53)x(0.00)+(0.78)x(0.08)+(1.13)x(0.00)+(2.12)x(0.51)y 0.68 EXISTING PEAK DISCHARGE: Q100 = (1.93)x(0.00)+(0.78)x(0.08)+(1.13)x(0.00)+(4.70)x(0.51)y 0.68 PROPOSED EXCESS PRECIPITATION: Weighted E = (0.53)x(0.00)+(0.78)x(0.08)+(1.13)x(0.00)+(4.70)x(0.51)y 0.68 EXISTING PEAK DISCHARGE: Q100 = (1.93)x(0.00)+(0.78)x(0.08)+(1.13)x(0.00)+(4.70)x(0.51)y 0.68 EXISTING PEAK DISCHARGE: Q100 = (1.93)x(0.00)+(0.78)x(0.08)+(1.13)x(0.00)+(4.70)x(0.51)y 0.68 EXISTING PEAK DISCHARGE: Q100 = (0.53)x(0.00)+(0.78)x(0.08)+(1.13)x(0.00)+(2.12)x(0.51)y 0.68 EXISTING PEAK DISCHARGE: Q100 = (0.53)x(0.00)+(0.78)x(0.08)+(1.13)x(0.00)+(2.12)x(0.51)y 0.68 EXISTING PEAK DISCHARGE: Q100 = (0.53)x(0.00)+(0.78)x(0.08)+(1.13)x(0.00)+(4.70)x(0.51)y 0.68 EXISTING PEAK DISCHARGE: Q100 = (0.53)x(0.00)+(0.78)x(0.08)+(1.13)x(0.00)+(4.70)x(0.51)y 0.68 EXISTING PEAK DISCHARGE: Q100 = (0.53)x(0.00)+(0.78)x(0.08)+(1.13)x(0.00)+(4.70)x(0.51)y 0.68 EXISTING PEAK DISCHARGE: Q100 = (0.53)x(0.00)+(0.51)x(0.00)+(0.78)x(0.08)+(0.78)x(0.00)+(0.78)x(0.08)+(0.78)x(0.08)+(0.78)x(0.00)+(0.78)x(0.08)+(0.78)x(0.00)+(0.78)x(0.08)+(0.78)x(0.00)+(0.78)x(0.08)+(Latitude		35.	137	1															
1140 2.77 in. 10day 2.413 in.	Longitude		-106	.59	05															
1140 2.77 in. 10day 2.413 in.																				
EXCESS PRECIPITATION: PEAK DISCHARGE: TREATMENT A 0.53 in. TREATMENT C 1.13 in. TREATMENT D 2.12 in. PROPOSED CONDITIONS: PROPOSED CONDITIONS: AREA TREATMENT B 0.083 ac. TREATMENT C 0.512 ac. EXISTING EXCESS PRECIPITATION: Weighted E = (0.53)x(0.00)+(0.78)x(0.08)+(1.13)x(0.00)+(2.12)x(0.51)y 0.6 EXISTING PEAK DISCHARGE: Q100 = (1.56)x(0.00)+(0.78)x(0.08)+(3.14)x(0.00)+(4.70)x(0.51)y 0.6 PROPOSED EXCESS PRECIPITATION: Weighted E = (0.53)x(0.00)+(0.78)x(0.08)+(3.14)x(0.00)+(4.70)x(0.51)y 0.6 EXISTING PEAK DISCHARGE: Q100 = (1.56)x(0.00)+(0.78)x(0.08)+(3.14)x(0.00)+(4.70)x(0.51)y 0.6 PROPOSED EXCESS PRECIPITATION: Weighted E = (0.53)x(0.00)+(0.78)x(0.08)+(1.13)x(0.00)+(4.70)x(0.51)y 0.6 EXISTING PEAK DISCHARGE: Q100 = (1.56)x(0.00)+(0.78)x(0.08)+(1.13)x(0.00)+(4.70)x(0.51)y 0.6 EXISTING PEAK DISCHARGE: Q100 = (1.56)x(0.00)+(0.78)x(0.08)+(1.13)x(0.00)+(4.70)x(0.51)y 0.6 EXISTING PEAK DISCHARGE: Q100 = (1.56)x(0.00)+(0.78)x(0.08)+(1.13)x(0.00)+(4.70)x(0.51)y 0.6 EXISTING PEAK DISCHARGE: Q100 = (1.56)x(0.00)+(0.78)x(0.08)+(1.13)x(0.00)+(4.70)x(0.51)y 0.6 EXISTING PEAK DISCHARGE: Q100 = (1.56)x(0.00)+(0.78)x(0.08)+(1.13)x(0.00)+(2.12)x(0.51)y 0.6 EXISTING PEAK DISCHARGE: Q100 = (0.53)x(0.00)+(0.78)x(0.08)+(1.13)x(0.00)+(0.70)x(0.51)y 0.6 EXISTING PEAK DISCHARGE: Q100 = (0.55)x(0.00)+(0.78)x(0.08)+(1.13)x(0.00)+(0.70)x(0.51)y 0.6 EXISTING PEAK DISCHARGE: Q100 = (0.55)x(0.00)+(0.78)x(0.08)+(0.78)x(0.00)+(0.78	PRECIPITATIO	V:			2.33	in.														
EXCESS PRECIPITATION: PEAK DISCHARGE: TREATMENT A 0.53 in. TREATMENT B 0.78 in. TREATMENT C 1.13 in. TREATMENT D 2.28 cfs/ac. TREATMENT D 2.12 in. 4.70 cfs/ac. EXISTING CONDITIONS: AREA AREA TREATMENT B 0.083 ac. TREATMENT B 0.083 ac. TREATMENT C 1.33 in. AREA AREA TREATMENT C 0 ac. 0 ac. TREATMENT C 0 ac. 0 ac. TREATMENT D 0.512 ac. EXISTING EXCESS PRECIPITATION: Weighted E = (0.53) x(0.00) +(0.78) x(0.08) +(1.13) x(0.00) +(2.12) x(0.51) / 0.60 EXISTING PEAK DISCHARGE: Q100 = (1.56) x(0.00) +(2.28) x(0.08) +(1.13) x(0.00) +(2.12) x(0.51) / 0.60 PROPOSED EXCESS PRECIPITATION: Weighted E = (0.53) x(0.00) +(0.78) x(0.08) +(1.13) x(0.00) +(4.70) x(0.51) = 2.60 PROPOSED EXCESS PRECIPITATION: Weighted E = (0.53) x(0.00) +(0.78) x(0.08) +(1.13) x(0.00) +(2.12) x(0.51) / 0.60 PROPOSED EXCESS PRECIPITATION: Weighted E = (0.53) x(0.00) +(0.78) x(0.08) +(1.13) x(0.00) +(2.12) x(0.51) / 0.60 PROPOSED EXCESS PRECIPITATION: Weighted E = (0.53) x(0.00) +(0.78) x(0.08) +(1.13) x(0.00) +(2.12) x(0.51) / 0.60 PROPOSED EXCESS PRECIPITATION: Weighted E = (0.53) x(0.00) +(0.78) x(0.08) +(1.13) x(0.00) +(2.12) x(0.51) / 0.60 V100-1440 = (0.10) +(0.51) x(2.77 - 2.33) / 12 = 0.114622 ac-ft = 4993 cf V100-10day = (0.10) +(0.51) x(4.13 - 2.33) / 12 = 0.172648 ac-ft = 7521 cf						in.														
TREATMENT A 0.53 in. 1.56 cfs/ac. 1.56 cfs/ac. 1.78 in. 1.56 cfs/ac. 1.78 in. 1.78 i			10day	=	4.13	in.														
TREATMENT B		EXCE	SS PREC	IPIT	ATION	\ :			PEAK	DIS	SCHAF	RGE	:							
TREATMENT B																				
TREATMENT C TREATMENT D TREATMENT A TREATMENT A TREATMENT B TREATMENT C TREATMENT C TREATMENT C TREATMENT C TREATMENT D TREATM																				
TREATMENT D 2.12 in.			77.11																	
EXISTING CONDITIONS: AREA TREATMENT A 0 ac. 0 0 ac. 0 0 ac. TREATMENT C 0 ac. 0 0 ac. 0 0 ac. TREATMENT D 0 0 ac. 0 0 ac. TREATMENT D 0 0 ac. 0 0 ac. 0 0 ac. TREATMENT D 0 0 ac. 0 0 ac. 0 0 ac. TREATMENT D 0 0 ac. TREATMENT D 0 0 ac. TREATMENT D EXISTING EXCESS PRECIPITATION: Weighted E = (0.53 x(0.00)+(0.78)x(0.08)+(1.13 x(0.00)+(2.12 x(0.51)/ 0.6 x(0.00)/ 0.78 x(0.00)/ 0.8 x(0.00)/ 0.78 x																				
TREATMENT A 0 ac. 0 ac. 0 ac. 1 0 ac.	IREATMENT D		2.12	in.		-			4.70		cfs/ac									_
TREATMENT A 0 ac. 0 ac. 0 ac. 1 0 ac.	EMOTING CON	DITION	10.				DDODO	OF!	2 00 1	ידום	ONC									-
TREATMENT A TREATMENT B TREATMENT C TREATMENT C TREATMENT D TREATM	EXISTING CON	אטוווטו	1					SEI	J CON	וווט	UNS:									-
TREATMENT B TREATMENT C TREATMENT C TREATMENT D TREATM	TDEATMENT A			00				00												-
TREATMENT C																				-
TREATMENT D																				-
EXISTING EXCESS PRECIPITATION: Weighted E = (0.53)x(0.00)+(0.78)x(0.08)+(1.13)x(0.00)+(2.12)x(0.51)y 0.66																				-
Weighted E = (0.53)x(0.00)+(0.78)x(0.08)+(1.13)x(0.00)+(2.12)x(0.51)/ 0.6 = 1.93 in. V100-360 = (1.93)x(0.60)/ 12 = 0.095848 ac-ft = 4175 cf EXISTING PEAK DISCHARGE: Q100 = (1.56)x(0.00)+(2.28)x(0.08)+(3.14)x(0.00)+(4.70)x(0.51)= 2.6 PROPOSED EXCESS PRECIPITATION: Weighted E = (0.53)x(0.00)+(0.78)x(0.08)+(1.13)x(0.00)+(2.12)x(0.51)/ 0.6 = 1.93 in. V100-360 = (1.93)x(0.60)/ 12.0 = 0.095848 ac-ft = 4175 cf V100-1440 = (0.10)+(0.51)x(2.77 - 2.33)/ 12 = 0.114622 ac-ft = 4993 cf V100-10day = (0.10)+(0.51)x(4.13 - 2.33)/ 12 = 0.172648 ac-ft = 7521 cf	IND (IMEITI D		0.012	u.			0.012													-
= 1.93 in. V100-360 = (1.93)x(0.60)/ 12 = 0.095848 ac-ft = 4175 cf EXISTING PEAK DISCHARGE: Q100 = (1.56)x(0.00)+(2.28)x(0.08)+(3.14)x(0.00)+(4.70)x(0.51)= 2.6 PROPOSED EXCESS PRECIPITATION: Weighted E = (0.53)x(0.00)+(0.78)x(0.08)+(1.13)x(0.00)+(2.12)x(0.51)/ 0.6 = 1.93 in. V100-360 = (1.93)x(0.60)/ 12.0 = 0.095848 ac-ft = 4175 cf V100-1440 = (0.10)+(0.51)x(2.77 - 2.33)/ 12 = 0.114622 ac-ft = 4993 cf V100-10day = (0.10)+(0.51)x(4.13 - 2.33)/ 12 = 0.172648 ac-ft = 7521 cf	EXISTING EXCE	ESS P	RECIPITA	TIOI	<u>N:</u>															
= 1.93 in. V100-360 = (1.93)x(0.60)/ 12 = 0.095848 ac-ft = 4175 cf EXISTING PEAK DISCHARGE: Q100 = (1.56)x(0.00)+(2.28)x(0.08)+(3.14)x(0.00)+(4.70)x(0.51)= 2.6 PROPOSED EXCESS PRECIPITATION: Weighted E = (0.53)x(0.00)+(0.78)x(0.08)+(1.13)x(0.00)+(2.12)x(0.51)/ 0.6 = 1.93 in. V100-360 = (1.93)x(0.60)/ 12.0 = 0.095848 ac-ft = 4175 cf V100-1440 = (0.10)+(0.51)x(2.77 - 2.33)/ 12 = 0.114622 ac-ft = 4993 cf V100-10day = (0.10)+(0.51)x(4.13 - 2.33)/ 12 = 0.172648 ac-ft = 7521 cf	Weighted E =	- (0.53)x(0.00)+(0.78)x(0.08)+(1.13)x (0.00)+(2.12)x (0.51)/	0.60	ac
EXISTING PEAK DISCHARGE: Q100 = (1.56)x(0.00)+(2.28)x(0.08)+(3.14)x(0.00)+(4.70)x(0.51)= 2.6 PROPOSED EXCESS PRECIPITATION: Weighted E = (0.53)x(0.00)+(0.78)x(0.08)+(1.13)x(0.00)+(2.12)x(0.51)/ 0.6 = 1.93 in. V100-360 = (1.93)x(0.60)/ 12.0 = 0.095848 ac-ft = 4175 cf V100-1440 = (0.10)+(0.51)x(2.77 - 2.33)/ 12 = 0.114622 ac-ft = 4993 cf V100-10day = (0.10)+(0.51)x(4.13 - 2.33)/ 12 = 0.172648 ac-ft = 7521 cf				/ (, ,		/(, (/ (/ (7.1		<i>J</i> .		
EXISTING PEAK DISCHARGE: Q100 = (1.56)x(0.00)+(2.28)x(0.08)+(3.14)x(0.00)+(4.70)x(0.51)= 2.6 PROPOSED EXCESS PRECIPITATION: Weighted E = (0.53)x(0.00)+(0.78)x(0.08)+(1.13)x(0.00)+(2.12)x(0.51)/ 0.6 = 1.93 in. V100-360 = (1.93)x(0.60)/ 12.0 = 0.095848 ac-ft = 4175 cf V100-1440 = (0.10)+(0.51)x(2.77 - 2.33)/ 12 = 0.114622 ac-ft = 4993 cf V100-10day = (0.10)+(0.51)x(4.13 - 2.33)/ 12 = 0.172648 ac-ft = 7521 cf)x(0.60)/	12	=	0.0958	348	ac-ft	=	4	175	cf					
Q100 = (1.56)x(0.00)+(2.28)x(0.08)+(3.14)x(0.00)+(4.70)x(0.51)= 2.6 PROPOSED EXCESS PRECIPITATION: Weighted E = (0.53)x(0.00)+(0.78)x(0.08)+(1.13)x(0.00)+(2.12)x(0.51)/ 0.6 = 1.93 in. V100-360 = (1.93)x(0.60)/ 12.0 = 0.095848 ac-ft = 4175 cf V100-1440 = (0.10)+(0.51)x(2.77 - 2.33)/ 12 = 0.114622 ac-ft = 4993 cf V100-10day = (0.10)+(0.51)x(4.13 - 2.33)/ 12 = 0.172648 ac-ft = 7521 cf	3100000000	,		7		7:														
PROPOSED EXCESS PRECIPITATION: Weighted E = (0.53)x(0.00)+(0.78)x(0.08)+(1.13)x(0.00)+(2.12)x(0.51)/ 0.6	EXISTING PEA	K DISC	HARGE:																	
Weighted E = (0.53)x(0.00)+(0.78)x(0.08)+(1.13)x(0.00)+(2.12)x(0.51)/ 0.6 = 1.93 in. V100-360 = (1.93)x(0.60)/ 12.0 = 0.095848 ac-ft = 4175 cf V100-1440 = (0.10)+(0.51)x(2.77 - 2.33)/ 12 = 0.114622 ac-ft = 4993 cf V100-10day = (0.10)+(0.51)x(4.13 - 2.33)/ 12 = 0.172648 ac-ft = 7521 cf	Q100 =	(1.56)x(0.00)+(2.28)x(0.08)+(3.14)x (0.00)+(4.70)x (0.51)=	2.60	cfs
= 1.93 in. V100-360 = (1.93)x(0.60)/ 12.0 = 0.095848 ac-ft = 4175 cf V100-1440 = (0.10)+(0.51)x(2.77 - 2.33)/ 12 = 0.114622 ac-ft = 4993 cf V100-10day = (0.10)+(0.51)x(4.13 - 2.33)/ 12 = 0.172648 ac-ft = 7521 cf	PROPOSED EX	XCESS	PRECIPI	TAT	TON:															
= 1.93 in. V100-360 = (1.93)x(0.60)/ 12.0 = 0.095848 ac-ft = 4175 cf V100-1440 = (0.10)+(0.51)x(2.77 - 2.33)/ 12 = 0.114622 ac-ft = 4993 cf V100-10day = (0.10)+(0.51)x(4.13 - 2.33)/ 12 = 0.172648 ac-ft = 7521 cf	\A/-:			\	0.00			\	0.00	1	4 40	\. ·	0.00	100	0.10		0.51		0.00	
V100-360 = (1.93)x(0.60)/ 12.0 = 0.095848 ac-ft = 4175 cf)x(0.00)+(0.78)X(0.08)+(1.13)x (0.00)+(2.12)x (0.51)/	0.60	ac
V100-1440 = (0.10)+(0.51)x(2.77 - 2.33)/ 12 = 0.114622 ac-ft = 4993 cf V100-10day = (0.10)+(0.51)x(4.13 - 2.33)/ 12 = 0.172648 ac-ft = 7521 cf PROPOSED PEAK DISCHARGE:				\/	0.00	17	40.0	_	0.005	140				175						<u> </u>
V100-10day = (0.10)+(0.51)x(4.13 - 2.33)/ 12 = 0.172648 ac-ft = 7521 cf PROPOSED PEAK DISCHARGE:	V100-360 =	(1.93)X(0.60)/	12.0	=	0.0958	04ŏ	ac-π	=	4	1/5	CT					-
V100-10day = (0.10)+(0.51)x(4.13 - 2.33)/ 12 = 0.172648 ac-ft = 7521 cf PROPOSED PEAK DISCHARGE:	V100-1440 =	,	0.10	\ _/	0.51	\v/	2 77		2 32	V	12	_	0.114	ຣາາ	ac-ft	_	// 0	103	of	-
PROPOSED PEAK DISCHARGE:	V 100-1440 -		0.10)+(0.01)^(2.11	-	2.33	JI	12	_	0.114	022	ac-II	_	45	000	O1	
	V100-10day =	(0.10)+(0.51)x(4.13	-	2.33)/	12	=	0.172	648	ac-ft	=	75	21	cf	
	PROPOSED PI	EAK DI	ISCHARG	E:																
				_																
Q100 =	Q100 =	(1.56)x(0.00)+(2.28)x(0.08)+(3.14)x (0.00)+(4.70)x (0.51)=	2.60	c fs


2.60 - 2.60 = 0.00 cfs Increase in peak discharge 4175 - 4175 = 0 cf Ponding Requirement

DRAINAGE CERTIFICATION

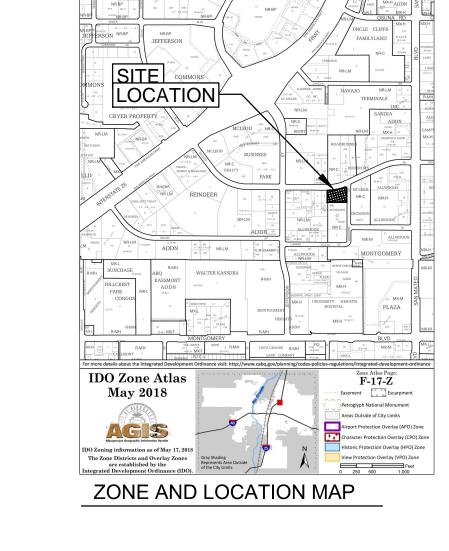
I, SCOTT A. EDDINGS, NMPE 12856, OF THE FIRM HUITT-ZOLLARS, INC. HEREBY CERTIFY THAT THIS PROJECT HAS BEEN GRADED AND WILL DRAIN IN SUBSTANTIAL COMPLIANCE WITH AND IN ACCORDANCE WITH THE DESIGN INTENT OF THE APPROVED PLAN DATED 5/1/19. THE RECORD INFORMATION EDITED ON TO THE ORIGINAL DESIGN DOCUMENT HAS BEEN OBTAINED FROM THE SURVEY DATED 10/15/19 PROVIDED BY KIM STELZER, NMPS 7482 OF THE FIRM HUITT-ZOLLARS, INC. I FURTHER CERTIFY THAT I HAVE PERSONALLY VISITED THE PROJECT SITE ON 10/18/19 AND HAVE DETERMINED BY VISUAL INSPECTION THAT THE SURVEY DATA PROVIDED IS REPRESENTATIVE OF ACTUAL SITE CONDITIONS AND IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF. THIS CERTIFICATION IS SUBMITTED IN SUPPORT OF A REQUEST FOR A PERMANENT CERTIFICATE OF OCCUPANCY.

THE RECORD INFORMATION PRESENTED HEREON IS NOT NECESSARIES COMPLETE AND INTENDED ONLY TO VERIFY SUBSTANTIAL COMPLIANCE OF THE GRADING AND DRAINAGE ASPECTS OF THIS PROJECT. THOSE RELYING ON THIS RECORD DOCUMENT ARE ADVISED TO OBTAIN INDEPENDENT VERIFICATION OF IT'S ACCURACY BEFORE USING IT FOR ANY OTHER PURPOSE.

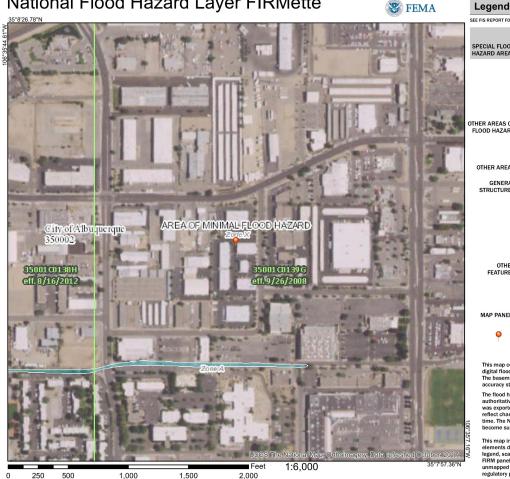
GRADING AND DRAINAGE PLAN

CURRENTLY THE SITE IS DEVELOPED. THERE IS A BUILDING (APPROX. 12,000 SQ. FT.), PAVED PARKING LOT AND LANDSCAPING ON SITE. THE PROPOSED PROJECT WILL PROVIDE AN

ADDITION (3,200 SQ. FT.) TO THE EXISTING BUILDING THAT WILL REPLACE A PORTION OF THE


IN GENERAL, 37.4% OF THE SITE DRAINS TOWARDS LUMBER AVE. AND 62.6% OF THE SITE

THE EXISTING SURVEY INFORMATION SHOWN HEREON WAS PREPARED FROM A FIELD SURVEY


THIS PROJECT IS FOR A BUILDING ADDITION ONLY. THE PROPOSED BUILDING OCCURS OVE AN

EXISTING ASPHALT PARKING LOT SO THERE IS NOT ANY ADDITIONAL RUNOFF CREATED BY

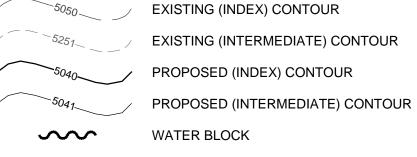
DRAINS TO MCLEOD ROAD. IT IS NOT PROPOSED TO CHANGE THIS FLOW PATTERN.

National Flood Hazard Layer FIRMette

FLOOD BOUNDARY MAP

LEGAL DESCRIPTION

LOT 1, BLOCK G OF THE PLAT OF CASHWAY BUILDING MATERIALS, INC., ALLWOODS SUBDIVISION.


6501 Americas Pkwy NE, Suite 550 Albuquerque, New Mexico 87110 Phone (505) 883-8114 Fax (505) 883-5022

ALBUQUERQUE REPRO GRAPHICS

ALBUQUERQUE REPRO GRAPHICS GRADING AND DRAINAGE PLAN

		st Update					
		Last					
			Ta.				
City Project No.	Zone Map No.		Sheet		Of		
,,				1		1	
						•	

LEGEND

EXISTING CURB & GUTTER FLOW DIRECTION **GRADING LIMITS**

DRAINAGE BASIN

FIRST FLUSH

THE PROPOSED IMPROVEMENTS.

PAVED PARKING AREA.

AREA = 3,200 SQ. FT.VOLUME = 3200 SQ. FT. x 0.026" = 70 CU. FT.

DONE BY HUITT-ZOLLARS, INC. IN MARCH OF 2019.

DRAINAGE NARRATIVE:

CONTROL NO.

SHEET.

RESULTS