

City of Albuquerque

Planning Department

Development & Building Services Division

DRAINAGE AND TRANSPORTATION INFORMATION SHEET

(REV 02/2013)

Project Title:	Building Permit #:	City Drainage #:
		Work Order#:
Legal Description:		
City Address:		
Engineering Firm:		Contact:
Address:		
Phone#: Fax#:		E-mail:
Owner:		Contact:
Address:		
Phone#: Fax#:		E-mail:
Architect:		Contact:
Address:		
Phone#: Fax#:		E-mail:
Surveyor:		Contact:
Address:		
Phone#: Fax#:		E-mail:
Contractor:		Contact:
Address:		
Phone#: Fax#:		E-mail:
TYPE OF SUBMITTAL:	CHECK TYPE OF APPROV	AL/ACCEPTANCE SOUGHT:
DRAINAGE REPORT	SIA/FINANCIAL GUARAN	TEE RELEASE
DRAINAGE PLAN 1st SUBMITTAL	PRELIMINARY PLAT APPI	ROVAL
DRAINAGE PLAN RESUBMITTAL	S. DEV. PLAN FOR SUB'D	APPROVAL
CONCEPTUAL G & D PLAN	S. DEV. FOR BLDG. PERMI	IT APPROVAL
GRADING PLAN	SECTOR PLAN APPROVAL	
EROSION & SEDIMENT CONTROL PLAN (ESC)	FINAL PLAT APPROVAL	
ENGINEER'S CERT (HYDROLOGY)	CERTIFICATE OF OCCUPA	ANCY (PERM)
CLOMR/LOMR	CERTIFICATE OF OCCUPA	ANCY (TCL TEMP)
TRAFFIC CIRCULATION LAYOUT (TCL)	FOUNDATION PERMIT AP	PROVAL
ENGINEER'S CERT (TCL)	BUILDING PERMIT APPRO	DVAL
ENGINEER'S CERT (DRB SITE PLAN)	GRADING PERMIT APPRO	VAL SO-19 APPROVAL
ENGINEER'S CERT (ESC)	PAVING PERMIT APPROV	AL ESC PERMIT APPROVAL
SO-19	WORK ORDER APPROVAL	ESC CERT. ACCEPTANCE
OTHER (SPECIFY) FOR YOUR RECORDS	GRADING CERTIFICATION	N OTHER (SPECIFY)
WAS A PRE-DESIGN CONFERENCE ATTENDED:	Yes No Co	ppy Provided
DATE SUBMITTED:	By:	

Requests for approvals of Site Development Plans and/or Subdivision Plats shall be accompanied by a drainage submittal. The particular nature, location, and scope to the proposed development defines the degree of drainage detail. One or more of the following levels of submittal may be required based on the following

1. Conceptual Grading and Drainage Plan: Required for approval of Site Development Plans greater than five (5) acres and Sector Plans

2. Drainage Plans: Required for building permits, grading permits, paving permits and site plans less than five (5) acres

3. Drainage Report: Required for subdivision containing more than ten (10) lots or constituting five (5) acres or more

4. Erosion and Sediment Control Plan: Required for any new development and redevelopment site with 1-acre or more of land disturbing area, including project less than 1-acre than are part of a larger common plan of development

Bohannan 🛦 Huston

October 8, 2014

Courtyard I 7500 Jefferson St. NE Albuquerque, NM 87109-4335

www.bhinc.com

voice: 505.823.1000 facsimile: 505.798.7988 toll free: 800.877.5332

Ms. Rita Harmon, P.E. City of Albuquerque Planning Department 600 2nd Street NW Albuquerque, NM 87103

Re: Supplemental Submittal-Additional Inlet Analysis Drainage Master Plan for Del Webb @ Mirehaven Phase 1 and 2

Dear Ms. Harmon:

Per the review of the construction plans of Del Webb @ Mirehaven Phase 1 by Shahab Biazar and phone correspondence between myself and you on October 7, it was agreed upon that BHI will provide additional analysis for the inlets located within the crown transition (inlets 5, 6, 9 10, 13 and 14). These inlets were originally analyzed in the DMP using a standard 2% crown but due to their location being within the crown transition, the street cross section has been altered. The attached analysis shows that these inlets, as well as the downstream inlets, can safely capture and convey flows in accordance to those practices demonstrated in the approved DMP.

The supplemental analysis for the inlets is enclosed. Please feel free to contact me at 823-1000 with questions or comments.

Sincerely,

Brian C. Patterson, P.E. Project Engineer Community Development and Planning

BCP/ Enclosures

cc: Yolanda Moyer, BHI

Engineering **A**

Spatial Data A

	Q (cfs) CAPTURED BY INI	LETS
INLET #	ORIGINAL DMP	REVISED ANALYSIS
5	6.8	9.3
6	6.8	3
9	5.1	6.9
10	5.1	1.6
11	7.6	7.9
12 7.6		7.9
13	8.1	2.9
14	8.1	9.3
15*	20.5	23.7
16*	20.5	23.7
TOTAL	96.2	96.2
* INLETS IN	SUMP CONDITION	

bear lake at inlets 5 and 6-OUTPUT.txt

			MANNIN	NG'SN =	0.017 SL	OPE = 0.040)	
POINT 1.0 2.0 3.0 4.0	DIST 0.0 11.8 12.3 12.5	ELEV 0.9 0.7 0.7 0.0	PC	5.0 1 6.0 2 7.0 3	IST ELE 4.5 0. 6.5 0. 8.5 0. 0.5 0.	1 4 1 4 1	DINT DIST 9.0 40.7 0.0 41.2 1.0 53.0	0.9
WSE FT.	L	DEPTH INC	FLOW AREA SQ.FT.	FLOW RATE (CFS)	WETTED PER (FT)	FLOW VEL (FPS)	TOPWID PLUS OBSTRUCTIO	TOTAL ENERGY NS (FT)
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45	0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0.050 \\ 0.100 \\ 0.150 \\ 0.200 \\ 0.250 \\ 0.300 \\ 0.350 \\ 0.400 \\ 0.450 \\ 0.500 \end{array}$	0.020 0.078 0.182 0.388 0.711 1.176 1.797 2.804 4.211 5.620	0.028 0.179 0.483 1.167 2.483 4.593 7.871 10.423 20.486 33.061	$\begin{array}{c} 1.645\\ 3.082\\ 5.442\\ 7.966\\ 11.149\\ 14.331\\ 28.589\\ 28.692\\ 28.795\end{array}$	2.294 2.652 3.007 3.492 3.904 4.380 3.718 4.864 5.882	$\begin{array}{c} 1.782\\ 2.564\\ 3.961\\ 6.282\\ 8.758\\ 11.861\\ 14.963\\ 29.142\\ 29.167\\ 29.193\end{array}$	0.082 0.182 0.259 0.341 0.440 0.537 0.648 0.615 0.818 1.038
0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90	0 0 0 0 0 0	0.550 0.600 0.650 0.700 0.750 0.800 0.850 0.900	7.031 8.442 9.855 11.306 12.881 14.580 16.403 18.350	47.900 64.824 83.697 100.560 118.671 139.046 161.795 187.027	29.002 29.105 31.156 33.673 36.189 38.706	7.679 8.493 8.894 9.213 9.537 9.864	29.218 29.244 29.269 30.765 33.243 35.720 38.197 40.675	1.272 1.517 1.772 1.930 2.070 2.215 2.363 2.516

Q = 23.4 CF5

 $\frac{572027}{33.06-20.49} = \frac{33.06-23.4}{1.04-x} \Rightarrow \frac{17.57}{0.22} = \frac{9.66}{1.04-x} \Rightarrow 2.1252 = 13.0726 - 12.57x$ $1.04 - 0.82 = \frac{1.04-x}{1.04-x} \Rightarrow \frac{12.57}{0.22} = \frac{1.04-x}{1.04-x} \qquad x = 0.86' < 0.87' ok$

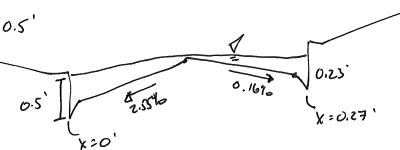
$$\frac{HIGH-END}{d=0.46'-0.24'=0.22'}$$

$$\frac{\chi=3 cFS}{INLETSS = 6}$$

$$TOTAL COMBINED FLOW @$$

$$INLETSS = 6 = 12.3 cFS$$

$$RECIDUAL FLOW = 11.1 cFS$$


Page 1

coyote creek inlets 9 10 13 14-OUTPUT.txt

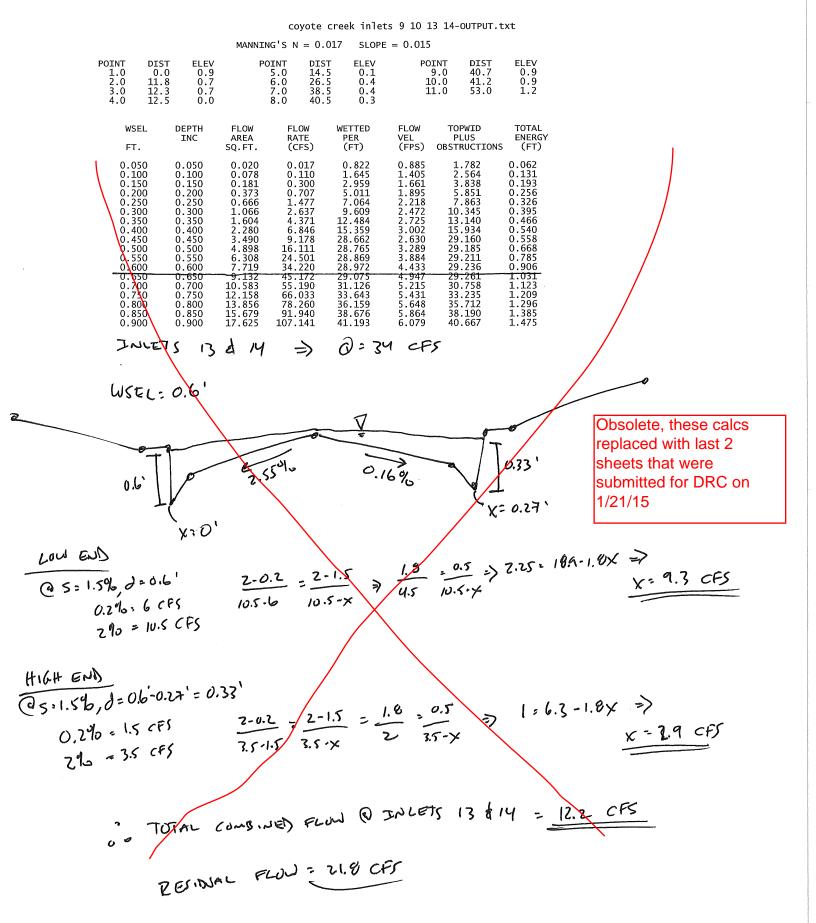
			MANNI	NG'SN =	= 0.0	17 SLOPE	E = 0.015				
POINT 1.0 2.0 3.0 4.0	DIST 0.0 11.8 12.3 12.5	0.9 0.7 0.7	P	DINT 5.0 6.0 7.0 8.0	DIST 14.5 26.5 38.5 40.5	0.4	1	ENT 9.0 0.0 1.0	DIST 40.7 41.2 53.0	ELEV 0.9 0.9 1.2	
WSE FT.	L	DEPTH INC	FLOW AREA SQ.FT.	FLOW RATE (CFS	:	WETTED PER (FT)	FLOW VEL (FPS)	PL	WID .US RUCTIONS	TOTAL ENERGY (FT)	
0.05 0.10 0.20 0.25 0.30 0.35 0.40 0.45 0.50	0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0.050 \\ 0.100 \\ 0.150 \\ 0.200 \\ 0.250 \\ 0.300 \\ 0.350 \\ 0.400 \\ 0.450 \\ 0.500 \end{array}$	$\begin{array}{c} 0.020\\ 0.078\\ 0.181\\ 0.373\\ 0.666\\ 1.066\\ 1.604\\ 2.280\\ 3.490\\ 4.898\\ 4.898\end{array}$	0.01 0.11 0.30 0.70 1.47 2.63 4.37 6.84 9.17 16.11	0 00 77 77 77 71 6 8 1	$\begin{array}{c} 0.822\\ 1.645\\ 2.959\\ 5.011\\ 7.064\\ 9.609\\ 12.484\\ 15.359\\ 28.662\\ 28.765\end{array}$	$\begin{array}{c} 0.885\\ 1.405\\ 1.661\\ 1.895\\ 2.218\\ 2.472\\ 2.725\\ 3.002\\ 2.630\\ 3.289\end{array}$	2. 3. 5. 10. 13. 29. 29.	782 564 838 851 863 345 140 934 160 185	$\begin{array}{c} 0.062 \\ 0.131 \\ 0.193 \\ 0.256 \\ 0.326 \\ 0.395 \\ 0.466 \\ 0.540 \\ 0.558 \\ 0.668 \\ 0.668 \end{array}$	
0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.85	0 0 0 0 0 0	0.550 0.600 0.650 0.700 0.750 0.800 0.850 0.900	6.308 7.719 9.132 10.583 12.158 13.856 15.679 17.625	24.50 34.22 45.17 55.19 66.03 78.26 91.94 107.14	20 72 10 13 50	28.869 28.972 29.075 31.126 33.643 36.159 38.676 41.193	3.884 4.433 4.947 5.215 5.431 5.648 5.864 6.079	29. 29. 30. 33. 35. 38.	211 236 261 758 235 712 190 667	0.785 0.906 1.031 1.123 1.209 1.296 1.385 1.475	

INLETS 9 \$10 - 16.6 CFS

WSEL = 0.5'

$$\frac{L_{0,1}}{(2S_{-})} = 1.5\%_{0,1} = 0.5$$

$$\frac{0.2\%_{0}}{0.2\%_{0}} = 4.5\%$$


$$\frac{2-0.2}{8.4} = \frac{2-1.5}{0-x} \Rightarrow \frac{1.8}{4} = \frac{0.5}{8-x} \Rightarrow 2 = 14.4 - 1.8\% \Rightarrow$$

$$\frac{1.8}{4} = \frac{0.5}{8-x} \Rightarrow 2 = 14.4 - 1.8\% \Rightarrow$$

$$\frac{1.8}{4} = \frac{0.5}{8-x} \Rightarrow 2 = 14.4 - 1.8\% \Rightarrow$$

$$\frac{H16H \text{ END}}{(2 \text{ S}-1.5\%)} = 0.5 - 0.27 + 0.23$$

$$\frac{2-0.2}{1.5-1.0} = \frac{2-1.5}{1.5-7} \Rightarrow \frac{1.6}{0.0} \cdot \frac{0.5}{1.5-7} \Rightarrow 0.4 \pm 3.24 - 1.5 \times \frac{1.6}{1.5-1.5} \times \frac{1.6}{1.5-1.5} \times \frac{1.6}{1.5-7} \times \frac{1.6}{1.5-$$

Page 1

			MANNI	NG'S N	= 0.0	17 SLOPE	= 0.037			
POINT 1.0 2.0 3.0 4.0	DIST 0.0 11.8 12.3 12.5	ELEV 0.9 0.7 0.7 0.0	PC	DINT 5.0 6.0 7.0 8.0	DIST 14.5 26.5 38.5 40.5	ELEV 0.1 0.4 0.1 0.0	10	NT).0).0	DIST 40.7 41.2 53.0	ELEV 0.7 0.7 0.9
WSI FT		DEPTH INC	FLOW AREA SQ.FT.	FLO RAT (CF	E	WETTED PER (FT)	FLOW VEL (FPS)	TOPV PLU OBSTRU		TOTAL ENERGY (FT)
0.0 0.1 0.2 0.2 0.3 0.3 0.4 0.4	00 50 50 50 50 50 50 50 50 50	$\begin{array}{c} 0.050 \\ 0.100 \\ 0.150 \\ 0.200 \\ 0.250 \\ 0.300 \\ 0.350 \\ 0.400 \\ 0.450 \end{array}$	$\begin{array}{c} 0.039 \\ 0.156 \\ 0.366 \\ 0.795 \\ 1.476 \\ 2.408 \\ 3.591 \\ 4.981 \\ 6.391 \end{array}$	0.0 0.3 0.9 2.2 4.9 9.3 15.8 25.9 39.2	45 20 62 58 68 37 71 63	$\begin{array}{c} 1.645\\ 3.290\\ 6.318\\ 11.423\\ 16.527\\ 21.631\\ 26.735\\ 28.839\\ 28.942 \end{array}$	$\begin{array}{c} 1.390 \\ 2.206 \\ 2.516 \\ 2.845 \\ 3.359 \\ 3.891 \\ 4.410 \\ 5.214 \\ 6.143 \end{array}$	12.1 17.1 22.1 27.1 29.2 29.2	L28 D76 L01 L27 L52 L78 203 228	0.080 0.176 0.248 0.326 0.426 0.535 0.652 0.823 1.037
0.50 0.55 0.60 0.65 0.75 0.75 0.80 0.85 0.85	50 50 50 50 50 50 50 50	0.500 0.550 0.600 0.650 0.700 0.750 0.800 0.850 0.900	7.803 9.217 10.631 12.047 13.538 15.277 17.261 19.492 21.970	54.6 71.9 91.0 111.8 124.7 139.2 157.4 179.3 205.1	27 38 66 93 20 11 66	29.045 29.148 29.251 29.354 33.354 38.284 43.214 48.144 53.075	7.001 7.804 8.563 9.286 9.218 9.113 9.119 9.202 9.339	29.2 29.2 29.3 32.2 37.2 42.1 47.0 52.0	279 304 330 298 227 156 085	1.262 1.497 1.741 2.022 2.042 2.094 2.167 2.257

INLETS 11 \$ 12 7 Q. 31.2 (FS

 $\frac{WSEL}{39.26-25.97} = \frac{39.26.31.2}{2.97} \xrightarrow{7} \frac{13.29}{0.05} = \frac{8.06}{0.45-x} \xrightarrow{7} 0.407 = 5.98-13.29 \times 10.45 - x$

Del Webb_sta 18+70.txt

(2 5: 3.7%, d: 0.43' => X= 7.9 CFS

RESIDUAL = 31.2 - 2(7.9) = 15.4 CFS

01+02 HIS - 10-10		•	-732 -5.083333 -115.625 -0.802951			1122.875 7.7977431		eir						110 1.9/9166/	- 2 645	- 71 8 . 55 (413 8 414)		CE CE	8.1 CO (2.	1	413 CFJ 2 - CFJ CFS		K Ö.67 / HP IN DEL WEDS		MINUS LY C	
Jer men	Calculation of open area:	Total Grate Area	Cross Bar Area Sunnorts (ends)	(middle)	Areas Counted Twice			Calculation of Length of Weir.		l otal Perimeter of Grate Short Cross Bars	Bearing Bars	End Supports	Middle Supports		1040 2AS A-2-A			PESIDAR FLORD	PLESIDUAL FLOW -				1, 19 0 - V A ST TH		いとう り に しい とのしらみ~	
7.7977431 7.9791667 0.6 3	Control Q /ing Dbl Wing s) (cfs)	0.54	1.52 2.78	4.29	5.99	7.88 0.03	12.13 [.]	14.47	16.95	19.55 77.78	25.12	26.11	28.08	31.14	34.30 2	31.57 20.02	02.04	47.94	51.58	55.31	59.12	20.47		1	1.57 = 1914	5 2
	Cor Sgl Wing (cfs)	0.40	1.14 2.09	3.21	4.49	5.91	9.09	10.85	12.71	14.66 16.70	18.83	19.58	21.05	23.34	25.71	28.16	00.00	35.94	38.67	41.46.	44.32	15.34		EACH INLET		
Double A inlet, in sump condition: Open Area (for orifice calc in sq. ft.): Length of Weir (feet): Orifice Coeficient Weir Coeficient	Grate) Orifice Q (cfs)	8.40	11.87 11 EA	16.79	18.77	20.56	23.75	25.19	26.55	27.84	30.27	30.66	31.41	32.52	33.58	34.62 25 62	20.02	37.55	38.47	39.38	40.26	28.27		¹		
let, in sum for orifice c eir (feet): cient ent	G Weir Q (cfs)	0.27	0.76 1 30	2.14	2.99	3.93 100	4.90 6.06	7.23	8.46	9.76	12.54	13.04	14.02	15.55	17.13	18.76	11.07	23.94	25.76	27.62	29.52	10.22			K / R4.	
Double A inlet, in su Open Area (for orifice Length of Weir (feet) Orifice Coeficient Weir Coeficient	1 Wing Weir Q (cfs)	0.13	0.38	1.07	1.50	1.97	3.04 3.04	3.62	4.24	4.89	0.20 6.29	6.54	7.03	7.79	8.59	9.40 10.01	C7.01	11.11	12.91	13.84	14.80	5.12		A	X SHO	23.7 OFS X LIS (5% CLORENSE FACINE) = 77.1 = 79 7 N = 1001 = 2000
:	Head (in)	0.6	1.2	2,4	ო	3.6	4.7	5,4	9	6.6	7.7	8.0	8.4	თ	9.6	10.2	10.8	1.1.4 4.1.1	12.6	13.2	13.8	6.804			4	
	Head	0.05	0.1	0.13	0.25	0.3	0.35 0.4	0.45	0.5	0.55	0.65 0.65	0.667	0.7	0.75	0.8	0.85	0.9 202	CA.U	1.05	1.1	1.15	0.567				

1

B-8

INLET 13-coyote creek-OUTPUT.txt MANNING'S N = 0.017SLOPE = 0.015DIST 14.5 26.5 38.5 40.5 POINT 1.0 2.0 3.0 4.0 ELEV 1.0 0.8 0.2 0.1 ELEV 0.3 0.4 0.1 0.0 DIST 0.0 11.8 12.3 12.5 POINT 9.0 10.0 11.0 DIST 40.7 41.2 53.0 ELEV 0.7 0.7 0.9 POINT 5.0 6.0 7.0 8.0 Submitted for DRC on 1/21/15 RTH FLOW AREA SQ.FT. FLOW RATE (CFS) WETTED PER (FT) FLOW VEL (FPS) TOPWID PLUS OBSTRUCTIONS DEPTH INC WSEL τοται ENERGY (FT) FT. $\begin{array}{c} 0.050\\ 0.100\\ 0.200\\ 0.250\\ 0.300\\ 0.350\\ 0.400\\ 0.450\\ 0.550\\ \end{array}$ 0.017 0.110 0.283 0.776 1.820 3.353 6.304 11.753 19.343 28.360 28.692 0.822 1.645 3.700 7.141 10.530 18.147 25.764 28.881 28.998 29.115 29.231 1.282 2.064 4.072 7.460 10.783 18.338 25.892 28.946 29.001 29.055 29.110 0.020 0.078 0.191 0.454 0.886 1.589 2.669 4.060 5.484 6.9100.885 1.405 1.483 1.707 2.055 2.111 2.362 2.895 3.527 4.104 0.062 0.131 0.184 0.245 $\begin{array}{c} 0.050\\ 0.100\\ 0.200\\ 0.250\\ 0.300\\ 0.350\\ 0.400\\ 0.450\\ 0.500\\ \end{array}$ 0.245 0.316 0.369 0.437 0.530 . 998 . 115 . 231 . 348 0.644 6.910 8.340 9.771 11.206 12.680 14.280 16.008 17.943 20.125 28.360 38.692 50.252 62.974 73.964 85.640 97.908 108.961 122.517 29.115 29.231 29.348 29.465 31.529 34.060 37.070 42.000 46.930 4.104 4.640 5.143 5.620 5.833 5.997 6.116 6.073 6.088 0.550 0.550 29.11088 29.110 29.164 29.218 30.744 33.250 36.241 41.170 46.099 1.0111.1410.600 0.650 0.700 0.750 0.800 0.850 0.900 0.600 0.650 0.700 0.750 0.800 0.850 0.900 1.141 1.229 1.309 1.382 1.424 1.476 QT=34 CFS @ JALETS 13 \$14 USEL SU.SZ' 190 240 h=0.52 h:04' X:0.12 X:0 Q INLET #13 (HIGH END) S= 1.5%, dopt : 0.4" 0.2% - 2.85 CFS 2% - 6.4 cfs $\frac{2-0.2}{6.4-2.05} = \frac{2-1.5}{6.4-2} \Rightarrow \frac{1.9}{3.55} = \frac{0.5}{6.4-2} \Rightarrow \frac{1.775}{6.4-2} = \frac{1.9}{1.52} = \frac{0.5}{1.9}$ ENTERING JNET 生1?

INLET 14-coyote creek-OUTPUT.txt MANNING'S N = 0.017SLOPE = 0.015DIST 0.0 11.8 12.3 12.5 ELEV 1.2 0.9 0.9 0.2 ELEV 0.4 0.4 0.1 0.0 POINT 9.0 10.0 11.0 DIST 40.7 41.2 53.0 ELEV 0.7 0.7 0.9 POINT POINT DIST 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 14.5 26.5 38.5 40.5 Submitted for DRC on 1/21/15 RTH FLOW AREA SQ.FT. FLOW RATE (CFS) WETTED PER (FT) FLOW VEL (FPS) TOPWID PLUS OBSTRUCTIONS TOTAL ENERGY (FT) DEPTH INC WSEL FT. 0.822 1.645 3.159 5.711 8.428 11.802 15.177 28.589 28.692 28.795 28.898 29.001 $\begin{array}{c} 0.017\\ 0.110\\ 0.293\\ 0.720\\ 1.560\\ 2.924\\ 5.046\\ 7.319\\ 13.759\\ 21.707\\ 31.021\\ 41\\ 5.96\end{array}$ $\begin{array}{c} 0.020\\ 0.078\\ 0.183\\ 0.398\\ 0.739\\ 1.232\\ 1.890\\ 3.044\\ 4.451\\ 5.860\\ 7.271\\ 8.682\\ 10.095\\ 11.546\\ 13.121\\ 14.820\\ 16.643\\ 8.590 \end{array}$ 0.885 1.405 1.602 1.812 2.112 2.374 2.670 2.405 3.091 3.704 4.267 0.062 0.131 0.190 $\begin{array}{c} 0.050\\ 0.100\\ 0.150\\ 0.250\\ 0.300\\ 0.350\\ 0.450\\ 0.500\\ 0.500\\ 0.500\\ 0.650\\ 0.650\\ 0.700\\ 0.750\\ 0.750\\ 0.800\\ 0.800\\ 0.900 \end{array}$ $\begin{array}{c} 0.050\\ 0.100\\ 0.150\\ 0.200\\ 0.250\\ 0.300\\ 0.350\\ 0.400\\ 0.450\\ 0.500\\ 0.550 \end{array}$ $13.782 \\ 14.564 \\ 16.038$ 0.251 0.319 0.388 18.551 21.220 24.514 27.809 29.142 29.167 29.218 29.218 29.244 29.269 30.765 33.243 35.720 38.197 40.675 0.461 0.490 .599 .713 0.833 31.021 41.596 53.352 63.775 74.942 87.497 101.507 117.038 4.267 4.791 5.285 5.523 5.712 5.904 6.099 6.296 29.001 29.104 31.156 0.600 0.600 0.650 0.700 0.750 0.800 0.850 0.900 $\begin{array}{c} 0.957 \\ 1.084 \\ 1.175 \\ 1.257 \\ 1.342 \\ 1.429 \\ 1.517 \end{array}$ 33.672 36.189 38.706 41.222 J= 34 CFS QINLETS 13 & 14 WSEL = 0.57 Sec. S 05 X=0.241 1:0 @ INT #14 (LOW END) S=1.5%, depth = 0.57' 0.200 - 6.8 CFS 22 - 12 CFS

Page 1