CITY OF ALBUQUERQUE

July 27, 2015

Yolanda Padilla-Moyer, PE Bohannan Huston, Inc. 7500 Jefferson NE, Courtyard I Albuquerque, NM 87109

Re: Del Webb @ Mirehaven Phase I, Amenity Center Grading Plan, N-2-A of the Watershed Subdivision Engineer's Stamp Date 7/18/2015 (H09/D017C1)

Dear Ms. Padilla-Moyer,

Based upon the information provided in your submittal received 7-20-15, the Grading and Drainage Plan is approved for Building Permit and Grading Permit based on the following conditions:

PO Box 1293

Albuquerque

- a) This project requires an approved Erosion and Sediment Control plan prior to building permit approval as well as National Pollutant Discharge Elimination System (NPDES) permit for storm water discharge for disturbing one acre or more.
- b) A Topsoil Disturbance Permit is required for disturbing ³/₄ of an acre or more.
- c) Prior to Certificate of Occupancy release, Engineer Certification per the DPM checklist will be required.

New Mexico 87103

If you have any questions, you can contact me at 924-3999.

www.cabq.gov

Sincerely,

Shahab Biazar, P.E. City Engineer, Planning Dept. Development Review Services

C: e-mail

Bohannan 🛦 Huston

July 20, 2015

Courtyard I 7500 Jefferson St. NE Albuquerque, NM 87109-4335

www.bhinc.com

voice: 505.823.1000 facsimile: 505.798.7988 toll free: 800.877.5332

Ms. Rita Harmon Hydrology Section City of Albuquerque 600 2nd Street NW Albuquerque, NM 87102

Re: Amenity Center Final Grading and Drainage Plan Submittal DRB Case No. 1006864

Dear Rita:

We are submitting a Final Grading and Drainage Plan for the Amenity Center for Del Webb at Mirehaven for Building Permit approval. The Amenity Center is located on Del Webb Blvd between Willow Canyon Trail and Mirehaven Blvd. The site is approximately 6.6 acres. The conceptual grading and drainage plan was approved for Site Plan with a condition that Basin A-2 discharge to Pond #2 via storm drain or surface channel. This condition has been addressed and a swale has been added to drain Basin A-2 to the pond. This floodplain on this site has also been removed via a LOMR-F process through FEMA and the approval information from FEMA has been included in this submittal.

Your review and approval is requested for Building Permit Approval for the above listed buildings. I appreciate your time and consideration. If you have questions or require additional information, please contact me at 823-1000.

Sincerely,

Yolanda adl. Moyor

Yolanda Padilla Moyer, P.E. Senior Project Manager Community Development & Planning

Enclosures

cc: Peter Steen, Pulte Homes Kevin Patton, Pulte Homes

Engineering **A**

- Spatial Data 🔺
- Advanced Technologies **▲**

City of Albuquerque

Planning Department

Development & Building Services Division

DRAINAGE AND TRANSPORTATION INFORMATION SHEET

(REV 02/2013)

Project Title:	Building Permit #:	City Drainage #:
		Work Order#:
Legal Description:		
City Address:		
Engineering Firm:		Contact:
Address:		
Phone#: Fax#:		E-mail:
Owner:		Contact:
Address:		
Phone#: Fax#:		E-mail:
Architect:		Contact:
Address:		
Phone#: Fax#:		E-mail:
Surveyor:		Contact:
Address:		
Phone#: Fax#:		E-mail:
Contractor:		Contact:
Address:		
Phone#: Fax#:		E-mail:
TYPE OF SUBMITTAL:	CHECK TYPE OF APPROV	AL/ACCEPTANCE SOUGHT:
DRAINAGE REPORT	SIA/FINANCIAL GUARAN	TEE RELEASE
DRAINAGE PLAN 1st SUBMITTAL	PRELIMINARY PLAT APPI	ROVAL
DRAINAGE PLAN RESUBMITTAL	S. DEV. PLAN FOR SUB'D	APPROVAL
CONCEPTUAL G & D PLAN	S. DEV. FOR BLDG. PERM	IT APPROVAL
GRADING PLAN	SECTOR PLAN APPROVAI	
EROSION & SEDIMENT CONTROL PLAN (ESC)	FINAL PLAT APPROVAL	
ENGINEER'S CERT (HYDROLOGY)	CERTIFICATE OF OCCUPA	ANCY (PERM)
CLOMR/LOMR	CERTIFICATE OF OCCUPA	ANCY (TCL TEMP)
TRAFFIC CIRCULATION LAYOUT (TCL)	FOUNDATION PERMIT AP	PROVAL
ENGINEER'S CERT (TCL)	BUILDING PERMIT APPRO	DVAL
ENGINEER'S CERT (DRB SITE PLAN)	GRADING PERMIT APPRO	VAL SO-19 APPROVAL
ENGINEER'S CERT (ESC)	PAVING PERMIT APPROV	AL ESC PERMIT APPROVAL
SO-19	WORK ORDER APPROVAI	ESC CERT. ACCEPTANCE
OTHER (SPECIFY)	GRADING CERTIFICATION	
		ROUGH GRADING
WAS A PRE-DESIGN CONFERENCE ATTENDED:		ppy Provided
DATE SUBMITTED:	By:	

Requests for approvals of Site Development Plans and/or Subdivision Plats shall be accompanied by a drainage submittal. The particular nature, location, and scope to the proposed development defines the degree of drainage detail. One or more of the following levels of submittal may be required based on the following

1. Conceptual Grading and Drainage Plan: Required for approval of Site Development Plans greater than five (5) acres and Sector Plans

2. Drainage Plans: Required for building permits, grading permits, paving permits and site plans less than five (5) acres

3. Drainage Report: Required for subdivision containing more than ten (10) lots or constituting five (5) acres or more

4. Erosion and Sediment Control Plan: Required for any new development and redevelopment site with 1-acre or more of land disturbing area, including project less than 1-acre than are part of a larger common plan of development

Page 1	of 3			D	ate: July 08, 2015	5 Cas	se No.: 15-06-30)67A	LOMR-F
			S ARTACA	Federal En	••••	Manage n, D.C. 20472	-	gency	
				TER OF MAP					
С	OMMU	NITY	AND MAP PANEL				ROPERTY DESC		
CITY OF ALBUQUERQUE, BERNALILLO COUNTY, NEW MEXICO			BUQUERQUE, COUNTY, NEW KICO	Lots 151 through 153, and Tract N-2-F-1, Del Webb at Mirehaven, Phase 1, as shown on the Plat recorded as Document No. 2014070165, in Book 2014C, Page 0093; Lots 165, 166, 169 through 174, Del Webb at Mirehaven, Phase 1B, as shown on the Plat recorded as Document No. 2015036902, in Book 2015C, Page 0043,					
		CON	MUNITY NO.: 350	002	all in the Office of	the Clerk, Be	rnalillo County,	New Mexico	
	AFFECTED MAP PANEL DATE: 8/16/2012			6Н					
			E. 0/10/2012						
FLOOD	ING SO	URCE	E: SHEET FLOW		APPROXIMATE LATIT SOURCE OF LAT & LO				49 DATUM: NAD 83
				ſ	DETERMINATIO	N			
LOT	BLOC SECTI		SUBDIVISION	STREET	OUTCOME WHAT IS REMOVED FROM THE SFHA	FLOOD ZONE	1% ANNUAL CHANCE FLOOD ELEVATION (NAVD 88)	LOWEST ADJACENT GRADE ELEVATION (NAVD 88)	LOWEST LOT ELEVATION (NAVD 88)
151			Del Webb at Mirehaven, Phase 1	9235 Del Webb Lane NW	Property	X (unshaded)			5343.6 feet
•			ard Area (SFHA) d in any given year) - The SFHA is an a r (base flood).	rea that would be	inundated by	the flood havin	g a 1-percent	chance of being
				ease refer to the appropriate	e section on Attachme	ent 1 for the addi	tional consideratior	is listed below.)	
DETER FILL RE		ON TA	BLE (CONTINUED)						
on Fill have de equaled SFHA I has the	for the etermine or exc located option	prop d that ceeded on th to co	erty described abo at the property(ies) d in any given ye ne effective NFIP i ontinue the flood in	Emergency Management bye. Using the information) is/are not located in ear (base flood). This do map; therefore, the Fed insurance requirement to print nation about the PRP and h	on submitted and the the SFHA, an area locument revises the leral mandatory floor protect its financial re-	he effective Na a inundated by e effective NFII d insurance re risk on the loar	ational Flood Insu y the flood havin P map to remov equirement does r	urance Program ng a 1-percent of re the subject pr not apply. How	(NFIP) map, we chance of being roperty from the vever, the lender

This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Map Assistance Center toll free at (877) 336-2627 (877-FEMA MAP) or by letter addressed to the Federal Emergency Management Agency, LOMC Clearinghouse, 847 South Pickett Street, Alexandria, VA 22304-4605.

¥ Lace

Luis Rodriguez, P.E., Chief Engineering Management Branch Federal Insurance and Mitigation Administration Page 2 of 3

Date: July 08, 2015

Case No.: 15-06-3067A

LOMR-F

Federal Emergency Management Agency

Washington, D.C. 20472

LETTER OF MAP REVISION BASED ON FILL DETERMINATION DOCUMENT (REMOVAL)

ATTACHMENT 1 (ADDITIONAL CONSIDERATIONS)

DETE	RMINATION	TABLE (CONTINU	ED)					
LOT	BLOCK/ SECTION	SUBDIVISION	STREET	OUTCOME WHAT IS REMOVED FROM THE SFHA	FLOOD ZONE	1% ANNUAL CHANCE FLOOD ELEVATION (NAVD 88)	LOWEST ADJACENT GRADE ELEVATION (NAVD 88)	LOWEST LOT ELEVATION (NAVD 88)
152		Del Webb at Mirehaven, Phase 1	9231 Del Webb Lane NW	Property	X (unshaded)	-		5341.8 feet
153		Del Webb at Mirehaven, Phase 1	9227 Del Webb Lane NW	Property	X (unshaded)	ł		5340.9 feet
Tract N-2-F- 1		Del Webb at Mirehaven, Phase 1	9100 Del Webb Lane NW	Property	X (unshaded)	ł		5317.1 feet
165		Del Webb at Mirehaven, Phase 1B	2160 Coyote Creek Trail NW	Property	X (unshaded)	ł		5352.8 feet
166		Del Webb at Mirehaven, Phase 1B	2247 Cebolla Creek Way NW	Property	X (unshaded)	ł		5353.5 feet
169		Del Webb at Mirehaven, Phase 1B	2235 Cebolla Creek Way NW	Property	X (unshaded)	ł		5356.7 feet
170		Del Webb at Mirehaven, Phase 1B	2231 Cebolla Creek Way NW	Property	X (unshaded)			5358.1 feet
171		Del Webb at Mirehaven, Phase 1B	2227 Cebolla Creek Way NW	Property	X (unshaded)			5359.5 feet
172	-	Del Webb at Mirehaven, Phase 1B	2223 Cebolla Creek Way NW	Property	X (unshaded)			5360.8 feet
173		Del Webb at Mirehaven, Phase 1B	2219 Cebolla Creek Way NW	Property	X (unshaded)			5362.2 feet

This attachment provides additional information regarding this request. If you have any questions about this attachment, please contact the FEMA Map Assistance Center toll free at (877) 336-2627 (877-FEMA MAP) or by letter addressed to the Federal Emergency Management Agency, LOMC Clearinghouse, 847 South Pickett Street, Alexandria, VA 22304-4605.

Luis Rodriguez, P.E., Chief Engineering Management Branch Federal Insurance and Mitigation Administration

Page 3 of 3

Date: July 08, 2015

Case No.: 15-06-3067A

LOMR-F

Federal Emergency Management Agency

Washington, D.C. 20472

LETTER OF MAP REVISION BASED ON FILL DETERMINATION DOCUMENT (REMOVAL)

ATTACHMENT 1 (ADDITIONAL CONSIDERATIONS)

LOT	BLOCK/ SECTION	SUBDIVISION	STREET	OUTCOME WHAT IS REMOVED FROM THE SFHA	FLOOD ZONE	1% ANNUAL CHANCE FLOOD ELEVATION (NAVD 88)	LOWEST ADJACENT GRADE ELEVATION (NAVD 88)	LOWEST LOT ELEVATION (NAVD 88)
174		Del Webb at Mirehaven, Phase 1B	2215 Cebolla Creek Way NW	Property	X (unshaded)			5363.6 feet

FILL RECOMMENDATION (This Additional Consideration applies to the preceding 12 Properties.)

The minimum NFIP criteria for removal of the subject area based on fill have been met for this request and the community in which the property is located has certified that the area and any subsequent structure(s) built on the filled area are reasonably safe from flooding. FEMA's Technical Bulletin 10-01 provides guidance for the construction of buildings on land elevated above the base flood elevation through the placement of fill. A copy of Technical Bulletin 10-01 can be obtained by calling the FEMA Map Assistance Center toll free at (877) 336-2627 (877-FEMA MAP) or from our web site at http://www.fema.gov/mit/tb1001.pdf. Although the minimum NFIP standards no longer apply to this area, some communities may have floodplain management regulations that are more restrictive and may continue to enforce some or all of their requirements in areas outside the Special Flood Hazard Area.

STUDY UNDERWAY (This Additional Consideration applies to all properties in the LOMR-F DETERMINATION DOCUMENT (REMOVAL))

This determination is based on the flood data presently available. However, the Federal Emergency Management Agency is currently revising the National Flood Insurance Program (NFIP) map for the community. New flood data could be generated that may affect this property. When the new NFIP map is issued it will supersede this determination. The Federal requirement for the purchase of flood insurance will then be based on the newly revised NFIP map.

This attachment provides additional information regarding this request. If you have any questions about this attachment, please contact the FEMA Map Assistance Center toll free at (877) 336-2627 (877-FEMA MAP) or by letter addressed to the Federal Emergency Management Agency, LOMC Clearinghouse, 847 South Pickett Street, Alexandria, VA 22304-4605.

Luis Rodriguez, P.E., Chief Engineering Management Branch Federal Insurance and Mitigation Administration

Federal Emergency Management Agency

Washington, D.C. 20472

July 08, 2015

THE HONORABLE RICHARD BERRY MAYOR, CITY OF ALBUQUERQUE P.O. BOX 1293 ALBUQUERQUE, NM 87103

CASE NO.: 15-06-3067A COMMUNITY: CITY OF ALBUQUERQUE, BERNALILLO COUNTY, NEW MEXICO COMMUNITY NO.: 350002

DEAR MR. BERRY:

This is in reference to a request that the Federal Emergency Management Agency (FEMA) determine if the property described in the enclosed document is located within an identified Special Flood Hazard Area, the area that would be inundated by the flood having a 1-percent chance of being equaled or exceeded in any given year (base flood), on the effective National Flood Insurance Program (NFIP) map. Using the information submitted and the effective NFIP map, our determination is shown on the attached Letter of Map Revision based on Fill (LOMR-F) Determination Document. This determination document provides additional information regarding the effective NFIP map, the legal description of the property and our determination.

Additional documents are enclosed which provide information regarding the subject property and LOMR-Fs. Please see the List of Enclosures below to determine which documents are enclosed. Other attachments specific to this request may be included as referenced in the Determination/Comment document. If you have any questions about this letter or any of the enclosures, please contact the FEMA Map Assistance Center toll free at (877) 336-2627 (877-FEMA MAP) or by letter addressed to the Federal Emergency Management Agency, LOMC Clearinghouse, 847 South Pickett Street, Alexandria, VA 22304-4605.

Sincerely,

the ging

Luis Rodriguez, P.E., Chief Engineering Management Branch Federal Insurance and Mitigation Administration

LIST OF ENCLOSURES:

LOMR-F DETERMINATION DOCUMENT (REMOVAL)

cc: State/Commonwealth NFIP Coordinator Community Map Repository Region Mrs. Alandren Etlantus

Federal Emergency Management Agency

Washington, D.C. 20472

ADDITIONAL INFORMATION REGARDING LETTERS OF MAP REVISION BASED ON FILL

When making determinations on requests for Letters of Map Revision based on the placement of fill (LOMR-Fs), the Department of Homeland Security's Federal Emergency Management Agency (FEMA) bases its determination on the flood hazard information available at the time of the determination. Requesters should be aware that flood conditions may change or new information may be generated that would supersede FEMA's determination. In such cases, the community will be informed by letter.

Requesters also should be aware that removal of a property (parcel of land or structure) from the Special Flood Hazard Area (SFHA) means FEMA has determined the property is not subject to inundation by the flood having a 1-percent chance of being equaled or exceeded in any given year (base flood). This does not mean the property is not subject to other flood hazards. The property could be inundated by a flood with a magnitude greater than the base flood or by localized flooding not shown on the effective National Flood Insurance Program (NFIP) map.

The effect of a LOMR-F is it removes the Federal requirement for the lender to require flood insurance coverage for the property described. The LOMR-F *is not* a waiver of the condition that the property owner maintain flood insurance coverage for the property. *Only* the lender can waive the flood insurance purchase requirement because the lender imposed the requirement. *The property owner must request and receive a written waiver from the lender before canceling the policy.* The lender may determine, on its own as a business decision, that it wishes to continue the flood insurance requirement to protect its financial risk on the loan.

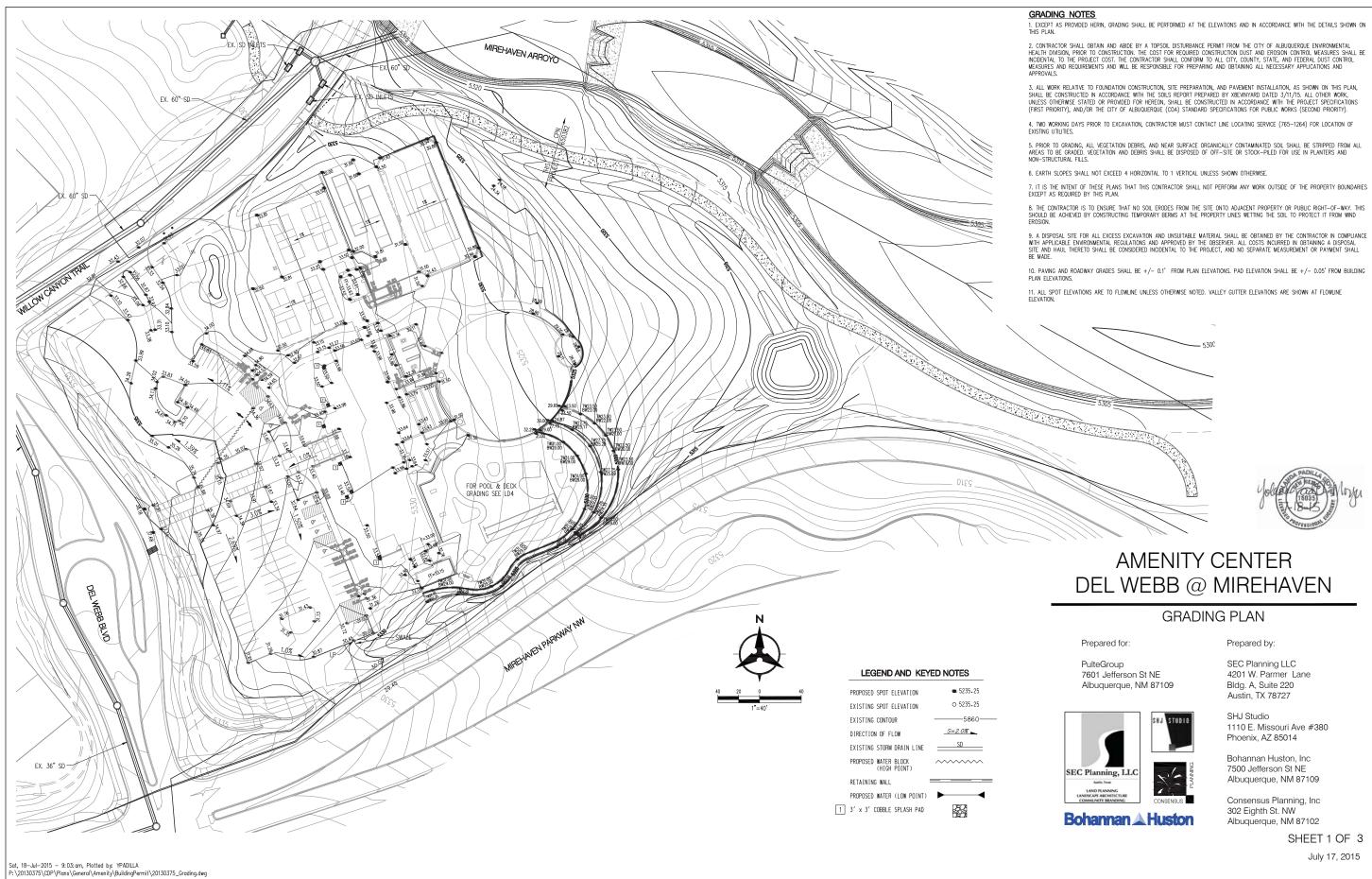
The LOMR-F provides FEMA's comment on the mandatory flood insurance requirements of the NFIP as they apply to a particular property. A LOMR-F is not a building permit, nor should it be construed as such. Any development, new construction, or substantial improvement of a property impacted by a LOMR-F must comply with all applicable State and local criteria and other Federal criteria.

If a lender releases a property owner from the flood insurance requirement, and the property owner decides to cancel the policy and seek a refund, the NFIP will refund the premium paid for the current policy year, provided that no claim is pending or has been paid on the policy during the current policy year. The property owner must provide a written waiver of the insurance requirement from the lender to the property insurance agent or company servicing his or her policy. The agent or company will then process the refund request.

Even though structures are not located in an SFHA, as mentioned above, they could be flooded by a flooding event with a greater magnitude than the base flood. In fact, more than 25 percent of all claims paid by the NFIP are for policies for structures located outside the SFHA in Zones B, C, X (shaded), or X (unshaded). More than one-fourth of all policies purchased under the NFIP protect structures located in these zones. The risk to structures located outside SFHAs is just not as great as the risk to structures located in SFHAs. Finally, approximately 90 percent of all federally declared disasters are caused by flooding, and homeowners insurance does not provide financial protection from this flooding. Therefore, FEMA encourages the widest possible coverage under the NFIP.

The NFIP offers two types of flood insurance policies to property owners: the low-cost Preferred Risk Policy (PRP) and the Standard Flood Insurance Policy (SFIP). The PRP is available for 1- to 4-family residential structures located outside the SFHA with little or no loss history. The PRP is available for townhouse/rowhouse-type structures, but is not available for other types of condominium units. The SFIP is available for all other structures.

Additional information on the PRP and how a property owner can quality for this type of policy may be obtained by contacting the Flood Insurance Information Hotline, toll free, at 1-800-427-4661. Before making a final decision about flood insurance coverage, FEMA strongly encourages property owners to discuss their individual flood risk situations and insurance needs with an insurance agent or company.


The revisions made effective by a LOMR-F are made pursuant to Section 206 of the Flood Disaster Protection Act of 1973 (P.L. 93-234) and are in accordance with the National Flood Insurance Act of 1968, as amended (Title XIII of the Housing and Urban Development Act of 1968, P.L. 90-448) 42 U.S.C. 4001-4128, and 44 CFR Part 65.

In accordance with regulations adopted by the community when it made application to join the NFIP, letters issued to revise an NFIP map must be attached to the community's official record copy of the map. That map is available for public inspection at the community's official map repository. Therefore, FEMA sends copies of all such letters to the affected community's official map repository.

To ensure continued eligibility to participate in the NFIP, the community must enforce its floodplain management regulations using, at a minimum, the flood elevations and zone designations shown on the NFIP map, including the revisions made effective by LOMR-Fs. LOMR-Fs are based on minimum criteria established by the NFIP. State, county, and community officials, based on knowledge of local conditions and in the interest of safety, may set higher standards for construction in the SFHA. If the State, county, or community has adopted more restrictive and comprehensive floodplain management criteria, these criteria take precedence over the minimum Federal criteria.

FEMA does not print and distribute LOMR-Fs to primary map users, such as local insurance agents and mortgage lenders; therefore, the community serves as the repository for LOMR-Fs. FEMA encourages communities to disseminate LOMR-Fs so that interested persons, such as property owners, insurance agents, and mortgage lenders, may benefit from the information. FEMA also encourages communities to prepare articles for publication in the local newspaper that describe the changes made and the assistance community officials will provide in serving as a clearinghouse for LOMR-Fs and interpreting NFIP maps.

When a restudy is undertaken, or when a sufficient number of revisions occur on particular map panels, FEMA initiates the printing and distribution process for the panels and incorporates the changes made effective by LOMR-Fs. FEMA notifies community officials in writing when affected map panels are being physically revised and distributed. If the results of particular LOMR-Fs cannot be reflected on the new map panels because of scale limitations, FEMA notifies the community in writing and revalidates the LOMR-Fs in that letter. LOMR-Fs revalidated in this way usually will become effective 1 day after the effective date of the revised map.

3. ALL WORK RELATIVE TO FOUNDATION CONSTRUCTION, SITE PREPARATION, AND PAVEMENT INSTALLATION, AS SHOWN ON THIS PLAN, SHALL BE CONSTRUCTED IN ACCORDANCE WITH THE SOLLS REPORT PREPARED BY SREWNYARD DATED 3/11/15. ALL OTHER WORK, UNLESS OTHERWISE STATED OR PROVIDED FOR HEREON, SHALL BE CONSTRUCTED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS (FRST PRIORITY), AND/OR THE CITY OF ALBUQUERQUE (COA) STANDARD SPECIFICATIONS FOR PUBLIC WORKS (SECOND PRIORITY).

4. TWO WORKING DAYS PRIOR TO EXCAVATION, CONTRACTOR MUST CONTACT LINE LOCATING SERVICE (765-1264) FOR LOCATION OF

5. PRIOR TO GRADING, ALL VEGETATION DEBRIS, AND NEAR SURFACE ORGANICALLY CONTAMINATED SOIL SHALL BE STRIPPED FROM ALL AREAS TO BE GRADED. VEGETATION AND DEBRIS SHALL BE DISPOSED OF OFF-SITE OR STOCK-PILED FOR USE IN PLANTERS AND NON-STRUCTURAL FILLS.

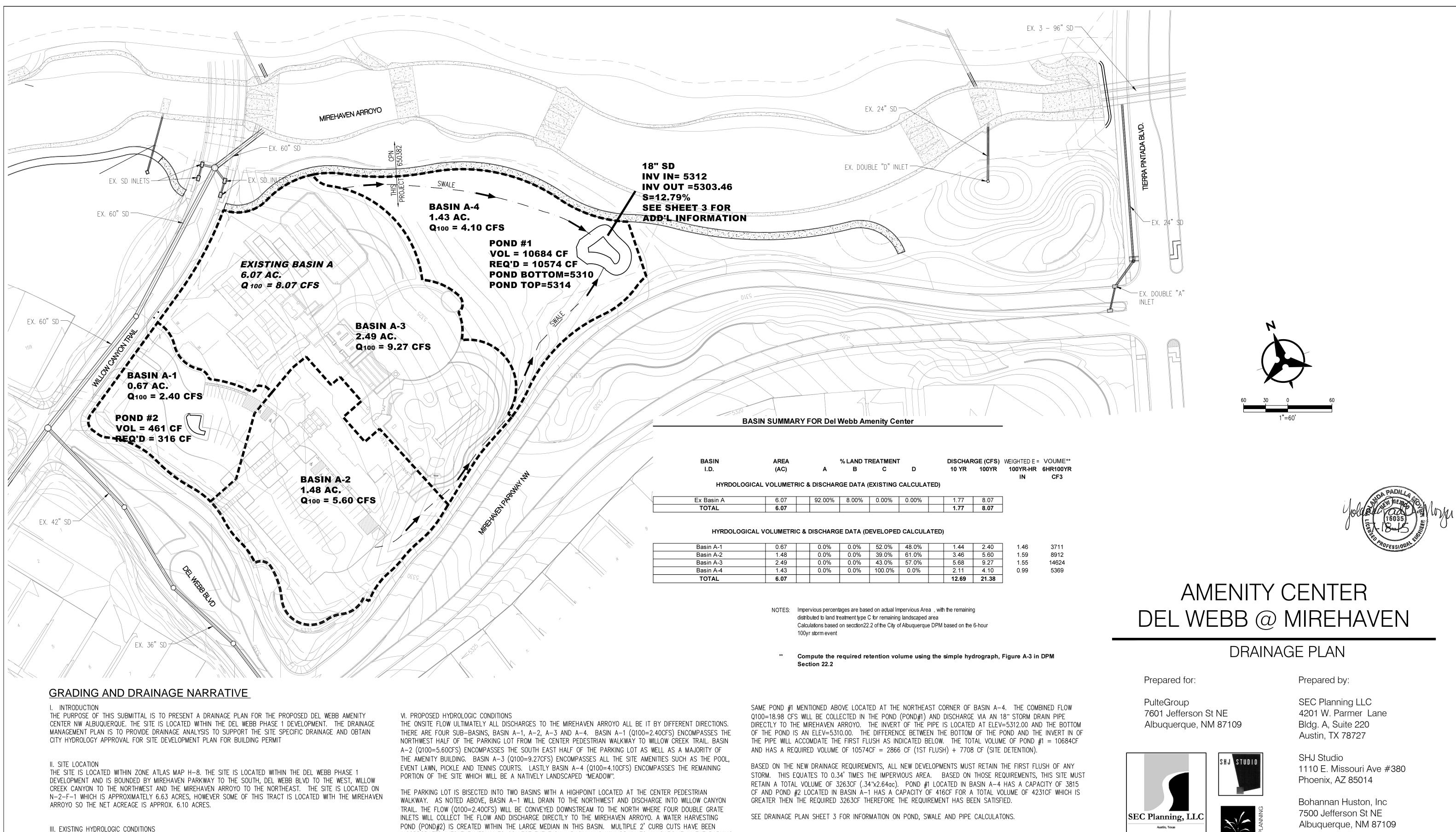
7. IT IS THE INTENT OF THESE PLANS THAT THIS CONTRACTOR SHALL NOT PERFORM ANY WORK OUTSIDE OF THE PROPERTY BOUNDARIES EXCEPT AS REQUIRED BY THIS PLAN.

AMENITY CENTER DEL WEBB @ MIREHAVEN

GRADING PLAN

Prepared by:

SEC Planning LLC 4201 W. Parmer Lane Bldg. A, Suite 220 Austin, TX 78727


SHJ Studio 1110 E. Missouri Ave #380 Phoenix, AZ 85014

Bohannan Huston, Inc 7500 Jefferson St NE Albuquerque, NM 87109

Consensus Planning, Inc 302 Eighth St. NW Albuquerque, NM 87102

SHEET 1 OF 3

July 17, 2015

THE LAND COMPRISING OF DEL WEBB AMENITY CENTER IS CURRENTLY UNDEVELOPED, ALTHOUGH IT HAS BEEN MASS GRADED. AS STATED IN THE DRAINAGE MASTER PLAN FOR THE MIREHAVEN MASTER PLANNED COMMUNITY, EXISTING FLOWS THAT ENCOMPASS DEL WEBB @ MIREHAVEN PHASES 1 AND 2, WHICH INCLUDE THE AMENITY CENTER SITE, DRAIN TO THE MIREHAVEN ARROYO AND EAST TO TIERRA PINTADA BLVD, WHERE RUNOFF ENTERS EXISTING CULVERTS AND STORM DRAIN NETWORKS THAT TIE INTO THE AMAFCA LADERA DAM SYSTEM. PLEASE REFER TO THE WEST I-40 DRAINAGE MANAGEMENT PLAN AND THE DRAINAGE REPORT FOR STORMCLOUD SUBDIVISION FOR FURTHER INFORMATION REGARDING THE CONTINUATION OF DOWNSTREAM ANALYSIS OF THE EXISTING STORM DRAIN NETWORK AND THE LADERA DAM SYSTEM.

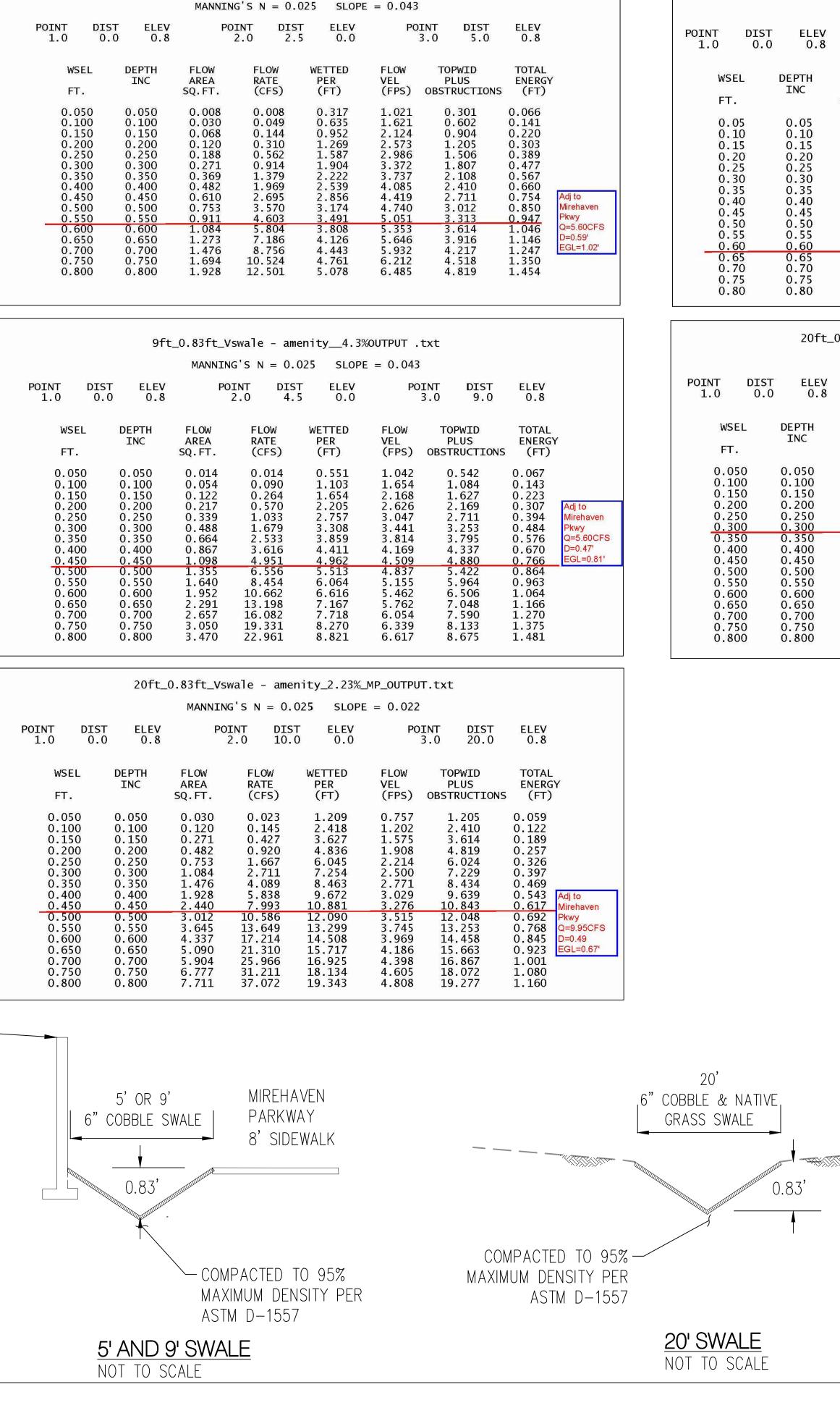
Sat, 18-Jul-2015 - 9:21: am, Plotted by: YPADILLA P:\20130375\CDP\Plans\General\Amenity\BuildingPermit\20130375_DrainagePlan.dwg

POND (POND#2) IS CREATED WITHIN THE LARGE MEDIAN IN THIS BASIN. MULTIPLE 2' CURB CUTS HAVE BEEN INCORPORATED INTO THE MEDIAN TO COLLECT THE FLOW. BASIN A-2 WILL DRAIN TO A LOWPOINT IN THE PARKING LOT LOCATED AT THE SOUTHEAST CORNER NEAR THE DUMPSTER. A CURB CUT WILL DRAIN THE FLOW (Q100=5.60CFS) TO A MINIMUM FIVE FOOT WIDE SWALE WHERE THE WALLS ARE CLOSEST TO MIREHAVEN PARKWAY ELSE IT VARIES TO 20' WIDE. THIS SWALE WILL PARALLEL THE BACK OF SIDEWALK OF MIREHAVEN PARKWAY, COMBINE WITH BASIN A-3 AND A-4 AND ULTIMATELY DISCHARGE TO POND #1 (SEE BELOW FOR FURTHER INFORMATION ON POND #1). BASIN A-3 AND A-4 WILL MOSTLY SHEET FLOW TO THE NORTH WEST WHERE THE FLOW Q100=9.27CFS AND Q100=4.10CFS RESPECTIVELY WILL DRAINAGE VIA SWALES (20' WIDE V-SHAPE) TO THE

VII. CONCLUSION

THE DRAINAGE PLAN IS CAPABLE OF SAFELY PASSING THE 100 YEAR STORM EVENT AND THE CITY OF ALBUQUERQUE REQUIREMENTS AND ADHERES TO THE APPROVED DRAINAGE MANAGEMENT PLAN FOR PULTE @ MIREHAVEN PHASE 1. ALL ANALYSIS WAS COMPLETED IN ACCORDANCE WITH SECTION 22.2 OF THE DEVELOPMENT PROCESS MANUAL.

Austin, Texas LAND PLANNING LANDSCAPE ARCHITECTURE COMMUNITY BRANDING


Bohannan A Huston

Consensus Planning, Inc 302 Eighth St. NW Albuquerque, NM 87102

> SHEET 2OF 3 July 17, 2015

Doton		volume	Calcul	ations		MEA	DOW	PON	\mathbf{D}
		s require use	r input, all c	other cells	should not be edited.				1
	TIONS: ess than 40 acr ear, 6-hour storr		hydrograpt	n method).					
Peak Flo Zone	ow per Acre -	DPM Sectio	on 22.2 Ta C	ble A-9 D	1				
1	1.29 1.56	2.03 2.28	2.87 3.14	4.37 4.7					
2 3 4	1.87 2.2	2.20 2.6 2.92	3.45 3.73	4.7 5.02 5.25					
	Basin Name : e Zone (1 - 4)	1			l.				
	Area = (acres)	5.41				-			
	Exist Cond Treatment	Percentage	Area	Q (cfs)	Proposed Condition Treatment Percentage		Q (cfs)		
	A B	100.0% 0.0%	5.41 0.00	6.98 0.00	A 0.0% B 0.0%	0.00 0.00	0.00 0.00		
	C D	0.0% 0.0%	0.00 0.00 ak - exist.=	0.00 <u>0.00</u> 6.98	C 57.9% D 42.1%	3.13 2.28	8.98 <u>9.96</u> 18.95		
	Use my calcula		ld. flow as th	ne peak co	ontrolled discharge (1 =)		N		
Excess	Precipitation	- DPM Sect			the maximum allowable	discharge ?	10.35		
Zone 1	A 0.44	B 0.67	C 0.99	D 1.97					
2 3	0.53 0.66	0.78 0.92	1.13 1.29	2.12 2.36					
4 Determin			1.46	2.64	developed basin)				
Dereunin	ie nevelopea p	%A x E = %B x E =	0.00 0.00		e developed basin)				
		%C x E = %D x E =	0.57 <u>0.83</u>						
Determin	e Tb (hours)	Avg E(in) =	1.40						
			730						
	le in (liouis)	Tb = (5.759						
		c is assumed	l to be 0.2 l	hours, this	s should be checked us	sing DPM 22.	2.B.2)	2	
Determin	e Tc (Note: To	c is assume c Tc = <mark>(</mark>	l to be 0.2).2	hours, this	s should be checked us	sing DPM 22.	2.B.2)		
Determin	e Tc (Note: To	c is assumed Tc = (tion of Peak	I to be 0.2 I 0.2 (hours) 0.238213	hours, this	s should be checked us	sing DPM 22.	2.B.2)		
Determin Determin	e Tc (Note: To Te Tp and Dura Peal	tion of Peak Tc = (tion of Peak Tp = (Curation = (i to be 0.2 i 0.2 (hours) 0.238213 0.10536						
Determin Determin	e Tc (Note: To e Tp and Dura Peak the required i	tion of Peak Tc = (Tc = (Duration = (I to be 0.2 I 0.2 (hours) 0.238213 0.10536 ume using		s should be checked us				
Determin Determin Compute	e Tc (Note: To Te Tp and Dura Peak the required of Time to Contr to end of Cont	c is assumed Tc = (tion of Peak Tp = (Couration = (retention volution) retention volution rol Q (hrs) = (trol Q (hrs) = (I to be 0.2 I 0.2 (hours) 0.238213 0.10536 ume using 0.130 0.522869						
Determin Determin Compute	e Tc (Note: To Te Tp and Dura Peal the required of Time to Conti	c is assumed Tc = (tion of Peak Tp = (Curation = (coluration = (rol Q (hrs) = (crol Q (hrs)= (crol Q (hrs)= (I to be 0.2 I 0.2 (hours) 0.238213 0.10536 ume using 0.130 0.522869 0.393	the simple	e hydrograph, Figure A	3 in DPM Se			
Determin Determin Compute Time C Requ 1st flush r	e Tc (Note: To Te Tp and Dura Peal the required of Time to Contr to end of Contr Duration of Cont uired Detent requirements C	c is assumed Tc = (tion of Peak Tp = (Couration = (couration = (retention volum rol Q (hrs) = (crol Q (hrs)	I to be 0.2 I (hours) 0.238213 0.10536 ume using 0.130 0.522869 0.393 ie (CF) = 2866	the simple	e hydrograph, Figure A	3 in DPM Se			
Determin Determin Compute Time C Requ 1st flush r	e Tc (Note: To the Tp and Dura Peak the required of Time to Contr to end of Cont Duration of Cont uired Detent	c is assumed Tc = (tion of Peak Tp = (Couration = (couration = (retention volum rol Q (hrs) = (crol Q (hrs)	I to be 0.2 I (hours) 0.238213 0.10536 ume using 0.130 0.522869 0.393 Ie (CF) =	the simple	e hydrograph, Figure A	3 in DPM Se			
Determin Determin Compute Time C Requ 1st flush r	e Tc (Note: To Te Tp and Dura Peal the required of Time to Contr to end of Contr Duration of Cont uired Detent requirements C	c is assumed Tc = (tion of Peak Tp = (Couration = (couration = (retention volum rol Q (hrs) = (crol Q (hrs)	I to be 0.2 I (hours) 0.238213 0.10536 ume using 0.130 0.522869 0.393 ie (CF) = 2866	the simple	e hydrograph, Figure A	3 in DPM Se			
Determin Determin Compute Time D Requ 1st flush r TOTAL R	e Tc (Note: To the Tp and Dura Peak the required of Time to Contri to end of Cont Duration of Cont uired Detent requirements C REQ'D VOLUME	c is assumed Tc = (tion of Peak Tp = (Couration = (couration = (retention volum rol Q (hrs) = (crol Q (hrs)	I to be 0.2 I (hours) 0.238213 0.10536 ume using 0.130 0.522869 0.393 ie (CF) = 2866	the simple	e hydrograph, Figure A	3 in DPM Se			
Determin Determin Compute Time Time Requ 1st flush r TOTAL R Analyze	e Tc (Note: To the Tp and Dura Peak the required of Time to Contr to end of Contr Duration of Contr Duration of Contr Equirements C REQ'D VOLUME	c is assumed Tc = (tion of Peak Tp = (Couration = (retention volu rol Q (hrs) = (crol Q (hrs) = (crol Q (hrs) = (tion Volum F = E CF =	i to be 0.2 l (hours) 0.238213 0.10536 ume using 0.130 0.522869 0.393 ie (CF) = 2866 10574	the simple	e hydrograph, Figure A 0.176943	3 in DPM Se			
Determin Determin Compute Time C Requ 1st flush r TOTAL F Analyze Drainag	e Tc (Note: To the Tp and Dura Peak the required of Time to Contri to end of Cont Duration of Cont uired Detent requirements C REQ'D VOLUME	tion of Peak $T_{C} = ($ $T_{D} = ($ $T_{D} = ($ $T_{D} = ($ $T_{D} = ($ $T_{C} = ($ $T_$	i to be 0.2 l (hours) 0.238213 0.10536 ume using 0.130 0.522869 0.393 ie (CF) = 2866 10574	the simple	e hydrograph, Figure A 0.176943	3 in DPM Se			
Determin Determin Compute Time C Requ 1st flush r TOTAL R Analyze Drainag Pipe Hy	e Tc (Note: To e Tp and Dura Peak the required of Time to Contr to end of Contr Duration of Cont Duration of Contr Equirements C REQ'D VOLUME er Report	tion of Peak $T_{C} = 1$ To a function of Peak $T_{D} = 0$ $T_{C} = 0$ Tetention volum Tol Q (hrs) = 0 Trol Q (h	to be 0.2 I (hours) 0.238213 0.10536 ume using 0.130 0.522869 0.393 e (CF) = 2866 10574 2866 10574	the simple 7707.64 SD (e hydrograph, Figure A 0.176943 DUTPUT.txt	3 in DPM Se			
Determin Determin Compute Time C Requ 1st flush r TOTAL R Analyze Drainag Pipe Hy	e Tc (Note: To re Tp and Dura Peak the required of Time to Contr to end of Contr Duration of Contr Duration of Contr uired Detent Requirements C REQ'D VOLUME er Report ge Structu (draulic Au Friday, Ju	tion of Peak $T_{C} = 1$ To a function of Peak $T_{D} = 0$ $T_{C} = 0$ Tetention volum Tol Q (hrs) = 0 Trol Q (h	to be 0.2 I (hours) 0.238213 0.10536 ume using 0.130 0.522869 0.393 e (CF) = 2866 10574 2866 10574	the simple 7707.64 SD (e hydrograph, Figure A 0.176943 DUTPUT.txt	3 in DPM Se			RETAIN
Determin Determin Compute Time C Requ 1st flush r TOTAL R Analyze Drainag Drainag Drainag Drainag Drainag	e Tc (Note: To e Tp and Dura Peak the required of Time to Contra to end of	tion of Peak $T_{C} = 1$ To a function of Peak $T_{D} = 0$ $T_{C} = 0$ Tetention volum Tol Q (hrs) = 0 Trol Q (h	to be 0.2 I (hours) 0.238213 0.10536 ume using 0.130 0.522869 0.393 e (CF) = 2866 10574 2866 10574	the simple 7707.64 SD (e hydrograph, Figure A 0.176943 OUTPUT.txt	3 in DPM Se			RETAIN
Determin Determin Compute Time C Requ 1st flush r TOTAL R Analyze Drainag Pipe Hy Date: Shape Materia Roughne	e Tc (Note: To e Tp and Dura Peak the required of Time to Contr to end of Cont	tion of Peak $T_{C} = 1$ To a function of Peak $T_{D} = 0$ $T_{C} = 0$ Tetention volum Tol Q (hrs) = 0 Trol Q (h	to be 0.2 I (hours) 0.238213 0.10536 ume using 0.130 0.522869 0.393 e (CF) = 2866 10574 2866 10574	the simple 7707.64 SD (e hydrograph, Figure A 0.176943 OUTPUT.txt	3 in DPM Se			
Determin Determin Compute Time C Requ 1st flush r TOTAL F Analyze Drainag Pipe Hy Date: Input I Shape Materia Roughne Materia Roughne Materia	e Tc (Note: To re Tp and Dura Peak the required of Time to Contr to end of Con	tion of Peak $T_{C} = 1$ To a function of Peak $T_{D} = 0$ $T_{C} = 0$ Tetention volum Tol Q (hrs) = 0 Trol Q (h	to be 0.2 I (hours) 0.238213 0.10536 ume using 0.130 0.522869 0.393 e (CF) = 2866 10574 2866 10574	the simple 7707.64 SD (e hydrograph, Figure A 0.176943 0.176943 DUTPUT.txt	3 in DPM Se			
Determin Determin Compute Time C Requ 1st flush r TOTAL R Analyze Drainag Pipe Hy Date: Shape Materia Roughne Materia	e Tc (Note: To re Tp and Dura Peak the required of Time to Contr to end of Contr Duration of Contr Duration of Contr atred Detent requirements C REQ'D VOLUME er Report ge Structu (draulic Au Friday, Ju Data	tion of Peak $T_{C} = 1$ To a function of Peak $T_{D} = 0$ $T_{C} = 0$ Tetention volum Tol Q (hrs) = 0 Trol Q (h	to be 0.2 I (hours) 0.238213 0.10536 ume using 0.130 0.522869 0.393 e (CF) = 2866 10574 2866 10574	the simple 7707.64 SD (8:28 PM	e hydrograph, Figure A 0.176943 0UTPUT.txt	3 in DPM Se			
Determin Determin Compute Time C Requ 1st flush r TOTAL R Analyze Drainag Drainag Pipe Hy Date: Shape Materia Roughne Materia Shape Size (V	e Tc (Note: To re Tp and Dura Peak the required of Time to Contr to end of Contr Duration of Contr Duration of Contr atred Detent requirements C REQ'D VOLUME er Report ge Structu (draulic Au Friday, Ju Data	tion of Peak $T_{C} = 1$ To a function of Peak $T_{D} = 0$ $T_{C} = 0$ Tetention volum Tol Q (hrs) = 0 Trol Q (h	to be 0.2 I (hours) 0.238213 0.10536 ume using 0.130 0.522869 0.393 e (CF) = 2866 10574 2866 10574	the simple 7707.64 SD (8:28 PM	e hydrograph, Figure A 0.176943 ⁴ OUTPUT.txt Circular RC C76-A 0.013000 Manning 18.9800 cfs 12.7900%	3 in DPM Se			
Determin Determin Compute Time C Requ 1st flush r TOTAL F Analyze Drainag Drainag Pipe Hy Date: Input I Shape Materia Roughne Size (V Output Flow Ra	e Tc (Note: To Time Tp and Dura Peak the required of Time to Contr to end of Contr to end of Contr to end of Contr attreed Detent requirements C REQ'D VOLUME er Report CREQ'D VOLUME er Report ge Structu /draulic Au Friday, Ju Data Data al ess ate / x T): Results	tion of Peak $T_{C} = 1$ To a function of Peak $T_{D} = 0$ $T_{C} = 0$ Tetention volum Tol Q (hrs) = 0 Trol Q (h	to be 0.2 I (hours) 0.238213 0.10536 ume using 0.130 0.522869 0.393 e (CF) = 2866 10574 2866 10574	the simple 7707.64 SD (8:28 PM	e hydrograph, Figure A 0.176943 0.176943 DUTPUT.txt Circular RC C76-A 0.013000 Manning 18.9800 cfs 12.7900% x 2.5000 18.9800 cfs	3 in DPM Se			
Determin Determin Compute Time C Requ 1st flush r TOTAL R Analyze Drainag Drainag Pipe Hy Date: Shape Materia Roughne Materia Shape Size (V Output Flow Ra Size (V Output	er Report ge Structu draulic Au Friday, Ju Data Data Aless ate	tion of Peak $T_{C} = 1$ To a function of Peak $T_{D} = 0$ $T_{C} = 0$ Tetention volum Tol Q (hrs) = 0 Trol Q (h	to be 0.2 I (hours) 0.238213 0.10536 ume using 0.130 0.522869 0.393 e (CF) = 2866 10574 2866 10574	the simple 7707.64 SD (8:28 PM	e hydrograph, Figure A 0.176943 0.176943 DUTPUT.txt Circular RC C76-A 0.013000 Manning 18.9800 cfs 12.7900% x 2.5000 18.9800 cfs 12.7900% 0.5027	3 in DPM Se			
Determin Determin Compute Time C Requ 1st flush r TOTAL R Analyze Drainag Pipe Hy Date: Drainag Pipe Hy Date: Size (V Output Flow Ra Slope Size (V Output Capacit Velocit	e Tc (Note: To re Tp and Dura Peak the required of Time to Contr to end of Con	tion of Peak $T_{C} = 1$ To a function of Peak $T_{D} = 0$ $T_{C} = 0$ Tetention volum Tol Q (hrs) = 0 Trol Q (h	to be 0.2 I (hours) 0.238213 0.10536 ume using 0.130 0.522869 0.393 e (CF) = 2866 10574 2866 10574	the simple 7707.64 SD (8:28 PM	e hydrograph, Figure A 0.176943 0.176943 OUTPUT.txt Circular RC C76-A 0.013000 Manning 18.9800 cfs 12.7900% x 2.5000 18.9800 cfs 12.7900% x 2.5000 18.9800 cfs 12.7900% 0.5027 37.5668 cfs 21.3361 ft/s	3 in DPM Se			
Determin Determin Compute Time C Requ 1st flush r TOTAL R Analyze Drainag Drainag Pipe Hy Date: Drainag Pipe Hy Date: Size (V Output Flow Ra Slope Size (V Output Capacit Velocit Depth	e Tc (Note: To re Tp and Dura Peak the required of Time to Contr to end of Con	tion of Peak $T_{C} = 1$ To a function of Peak $T_{D} = 0$ $T_{C} = 0$ Tetention volum Tol Q (hrs) = 0 Trol Q (h	to be 0.2 I (hours) 0.238213 0.10536 ume using 0.130 0.522869 0.393 e (CF) = 2866 10574 2866 10574	the simple 7707.64 SD (8:28 PM 8:28 PM	e hydrograph, Figure A 0.176943 0.176943 DUTPUT.txt Circular RC C76-A 0.013000 Manning 18.9800 cfs 12.7900% x 2.5000 18.9800 cfs 12.7900% x 2.5000	3 in DPM Se			

Sat, 18-Jul-2015 - 9:02: am, Plotted by: YPADILLA P:\20130375\CDP\Plans\General\Amenity\BuildingPermit\20130375_DrainagePlan2.dwg

5ft_3to1_Vswale - amenity_4.33%_OUTPUT.txt

20f	t_0.83ft_	Vswale - an	uenity_0.5%	_OUTPUT.	txt		
	MANNIN	G'S N = 0.0)3 SLOPE	= 0.01			
ELEV 0.8		INT DIST 2.0 10.0			INT DIST 3.0 20.0	ELEV 0.8	
TH C	FLOW AREA SQ.FT.	FLOW RATE (CFS)	WETTED PER (FT)	FLOW VEL (FPS)	TOPWID PLUS OBSTRUCTIONS	TOTAL ENERG (FT)	ŕ
05 10 15 20 25 30 35 40 45 55 55 60 65	$\begin{array}{c} 0.03 \\ 0.12 \\ 0.27 \\ 0.48 \\ 0.75 \\ 1.08 \\ 1.48 \\ 1.93 \\ 2.44 \\ 3.01 \\ 3.64 \\ 4.34 \\ 5.09 \end{array}$	$\begin{array}{c} 0.01 \\ 0.07 \\ 0.20 \\ 0.44 \\ 0.79 \\ 1.28 \\ 1.94 \\ 2.76 \\ 3.78 \\ 5.01 \\ 6.46 \\ 8.15 \\ 10.09 \end{array}$	$1.21 \\ 2.42 \\ 3.63 \\ 4.84 \\ 6.04 \\ 7.25 \\ 8.46 \\ 9.67 \\ 10.88 \\ 12.09 \\ 13.30 \\ 14.51 \\ 15.72$	$\begin{array}{c} 0.36\\ 0.57\\ 0.75\\ 0.90\\ 1.05\\ 1.18\\ 1.31\\ 1.43\\ 1.55\\ 1.66\\ 1.77\\ 1.88\\ 1.98\end{array}$	$ \begin{array}{r} 1.20\\ 2.41\\ 3.61\\ 4.82\\ 6.02\\ 7.23\\ 8.43\\ 9.64\\ 10.84\\ 12.05\\ 13.25\\ 14.46\\ 15.66\end{array} $	$\begin{array}{c} 0.05\\ 0.11\\ 0.16\\ 0.21\\ 0.27\\ 0.32\\ 0.38\\ 0.43\\ 0.49\\ 0.54\\ 0.60\\ 0.65\\ 0.71\\ \end{array}$	Adj to North Trail Q=9.15CFS
70 75 80	5.90 6.78 7.71	12.30 14.78 17.55	16.93 18.13 19.34	2.08 2.18 2.28	$16.87 \\ 18.07 \\ 19.28$	0.77 0.82 0.88	D=0.63' EGL=0.68'
20ft_	0.83ft_Vsi	wale - amer	nity_4.51%_	MP_OUTPU	T.txt		
	MANNIN	G'S N = 0.0)25 SLOPE	= 0.045			
ELEV 0.8		INT DIST 2.0 10.0			INT DIST 3.0 20.0	ELEV 0.8	
TH C	FLOW AREA SQ.FT.	FLOW RATE (CFS)	WETTED PER (FT)	FLOW VEL (FPS)	TOPWID PLUS OBSTRUCTIONS	TOTAL ENERGY (FT)	(
50 .00 .50 .00 50 .00	0.030 0.120 0.271 0.482 0.753 1.084	0.032 0.206 0.607 1.308 2.371 3.855	1.209 2.418 3.627 4.836 6.045 7.254	1.077 1.709 2.240 2.713 3.149 3.556	1.205 2.410 3.614 4.819 6.024 7.229	0.068 0.145 0.228 0.315 0.404 0.497	Adj to Mirehaven
50 00 50 00 50 50 00 50 00 50	1.476 1.928 2.440 3.012 3.645 4.337 5.090 5.904 6.777	5.816 8.303 11.367 15.054 19.411 24.480 30.305 36.926 44.385	8.463 9.672 10.881 12.090 13.299 14.508 15.717 16.925 18.134	3.940 4.307 4.659 4.998 5.326 5.644 5.953 6.255 6.549	8.434 9.639 10.843 12.048 13.253 14.458 15.663 16.867 18.072	$\begin{array}{c} 0.591 \\ 0.689 \\ 0.788 \\ 0.889 \\ 0.991 \\ 1.095 \\ 1.201 \\ 1.309 \\ 1.417 \end{array}$	Pkwy Q=5.60CFS D=0.34' EGL=0.58'

AMENITY CENTER DEL WEBB @ MIREHAVEN

DRAINAGE PLAN

Prepared for:

PulteGroup 7601 Jefferson St NE Albuquerque, NM 87109

Bohannan 🛦 Huston

Prepared by:

SEC Planning LLC 4201 W. Parmer Lane Bldg. A, Suite 220 Austin, TX 78727

SHJ Studio 1110 E. Missouri Ave #380 Phoenix, AZ 85014

Bohannan Huston, Inc 7500 Jefferson St NE Albuquerque, NM 87109

Consensus Planning, Inc 302 Eighth St. NW Albuquerque, NM 87102

> SHEET 3 OF 3 July 17, 2015