

		[DEVELO	PED BAS	SIN SU	MMARY		
BASIN	AREA	%	6 LAND TR	EATMENT		DISCHARGE (CFS)	VOLUME (AC-FT)	VOLUME (AC-FT)
I.D.	(AC)	A	В	С	D	100YR	2yr	100 yr
OFFSITE 3A	7.43	19.00%	50.00%	31.00%	0.00%	15.9	0.03	0.45
OFFSITE 3B	0.13	19.00%	50.00%	31.00%	0.00%	0.3	0.00	0.01
OFFSITE 3C	0.07	19.00%	50.00%	31.00%	0.00%	0.2	0.00	0.00
OFFSITE 4	1.14	19.00%	50.00%	31.00%	0.00%	2.4	0.00	0.07
TOTAL	7.63					18.8	0.03	0.53

Del Webb	o Offsite Flow											
Swale			17%		cobble		permissible	actual	V-swale	V-swale	Design	Depth of
number	Basin ID	Q(100yr-6hr)	bulking	longitudinal	size	n-value	velocity	velocity	top width	top width	width	swale
									based on	based on		
				slope	Actual				depth	EGL		
		cfs	cfs		in		ft/s	ft/s	ft	ft	ft	f
	3A				INST	TALLED WIT	TH PHASE 3 G	RADING PLAI	١			
1-DW4	3B	0.3	0.35	3:1	6	0.069	5.5	2.65	1.26	1.92	3.00	0.5
2-DW4	3C	0.2	0.23	4:1	6	0.069	5.5	2.12	1.14	1.56	3.00	0.5
3-DW4	4	2.4	2.81	4:1	6	0.069	5.5	3.9	2.94	4.38	4.50	0.7

Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Tuesday, Jan 26 2021

1-DW4

Triangular		Highlighted	
Side Slopes (z:1)	= 3.00, 3.00	Depth (ft)	= 0.21
Total Depth (ft)	= 0.50	Q (cfs)	= 0.350
		Area (sqft)	= 0.13
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 2.65
Slope (%)	= 33.00	Wetted Perim (ft)	= 1.33
N-Value	= 0.069	Crit Depth, Yc (ft)	= 0.25
		Top Width (ft)	= 1.26
Calculations		EGL (ft)	= 0.32
Compute by:	Known Q		
Known Q (cfs)	= 0.35		

Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Tuesday, Jan 26 2021

2-DW4

Triangular		Highlighted	
Side Slopes (z:1)	= 3.00, 3.00	Depth (ft)	= 0.19
Total Depth (ft)	= 0.50	Q (cfs)	= 0.230
		Area (sqft)	= 0.11
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 2.12
Slope (%)	= 25.00	Wetted Perim (ft)	= 1.20
N-Value	= 0.069	Crit Depth, Yc (ft)	= 0.21
		Top Width (ft)	= 1.14
Calculations		EGL (ft)	= 0.26
Compute by:	Known Q		
Known Q (cfs)	= 0.23		

Reach (ft)

Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Tuesday, Jan 26 2021

3-DW4

Triangular		Highlighted	
Side Slopes (z:1)	= 3.00, 3.00	Depth (ft)	= 0.49
Total Depth (ft)	= 0.75	Q (cfs)	= 2.810
		Area (sqft)	= 0.72
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 3.90
Slope (%)	= 25.00	Wetted Perim (ft)	= 3.10
N-Value	= 0.069	Crit Depth, Yc (ft)	= 0.56
		Top Width (ft)	= 2.94
Calculations		EGL (ft)	= 0.73
Compute by:	Known Q		
Known Q (cfs)	= 2.81		

Reach (ft)

Weir Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Tuesday, Apr 7 2020

<Name>

Rectangular Weir		Highlighted	
Crest	= Sharp	Depth (ft)	= 0.97
Bottom Length (ft)	= 2.67	Q (cfs)	= 7.720
Total Depth (ft)	= 1.00	Area (sqft)	= 2.59
		Velocity (ft/s)	= 2.98
Calculations		Top Width (ft)	= 2.67
Weir Coeff. Cw	= 3.02		
Compute by:	Known Q		
Known Q (cfs)	= 7.72	Qs for swales 1-3 = 7.72 so weir works for all locations</td <td></td>	

SWALE TYPICAL SECTION

Swale 1- DW21 1.89 Q = 0.3 cfs $D_{50} = [0.3(0.33)^{0.58}]$ Sch=0.33 0.0393 $S_0=2.1'' use 6'''$ Swale 2-DW4 11.89 Q=0.2efs $D_{50}=0.2(0.25)^{0.58}$ 6.0393 Sch=0.25 D50=1.5" use 6" Swale 3- DW4 Q = 2.4 cfs $D_{50} = [2.4(0.25)^{0.58}]^{1.89}$ sch = 0.25 $D_{50} = 5.8''$ use 6''Reference: Denver Urban Drainage & Flood Control District Urban Storn Drainage Criteria Manual Ch. 8.1.2 for Slope 2/0-40% use Below. Reference An excel program to Design Rock Chutes for grade Stabilization by USDA Eq. 9: Dro= 9(sch) 58 71.89 3.93×10-2

	Grass Lining	
Channel Slope	Grass Lining	Permissible Velocity*
5 10.07	Small grains (temp)	
5-10%	Bermuda grass	1.5 m/s
	Reed canary grass	1.2 m/s
	Cross laguma	1.2 m/s
	mixture	0.9 m/s
>10%	Bermuda grass	1.2 m/s
	Reed canary grass	0.9 m/s
	Tall fescue	0.9 m/s
* For highly erodible so	ils, decrease permissible	velocities by 25%
	Earth Linings	
Earth Linin	g Soil Types	Permissible Velocity
Fine Sand (noncolloidal)		2.5 ft/s
Sandy Loam (noncolloid	al)	2.5 ft/s
Silt Loam (noncolloidal)		3.0 ft/s
Ordinary Firm Loam		3.5 ft/s
Fine Gravel		5.0 ft/s
Stiff Clay (very colloida	l)	5.0 ft/s
Graded, Loam to Cobble	es (noncolloidal)	5.0 ft/s
Graded, Silt to Cobbles	(colloidal)	5.5 ft/s
Alluvial Silts (noncolloid	lal)	3.5 ft/s
Alluvial Silts (colloidal)		5.0 ft/s
Coarse Gravel (noncollo	idal)	6.0 ft/s
Cobbles and Shingles		5.5 ft/s
Shales and Hard Pans		6.0 ft/s

 Table 6-2
 Permissible Velocities for Grass and Earth-Lined Channels

Source: HEC-15 (1988)

The value of n can also vary with flow depth. Typical values of n for various channel lining materials, as a function of flow depth, are given in **Table 3-2**.

		<i>n</i> value				
		Depth Ranges				
Lining Category	Lining Type	0-0.5 ft (0-15 cm)	0.5-2.0 ft (15-60 cm)	>2.0 ft (>60 cm)		
Rigid	Concrete	0.015	0.013	0.013		
	Grouted Riprap	0.040	0.030	0.028		
	Stone Masonry	0.042	0.032	0.030		
	Soil Cement	0.025	0.022	0.020		
	Asphalt	0.018	0.016	0.016		
Unlined	Bare Soil	0.23	0.020	0.020		
	Rock Cut	0.045	0.035	0.025		
Temporary	Woven Paper Net	0.016	0.015	0.015		
	Jute Net	0.028	0.022	0.019		
	Fiberglass Roving	0.028	0.021	0.019		
	Straw with Net	0.065	0.033	0.025		
	Curled Wood Net	0.066	0.035	0.028		
	Synthetic Mat	0.036	0.025	0.021		
Gravel Riprap	1-inch (2.5 cm) d_{50}	0.044	0.033	0.030		
	2-inch (5 cm) d_{50}	0.066	0.041	0.034		
Rock Riprap	6-inch (15 cm) d_{so}	0.104	0.069	0.035		

Table 3-2 Manning's Roughness Coefficients

NOTE: Values listed are representative values for the respective depth ranges. Source: HEC-15 (Chang & Cotton, 1988)

Manning's *n* for Fixed-bed Sand Bottom Channels

Manning's n for natural sand bottom channels can also be determined by Strickler's formula which defines n as a function of particle size:

$$n = \frac{d_{50}^{1/6}}{21.1} \tag{3-2}$$

where d_{50} is in mm.

This formula was modified by Meyer-Peter and Müller for non-uniformly graded sand mixtures:

$$n = \frac{(d_{90})^{1/6}}{26} \tag{3-3}$$

where d_{90} is in mm.