CITY OF ALBUQUERQUE

Planning Department Brennon Williams, Director

Mayor Timothy M. Keller

July 30, 2021

Jeremy Shell, P.E. Respec 5971 Jefferson St. NE Albuquerque, NM 8710

RE: Carlisle Crossing Grading & Drainage Plan Engineer's Stamp Date: 07/05/21 Hydrology File: H17D097

Dear Mr. Shell:

PO Box 1293 Based upon the information provided in your submittal received 06/16/2021, the Grading & Drainage Plan is approved for Work Order.

Albuquerque As a reminder, if the project total area of disturbance (including the staging area and any work within the adjacent Right-of-Way) is 1 acre or more, then an Erosion and Sediment Control (ESC) Plan and Owner's certified Notice of Intent (NOI) is required to be submitted to the Stormwater Quality Engineer (Doug Hughes, PE, jhughes@cabq.gov, 924-3420) 14 days prior to any earth disturbance.

If you have any questions, please contact me at 924-3995 or <u>rbrissette@cabq.gov</u>.

www.cabq.gov Sincerely,

Renée C. Brissette

Renée C. Brissette, P.E. CFM Senior Engineer, Hydrology Planning Department

City of Albuquerque

Planning Department Development & Building Services Division DRAINAGE AND TRANSPORTATION INFORMATION SHEET (REV 11/2018)

Project Title:	Building	g Permit #: Hydrology File #:
		Work Order#:
Legal Description:		
City Address:		
Applicant:		Contact:
Address:		
		E-mail:
Owner:		Contact:
Address:		
Phone#:	Fax#:	E-mail:
TYPE OF SUBMITTAL: PLAT (# OF LOTS)	RESIDENCE DRB SITE ADMIN SITE
IS THIS A RESUBMITTAL?:	Yes	No
DEPARTMENT: TRAFFIC/ TRA	NSPORTATION	HYDROLOGY/ DRAINAGE
Check all that Apply:		TYPE OF APPROVAL/ACCEPTANCE SOUGHT:
TYPE OF SUBMITTAL:		BUILDING PERMIT APPROVAL
ENGINEER/ARCHITECT CERTIFI	CATION	CERTIFICATE OF OCCUPANCY
PAD CERTIFICATION		PRELIMINARY PLAT APPROVAL
CONCEPTUAL G & D PLAN		SITE PLAN FOR SUB'D APPROVAL
GRADING PLAN DRAINAGE MASTER PLAN		SITE PLAN FOR BLDG. PERMIT APPROVAL
DRAINAGE MASTER PLAN DRAINAGE REPORT		FINAL PLAT APPROVAL
FLOODPLAIN DEVELOPMENT PI	ERMIT APPI IC	SIA/ RELEASE OF FINANCIAL GUARANTEE
ELEVATION CERTIFICATE		FOUNDATION PERMIT APPROVAL
CLOMR/LOMR		GRADING PERMIT APPROVAL SO-19 APPROVAL
TRAFFIC CIRCULATION LAYOU	T (TCL)	SO-19 APPROVAL PAVING PERMIT APPROVAL
TRAFFIC IMPACT STUDY (TIS)	- ()	GRADING/ PAD CERTIFICATION
OTHER (SPECIFY)		WORK ORDER APPROVAL
PRE-DESIGN MEETING?		CLOMR/LOMR
		FLOODPLAIN DEVELOPMENT PERMIT
		OTHER (SPECIFY)
DATE SUBMITTED:	Bv	

COA STAFF:

ELECTRONIC SUBMITTAL RECEIVED:

FEE PAID:

DRAINAGE REPORT FOR CARLISLE CROSSING

PREPARED BY RESPEC, Inc. 5971 Jefferson St. NE, Suite 101 Albuquerque, NM 87109 505.253.9718

APRIL 2021

RESPEC.COM

I, Jeremy Shell, do hereby certify that this report was duly prepared by me or under my direction and that I am a duly registered Professional Engineer under the laws of the State of New Mexico.

Jeremy Shell, P.E. NMPE No. 26341

04/16/2021

Date

i.

TABLE OF CONTENTS

1.0		ODUCTION	
		Purpose	
	1.2	Location and Description	3
		Figure 1.2.1 – Project Location	3
2.0	METH	HODOLOGY	4
3.0	HYD	ROLOGY	4
	3.1	Existing Conditions	4
		Table 3.1.1 – Hydrologic Data - Existing	5
	3.2	Proposed Conditions	5
		Table 3.2.1 – Hydrologic Data - Proposed	6
4.0	HYD	RAULICS	6
	4.1	Storm Inlets and Storm Drains	6
5.0	CON	CLUSION	6
APPE	NDIX A	EXISTING SUB-BASINS	
APPE	NDIX B	PROPOSED SUB-BASINS	
APPE	NDIX C	HYDROLOGY CALCULATIONS	
APPE	NDIX D	HYDRAULIC CALCULATIONS	

ii.

1.0 INTRODUCTION

1.1 PURPOSE

The purpose of this drainage report is to demonstrate that the proposed re-development of Tracts A-1 and B-1 of Carlisle and Indian School Subdivision safely conveys the peak 100-year storm runoff. The drainage intent for proposed conditions is to match current existing conditions for the site.

1.2 LOCATION AND DESCRIPTION

Tracts A-1 and B-1 are located at the northeast corner of the Carlisle Boulevard and Indian School Road intersection and contain approximately 10.7 acres. See Figure 1.2.1 below. The existing site includes a Burger King restaurant located on Tract B-1 and an old K-Mart building and parking lot on Tract A-1 that is currently vacant. The existing conditions are described in more detail in Section 3.1 and the proposed conditions are described in Section 3.2.

FIGURE 1.2.1 - PROJECT LOCATION

The hydrologic analysis was performed for the site in accordance with the Albuquerque Development Process Manual (DPM) Chapter 6 using the Rational Method to calculate peak flow rates for the 100year, 24-hour design storm in order to ensure all flow paths are sufficient to carry flows. The required water quality volume was calculated by multiplying the impervious area by the first flush runoff value of 0.26". All hydrologic and hydraulic calculations are included in this report.

3.0 HYDROLOGY

3.1 EXISTING CONDITIONS

Tracts A-1 & B-1 do not receive any offsite flows. The existing site has approximately 93% impervious area and 7% landscaped. The total flow generated by the property under existing conditions is 45.6 cfs. The site appears to have free discharge and does not have any existing ponds. The existing property has been split into six sub-basins. Appendix A shows the existing sub-basin boundaries for the site.

Sub-basin A consists of the northwest corner of the property and is primarily made up of parking area and also the Burger King restaurant. In general, the sub-basin slopes from southeast to northwest at varying slopes between 3%-5%. Runoff exits the property at the northwest corner of the site and is collected in a drop inlet.

Sub-basin B contains the northeast corner of the property and accounts for surface runoff from the northern portion of the existing building and the drive aisle north of the building. This area accumulates to the northeast corner of the site and discharges out of the property into a concrete rundown. From there, runoff is collected in a drop inlet. Sub-basin B generates 4.2 cfs.

Sub-basin C consists of a majority of the existing building and the drive aisle east of the building. This area flows north along the eastern curb. Runoff collects at a low point in front of the dumpster area. Once the low point area has filled, water spills both through an existing opening in the wall to the east and to the north into Sub-basin B. Due to the elevation being the same at each point water is spilling, the flows split evenly between the east and the north. Sub-basin C generates a total of 7.6 cfs. Therefore, 3.8 cfs discharges east through the existing wall opening and 3.8 cfs flows north into Sub-basin B. The combined flow from Sub-basins B and C being collected by the existing drop inlet at the northeast corner of the property is 8.0 cfs.

Sub-basin D contains the southwest corner of the existing building and a majority of the existing parking area. This Sub-basin, in general, sheet flows from southeast to northwest at varying slopes between 2%-5%. Runoff then flows north along a curb along the western property boundary and discharges into Carlisle Boulevard through an existing driveway. From there, flows enter storm inlets located along the eastern curb of Carlisle Boulevard.

Sub-basin E consists of a small portion of the parking area at the southwest corner of the property. This area slopes from southeast to northwest and discharges from the site through an existing driveway.

RSI-03738

4

The runoff generated by this Sub-basin is then collected in storm inlets located along the eastern curb of Carlisle Boulevard.

Sub-basin F contains a small area west of the existing Burger King restaurant the flows west into Carlisle Boulevard. Runoff from this Sub-basin is collected in the Carlisle Boulevard storm drain system. The combined total flow from Sub-basins D, E, and F discharging into Carlisle Boulevard is 24.4 cfs.

The hydrologic data table below depicts in further detail each sub-basin and its characteristics.

HYDROLOGIC DATA - EXISTING						
			LAND USE PERCENTAGES			
SUB-BASIN	AREA (AC)	А	В	С	D	Q100
А	2.20	0%	0%	0%	100%	9.5
В	0.96	0%	0%	0%	100%	4.2
С	1.83	0%	8%	8%	84%	7.6
D	4.98	0%	4%	4%	92%	21.1
E	0.54	0%	0%	0%	100%	2.4
F	0.20	0%	0%	0%	100%	0.9
TOTAL	10.72					45.6

TABLE 3.1.1 - HYDROLOGIC DATA - EXISTING

3.2 PROPOSED CONDITIONS

The proposed site development is to renovate the existing buildings and parking lot and add both commercial and retail pads along the Carlisle Boulevard property frontage. Under the proposed condition, approximately 87% of the site will consist of impervious area and 13% will be landscaped. The total flow generated by the proposed development is 44.2 cfs. Therefore, the discharge from the proposed site is less than the existing condition. The property has been split into five proposed subbasins. Appendix B shows the proposed sub-basin boundaries for the site.

Sub-basin 1 consists of the northwest corner of the property and is made up of parking area, the existing Burger King restaurant, and a new commercial pad. In general, the sub-basin slopes from southeast to northwest. Runoff is collected in a proposed drop inlet in the new parking lot which discharges into a storm drain that will connect to the existing drop inlet, which is the location that this area is currently discharging to. The existing flow that reaches this inlet is 9.5 cfs while the proposed flow is 9.4 cfs.

Sub-basin 2A and 2B contain the roof drainage for the larger building and the truck dock area and drive aisle located east and north of the building. Sub-basin 2A drains directly to the existing drop inlet at the northeast corner of the property. Sub-basin 2B collects to the low point in front of the dumpster. The low point area in front of the dumpster will not be modified so that flows that reach this area continue to match the existing drainage pattern at that location. The proposed flow from Sub-basin 2A is 3.8 cfs. The flow generated by Sub-basin 2B is 6.7 cfs, therefore, 3.35 cfs discharges east and 3.35 cfs flows north into Sub-basin 2A. The total proposed flow discharging to the existing drop inlet is 7.15 cfs. The total proposed flow discharging to the eastern property is 3.35 cfs. Therefore, due to the assumptions in this area the flow rate discharging to the existing drop inlet and eastern property is not increased.

RSI-03738

5

Sub-basins 3A, 3B, 4, and 5 consist of the proposed building, parking south of the proposed building, and southwest corner of the property, which contains a majority of the parking lot and one new retail pad. Sub-basin 3A is collected in three drop inlets and is conveyed via storm drain into sub-basin 3B. Sub-basins 3B and 5 free discharge from the site through two new driveways. Sub-basin 4 is collected in a drop inlet toward the northwest corner of the Sub-basin. These four Sub-basins all discharge to the existing storm drain system in Carlisle Boulevard. The existing flow that reaches the Carlisle storm drain under existing conditions is 24.4 cfs while the proposed flow is 24.5 cfs. The increase of 0.1 cfs is negligible.

The hydrologic data table below depicts in further detail each sub-basin and its characteristics.

	HY	DROLOGIC	DATA - PROF	POSED		
		L	AND USE PE	ERCENTAGE	S	
SUB-BASIN	AREA (AC)	А	В	С	D	Q100
1	2.27	0%	6%	6%	87%	9.4
2A	0.91	0%	6%	6%	87%	3.8
2B	1.61	0%	6%	6%	87%	6.7
ЗA	1.56	0%	6%	6%	87%	6.4
3B	1.54	0%	6%	6%	87%	6.4
4	1.90	0%	6%	6%	87%	7.9
5	0.91	0%	6%	6%	87%	3.8
TOTAL	10.72					44.2

TABLE 3.2.1 - HYDROLOGIC DATA - PROPOSED

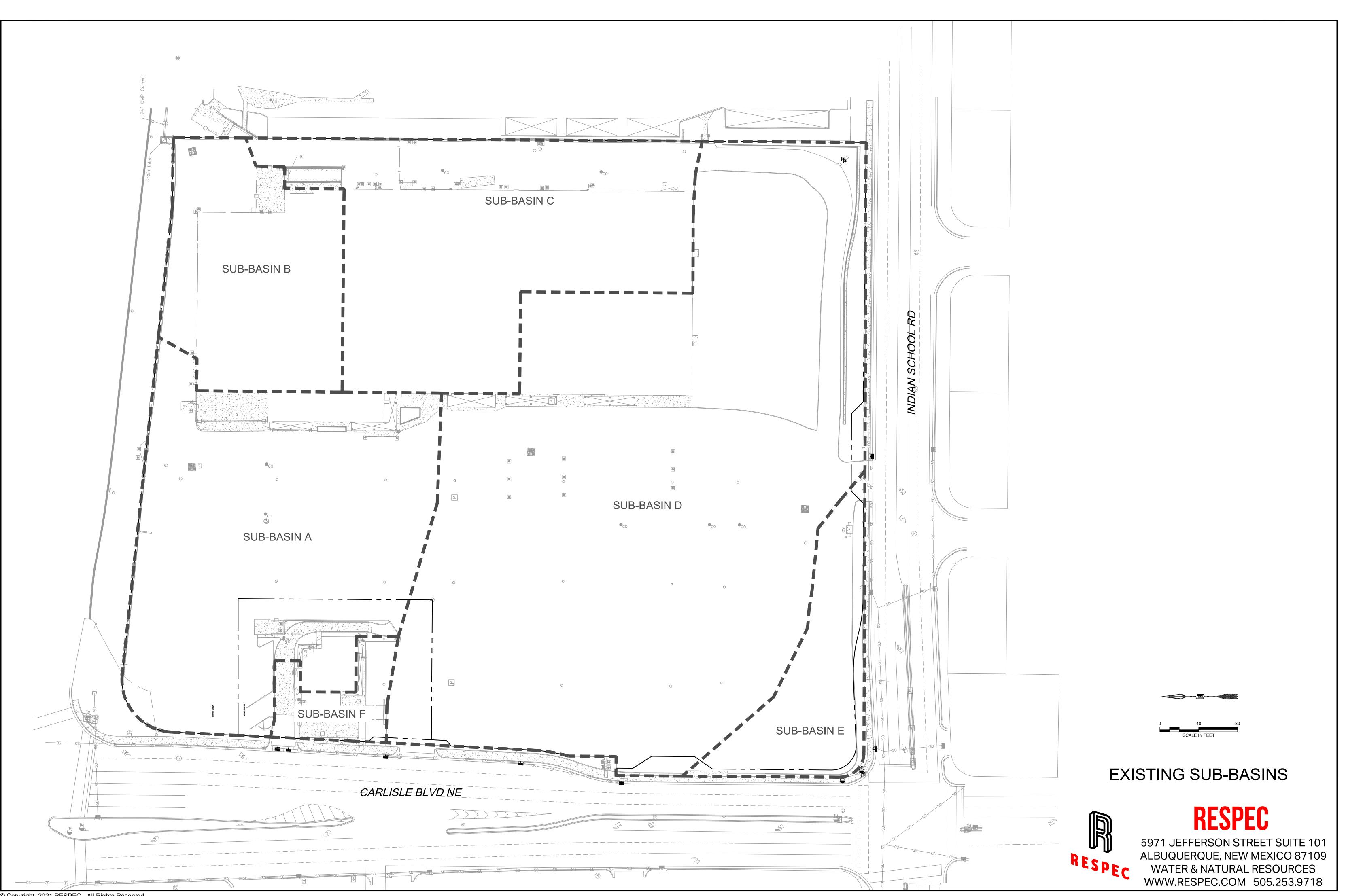
The total required water quality volume for the site is 8,799 cubic feet (cf). The total on-site ponding is 2,284 cf. The owner has elected to pay the fee in lieu for any required stormwater quality volume above the provided in on-site ponds. Therefore, the required fee in lieu amount is 6,515 cf x 8/cf = 52,120.

4.0 HYDRAULICS

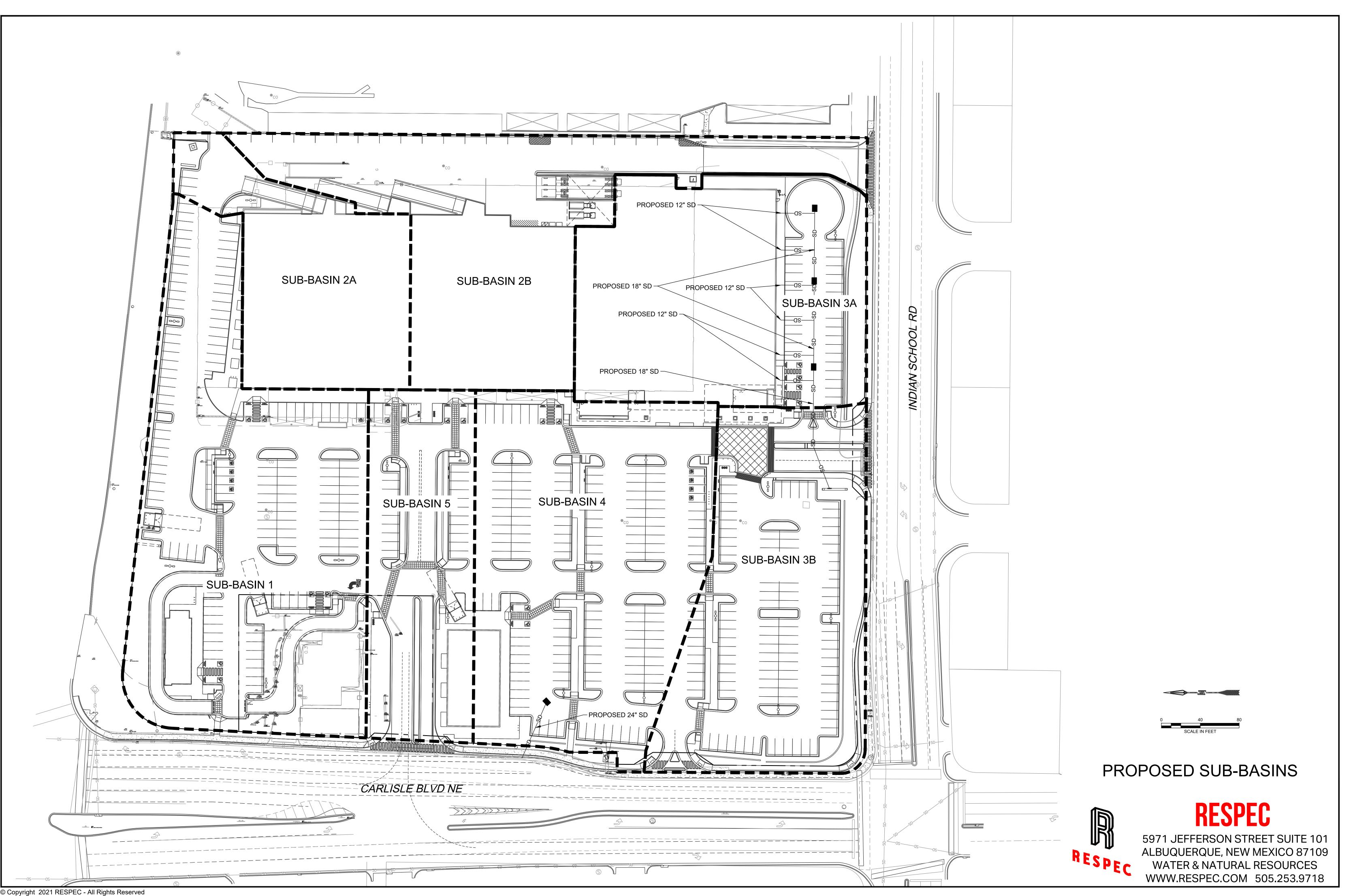
4.1 STORM INLETS AND STORM DRAINS

Flow intercepted by drainage inlets were determined using the orifice and weir equations based on the City of Albuquerque Type "D" inlets. All proposed storm drain capacities were determined using ManningSolver Version 1.019. For further information on drainage inlet and storm drain capacity calculations see Appendix D.

5.0 CONCLUSION


This drainage report is prepared in support of the new development for Tracts A-1 and B-1. The existing buildings and parking area will be renovated and new commercial and retail pads will be added. The proposed conditions closely match the current conditions of the existing property. The hydrologic calculations are included in Appendix C and hydraulic calculations are included in Appendix D.

APPENDIX A EXISTING SUB-BASINS



© Copyright 2021 RESPEC - All Rights Reserved

APPENDIX B PROPOSED SUB-BASINS

© Copyright 2021 RESPEC - All Rights Reserved

APPENDIX C Hydrology calculations

Hydrology Calculations

The following calculations are based on Albuquerque's Development Process Manual, Chapter 6

Existing Conditions

Runoff Rate:

Treatment Type Areas

Subbasin	Area _A (ac)	Area _B (ac)	Area _c (ac)	Area _D (ac)	Total (ac)
A	0.00	0.00	0.00	2.20	2.20
В	0.00	0.00	0.00	0.96	0.96
С	0.00	0.00	0.29	1.54	1.83
D	0.00	0.00	0.40	4.58	4.98
E	0.00	0.00	0.00	0.54	0.54
F	0.00	0.00	0.00	0.20	0.20
Total	0.00	0.00	0.69	10.02	10.72

Peak Discharge values based on Zone 2 from Table 6.2.14

 Q_A = 1.71 cfs/ac Q_B = 2.36 cfs/ac

 $Q_{C} = 3.05 \text{ cfs/ac}$ $Q_{D} = 4.34 \text{ cfs/ac}$

Peak Discharge calculation for a 100-yr, 24-hr storm event from equation 6.6

Subbasin	Discharge (cfs)
A	9.5
В	4.2
С	7.6
D	21.1
E	2.4
F	0.9
Total	45.6

Proposed Conditions

Runoff Rate:

Treatment Type Areas

Subbasin	Area _A (ac)	Area _B (ac)	Area _c (ac)	Area _D (ac)	Total (ac)
1	0.00	0.15	0.15	1.98	2.27
2A	0.00	0.06	0.06	0.79	0.91
2B	0.00	0.10	0.10	1.40	1.61
3A	0.00	0.10	0.10	1.36	1.56
3B	0.00	0.10	0.10	1.34	1.54
4	0.00	0.12	0.12	1.66	1.90
5	0.00	0.06	0.06	0.79	0.91
Total	0.00	0.70	0.70	9.32	10.72

Peak Discharge values based on Zone 2 from Table 6.2.14

 Q_B = 2.36 cfs/ac $Q_A = 1.71 \text{ cfs/ac}$

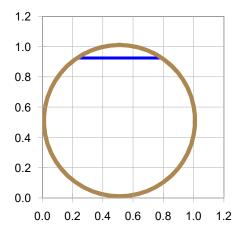
 $Q_C = 3.05 \text{ cfs/ac}$ $Q_D = 4.34 \text{ cfs/ac}$

Peak Discharge calculation for a 100-yr, 24-hr storm event from equation 6.6

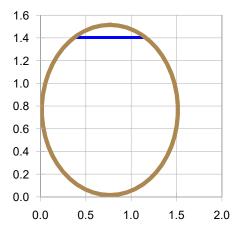
Subbasin	Discharge (cfs)
1	9.4
2A	3.8
2B	6.7
3A	6.4
3B	6.4
4	7.9
5	3.8
Total	44.2

Water Quality:

Subbasin	Req Volume (cu. ft.)	Provided Volume (cu. ft.)	Net Volume (cu. ft.)
1	1,866	709	1,158
2A	748	0	748
2B	1,323	0	1,323
3A	1,282	0	1,282
3B	1,268	892	376
4	1,562	683	879
5	749	0	749
Total	8,799	2,284	6,515


Required Water Quality volume for first flush of 0.26"

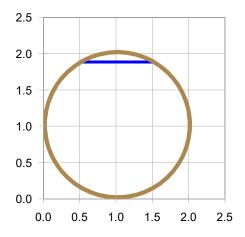
APPENDIX D Hydraulic calculations



<u>Circular Channel</u> Input	
Flow Slope	2.70 cfs 0.005 ft/ft
Manning's n	0.013
Diameter	12 in
Output	
Depth	0.915 ft
Flow Area	0.753 sf
Velocity	3.59 fps
Velocity Head	0.200 ft
Top Width	0.558 ft
Froude Number	0.544
Critical Depth	0.704 ft
Critical Slope	0.00806 ft/ft

12-IN SD.msd 2/4/2021 ManningSolver v1.019 Copyright (c) 2000 Current Applications

<u>Circular Channel</u> Input					
Flow Slope	7.98 cfs 0.005 ft/ft				
Manning's n Diameter	0.013 18 in				
Output					
Depth	1.388 ft				
Flow Area	1.71 sf				
Velocity	4.67 fps				
Velocity Head	0.340 ft				
Top Width	0.790 ft				
Froude Number Critical Depth Critical Slope	0.561 1.095 ft 0.00741 ft/ft				


18-IN SD.msd 3/18/2021 ManningSolver v1.019 Copyright (c) 2000 Current Applications

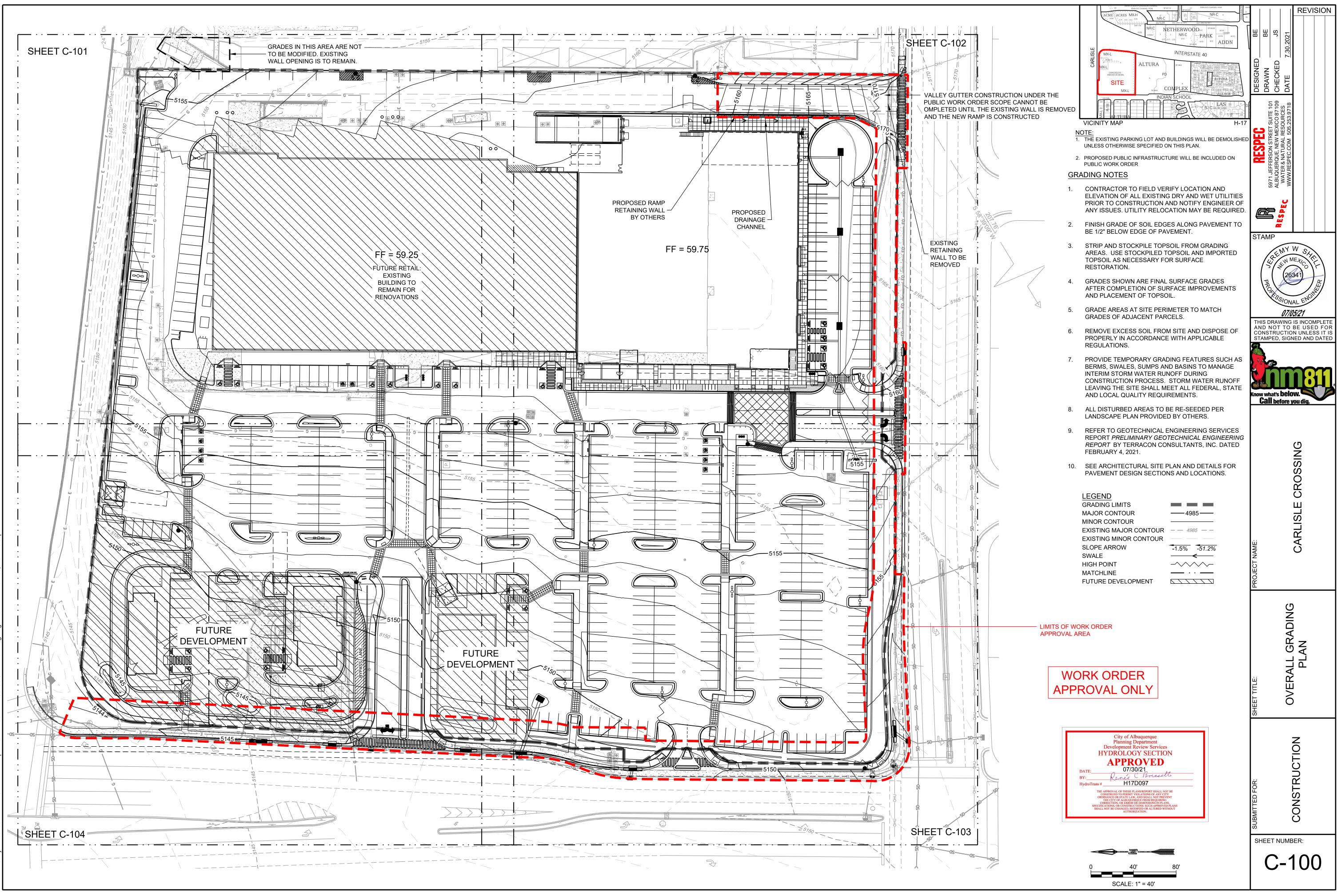
Circular Channel Input

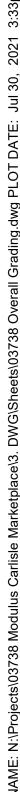
Jt		
	Flow	17.20 cfs
	Slope	0.005 ft/ft
	Manning's n	0.013
	Diameter	24 in

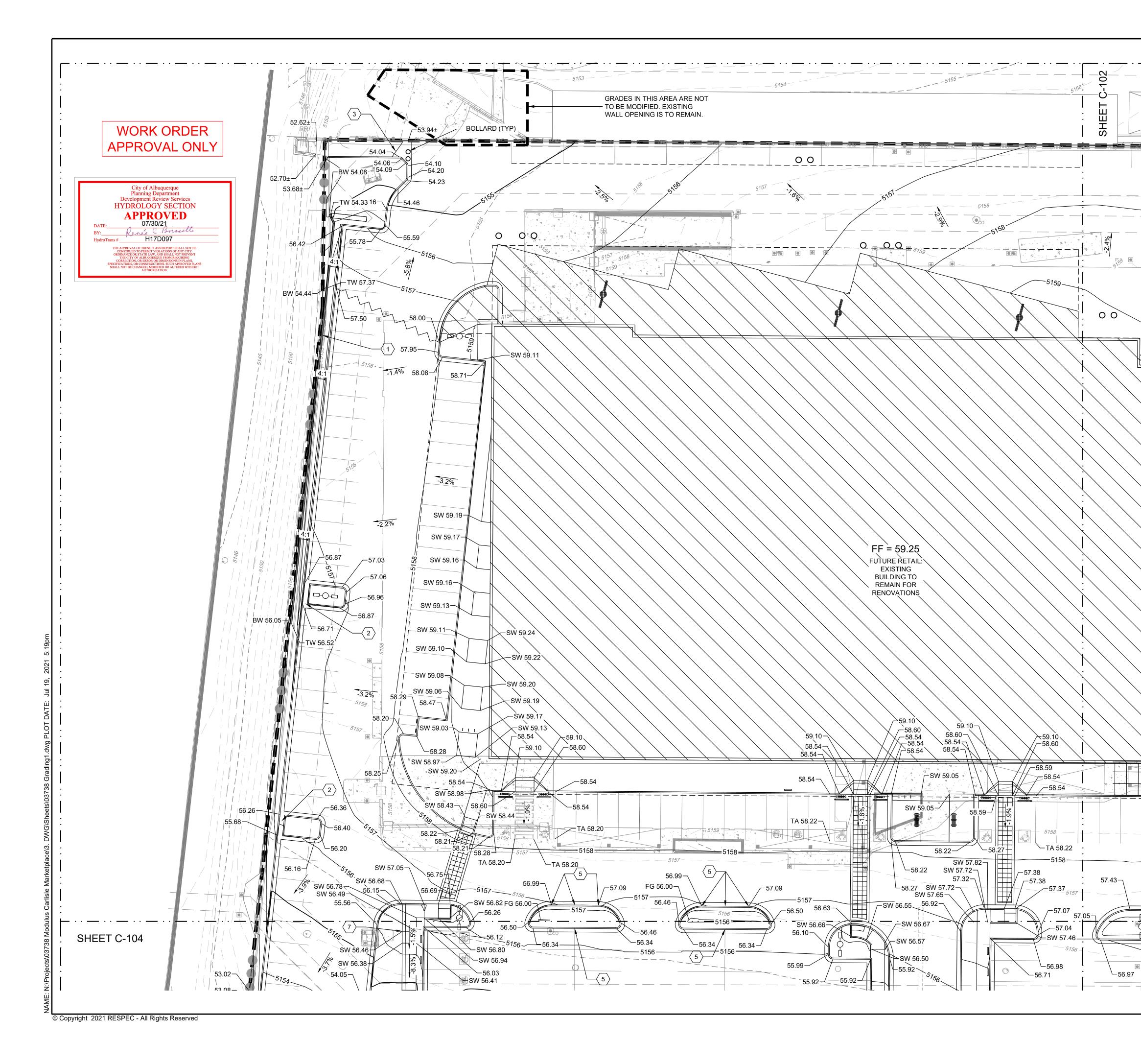
Output

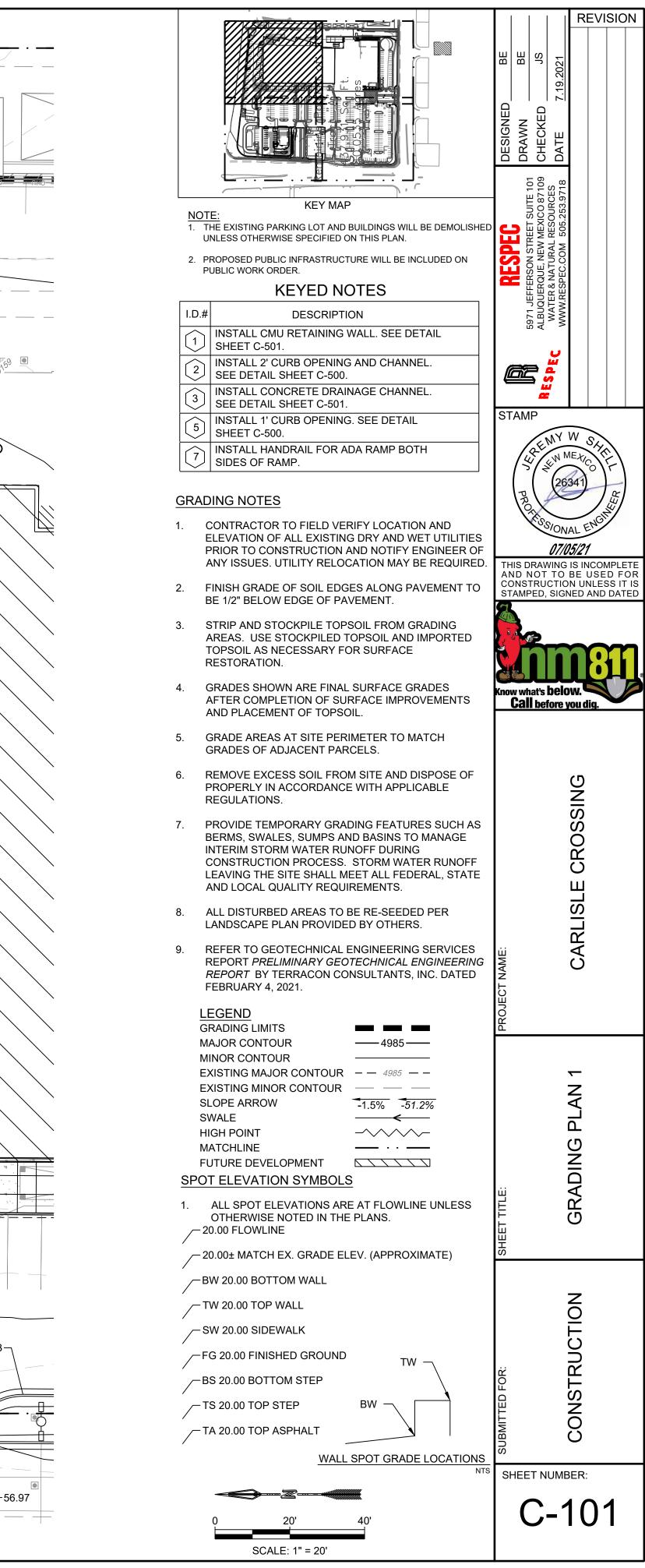
Depth	1.862 ft		
Flow Area	3.05 sf		
Velocity	5.65 fps		
Velocity Head	0.495 ft		
Top Width	1.01 ft		
Froude Number	0.574		
Critical Depth	1.495 ft		
Critical Slope	0.00701 ft/ft		

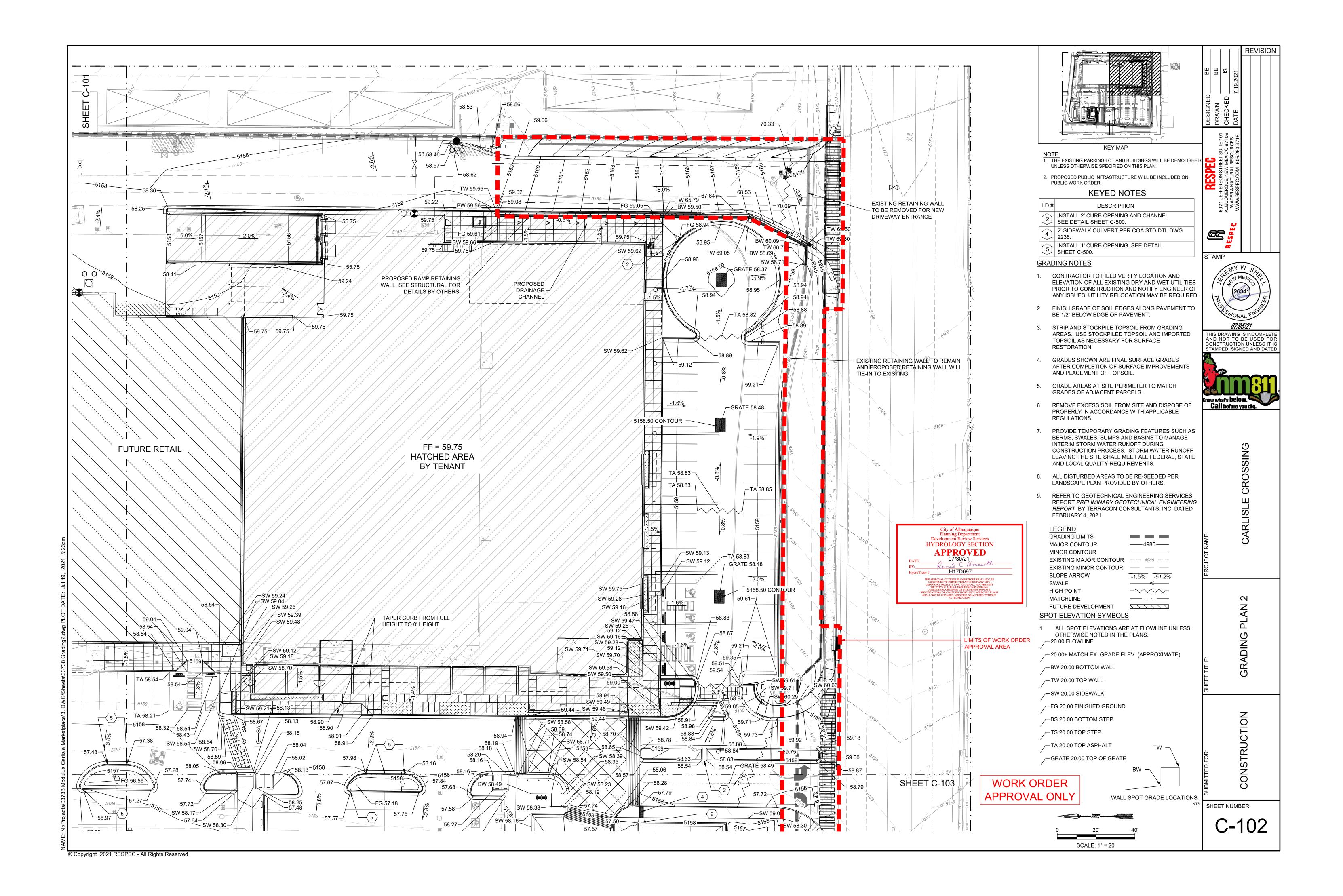
24-IN SD.msd 2/4/2021 ManningSolver v1.019 Copyright (c) 2000 Current Applications

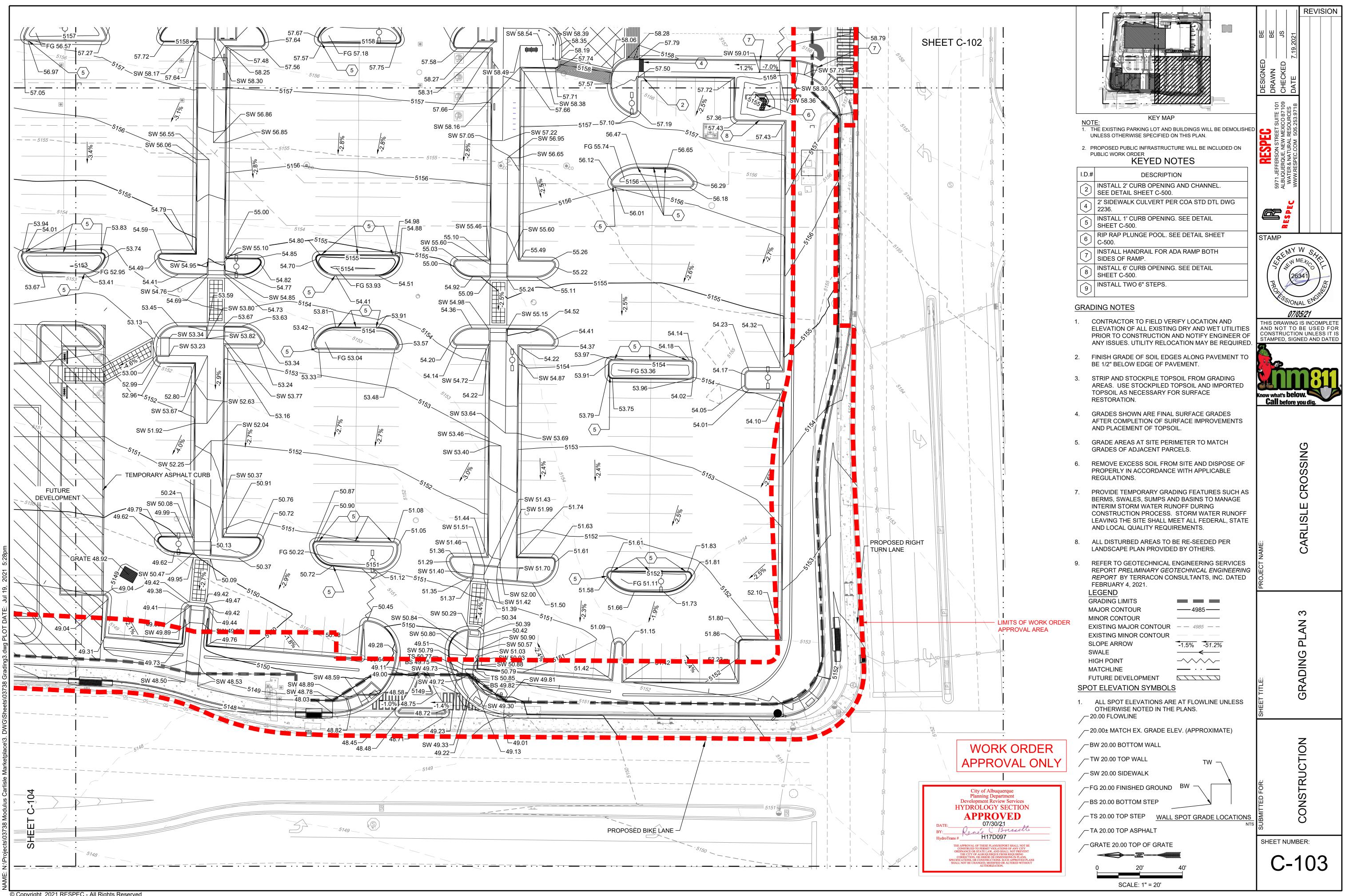

Type D Inlet Calculation Orifice (Unknown Q)

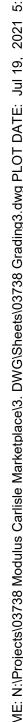

Weir (Unknown Q):

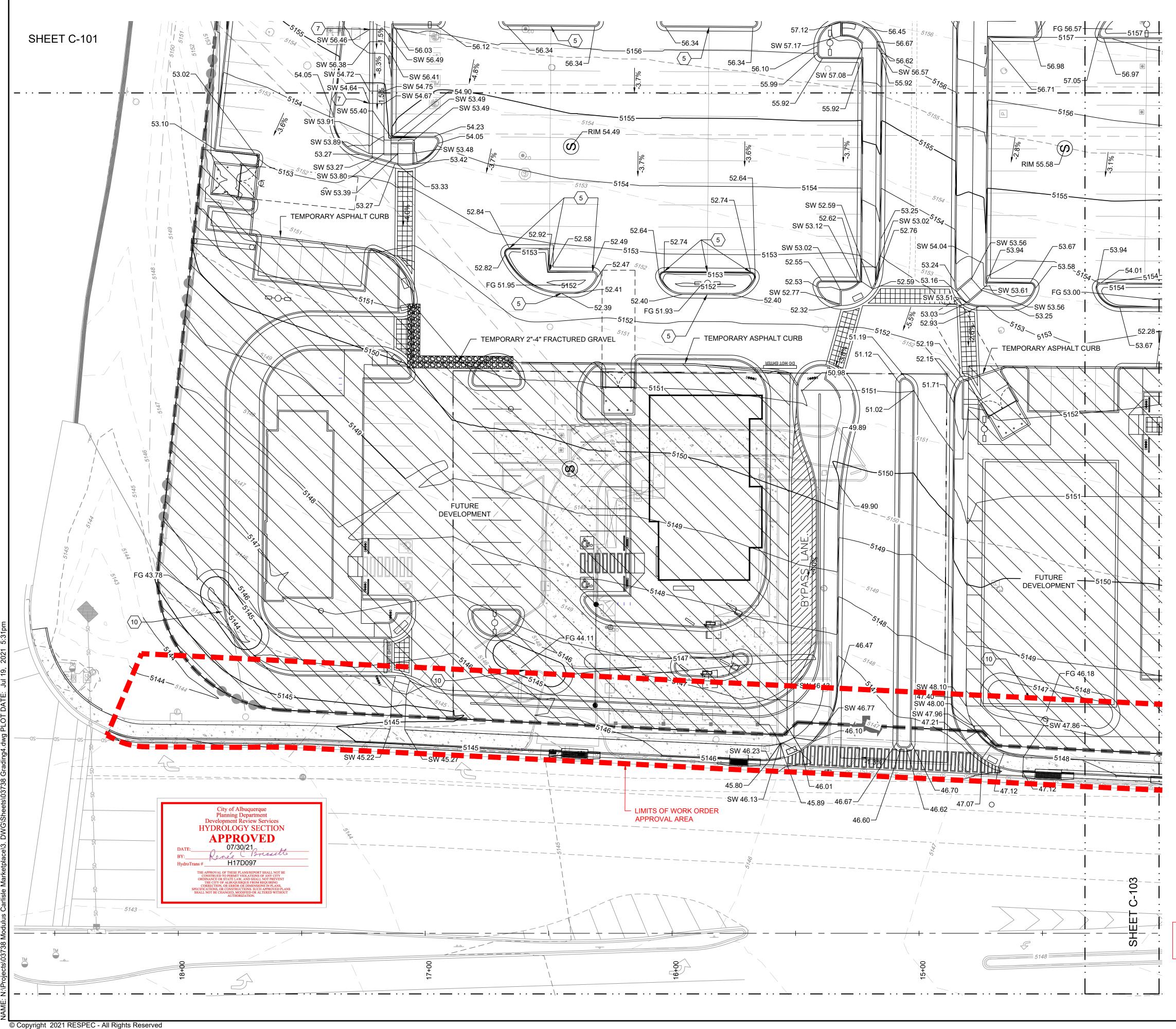

Discharge Coeff. (C _w):	3.367		
Length (L):	10.67	ft	
Flow (Q) = $C_{w} \cdot L \cdot h^{(1.5)}$			
Flow (Q) =	12.7	cfs	

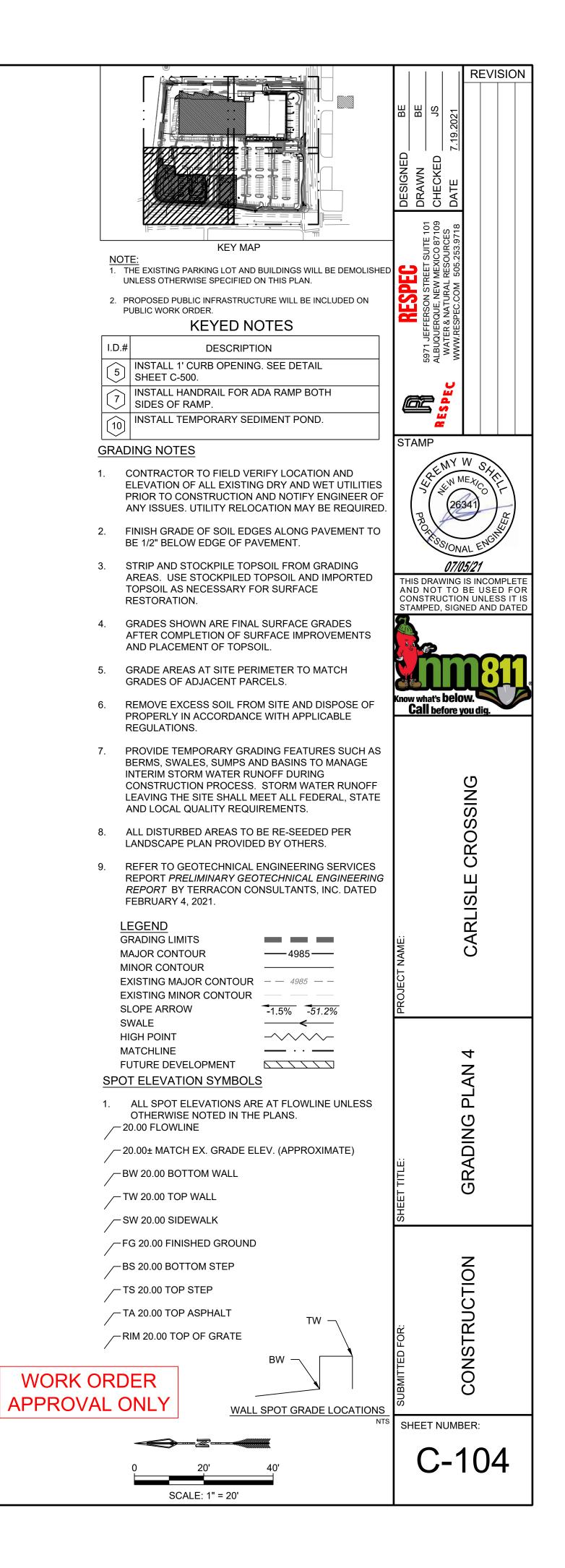

User Enter Desired Value











© Copyright 2021 RESPEC - All Rights Reserved

