CITY OF ALBUQUERQUE

Planning Department Alan Varela, Director

Mayor Timothy M. Keller

January 20, 2023

Jonathan Niski, P.E. Tierra West, LLC 5571 Midway Park Place NE Albuquerque, NM, 87109

RE: Sawmill Tract A Conceptual Grading & Drainage Plan Engineer's Stamp Date: 12/27/2022 Hydrology File: J13D044A

Dear Mr. Niski:

Based upon the information provided in your submittal received 12/28/2022, the Conceptual Grading & Drainage Plan is preliminary approved for action by the DHO on Site Plan for Subdivision Approval.

PO Box 1293 PRIOR TO BUILDING PERMIT:

Albuquerque

NM 87103

• Provide more detailed design as needed in order to obtain Hydrology's approval.

As a reminder, if the project total area of disturbance (including the staging area and any work within the adjacent Right-of-Way) is 1 acre or more, then an Erosion and Sediment Control (ESC) Plan and Owner's certified Notice of Intent (NOI) is required to be submitted to the Stormwater Quality Engineer (Doug Hughes, PE, jhughes@cabq.gov, 924-3420) 14 days prior to any earth disturbance.

www.cabq.gov

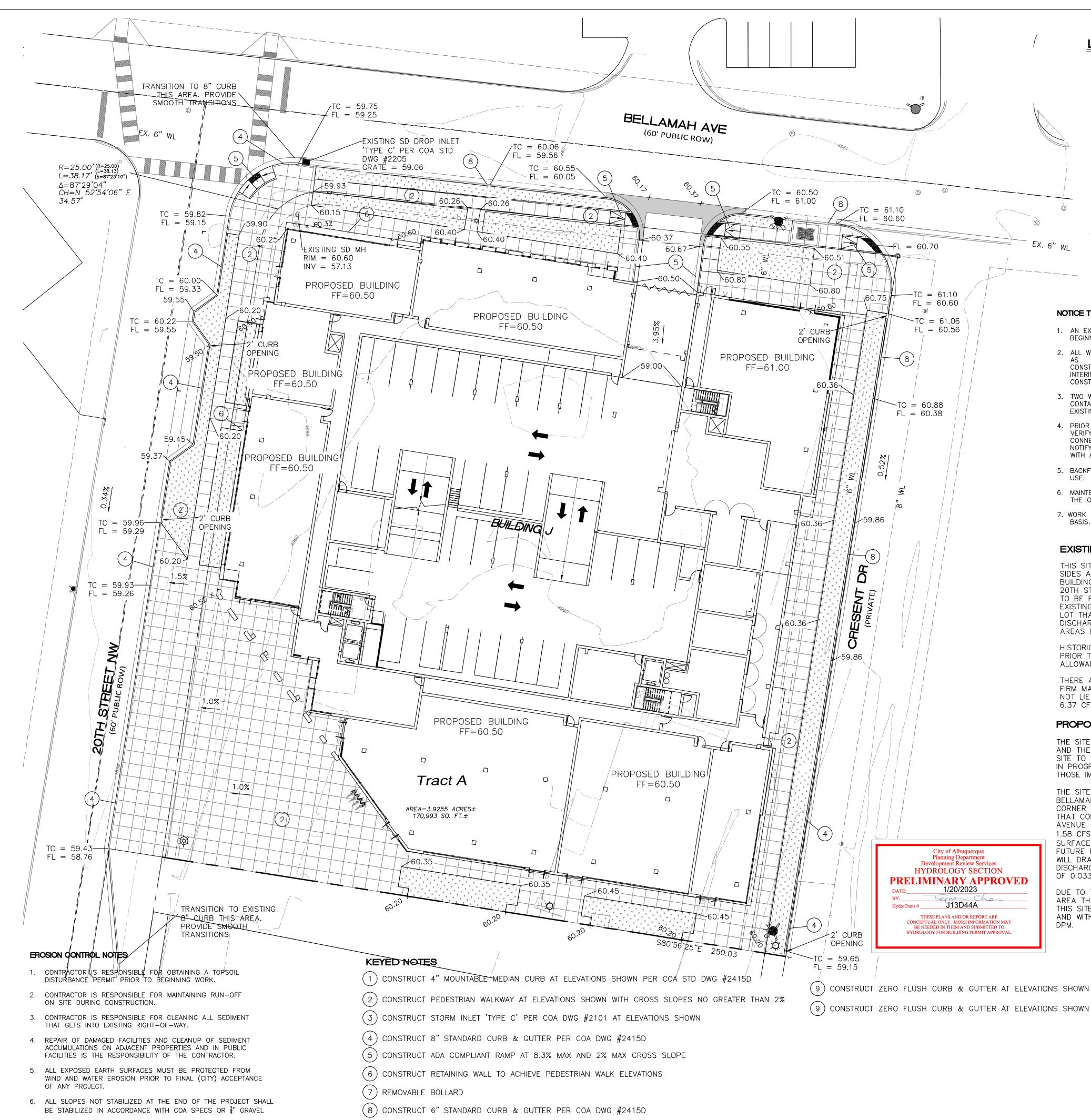
If you have any questions, please contact me at 505-924-3695 or tchen@cabq.gov.

Sincerely,

Thegue Che

Tiequan Chen, P.E. Principal Engineer, Hydrology Planning Department, Development Review Services

City of Albuquerque


Planning Department

Development & Building Services Division

DRAINAGE AND TRANSPORTATION INFORMATION SHEET

Project Title: Sawmill Tract A	Building Permit #	Hydrology File #
DRB#	EPC#	
DRB#	-WALKER BEING A City Address	OR Parcel 1904 Bellamah Ave NW Albuquerque, NM 87104
		101305822846022577
Applicant/Agent: Tierra West, LLC	Contact: Jor	athan Niski
Address: 5571 Midway Park Place NE		05-858-3100
Email: jniski@tierrawestllc.com		
Applicant/Owner:	Contact:	
Address:		
Email:		
TYPE OF DEVELOPMENT:PLAT (#of]	ots) RESIDENCE X DE	RB SITE ADMIN SITE
RE-SUBMITTAL: YES X NO		
DEPARTMENT:TRANSPORTATIO		
Check all that apply:		DRAINAGE
check an that appry.		
TYPE OF SUBMITTAL:	TYPE OF APPROVA	L/ACCEPTANCE SOUGHT:
ENGINEER/ARCHITECT CERTIFICATION	N BUILDING	PERMIT APPROVAL
PAD CERTIFICATION		TE OF OCCUPANCY
X CONCEPTUAL G&D PLAN	CONCEPTU	JAL TCL DRB APPROVAL
GRADING PLAN	PRELIMINA	ARY PLAT APPROVAL
DRAINAGE REPORT	SITE PLAN	FOR SUB'D APPROVAL
DRAINAGE MASTER PLAN	SITE PLAN	FOR BLDG PERMIT APPROVAL
FLOOD PLAN DEVELOPMENT PERMIT A	APPFINAL PLA	T APPROVAL
ELEVATION CERTIFICATE	SIA/RELEA	SE OF FINANCIAL GUARANTEE
CLOMR/LOMR	FOUNDATI	ON PERMIT APPROVAL
TRAFFIC CIRCULATION LAYOUT (TCL)		PERMIT APPROVAL
ADMINISTRATIVE	SO-19 APPI	
TRAFFIC CIRCULATION LAYOUT FOR D	PAVING PE	ERMIT APPROVAL
APPROVAL		PAD CERTIFICATION
TRAFFIC IMPACT STUDY (TIS)		DER APPROVAL
STREET LIGHT LAYOUT	CLOMR/LC	
OTHER (SPECIFY)		AN DEVELOPMENT PERMIT
PRE-DESIGN MEETING?	X OTHER (SP	ECIFY) Conceptual Grading & Drainage Plan

DATE SUBMITTED: 12.27.2022

LEGEND

NOTICE TO CONTRACTORS

1. AN EXCAVATION/CONSTRUCTION PERMIT WILL BE REQUIRED BEFORE

X 60.64

- 2. ALL WORK DETAILED ON THESE PLANS TO BE PERFORMED, EXCEPT AS OTHERWISE STATED OR PROVIDED HERON, SHALL BE CONSTRUCTED IN ACCORDANCE WITH CITY OF ALBUQUERQUE INTERIM STANDARD SPECIFICATIONS FOR PUBLIC WORKS CONSTRUCTION, 1985.
- 3. TWO WORKING DAYS PRIOR TO ANY EXCAVATION, CONTRACTOR MUST CONTACT LINE LOCATING SERVICE, 765-1234, FOR LOCATION OF EXISTING UTILITIES.
- 4. PRIOR TO CONSTRUCTION, THE CONTRACTOR SHALL EXCAVATE AND VERIFY THE HORIZONTAL AND VERTICAL LOCATIONS OF ALL CONNECTIONS. SHOULD A CONFLICT EXIST, THE CONTRACTOR SHALL NOTIFY THE ENGINEER SO THAT THE CONFLICT CAN BE RESOLVED WITH A MINIMUM AMOUNT OF DELAY.
- 5. BACKFILL COMPACTION SHALL BE ACCORDING TO TRAFFIC/STREET USE.
- 6. MAINTENANCE OF THESE FACILITIES SHALL BE THE RESPONSIBILITY O THE OWNER OF THE PROPERTY SERVED.
- 7. WORK ON ARTERIAL STREETS SHALL BE PERFORMED ON A 24-HOUR BASIS.

EXISTING DRAINAGE:

THIS SITE IS CURRENTLY A RETAIL WAREHOUSE WITH PAVED PARKING IN FRONT AND SIDES AND AN OLD RAIL SPUR IN THE BACK. THE SITE IS BOUNDED BY COMMERCIA BUILDINGS TO THE EAST AND SOUTH AND BELLAMAH AVENUE TO THE NORTH WITH 20TH STREET TO THE WEST CONTAINING APPROXIMATELY 3.94 ACRES. THE SITE IS TO BE REPLATTED AND THIS PROJECT WILL CONTAIN THE NORTH 1.58 ACRES OF THE EXISTING SITE. THIS PORTION OF THE SITE DRAINS TO DROP INLETS IN THE PARKING LOT THAT ARE CONNECTED TO AN EXISTING DROP INLET IN BELLAMAH AVENUE. THE DISCHARGE TO THE DROP INLET IS 0.60 CFS WITH PORTIONS OF THE LANDSCAPED AREAS FREE DISCHARGE 0.31 CFS TO THE STREETS.

HISTORICALLY THE SITE PREVIOUSLY FREE DISCHARGED 9.32 CFS TO 20TH STREET PRIOR TO THE PARKING LOT IMPROVEMENTS THAT CURRENTLY EXIST. IT IS THIS ALLOWABLE DISCHARGE THAT THIS PROJECT WILL NOT EXCEED

THERE ARE NO OFFSITE FLOWS THAT ENTER THE SITE. THE SITE IS LOCATED ON FIRM MAP 35001C0331H AS SHOWN ABOVE. THE MAP SHOWS THAT THE SITE DOES NOT LIE WITHIN ANY 100 YEAR FLOOD PLAIN. THE SITE GENERATES A TOTAL OF 6.37 CFS WITH A 100YR, 6-HR VOLUME OF 0.276 AC-FT.

PROPOSED DRAINAGE:

THE SITE IS WITHIN THE SAWMILL/WELLS PARK METROPOLITAN REDEVELOPMENT AREA AND THE CITY IS CURRENTLY MASTER PLANNING THE STREET NETWORK AROUND THIS SITE TO PROMOTE PEDESTRIAN CONNECTIVITY AND TRAFFIC CALMING. THAT WORK IS IN PROGRESS AND NOT PART OF THIS PROJECT ALTHOUGH THIS DESIGN IS TAKING THOSE IMPROVEMENTS INTO CONSIDERATION.

THE SITE IS DIVIDED INTO FOUR BASINS. BASIN "A" WILL DRAIN TO THE NORTH INTO BELLAMAH AVENUE OVER THE SURFACE AND TO A DROP INLET AT THE NORTHWEST CORNER OF THE SITE DISCHARGING 1.47 CFS. BASIN 2 IS A COURTYARD AREA THAT CONTAINS A POOL AND WILL DRAIN TO THE EXISTING DROP INLET IN BELLAMAH AVENUE VIA AN EXISTING STORM SEWER CONNECTION. THIS AREA WILL DISCHARGE 1.58 CFS. BASIN "C" WILL DRAIN TO THE WEST INTO 20TH STREET OVER THE SURFACE AND DISCHARGE 2.90 CFS. BASIN "D" WILL DRAIN TO THE EAST TO A FUTURE ROADWAY. FOR NOW THIS WILL BE A GRAVEL EMERGENCY ACCESS AND WILL DRAIN TO THE SOUTH TO A TEMPORARY RETENTION POND. THIS BASIN WILL

CAUTION DISCHARGE 0.75 CFS. THE TEMPORARY POND IS SIZED FOR THE 100YR, 6HR FLOW OF 0.033 AC-FT. ALL EXISTING UTILITIES SHOWN WERE OBTAINED FROM RESEARCH, AS-BUILTS, SURVEYS OR INFORMATION PROVIDED DUE TO THE HIGH INTENSITY DEVELOPEMENT AND PLANNED HARDSCAPES FOR THIS BY OTHERS. IT SHALL BE THE SOLE RESPONSIBILITY OF THE AREA THERE IS NOT AN OPPORTUNITY TO RETAIN THE WATER QUALITY VOLUME. AS CONTRACTOR TO CONDUCT ALL NECESSARY FIELD THIS SITE IS BEING CONSTRUCTED WITHIN A METROPOLITAN REDEVELOPMENT AREA INVESTIGATIONS PRIOR TO AND INCLUDING ANY EXCAVATION, AND WITHIN THE 1959 CITY LIMITS THE PAYMENT IN-LIEU FEE IS WAIVED PER THE TO DETERMINE THE ACTUAL LOCATION OF UTILITIES AND DPM. OTHER IMPROVEMENTS, PRIOR TO STARTING THE WORK. ANY CHANGES FROM THIS PLAN SHALL BE COORDINATED WITH AND APPROVED BY THE ENGINEER.

💳 CURB & GUTTER ------ BOUNDARY LINE BUILDING

PROPOSED SIDEWALK

========== EXISTING CURB & GUTTER

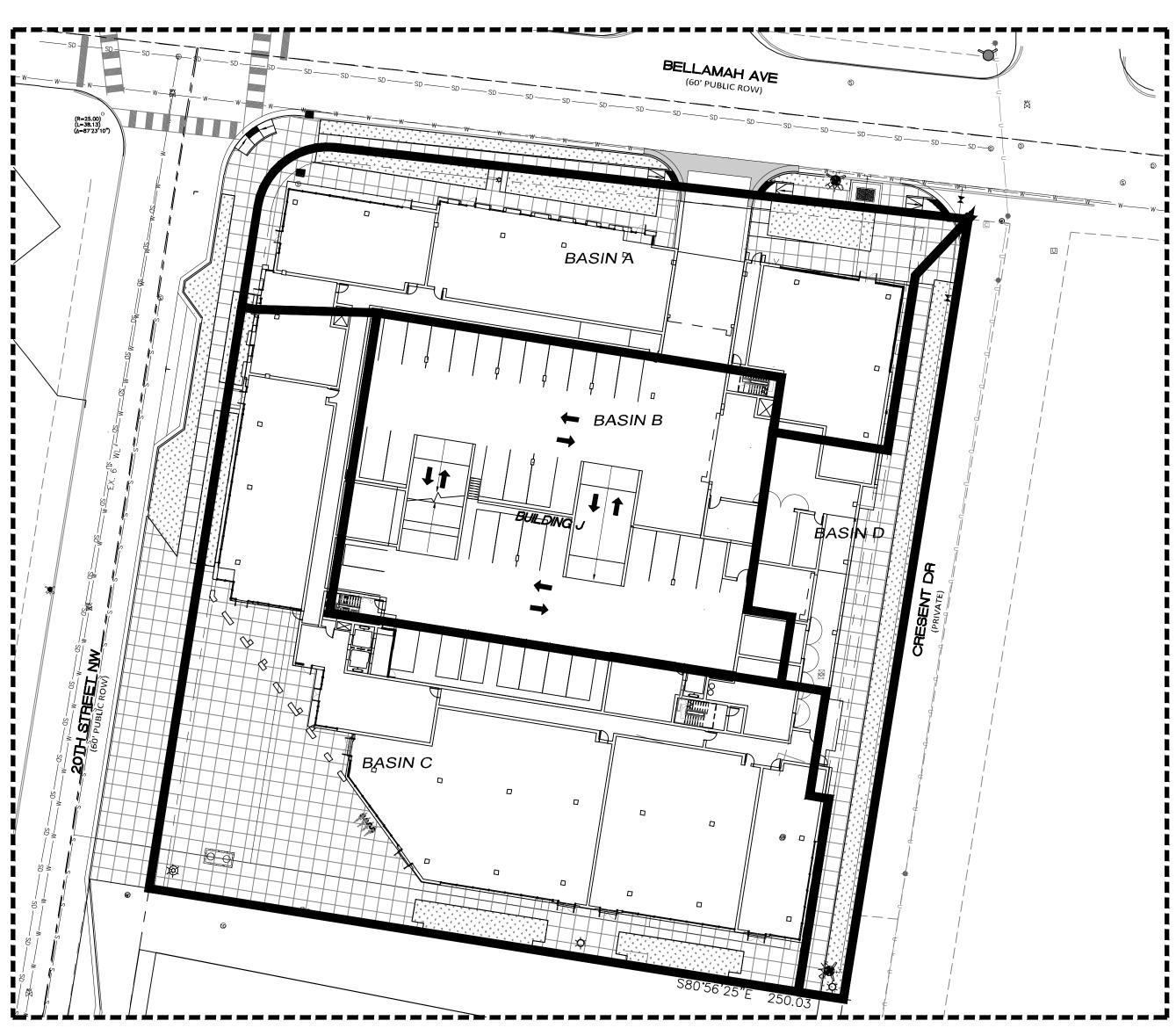
EXISTING INDEX CONTOUR

EXISTING CONTOUR

EXISTING STORM SEWER

EXISTING SANITARY SEWER PROPOSED DROP INLET

PROPOSED SDMH


PROPOSED SPOT ELEVATION

BEGINNING ANY WORK WITHIN CITY RIGHT-OF-WAY.

PD VILLAGE rande Boulevard – CPO-10 SHERATON OLD TOW NR-BP INN COMPL SP-77-572 FREEWAY Sawmill/Wells Park – CPO-1 AL BUOUEBOU MUSEUM MX-MX-T MX Do<mark>wntown</mark> bo<mark>rhood Area</mark> -CPO-3 J-13Z VICINITY MAP AREA WITH REDUCED FLOOD RISK DUE TO LEVEE L 4959 Feet) FLOOD MAP

35001C0331H

	ENGINEER'S SEAL	1904 BELLAMAH AVE NW ALBUQUERQUE, NM	DRAWN BY SB DATE
	ANT WEATCO	CONCEPTUAL GRADING PLAN	11-16-22 DRAWING
GRAPHIC SCALE	PROFILESSIONAL ENGINE		SHEET #
	hn 12-27-2022	ALBUQUERQUE, NEW MEXICO 87109	GR-1
(IN FEET) 1 inch = 20 ft.	RONALD R. BOHANNAN P.E. #7868	(505) 858—3100 www.tierrawestllc.com	<i>JOB </i>

		1				1					E	6				
						Woid	abtod E	Motho	4							
						vvei	jiiteu E	Metho								
Existing	Basins															
												100-Year			10-Year	
Basin	Area	Area	Trea	itment A	Trea	atment B	Treat	ment C	Treat	tment D	Weighted E	Volume	Flow	Weighted E	Volume	Flow
	(sf)	(acres)	%	(acres)	%	(acres)	%	(acres)	%	(acres)	(in)	(ac-ft)	cfs	(in)	(ac-ft)	cfs
Α	68,658	1.58	0%	0	15%	0.24	0%	0.00	<mark>85%</mark>	<mark>1.34</mark>	2.101	0.276	6.37	1.329	0.174	3.86
Sub A	5,639	0.13	0%	0	100%	0.13	0%	0.00	0%	0.00	0.800	0.009	0.31	0.300	0.003	0.12
												0.276	6.37			
Develop	ed Basins											Water Mart 16 40			an Aris et char	
								June - Alemant				100-Year			10-Year	
Basin	Area	Area	and the second s	itment A		atment B		ment C		ment D	Weighted E	Volume	Flow	Weighted E	Volume	Flow
	(sf)	(acres)	%	(acres)	%	(acres)	%	(acres)	%	(acres)	(in)	(ac-ft)	cfs	<u>(in)</u>	(ac-ft)	cfs
A	15,086	0.35	0%	0	5%	第4 年後のです。	0%	0.00	and the second second	0.33	2.254	0.065	1.47	1.450	0.042	0.91
В	16,238	0.37	0%	0	5%	9-31	0%	0.00	95%	0.35	2.254	0.070	1.58	1.450	0.045	0.98
C	29,783	0.68	0%	0	5%		0%	0.00	95%	0.65	2.254	0.128	2.90	1.450	0.083	1.79
D	7,698	0.18	0%	0	5%	0.01	0%	0.00	95%	0.17	2.254	0.033	0.75	1.450	0.021	0.46
		1.58					-			1.50		0.297	6.70			
										Req	uired Ponding	0.021				
Equation	ns:															
						Excess Pro	ecipitation	, E (inches)		Peak	Discharge (cf	s/acre)				
Weighted	d E = Ea*Aa +	Eb*Ab + Ec	*Ac + E	Ed*Ad / (Tota	Area)	Zone 2	100-Year			Zone 2	100-Year	10-Year				
						Ea	0.62	0.15		Q _a	1.71	0.41				
Volume =	= Weighted D	* Total Area				E _b	0.8	0.3		Q _b	2.36	0.95				
						Ec	1.03	0.48		Q _c	3.05	1.59				
Flow = Q	a * Aa + Qb *	Ab + Qc * Ac	: + Qd *	* Ad		Ed	2.33	1.51		Q _d	4.34	2.71				
Weter O	uality Calcul	ation: 0.26"	v 1 50		ubio fo	at (0.022 aa	54)									
vvater Q	uality Calcula	auon. 0.20	X 1.50	ac - 1,410		et (0.052 ac	-rtj									

PROPOSED BASINS

City of Albuquerque					
Planning Department					
Development Review Services					
HYDROLOGY SECTION					
PRELIMINARY APPROVED					
DATE: 1/20/2023					
BY: Tieque Cha					
HydroTrans #J13D44A					
THESE PLANS AND/OR REPORT ARE					
CONCEPTUAL ONLY. MORE INFORMATION MAY					
BE NEEDED IN THEM AND SUBMITTED TO					
HYDROLOGY FOR BUILDING PERMIT APPROVAL.					

ENGINEER'S SEAL	1904 BELLAMAH AVE NW ALBUQUERQUE, NM	<i>DRAWN BY</i> SB
ONALD R. BOHA		DATE
NALD R. BOHANNA	CONCEPTUAL BASIN MAP	11-16-22
([∞] ([≈] (7868) [°]) [∞] ²		DRAWING
		SHEET #
33/ONALENO	L TIERRA WEST, LLC	
for 1	5571 MIDWAY PARK PL NE	GR-2
12-27-2022	ALBUQUERQUE, NEW MEXICO 87109	
RONALD R. BOHANNAN	(505) 858-3100 www.tierrawestllc.com	JOB #
P.E. #7868		2022046