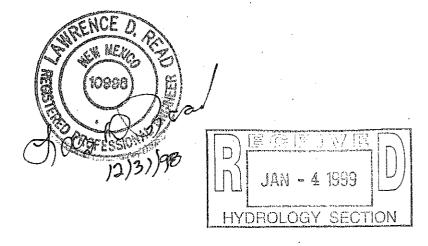
5639 JEFFERSON STREET NE • ALBUQUERQUE, NEW MEXICO 87109 • PHONE (505) 344-4080 • FAX (505) 343-8759

GRADING AND DRAINAGE PLAN

FOR THE


HEALTH CARE FOR THE HOMELESS

LOCATED AT

1217 FIRST STREET N.W.

ALBUQUERQUE, NEW MEXICO

DECEMBER 1998

TABLE OF CONTENTS

I.	PURPOSE OF THIS REPORT	j
II.	LOCATION	1
III.	LEGAL DESCRIPTION	1
IV.	ZONING AND SURROUNDING DEVELOPMENT	1
V.	FLOOD HAZARD ZONES	1
VI.	EXISTING SITE CONDITIONS AND DRAINAGE PATTERNS	1
VII.	PROPOSED SITE CONDITIONS AND DRAINAGE PATTERN	2
VIII.	OFFSITE RUNOFF	3
IX.	SUMMARY OF RUNOFF	4
X.	CONCLUSION	5
XI.	APPENDICES 1. APPENDIX A 2. APPENDIX B	

I. PURPOSE OF THIS REPORT

This report has been prepared to submit to the City of Albuquerque Public Works - Hydrology Department for Building Permit Approval.

This project is an infill project that proposes to renovate the existing northeast and southeast on the site. The northwest building and numerous small buildings in the center portion of the site will be removed and replaced with a new building that will connect between the two remaining buildings. A landscaped courtyard will be constructed in the central portion of First Street frontage. Three paved parking lots are proposed, one will enter off mountain and will parallel the west side of the southern building, the second will enter off Rosemont Street and will parallel the west side of the northern building, the third will enter off Second Street and run perpendicular to Second Street. The remaining portions of the block, northwest and southwest corners are owned by third parties and are not part of this project.

II. LOCATION

This site is located at 1217 First Street NW. and includes most of the city block bounded by First Street on the east, Second Street on the west, Mountain Avenue on the south, and Rosemont Avenue on the north. The areas within this city block not included are the northwest and southwest corners as described above.

III. LEGAL DESCRIPTION

Lots 5-A and 13-A, Paris Addition No. 2

IV. ZONING AND SURROUNDING DEVELOPMENT

The present zoning of the site is M-1, Light Manufacturing. The proposed use, a healthcare clinic, is an approved usage under the existing zoning.

V. FLOOD HAZARD ZONES

As shown on panel 35001C0332 D, Dated September 20, 1996, all of Rosemont Ave, First Street, and Second Street adjacent to the parcel are in an AO 100-year floodplain, Flood Depths of 1 to 3 feet deep. This floodplain encroaches into the site at the drivepads on Rosemont Ave. and Mountain Ave. However, the existing and new buildings are not within the limits of the floodplain.

VI. EXISTING SITE CONDITIONS AND DRAINAGE PATTERNS

The existing site is developed as a Construction Company Office and Storage Yard.

There are four permanent buildings and numerous portable buildings and mobile buildings onsite. The only buildings proposed to remain are the buildings on the northeast and southeast corners of the site. The western half of the northeast building is proposed to be removed. The majority of the site that is used for drive access and storage has been graded and covered with material that appears to be asphalt millings and emulsion seal coat. The site is void of landscaping. The site has been graded to utilize the existing minimal vertical elevation differential to drain away from the permanent buildings. Therefore, the current discharge is via shallow sheet flow towards the nearest street - typically through a drivepad. There is an existing french drain located in the central area of the site that appears to be plugged by sediment and garbage. This plan proposes to remove the french drain.

VII. PROPOSED SITE CONDITIONS AND DRAINAGE PATTERN

The proposed modifications to the site, as shown on the Grading Plan in Appendix B, include removal of all the small structures, portable structures, and mobile buildings onsite leaving only the buildings at the northeast and southeast corner of the site. Additionally, the west half (approximately) of the building at the northeast corner of the site will be removed.

The proposed new construction includes a <u>infill building</u> between the two remaining buildings, a new landscaped patio between the existing and new building on First Street, and new parking lots perpendicular to both Mountain and Rosemont Ave. and west of the existing buildings, and a new parking lot perpendicular to Second Street and about half way between Rosemont and Mountain Ave.

The grading plan proposes to drain all of the remaining existing buildings, the new patio, and the east half of the new building to First Street via <u>Two 24" sidewalk</u> culverts located at the north and south sides of the new patio. To avoid an 8" dropoff at the back of the sidewalk, a <u>24" x 24" trench grate</u> is proposed adjacent to the back of the sidewalk. This is shown as Basin 'C' on the Drainage Basin Map in Appendix B.

The northwest corner of the new building, the new north parking lot, and the landscape area between the northeast building and the north parking lot are proposed to drain north through a swale in the landscaping and 24" sidewalk culvert into Rosemont Ave. This area is shown as Basin 'D' on the Drainage Basin Map in Appendix B.

The remaining southeast building, south end of the new building, and south parking lot drain into Mountain Ave. via a swale in the parking lot and 24" sidewalk culvert into Mountain. This area is shown as Basin 'F' on the Drainage Basin Map in Appendix B.

The remaining west parking lot, on Second Street, drains into Second Street via a swale in the landscaping on the north side of the parking lot that briefly crosses the parking

lot and into a 24" sidewalk culvert into Second Street just north of the drivepad. This Basin is shown as Basin 'E" on the Drainage Basin Map in Appendix B.

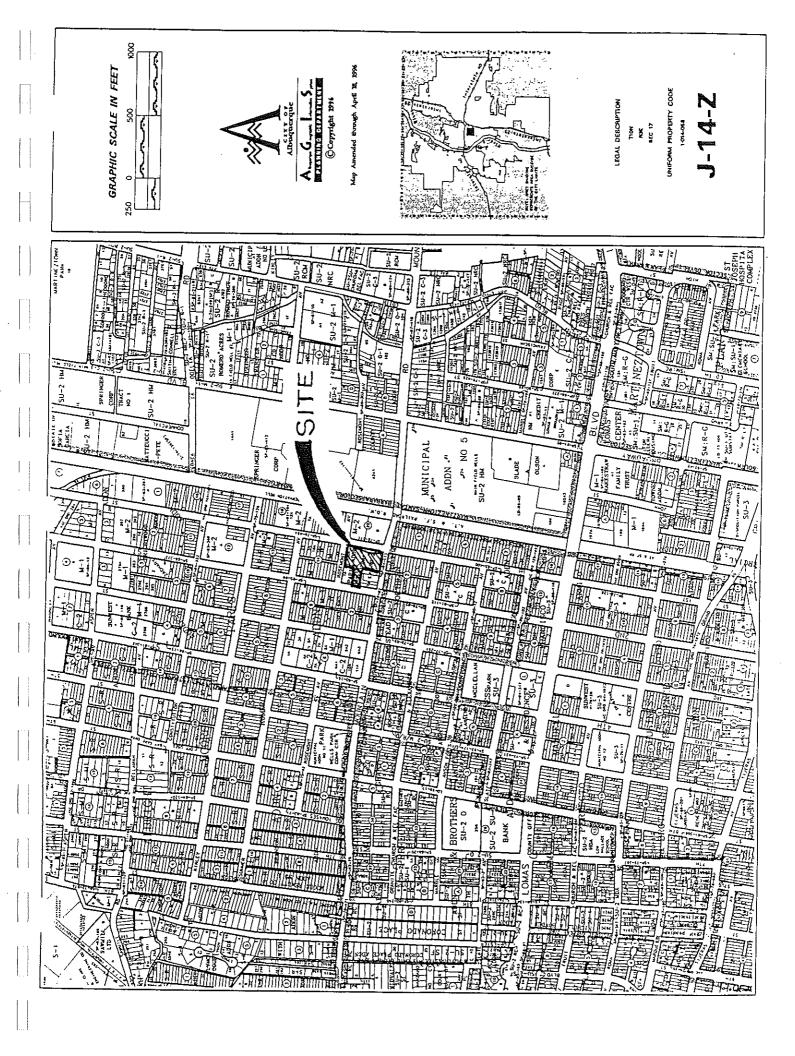
The runoff discharge points discussed above are similar in location to the existing discharge points from the site. As noted in the Summary below, the runoff peak rates and volumes generated by the proposed construction are very close to those generated by the existing development.

VIII. OFFSITE RUNOFF

There are two offsite drainage basins that affect this project as shown on the Offiste Drainage Map in Appendix B. The first basin, Basin 'A' includes the block between Rosemont Ave. and Kinley Ave. and is bordered on the west about midway between First and Second Street and on the east by the railroad tracks. This report assumes that all runoff in First Street north of Kinley is intercepted in the existing four 'P' Type inlets at Kinley Ave and First Street. This appears to be a reasonable assumption since there is a high area in first at the south side of Kinley that would increase the interception capacity of those inlets. This basin includes several commercial and industrial type developments that are mostly buildings, paved parking lots, and compacted earth storage areas. The land treatment percentages used in the AHYMO runs included in Appendix A are based on Table A.5 in the DPM Section 22.2. Visual inspection of the sites and photogramitry based Floodway Maps appear to justify the assumptions for this basin.

The second offsite basin, Basin 'B', includes the area between First Street and the west side of the railroad tracks west of First. This basin begins at Kinley Ave. on the north and runs south to adjacent to Rosemont Ave. This area will discharge to First Street only after initial ponding has become deep enough to provide some head to drive the flow since the basin in almost flat. The land treatment percentages used in the AHYMO runs included in Appendix A are based on Table A.5 in the DPM Section 22.2. Although this basin is almost entirely compacted earth parking and stroage areas, the higher percentage of Type D land treatment have been used since the existing zoning would allow development of this basin similar to what is sugested in Table A.5.

The runoff from both offsite basin collects in First Street and runs south to the intersection at Rosemont where four 'P' Type inlets collect the runoff.


IX. SUMMARY OF RUNOFF

BASIN	EXISTING (Q ₁₀₀ (cfs)	100-Year Storm CONDITIONS V ₁₀₀ (cf)		PED CONDITIONS V ₁₀₀ (cf)
A	14.36	25,574	14.36	25,574
В	8.94	15,899	8.94	15,899
С	2.50	4,661	2.42	4,400
D	0.84	1,481	0.84	1,481
E	0.89	1,525	0.88	1,568
F	1.41	2,526	1.43	2,614
	EXISTING C Q ₁₀₀ (cfs)	10-Year Storm CONDITIONS V ₁₀₀ (cf)	DEVELOP Q ₁₀₀ (cfs)	ED CONDITIONS V ₁₀₀ (cf)
A	9.57	17,050	9.57	17,050
В	5.96	10,593	5.96	10,593
C	1.67	3,107	1.61	2,933
D	0.56	987	0.56	987
E	0.59	1,017	0.59	1,045
F	0.94	1,684	0.95	1.743

X. CONCLUSION

Since this area is included in a 100-year floodplain with designation Zone AO, it is assumed that the inlets and storm drain do not have the capacity to handle the runoff generated from more intense storm events. However, the floodplain boundaries appear to place the depth of flooding within the right-of-way on First Street and in the parking areas on Rosemont Ave. and Mountain Ave. By inspection of the surveyed elevations in the areas of the floodplain boundaries, it would appear that the flood elevations in a 100-year event will be about 3" below the finished floor elevation of the existing and proposed new building.

Please note that this project is an infill and renovation project in nature and that the adjacent parcels and offsite drainage basins contributing flows to this site are developed similar to there zoning and capacity. Therefore, the amount of flooding in current conditions should not become worst. Also, the proposed renovations of this site have, not increased the peak runoff rates or volumes above current rates and therefore should not increase the flood level downstream of the site.

APPENDIX A

	HYDROGRAPH		M TO	AREA	PEAK DISCHARGE	RUNOFF VOLUME	RUNOFF	TIME TO PEAK	CFS PER	PAGE	= 1
COMMAND IDEN	NTIFICATION	NO.	. ио.	(SQ MI)	(CFS)	(AC-FT)	(INCHES)		ACRE	NOTAT	ION
S HOME100.DAT S PRECIPITATION 2	? -	HYMO I	PER JAN	FOR HEALTHCA 1993 DPM REVI						TIME=	
S CAINFALL TYPE= 2										RAIN24=	2.7
S S COMPUTE RUNOFF S	FOR EXISTI	NG CO	NDITIONS	- OFFSITE BAS	SINS						
S S OFFSITE - BASI S	N A										
S USE 80% TYPE D	- HEAVY IN	DUSTRI	AL PER	TABLE A-5							
S OMPUTE NM HYD	101.10	_	1	.00511	14.36	.587	2.15427	1.500	4.391	PER IMP=	80
s S OFFSITE - BASI	и в										
S S USE 80% TYPE D	- HEAVY IN	DUSTRI	AL PER	TABLE A~5							
S OMPUTE NM HYD	102.10	_	2	.00318	8.94	.365	2.15428	1.500	4.395	PER IMP=	80
5 5											
G ONSITE - BASIN			:								
MPUTE NM HYD	103.10	-	3	.00083	2.50	.107	2.41108	1.500	4.715	PER IMP≕	100
ONSITE - BASIN	D										
MPUTE NM HYD	104.10		4	.00029	.84	.034	2.16725	1.500	4.502	PER IMP=	81
ONSITE - BASIN	E										
MPUTE NM HYD	105.10	-	5	.00031	.89	.035	2.14157	1.500	4.469	PER IMP=	79
ONSITE - BASIN	F									•	
MPUTE NM HYD	106.10	-	6	.00048	1.41	.058	2.28275	1.500	4.606	PER IMP=	90
COMPUTE RUNOFF I	FOR DEVELOR	ED CO	NDITIONS	3							
CHIEFTED DECEM										_	
ONSITE - BASIN			_								
MPUTE NM HYD		-	7	.00083	2.42	.101	2.28020	1.500	4.555	PER IMP=	91
ONSITE - BASIN					. .						
MPUTE NM HYD	108.10	_	8	.00029	.84	.034	2.20492	1.500	4.521	PER IMP=	86.
ONSITE - BASIN			_								
MPUTE NM HYD ONSITE - BASIN	109.10 F	-	9	.00031	.88	.036	2.16242	1.500	4.453	PER IMP=	83.
MPUTE NM HYD	110.10	-	10	.00048	1.43	.060	2.34581	1.500	4.644	PER IMP=	96.
EXISTING CONDITI	ONS - RUNO	FF TO	ROSEMON	T AND FIRST							
O HYD	151.10 151.20			.00829	23.31 24.14	.952 .986	2.15427 2.15471	1.500 1.500	4.393 4.396		

*S *	SE = 2	PAGE NOTA	CFS PER ACRE	IME TO PEAK OURS)	UNOFF		RUNOFF VOLUME (AC-FT)	PEAK DISCHARG (CFS)		ARE (SQ N	TO ID NO.		H ID	DROGRAP FICATIO		COMMAND	{
*S EXISTING CONDITIONS - RUNOFF TO MOUNTAIN AND FIRST *S *S *S ADD HYD																	
ADD HYD 154.10 36 6 54 .00131 3.92 .165 2.36406 1.500 4.675 **S TOTAL EXISTING RUNOFF TO INTERSECTION **S **S EXISTING CONDITIONS - RUNOFF TO MOUNTAIN AND SECOND **S **S TOTAL EXISTING RUNOFF TO INTERSECTION **S **S DEVELOPED CONDITIONS - RUNOFF TO ROSEMONT AND FIRST **S **S DEVELOPED CONDITIONS - RUNOFF TO ROSEMONT AND FIRST **S **S DEVELOPED CONDITIONS - RUNOFF TO ROSEMONT AND FIRST **S **S **ADD HYD 161.10 16 2 61 .00829 23.31 .952 2.15427 1.500 4.393 **ADD HYD 161.20 516 8 62 .00858 24.14 .987 2.15598 1.500 4.397 **S **S TOTAL DEVELOPED RUNOFF TO INTERSECTION **S **S **S **S **S **DEVELOPED CONDITIONS - RUNOFF TO MOUNTAIN AND FIRST **S **S **S **S **S **S **S									*DOM	N AND D	מיינאו זיי	o N	IOFF T	NS = RI	G CONDITTO		
ADD HYD 154.10 36 6 54 .00131 3.92 .165 2.36406 1.500 4.675 *\$ *\$ TOTAL EXISTING RUNOFF TO INTERSECTION *\$ *\$ EXISTING CONDITIONS - RUNOFF TO MOUNTAIN AND SECOND *\$ *\$ TOTAL EXISTING RUNOFF TO INTERSECTION *\$ *\$ DEVELOPED CONDITIONS - RUNOFF TO ROSEMONT AND FIRST *\$ *\$ DEVELOPED CONDITIONS - RUNOFF TO ROSEMONT AND FIRST *\$ *\$ ADD HYD 161.20 516 8 62 .00858 24.14 .987 2.15598 1.500 4.397 *\$ STOTAL DEVELOPED RUNOFF TO INTERSECTION *\$ *\$ S *\$ DEVELOPED CONDITIONS - RUNOFF TO MOUNTAIN AND FIRST *\$ *\$ S *\$ DEVELOPED CONDITIONS - RUNOFF TO MOUNTAIN AND FIRST *\$ *\$ S *\$ DEVELOPED CONDITIONS - RUNOFF TO MOUNTAIN AND FIRST *\$ *\$ S *\$ S DEVELOPED CONDITIONS - RUNOFF TO MOUNTAIN AND FIRST *\$ S *\$ S DEVELOPED CONDITIONS - RUNOFF TO MOUNTAIN AND FIRST *\$ S *\$ S DEVELOPED CONDITIONS - RUNOFF TO MOUNTAIN AND SECOND *\$ *\$ S *\$ DEVELOPED CONDITIONS - RUNOFF TO MOUNTAIN AND SECOND *\$ *\$ S *\$ DEVELOPED CONDITIONS - RUNOFF TO MOUNTAIN AND SECOND *\$ *\$ S *\$ DEVELOPED CONDITIONS - RUNOFF TO MOUNTAIN AND SECOND *\$ *\$ S *\$ DEVELOPED CONDITIONS - RUNOFF TO MOUNTAIN AND SECOND *\$ *\$ S *\$ DEVELOPED RUNOFF TO INTERSECTION									IRSI	M AMD EI	MINDON		.011 1	10		'S	•
*S TOTAL EXISTING RUNOFF TO INTERSECTION *S *S *S *S *S *S *S *S *S *									131	001	5.4	6) 3.c	154 14			
*S *			4.675	1.500	36406	2.	.165	3.9	131	.001						·S	*
*S *S *S EXISTING CONDITIONS - RUNOFF TO MOUNTAIN AND SECOND *S *S *S TOTAL EXISTING RUNOFF TO INTERSECTION *S *S *S *S DEVELOPED CONDITIONS *S *S *S *S *DEVELOPED CONDITIONS - RUNOFF TO ROSEMONT AND FIRST *S *S *ADD HYD 161.10 14 2 61 .00829 23.31 .952 2.15427 1.500 4.393 ADD HYD 161.20 516 8 62 .00858 24.14 .987 2.19598 1.500 4.397 *S *S *S TOTAL DEVELOPED RUNOFF TO INTERSECTION *S											MOIT	SEC	INTER	OFF TO	XISTING RUI	S TOTAL	*
*S EXISTING CONDITIONS - RUNOFF TO MOUNTAIN AND SECOND *S *S *S TOTAL EXISTING RUNOFF TO INTERSECTION *S *S *S DEVELOPED CONDITIONS *S *S *S DEVELOPED CONDITIONS - RUNOFF TO ROSEMONT AND FIRST *S *S *ADD HYD						,										S	*
*S *S *S TOTAL EXISTING RUNOFF TO INTERSECTION *S *S *S *S *S DEVELOPED CONDITIONS *S *S *S *S DEVELOPED CONDITIONS - RUNOFF TO ROSEMONT AND FIRST *S *S *ADD HYD														10 Drn	C COMPITTO		
*S TOTAL EXISTING RUNOFF TO INTERSECTION *S *S *S *S *S *S *DEVELOPED CONDITIONS *S *S *ADD HYD 161.10 16 2 61 .00829 23.31 .952 2.15427 1.500 4.393 *ADD HYD 161.20 516 8 62 .00858 24.14 .987 2.15598 1.500 4.397 *S *S *S *S *S *S *S *TOTAL DEVELOPED RUNOFF TO INTERSECTION *S *S *S *DEVELOPED CONDITIONS - RUNOFF TO MOUNTAIN AND FIRST *S *S *ADD HYD 163.10 7610 63 .00131 3.85 .161 2.30424 1.500 4.587 *S *S *S *S *S *S *S *S *S *									COND	M AND SE	OUNTA	O E	OFF I	49 - KOL	G COMBILION	5	*
*S *S *S DEVELOPED CONDITIONS *S *DEVELOPED CONDITIONS - RUNOFF TO ROSEMONT AND FIRST *S *S *S *ADD HYD															VTCMTNO DID		
*S DEVELOPED CONDITIONS *S *S DEVELOPED CONDITIONS - RUNOFF TO ROSEMONT AND FIRST *S *S *S *S *DEVELOPED CONDITIONS - RUNOFF TO ROSEMONT AND FIRST *S *S *ADD HYD											TION	SEC	INTERS	OFF TO	AISTING RUD	S	*
*S DEVELOPED CONDITIONS *S *S *S DEVELOPED CONDITIONS - RUNOFF TO ROSEMONT AND FIRST *S *ADD HYD 161.10 14 2 61 .00829 23.31 .952 2.15427 1.500 4.393 ADD HYD 161.20 516 8 62 .00858 24.14 .987 2.15598 1.500 4.397 *S TOTAL DEVELOPED RUNOFF TO INTERSECTION *S *S *S *S *S *S *S *S *S *																	
*S *S *S DEVELOPED CONDITIONS - RUNOFF TO ROSEMONT AND FIRST *S *S ADD HYD														NS SM	ED CONDITIO		
*S DEVELOPED CONDITIONS - RUNOFF TO ROSEMONT AND FIRST *S *S ADD HYD																S	*
*S *S *S ADD HYD ADD HYD 161.10 16 2 61 .00829 23.31 .952 2.15427 1.500 4.393 ADD HYD 161.20 516 8 62 .00858 24.14 .987 2.15598 1.500 4.397 *S *S TOTAL DEVELOPED RUNOFF TO INTERSECTION *S *S *S DEVELOPED CONDITIONS - RUNOFF TO MOUNTAIN AND FIRST *S ADD HYD 163.10 7&10 63 .00131 3.85 .161 2.30424 1.500 4.587 *S *S TOTAL DEVELOPED RUNOFF TO INTERSECTION *S *S *S *S DEVELOPED CONDITIONS - RUNOFF TO MOUNTAIN AND SECOND *S *S *S *S DEVELOPED CONDITIONS - RUNOFF TO MOUNTAIN AND SECOND *S *S *S *S DEVELOPED CONDITIONS - RUNOFF TO MOUNTAIN AND SECOND *S *S *S *S TOTAL DEVELOPED RUNOFF TO INTERSECTION									TDCM	ים מוגא מיז	DOSEMO	TΩ 1	NOEE 1	NS - RII	ED CONDITIO		
ADD HYD 161.10 14 2 61 .00829 23.31 .952 2.15427 1.500 4.393 ADD HYD 161.20 516 8 62 .00858 24.14 .987 2.15598 1.500 4.397 *S *S TOTAL DEVELOPED RUNOFF TO INTERSECTION *S *S *S DEVELOPED CONDITIONS - RUNOFF TO MOUNTAIN AND FIRST *S ADD HYD 163.10 7610 63 .00131 3.85 .161 2.30424 1.500 4.587 *S TOTAL DEVELOPED RUNOFF TO INTERSECTION *S *S *S TOTAL DEVELOPED CONDITIONS - RUNOFF TO MOUNTAIN AND SECOND *S *S *S DEVELOPED CONDITIONS - RUNOFF TO MOUNTAIN AND SECOND *S *S *S TOTAL DEVELOPED RUNOFF TO INTERSECTION *S *S *S TOTAL DEVELOPED RUNOFF TO INTERSECTION									1031	II AND E.	NOO EI TO					S	* :
ADD HYD 161.20 516 8 62 .00858 24.14 .987 2.15598 1.500 4.397 *S *S TOTAL DEVELOPED RUNOFF TO INTERSECTION *S *S *S *S ADD HYD 163.10 7&10 63 .00131 3.85 .161 2.30424 1.500 4.587 *S *S TOTAL DEVELOPED RUNOFF TO INTERSECTION *S *S *S TOTAL DEVELOPED RUNOFF TO INTERSECTION *S *S *S TOTAL DEVELOPED CONDITIONS - RUNOFF TO MOUNTAIN AND SECOND *S *S *S DEVELOPED CONDITIONS - RUNOFF TO MOUNTAIN AND SECOND *S *S *S TOTAL DEVELOPED RUNOFF TO INTERSECTION *S *S *S TOTAL DEVELOPED RUNOFF TO INTERSECTION								02.0	20	000	61	, ,	16.2	161 10			
*S TOTAL DEVELOPED RUNOFF TO INTERSECTION *S *S *S *S *S *S *DEVELOPED CONDITIONS - RUNOFF TO MOUNTAIN AND FIRST *S *ADD HYD *S *S *TOTAL DEVELOPED RUNOFF TO INTERSECTION *S *S *S *S *DEVELOPED CONDITIONS - RUNOFF TO MOUNTAIN AND SECOND *S *S *S *S *S *S *S *S *S *											62	8 6	516 8	161.20		DD HYD	. AI
*S *S *S *S *S *S DEVELOPED CONDITIONS - RUNOFF TO MOUNTAIN AND FIRST *S *S *ADD HYD 163.10 7&10 63 .00131 3.85 .161 2.30424 1.500 4.587 *S TOTAL DEVELOPED RUNOFF TO INTERSECTION *S *S *S *S *S *DEVELOPED CONDITIONS - RUNOFF TO MOUNTAIN AND SECOND *S *S *S TOTAL DEVELOPED RUNOFF TO INTERSECTION			1.35,	.,,,,,							" ጥ ፐ (አለ	פפר	TMTCD	NOFE TO	VELOPED BIL		
*S *S DEVELOPED CONDITIONS - RUNOFF TO MOUNTAIN AND FIRST *S *ADD HYD 163.10 7&10 63 .00131 3.85 .161 2.30424 1.500 4.587 *S TOTAL DEVELOPED RUNOFF TO INTERSECTION *S *S *S *S DEVELOPED CONDITIONS - RUNOFF TO MOUNTAIN AND SECOND *S *S *S TOTAL DEVELOPED RUNOFF TO INTERSECTION											SITON	NO LIC	THIER	MOLL TO	. CLOSED RO	3	* 5
*S DEVELOPED CONDITIONS - RUNOFF TO MOUNTAIN AND FIRST *S *ADD HYD 163.10 7&10 63 .00131 3.85 .161 2.30424 1.500 4.587 *S TOTAL DEVELOPED RUNOFF TO INTERSECTION *S *S *S *DEVELOPED CONDITIONS - RUNOFF TO MOUNTAIN AND SECOND *S *S *S *S TOTAL DEVELOPED RUNOFF TO INTERSECTION																	
*S *S ADD HYD 163.10 7&10 63 .00131 3.85 .161 2.30424 1.500 4.587 *S TOTAL DEVELOPED RUNOFF TO INTERSECTION *S *S *S DEVELOPED CONDITIONS - RUNOFF TO MOUNTAIN AND SECOND *S *S *S TOTAL DEVELOPED RUNOFF TO INTERSECTION									IRST	N AND FI	40UNTA	o M	OFF T	NS - RU	D CONDITION	DEVELO.	* 5
ADD HYD 163.10 7&10 63 .00131 3.85 .161 2.30424 1.500 4.587 *S *S *TOTAL DEVELOPED RUNOFF TO INTERSECTION *S *S *S DEVELOPED CONDITIONS - RUNOFF TO MOUNTAIN AND SECOND *S *S *S *S *TOTAL DEVELOPED RUNOFF TO INTERSECTION																3	* 5
*S TOTAL DEVELOPED RUNOFF TO INTERSECTION *S *S *S *S *S DEVELOPED CONDITIONS - RUNOFF TO MOUNTAIN AND SECOND *S *S *S *S *S *S *S *S *S *			1 507	500	30424	2 3	. 161	3.85	31	.0013	53.) 6	7&10	163.10		D HYD	ΑĽ
*S *S *S *S DEVELOPED CONDITIONS - RUNOFF TO MOUNTAIN AND SECOND *S *S *S *S *S *TOTAL DEVELOPED RUNOFF TO INTERSECTION			367	.500	30424	2.5	•101	3.00	-		*:						
*S *S DEVELOPED CONDITIONS - RUNOFF TO MOUNTAIN AND SECOND *S *S *S TOTAL DEVELOPED RUNOFF TO INTERSECTION											TION	SEC	INTER	NOPE TO	VETOLED KO	,	*S
*S DEVELOPED CONDITIONS - RUNOFF TO MOUNTAIN AND SECOND *S *S *S TOTAL DEVELOPED RUNOFF TO INTERSECTION																	
*S *S *S TOTAL DEVELOPED RUNOFF TO INTERSECTION									COME	N AND SE	OUNTAI	ом	OFF TO	IS - RUI	D CONDITION		
*S TOTAL DEVELOPED RUNOFF TO INTERSECTION																	* 5
											TTON	SEC	INTER	OFF TO	VELOPED RUN		
																	*S
*S FINISH																	_
s0p10h4099T-&16D															£16D		

HOME100.DAT HYMO PER JAN 1993 DPM REVISIONS *S PRECIPITATION ZONE 2 PER FIGURE A-1 *_____ TYPE=-2 RAIN QUAR=0 RAIN ONE=2.01 RAIN SIX=2.35 RAIN DAY=2.75 DT=0.03 COMPUTED 24-HOUR RAINFALL DISTRIBUTION BASED ON NOAA ATLAS 2 - PEAK AT 1.40 HR. OT = .030000 HOURS END TIME = 17.970000 HOURS *S *S COMPUTE RUNOFF FOR EXISTING CONDITIONS - OFFSITE BASINS *8 *S OFFSITE - BASIN A *****\$ *S USE 80% TYPE D - HEAVY INDUSTRIAL PER TABLE A-5 ID=1 HYD NO= 101.1 DA=0.00511 SQ MI PER A=0 PER B=0 PER C=20 PER D=80 TP=-.133 K = .072485HR TP = .133000HR K/TP RATIO = .545000 SHAPE CONSTANT, N = 7.106420 UNIT PEAK = 16.176 CFS UNIT VOLUME = .9992 B = 526.28 P60 = 2.0100 AREA = .004088 SQ MI IA = .10000 INCHES INF = .04000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .030000 K = .107204HR TP = .133000HR K/TP RATIO = .806046 SHAPE CONSTANT, N = 4.4 UNIT PEAK = 2.9473 CFS UNIT VOLUME = .9955 B = 383.55 P60 = 2.0100 AREA = .001022 SQ MI IA = .35000 INCHES INF = .83000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .030000 SHAPE CONSTANT, N = 4.440701 PRINT HYD ID=1 CODE=10 PARTIAL HYDROGRAPH 101.10 TIME FLOW TIME FLOW TIME FLOW TIME FLOW FLOW HRS CFS HRS CFS CFS .000 HRS CFS CFS .0 3.600 . 1 7.200 . 1 10.800 14.400 .1 .300 .0 3.900 . 1 7.500 11.100 14.700 - 600 .0 4.200 .1 7.800 11.400 15,000 .900 .0 4.500 . 1 8.100 11.700 15.300 1.200 . 2 4.800 8.400 12.000 15.600 1.500 14.4 5.100 8.700 12.300 15.900 1.800 5.0 5.400 5.700 . 1 9.000 12.600 16.200 .1 2.100 2.4 .1 9.300 12.900 .1 16.500 2,400 6.000 .1 9.600 13.200 2.700 . 1 16.800

9.900

10,200

10.500

.5871 ACRE-FEET 14.36 CFS AT 1.500 HOURS BASIN AREA = .0051 SQ. MI.

.1

. 1

13.500

13.800

14.100

17,100

17.400

- Version: 1997.02c USER NO.= AHYMO-I-9702a0100001A-SH

```
*S
    OFFSITE - BASIN B
* C
*S USE 80% TYPE D - HEAVY INDUSTRIAL PER TABLE A-5
                         ID=2 HYD NO= 102.1 DA=0.00318 SQ MI
PER A=0 PER B=0 PER C=20 PER D=80 TP=-.133
COMPUTE NM HYD
                         RAIN=-1
```

6.300

6.600

6.900

2.15427 INCHES

.1

.3

. 1

.1

3.000

3.300

RUNOFF VOLUME =

PEAK DISCHARGE RATE =

AHYMO PROGRAM (AHYMO 97) -RUN DATE (MON/DAY/YR) = 12/30/1998 START TIME (HR:MIN:SEC) = 09:43:28

START * S

INPUT FILE = D:\AHYMO\HOME100.TXT

TIME=0 PUNCH=0 PRINT LINES=-6 COMPUTE 100 YR. 24 HR. HYDROGRAPHS FOR HEALTHCARE/HOMELESS

K = .072485HR TP = .133000HR K/TP RATIO = .545000 SHAPE CONSTANT, N = 7.106420 UNIT PEAK = 10.067 CFS UNIT VOLUME = .9987 B = 526.28 P60 = 2.0100 AREA = .002544 SQ MI IA = .10000 INCHES INF = .04000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .030000

SHAPE CONSTANT, N = 4.440701 B = 383.55 P60 = 2.0100

AREA = .000636 SQ MI IA = .35000 INCHES INF = .83000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .030000

PRINT HYD ID=2 CODE=10

PARTIAL HYDROGRAPH 102.10

TIME HRS .000 .300 .600 .900 1.200 1.500 1.800 2.100 2.400 2.700 3.000 3.300	FLOW CFS .0 .0 .0 .0 .0 .1 8.9 3.1 1.5 .4 .2 .1 .1	TIME HRS 3.600 3.900 4.200 4.500 5.100 5.100 6.000 6.300 6.600 6.900	FLOW CFS .1 .0 .0 .0 .0 .0 .0 .1 .1 .1 .1 .1 .1	TIME HRS 7.200 7.500 7.800 8.100 8.400 9.700 9.000 9.300 9.600 9.900 10.200	FLOW CFS .1 .1 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	TIME HRS 10.800 11.100 11.400 11.700 12.000 12.300 12.600 12.900 13.200 13.500 13.800 14.100	FLOW CFS .0 .0 .0 .0 .0 .0	TIME HRS 14.400 14.700 15.000 15.300 15.600 16.200 16.200 16.500 16.800 17.100 17.400	FLOW CFS .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
--	--	---	---	---	--	---	---	---	---

RUNOFF VOLUME = 2.15428 INCHES = .3654 ACRE-FEET
PEAK DISCHARGE RATE = 8.94 CFS AT 1.500 HOURS BASIN AREA = .0032 SQ. MI.

*S

*S ONSITE - BASIN C

*\$

COMPUTE NM HYD ID=3 HYD NO= 103.1 DA=0.00083 SQ MI PER A=0 PER B=0 PER C=0 PER D=100 TP=-.133 RAIN=-1

K = .072485HR TP = .133000HR K/TP RATIO = .545000 SHAPE CONSTANT, N = 7.106420 UNIT PEAK = 3.2843 CFS UNIT VOLUME = .9962 B = 526.28 P60 = 2.0100 AREA = .000830 SQ MI IA = .10000 INCHES INF = .04000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .030000

PRINT HYD ID=2 CODE=10

PARTIAL HYDROGRAPH 102.10

TIME HRS .000 .300 .600 .900 1.200 1.500 1.800 2.100 2.400 2.700 3.000 3.300	FLOW CFS .0 .0 .0 .0 .0 .1 8.9 3.1 1.5 .4 .2 .1 .1	TIME HRS 3.600 3.900 4.200 4.500 4.800 5.100 5.700 6.000 6.300 6.600 6.900	FLOW CFS .1 .0 .0 .0 .0 .0 .0 .1 .1 .1 .1	TIME HRS 7.200 7.500 7.800 8.100 8.400 8.700 9.000 9.300 9.600 9.900 10.200	FLOW CFS .1 .1 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	TIME HRS 10.800 11.100 11.400 11.700 12.000 12.300 12.600 12.900 13.200 13.500 13.800 14.100	FLOW CFS .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	TIME HRS 14.400 14.700 15.000 15.300 15.600 15.900 16.200 16.500 17.100 17.400 17.700	FLOW CFS .00 .00 .00 .00 .00 .00 .00 .00 .00 .0
--	--	--	---	---	--	---	---	---	--

RUNOFF VOLUME = 2.15428 INCHES = .3654 ACRE-FEET
PEAK DISCHARGE RATE = 8.94 CFS AT 1.500 HOURS BASIN AREA = .0032 SQ. MI.

*s *S ONSITE - BASIN D

COMPUTE NM HYD

ID=4 HYD NO= 104.1 DA=0.00029 SQ MI PER A=0 PER B=0 PER C=19 PER D=81 TP=-.133 RAIN=-1

K = .072485HR TP = .133000HR K/TP RATIO = .545000 SHAPE CONSTANT, N = 7.106420 UNIT PEAK = .92949 CFS UNIT VOLUME = .9873 B = 526.28 P60 = 2.0100 AREA = .000235 SQ MI IA = .10000 INCHES INF = .04000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .030000

K = .107204HR TP = .133000HR K/TP RATIO = .806046 SHAPE CONSTANT, N = 4.440701 UNIT PEAK = .15890 CFS UNIT VOLUME = .9199 B = 383.55 P60 = 2.0100 AREA = .000055 SQ MI IA = .35000 INCHES INF = .83000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .030000

PRINT HYD ID=4 CODE=10

.000 .300 .600 .900 1.200 1.500 2.100 2.400 2.700 3.000 3.300	.0 .0 .0 .0 .0 .8 .3 .1 .0	3.600 3.900 4.200 4.500 4.800 5.100 5.400 5.700 6.000 6.300 6.600 6.900	.0	7.200 7.500 7.800 8.100 8.400 9.000 9.300 9.600 9.900 10.200	CFS .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	HRS 10.800 11.100 11.400 11.700 12.000 12.300 12.600 12.900 13.200 13.500 13.800 14.100	CFS .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	HRS 14.400 14.700 15.000 15.300 15.600 15.900 16.200 16.500 16.800 17.100 17.400	CFS . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 .
TIME HRS	FLOW CFS	TIME HRS	FLOW CFS	TIME HRS	FLOW	TIME	FLOW	TIME	FLOW

RUNOFF VOLUME = 2.16725 INCHES = .0335 ACRE-FEET
PEAK DISCHARGE RATE = .84 CFS AT 1.500 HOURS BASIN AREA = .0003 SQ. MI.

*S ONSITE - BASIN E

COMPUTE NM HYD

NM HYD ID=5 HYD NO= 105.1 DA=0.00031 SQ MI PER A=0 PER B=0 PER C=21 PER D=79 TP=-.133 RAIN=-1

K = .072485HR TP = .133000HR K/TP RATIO = .545000 SHAPE CONSTANT, N = 7.106420 UNIT PEAK = .96906 CFS UNIT VOLUME = .9873 B = 526.28 P60 = 2.0100 AREA = .000245 SQ MI IA = .10000 INCHES INF = .04000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .030000

K = .107204HR TP = .133000HR K/TP RATIO = .806046 SHAPE CONSTANT, N = 4.440701 UNIT PEAK = .18774 CFS UNIT VOLUME = .9270 B = 383.55 P60 = 2.0100 AREA = .000065 SQ MI IA = .35000 INCHES INF = .83000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .030000

PRINT HYD ID=5 CODE=10

PARTIAL HYDROGRAPH 105.10

TIME	FLOW	TIME	FLOW	TIME	FLOW	BTMC	DT 611		
HRS	CFS	HRS	CFS			TIME	FLOW	TIME	FLOW
.000	.0	3,600		HRS	CFS	HRS	CFS	HRS .	CFS
.300			.0	7.200	.0	10.800	.0	14.400	.0
	.0	3.900	.0	7.500	.0	11.100	.0	14.700	.0
. 600	.0	4.200	.0	7.800	.0	11.400	.0		
.900	.0	4.500	.0	8.100	.0			15.000	.0
1.200	٠0	4.800	.0			11.700	.0	15.300	.0
1.500	.9	5.100		8.400	.0	12.000	.0	15.600	.0
1.800			.0	8.700	.0	12.300	.0	15.900	.0
	.3	5.400	.0	9.000	.0	12,600	.0	16,200	.0
2.100	.1	5.700	.0	9.300	.0	12.900	.0		-
2.400	.0	6.000	.0	9,600				16.500	.0
2.700	.0	6.300			.0	13.200	٠0	16.800	.0
3.000	.0		.0	9.900	.0	13.500	.0	17,100	.0
		6.600	.0	10.200	.0	13.800	.0	17.400	.0
3.300	.0	6.900	.0	10.500	.0	14.100	.ŏ	17.700	.0

RUNOFF VOLUME = 2.14157 INCHES = .0354 ACRE-FEET
PEAK DISCHARGE RATE = .89 CFS AT 1.500 HOURS BASIN AREA = .0003 SQ. MI.

*S ONSITE - BASIN F

COMPUTE NM HYD

ID=6 HYD NO= 106.1 DA=0.00048 SQ MI PER A=0 PER B=0 PER C=10 PER D=90 TP=-.133 RAIN=-1

K = .072485HR TP = .133000HR K/TP RATIO = .545000 SHAPE CONSTANT, N = 7.106420 UNIT PEAK = 1.7094 CFS UNIT VOLUME = .9926 B = 526.28 P60 = 2.0100 AREA = .000432 SQ MI IA = .10000 INCHES INF = .04000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .030000

K = .107204HR TP = .133000HR K/TP RATIO = .806046 SHAPE CONSTANT, N = 4.440701 UNIT PEAK = .13842 CFS UNIT VOLUME = .9035 B = 383.55 P60 = 2.0100 AREA = .000048 SQ MI IA = .35000 INCHES INF = .83000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .030000

PRINT HYD ID=6 CODE=10

PARTIAL HYDROGRAPH 106.10

TIME FLOW TIME FLOW TIME FLOW TIME FLOW

```
HRS
                CFS
                              HRS
                                        CFS
                                                       HRS
                                                                 CFS
                                                                                HRS
                                                                                          CFS
                                                                                                                   CFS
      .000
                 .0
                             3.600
                                                                              10.800
                                                                   .0
                                                                                           .0
                                                                                                       14.400
      .300
                  .0
                             3.900
                                           .0
                                                       7.500
                                                                   .0
                                                                              11.100
                                                                                            .0
                                                                                                       14.700
      .600
                  .0
                             4.200
                                           .0
                                                      7.800
                                                                              11.400
                                                                                            .0
                                                                                                       15,000
      .900
                  .0
                             4.500
                                                       8.100
                                                                   .0
                                                                              11.700
                                                                                            .0
                                                                                                       15.300
     1.200
                              4.800
                                                      8.400
                                                                              12.000
                                                                                                       15.600
     1.500
                              5.100
                                                                   - 0
                                                                              12.300
                                                                                            .0
                                                                                                       15.900
     1.800
                  . 5
                             5.400
                                                       9.000
                                                                              12.600
                                                                                            .0
                                                                                                       16.200
     2.100
                  . 2
                             5.700
                                                      9.300
                                                                   . 0
                                                                              12.900
                                                                                            .0
                                                                                                      16.500
     2.400
                  .0
                             6.000
                                                      9.600
                                                                   .0
                                                                              13,200
                                                                                            .0
                                                                                                      16.800
     2.700
                  , 0
                             6.300
                                                      9.900
                                                                   .0
                                                                              13.500
                                                                                            .0
                                                                                                      17,100
     3.000
                  .0
                             6.600
                                                     10.200
                                                                   .0
                                                                              13.800
                                                                                            .0
                                                                                                      17.400
     3.300
                             6.900
                                                     10.500
                                                                                                       17.700
    RUNOFF VOLUME = 2.28275 INCHES
                                                   .0584 ACRE-FEET
    PEAK DISCHARGE RATE =
                          1.41 CFS AT 1.500 HOURS BASIN AREA = .0005 SQ. MI.
*S COMPUTE RUNOFF FOR DEVELOPED CONDITIONS
   ONSITE - BASIN C
                   ID=7 HYD NO= 107.1 DA=0.00083 SQ MI
COMPUTE NM HYD
```

K = .072485HR TP = .133000HR K/TP RATIO = .545000 SHAPE CONSTANT, N = 7.1064200 UNIT PEAK = 2.9887 CFS UNIT VOLUME = .9962 B = 526.28 P60 = 2.01000 AREA = .000755 SQ MI IA = .10000 INCHES INF = .04000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .030000

PER A=0 PER B=4 PER C=5 PER D=91 TP=-,133

K = .118131HR TP = .133000HR K/TP RATIO = .888206 SHAPE CONSTANT, N = 3.993617 UNIT PEAK = .19924 CFS UNIT VOLUME = .9339 B = 354.74 P60 = 2.0100 AREA = .000075 SQ MI IA = .41667 INCHES INF = 1.01667 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .030000

PRINT HYD CODE=10

PARTIAL HYDROGRAPH 107.10

TIME FLOW	TIME	FLOW	TIME	FLOW	TIME	FLOW	TIME	FLOW
HRS CFS	HRS	CFS	HRS	CFS	HRS	CFS	HRS	CFS
.000 .	0 3.600	.0	7.200	.0	10.800	.0	14,400	.0
.300 .	0 3.900	.0	7.500	. 0	11.100	.0	14.700	.0
.600 .	0 4.200	.0	7.800	.0	11.400	.0	15.000	.0
.900 .	0 4.500	.0	8,100	.0	11.700	.0	15.300	.0
1.200 .	0 4.800	.0	8.400	.0	12.000	.0	15.600	.0
1.500 2.	4 5.100	.0	8.700	.0	12,300	.0	15.900	.0
1.800 .	9 5.400	.0	9.000	.0	12.600	.ŏ	16,200	.0
2.100 .	4 5.700	.0	9.300	.õ	12.900	.0	16.500	.0
2.400 .	6,000	.0	9,600	. õ	13,200	.0	16.800	.0
2.700 .	6.300	.0	9.900	.0	13.500	.0	17.100	.0
3.000 .	6.600	.0	10.200	.0	13.800	.0	17.400	.0
3.300 .	6.900	. 0	10.500	.0	14.100	.0	17.700	.0

RUNOFF VOLUME = 2.28020 INCHES = .1009 ACRE-FEET
PEAK DISCHARGE RATE = 2.42 CFS AT 1.500 HOURS BASIN AREA = .0008 SQ. MI.

```
*S ONSITE - BASIN D
```

COMPUTE NM HYD

***** S

*S * S *s

> ID=8 HYD NO= 108.1 DA=0.00029 SQ MI PER A=0 PER B=7 PER C=7 PER D=86 TP=-.133 RAIN=-1

K = .072485HR · TP = .133000HR K/TP RATIO = .545000 SHAPE CONSTANT, N = 7.106420 UNIT PEAK = .98687 CFS UNIT VOLUME = .9873 B = 526.28 P60 = 2.0100 AREA = .000249 SQ MI IA = .10000 INCHES INF = .04000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD ~ DT = .030000

SHAPE CONSTANT, N = 3.944947 PRINT HYD ID=8 CODE=10

PARTIAL HYDROGRAPH 108.10

TIME	FLOW	TIME	FLOW	TIME	FLOW	TIME	FLOW	TIME	FLOW
HRS	CFS	HRS	CFS	HRS	CFS	HRS	CFS	HRS	CFS
.000	.0	3.600	.0	7.200	.0	10.800	.0	14.400	.0
.300	.0	3.900	.0	7.500	.0	11.100	.0	14.700	.0
.600	.0	4.200	.0	7.800	.0	11.400	.0	15.000	.0
.900	.0	4.500	.0	8.100	.0	11.700	.0	15.300	.0
1.200	.0	4.800	.0	8.400	.0	12.000	.0	15,600	.0
1.500	. 8	5.100	.0	8.700	.0	12,300	.0	15.900	.0
1.800	.3	5.400	.0	9.000	.0	12.600	.0	16,200	.0
2.100	.1	5.700	.0	9.300	.0	12.900	.0	16.500	.0
2.400	.0	6.000	.0	9.600	.0	13.200	.0	16,800	. 0
2.700	.0	6.300	.0	9.900	. 0	13.500	,0	17.100	.ŏ
3.000	.0	6.600	.0	10.200	.0	13.800	.0	17.400	.ŏ
3.300	.0	6.900	- 0	10.500	.0	14.100	.0	17.700	.0

RUNOFF VOLUME = 2.20492 INCHES = .0341 ACRE-FEET
PEAK DISCHARGE RATE = .84 CFS AT 1.500 HOURS BASIN AREA = .0003 SQ. MI.

*S ONSITE - BASIN E

COMPUTE NM HYD ID=9 HYD NO= 109.1 DA=0.00031 SQ MI PER A=0 PER B=8 PER C=9 PER D=83 TP=-.133

K = .072485HR TP = .133000HR K/TP RATIO = .545000 SHAPE CONSTANT, N = 7.106420 UNIT PEAK = 1.0181 CFS UNIT VOLUME = .9889 B = 526.28 P60 = 2.0100 AREA = .000257 SQ MI IA = .10000 INCHES INF = .04000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .030000

K = .118774HR TP = .133000HR K/TP RATIO = .893039 SHAPE CONSTANT, N = 3.970534 UNIT PEAK = .13995 CFS UNIT VOLUME = .9064 B = 353.20 P60 = 2.0100 AREA = .000053 SQ MI IA = .42059 INCHES INF = 1.02765 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .030000

PRINT HYD ID=9 CODE=10

PARTIAL HYDROGRAPH 109.10

TIME	FLOW	TIME	FLOW	TIME	FLOW	TIME	FLOW	TIME	FLOW
HRS	CFS	HRS	CFS	HRS	CFS	HRS	CFS	HRS	CFS
.000	.0	3.600	.0	7.200	.0	10.800	.0	14.400	.0
.300	.0	3.900	.0	7.500	.0	11.100	.0	14.700	.0
.600	.0	4.200	.0	7.800	.0	11.400	.0	15.000	.0
.900	.0	4.500	.0	8.100	.0	11.700	. 0	15.300	.0
1.200	.0	4.800	.0	8.400	.0	12.000	.0	15,600	0
1.500	.9	5.100	.0	8.700	.0	12.300	.0	15.900	.0
1.800	.3	5.400	.0	9.000	.0	12.600	.0	16.200	.0
2.100	.1	5.700	.0	9.300	.0	12.900	.0	16.500	.0
2.400	.0	6.000	.0	9.600	.0	13,200	.0	16.800	Ö
2.700	.0	6.300	.0	9.900	.0	13.500	.0	17.100	n
3.000	.0	6.600	.0	10.200	.0	13.800	.0	17.400	. ŏ
3.300	.0	6.900	.0	10.500	.0	14.100	.ŏ	17.700	.0

RUNOFF VOLUME = 2.16242 INCHES = .0358 ACRE-FEET
PEAK DISCHARGE RATE = .88 CFS AT 1.500 HOURS BASIN AREA = .0003 SQ. MI.

*s *S ONSITE - BASIN F

COMPUTE NM HYD ID=10 HYD NO= 110.1 DA=0.00048 SQ MT PER A=0 PER B=4 PER C=0 PER D=96 TP=-.133

K = .072485HR TP = .133000HR K/TP RATIO = .545000 SHAPE CONSTANT, N = 7.106420 UNIT PEAK = 1.8234 CFS UNIT VOLUME = .9936 B = 526.28 P60 = 2.0100 AREA = .000461 SQ MI IA = .10000 INCHES INF = .04000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .030000

K = .131790HR TP = .133000HR K/TP RATIO = .990905 SHAPE CONSTANT, N = 3.563124 UNIT PEAK = .46904E-01CFS UNIT VOLUME = .8638 B = 324.91 P60 = 2.0100 AREA = .000019 SQ MI IA = .50000 INCHES INF = 1.25000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .030000

PRINT HYD CODE=10 ID=10 PARTIAL HYDROGRAPH 110.10 TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW HRS CFS HRS CFS HRS CFS HRS CFS KRS CFS .000 .0 3.600 .0 7.200 .0 10.800 .0 14.400 .0 .300 .0 3.900 .0 7.500 .0 11.100 14.700 .0 . 0 .600 .0 4.200 .0 7.800 .0 11.400 .0 15.000 . 0 .900 .0 4.500 .0 8.100 .0 11.700 .0 15.300 1.200 .0 4.800 8.400 .0 12.000 12.300 .0 15.600 1.500 5.100 5.400 1.4 .0 8.700 .0 .0 15.900 1.800 . 5 .0 9.000 .0 12.600 .0 16.200 2.100 . 3 5.700 .0 9.300 .0 12.900 16,500 .0 2.400 6.000 .0 9.600 .0 13.200 .0 16.800 .0 2,700 .0 6.300 .0 9.900 .0 13.500 17.100 .0 .0 3,000 . 0 6.600 .0 10.200 .0 13.800 17.400 .0 3.300 .0 6.900 .0 10.500 - 0 14,100 17.700 RUNOFF VOLUME = 2.34581 INCHES 581 INCHES = .0601 ACRE-FEET 1.43 CFS AT 1.500 HOURS BASIN AREA = .0005 SQ. MI. PEAK DISCHARGE RATE = *S *S EXISTING CONDITIONS - RUNOFF TO ROSEMONT AND FIRST *S ID 51 HYD 151.1 ID I 1 ID II 2 ID 52 HYD 151.2 ID I 51 ID II 4 ADD HYD ADD HYD *S *S TOTAL EXISTING RUNOFF TO INTERSECTION PRINT HYD ID=52 CODE 10 PARTIAL HYDROGRAPH 151.20 TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW HRS CES HRS CFS HRS CFS HRS CFS HRS CFS .0 .000 10.800 11.100 3.600 .1 7.200 .1 14.400 3.900 4.200 .300 .0 .1 7.500 .1 14.700 .600 .0 . 1 7.800 .1 11.400 15.000 15.300 .900 .0 4.500 . 1 8.100 11.700 .1 .1 1.200 4.800 . 1 8.400 12.000 15.600 . 1 1.500 24.1 5.100 .1 8.700 12.300 15.900 .1 1.800 8.5 5.400 9.000 12.600 12.900 .1 16.200 . 1 2.100 4.0 .1 9.300 .1 16.500 2.400 1.0 6.000 .1 9.600 13.200 .1 16.800 .1 2,700 . 4 6.300 . 2 9.900 13.500 17.100 .1 3,000 .2 6.600 .1 10.200 .1 13.800 17.400 3,300 6.900 10,500 14.100 17.700 RUNOFF VOLUME = 2.15471 INCHES .9860 ACRE-FEET 24.14 CFS AT 1.500 HOURS BASIN AREA = PEAK DISCHARGE RATE = .0086 SQ. MI. *****S

*	•
×	
*	
*S	
*S EXISTING CONDITIONS -	RUNOFF TO MOUNTAIN AND FIRST
*S	
*	
*S	
_ T.,	
ADD HYD ID 54	HYD 154.1 ID I 3 ID II 6
*S	•
*S TOTAL EXISTING RUNOFF	THE THE PROPERTY OF THE PROPER
	TO INTERSECTION
*S	
PRINT HYD ID=54	CODE 10
• •	

PARTIAL	HYDROGRAPH	154.10
** 11.7 77 111	HIDMOGRAFIL	134.10

TIME HRS .000 .300 .600 .900 1.200 1.500	FLOW CFS .0 .0 .0 .0 .1 3.9	TIME HRS 3.600 3.900 4.200 4.500 4.800 5.100	FLOW CFS .0 .0 .0	TIME HRS 7.200 7.500 7.800 8.100 8.400	FLOW CFS .0 .0 .0	TIME HRS 10.800 11.100 11.400 11.700 12.000	FLOW CFS .0 .0 .0 .0 .0 .0	TIME HRS 14.400 14.700 15.000 15.300 15.600	FL C
.900 1.200	.0	4.500 4.800	.0	8.100	.0	11.700		15.300	

```
5.400
5.700
6.000
6.300
       1.800
                                               .0
                                                           9.000
                                                                                    12.600
                                                                                                              16.200
       2.100
                                               .0
                                                           9.300
                                                                                    12.900
                                                                                                   .0
                                                                                                              16.500
                                                                                                                             .0
       2.400
                     .2
                                               .0
                                                           9.600
                                                                         .0
                                                                                    13,200
                                                                                                   .0
                                                                                                              16,800
                                                                                                                             .0
       2.700
                     . 1
                                               .0
                                                                         .0
                                                                                    13.500
                                                                                                   .0
                                                                                                              17,100
                                                                                                                             .0
       3.000
                     .0
                                 6,600
                                               .0
                                                          10.200
                                                                         .0
                                                                                    13.800
                                                                                                   .0
                                                                                                              17.400
                                                                                                                             . 0
       3.300
                     .0
                                 6.900
                                               .0
                                                          10.500
                                                                         .0
                                                                                    14.100
                                                                                                   .0
                                                                                                              17.700
                                                                                                                             .0
      RUNOFF VOLUME =
                        2.36406 INCHES
                                                        .1652 ACRE-FEET
                                3.92 CFS AT 1.500 HOURS BASIN AREA = .0013 SQ. MI.
      PEAK DISCHARGE RATE =
  *S EXISTING CONDITIONS - RUNOFF TO MOUNTAIN AND SECOND
  *S TOTAL EXISTING RUNOFF TO INTERSECTION
  PRINT HYD
                     ID=5 CODE 10
                                       PARTIAL HYDROGRAPH 105.10
      TIME
                 FLOW
                                TIME
                                           FLOW
                                                          TIME
                                                                     FLOW
                                                                                    TIME
                                                                                               FLOW
                                                                                                              TIME
       HRS
                  CFS
                                 HRS
                                           CFS
                                                           HRS
                                                                      CFS
                                                                                                               HRS
                                                                                     HRS
                                                                                                CFS
                                                                                                                          CFS
        .000
                   .0
                                3.600
                                            .0
                                                          7.200
                                                                                   10.800
                                                                                                 .0
                                                                                                             14.400
        .300
                    .0
                                3.900
                                              .0
                                                          7.500
                                                                        . 0
                                                                                   11.100
                                                                                                  .0
                                                                                                             14.700
15.000
       .600
                    .0
                                4.200
                                              .0
                                                          7.800
                                                                        .0
                                                                                   11.400
        .900
                    .0
                                4.500
                                                          8.100
                                                                        .0
                                                                                   11.700
                                                                                                  .0
                                                                                                             15.300
      1.200
                    .0
                                4.800
                                              .0
                                                          8.400
                                                                        .0
                                                                                  12.000
12.300
                                                                                                  .0
                                                                                                             15.600
                                                                                                                            .0
      1.500
                                                          8.700
                    .9
                                5,100
                                              .0
                                                                        .0
                                                                                                  .0
                                                                                                             15.900
      1.800
                                5.400
                                              .0
                                                         9.000
                                                                                   12.600
                                                                                                  .0
                                                                                                             16,200
      2,100
                   .1
                                5.700
                                              .0
                                                                                 12.900
13.200
                                                         9.300
                                                                        .0
                                                                                                  .0
                                                                                                             16.500
                                                                                                                            .0
      2.400
                    .0
                                6.000
                                             .0
                                                         9.600
                                                                        .0
                                                                                                  .0
                                                                                                             16.800
      2.700
                    .0
                                6.300
                                              .0
                                                          9.900
                                                                        .0
                                                                                  13.500
                                                                                                            17.100
                                                                                                                            . 0
      3.000
                   .0
                                6.600
                                             .0
                                                        10.200
                                                                        . 0
                                                                                  13.800
                                                                                                             17.400
                                                                                                                            .0
      3.300
                   .0
                                6.900
                                             .0
                                                         10.500
                                                                       .0
                                                                                   14,100
                                                                                                            17.700
     RUNOFF VOLUME = 2.14157 INCHES = .0354 ACRE-FEET
PEAK DISCHARGE RATE = .89 CFS AT 1.500 HOURS BASIN AREA =
                                                                               .0003 SQ. MI.
*S DEVELOPED CONDITIONS
*S DEVELOPED CONDITIONS - RUNOFF TO ROSEMONT AND FIRST
ADD HYD
                    ID 61 HYD 161.1 ID I 1 ID II 2
ADD HYD
                    ID 62 HYD 161.2 ID I 51 ID II 8
*S TOTAL DEVELOPED RUNOFF TO INTERSECTION
PRINT HYD
                   ID=62 CODE 10
                                     PARTIAL HYDROGRAPH 161.20
     TIME
               FLOW
                              TIME
                                         FLOW
                                                         TIME
                                                                   FLOW
                                                                                   TIME
                                                                                             FLOW
                                                                                                            TIME
                                                                                                                       FLOW
      HRS
                CFS
                               HRS
                                          CFS
                                                         HRS
                                                                    CFS
                                                                                    HRS
                                                                                              CFS
                                                                                                             HRS
                                                                                                                        CFS
      .000
                              3.600
                                           . 1
                                                         7.200
                                                                                 10.800
                                                                                                            14.400
                                                                                               .1
      .300
                  .0
                              3.900
                                            . 1
                                                         7.500
                                                                                 11.100
                                                                                                           14.700
      .600
                .0
                              4.200
                                            .1
                                                         7.800
                                                                      .1
                                                                                 11.400
                                                                                                . 1
                                                                                                            15.000
     .900
                                                                                                                          . 1
                              4.500
                                            .1
                                                         8.100
                                                                      .1
                                                                                 11.700
                                                                                                . 1
                                                                                                            15.300
     1.200
                .4
24.1
                              4.800
                                                         8.400
                                                                      .1
                                                                                 12,000
                                                                                                            15.600
     1.500
                              5.100
                                                         8,700
                                                                      \vec{1}
                                                                                 12.300
12.600
                                                                                                            15.900
     1.800
                                                                                                                          . 1
                 8.5
                              5.400
                                            . 1
                                                         9.000
                                                                      .1
                                                                                                . 1
                                                                                                            16.200
    2.100
                 4.1
                                            . 1
                                                         9.300
                                                                      .1
                                                                                 12.900
                                                                                                .1
                                                                                                           16.500
    2.400
                 1.0
                              6,000
                                                        9.600
                                                                                 13.200
                                                                                                . 1
                                                                                                           16.800
    2,700
                              6.300
                                            .2
                                                        9.900
                                                                      .1
                                                                                 13.500
                                                                                                           17.100
17.400
    3.000
                  .2
                              6.600
                                                       10.200
                                                                      .1
                                                                                 13.800
    3.300
                                                                                                                          . 1
                              6.900
                                                       10.500
                                                                                 14.100
                                                                                                           17.700
```

*S

* 0

*S

*S

*S * S RUNOFF VOLUME = 2.15598 INCHES = .9866 ACRE-FEET
PEAK DISCHARGE RATE = 24.14 CFS AT 1.500 HOURS BASIN AREA = .0086 SQ. MI. RUNOFF VOLUME = 2.15598 INCHES

```
*S DEVELOPED CONDITIONS - RUNOFF TO MOUNTAIN AND FIRST
  *S
 ADD HYD
                     ID 63 HYD 163.1 ID I 7 ID II 10
  *S
  *S TOTAL DEVELOPED RUNOFF TO INTERSECTION
 PRINT HYD
                     ID=63 CODE 10
                                       PARTIAL HYDROGRAPH 163.10
      TIME
                 FLOW
                                TIME
                                           FLOW
                                                                     FLOW
                                                                                    TIME
                                                                                               FLOW
                                                                                                              TIME
       HRS
                  CFS
                                 HRS
                                                                                                                          FLOW
                                           CFS
                                                            HRS
                                                                      CFS
       .000
                                                                                      HRS
                                                                                                CFS
                                                                                                                HRS
                   .0
                                3.600
                                                                                                                          CFS
                                            .0
                                                          7.200
                                                                                   10.800
                                                                                                 .0
                                                                                                             14.400
       .300
                                                                                                                            .0
                    . 0
                                3.900
                                                          7.500
7.800
                                                                        .0
                                                                                    11.100
       .600
                   . 0
                                                                                                   .0
                                                                                                              14.700
                                                                                                                             .0
                                4.200
                                                                        ٠0
                                                                                   11.400
       .900
                   . 0
                                                                                                  . 0
                                                                                                              15.000
                               4.500
                                                          8.100
                                                                        .0
                                                                                    11.700
                                                                                                  .0
      1.200
                                                                                                              15.300
                               4.800
                                              .0
                                                          8.400
                                                                        .0
                                                                                   12.000
                                                                                                  .0
      1.500
                  3.8
                                                                                                              15,600
                                                                                                                             .0
                                5.100
                                              .0
                                                          8.700
                                                                        .0
                                                                                   12,300
                                                                                                  .0
      1.800
                                                                                                              15.900
                  1.4
                               5.400
                                                                                                                             .0
                                              .0
                                                          9.000
                                                                                   12,600
      2,100
                                                                                                  .0
                   .7
                                                                                                              16.200
                                5.700
                                                                                                                             .0
                                             .0
                                                          9.300
                                                                        .0
                                                                                   12.900
      2.400
                                                                                                  .0
                                                                                                              16.500
                                                                                                                             .0
                   .1
                                6.000
                                             .0
                                                         9.600
                                                                        .0
                                                                                   13.200
                                                                                                  .0
      2.700
                                                                                                             16.800
                   .1
                                6.300
                                             .0
                                                          9.900
                                                                        .0
                                                                                   13.500
                                                                                                  .0
      3,000
                                                                                                             17.100
                                6.600
                                             .0
                                                        10.200
                                                                        .0
                                                                                   13.800
                                                                                                  .0
      3.300
                                                                                                             17,400
                                6.900
                                             .0
                                                         10.500
                                                                        .0
                                                                                   14.100
                                                                                                             17.700
    RUNOFF VOLUME = 2.30424 INCHES
    RUNOFF VOLUME = 2.30424 INCHES = .1610 ACRE-FEET
PEAK DISCHARGE RATE = 3.85 CFS AT 1.500 HOURS BASIN AREA = .0013 SQ. MI.
*5
*S DEVELOPED CONDITIONS - RUNOFF TO MOUNTAIN AND SECOND
*s
*S TOTAL DEVELOPED RUNOFF TO INTERSECTION
PRINT HYD
                   ID=9 CODE 10
                                     PARTIAL HYDROGRAPH 109.10
    TIME
               FLOW
                              TIME
                                         FLOW
                                                         TIME
                                                                    FLOW
                                                                                   TIME
     HRS
                                                                                              FLOW
                                                                                                             TIME
                CFS
                                                                                                                        FLOW
                               HRS
                                          CFS
                                                          HRS
                                                                     CFS
                                                                                    HRS
     .000
                  .0
                                                                                               CFS
                                                                                                              HRS
                                                                                                                         CFS
                              3.600
3.900
                                           .0
                                                        7.200
                                                                     .0
                                                                                  10.800
                                                                                                            14.400
14.700
                                                                                               .0
     .300
                                            .0
                                                         7.500
                                                                       .0
                                                                                  11.100
                                                                                                 .0
     .600
                                                                                                                            .0
                              4.200
                                            .0
                                                        7.800
                                                                     .0
                                                                                  11.400
     .900
                                                                                                            15.000
                  .0
                              4.500
                                            . 0
                                                        8.100
                                                                                 11.700
12.000
12.300
    1.200
                                                                                                ٠0
                                                                                                            15.300
                                                                                                                           .0
                  .0
                              4.800
                                            .0
                                                        8.400
    1.500
                                                                                                 .0
                                                                                                            15.600
                                                                                                                           .0
                  . 9
                              5.100
                                            .0
                                                        8.700
    1.800
                                                                                                 .0
                                                                                                            15.900
                                                                                                                           .0
                  . 3
                              5.400
5.700
6.000
                                            .0
                                                        9.000
                                                                                 12.600
    2.100
                                                                                                 .0
                                                                                                            16.200
                                                                                                                           .0
                                            .0
                                                        9.300
                                                                       .0
                                                                                  12.900
                                                                                                 .0
    2.400 2.700
                                                                                                            16.500
                                                                                                                           .0
                                            .0
                                                         9.600
                                                                       . 0
                                                                                  13.200
                                                                                                 .0
                                                                                                            16.800
                  .0
                              6.300
                                                                                                                           .0
                                            .0
                                                        9.900
                                                                      .0
    3.000
                                                                                  13.500
                                                                                                            17,100
                  . 0
                              6.600
                                                                                                                           . 0
                                            .0
                                                       10.200
                                                                                  13,800
                                                                                                 .0
    3.300
                                                                                                            17.400
                                                                                                                           .0
                  .0
                              6.900
                                            .0
                                                       10.500
                                                                                  14,100
                                                                                                .0
                                                                                                            17.700
                                                                                                                           .0
   RUNOFF VOLUME = 2.16242 INCHES
                                                     .0358 ACRE-FEET
   PEAK DISCHARGE RATE =
                              .88 CFS AT 1.500 HOURS BASIN AREA = .0003 SQ. MI.
```

*S FINISH

*S

*-----

NORMAL PROGRAM FINISH END TIME (HR:MIN:SEC) = 09:43:29 -(s0p10h4099T-€16D

SIDEWALK CULVERT CAPACITY

AS A CHANNEL PER MANNING ERN

Use
$$N = 0.013$$
 $d = 0.5'$ $s = 2\%$

$$Q_{CAP} = 7.8 cfs \gg Q_{100} = \frac{2.42}{2} = 1.2 cfs$$

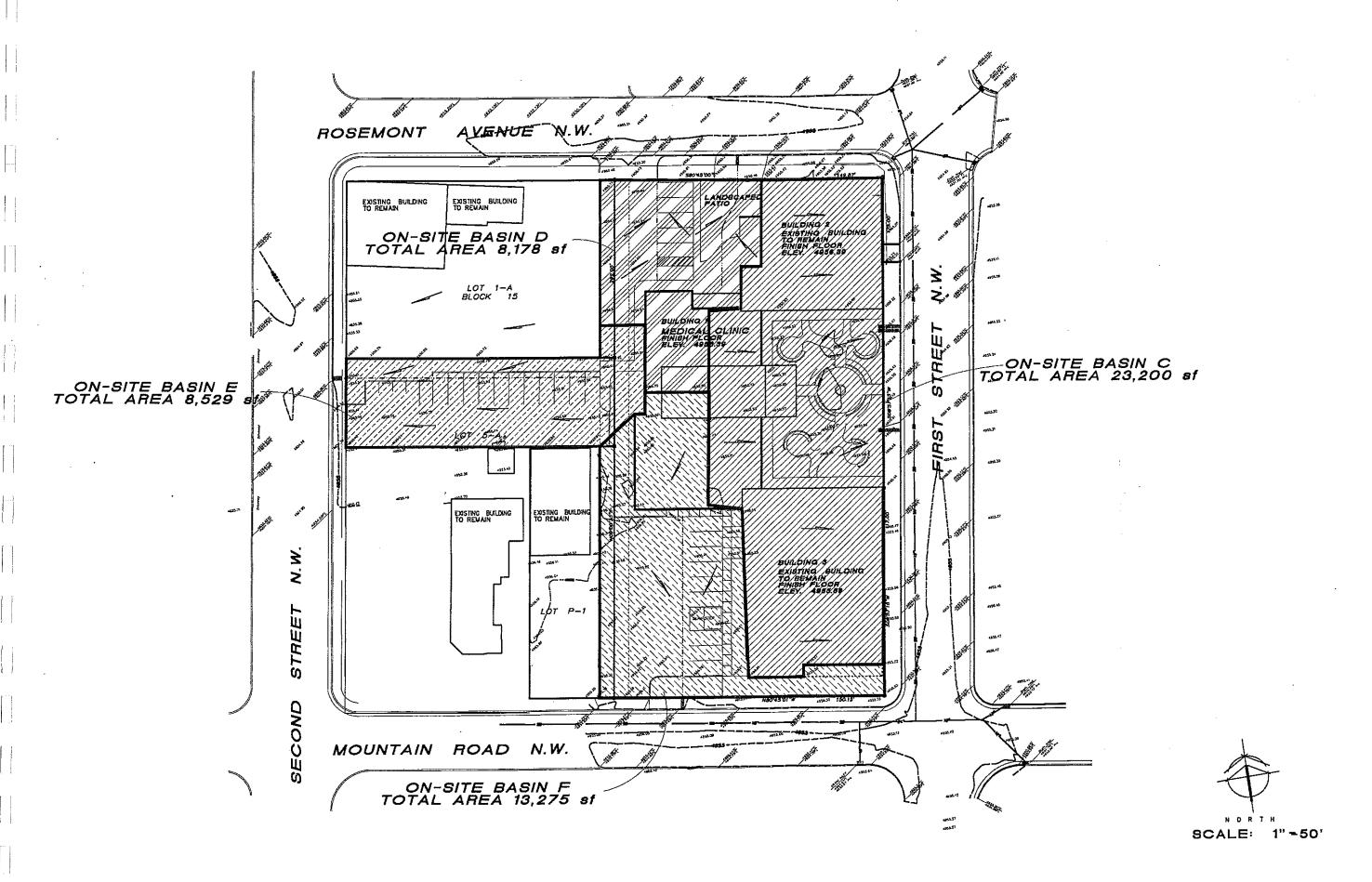
$$(Vorst Case 1/2 Basin A)$$

AS A WEIR

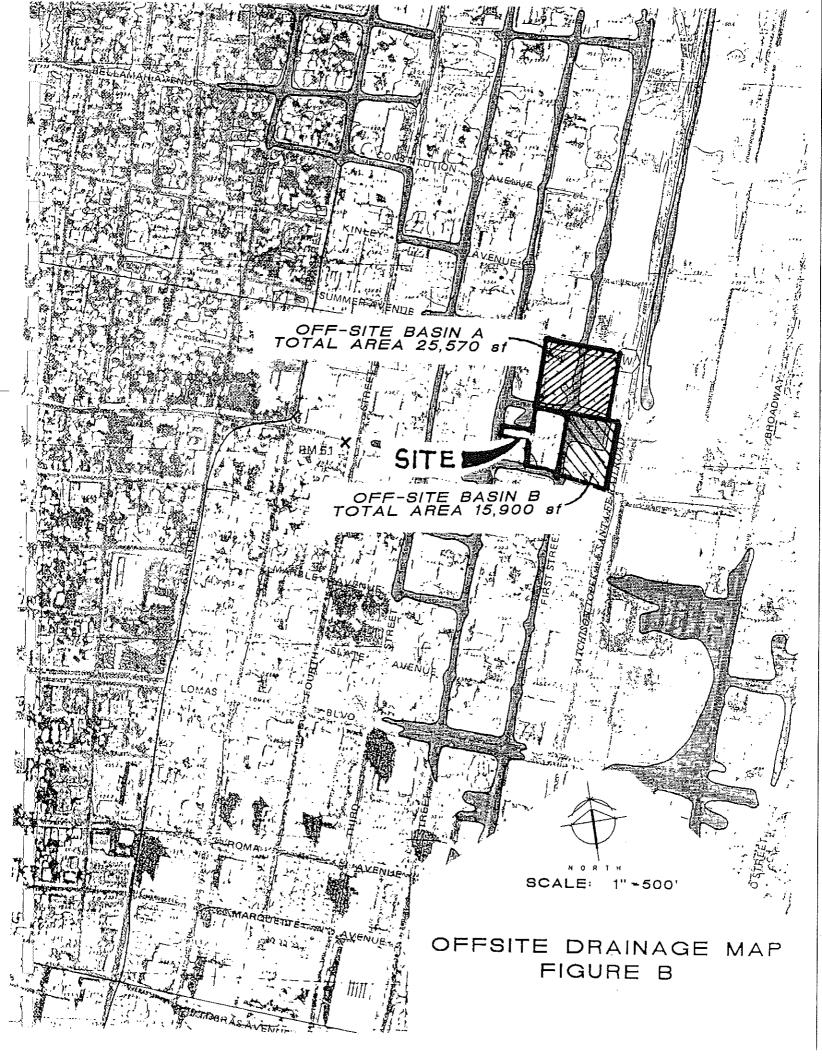
(WORST CASE 1/2 BASINA)

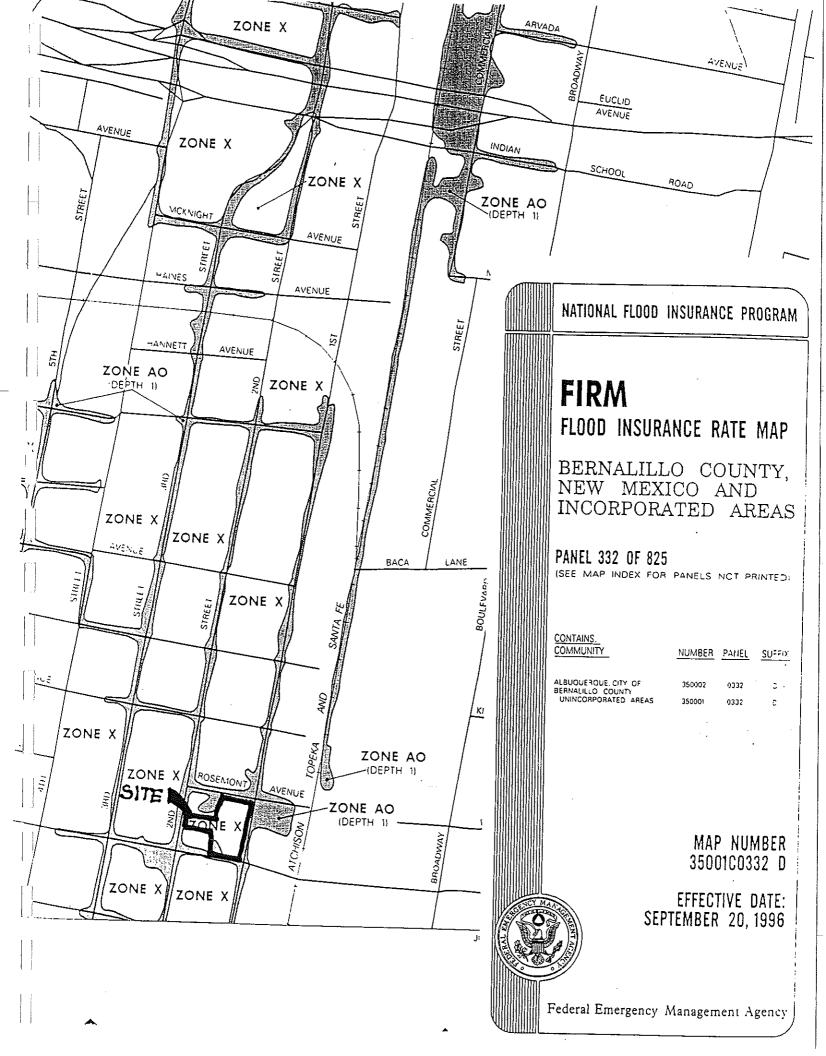
Note: 24" culyerts have been used as the outlet for Basins C, D, E, & F

Qno (C) = 2.92ds-2 culverTs installed


Q100 (D) = 0.84 cfs

Q100 (E) = 0.88 c/s


Q100 (F): 1.43 ds


All Qroo < QCAP=1.8cts OX

APPENDIX B

ONSITE DRAINAGE MAP FIGURE A

