City of Albuquerque December 8, 1999 Billy McCarty, P.E. Chavez-Grieves 5639 Jefferson Street NE Albuquerque, NM 87109 RE: HEALTHCARE FOR THE HOMELESS(J14-D132).. ENGINEER'S CERTIFICATION FOR CERTIFICATE OF OCCUPANCY APPROVAL. ENGINEER'S STAMP DATED OCTOBER 1, 1999. Dear Mr. McCarty: Based on the information provided on yourOctober 1, 1999 submittal, the above referenced project is approved for Certificate of Occupancy. For the record, the File Copy of the G&D Plan should have both the 12/31/98 Engineer's Stamp Date and executed SO#19 Signature Block. It is clear that the 10/1/99 Engineer's Certification is for the 12/31/98 Plan. If I can be of further assistance, please feel free to contact me at 924-3984. Sincerely, John P. Murray, P.E. Hydrology c: WR V File Chack NEED CO 00 SHOULD PLANT December 8, 1999 Billy McCarty, P.E. Chavez-Grieves 5639 Jefferson Street NE Albuquerque, NM 87109 RE: HEALTHCARE FOR THE HOMELE'SS(J14-D132).. ENGINEER'S CERTIFICATION FOR CERTIFICATE OF OCCUPANCY APPROVAL. ENGINEER'S STAMP DATED OCTOBER 1, 1999. Dear Mr. McCarty: Based on the information provided on yourOctober 1, 1999 submittal, the above referenced project is approved for Certificate of Occupancy. For the record, the File Copy of the G&D Plan should have both the 12/31/98 Engineer's Stamp Date and executed SO#19 Signature Block. It is clear that the 10/1/99 Engineer's Certification is for the 12/31/98 Plan. If I can be of further assistance, please feel free to contact me at 924-3984. Sincerely, John P. Murray, P.E. Hydrology c: WR File ## DRAINAGE INFORMATION | | ZONE ATLAS/DRNG. FILE #: J-14/D13 | |---|---------------------------------------| | DRB#: EPC \\ #: | WORK ORDER #: | | LEGAL DESCRIPTION: LOTS 5-A AND 13-A, BL | OCK 15 OF PARIS ADDITION NO. 2 | | CITY ADDRESS: FIRST STREET AND MOUNTAI | N ROAD 1217 First | | ENGINEERING FIRM: CHAVEZ-GRIEVWS | CONTACT: BILLY MCCARTY | | ADDRESS: <u>5639 JEFFERSON</u> , <u>NE</u> | PHONE: <u>344-4080</u> | | OWNER: <u>ALB. HEALTHCARE FOR THE HOMELESS, I</u> | NC CONTACT: | | ADDRESS: | PHONE: | | ARCHITECT: WRIGHT AND HAMMER ARCHITECTS | | | ADDRESS: 1735 ALISO DR., NE | PHONE: <u>266-6764</u> | | SURVEYOR: | CONTACT: | | ADDRESS: | | | CONTRACTOR: | | | ADDRESS: | | | TYPE OF SUBMITTAL: | CHECK TYPE OF APPROVAL SOUGHT: | | | SKETCH PLAT APPROVAL | | | PRELIMINARY PLAT APPROVAL | | CONCEPTUAL GRADING & DRAINAGE PLAN | | | | S. DEV. PLAN FOR BLDG. PRMT. APPROVAL | | | SECTOR PLAN APPROVAL | | X ENGINEER'S CERTIFICATION |
FINAL PLAT APPROVAL | | | FOUNDATION PERMIT APPROVAL | | |
BUILDING PERMIT APPROVAL | | 55- 5-5-51 M | XCERTIFICATE OF OCCUPANCY APPROVAL | | YES | GRADING PERMIT APPROVAL | | <u>X</u> NO | PAVING PERMIT APPROVAL | | COPY PROVIDED | S.A.D. DRAINAGE REPORT | | | DRAINAGE REQUIREMENTS | | | OTHER | | | DECEIVE | | DATE CUDATTTED CENTEMBED OO 4000 | OCT 1 1999 | | DATE SUBMITTED: <u>SEPTEMBER 30, 1999</u> | | | BY: BILLY MCCARTY | HYDROLOGY SECTION | # City of Albuquerque P.O. BOX 1293 ALBUQUERQUE, NEW MEXICO 87103 February 4, 1999 Billy McCarty Chavez-Grieves 5639 Jefferson NE Albuquerque, NM 87109 RE: DRAINAGE REPORT FOR HEALTHCARE FOR THE HOMELESS (J-14/D132) RECEIVED JAN 4, 1999 FOR BUILDING PERMIT ENGINEER'S STAMP DATED 12/31/98 Dear Mr. McCarty: Based on the information included in the submittal referenced above, City Hydrology accepts the Drainage Report for Building Permit. Make sure the **north arrow**, scale and existing drivepad on 2nd Street are shown on Sheet C-5. Include a copy of the approved A separate permit is required for construction of private drainage facilities within the City right of way. A copy of this letter must be on hand when applying for the excavation permit. Engineer's Certification of grading & drainage per DPM checklist must be accepted by City Hydrology before any Certificate of Occupancy will be released. If I can be of further assistance, You may contact me at 768-2727. Sincerely, John P. Curtin, P.E. Project Manager, PWD/Hyd c: Arlene Portillo Andrew Garcia ## CITY OF ALBUQUERQUE PUBLIC WORKS DEPARTMENT ### February 4, 1999 ### INTEROFFICE CORRESPONDENCE HYDROLOGY DIVISION TO: Desiderio Salas, Street Maintenance Division FROM: John P. Curtin, Hydrology Division/Development Section SUBJECT: PRIVATE DRAINAGE FACILITIES WITHIN PUBLIC RIGHT-OF-WAY DRAINAGE FILE NUMBER J14-D132. Transmitted herewith, is a copy of the approved drainage plan for the referenced project incorporating the S.O.19 design. This plan is being submitted to you for permitting and inspection. Please provide this section with a signed-off copy per the signature block upon construction and acceptance by your office. As you are aware, the signed off S.O.19 is required by this office Certificate of occupancy release; therefore your expeditious processing of this plan would be greatly appreciated and would avoid any unnecessary delay in the release of the Certificate of Occupancy. Thank you for your cooperation. If you should have any questions or comments, please call Andrew Garcia at 924-3330. Attachment ## DRAINAGE INFORMATION | PROJECT TITLE: <u>HEALTHCARE FORTHE HOMELESS</u> | ZONE ATLAS/DRNG. FILE #: J-14/132_ | |--|---------------------------------------| | DRB#: EPC #: | WORK ORDER #: | | LEGAL DESCRIPTION: LOTS 5-A AND 13-A, BLO | CK 15 OF PARIS ADDITION NO. 2 | | CITY ADDRESS: <u>FIRST STREET AND MOUNTAIN</u> | I ROAD | | ENGINEERING FIRM: CHAVEZ-GRIEVWS | | | ADDRESS: <u>5639 JEFFERSON</u> . NE | | | OWNER: <u>ALB. HEALTHCARE FOR THE HOMELESS, IN</u> | C CONTACT: 239-7692 | | ADDRESS: | _ PHONE: | | ARCHITECT: WRIGHT AND HAMMER ARCHITECTS | _ CONTACT: <u>DENISE HAMMER</u> | | ADDRESS: 1735 ALISO DR. NE | _ PHONE: <u>266-6764</u> | | SURVEYOR: | CONTACT: | | ADDRESS: | _ PHONE: | | CONTRACTOR: | CONTACT: | | ADDRESS: | _ PHONE: | | TYPE OF SUBMITTAL: | HECK TYPE OF APPROVAL SOUGHT: | | X DRAINAGE REPORT | SKETCH PLAT APPROVAL | | DRAINAGE PLAN | PRELIMINARY PLAT APPROVAL | | | S. DEV. PLAN FOR SUB'D. APPROVAL | | | S. DEV. PLAN FOR BLDG. PRMT. APPROVAL | | EROSION CONTROL PLAN | SECTOR PLAN APPROVAL | | | FINAL PLAT APPROVAL | | | FOUNDATION PERMIT APPROVAL | | | X BUILDING PERMIT APPROVAL | | PRE-DESIGN MEETING: | CERTIFICATE OF OCCUPANCY APPROVAL | | YES | GRADING PERMIT APPROVAL | | | PAVING PERMIT APPROVAL | | COPY PROVIDED | S.A.D. DRAINAGE REPORT | | | DRAINAGE REQUIREMENTS | | | OTHER OVIET | | | | | | JAN - 4 1999 | | DATE SUBMITTED: JANUARY 4, 1999 | HYDROLOGY SECTION | | BY: BILLY MCCARTY | TYUROLOGI | 5639 JEFFERSON STREET NE • ALBUQUERQUE, NEW MEXICO 87109 • PHONE (505) 344-4080 • FAX (505) 343-8759 ## LETTER OF TRANSMITTAL | TO: | A Hydrolog | / | I | DATE: | 1-4-99 | |-------------|---|--------------|---|----------|---------------------------------------| | | | | | JOB # | W23-106-5098 | | | | | F | RE: | Healthcare Fortho | | ATTN: | | | | Homaless | | | WE ARE SENT | DING YOU | ATTACHED | UNDER S | SEPARA | TE COVER, THE FOLLOWING | | SHOP D | RAWINGS | _PLANS | SPECIFIC | ATION | SDISKETTE | | CHANGE | ORDER | _PRINTS | CALCULAT | IONS | PROPOSAL INFO | | COPY O | F LETTER | _SAMPLES | REPORT | | | | COPIES | DATE | NO. | • | DESCR | IPTION | | 2 | 12-31-98 | | | Drain | ase Report | | THESE ARE | FRANSMITTED A | S CHECKED BE | | REVIE | W & COMMENT | | AS REQU | JESTED | | RETU | RNED | AFTER LOAN TO US | | PLEASE | CORRECT AND | RESUBMIT | SUBM | IT | COPIES FOR DISTRIBUTION | | RESUBM | ITTAL IS NOT | REQUIRED | RETU | RN | _CORRECTED PRINTS | | CORREC | TIONS, IF ANY | , ARE NOTED | BIDS | S/PROP | OSALS DUE 199_ | | REMARKS: | · • • • • • • • • • • • • • • • • • • • | <u> </u> | , <u>, , , , , , , , , , , , , , , , , , </u> | | · · · · · · · · · · · · · · · · · · · | | | | | <u>-</u> | | | | | | | | | | | | | | <u> </u> | | · · · · · · · · · · · · · · · · · · · | | | | <u></u> | | | | | COPIES TO: | Files, Wright | and Hammer | SI | GNED: | Bills Om lates | 5639 JEFFERSON STREET NE • ALBUQUERQUE, NEW MEXICO 87109 • PHONE (505) 344-4080 • FAX (505) 343-8759 ## GRADING AND DRAINAGE PLAN ## FOR THE ## HEALTH CARE FOR THE HOMELESS LOCATED AT 1217 FIRST STREET N.W. ALBUQUERQUE, NEW MEXICO DECEMBER 1998 ## TABLE OF CONTENTS | I. | PURPOSE OF THIS REPORT | 1 | |-------|--|---| | II. | LOCATION | 1 | | III. | LEGAL DESCRIPTION | 1 | | IV. | ZONING AND SURROUNDING DEVELOPMENT | 1 | | V. | FLOOD HAZARD ZONES | 1 | | VI. | EXISTING SITE CONDITIONS AND DRAINAGE PATTERNS | 1 | | VII. | PROPOSED SITE CONDITIONS AND DRAINAGE PATTERN | 2 | | VIII. | OFFSITE RUNOFF | 3 | | IX. | SUMMARY OF RUNOFF | 4 | | X. | CONCLUSION | 5 | | XI. | APPENDICES 1. APPENDIX A 2. APPENDIX B | | #### I. PURPOSE OF THIS REPORT This report has been prepared to submit to the City of Albuquerque Public Works - Hydrology Department for Building Permit Approval. This project is an infill project that proposes to renovate the existing northeast and southeast on the site. The northwest building and numerous small buildings in the center portion of the site will be removed and replaced with a new building that will connect between the two remaining buildings. A landscaped courtyard will be constructed in the central portion of First Street frontage. Three paved parking lots are proposed, one will enter off mountain and will parallel the west side of the southern building, the second will enter off Rosemont Street and will parallel the west side of the northern building, the third will enter off Second Street and run perpendicular to Second Street. The remaining portions of the block, northwest and southwest corners are owned by third parties and are not part of this project. #### II. LOCATION This site is located at 1217 First Street NW. and includes most of the city block bounded by First Street on the east, Second Street on the west, Mountain Avenue on the south, and Rosemont Avenue on the north. The areas within this city block not included are the northwest and southwest corners as described above. #### III. LEGAL DESCRIPTION Lots 5-A and 13-A, Paris Addition No. 2 #### IV. ZONING AND SURROUNDING DEVELOPMENT The present zoning of the site is M-1, Light Manufacturing. The proposed use, a healthcare clinic, is an approved usage under the existing zoning. #### V. FLOOD HAZARD ZONES As shown on panel 35001C0332 D, Dated September 20, 1996, all of Rosemont Ave, First Street, and Second Street adjacent to the parcel are in an AO 100-year floodplain, Flood Depths of 1 to 3 feet deep. This floodplain encroaches into the site at the drivepads on Rosemont Ave. and Mountain Ave. However, the existing and new buildings are not within the limits of the floodplain. #### VI. EXISTING SITE CONDITIONS AND DRAINAGE PATTERNS The existing site is developed as a Construction Company Office and Storage Yard. There are four permanent buildings and numerous portable buildings and mobile buildings onsite. The only buildings proposed to remain are the buildings on the northeast and southeast corners of the site. The western half of the northeast building is proposed to be removed. The majority of the site that is used for drive access and storage has been graded and covered with material that appears to be asphalt millings and emulsion seal coat. The site is void of landscaping. The site has been graded to utilize the existing minimal vertical elevation differential to drain away from the permanent buildings. Therefore, the current discharge is via shallow sheet flow towards the nearest street - typically through a drivepad. There is an existing french drain located in the central area of the site that appears to be plugged by sediment and garbage. This plan proposes to remove the french drain. #### VII. PROPOSED SITE CONDITIONS AND DRAINAGE PATTERN The proposed modifications to the site, as shown on the Grading Plan in Appendix B, include removal of all the small structures, portable structures, and mobile buildings onsite leaving only the buildings at the northeast and southeast corner of the site. Additionally, the west half (approximately) of the building at the northeast corner of the site will be removed. The proposed new construction includes a <u>infill building</u> between the two remaining buildings, a new landscaped patio between the existing and new building on First Street, and new parking lots perpendicular to both Mountain and Rosemont Ave. and west of the existing buildings, and a new parking lot perpendicular to Second Street and about half way between Rosemont and Mountain Ave. The grading plan proposes to drain all of the remaining existing buildings, the new patio, and the east half of the new building to First Street via <u>Two 24" sidewalk</u> culverts located at the north and south sides of the new patio. To avoid an 8" dropoff at the back of the sidewalk, a <u>24" x 24" trench grate</u> is proposed adjacent to the back of the sidewalk. This is shown as Basin 'C' on the Drainage Basin Map in Appendix B. The northwest corner of the new building, the new north parking lot, and the landscape area between the northeast building and the north parking lot are proposed to drain north through a swale in the landscaping and 24" sidewalk culvert into Rosemont Ave. This area is shown as Basin 'D' on the Drainage Basin Map in Appendix B. The remaining southeast building, south end of the new building, and south parking lot drain into Mountain Ave. via a swale in the parking lot and 24" sidewalk culvert into Mountain. This area is shown as Basin 'F' on the Drainage Basin Map in Appendix B. The remaining west parking lot, on Second Street, drains into Second Street via a swale in the landscaping on the north side of the parking lot that briefly crosses the parking lot and into a 24" sidewalk culvert into Second Street just north of the drivepad. This Basin is shown as Basin 'E" on the Drainage Basin Map in Appendix B. The runoff discharge points discussed above are similar in location to the existing discharge points from the site. As noted in the Summary below, the runoff peak rates and volumes generated by the proposed construction are very close to those generated by the existing development. #### VIII. OFFSITE RUNOFF There are two offsite drainage basins that affect this project as shown on the Offiste Drainage Map in Appendix B. The first basin, Basin 'A' includes the block between Rosemont Ave. and Kinley Ave. and is bordered on the west about midway between First and Second Street and on the east by the railroad tracks. This report assumes that all runoff in First Street north of Kinley is intercepted in the existing four 'P' Type inlets at Kinley Ave and First Street. This appears to be a reasonable assumption since there is a high area in first at the south side of Kinley that would increase the interception capacity of those inlets. This basin includes several commercial and industrial type developments that are mostly buildings, paved parking lots, and compacted earth storage areas. The land treatment percentages used in the AHYMO runs included in Appendix A are based on Table A.5 in the DPM Section 22.2. Visual inspection of the sites and photogramitry based Floodway Maps appear to justify the assumptions for this basin. The second offsite basin, Basin 'B', includes the area between First Street and the west side of the railroad tracks west of First. This basin begins at Kinley Ave. on the north and runs south to adjacent to Rosemont Ave. This area will discharge to First Street only after initial ponding has become deep enough to provide some head to drive the flow since the basin in almost flat. The land treatment percentages used in the AHYMO runs included in Appendix A are based on Table A.5 in the DPM Section 22.2. Although this basin is almost entirely compacted earth parking and stroage areas, the higher percentage of Type D land treatment have been used since the existing zoning would allow development of this basin similar to what is sugested in Table A.5. The runoff from both offsite basin collects in First Street and runs south to the intersection at Rosemont where four 'P' Type inlets collect the runoff. ### IX. SUMMARY OF RUNOFF | T | | 00-Year Storm | | ODED CONDITIONS | | |-------|-------------------------------|-----------------------------------|------------------------|-----------------------------------|--| | BASIN | EXISTING CONDI | | DEVELOPED CON | | | | | (cfs) | V ₁₀₀ (cf) | Q ₁₀₀ (cfs) | V ₁₀₀ (cf) | | | | (CIS) | (CI) | (CIS) | (01) | | | A | 14.36 | 25,574 | 14.36 | 25,574 | | | В | 8.94 | 15,899 | 8.94 | 15,899 | | | C | 2.50 | 4,661 | 2.42 | 4,400 | | | D | 0.84 | 1,481 | 0.84 | 1,481 | | | E | 0.89 | 1,525 | 0.88 | 1,568 | | | F | 1.41 | 2,526 | 1.43 | 2,614 | | | | 1 | 0-Year Storm | | | | | | EXISTING CONDI | | DEVELOPED CON | NDITIONS | | | | | | | * 7 | | | | Q_{100} | \mathbf{V}_{100} | \mathbf{Q}_{100} | V ₁₀₀ | | | | Q ₁₀₀ (cfs) | V ₁₀₀ (cf) | Q ₁₀₀ (cfs) | V ₁₀₀ (cf) | | | | | | | | | | A | | | | | | | A B | (cfs) | (cf) | (cfs) | (cf) | | | | (cfs)
9.57 | (cf)
17,050 | (cfs)
9.57 | (cf)
17,050 | | | B | (cfs)
9.57
5.96 | (cf)
17,050
10,593 | (cfs)
9.57
5.96 | (cf)
17,050
10,593 | | | B | (cfs)
9.57
5.96
1.67 | (cf)
17,050
10,593
3,107 | (cfs) 9.57 5.96 1.61 | (cf)
17,050
10,593
2,933 | | #### X. CONCLUSION Since this area is included in a 100-year floodplain with designation Zone AO, it is assumed that the inlets and storm drain do not have the capacity to handle the runoff generated from more intense storm events. However, the floodplain boundaries appear to place the depth of flooding within the right-of-way on First Street and in the parking areas on Rosemont Ave. and Mountain Ave. By inspection of the surveyed elevations in the areas of the floodplain boundaries, it would appear that the flood elevations in a 100-year event will be about 3" below the finished floor elevation of the existing and proposed new building. Please note that this project is an infill and renovation project in nature and that the adjacent parcels and offsite drainage basins contributing flows to this site are developed similar to there zoning and capacity. Therefore, the amount of flooding in current conditions should not become worst. Also, the proposed renovations of this site have not increased the peak runoff rates or volumes above current rates and therefore should not increase the flood level downstream of the site. #### GRAPHIC SCALE IN FEET Map Amended through April 18, 1996 LEGAL DESCRIPTION RDE BEC 17 UNIFORM PROPERTY CODE J-14-Z APPENDIX A AHYMO PROGRAM SUMMARY TABLE (AHYMO_97) INPUT FILE = D:\AHYMO\HOME100.TXT - VERSION: 1997.02c RUN DATE (MON/DAY/YR) =12/30/1998 USER NO. = AHYMO-I-9702a0100001A-SH | | HYDROGRAPH | | TO
ID | AREA | PEAK
DISCHARGE | RUNOFF
VOLUME | RUNOFF | TIME TO
PEAK | CFS
PER | PAGE : | = | |--|----------------------------|----------------|-----------|-------------------------------|-------------------|------------------|----------|-----------------|------------|-----------|-----| | MMAND | IDENTIFICATION | | | (SQ MI) | (CFS) | (AC-FT) | (INCHES) | (HOURS) | ACRE | NOTAT | ION | | ART COMPUT HOME10 | E 100 YR. 24 HF
O.DAT - | | | FOR HEALTHCA
1993 DPM REVI | | | | | • | rime= | | | PRECIPITAT | ION ZONE 2 PER | FIGURE | A-1 | | | | , | | | | | | INFALL TYP | E= 2 | | | | | | | |] | RAIN24= | 2. | | COMPUTE RU | NOFF FOR EXIST | NG CON | DITIONS | - OFFSITE BA | SINS | | | | | | | | USE 80% TY | PE D - HEAVY IN | IDUSTRI | AL PER T | TABLE A-5 | | | | | | | | | MPUTE NM HY | 101.10 |) - | 1 | .00511 | 14.36 | .587 | 2.15427 | 1.500 | 4.391 | PER IMP= | 8 | | OFFSITE - | BASIN B
PE D - HEAVY IN | וחוופדפו | AI. PER T | CARLE A-5 | | | | | | | | | | | | 2 | .00318 | 8.94 | .365 | 2.15428 | 1.500 | 4 395 | PER IMP= | . 8 | | IPUTE NM HY | 102.10 |) - | ۷ | .00310 | 0.34 | .505 | 2.13420 | 1.500 | 4.373 | LUK III – | Ū | | ONSITE - | BASIN C | | • | | | | | | | | | | MPUTE NM HY | 103.10 |) <u>~</u> | 3 | .00083 | 2.50 | .107 | 2.41108 | 1.500 | 4.715 | PER IMP= | 10 | | ONSITE - | BASIN D | | | | | | | | | | | | MPUTE NM HY | 104.10 |) <i>–</i> | 4 | .00029 | .84 | .034 | 2.16725 | 1.500 | 4.502 | PER IMP= | : 8 | | ONSITE - | BASIN E | | | | | | | | | | | | MPUTE NM HY | 105.10 |) – | 5 | .00031 | .89 | .035 | 2.14157 | 1.500 | 4.469 | PER IMP= | : 7 | | ONSITE - | BASIN F | | | | | | | | | | | | MPUTE NM HY | 106.10 | – | 6 | .00048 | 1.41 | .058 | 2.28275 | 1.500 | 4.606 | PER IMP= | . 9 | | | | | | | | | | | | | | | | NOFF FOR DEVELO | PED CC | NDITIONS | 3 | ONSITE - | BASIN C | | | | | | | | | | | | MPUTE NM HY | 107.10 | – | 7 | .00083 | 2.42 | .101 | 2.28020 | 1.500 | 4.555 | PER IMP= | 9 | | ONSITE - | BASIN D | | | | | | | | | | | | MPUTE NM HY | 108.10 |) - | 8 | .00029 | 84 | .034 | 2.20492 | 1.500 | 4.521 | PER IMP= | 8 | | ONSITE - | BASIN E | | | | | | | | | | | | MPUTE NM HY | 109.10 |) <u> </u> | 9 | .00031 | .88 | .036 | 2.16242 | 1.500 | 4.453 | PER IMP= | 8 | | ONSITE - | BASIN F | | | | | | | | | | | | MPUTE NM HY | 110.10 | - | 10 | .00048 | 1.43 | .060 | 2.34581 | 1.500 | 4.644 | PER IMP= | . 9 | | EXISTING C | ONDITIONS - RUN | OFF TO | ROSEMON | NT AND FIRST | | | | | | | | | A STATE OF THE PARTY PAR | 151.10 | 1 & 2 | 51 | .00829 | 23.31 | .952 | 2.15427 | 1.500 | 4.393 | | | | CO | MMAND | HYDROGRA
IDENTIFICATI | | TO
ID
NO. | AREA
(SQ MI) | PEAK
DISCHARGE
(CFS) | RUNOFF
VOLUME
(AC-FT) | RUNOFF
(INCHES) | TIME TO
PEAK
(HOURS) | CFS
PER
ACRE | PAGE = 2 | |-------------------|-------------------|--------------------------|---------------------|-----------------|-----------------|----------------------------|-----------------------------|--------------------|----------------------------|--------------------|----------| | *S
*S
*S | EXISTING | CONDITIONS - R | UNOFF TO | MOUNTA | IN AND FIRST | | | | | | | | *S | D HYD | 154. | 10 3& 6 | 54 | .00131 | 3.92 | .165 | 2.36406 | 1.500 | 4.675 | | | *S
*S | TOTAL EX | ISTING RUNOFF T | O INTERS | | | | | | | | | | *S
*S
*S | | CONDITIONS - F | UNOFF TO | MOUNTAI | IN AND SECOND | | | | | | | | *S
*S
*S | | ISTING RUNOFF T | O INTERSI | ECT LON | | | | | | | | | *S
*S | | LOTING ROHOLL I | O IIVI BRO | | | | | | | | | | *S
*S
*S | DEVELOPE | D CONDITIONS | | | | | | | | | | | *S
*S
*S | DEVELOPE | D CONDITIONS - | RUNOFF TO | O ROSEMO | ONT AND FIRST | | | | | | | | AD | D HYD
D-HYD | | 10-1&-2
20-51&-8 | | .00829 | 23.31 | .952
.987 | 2.15427
2.15598 | 1.500
1.500 | 4.393 | | | *\$
*\$
*\$ | TOTAL DE | VELOPED RUNOFF | TO INTERS | SECTION | | | | | | | | | *S | DEVELOPE | D CONDITIONS - | RUNOFF TO | TRUOM C | AIN AND FIRST | | | | | | | | AD
*S | D HYD | 163 | 7'&'1'0 | 63 | .00131 | 3.85 | .161 | 2.30424 | 1.500 | 4.587 | | | _ | TOTAL DE | VELOPED RUNOFF | TO INTERS | SECTION | | | | | | | • | | *S | DEVELOPE | D CONDITIONS - | RUNOFF TO | TRUOM C | AIN AND SECON | Ď | | | | | | | *S
*S
*S | TOTAL DE | VELOPED RUNOFF | TO INTERS | SECTION | | | | | | | | | FI | NISH
10h4099T- | &16D | | | | | | | | | | • • • • • - INPUT FILE = D:\AHYMO\HOME100.TXT PUNCH=0 PRINT LINES=-6 START TIME=0 COMPUTE 100 YR. 24 HR. HYDROGRAPHS FOR HEALTHCARE/HOMELESS HOME100.DAT HYMO PER JAN 1993 DPM REVISIONS *S PRECIPITATION ZONE 2 PER FIGURE A-1 *S TYPE=-2 RAIN QUAR=0 RAIN ONE=2.01 RAIN SIX=2.35 RAINFALL RAIN DAY=2.75 DT=0.03COMPUTED 24-HOUR RAINFALL DISTRIBUTION BASED ON NOAA ATLAS 2 - PEAK AT 1.40 HR. 17.970000 HOURS .030000 HOURS END TIME = *S COMPUTE RUNOFF FOR EXISTING CONDITIONS - OFFSITE BASINS *S *S *S OFFSITE - BASIN A *S *S USE 80% TYPE D - HEAVY INDUSTRIAL PER TABLE A-5 * S COMPUTE NM HYD ID=1 HYD NO= 101.1 DA=0.00511 SQ MI PER A=0 PER B=0 PER C=20 PER D=80 TP=-.133 RAIN=-1K = .072485HR TP = .133000HR K/TP RATIO = .545000 SHAPE CONSTANT, N = 7.106420 UNIT PEAK = 16.176 CFS UNIT VOLUME = .9992 B = 526.28P60 = 2.0100AREA = .004088 SQ MI IA = .10000 INCHES INF = .04000 INCHES PER HOURRUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .030000 K = .107204 HR TP = .133000HR K/TP RATIO = .806046 SHAPE CONSTANT, N = 4.440701 UNIT PEAK = 2.9473 CFS UNIT VOLUME = .9955 B = 383.55P60 = 2.0100AREA = .001022 SQ MI IA = .35000 INCHES INF = .83000 INCHES PER HOURRUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .030000 CODE=10 PRINT HYD ID=1 PARTIAL HYDROGRAPH 101.10 FLOW TIME FLOW FLOW FLOW FLOW TIME TIME TIME TIME CFS CFS CFS CFS HRS HRS CFS HRS HRS HRS 3.600 7.200 10.800 14.400 .000 3.900 7.500 11.100 14.700 .300 .0 .600 4.200 7.800 11.400 15.000 .0 4.500 8.100 11.700 15.300 .900 1.200 4.800 8.400 12.000 15.600 1.500 14.4 5.100 8.700 12.300 15.900 1.800 5.0 5.400 9.000 12.600 16.200 . 1 . 1 9.300 2.100 2.4 5.700 12.900 16.500 2.400 .6 6.000 9.600 13.200 16.800 2.700 6.300 9.900 13.500 17.100 . 1 13.800 3.000 6.600 10.200 17.400 . 1 3.300 6.900 10.500 14.100 17.700 2.15427 INCHES RUNOFF VOLUME = .5871 ACRE-FEET 14.36 CFS 1.500 HOURS BASIN AREA = .0051 SQ. MI. PEAK DISCHARGE RATE = AT - Version: 1997.02c USER NO. = AHYMO-I-9702a0100001A-SH ``` *S *S OFFSITE - BASIN B *S *S USE 80% TYPE D - HEAVY INDUSTRIAL PER TABLE A-5 *S COMPUTE NM HYD ID=2 HYD NO= 102.1 DA=0.00318 SQ MI PER A=0 PER B=0 PER C=20 PER D=80 TP=-.133 RAIN=-1 ``` AHYMO PROGRAM (AHYMO 97) - RUN DATE (MON/DAY/YR) = 12/30/1998 START TIME (HR:MIN:SEC) = 09:43:28 K = .072485HR TP = .133000HR K/TP RATIO = .545000 SHAPE CONSTANT, N = 7.106420 UNIT PEAK = 10.067 CFS UNIT VOLUME = .9987 B = 526.28 P60 = 2.0100 AREA = .002544 SQ MI IA = .10000 INCHES INF = .04000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .030000 K = .107204HR TP = .133000HR K/TP RATIO = .806046 SHAPE CONSTANT, N = 4.440701 UNIT PEAK = 1.8341 CFS UNIT VOLUME = .9929 B = 383.55 P60 = 2.0100 AREA = .000636 SQ MI IA = .35000 INCHES INF = .83000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .030000 PRINT HYD ID=2 CODE=10 #### PARTIAL HYDROGRAPH 102.10 | TIME | FLOW | |-------|------|-------|------|--------|------|--------|------|--------|------| | HRS | CFS | | .000 | .0 | 3.600 | . 1 | 7.200 | . 1 | 10.800 | .0 | 14.400 | .0 | | .300 | .0 | 3.900 | .0 | 7.500 | . 1 | 11.100 | .0 | 14.700 | .0 | | .600 | .0 | 4.200 | .0 | 7.800 | . 1 | 11.400 | .0 | 15.000 | .0 | | .900 | .0 | 4.500 | .0 | 8.100 | . 0 | 11.700 | .0 | 15.300 | .0 | | 1.200 | . 1 | 4.800 | .0 | 8.400 | .0 | 12.000 | . 0 | 15.600 | .0 | | 1.500 | 8.9 | 5.100 | .0 | 8.700 | .0 | 12.300 | .0 | 15.900 | .0 | | 1.800 | 3.1 | 5.400 | .0 | 9.000 | .0 | 12.600 | .0 | 16.200 | .0 | | 2.100 | 1.5 | 5.700 | . 1 | 9.300 | .0 | 12.900 | .0 | 16.500 | .0 | | 2.400 | . 4 | 6.000 | . 1 | 9.600 | .0 | 13.200 | .0 | 16.800 | .0 | | 2.700 | . 2 | 6.300 | . 1 | 9.900 | .0 | 13.500 | .0 | 17.100 | .0 | | 3.000 | . 1 | 6.600 | . 1 | 10.200 | .0 | 13.800 | .0 | 17.400 | .0 | | 3.300 | .1 | 6.900 | . 1 | 10.500 | .0 | 14.100 | .0 | 17.700 | .0 | RUNOFF VOLUME = 2.15428 INCHES = .3654 ACRE-FEET PEAK DISCHARGE RATE = 8.94 CFS AT 1.500 HOURS BASIN AREA = .0032 SQ. MI. *s *S ONSITE - BASIN C *S RAIN=-1 K = .072485HR TP = .133000HR K/TP RATIO = .545000 SHAPE CONSTANT, N = 7.106420 UNIT PEAK = 3.2843 CFS UNIT VOLUME = .9962 B = 526.28 P60 = 2.0100 AREA = .000830 SQ MI IA = .10000 INCHES INF = .04000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .030000 PRINT HYD ID=2 CODE=10 #### PARTIAL HYDROGRAPH 102.10 | TIME | FLOW | |-------|------|-------|------|--------|------|--------|------|--------|------| | HRS | CFS | | .000 | .0 | 3.600 | .1 | 7.200 | .1 | 10.800 | .0 | 14.400 | .0 | | .300 | .0 | 3.900 | .0 | 7.500 | . 1 | 11.100 | .0 | 14.700 | .0 | | .600 | .0 | 4.200 | .0 | 7.800 | .1 | 11.400 | .0 | 15.000 | .0 | | .900 | .0 | 4.500 | . 0 | 8.100 | .0 | 11.700 | .0 | 15.300 | .0 | | 1.200 | . 1 | 4.800 | .0 | 8.400 | .0 | 12.000 | .0 | 15.600 | .0 | | 1.500 | 8.9 | 5.100 | .0 | 8.700 | .0 | 12.300 | . 0 | 15.900 | .0 | | 1.800 | 3.1 | 5.400 | .0 | 9.000 | .0 | 12.600 | .0 | 16.200 | .0 | | 2.100 | 1.5 | 5.700 | . 1 | 9.300 | .0 | 12.900 | .0 | 16.500 | . 0 | | 2.400 | . 4 | 6.000 | . 1 | 9.600 | .0 | 13.200 | .0 | 16.800 | .0 | | 2.700 | .2 | 6.300 | . 1 | 9.900 | .0 | 13.500 | .0 | 17.100 | .0 | | 3.000 | .1 | 6.600 | .1 | 10.200 | . 0 | 13.800 | .0 | 17.400 | .0 | | 3.300 | .1 | 6.900 | . 1 | 10.500 | .0 | 14.100 | .0 | 17.700 | .0 | RUNOFF VOLUME = 2.15428 INCHES = .3654 ACRE-FEET PEAK DISCHARGE RATE = 8.94 CFS AT 1.500 HOURS BASIN AREA = .0032 SQ. MI. *s *S ONSITE - BASIN D *S COMPUTE NM HYD ID=4 HYD NO= 104.1 DA=0.00029 SQ MI PER A=0 PER B=0 PER C=19 PER D=81 TP=-.133 RAIN=-1 K/TP RATIO = .545000 SHAPE CONSTANT, N = 7.106420K = .072485HR.133000HR UNIT PEAK = .92949 CFS UNIT VOLUME = .9873 526.28 P60 = 2.0100.000235 SQ MI .10000 INCHES AREA = IA =.04000 INCHES PER HOUR INF = RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .030000 K = .107204 HR TP = .133000HR K/TP RATIO = .806046 SHAPE CONSTANT, N = 4.440701 UNIT PEAK = .15890 CFS UNIT VOLUME = .9199 B = 383.55 P60 = 2.0100 AREA = .000055 SQ MI IA = .35000 INCHES INF = .83000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .030000 PRINT HYD ID=4 CODE=10 FLOW TIME FLOW TIME FLOW TIME FLOW TIME FLOW TIME CFS CFS HRS CFS CFS HRS HRS HRS CFS HRS 14.400 7.200 10.800 .000 3.600 .0 .0 11.100 14.700 7.500 3.900 .300 .0 .0 15.000 7.800 11.400 .600 .0 4.200 .0 11.700 15.300 .900 8.100 4.500 15.600 .0 12.000 1.200 4.800 8.400 .0 15.900 .0 .8 8.700 12.300 1.500 5.100 .0 16.200 12.600 .0 1.800 9.000 5.400 16.500 .0 2.100 5.700 9.300 12.900 16.800 .0 9.600 13.200 2.400 .0 6.000 .0 .0 2.700 .0 6.300 9.900 13.500 .0 17.100 10.200 17.400 .0 3.000 6.600 .0 13.800 .0 .0 17.700 3.300 6.900 10.500 14.100 RUNOFF VOLUME = 2.16725 INCHES = .0335 ACRE-FEET PEAK DISCHARGE RATE = .84 CFS AT 1.500 HOURS BASIN AREA = .0003 SQ. MI. *s *S ONSITE - BASIN E *S COMPUTE NM HYD ID=5 HYD NO= 105.1 DA=0.00031 SQ MI PER A=0 PER B=0 PER C=21 PER D=79 TP=-.133 RAIN=-1 K = .072485HR TP = .133000HR K/TP RATIO = .545000 SHAPE CONSTANT, N = 7.106420 UNIT PEAK = .96906 CFS UNIT VOLUME = .9873 B = 526.28 P60 = 2.0100 AREA = .000245 SQ MI IA = .10000 INCHES INF = .04000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .030000 K = .107204HR TP = .133000HR K/TP RATIO = .806046 SHAPE CONSTANT, N = 4.440701 UNIT PEAK = .18774 CFS UNIT VOLUME = .9270 B = 383.55 P60 = 2.0100 AREA = .000065 SQ MI IA = .35000 INCHES INF = .83000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .030000 PRINT HYD ID=5 CODE=10 #### PARTIAL HYDROGRAPH 105.10 | TIME | FLOW | |-------|------|-------|------|--------|------|--------|------|--------|------| | HRS | CFS | | .000 | .0 | 3.600 | .0 | 7.200 | .0 | 10.800 | .0 | 14.400 | .0 | | .300 | .0 | 3.900 | .0 | 7.500 | .0 | 11.100 | .0 | 14.700 | .0 | | .600 | .0 | 4.200 | .0 | 7.800 | .0 | 11.400 | .0 | 15.000 | .0 | | .900 | .0 | 4.500 | .0 | 8.100 | .0 | 11.700 | .0 | 15.300 | .0 | | 1.200 | .0 | 4.800 | .0 | 8.400 | .0 | 12.000 | .0 | 15.600 | .0 | | 1.500 | .9 | 5.100 | .0 | 8.700 | .0 | 12.300 | .0 | 15.900 | .0 | | 1.800 | .3 | 5.400 | .0 | 9.000 | .0 | 12.600 | .0 | 16.200 | .0 | | 2.100 | . 1 | 5.700 | .0 | 9.300 | .0 | 12.900 | .0 | 16.500 | .0 | | 2.400 | .0 | 6.000 | .0 | 9.600 | .0 | 13.200 | .0 | 16.800 | .0 | | 2.700 | .0 | 6.300 | .0 | 9.900 | .0 | 13.500 | .0 | 17.100 | .0 | | 3.000 | .0 | 6.600 | .0 | 10.200 | .0 | 13.800 | .0 | 17.400 | .0 | | 3.300 | .0 | 6.900 | .0 | 10.500 | .0 | 14.100 | .0 | 17.700 | .0 | RUNOFF VOLUME = 2.14157 INCHES = .0354 ACRE-FEET PEAK DISCHARGE RATE = .89 CFS AT 1.500 HOURS BASIN AREA = .0003 SQ. MI. *s *S ONSITE - BASIN F COMPUTE NM HYD ID=6 HYD NO= 106.1 DA=0.00048 SQ MI PER A=0 PER B=0 PER C=10 PER D=90 TP=-.133 RAIN=-1 K/TP RATIO = .545000 SHAPE CONSTANT, N = 7.106420.133000HR .072485HR TP =526.28 P60 = 2.0100.9926 1.7094 CFS UNIT VOLUME = UNIT PEAK = .000432 SQ MI .10000 INCHES INF = .04000 INCHES PER HOUR IA =AREA = RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .030000 K = .107204HR TP = .133000HR K/TP RATIO = .806046 SHAPE CONSTANT, N = 4.440701 UNIT PEAK = .13842 CFS UNIT VOLUME = .9035 B = 383.55 P60 = 2.0100 AREA = .000048 SQ MI IA = .35000 INCHES INF = .83000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD + DT = .030000 PRINT HYD ID=6 CODE=10 PARTIAL HYDROGRAPH 106.10 TIME FLOW TIME FLOW TIME FLOW TIME FLOW ``` CFS CFS CFS HRS HRS CFS HRS HRS CFS HRS 14.400 7.200 .0 10.800 .000 3.600 .0 .0 14.700 7.500 11.100 .0 .300 .0 3.900 .0 15.000 .0 .600 7.800 .0 11.400 4.200 .0 15.300 .900 .0 8.100 .0 11.700 4.500 15.600 .0 1.200 12.000 4.800 8.400 .0 .0 8.700 12.300 15.900 1.4 1.500 5.100 .0 .0 .0 9.000 12.600 16.200 1.800 5.400 .0 16.500 .0 5.700 9.300 12.900 2.100 .0 .0 2.400 .0 9.600 13.200 16.800 6.000 .0 .0 .0 9.900 .0 2.700 13.500 17.100 6.300 .0 3.000 .0 10.200 13.800 17.400 .0 .0 6.600 .0 10.500 17.700 3.300 14.100 6.900 .0 ``` RUNOFF VOLUME = 2.28275 INCHES = .0584 ACRE-FEET PEAK DISCHARGE RATE = 1.41 CFS AT 1.500 HOURS BASIN AREA = .0005 SQ. MI. K = .072485HR TP = .133000HR K/TP RATIO = .545000 SHAPE CONSTANT, N = 7.106420 UNIT PEAK = 2.9887 CFS UNIT VOLUME = .9962 B = 526.28 P60 = 2.0100 AREA = .000755 SQ MI IA = .10000 INCHES INF = .04000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .030000 K = .118131HR TP = .133000HR K/TP RATIO = .888206 SHAPE CONSTANT, N = 3.993617 UNIT PEAK = .19924 CFS UNIT VOLUME = .9339 B = 354.74 P60 = 2.0100 AREA = .000075 SQ MI IA = .41667 INCHES INF = 1.01667 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .030000 PRINT HYD ID=7 CODE=10 PARTIAL HYDROGRAPH 107.10 | TIME | FLOW | |-------|------|-------|------|--------|------|--------|------|--------|------| | HRS | CFS | | .000 | .0 | 3.600 | .0 | 7.200 | .0 | 10.800 | .0 | 14.400 | .0 | | .300 | .0 | 3.900 | . 0 | 7.500 | .0 | 11.100 | .0 | 14.700 | .0 | | .600 | .0 | 4.200 | . 0 | 7.800 | .0 | 11.400 | .0 | 15.000 | .0 | | .900 | .0 | 4.500 | .0 | 8.100 | .0 | 11.700 | .0 | 15.300 | .0 | | 1.200 | .0 | 4.800 | .0 | 8.400 | .0 | 12.000 | .0 | 15.600 | .0 | | 1.500 | 2.4 | 5.100 | .0 | 8.700 | .0 | 12.300 | .0 | 15.900 | .0 | | 1.800 | .9 | 5.400 | .0 | 9.000 | .0 | 12.600 | .0 | 16.200 | .0 | | 2.100 | . 4 | 5.700 | .0 | 9.300 | .0 | 12.900 | .0 | 16.500 | .0 | | 2.400 | .1 | 6.000 | .0 | 9.600 | .0 | 13.200 | .0 | 16.800 | .0 | | 2.700 | .0 | 6.300 | . 0 | 9.900 | .0 | 13.500 | . 0 | 17.100 | .0 | | 3.000 | .0 | 6.600 | .0 | 10.200 | .0 | 13.800 | .0 | 17.400 | .0 | | 3.300 | .0 | 6.900 | .0 | 10.500 | .0 | 14.100 | .0 | 17.700 | .0 | RUNOFF VOLUME = 2.28020 INCHES = .1009 ACRE-FEET PEAK DISCHARGE RATE = 2.42 CFS AT 1.500 HOURS BASIN AREA = .0008 SQ. MI. ``` *S *S ONSITE - BASIN D *S COMPUTE NM HYD ID=8 HYD NO= 108.1 DA=0.00029 SQ MI PER A=0 PER B=7 PER C=7 PER D=86 TP=-.133 RAIN=-1 ``` K = .072485HR TP = .133000HR K/TP RATIO = .545000 SHAPE CONSTANT, N = 7.106420 UNIT PEAK = .98687 CFS UNIT VOLUME = .9873 B = 526.28 P60 = 2.0100 AREA = .000249 SQ MI IA = .10000 INCHES INF = .04000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .030000 K = .119497HR TP = .133000HR K/TP RATIO = .898476 SHAPE CONSTANT, N = 3.944947 UNIT PEAK = .10729 CFS UNIT VOLUME = .8785 B = 351.48 P60 = 2.0100 AREA = .000041 SQ MI IA = .42500 INCHES INF = 1.04000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .030000 PRINT HYD ID=8 CODE=10 #### PARTIAL HYDROGRAPH 108.10 | TIME | FLOW | |-------|------|-------|------|--------|------|--------|------|--------|------| | HRS | CFS | | .000 | . 0 | 3.600 | .0 | 7.200 | .0 | 10.800 | .0 | 14.400 | .0 | | .300 | .0 | 3.900 | .0 | 7.500 | .0 | 11.100 | .0 | 14.700 | .0 | | .600 | .0 | 4.200 | .0 | 7.800 | .0 | 11.400 | .0 | 15.000 | .0 | | .900 | .0 | 4.500 | .0 | 8.100 | .0 | 11.700 | .0 | 15.300 | .0 | | 1.200 | .0 | 4.800 | .0 | 8.400 | .0 | 12.000 | . 0 | 15.600 | .0 | | 1.500 | .8 | 5.100 | .0 | 8.700 | .0 | 12.300 | .0 | 15.900 | .0 | | 1.800 | . 3 | 5.400 | . 0 | 9.000 | .0 | 12.600 | .0 | 16.200 | .0 | | 2.100 | . 1 | 5.700 | .0 | 9.300 | .0 | 12.900 | .0 | 16.500 | .0 | | 2.400 | . 0 | 6.000 | . 0 | 9.600 | .0 | 13.200 | .0 | 16.800 | .0 | | 2.700 | .0 | 6.300 | .0 | 9.900 | .0 | 13.500 | .0 | 17.100 | .0 | | 3.000 | .0 | 6.600 | .0 | 10.200 | .0 | 13.800 | .0 | 17.400 | .0 | | 3.300 | .0 | 6.900 | .0 | 10.500 | .0 | 14.100 | .0 | 17.700 | .0 | RUNOFF VOLUME = 2.20492 INCHES = .0341 ACRE-FEET PEAK DISCHARGE RATE = .84 CFS AT 1.500 HOURS BASIN AREA = .0003 SQ. MI. *s *S ONSITE - BASIN'E *S K = .072485HR TP = .133000HR K/TP RATIO = .545000 SHAPE CONSTANT, N = 7.106420 UNIT PEAK = 1.0181 CFS UNIT VOLUME = .9889 B = 526.28 P60 = 2.0100 AREA = .000257 SQ MI IA = .10000 INCHES INF = .04000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .030000 K = .118774HR TP = .133000HR K/TP RATIO = .893039 SHAPE CONSTANT, N = 3.970534 UNIT PEAK = .13995 CFS UNIT VOLUME = .9064 B = 353.20 P60 = 2.0100 AREA = .000053 SQ MI IA = .42059 INCHES INF = 1.02765 INCHES PER PRINT HYD ID=9 CODE=10 #### PARTIAL HYDROGRAPH 109.10 | TIME | FLOW | |-------|------|-------|------|--------|------|--------|------|--------|------| | HRS | CFS | | .000 | .0 | 3.600 | . 0 | 7.200 | .0 | 10.800 | .0 | 14.400 | .0 | | .300 | .0 | 3.900 | .0 | 7.500 | .0 | 11.100 | .0 | 14.700 | .0 | | .600 | .0 | 4.200 | . 0 | 7.800 | .0 | 11.400 | .0 | 15.000 | .0 | | .900 | .0 | 4.500 | .0 | 8.100 | .0 | 11.700 | .0 | 15.300 | .0 | | 1.200 | . 0 | 4.800 | .0 | 8.400 | .0 | 12.000 | .0 | 15.600 | .0 | | 1.500 | .9 | 5.100 | .0 | 8.700 | .0 | 12.300 | .0 | 15.900 | .0 | | 1.800 | .3 | 5.400 | . 0 | 9.000 | .0 | 12.600 | .0 | 16.200 | .0 | | 2.100 | . 1 | 5.700 | .0 | 9.300 | .0 | 12.900 | .0 | 16.500 | .0 | | 2.400 | .0 | 6.000 | .0 | 9.600 | .0 | 13.200 | .0 | 16.800 | .0 | | 2.700 | .0 | 6.300 | .0 | 9.900 | .0 | 13.500 | .0 | 17.100 | .0 | | 3.000 | .0 | 6.600 | .0 | 10.200 | .0 | 13.800 | .0 | 17.400 | .0 | | 3.300 | .0 | 6.900 | .0 | 10.500 | .0 | 14.100 | .0 | 17.700 | .0 | RUNOFF VOLUME = 2.16242 INCHES = .0358 ACRE-FEET PEAK DISCHARGE RATE = .88 CFS AT 1.500 HOURS BASIN AREA = .0003 SQ. MI. *S ONSITE - BASIN F COMPUTE NM HYD ID=10 HYD NO= 110.1 DA=0.00048 SQ MI PER A=0 PER B=4 PER C=0 PER D=96 TP=-.133 RAIN=-1 K = .072485HR TP = .133000HR K/TP RATIO = .545000 SHAPE CONSTANT, N = 7.106420 UNIT PEAK = 1.8234 CFS UNIT VOLUME = .9936 B = 526.28 P60 = 2.0100 AREA = .000461 SQ MI IA = .10000 INCHES INF = .04000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .030000 K = .131790 HR TP = .133000 HR K/TP RATIO = .990905 SHAPE CONSTANT, N = 3.563124 UNIT PEAK = .46904E-01CFS UNIT VOLUME = .8638 B = 324.91 P60 = 2.0100 AREA = .000019 SQ MI IA = .50000 INCHES INF = 1.25000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .030000 PRINT HYD ID=10 CODE=10 PAI | TIME | FLOW | |-------|------|-------|------|--------|------|--------|------|--------|------| | HRS | CFS | | .000 | .0 | 3.600 | .0 | 7.200 | .0 | 10.800 | . 0 | 14.400 | .0 | | .300 | .0 | 3.900 | . 0 | 7.500 | .0 | 11.100 | . 0 | 14.700 | .0 | | .600 | .0 | 4.200 | . 0 | 7.800 | .0 | 11.400 | .0 | 15.000 | .0 | | .900 | .0 | 4.500 | .0 | 8.100 | .0 | 11.700 | .0 | 15.300 | .0 | | 1.200 | .0 | 4.800 | .0 | 8.400 | .0 | 12.000 | .0 | 15.600 | .0 | | 1.500 | 1.4 | 5.100 | .0 | 8.700 | .0 | 12.300 | .0 | 15.900 | .0 | | 1.800 | .5 | 5.400 | .0 | 9.000 | .0 | 12.600 | .0 | 16.200 | .0 | | 2.100 | .3 | 5.700 | . 0 | 9.300 | .0 | 12.900 | .0 | 16.500 | .0 | | 2.400 | . 1 | 6.000 | . 0 | 9.600 | .0 | 13.200 | .0 | 16.800 | .0 | | 2.700 | .0 | 6.300 | . 0 | 9.900 | .0 | 13.500 | .0 | 17.100 | .0 | | 3,000 | .0 | 6.600 | . 0 | 10.200 | .0 | 13.800 | .0 | 17.400 | .0 | | 3.300 | .0 | 6.900 | .0 | 10.500 | .0 | 14.100 | . 0 | 17.700 | .0 | RUNOFF VOLUME = 2.34581 INCHES = .0601 ACRE-FEET PEAK DISCHARGE RATE = 1.43 CFS AT 1.500 HOURS BASIN AREA = .0005 SQ. MI. *S *S *S *S *S *S EXISTING CONDITIONS - RUNOFF TO ROSEMONT AND FIRST *S *ADD HYD ID 51 HYD 151.1 ID I 1 ID II 2 ADD HYD ID 52 HYD 151.2 ID I 51 ID II 4 *S *S *S TOTAL EXISTING RUNOFF TO INTERSECTION *S PRINT HYD ID=52 CODE 10 #### PARTIAL HYDROGRAPH 151.20 | TIME | FLOW | |-------|------|---------------|------|--------|------|--------|------|--------|------| | HRS | CFS | | .000 | .0 | 3.600 | . 1 | 7.200 | .1 | 10.800 | . 1 | 14.400 | . 1 | | .300 | .0 | 3.900 | . 1 | 7.500 | . 1 | 11.100 | . 1 | 14.700 | . 1 | | .600 | .0 | 4.200 | . 1 | 7.800 | . 1 | 11.400 | . 1 | 15.000 | .1 | | .900 | .0 | 4.500 | .1 | 8.100 | . 1 | 11.700 | . 1 | 15.300 | .1 | | 1.200 | . 4 | 4.800 | . 1 | 8.400 | .1 | 12.000 | . 1 | 15.600 | .1 | | 1.500 | 24.1 | 5.100 | . 1 | 8.700 | . 1 | 12.300 | . 1 | 15.900 | . 1 | | 1.800 | 8.5 | 5.400 | . 1 | 9.000 | . 1 | 12.600 | . 1 | 16.200 | .1 | | 2.100 | 4.0 | 5.700 | . 1 | 9.300 | . 1 | 12.900 | . 1 | 16.500 | .1 | | 2.400 | 1.0 | 6.000 | . 1 | 9.600 | . 1 | 13.200 | . 1 | 16.800 | .1 | | 2.700 | . 4 | 6.300 | . 2 | 9.900 | . 1 | 13.500 | . 1 | 17.100 | . 1 | | 3.000 | .2 | 6. 600 | . 1 | 10.200 | . 1 | 13.800 | . 1 | 17.400 | . 1 | | 3.300 | . 2 | 6.900 | . 1 | 10.500 | . 1 | 14.100 | .1 | 17.700 | .1 | RUNOFF VOLUME = 2.15471 INCHES = .9860 ACRE-FEET PEAK DISCHARGE RATE = 24.14 CFS AT 1.500 HOURS BASIN AREA = .0086 SQ. MI. *S *S *S *S *S *S *S *S *ADD HYD ID 54 HYD 154.1 ID I 3 ID II 6 *S *S *TOTAL EXISTING RUNOFF TO INTERSECTION *S PRINT HYD ID=54 CODE 10 #### PARTIAL HYDROGRAPH 154.10 | TIME
HRS | FLOW
CFS | |-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | .000 | .0 | 3.600 | .0 | 7.200 | .0 | 10.800 | .0 | 14.400 | .0 | | .300 | . 0 | 3.900 | .0 | 7.500 | .0 | 11.100 | .0 | 14.700 | .0 | | .600 | .0 | 4.200 | .0 | 7.800 | .0 | 11.400 | .0 | 15.000 | .0 | | .900 | .0 | 4.500 | .0 | 8.100 | .0 | 11.700 | .0 | 15.300 | .0 | | 1.200 | . 1 | 4.800 | .0 | 8.400 | .0 | 12.000 | .0 | 15.600 | .0 | | 1.500 | 3.9 | 5.100 | .0 | 8.700 | .0 | 12.300 | .0 | 15.900 | .0 | ``` 16.200 12.600 5.400 9.000 1.800 1.4 .0 12.900 16.500 9.300 5.700 2.100 16.800 9.600 13.200 2.400 6.000 17.100 9.900 13.500 2.700 6.300 .0 .0 .0 17.400 10.200 13.800 3.000 6.600 17.700 10.500 14.100 6.900 3.300 .1652 ACRE-FEET RUNOFF VOLUME = 2.36406 INCHES 3.92 CFS AT 1.500 HOURS BASIN AREA = .0013 SQ. MI. PEAK DISCHARGE RATE = *S EXISTING CONDITIONS - RUNOFF TO MOUNTAIN AND SECOND *S TOTAL EXISTING RUNOFF TO INTERSECTION PRINT HYD ID=5 CODE 10 PARTIAL HYDROGRAPH 105.10 FLOW FLOW TIME FLOW TIME TIME FLOW FLOW TIME TIME CFS CFS CFS HRS CFS HRS HRS HRS CFS HRS 14.400 10.800 3.600 7.200 .000 .0 14.700 3.900 7.500 .0 11.100 .0 .300 4.200 7.800 .0 11.400 15.000 .0 .600 15.300 .0 8.100 11.700 .900 4.500 15.600 .0 1.200 4.800 8.400 12.000 8.700 12.300 15.900 .0 1.500 5.100 .0 16.200 9.000 12.600 1.800 5.400 .0 16.500 5.700 9.300 .0 12.900 2.100 .0 .0 16.800 .0 6.000 9.600 13.200 2.400 9.900 13.500 17.100 6.300 2.700 .0 17.400 3.000 .0 6.600 10.200 .0 13.800 17.700 .0 10.500 14.100 6.900 3.300 2.14157 INCHES .0354 ACRE-FEET RUNOFF VOLUME = PEAK DISCHARGE RATE = .89 CFS AT BASIN AREA = .0003 SQ. MI. 1.500 HOURS *S DEVELOPED CONDITIONS *S DEVELOPED CONDITIONS - RUNOFF TO ROSEMONT AND FIRST ID 61 HYD 161.1 ID I 1 ID II 2 ADD HYD ID 62 HYD 161.2 ID I 51 ID II 8 ADD HYD *S TOTAL DEVELOPED RUNOFF TO INTERSECTION ID=62 CODE 10 PRINT HYD PARTIAL HYDROGRAPH 161.20 FLOW FLOW FLOW FLOW TIME TIME FLOW TIME TIME TIME CFS CFS CFS HRS CFS CFS HRS HRS 14.400 7.200 10.800 3.600 .000 14.700 7.500 11.100 3.900 .300 15.000 11.400 .600 4.200 7.800 15.300 11.700 8.100 .0 4.500 .900 . 1 4.800 8.400 12.000 15.600 1.200 . 4 8.700 12.300 15.900 24.1 5.100 1.500 8.5 16.200 5.400 9.000 12.600 1.800 5.700 12.900 16.500 9.300 2.100 4.1 13.200 16.800 9.600 2.400 1.0 6.000 .1 17.100 9.900 13.500 2.700 . 4 6.300 .2 13.800 17.400 6.600 10.200 3.000 . 1 14.100 10.500 17.700 3.300 6.900 ``` *S *S *S *S *S *S *S * S RUNOFF VOLUME = 2.15598 INCHES = .9866 ACRE-FEET PEAK DISCHARGE RATE = 24.14 CFS AT 1.500 HOURS BASIN AREA = .0086 SQ. MI. ``` *S *S DEVELOPED CONDITIONS - RUNOFF TO MOUNTAIN AND FIRST *S ID 63 HYD 163.1 ID I 7 ID II 10 ADD HYD *S *S TOTAL DEVELOPED RUNOFF TO INTERSECTION *S PRINT HYD ID=63 CODE 10 PARTIAL HYDROGRAPH 163.10 TIME FLOW TIME FLOW FLOW TIME TIME FLOW TIME FLOW CFS HRS CFS CFS HRS HRS CFS HRS HRS CFS .000 .0 3.600 7.200 10.800 14.400 .300 3.900 7.500 11.100 14.700 .0 .600 4.200 7.800 11.400 15.000 .900 4.500 .0 .0 8.100 11.700 15.300 .0 1.200 4.800 8.400 12.000 15.600 .0 3.8 1.500 5.100 8.700 12.300 15.900 1.800 1.4 5.400 9.000 12.600 .0 16.200 2.100 5.700 9.300 16.500 12.900 .0 2.400 6.000 9.600 13.200 16.800 2.700 6.300 9.900 13.500 17.100 .0 3.000 6.600 10.200 13.800 17.400 3.300 6.900 10.500 14.100 17.700 .0 RUNOFF VOLUME = 2.30424 INCHES .1610 ACRE-FEET 3.85 CFS BASIN AREA = PEAK DISCHARGE RATE = ΑT 1.500 HOURS .0013 SQ. MI. *S *S *S DEVELOPED CONDITIONS - RUNOFF TO MOUNTAIN AND SECOND *S *S TOTAL DEVELOPED RUNOFF TO INTERSECTION ID=9 CODE 10 PRINT HYD PARTIAL HYDROGRAPH 109.10 FLOW TIME TIME FLOW TIME FLOW TIME FLOW TIME FLOW CFS HRS CFS HRS CFS HRS HRS CFS CFS HRS .000 3.600 7.200 10.800 14.400 .300 3.900 7.500 11.100 14.700 .600 .0 4.200 7.800 11.400 15.000 .900 4.500 8.100 11.700 .0 15.300 1.200 4.800 8.400 12.000 15.600 1.500 5.100 12.300 8.700 15.900 1.800 5.400 9.000 12.600 16.200 2.100 5.700 .0 9.300 12.900 16.500 2.400 9.600 6.000 13.200 16.800 2.700 6.300 9.900 13.500 17.100 3.000 .0 10.200 6.600 13.800 17.400 3.300 6.900 10.500 14.100 17.700 RUNOFF VOLUME = 2.16242 INCHES .0358 ACRE-FEET .88 CFS 1.500 HOURS BASIN AREA = PEAK DISCHARGE RATE = .0003 SQ. MI. ΑT ``` *S FINISH *S NORMAL PROGRAM FINISH END TIME (HR:MIN:SEC) = 09:43:29 -(s0p10h4099T-&16D ## SIDEWALK CULVERT CAPACITY AS A CHANNEL PER MANNING ERN Use $$n = 0.013$$ $d = 0.5'$ $s = 2\%$ $$Q_{CAP} = 7.8 cfs \gg Q_{100} = \frac{2.42}{2} = 1.2 cfs$$ $$(Vorst Case 1/2 Bash A)$$ AS A WESS $$Q = KLH^{3/2}$$ $K = 2.6$ Broad Crest $H = 0.5$ ' $= (2.6)(2)(.5)^{3/2}$ $= 1.84cFs > 7$ $Qroo = \frac{2.42}{2} = 1.2cFs$ (Worst Case 1/2 Basin A) Note: 24" culyerts have been used as the outlet for Basins C, D, E, FF APPENDIX B