Bohannan A Huston

HT#J16D023

UNMH NEW HOSPITAL TOWER

TRAFFIC IMPACT ANALYSIS

MAY 2020

UNIVERSITY OF NEW MEXICO HOSPITAL NEW HOSPITAL TOWER TRAFFIC IMPACT ANALYSIS

MAY 2020

CITY SUBMITTAL

Prepared by:

BOHANNAN HUSTON, INC. 7500 JEFFERSON ST NE COURTYARD TWO ALBUQUERQUE, NM 87109

Prepared for:

UNM HOSPITAL 1131 UNIVERSITY BLVD NE SUITE K ALBUQUERQUE, NM 87102

PREPARED BY:

ERIC J. WRAGE P.E., PTOE MAY 22, 2020

UNMH NEW HOSPITAL TOWER TRAFFIC IMPACT ANALYSIS

TABLE OF CONTENTS

I.	IIV I	KODI	JCTION AND SUMMARY	
	A.	Stud	y Purpose	1
	B.	Exec	eutive Summary	1
		1.	Site Location and Study Area	1
		2.	Principal Findings	3
		3.	Recommendations	2
		4.	Future Considerations	2
II.	PR	OPOS	SED DEVELOPMENT	8
	A.	Land	Use and Intensity	8
	B.	Deve	elopment Phasing and Timing	8
	C.	Futu	re Roadway Projects	8
III.	ST	UDY A	REA CONDITIONS	9
	A.	Stud	y Area	9
	B.	Site	Accessibility	9
	C.	Data	Sources	10
IV.	AN	ALYSI	S OF EXISTING CONDITIONS	11
	A.	Back	ground	11
		1.	Multi-Modal Background	12
	B.	Exist	ing Traffic Conditions	12
		1.	Signalized	13
		2.	Unsignalized	15
V.	PR	OJEC	TED TRAFFIC	19
	A.	Site	Traffic Forecasting	19
		1.	Trip Generation	19
		2.	Trip Distribution and Assignment	20
		3.	No Build Traffic Projections	20
VI.	TR	AFFIC	AND IMPROVEMENT ANALYSIS	29
	A.	Leve	l of Service Analysis	29
		1.	2024 No Build Intersection Capacity Analysis	29
		2.	2024 Build Intersection Capacity Analysis	35
VII.	CO	NCLU	SIONS AND RECOMMENDATIONS	41

A. Conclusions	41
1. Recommendations	42
2. Future Considerations	42
FIGURES	
Figure 1 – Vicinity Map	6
Figure 2 – Site Plan	7
Figure 3A – 2019 AM (PM) Peak Hour Traffic Volumes – North	17
Figure 3B – 2019 AM (PM) Peak Hour Traffic Volumes – South	18
Figure 4A – 2024 Build Trip Distribution Percentages (Main Parking) – North	21
Figure 4B – 2024 Build Trip Distribution Percentages (Main Parking) – South	22
Figure 4C – 2024 Build Trip Distribution Percentages (Remote Parking) – North	23
Figure 4D – 2024 Build Trip Distribution Percentages (Remote Parking) – South	24
Figure 5A – 2024 Build Trip Assignment Volumes (Main Parking) – North	25
Figure 5B – 2024 Build Trip Assignment Volumes (Main Parking) – South	26
Figure 5C - 2024 Build Trip Assignment Volumes (Remote Parking) - North	27
Figure 5D - 2024 Build Trip Assignment Volumes (Remote Parking) - South	28
Figure 6A – 2024 No Build AM (PM) Peak Hour Traffic Volumes – North	33
Figure 6B – 2024 No Build AM (PM) Peak Hour Traffic Volumes – South	34
Figure 7A – 2024 AM (PM) Build Peak Hour Traffic Volumes – North	39
Figure 7B – 2024 AM (PM) Build Peak Hour Traffic Volumes – South	40
TABLES	
1715220	
Table 1 – LOS Definitions	13
Table 2 – 2019 Existing Signalized Intersection Capacity Analysis Results	14
Table 3 – 2019 Existing Unsignalized Intersection Results	16
Table 4 – Trip Generation	
Table 5 – 2024 No Build Signalized Intersection Capacity Analysis Results	30
Table 6 – 2024 No Build Unsignalized Intersection Results	32
Table 7 – 2024 Build Signalized Intersection Capacity Analysis Results	36
Table 8 – 2024 Build Unsignalized Intersection Results	

APPENDICES

Appendix A Existing Traffic Counts

Appendix B 2019 Existing Intersection Capacity Analysis

Appendix C Forecast Turning Movements and Trip Distribution

Appendix D 2024 No Build Intersection Capacity Analysis

Appendix E 2024 Build Intersection Capacity Analysis

I. INTRODUCTION AND SUMMARY

The University of New Mexico Hospital (UNMH) proposes additional medical facilities as part of development of the New Hospital Tower (NHT). The proposed development will include a patient bed tower serving 96 beds with intensive care units (ICU), diagnostic and therapeutic services, and patient care support and a new parking garage.

Some existing buildings will be demolished and relocated elsewhere on campus, including buildings serving Physics and Astronomy, IT, and the Lock Shop. This will result in a reduction of trips to the study area. These previous trips will be reduced in the immediate vicinity of the study area.

The study also evaluates a proposed driveway located on Lomas Blvd between Yale Blvd and the existing ambulance entrance. This driveway will provide access to an area for public drop-off to the new hospital. Access to the new parking garage will continue to be from Yale Blvd.

Further development of the hospital campus northwest of the intersection of Lomas Blvd and Yale Blvd is anticipated long-term, however it is beyond the current available funding and will be studied when planning and funding for this additional expansion is identified.

A. STUDY PURPOSE

The purpose of the traffic study is to determine the impacts of the proposed development on the surrounding roadway network, evaluate the operation of a proposed site entrance, and to recommend any mitigation measures that may be necessary to support the additional traffic generated by the proposed development.

B. EXECUTIVE SUMMARY

1. SITE LOCATION AND STUDY AREA

The site of the NHT development is located northeast of the Lomas Blvd and Yale Blvd intersection, in Albuquerque, New Mexico. A vicinity map is shown in Figure 1, and the proposed site plan of the future development is shown in Figure 2.

The study area was requested to consist of the following 22 intersections. This will include all entrances/driveways to the site, as well as any other roadways that provide access to the site.

- 1. Lomas Blvd and University Blvd
- 2. Lomas Blvd and Yale Blvd
- 3. Yale Blvd and Camino de Salud
- 4. Lomas Blvd and Emergency/Ambulance Entrance
- 5. Lomas Blvd and Patient Drop-off exit
- 6. Lomas Blvd and Patient Drop-off entrance
- 7. Lomas Blvd and Stanford Dr
- 8. Lomas Blvd and Girard Blvd
- 9. Lomas Blvd and Oak St (East [northbound] Frontage Road)
- 10. Lomas Blvd and Locust St (West [southbound] Frontage Road)
- 11. Mountain Rd and Oak St
- 12. Mountain Rd and Locust St
- 13. Oak and Camino de Salud
- 14. Camino de Salud and Tucker Ave
- 15. University Blvd and Las Lomas Rd
- 16. University Blvd and Tucker Ave
- 17. University Blvd and Camino de Salud
- 18. University Blvd and Indian School Rd
- 19. University Blvd and I-40 Eastbound Ramp
- 20. University Blvd and I-40 Westbound Ramp
- 21. North I-40 Frontage Rd and I-25 Southbound Frontage Rd
- 22. South I-40 Frontage Rd and I-25 Southbound Frontage Rd

The intersection evaluations include analysis for the AM and PM peak hours for the following traffic conditions:

- Existing traffic (2019)
- 2024 No Build (traffic without the hospital and medical office building)
- 2024 Build (traffic with the hospital and medical office building)

Please note these traffic counts were collected without demand volumes and was scoped with the City and NMDOT prior to recent revisions in TIA data collection requirements.

2. PRINCIPAL FINDINGS

The traffic analysis shows that under existing 2019, 2024 No Build, and 2024 Build, all intersections will operate at an acceptable level of service (LOS), with two exceptions.

- F
- The signalized intersection of University and Indian School has an overall
 acceptable LOS in both peak hours; however, it has a volume-to-capacity ratio
 over 1 in the AM peak hour, which indicates the intersection is over capacity.
 The multi-period analysis shows that the intersection operates under capacity
 for each 15-minute period.
- F
 - F
- 2. The two-way stop-controlled intersection at University Blvd and Tucker currently operates at LOS E during the AM peak hour and LOS F during the PM peak hour in the westbound approach. In the build condition the delay for the westbound approach increases from 48.9 to 70.3 in the AM peak hour and from 109.4 to 174.8 in the PM peak hour. These delays will likely result in driver behavior changes, such as turning right, or utilizing a different exit route.

Construction of the development will not result in dramatic increases in traffic delay or degrade in LOS for all other signalized intersections and unsignalized movements.

Modifications made to two other intersections in the build year were evaluated, with conclusions described below:

- Yale Blvd and Camino de Salud The replacement of the roundabout at Yale Blvd and Camino de Salud with a two-way stop-controlled intersection was evaluated. The east leg of the intersection will serve the parking garage. The intersection is expected to operate at an overall acceptable LOS.
- Proposed Entrance The proposed entrance from Lomas Blvd east of Yale Blvd was evaluated with reassigned trips applied from the Lomas Blvd and Yale Blvd intersection. As a full-access intersection it operates at an overall acceptable level of service, however; the southbound left movement will operate at LOS F in the AM and LOS E in the PM. The high delay and low queuing for this movement indicates that vehicles are not able to cross both directions of traffic to complete this movement in a timely manner. Therefore, the recommendation is for this intersection to be left-in/right-in/right-out only. In the event this entrance results in queue spillover into eastbound Lomas, a left-in high-T signalized intersection may be needed in the future, similar to the Central and Mulberry high-T traffic signal.

3. RECOMMENDATIONS

The proposed driveway located on Lomas Blvd between Yale Blvd and the ambulance entrance is expected to operate at an acceptable LOS with minimal delay for the eastbound left movements. It is recommended that this new entrance operate as a left-in/right-out only driveway, no left outs. Due to the short distance between the Lomas Blvd and Yale Blvd intersection and this driveway, the eastbound left turn lane should be the maximum length without impacting the westbound left turn onto Yale. It is possible that this entrance will require signalization as a high-T intersection in the future as it is more convenient for patient drop-off than the current configuration.

It is recommended Yale Blvd north of Lomas Blvd provide two lanes of traffic both northbound and southbound. A dedicated northbound left turn lane should be constructed at the Camino del Salud intersection. The outside northbound through lane should be extended north to the service road at the north side of the parking garage. The second southbound lane can begin at the Camino de Salud intersection.

4. FUTURE CONSIDERATIONS

With the understanding that UNMH will continue development of the NHT and additional medical office buildings in the future, it is important to consider the expected number of trips generated by future development and the impact to existing intersections. These trips will likely need to be accommodated by introducing additional access points into the campus.

The Albuquerque/Bernalillo County Comprehensive Plan designates Lomas Blvd as a "Major Transit Corridor" and the UNMH campus area as an "Activity Center." The draft Albuquerque Development Process Manual (DPM) requires that these designations consider the incorporation of multi-modal opportunities including an efficient transit system, attractive pedestrian environment, and good access for bicyclists. The DPM allows for signalized intersections located on roadways designated as a "Major Transit Corridor" that is located within an "Activity Center" to operate at LOS E. The draft DPM also indicates that a "Major Transit Corridor" may space signalized intersections ½ to ½ mile apart.

For these reasons it should become an expectation that Lomas Blvd will operate relatively slowly for vehicular traffic while accommodating the safety and comfort of transit users, bicyclists, and pedestrians. The City and UNMH should work cooperatively together to evaluate future needs and coordinate their implementation.

Rio Metro in the past has indicated University Boulevard as a potential bus rapid transit corridor, and that study is again drawing interest. This bus rapid transit corridor could assist in alleviating congestion in the vicinity, particularly in future phases of development of the UNM Health Sciences Center Master Plan.

Bohannan A Huston
www.bhinc.com 800.877.5332

UNMH NHT ALBUQUERQUE, NEW MEXICO SITE TRAFFIC ANALYSIS

FIGURE 1 VICINITY MAP

Bohannan A Huston
www.bhinc.com 800.877.5332

UNMH NHT ALBUQUERQUE, NEW MEXICO SITE TRAFFIC ANALYSIS

FIGURE 2 SITE PLAN

II. PROPOSED DEVELOPMENT

A. LAND USE AND INTENSITY

The proposed development will include a bed tower serving 96 beds and a parking garage.

The immediately surrounding land uses include university uses immediately north and south for students, faculty, and staff, retail along Lomas Blvd, and residential development to the east.

B. DEVELOPMENT PHASING AND TIMING

With a development of this size, the project is anticipated to be constructed in phases, with Phase 1 development east of Yale Blvd expected to be completed in 2024. This is referred to as the Phase 1 development. This study identifies interim impacts and improvements necessary for development of Phase 1. Funding for future phases is uncertain at this time.

C. FUTURE ROADWAY PROJECTS

According to the NMDOT electronic statewide transportation improvement program (STIP), a project is planned to move the North Diversion Channel bicycle and pedestrian facility under Indian School Rd. Construction was expected to begin in 2019. The bicycle and pedestrian facility is not expected to have any impacts on this project, though it could conceivably encourage additional bicycle commuting.

III. STUDY AREA CONDITIONS

A. STUDY AREA

The study area consists of the following intersections:

- 1. Lomas Blvd and University Blvd
- Lomas Blvd and Yale Blvd
- 3. Yale Blvd and Camino de Salud
- 4. Lomas Blvd and Emergency/Ambulance Entrance
- 5. Lomas Blvd and Patient Drop-off exit
- 6. Lomas Blvd and Patient Drop-off entrance
- 7. Lomas Blvd and Stanford Dr
- 8. Lomas Blvd and Girard Blvd
- 9. Lomas Blvd and Oak St (East [northbound] Frontage Road)
- 10. Lomas Blvd and Locust St (West [southbound] Frontage Road)
- 11. Mountain Rd and Oak St
- 12. Mountain Rd and Locust St
- 13. Oak and Camino de Salud
- 14. Camino de Salud and Tucker Ave
- 15. University Blvd and Las Lomas Rd
- 16. University Blvd and Tucker Ave
- 17. University Blvd and Camino de Salud
- 18. University Blvd and Indian School Rd
- 19. University Blvd and I-40 Eastbound Ramp
- 20. University Blvd and I-40 Westbound Ramp
- 21. North I-40 Frontage Rd and I-25 Southbound Frontage Rd
- 22. South I-40 Frontage Rd and I-25 Southbound Frontage Rd

B. SITE ACCESSIBILITY

The main vehicular entrances for the NHT is accessible via the intersection of Lomas Blvd and Yale Blvd and the intersection of University Blvd and Tucker Ave. A substantial amount of Staff trips will be via shuttle from remote parking lots.

C. DATA SOURCES

The data used in this report consist of the traffic counts described below, aerial photography, 2040 Socioeconomic Forecasts from MRCOG, and mapping from Google Earth®. The UNMH Master Plan Parking Study completed by HDR in 2018 was referenced to determine the proportion of staff who park nearby.

IV. ANALYSIS OF EXISTING CONDITIONS

A. BACKGROUND

Roadway federal classification is updated approximately every four years. The classification process involves local governments, the Mid Region Council of Governments (MRCOG), New Mexico Department of Transportation (NMDOT), and the Federal Highway Administration (FHWA). The 2016 MRCOG Roadway Functional Classification Map classifies roadways based on their function. Roadways are subject to design guidance based on their functional classification, design speed, or based on Comprehensive Plan corridor designations.

- Lomas Blvd principal arterial with three travel lanes in each direction and has a posted speed limit of 35 miles per hour (MPH). Lomas Blvd consists of several access points to enter the UNMH vicinity, include Yale Blvd, an ambulance entrance, emergency room drop-off, and a general patient pick-up and drop-off area. Lomas Blvd has sidewalks on both sides of the corridor; bicycle facilities are not present. Lomas Blvd is served by numerous transit and commuter routes, including Routes 5, 11, 12, 92, and the 790 Rapid Ride Route.
- University Blvd minor arterial with two travel lanes in each direction north of Lomas Blvd and three travel lanes in each direction south of Lomas Blvd.
 University Blvd has a posted speed limit of 35 MPH. University Blvd has sidewalks on both sides of the corridor; bicycle facilities are not present.
 University Blvd is served by numerous transit and commuter routes, including Routes 12, 16, and 92.
- Yale Blvd minor arterial with one travel lane in each direction and a posted speed limit of 25 MPH. Yale Blvd is currently the primary access into the UNMH area. Yale Blvd has sidewalks on both sides of the corridor and allows for bicycles to share the road with automobiles.
- Camino de Salud west of University Blvd local road with one travel lane in each direction and a posted speed limit of 15 MPH.
- Camino de Salud east of University Blvd local road with one travel lane in each direction and a posted speed limit of 20 MPH. Camino de Salud provides access to the UNMH area from Tucker Ave.

- Tucker Ave local road with one travel lane in each direction and a posted speed limit of 20 MPH. Tucker Ave provides access into the UNMH area from University Blvd and has sidewalks on both sides of the corridor with access to a nearby bicycle route.
- Mountain Rd major collector with one travel lane in each direction and a posted speed limit of 25 MPH. Mountain Road is served by transit Route 5.
- Indian School Rd minor arterial with two travel lanes in each direction and a posted speed limit of 35 MPH. Indian School Rd is served by commuter transit Route 6 and Route 16.
- Las Lomas Rd local road with one travel lane in each direction and a posted speed limit of 25 MPH.
- Girard major collector with one travel lane in each direction north of Lomas Blvd and two travel lanes in each direction south of Lomas Blvd. Girard Blvd has a posted speed limit of 30 MPH.

1. MULTI-MODAL BACKGROUND

As mentioned the Albuquerque/Bernalillo County Comprehensive Plan identifies the vicinity of Lomas Blvd and University Blvd as "Areas of Change," identifies Lomas Blvd as a "Major Transit Corridor" and University Blvd north of Lomas Blvd as a "Premium Transit Corridor." Numerous transit routes and shuttles operate near UNMH and serve the general area.

UNMH staff have the option to park at the Lands West north and south parking lots located on Camino de Salud west of University Blvd. Staff are shuttled into the UNMH area with shuttles running approximately every 15 minutes, Monday through Friday, 4:00 AM to 12:15 AM.

The NHT is in proximity to walking and bicycle facilities including the North Diversion Channel and the facilities are frequented by UNM students.

B. EXISTING TRAFFIC CONDITIONS

Traffic counts for the intersections analyzed in the study area were collected for a duration of multiple weeks, beginning March 19, 2019, and ending April 11, 2019. All counts were conducted while school was in session. Traffic counts were recorded from 6:00 to 9:00 AM and 4:00 to 7:00 PM. Figure 3A is a summary of the existing peak hour traffic volumes,

existing laneage, turning movements, and intersection level of service. Existing traffic counts are included in Appendix A.

The traffic counts included counts for heavy vehicles, pedestrians, and bicyclists.

The Sixth Edition of the Highway Capacity Manual (HCM) defines Level of Service (LOS) for un-signalized intersections is as follows:

	Table 1 – LOS Definitions											
Level of Service	Definition	Signalized (sec/veh)	Unsignalized (sec/veh)									
А	Most vehicles do not stop.	<10	<10									
В	Some vehicles stop.	>10 and <20	>10 and <15									
С	Significant numbers of vehicles stop.	>20 and <35	>15 and <25									
D	Many vehicles stop.	>35 and <55	>25 and <35									
Е	Limit of acceptable delay.	>55 and <80	>35 and <50									
F	Unacceptable delay.	>80	>50									

The City of Albuquerque has established LOS D as the generally acceptable level of service in urban areas and when intersections operate below this level, improvements are generally considered, where feasible.

1. SIGNALIZED

Existing traffic volumes for signalized intersections were analyzed using version 7 of the Highway Capacity Software (HCS7), which uses signalized intersection methodology from the Sixth Edition of the HCM. Existing traffic volumes for unsignalized intersections were analyzed using the Synchro version 10 software. Individual intersection output for the existing conditions analysis is included in Appendix C.

The signalized intersections were evaluated using existing City signal timing with coordination for the Lomas corridor.

The results are summarized in Table 2 and Table 3, and shown graphically in Figure 3A and Figure 3B.

The analysis indicates that all existing signalized intersections operate at an overall acceptable level of service. Some movements operate poorly, including northbound and southbound lefts at Lomas and Yale in the AM and PM, southbound right at Lomas and Yale in the PM, and southbound thru and right at Lomas and University in the PM.

Table 2 – 2019 Existing Signalized Intersection Capacity Analysis Results											
	20	019 PM Pea	k								
Signalized Intersections	Delay (sec)	Max V/C	LOS	Delay (sec)	Max V/C	LOS					
I-25 SB Frontage & N I40 Frontage	8.0	0.33	А	8.3	0.47	А					
I-25 SB Frontage & S I40 Frontage	8.6	0.62	А	7.9	0.29	А					
Locust & Mountain	16.9	0.62	В	19.0	0.69	В					
Locust & Lomas	25.8	0.91	С	16.1	0.85	В					
Oak & Mountain	7.1	0.61	Α	6.0	0.57	Α					
Oak & Lomas	13.9	0.86	В	13.3	0.83	В					
University & I40 WB Ramp	18.4	0.86	В	12.7	0.43	В					
University & I40 EB Ramp	12.7	0.70	В	4.1	0.47	В					
University & Indian School	50.0	1.05	D**	32.2	0.84	С					
University & Camino de Salud	13.9	0.80	В	13.7	0.97	В					
University & Lomas	28.5	0.87	С	9.2	0.92	D*					
University & Las Lomas	4.9	0.35	Α	5.9	0.42	Α					
Yale & Lomas	15.3	0.87	B*	30.1	0.94	C*					
Stanford/ER Entrance & Lomas	6.1	0.53	А	14.2	0.70	В					
Girard & Lomas	21.0	0.90	С	26.8	0.94	C*					
*-movement LOS E											

F

The intersection of University and Indian School has an overall acceptable LOS in both peak hours; however, with a 60-minute analysis it has a volume-to-capacity ratio of 1.05 in the AM peak hour, which indicates the intersection is over capacity. A multi-period analysis was conducted, and the results are summarized below. Each 15-minute period operates at an acceptable level of service and does not exceed v/c over 1, with the highest v/c of 0.91 occurring at 7:45-8:00 AM.

Time Period 7:15 7:30 7:45 8:00	EBL 51 33 25 17	EBT 60 55 47 32	EBR 66 62 58 42	WBL 58 50 70 43	WBT 91 64 50 65	WBR 14 23 30 13	NBL 38 15 20 28	NBT 94 115 132 97	NBR 12 24 14 19	SBL 7 12 8 15	SBT 228 251 263 225	SBR 35 21 13 17
				De	lay (s)							
Time Period 7:15 7:30 7:45 8:00	EBL 27.6 25.6 28.3 27.4	EBT 37.3 33.0 35.0 31.7	EBR 40.4 35.1 37.6 33.3	WBL 28.9 25.3 26.4 24.8	WBT 33.0 27.5 25.8 26.2	WBR 33.0 27.6 26.0 26.3	NBL 25.2 23.0 25.8 22.0	NBT 22.8 25.3 26.8 23.3	NBR 22.9 25.5 26.9 23.5	SBL 22.4 19.9 22.3 19.7	SBT 50.3 41.8 51.4 36.6	SBR 51.0 42.1 51.7 36.8
				Le	vel of	service	(LO5)					
Time Period 7:15 7:30 7:45 8:00	EBL C C C	EBT D C D	EBR D D C	WBL C C C	WBT C C C	WBR C C C	NBL C C C	NBT C C C	NBR C C C	SBL C B C B	SBT D D D	SBR D D D
				Qu	eue Sto	rage Ra	tio (QS	R)				
Time Period 7:15 7:30 7:45 8:00	EBL 1.52 0.89 0.74 0.48	EBT 0.23 0.2 0.18 0.11	EBR 0.26 0.22 0.22 0.15	WBL 1.37 1.04 1.52 0.91	WBT 0.2 0.14 0.13 0.12	WBR 0.19 0.13 0.12 0.12	NBL 1.23 0.45 0.66 0.84	NBT 0.17 0.22 0.24 0.18	NBR 0.16 0.21 0.23 0.17	SBL 0.28 0.42 0.31 0.54	SBT 0.54 0.48 0.55 0.41	SBR 0.52 0.47 0.55 0.41
				In	tersect	ion Del	ay and	LOS				
Time Period 7:15 7:30 7:45 8:00	37.5 33.1 37.4 30.2	D C D C										

2. UNSIGNALIZED

The results show that the most existing unsignalized intersections operate at an acceptable level of service. The intersection of University Blvd and Tucker Ave operates at LOS E in the AM and LOS F in the PM in the westbound approach. This is due to vehicles that are not able to cross both directions of traffic to complete this movement in a timely manner. It is likely that some drivers perform a two-stage gap left turn, but due to volume on University this number is not expected to be substantial. The intersection is considered too close to Lomas to permanently signalize, although it will have temporary signalization during construction of the NHT. This temporary signal has been discussed with City Traffic Operations as will be considered in a separate submittal.

The UNM Health Sciences Center Master Plan intends to extend Camino de Salud north along the North Diversion Channel to connect to the other Camino de Salud that serves the UNMH L:and's West Parking Lot, the UNM Outpatient Surgery and Imaging Service, and the Office of the Medical Investigator buildings. This future connection should provide a reliever route for those vehicles destined to University Boulevard, reducing delay at the Tucker and University intersection.

Table 3 – 2019 Existing Unsignalized Intersection Results										
		2019 A	M Peak	2019 PM Peak						
Intersection/Movement	Delay (sec)	V/C	Queue* (ft)	LOS	Delay (sec)	V/C	Queue* (ft)	LOS		
Oak & Camino de Salud	0	-	-	-	0.9	-	-	-		
WB Right	12.6	0.01	0	В	16.6	0.20	25	С		
University & Tucker	5.5	-	-	-	13.3	-	-	-		
WB Approach	48.9	0.70	125	Е	109.4	1.06	300	F		
SB Right	15.7	0.48	75	С	11.1	0.17	25	В		
Camino de Salud & Tucker	2.6	-	-	-	3.8	-	-	-		
NB Approach	17.2	0.29	50	С	15.2	0.32	50	С		
EB Approach	0	-	0	Α	7.7	0.01	0	Α		
WB Approach	8.6	0.01	0	Α	7.8	0.01	0	Α		
SB Approach	9.2	0.01	0	Α	12.8	0.01	0	В		
Yale & Camino de Salud	6.4	-	-	Α	6.2	-	-	Α		
EB	4.9	0.12	0	Α	6.9	0.20	25	Α		
WB	5.9	0.28	25	Α	6.6	0.38	50	Α		
NB	7.3	0.43	50	Α	5.1	0.25	25	Α		
SB	5.3	0.15	25	Α	6.6	0.24	25	Α		
Lomas & Ambulance Entrance	0.1	-	-	-	0	-	-	-		
EB Left	24.6	0.05	25	С	18.4	0.01	0	С		
SB Right	18.1	0.02	25	С	15.6	0.02	25	С		
Lomas & Patient Drop-off Exit	1.4	-	-	-	1.2	-	-	-		
SB Right	24.6	0.32	50	С	16.9	0.21	25	С		
Lomas & Patient Drop-off Ent	0.7	-	-	-	0.4	-	-	-		
. EB Left	28.3	0.28	50	D	16.7	0.15	25	С		
* – HCM 95 th percentile queue	rounded	to next	25-foot inc	rement			•			

Bohannan Huston
www.bhinc.com 800.877.5332

UNMH NHT
ALBUQUERQUE, NEW MEXICO
SITE TRAFFIC ANALYSIS

FIGURE 3A 2019 AM(PM) PEAK HOUR TRAFFIC VOLUMES - NORTH

UNMH NHT
ALBUQUERQUE, NEW MEXICO
SITE TRAFFIC ANALYSIS

FIGURE 3B 2019 AM(PM) PEAK HOUR TRAFFIC VOLUMES - SOUTH

V. PROJECTED TRAFFIC

A. SITE TRAFFIC FORECASTING

1. TRIP GENERATION

Generated trips are broken down into three types; 1) primary, 2) pass-by trips, and 3) diverted link. The Trip Generation report defines these trips as follows:

- Primary Trips These trips are made for the specific purpose of visiting the generator. The stop at that generator is the primary reason for the trip. For example, a home to shopping to home combination of trips is a primary trip set.
- Pass-by Trips These trips are made as intermediate stops on the way from
 an origin to a primary trip generation. Pass-by trips are attracted from the traffic
 passing the site on an adjacent street that contains direct access to the
 generator site. These trips do not require a diversion from another roadway.
 For example, stopping at the store on the way home from work is an example
 of a pass-by trip. No pass-by trips were assigned to this development.
- Diverted Linked Trips These trips are attracted from the traffic volume on the roadway within the vicinity of the generator, but which require a diversion from that roadway to another roadway to gain access to the site. The roadways could include streets or freeways adjacent to the generator, but without access to the generator. For this study, the diverted link trips have been included in with the primary trips.

All trips to the site were considered primary trips. No trips reductions due to transit use. *The Institute of Transportation Engineers Trip Generation Manual, 10th Edition* was used to estimate the trips generated by the site. The peak hour of adjacent street rate was used to determine trip generation for this study, which results in slightly more trips than the peak hour of adjacent street equation. Refer to the Site Traffic Forecasting Methodology Memo in Appendix C for a detailed description of trip generation.

Table 4 – Trip Generation											
Land Use	Size	Daily	AM Enter	AM Exit	PM Enter	PM Exit					
Hospital	96	610 – Hospital	2,143	128	49	51	129				
Trip Generation	า		2,143	128	49	51	129				

2. TRIP DISTRIBUTION AND ASSIGNMENT

A modified gravity model was used to develop the trip distribution. This modified gravity model utilized the Mid Region MPO employment estimates for each zone within the Albuquerque Metropolitan Planning Area to develop the trip distribution. The maps and spreadsheet used to create the modified gravity model is included in Appendix C.

A detailed description of the methodology used to determine trip distribution and assignment in located in Appendix C. Spreadsheets showing the development of the trips at each intersection for the build scenario are also included in Appendix C. The trip distribution percentages and assigned traffic volumes for the Build analysis is shown in Figure 4A through Figure 5D.

3. No Build Traffic Projections

The annual growth was calculated using traffic counts for the years of 2013-2017 from the MRCOG Average Weekday Traffic Map. This analysis found a negative growth rate. To estimate future traffic growth, 1.0% annual growth was applied to the existing turning movements to provide an estimate of potential future growth of traffic on the roadway network. The data and calculations are summarized in spreadsheets included in Appendix C.

Figure 6A and Figure 6B starting on page 32 shows the 2024 No Build Traffic Volumes, number of lanes, and level of service.

The No Build analysis assumes that the proposed project is not completed.

Bohannan A Huston
www.bhinc.com 800.877.5332

UNMH NHT
ALBUQUERQUE, NEW MEXICO
SITE TRAFFIC ANALYSIS

FIGURE 4B 2024 BUILD TRIP DISTRIBUTION PERCENTAGES (MAIN PARKING) -SOUTH

Bohannan & Huston
www.bhinc.com 800.877.5332

UNMH NHT
ALBUQUERQUE, NEW MEXICO
SITE TRAFFIC ANALYSIS

FIGURE 4D 2024 BUILD TRIP DISTRIBUTION PERCENTAGES (REMOTE PARKING) - SOUTH

UNMH NHT
ALBUQUERQUE, NEW MEXICO
SITE TRAFFIC ANALYSIS

FIGURE 5B 2024 BUILD TRIP ASSIGNMENT VOLUMES (MAIN PARKING) AM(PM) -SOUTH

ALBUQUERQUE, NEW MEXICO SITE TRAFFIC ANALYSIS

VOLUMES (REMOTE PARKING) AM(PM) - NORTH

Bohannan A Huston
www.bhinc.com 800.877.5332

UNMH NHT
ALBUQUERQUE, NEW MEXICO
SITE TRAFFIC ANALYSIS

FIGURE 5D 2024 BUILD TRIP ASSIGNMENT VOLUMES (REMOTE PARKING) AM(PM) - SOUTH

VI. TRAFFIC AND IMPROVEMENT ANALYSIS

The following section will discuss the results of the future year traffic analysis.

A. LEVEL OF SERVICE ANALYSIS

1. 2024 NO BUILD INTERSECTION CAPACITY ANALYSIS

The No Build analysis assumes the development is not constructed.

a) Signalized

For the 2024 No Build scenario, the signalized intersections were analyzed using HCS7. Table 5 and Table 6 shows the 2024 No Build analysis results for signalized intersections. The results are shown graphically in Figure 6A and Figure 6B. HCS output is included in Appendix D.

The analysis indicates that most signalized intersections will continue to operate as they do currently.

Table 5 – 2024 No Build Signalized Intersection Capacity Analysis Results											
	20	024 PM Pea	ak								
Signalized Intersections	Delay (sec)	Max V/C	LOS	Delay (sec)	Max V/C	LOS					
I-25 SB Frontage & N I40 Frontage	8.0	0.34	Α	8.3	0.49	А					
I-25 SB Frontage & S I40 Frontage	8.6	0.64	Α	7.9	0.30	А					
Locust & Mountain	17.1	0.73	В	19.1	0.73	В					
Locust & Lomas	26.4	0.92	С	16.4	0.85	В					
Oak & Mountain	7.2	0.62	Α	6.1	0.43	Α					
Oak & Lomas	14.2	0.86	В	12.4	0.86	В					
University & I40 WB Ramp	19.0	0.87	В	2.8	0.44	В					
University & I40 EB Ramp	12.9	0.74	В	14.3	0.50	В					
University & Indian School	57.1	1.10	E**	33.2	0.87	С					
University & Camino de Salud	14.7	0.80	В	13.9	0.96	В					
University & Lomas	29.8	0.90	С	41.0	0.93	D*					
University & Las Lomas	5.0	0.35	Α	5.9	0.43	Α					
Yale & Lomas	15.6	0.87	B*	31.0	0.94	C**					
Stanford/ER Entrance & Lomas	6.1	0.54	А	14.7	0.71	В					
Girard & Lomas	21.7	0.91	С	27.6	0.95	C*					
*-movement LOS E **-movement LOS F	•	•		•							

Again, the intersection of University and Indian School has an overall acceptable LOS in both peak hours but has a 60-minute volume-to-capacity ratio of 1.10 in the AM peak hour, which indicates the intersection is over capacity. A multi-period analysis was conducted, and the results are summarized below. Each 15-minute period operates at an acceptable level of service and does not exceed v/c over 1, with the highest v/c of 0.94 occurring at 7:45-8:00 AM.

				De	mand (v	eh/p)						
Time Period 7:15 7:30 7:45 8:00	53 34 26 18	62 57 48 33	EBR 68 64 60 43	WBL 60 52 72 44	WBT 94 66 52 67	WBR 14 24 31 13	NBL 39 15 21 29	NBT 97 118 136 100	NBR 12 25 14 20	SBL 7 12 8 15	SBT 235 259 271 232	SBR 36 22 13 18
				De	lay (s)							
Time Period 7:15 7:30 7:45 8:00	EBL 27.7 25.7 28.5 27.5	EBT 37.7 33.4 35.5 32.0	EBR 41.1 35.7 38.4 33.6	WBL 29.2 25.4 27.5 24.9	WBT 33.3 27.6 26.1 26.5	WBR 33.4 27.8 26.3 26.6	NBL 26.1 23.7 26.4 22.5	NBT 23.3 25.8 27.2 23.6	NBR 23.4 26.0 27.3 23.7	SBL 22.9 20.1 22.6 19.9	SBT 56.4 45.3 56.9 38.6	SBR 57.3 45.7 57.3 38.8
				Le	vel of	Service	(LOS)					
Time Period 7:15 7:30 7:45 8:00	EBL C C C	EBT D C D	EBR D D C	WBL C C C	WBT C C C	WBR C C C	NBL C C C	NBT C C C	NBR C C C	SBL C C C B	SBT E D E D	SBR E D E D
				Qu	eue Sto	rage Ra	tio (QS	R)				
Time Period 7:15 7:30 7:45 8:00	EBL 1.6 0.93 0.78 0.51	EBT 0.24 0.2 0.18 0.12	EBR 0.27 0.23 0.23 0.16	WBL 1.42 1.09 1.59 0.93	WBT 0.2 0.15 0.14 0.13	WBR 0.2 0.14 0.13 0.12	NBL 1.29 0.45 0.7 0.88	NBT 0.17 0.23 0.25 0.19	NBR 0.17 0.22 0.24 0.18	SBL 0.29 0.42 0.32 0.54	SBT 0.58 0.52 0.59 0.44	SBR 0.56 0.51 0.59 0.43
				In	tersect	ion Del	ay and	LOS				
Time Period 7:15 7:30 7:45 8:00	40.0 34.7 39.8 31.1	D C D C										

b) Unsignalized

The analysis indicates that most unsignalized intersections will continue to operate as they do currently. The University Blvd and Tucker Ave westbound approach will degrade form LOS E to LOS F in the AM peak hour. As mentioned previously, the intersection is too close to Lomas for permanent signalization, and the UNM HSC Master Plan anticipates improvements that may alleviate the delay.

Table 6 – 2024	4 No Bui	ild Uns	ignalized l	Interse	ction Re	sults								
		2024 A	M Peak			2024 F	PM Peak							
Intersection/Movement	Delay (sec)	V/C	Queue* (ft)	LOS	Delay (sec)	V/C	Queue* (ft)	LOS						
Oak & Camino de Salud WB Right	0 12.8	- 0.01	- 0	- В	0.9 17.2	- 0.21	- 25	- C						
University & Tucker	6.4	-	-	-	17.5	-	-	-						
WB Approach SB Right 59.4 16.6 0.80 0.51 150 F C F 144.8 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.														
SB Right 16.6 0.51 75 C 11.3 0.18 25 B Camino de Salud & Tucker 2.7 - - - 3.9 - - - - NB Approach 17.9 0.30 50 C 15.6 0.34 50 C														
EB Approach	0	-	0	Α	7.8	0.01	0	Α						
WB Approach	8.6	0.01	0	Α	7.9	0.01	0	Α						
SB Approach	9.3	0.01	0	A	12.9	0.01	0	В						
Yale & Camino de Salud EB WB	6.5 5.0 6.0	0.13 0.29	0	A A A	6.4 7.1 6.7	0.21 0.40	- 25 50	A A A						
NB SB	7.5 5.4	0.29 0.44 0.16	25 50 25	A A A	5.2 6.8	0.40 0.26 0.25	25 25	A A A						
Lomas & Ambulance Entrance	0.1	-	-	-	0.0	-	-	-						
EB Left SB Right	25.8 18.6	0.06 0.02	25 25	D C	19 16	0.01 0.02	0 25	C						
Lomas & Patient Drop-off Exit SB Right	1.4 25.9	- 0.34	- 50	- D	1.2 17.3	0.22	- 25	- C						
Lomas & Patient Drop-off Ent	0.8	-	-	-	0.4	-	-	-						
EB Left	30.4	0.30	50	D	17.3	0.20	25	С						
* – HCM 95 th percentile queue i	rounded	to next	25-foot inc	rement	•									

ALBUQUERQUE, NEW MEXICO SITE TRAFFIC ANALYSIS

2024 NO BUILD AM(PM) PEAK HOUR TRAFFIC VOLUMES - NORTH

UNMH NHT
ALBUQUERQUE, NEW MEXICO
SITE TRAFFIC ANALYSIS

FIGURE 6B 2024 NO BUILD AM(PM) PEAK HOUR TRAFFIC VOLUMES - SOUTH

2. 2024 BUILD INTERSECTION CAPACITY ANALYSIS

The trips generated by the site (Table 4) were assigned to the intersections using the trip percentages and volumes assigned at each intersection shown in Figure 4A through Figure 5D. These trips were added to the 2024 No Build traffic projections in Figure 6A and Figure 6B.

Figure 7A and Figure 7B is a summary of the 2024 Build Peak hour traffic projections, lane geometry, and movement and intersection level of service for the 2024 Build analysis. Table 7 and Table 8 show the 2024 Build analysis results for signalized and unsignalized intersections. Individual intersection output is included in Appendix E.

a) Signalized

As with the No Build scenario, most signalized intersections continue to operate at acceptable levels of service and no intersections are expected to degrade in LOS.

Table 7 – 2024 Build	d Signaliz	ed Intersec	tion Cap	acity Anal	ysis Results	3
	20	24 AM Pea	k	20	024 PM Pea	k
Signalized Intersections	Delay (sec)	Max V/C	LOS	Delay (sec)	Max V/C	LOS
I-25 SB Frontage & N I40 Frontage	8.0	0.35	Α	8.3	0.50	А
I-25 SB Frontage & S I40 Frontage	8.7	0.65	Α	7.9	0.30	А
Locust & Mountain	17.0	0.73	В	19.1	0.73	В
Locust & Lomas	26.5	0.92	С	15.2	0.83	В
Oak & Mountain	7.2	0.62	Α	6.1	0.59	Α
Oak & Lomas	14.4	0.86	В	11.3	0.83	В
University & I40 WB Ramp	19.8	0.89	В	12.9	0.44	В
University & I40 EB Ramp	13.0	0.76	В	14.3	0.50	В
University & Indian School	63.1	1.14	E**	34.7	0.90	С
University & Camino de Salud	14.8	0.80	В	14.2	0.97	В
University & Lomas	30.1	0.90	С	41.3	0.94	D*
University & Las Lomas	5.0	0.35	Α	5.9	0.43	Α
Yale & Lomas	15.8	0.87	B*	32.0	0.95	C**
Stanford/ER Entrance & Lomas	6.1	0.54	А	14.9	0.71	В
Girard & Lomas	21.6	0.91	С	27.5	0.95	C*
*-movement LOS E **-movement LOS F						

The intersection of University and Indian School continues to have an overall acceptable LOS in both peak hours but has a 60-minute volume-to-capacity ratio of 1.14 in the AM peak hour, which indicates the intersection is over capacity. A multi-period analysis was conducted, and the results are summarized below. Each 15-minute period operates at an acceptable level of service and does not exceed v/c over 1, with the highest v/c of 0.98 occurring at 7:45-8:00 AM.

				De	mand (v	eh/p)						
Time Period 7:15 7:30 7:45 8:00	EBL 53 34 26 18	62 57 48 33	EBR 68 64 60 43	WBL 63 55 76 48	WBT 94 66 52 67	WBR 14 24 31 13	NBL 39 15 21 29	NBT 103 125 142 106	NBR 14 26 16 21	SBL 7 12 8 15	SBT 245 268 281 241	SBR 36 22 13 18
				De	lay (s)							
Time Period 7:15 7:30 7:45 8:00	EBL 27.9 25.9 28.9 27.9	EBT 38.1 33.7 36.0 32.4	EBR 41.4 36.0 38.9 34.1	WBL 29.5 25.4 28.7 25.1	WBT 33.2 27.5 25.9 26.3	WBR 33.3 27.7 26.1 26.4	NBL 26.8 24.4 27.1 23.4	NBT 24.1 26.6 28.2 24.3	NBR 24.2 26.8 28.3 24.5	SBL 23.3 20.5 23.1 20.3	SBT 64.7 49.9 66.0 41.7	SBR 65.8 50.4 66.4 42.0
				Le	vel of	service	(LOS)					
Time Period 7:15 7:30 7:45 8:00	EBL C C C	EBT D C D	EBR D D C	WBL C C C	WBT C C C	WBR C C C	NBL C C C	NBT C C C	NBR C C C	SBL C C C	SBT E D E D	SBR E D E D
				Qu	eue Sto	rage Ra	tio (QS	R)				
Time Period 7:15 7:30 7:45 8:00	EBL 1.61 0.93 0.79 0.52	EBT 0.24 0.2 0.19 0.12	EBR 0.27 0.23 0.24 0.16	WBL 1.49 1.15 1.7 1.03	WBT 0.2 0.15 0.14 0.13	WBR 0.2 0.14 0.13 0.12	NBL 1.32 0.46 0.72 0.9	NBT 0.19 0.24 0.26 0.2	NBR 0.19 0.23 0.26 0.2	SBL 0.29 0.43 0.32 0.55	SBT 0.64 0.56 0.66 0.47	SBR 0.62 0.55 0.65 0.46
				In	tersect	ion Del	ay and	LOS				
Time Period 7:15 7:30 7:45 8:00	43.2 36.7 43.7 32.6	D D D C										

b) Unsignalized

The results indicate that unsignalized intersections are generally expected to operate at acceptable levels of service.

The replacement of the roundabout at Yale Blvd and Camino de Salud with a two-way stop-controlled intersection was evaluated. Based on the expectation that the east leg of the intersection will serve the new parking garage, trips that were previously traveling to or from the east to access the current parking garage will continue to perform the same movements. The reconfigured intersection is expected to operate at an overall acceptable LOS; however, the exiting westbound left will experience higher delay and queueing in both AM and PM peak hours. This queue is expected to be contained within the parking structure.

The proposed entrance from Lomas Blvd east of Yale Blvd was evaluated with reassigned trips applied from the Lomas Blvd and Yale Blvd intersection. As a full-access intersection it operates at an overall acceptable level of service, however; the southbound left movement will operate at LOS F in the AM and LOS E in the PM. The high delay and low queuing for this exiting movement indicates that vehicles are not able to cross both

directions of traffic to complete this movement in a timely manner. Therefore, a left-out will not be recommended.

Table 8 – 20	24 Build	l Unsig	nalized In	tersect	ion Res	ults								
		2024 A	M Peak			2024 F	PM Peak							
Intersection/Movement	Delay (sec)	V/C	Queue* (ft)	LOS	Delay (sec)	V/C	Queue* (ft)	LOS						
Oak & Camino de Salud	0	-	-	•	0.9		-							
WB Right	12.9	0.01	0	В	17.3	0.21	25	С						
University & Tucker	7.6	-	-	-	23.3	-	-	-						
WB Approach	70.3	0.84	175	F	174.8	1.25	425	F						
SB Right	17	0.53	100	С	11.3	0.18	25	В						
Camino de Salud & Tucker 3.1 5.1 NB Approach 18.8 0.35 50 C 17.2 0.42 75														
EB Approach 0 A 7.8 0.01 0														
	-	-						Α						
WB Approach	8.7	0.01	0	Α	7.9	0.01	0	Α						
SB Approach	9.3	0.01	0	Α	12.9	0.01	0	В						
Yale & Camino de Salud	10.6		-	-	15.3	-	-	-						
NB Left	7.6	0.04	25	Α	7.8	0.01	0	Α						
EB Left	14.4	0.04	25	В	13.2	0.01	0	В						
EB Approach	16.1	0.26	50	C	12.2	0.24	25	В						
WB Left	37.3	0.67	125	E	42.4	0.83	200	E						
WB Approach	15.9	0.27	50	C	13.4	0.24	25	В						
SB Left	8.5	0.03	25	Α	8	0.02	25	Α						
Lomas & Proposed Entrance	0.2	-	-	-	0.2	-	-	-						
EB Left	24.9	0.09	25	C F	18.3	0.03	25	<u> </u>						
SB Left	54.4	0.01	0 25	C	43.4	0.03	25 25	C E C						
SB Right	18.0	0.02			15.6	0.03								
Lomas & Ambulance Entrance EB Left	0.1 26.2	0.06	- 25	- D	0 19.1	0.04	- 0	-						
SB Right	26.2 18.7	0.06	25 25	С	19.1	0.01 0.02	25	C						
ŭ .		0.02	25	U		0.02	25	U						
Lomas & Patient Drop-off Exit	1.4 26.2	0.35	- 50	D D	1.2 17.4	0.22	- 25	C						
SB Right		0.35	5U			0.22	2 5							
Lomas & Patient Drop-off Ent	0.8	0.31	- 50	- D	0.4	0.20	25	C						
* HCM 05th perceptile queue	30.9				17.3	0.20	25	U						
* – HCM 95 th percentile queue	rounaea	to next	∠5-100t Inc	rement	•									

Bohannan A Huston
www.bhinc.com 800.877.5332

UNMH NHT
ALBUQUERQUE, NEW MEXICO
SITE TRAFFIC ANALYSIS

FIGURE 7A 2024 BUILD AM(PM) PEAK HOUR TRAFFIC VOLUMES - NORTH

LOMAS/AMBULANCE ENTRANCE

UNMH NHT ALBUQUERQUE, NEW MEXICO SITE TRAFFIC ANALYSIS

FIGURE 7B 2024 BUILD AM(PM) PEAK HOUR TRAFFIC VOLUMES - SOUTH

VII. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The traffic analysis shows that under existing 2019, 2024 No Build, and 2024 Build, all intersections will operate at an acceptable level of service (LOS), with two exceptions.

- 1. The signalized intersection of University and Indian School has an overall acceptable LOS in both peak hours; however, it has a volume-to-capacity ratio over 1 in the AM peak hour in a traditional 60-minute analysis, which indicates the intersection is over capacity. The multi-period analysis shows that the intersection operates under capacity for each 15-minute period with acceptable levels of service.
- 2. The two-way stop-controlled intersection at University Blvd and Tucker currently operates at LOS E during the AM peak hour and LOS F during the PM peak hour in the westbound approach. In the build condition the delay for the westbound approach increases from 48.9 to 70.3 in the AM peak hour and from 109.4 to 174.8 in the PM peak hour.

Construction of the development will not result in dramatic increases in traffic delay or degrade in LOS for all other signalized intersections and unsignalized movements.

Modifications made to two other intersections in the build year were evaluated, with conclusions described below:

- Yale Blvd and Camino de Salud The replacement of the roundabout at Yale
 Blvd and Camino de Salud with a two-way stop-controlled intersection was evaluated. The east leg of the intersection will serve the parking garage. The intersection is expected to operate at an overall acceptable LOS.
- Proposed Entrance The proposed entrance from Lomas Blvd east of Yale Blvd was evaluated with reassigned trips applied from the Lomas Blvd and Yale Blvd intersection. As a full-access intersection it operates at an overall acceptable level of service, however; the southbound left movement will operate at LOS F in the AM and LOS E in the PM. The high delay and low queuing for this movement indicates that vehicles are not able to cross both directions of traffic to complete this movement in a timely manner. Therefore, the recommendation is for this intersection to be left-in/right-in/right-out only.

1. RECOMMENDATIONS

The proposed driveway located on Lomas Blvd between Yale Blvd and the ambulance entrance is expected to operate at an acceptable LOS with minimal delay for the eastbound left movements. It is recommended that this new entrance operate as a left-in/right-out only driveway, no left outs. Due to the short distance between the Lomas Blvd and Yale Blvd intersection and this driveway, the eastbound left turn lane should be the maximum length without impacting the westbound left turn onto Yale. It is possible that this entrance will require signalization as a high-T, similar to the intersection of Central and Mulberry, in the future as it is more convenient for patient drop-off than the current configuration.

It is recommended Yale Blvd north of Lomas Blvd provide two lanes of traffic both northbound and southbound. A dedicated northbound left turn lane should be constructed at the Camino de Salud intersection. The outside northbound through lane should be extended north to the service road at the north side of the parking garage. The second southbound lane can begin at the Camino de Salud intersection.

2. FUTURE CONSIDERATIONS

With the understanding that UNMH will continue development of the NHT and additional medical office buildings in the future, it is important to consider the expected number of trips generated by future development and the impact to existing intersections. These trips will likely need to be accommodated by introducing additional access points into the campus.

The Albuquerque/Bernalillo County Comprehensive Plan designates Lomas Blvd as a "Major Transit Corridor" and the UNMH campus area as an "Activity Center." The draft Albuquerque Development Process Manual (DPM) requires that these designations consider the incorporation of multi-modal opportunities including an efficient transit system, attractive pedestrian environment, and good access for bicyclists. The DPM allows for signalized intersections located on roadways designated as a "Major Transit Corridor" that is located within an "Activity Center" to operate at LOS E. The draft DPM also indicates that a "Major Transit Corridor" may space signalized intersections ¼ to ½ mile apart.

For these reasons it should become an expectation that Lomas Blvd will operate relatively slowly for vehicular traffic while accommodating the safety and comfort of transit users, bicyclists, and pedestrians. The City and UNMH should work cooperatively together to evaluate future needs and coordinate their implementation. This includes working with Rio Metro on the University Boulevard Bus Rapid Transit Study.

APPENDIX A EXISTING TRAFFIC COUNTS

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

Counter R.C.

File Name: North frontage Rd and West frontage Rd.

Site Code : 04022019 Start Date : 4/2/2019

Group	os P	rintea-	Cars -	rucks -	Buses

							Wes	t frontag	e Rd.								Nort	h frontag	ge Rd.		
			Eastboun	ıd			\	Vestbour	nd			1	Northbou	nd			Ş	outhbou	nd		,
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
06:00 AM	0	0	0	0	0	7	11	0	0	18	0	0	0	1	1	0	15	7	1	23	42
06:15 AM	0	0	0	0	0	5	12	0	0	17	0	0	0	0	0	0	18	5	0	23	40
06:30 AM	0	0	0	0	0	7	15	0	0	22	0	0	0	0	0	0	31	2	0	33	55
06:45 AM	0	0	0	0	0	28	53	0	0	81	0	0	0	0	0	0	30	11	0	41	122
Total	0	0	0	0	0	47	91	0	0	138	0	0	0	1	1	0	94	25	1	120	259
07:00 AM	0	0	0	0	0	26	39	0	0	65	0	0	0	1	1	0	46	8	0	54	120
07:15 AM	0	0	0	0	0	47	84	0	0	131	0	0	0	0	0	0	60	10	0	70	201
07:30 AM	0	0	0	0	0	43	117	0	0	160	0	0	0	0	0	0	66	9	0	75	235
07:45 AM	0	0	0	0	0	43	100	0	0	143	0	0	0	0	0	0	91	12	0	103	246
Total	0	0	0	0	0	159	340	0	0	499	0	0	0	1	1	0	263	39	0	302	802
08:00 AM	0	0	0	0	0	36	81	0	0	117	0	0	0	0	0	0	80	13	0	93	210
08:15 AM	0	0	0	0	0	32	73	0	0	105	0	0	0	0	0	0	66	15	0	81	186
08:30 AM	0	0	0	0	0	25	84	0	0	109	0	0	0	0	0	0	78	8	0	86	195
08:45 AM	0	0	0	0	0	29	73	0	0	102	0	0	0	0	0	0	69	17	0	86	188
Total	0	0	0	0	0	122	311	0	0	433	0	0	0	0	0	0	293	53	0	346	779
*** BREAK ***																					
04:00 PM	0	0	0	0	0	10	112	0	0	122	0	0	0	0	0	0	88	33	0	121	243
04:15 PM	0	0	0	1	1	20	117	0	0	137	0	0	0	1	1	0	76	24	0	100	239
04:30 PM	0	0	0	0	0	13	133	0	0	146	0	0	0	0	0	0	79	37	0	116	262
04:45 PM	0	0	0	0	0	15	161	0	0	176	0	0	0	0	0	0	61	27	0	88	264
Total	0	0	0	1	1	58	523	0	0	581	0	0	0	1	1	0	304	121	0	425	1008
05:00 PM	0	0	0	0	0	17	141	0	1	159	0	0	0	0	0	0	99	36	0	135	294
05:15 PM	0	0	0	0	0	13	126	0	0	139	0	0	0	0	0	0	61	25	0	86	225
05:30 PM	0	0	0	0	0	10	99	0	0	109	0	0	0	0	0	0	71	31	0	102	211
05:45 PM	0	0	0	0	0	14	80	0	1_	95	0	0	0	0	. 0	0	56	16	0	72	167
Total	0	0	0	0	0	54	446	0	2	502	0	0	0	0	0	0	287	108	0	395	897
06:00 PM	0	0	0	0	0	23	119	0	0	142	0	0	0	0	0	0	59	15	0	74	216
06:15 PM	0	0	0	0	0	16	159	0	0	175	0	0	0	0	0	0	37	7	0	44	219
06:30 PM	0	0	0	0	0	8	95	0	0	103	0	0	0	0	0	0	39	15	0	54	157
06:45 PM	0	0	0	0	0	9	58	0	0	67	0	0	0	0	0	0	36	15	1	52	119
Total	0	0	0	0	0	56	431	0	0	487	0	0	0	0	0	0	171	52	1	224	711
Grand Total	0	0	0	1	1	496	2142	0	2	2640	0	0	0	3	3	0	1412	398	2	1812	4456
Apprch %	0	0	0	100		18.8	81.1	0	0.1		0	0	0	100		0	77.9	22	0.1		
Total %	0	0	0	0	0	11.1	48.1	0	0	59.2	0	0	0	0.1	0.1	0	31.7	8.9	0	40.7	

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: North frontage Rd and West frontage Rd.

Site Code : 04022019 Start Date : 4/2/2019

Page No : 2

							Wes	st frontag	e Rd.								Nort	h frontag	e Rd.		l
			Eastbour	nd			٧	Nestbour	nd			1	Northbou	nd			S	outhbou	nd		l
	Left	Thru	Right	Peds	App. Total	Left						Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Cars	0	0	0	1	1	483	2110	0	2	2595	0	0	0	3	3	0	1372	380	2	1754	4353
% Cars	0	0	0	100	100	97.4	98.5	0	100	98.3	0	0	0	100	100	0	97.2	95.5	100	96.8	97.7
Trucks	0	0	0	0	0	10	22	0	0	32	0	0	0	0	0	0	27	12	0	39	71
% Trucks	0	0	0	0	0	2	1	0	0	1.2	0	0	0	0	0	0	1.9	3	0	2.2	1.6
Buses	0	0	0	0	0	3	10	0	0	13	0	0	0	0	0	0	13	6	0	19	32
% Buses	0	0	0	0	0	0.6	0.5	0	0	0.5	0	0	0	0	0	0	0.9	1.5	0	1	0.7

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: North frontage Rd and West frontage Rd.

Site Code : 04022019 Start Date : 4/2/2019

							Wes	t frontage	e Rd.								Nort	h frontag	e Rd.		
		E	Eastboun	d				estboun/				N	lorthbour	nd				outhbour			
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analys					ak 1 of 1				•	•	·	•				•	•			·	
Peak Hour for Ent	ire Interse	ection Be	gins at 0	7:15 AM																	
07:15 AM	0	0	0	0	0	47	84	0	0	131	0	0	0	0	0	0	60	10	0	70	201
07:30 AM	0	0	0	0	0	43	117	0	0	160	0	0	0	0	0	0	66	9	0	75	235
07:45 AM	0	0	0	0	0	43	100	0	0	143	0	0	0	0	0	0	91	12	0	103	246
08:00 AM	0	0	0	0	0	36	81	0	0	117	0	0	0	0	0	0	80	13	0	93	210
Total Volume	0	0	0	0	0	169	382	0	0	551	0	0	0	0	0	0	297	44	0	341	892
% App. Total	0	0	0	0		30.7	69.3	0	0		0	0	0	0		0	87.1	12.9	0		
PHF	.000	.000	.000	.000	.000	.899	.816	.000	.000	.861	.000	.000	.000	.000	.000	.000	.816	.846	.000	.828	.907
Cars	0	0	0	0	0	166	372	0	0	538	0	0	0	0	0	0	291	42	0	333	871
% Cars	0	0	0	0	0	98.2	97.4	0	0	97.6	0	0	0	0	0	0	98.0	95.5	0	97.7	97.6
Trucks	0	0	0	0	0	3	7	0	0	10	0	0	0	0	0	0	4	2	0	6	16
% Trucks	0	0	0	0	0	1.8	1.8	0	0	1.8	0	0	0	0	0	0	1.3	4.5	0	1.8	1.8
Buses	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	0	2	0	0	2	5
% Buses	0	0	0	0	0	0	8.0	0	0	0.5	0	0	0	0	0	0	0.7	0	0	0.6	0.6
Peak Hour Analys					ak 1 of 1																
Peak Hour for Ent			-	4:15 PM	. 1					40-1		_	_		. 1				_		
04:15 PM	0	0	0	1	1	20	117	0	0	137	0	0	0	1	1	0	76	24	0	100	239
04:30 PM	0	0	0	0	0	13	133	0	0	146	0	0	0	0	0	0	79	37	0	116	262
04:45 PM	0	0	0	0	0	15	161	0	0	176	0	0	0	0	0	0	61	27	0	88	264
05:00 PM	0	0	0	0	0	17	141	0	1	159	0	0	0	0	0	0	99	36	0	135	294
Total Volume	0	0	0		1	65	552	0	1	618	0	0	0	1	1	0	315	124	0	439	1059
% App. Total	0	0	0	100		10.5	89.3	0	0.2		0	0	0	100	2-2	0	71.8	28.2	0		
PHF	.000	.000	.000	.250	.250	.813	.857	.000	.250	.878	.000	.000	.000	.250	.250	.000	.795	.838	.000	.813	.901
Cars	0	0	0	1	1	63	550	0	1	614	0	0	0	1	1	0	305	121	0	426	1042
% Cars	0	0	0	100	100	96.9	99.6	0	100	99.4	0	0	0	100	100	0	96.8	97.6	0	97.0	98.4
Trucks	0	0	0	0	0	1	1	0	0	2	0	0	0	0	0	0	8	3	0	11	13
% Trucks	0	0	0	0	0	1.5	0.2	0	0	0.3	0	0	Ü	0	0	0	2.5	2.4	0	2.5	1.2
Buses	0	0	0	0	0	1	1	0	0	2	0	0	Ü	0	0	0	2	0	0	2	4
% Buses	0	0	0	0	0	1.5	0.2	0	0	0.3	0	0	Ü	0	0	0	0.6	0	0	0.5	0.4

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

Counter R.C.

File Name: South frontage Rd. and West frontage Rd.

Site Code : 04022019 Start Date : 4/2/2019

Groups	Printea-	Cars -	i rucks - Buses	

			st frontag Eastbour					Vestbou	nd			1	Northbou	nd				h Frontaզ Southbou			
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
06:00 AM	0	30	14	0	44	0	0	0	0	0	0	0	0	0	0	3	19	0	0	22	66
06:15 AM	0	37	28	2	67	0	0	0	0	0	0	0	0	0	0	3	20	0	0	23	90
06:30 AM	0	60	39	0	99	0	0	0	0	0	0	0	0	0	0	4	33	0	0	37	136
06:45 AM	0	55	67	0	122	0	0	0	0	0	0	0	0	0	0	2	54	0	0	56	178
Total	0	182	148	2	332	0	0	0	0	0	0	0	0	0	0	12	126	0	0	138	470
07:00 AM	0	71	57	0	128	0	0	0	0	0	0	0	0	0	0	4	67	0	1	72	200
07:15 AM	0	101	92	0	193	0	0	0	0	0	0	0	0	0	0	6	97	0	0	103	296
07:30 AM	0	123	80	0	203	0	0	0	0	0	0	0	0	0	0	12	98	0	0	110	313
07:45 AM	0	121	76	0	197	0	0	0	0	0	0	0	0	0	0	17	116	0	0	133	330
Total	0	416	305	0	721	0	0	0	0	0	0	0	0	0	0	39	378	0	1	418	1139
08:00 AM	0	112	72	0	184	0	0	0	0	0	0	0	0	0	0	12	104	0	0	116	300
08:15 AM	0	106	50	0	156	0	0	0	0	0	0	0	0	0	0	9	87	0	0	96	252
08:30 AM	0	96	49	0	145	0	0	0	0	0	0	0	0	0	0	13	89	0	0	102	247
08:45 AM	0	95	48	0	143	0	0	0	0	0	0	0	0	0	0	8	92	0	0	100	243
Total	0	409	219	0	628	0	0	0	0	0	0	0	0	0	0	42	372	0	0	414	1042
*** BREAK ***																					
04:00 PM	0	67	28	0	95	0	0	0	0	0	0	0	0	0	0	13	83	0	0	96	191
04:15 PM	0	82	20	0	102	0	0	0	1	1	0	0	0	0	0	11	84	0	1	96	199
04:30 PM	0	73	26	1	100	0	0	0	0	0	0	0	0	2	2	12	77	0	0	89	191
04:45 PM	0	88	23	0	111	0	0	0	1	1	0	0	0	0	0	11	66	0	0	77	189
Total	0	310	97	1	408	0	0	0	2	2	0	0	0	2	2	47	310	0	1	358	770
05:00 PM	0	79	24	0	103	0	0	0	0	0	0	0	0	0	0	28	83	0	0	111	214
05:15 PM	0	95	28	0	123	0	0	0	0	0	0	0	0	0	0	16	65	0	0	81	204
05:30 PM	0	64	18	0	82	0	0	0	0	0	0	0	0	0	0	13	68	0	0	81	163
05:45 PM	0	43	17	1	61	0	0	0	0	0	0	0	0	0	0	9	60	0	0	69	130
Total	0	281	87	1	369	0	0	0	0	0	0	0	0	0	0	66	276	0	0	342	711
06:00 PM	0	44	15	0	59	0	0	0	0	0	0	0	0	0	0	13	74	0	0	87	146
06:15 PM	0	35	11	1	47	0	0	0	0	0	0	0	0	0	0	3	47	0	0	50	97
06:30 PM	0	40	19	0	59	0	0	0	2	2	0	0	0	0	0	5	43	0	0	48	109
06:45 PM	0	30	17	1	48	0	0	0	0	0	0	0	0	0	0	3	41	0	1	45	93
Total	0	149	62	2	213	0	0	0	2	2	0	0	0	0	0	24	205	0	1	230	445
Grand Total	0	1747	918	6	2671	0	0	0	4	4	0	0	0	2	2	230	1667	0	3	1900	4577
Apprch %	0	65.4	34.4	0.2		0	0	0	100		0	0	0	100		12.1	87.7	0	0.2		
Total %	0	38.2	20.1	0.1	58.4	0	0	0	0.1	0.1	0	0	0	0	0	5	36.4	0	0.1	41.5	

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: South frontage Rd. and West frontage Rd.

Site Code : 04022019 Start Date : 4/2/2019

Page No : 2

		Wes	st frontag	e Rd.													Sout	h Frontag	ge Rd.		[
			Eastbour	nd			\	Westbou i	nd			1	Northbou	nd			S	Southbou	nd		[
	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Cars	0	1701	907	6	2614	0	0	0	3	3	0	0	0	2	2	227	1625	0	3	1855	4474
% Cars	0	97.4	98.8	100	97.9	0	0	0	75	75	0	0	0	100	100	98.7	97.5	0	100	97.6	97.7
Trucks	0	18	3	0	21	0	0	0	1	1	0	0	0	0	0	3	27	0	0	30	52
% Trucks	0	1	0.3	0	8.0	0	0	0	25	25	0	0	0	0	0	1.3	1.6	0	0	1.6	1.1
Buses	0	28	8	0	36	0	0	0	0	0	0	0	0	0	0	0	15	0	0	15	51
% Buses	0	1.6	0.9	0	1.3	0	0	0	0	0	0	0	0	0	0	0	0.9	0	0	0.8	1.1

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: South frontage Rd. and West frontage Rd.

Site Code : 04022019 Start Date : 4/2/2019

		\/\/_c	t frontag	a Rd													South	h Frontag	ı Pd		
			Eastboun				V	/estboun	Ч				lorthbour	nd				outhbour			
Start Time	Left	Thru			App. Total	Left	Thru	Right		App. Total	Left	Thru	Right		App. Total	Left	Thru	Right		App. Total	Int. Total
Peak Hour Analys						25.1															
Peak Hour for Ent																					
07:15 AM	0	101	92	0	193	0	0	0	0	0	0	0	0	0	0	6	97	0	0	103	296
07:30 AM	0	123	80	0	203	0	0	0	0	0	0	0	0	0	0	12	98	0	0	110	313
07:45 AM	0	121	76	0	197	0	0	0	0	0	0	0	0	0	0	17	116	0	0	133	330
08:00 AM	0	112	72	0	184	0	0	0	0	0	0	0	0	0	0	12	104	0	0	116	300
Total Volume	0	457	320	0	777	0	0	0	0	0	0	0	0	0	0	47	415	0	0	462	1239
% App. Total	0	58.8	41.2	0		0	0	0	0		0	0	0	0		10.2	89.8	0	0		
PHF	.000	.929	.870	.000	.957	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.691	.894	.000	.000	.868	.939
Cars	0	451	317	0	768	0	0	0	0	0	0	0	0	0	0	47	411	0	0	458	1226
% Cars	0	98.7	99.1	0	98.8	0	0	0	0	0	0	0	0	0	0	100	99.0	0	0	99.1	99.0
Trucks	0	3	1	0	4	0	0	0	0	0	0	0	0	0	0	0	3	0	0	3	7
% Trucks	0	0.7	0.3	0	0.5	0	0	0	0	0	0	0	0	0	0	0	0.7	0	0	0.6	0.6
Buses	0	3	2	0	5	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	6
% Buses	0	0.7	0.6	0	0.6	0	0	0	0	0	0	0	0	0	0	0	0.2	0	0	0.2	0.5
5		0.00 014		D14 D																	
Peak Hour Analys																					
Peak Hour for Ent				4:30 PM		•	•	0	•	0	•	0	0	0	0.1	40	77	0	0	00	404
04:30 PM	0	73	26	1	100	0	0	0	0	0	0	0	0	2	2	12	77	0	0	89	191
04:45 PM	0	88	23	0	111	0	0	0 0	1	1	0 0	0	0	0	0	11	66	0	0	77	189
05:00 PM	0	79 05	24	0 0	103	0	0 0	0	0 0	0	0	0	•	0	0	28	83 65	0	0	111	214
05:15 PM Total Volume	0	95 335	28 101	1	123 437	0	0	0	1	0	0	0	0	2	2	16 67	291	0	0	81 358	204 798
	0	76.7	23.1	0.2	437	0	0	0	100	1	0	0	0	100	2	18.7	291 81.3	0	0	358	798
% App. Total PHF	.000	.882	.902	.250	.888	.000	.000	.000	.250	.250	.000	.000	.000	.250	.250	.598	.877	.000	.000	.806	.932
Cars	.000	329	101	1	431	0	0	0	.250	.250	.000	0	0	250_	.230	.596 65	286	0	0	351	<u>.932_</u> 785
% Cars	0	98.2	100	100	98.6	0	0	0	100	100	0	0	0	100	100	97.0	98.3	0	0	98.0	98.4
Trucks	0	90.2	0	0	1	0	0	0	0	0	0	0	0	0	0	2	90.3	0	0	90.0	90.4 5
% Trucks	0	0.3	0	0	0.2	0	0	0	0	0	0	0	0	0	0	3.0	0.7	0	0	1.1	0.6
Buses	0	0.3 5	0	0	5	0	0	0	0	0	0	0	0	0	0	3.0 0	3	0	0	3	0.6 8
% Buses	0	ວ 1.5	0	0	1.1	0	0	0	0	0	0	0	0	0	0	0	1.0	0	0	0.8	0 1.0
70 Duses	U	1.0	U	U	1.1	U	U	U	U	U	U	U	U	U	O	U	1.0	U	U	0.6	1.0

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

Counter R.C.

File Name: Frontage Rd. S. and Mountain Rd.

Site Code : 03262019 Start Date : 3/26/2019

Groups P	rinted- Cars	- Trucks -	Buses

			Mount	ain Rd.					Mount	tain Rd.											Frontag	e Rd.	S.		
			East	bound						bound					North	bound					South	bound			
Start Time	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
06:00 AM	0	1	5	0	0	6	0	11	0	0	0	11	0	0	0	0	0	0	25	109	21	0	0	155	172
06:15 AM	0	5	3	0	3	11	0	9	0	0	0	9	0	0	0	0	0	0	45	143	17	0	0	205	225
06:30 AM	0	15	15	0	0	30	0	36	0	0	0	36	0	0	0	0	0	0	74	174	38	0	0	286	352
06:45 AM	0	15	11	0	0	26	0	35	0	1_	1	37	0	0	0	0	0	0	55	280	75	0	0	410	473
Total	0	36	34	0	3	73	0	91	0	1	1	93	0	0	0	0	0	0	199	706	151	0	0	1056	1222
07:00 AM	0	26	22	0	1	49	1	75	0	0	0	76	0	0	0	0	0	0	63	269	99	0	1	432	557
07:15 AM	0	38	34	0	0	72	0	63	0	0	0	63	0	0	0	0	0	0	75	379	127	0	1	582	717
07:30 AM	0	37	37	0	0	74	0	31	0	0	0	31	0	0	0	0	0	0	60	359	106	0	0	525	630
07:45 AM	0	26	13	0	0	39	0	14	0	0	0	14	0	0	0	0	0	0	82	458	92	0	0	632	685
Total	0	127	106	0	1	234	1	183	0	0	0	184	0	0	0	0	0	0	280	1465	424	0	2	2171	2589
08:00 AM	0	22	10	0	0	32	1	23	0	0	0	24	0	0	0	0	0	0	57	425	99	0	0	581	637
08:15 AM	0	16	14	1	Ö	31	0	19	0	Ö	0	19	0	0	Ő	0	0	0	44	413	73	1	0	531	581
08:30 AM	0	16	17	0	Ö	33	1	15	0	Ö	Ö	16	Ö	0	0	0	0	ő	36	329	76	0	0	441	490
08:45 AM	0	24	8	0	Ö	32	0	14	0	Ö	Ö	14	Ö	0	0	0	0	0	35	362	59	Ö	Ö	456	502
Total	0	78	49	1	0	128	2	71	0	0	0	73	0	0	0	0	0	0	172	1529	307	1	0	2009	2210
*** BREAK ***																									
04:00 PM	0	43	17	1	1	62	1	12	0	0	0	13	0	0	0	0	0	0	9	156	37	0	0	202	277
04:15 PM	0	26	11	0	1	38	0	17	0	0	0	17	0	0	0	0	0	0	7	155	28	0	0	190	245
04:30 PM	0	46	22	0	2	70	0	31	0	0	0	31	0	0	0	0	0	0	11	155	35	0	0	201	302
04:45 PM	0	37	17	0	0	54	0	13	0	0	0	13	0	0	0	0	0	0	7	134	40	0	0	181	248
Total	0	152	67	1	4	224	1	73	0	0	0	74	0	0	0	0	0	0	34	600	140	0	0	774	1072
05:00 PM	0	67	16	0	0	83	0	20	0	0	0	20	0	0	0	0	0	0	5	181	28	0	0	214	317
05:15 PM	0	59	14	1	0	74	0	17	0	1	0	18	0	0	0	0	0	0	5	161	39	0	0	205	297
05:30 PM	0	55	11	0	0	66	1	24	0	0	1	26	0	0	0	0	0	0	3	141	45	0	0	189	281
05:45 PM	0	24	8	0	0	32	0	4	0_	00	1	5	0	0	0	0	0	0	9	119	28	0	0	156	193
Total	0	205	49	1	0	255	1	65	0	1	2	69	0	0	0	0	0	0	22	602	140	0	0	764	1088
06:00 PM	0	23	6	0	0	29	0	9	0	0	0	9	0	0	0	0	0	0	3	109	21	0	0	133	171
06:15 PM	0	21	11	0	0	32	0	7	0	0	0	7	0	0	0	0	0	0	4	121	21	0	0	146	185
06:30 PM	0	11	5	0	0	16	0	7	0	0	0	7	0	0	0	0	0	0	3	143	18	0	0	164	187
06:45 PM	0	13	8	0	0	21	0	7	0	0	0	7	0	0	0	0	0	0	4	116	18	0	0	138	166
Total	0	68	30	0	0	98	0	30	0	0	0	30	0	0	0	0	0	0	14	489	78	0	0	581	709
Grand Total	0	666	335	3	8	1012	5	513	0	2	3	523	0	0	0	0	0	0	721	5391	1240	1	2	7355	8890
Apprch %	0	65.8	33.1	0.3	0.8		1	98.1	0	0.4	0.6		0	0	0	0	0		9.8	73.3	16.9	0	0		
Total %	0	7.5	3.8	0	0.1	11.4	0.1	5.8	0	0	0	5.9	0	0	0	0	0	0	8.1	60.6	13.9	0	0	82.7	

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: Frontage Rd. S. and Mountain Rd.

Site Code : 03262019 Start Date : 3/26/2019

Page No : 2

										0.0	<u> </u>														_
			Mount	tain Rd					Moun	tain Rd											Fronta	ge Rd.	S.		
			East	bound					West	tbound					Nort	hbound					Sout	hbound			
	Left	Thru	Right	Bike s	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
Cars	0	655	313	3	8	979	5	491	0	2	3	501	0	0	0	0	0	0	718	5279	1217	1	2	7217	8697
% Cars	0	98.3	93.4	100	100	96.7	100	95.7	0	100	100	95.8	0	0	0	0	0	0	99.6	97.9	98.1	100	100	98.1	97.8
Trucks	0	3	1	0	0	4	0	2	0	0	0	2	0	0	0	0	0	0	3	89	8	0	0	100	106
% Trucks	0	0.5	0.3	0	0	0.4	0	0.4	0	0	0	0.4	0	0	0	0	0	0	0.4	1.7	0.6	0	0	1.4	1.2
Buses	0	8	21	0	0	29	0	20	0	0	0	20	0	0	0	0	0	0	0	23	15	0	0	38	87
% Buses	0	1.2	6.3	0	0	2.9	0	3.9	0	0	0	3.8	0	0	0	0	0	0	0	0.4	1.2	0	0	0.5	1

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: Frontage Rd. S. and Mountain Rd.

Site Code : 03262019 Start Date : 3/26/2019

			Mount							tain Rd					.							ge Rd. S	3.		
			East	ound			1		vves	bound					Nortr	bound					South	nbound			
Start Time	Left	Thru	Right	Bike s	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
Peak Hour Anal	lysis Fro	om 06:0	0 AM to	11:45	AM - Pe	eak 1 of 1																			
Peak Hour for E	Entire In	tersection	on Begir	ns at 0	7:15 AM																				
07:15 AM	0	38	34	0	0	72	0	63	0	0	0	63	0	0	0	0	0	0	75	379	127	0	1	582	717
07:30 AM	0	37	37	0	0	74	0	31	0	0	0	31	0	0	0	0	0	0	60	359	106	0	0	525	630
07:45 AM	0	26	13	0	0	39	0	14	0	0	0	14	0	0	0	0	0	0	82	458	92	0	0	632	685
08:00 AM	0	22	10	0	0	32	1	23	0	0	0	24	0	0	0	0	0	0	57	425	99	0	0	581	637
Total Volume	0	123	94	0	0	217	1	131	0	0	0	132	0	0	0	0	0	0	274	1621	424	0	1	2320	2669
% App. Total	0	56.7	43.3	0	0		8.0	99.2	0	0	0		0	0	0	0	0		11.8	69.9	18.3	0	0		
PHF	.000	.809	.635	.000	.000	.733	.250	.520	.000	.000	.000	.524	.000	.000	.000	.000	.000	.000	.835	.885	.835	.000	.250	.918	.931
Cars	0	121	90	0	0	211	1	126	0	0	0	127	0	0	0	0	0	0	274	1589	415	0	1	2279	2617
% Cars	0	98.4	95.7	0	0	97.2	100	96.2	0	0	0	96.2	0	0	0	0	0	0	100	98.0	97.9	0	100	98.2	98.1
Trucks	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	26	5	0	0	31	32
% Trucks	0	8.0	0	0	0	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	1.6	1.2	0	0	1.3	1.2
Buses	0	1	4	0	0	5	0	5	0	0	0	5	0	0	0	0	0	0	0	6	4	0	0	10	20
% Buses	0	8.0	4.3	0	0	2.3	0	3.8	0	0	0	3.8	0	0	0	0	0	0	0	0.4	0.9	0	0	0.4	0.7
Peak Hour Anal	lvsis Fra	nm 12·0	0 PM to	06:45	PM - Pe	ak 1 of 1																			
Peak Hour for E																									
04:30 PM	0	46	22	0	2	70	0	31	0	0	0	31	0	0	0	0	0	0	11	155	35	0	0	201	302
04:45 PM	0	37	17	0	0	54	0	13	0	Ö	0	13	Ő	Ő	0	Ö	Ő	ő	7	134	40	0	Ö	181	248
05:00 PM	0	67	16	0	0	83	0	20	0	Ö	0	20	Ő	Ő	Ö	0	Ő	ő	5	181	28	Ö	0	214	317
05:15 PM	0	59	14	1	Ö	74	0	17	0	1	0	18	0	0	0	0	0	0	5	161	39	0	0	205	297
Total Volume	0	209	69	1	2	281	0	81	0	1	0	82	0	0	0	0	0	0	28	631	142	0	0	801	1164
% App. Total	0	74.4	24.6	0.4	0.7		0	98.8	0	1.2	0		0	Ō	0	0	Ö	-	3.5	78.8	17.7	Ö	0		
PHF	.000	.780	.784	.250	.250	.846	.000	.653	.000	.250	.000	.661	.000	.000	.000	.000	.000	.000	.636	.872	.888	.000	.000	.936	.918
Cars	0	208	65	1	2	276	0	78	0	1	0	79	0	0	0	0	0	0	26	625	138	0	0	789	1144
% Cars	0	99.5	94.2	100	100	98.2	0	96.3	0	100	0	96.3	Ō	Ö	Ö	Ö	Ö	0	92.9	99.0	97.2	Ö	Ō	98.5	98.3
Trucks	0	1	1	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	2	4	0	0	0	6	8
% Trucks	0	0.5	1.4	0	0	0.7	0	0	0	0	0	0	0	0	0	0	0	0	7.1	0.6	0	0	0	0.7	0.7
Buses	0	0	3	0	0	3	0	3	0	0	0	3	0	0	0	0	0	0	0	2	4	0	0	6	12
% Buses	0	0	4.3	0	0	1.1	0	3.7	0	0	0	3.7	0	0	0	0	0	0	0	0.3	2.8	0	0	0.7	1.0

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

Counter R.C.

File Name: Lomas and Frontage Rd. S.

Site Code : 03202019 Start Date : 3/20/2019

Page No : 1

				Lo	mas					Loi	mas											Fronta	ge Rd			
				East	bound					West	bound					North	bound					South	oound			
	Start Time	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
	06:00 AM	0	42	11	0	0	53	2	43	0	0	0	45	0	0	0	0	0	0	54	28	37	0	0	119	217
	06:15 AM	0	70	10	0	0	80	10	60	0	0	0	70	0	0	0	0	0	0	81	41	56	0	0	178	328
	06:30 AM	0	76	12	0	0	88	16	67	0	0	0	83	0	0	0	0	0	0	117	54	85	0	0	256	427
_	06:45 AM	0	122	18	0	0	140	17	119	0	0	0	136	0	0	0	0	0	0	139	58	104	0	0	301	577
	Total	0	310	51	0	0	361	45	289	0	0	0	334	0	0	0	0	0	0	391	181	282	0	0	854	1549
	07:00 AM	0	149	25	0	0	174	16	154	0	0	0	170	0	0	0	0	0	0	119	77	99	0	0	295	639
	07:15 AM	Ö	226	27	0	1	254	14	200	0	Ö	0	214	0	0	0	0	0	0	163	103	122	0	1	389	857
	07:30 AM	0	236	29	0	1	266	34	228	0	Ö	Ö	262	0	0	0	0	0	0	182	100	145	0	0	427	955
	07:45 AM	0	227	33	0	0	260	24	321	0	Ö	0	345	0	0	0	0	Ö	0	208	105	203	0	0	516	1121
	Total	0	838	114	0	2	954	88	903	0	0	0	991	0	0	0	0	0	0	672	385	569	0	1	1627	3572
	00.00.444	•	000	00	•		050	0.4	054		•	•	070	•	•		•	•	ا م	407	447	400	•		500	4000
	08:00 AM	0	229	22	0	1	252	21	251	0	0	0	272	0	0	0	0	0	0	197	117	193	0	1	508	1032
	08:15 AM	0	181	22	0	0	203	19	249	0	0	0	268	0	0	0	0	0	0	191	125	176	0	0	492	963
	08:30 AM	0	210	22	0	0	232	13	158	0	0	1	172	0	0	0	0	0	0	216	123	168	0	0	507	911
-	08:45 AM	0	229	25	0	0	254	26	242	0	0	0 1	268	0	0	0	0	0	0	211	114	152	0	0 1	477	999
	Total	0	849	91	0	1	941	79	900	0	0	1	980	0	0	0	0	0	0	815	479	689	0	1	1984	3905
,	*** BREAK ***																									
	04:00 PM	0	261	46	0	0	307	41	230	0	0	0	271	0	0	0	0	1	1	92	94	61	0	0	247	826
	04:15 PM	0	277	50	0	0	327	57	263	0	0	1	321	0	0	0	0	0	0	54	64	75	0	0	193	841
	04:30 PM	0	254	70	0	0	324	67	288	0	0	1	356	0	0	0	0	0	0	65	95	63	0	0	223	903
_	04:45 PM	0	229	58	0	1_	288	53	310	0	2	0	365	0	0	0	0	0	0	71	60	48	0	0	179	832
	Total	0	1021	224	0	1	1246	218	1091	0	2	2	1313	0	0	0	0	1	1	282	313	247	0	0	842	3402
	05:00 PM	0	323	53	0	0	376	52	262	0	0	2	316	0	0	0	0	0	0	89	72	66	0	0	227	919
	05:15 PM	0	325	61	0	0	386	53	303	0	0	0	356	0	0	0	0	0	0	86	67	68	0	0	221	963
	05:30 PM	0	195	26	0	0	221	39	226	0	Ö	0	265	0	0	0	0	Ö	0	119	87	66	0	0	272	758
	05:45 PM	0	222	29	0	1	252	33	178	0	0	0	211	0	0	0	0	0	0	149	69	51	0	0	269	732
-	Total	0	1065	169	0	1	1235	177	969	0	0	2	1148	0	0	0	0	0	0	443	295	251	0	0	989	3372
	06:00 PM	0	211	38	0	1	250	36	144	0	0	0	180	0	0	0	0	0	0	194	70	38	0	0	302	732
	06:15 PM	0	249	41	1	Ó	291	30	154	0	0	0	184	0	0	0	0	0	0	127	52	38	0	0	217	692
	06:30 PM	0	165	27	0	1	193	48	153	0	1	1	203	0	0	0	0	1	1	83	42	32	0	1	158	555
	06:45 PM	0	138	18	0	0	156	35	143	0	0	0	178	0	0	0	0	0	0	74	39	20	0	1	134	468
-	Total	0	763	124		2	890	149	594	0	1		745	0	0	0	0	1	1	478	203	128	0	2	811	2447
		3	, 00	14-7		_		140		3		'		0	3	3	0	·	' '	710	200	120	3			
	Grand Total	0	4846	773	1	7	5627	756	4746	0	3	6	5511	0	0	0	0	2	2	3081	1856	2166	0	4	7107	18247
	Apprch %	0	86.1	13.7	0	0.1		13.7	86.1	0	0.1	0.1		0	0	0	0	100		43.4	26.1	30.5	0	0.1		
	Total %	0	26.6	4.2	0	0	30.8	4.1	26	0	0	0	30.2	0	0	0	0	0	0	16.9	10.2	11.9	0	0	38.9	

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: Lomas and Frontage Rd. S.

Site Code : 03202019 Start Date : 3/20/2019

Page No : 2

										0.0															_
			Lo	mas					Lo	mas											Front	age Rd.			
			East	bound					Wes	tbound					Nort	hbound					Sout	hbound			
	Left	Thru	Right	Bike s	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Tota
Cars	0	4789	766	1	7	5563	753	4680	0	3	6	5442	0	0	0	0	2	2	3056	1791	2137	0	4	6988	1799
% Cars	0	98.8	99.1	100	100	98.9	99.6	98.6	0	100	100	98.7	0	0	0	0	100	100	99.2	96.5	98.7	0	100	98.3	98.6
Trucks	0	16	6	0	0	22	0	14	0	0	0	14	0	0	0	0	0	0	3	53	24	0	0	80	116
% Trucks	0	0.3	8.0	0	0	0.4	0	0.3	0	0	0	0.3	0	0	0	0	0	0	0.1	2.9	1.1	0	0	1.1	0.6
Buses	0	41	1	0	0	42	3	52	0	0	0	55	0	0	0	0	0	0	22	12	5	0	0	39	136
% Buses	0	0.8	0.1	0	0	0.7	0.4	1.1	0	0	0	1	0	0	0	0	0	0	0.7	0.6	0.2	0	0	0.5	0.7

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: Lomas and Frontage Rd. S.

Site Code : 03202019 Start Date : 3/20/2019

Peak Hour Analysis From 06:00 AM to 11:45 AM - Peak 1 of 1					mas bound						mas tbound					North	nbound						age Rd.			
Peak Hour for Entire Intersection Begins at 07:30 M	Start Time	Left	Thru	Right		Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
07:30 AM 0 236 29 0 1 1 266 34 228 0 0 0 0 262 24 371 0 0 0 345 0 0 0 0 0 0 0 0 182 100 145 0 0 427 955 07:45 AM 0 227 33 0 0 260 24 321 0 0 0 345 0 0 0 0 0 0 0 0 0 182 100 145 0 0 0 427 955 080 0 0 0 208 1 98 108 1032 0 0 181 22 0 0 0 203 19 249 0 0 0 0 268 0 0 0 0 0 0 0 0 197 117 193 0 1 1 508 1032 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Peak Hour Ana	lysis Fr	om 06:0	0 AM to	11:45	AM - Pe	eak 1 of 1						,							,	•					
08:00 AM 0 227 333 0 0 260 24 321 0 0 0 345 0 0 0 0 0 0 0 0 0 208 105 203 0 0 5 16 1121 08:00 AM 0 229 22 0 1 252 21 251 0 0 0 0 272 0 0 0 0 0 0 0 0 197 117 193 0 1 508 1032 08:15 AM 0 181 22 0 0 203 19 249 0 0 0 288 0 0 0 0 0 0 0 0 191 125 176 0 0 492 963 1040 0 1873 106 0 2 981 98 1049 0 0 0 1147 0 0 0 0 0 0 0 0 1778 447 717 0 1 1 1943 4071 177 187 187 187 187 187 187 187 187 1	Peak Hour for E	Entire In	tersecti	on Begii	ns at 07	7:30 AM]																			
08:00 AM	07:30 AM	0	236	29	0	1	266	34	228	0	0	0	262	0	0	0	0	0	0	182	100	145	0	0	427	955
Ost Star Ost	07:45 AM	0	227	33	0	0	260	24	321	0	0	0	345	0	0	0	0	0	0	208	105	203	0	0	516	1121
Total Volume	08:00 AM	0	229	22	0	1	252	21	251	0	0	0	272	0	0	0	0	0	0	197	117	193	0	1	508	1032
Mapp. Total 0 89 10.8 0 0.2 8.5 91.5 0 0 0 0 0 0 0 0 0	08:15 AM	0	181	22	0	0	203	19	249	0	0	0	268	0	0	0	0	0	0	191	125		0	0	492	963
PHF 000 925 803 000 500 922 721 817 000 000 000 831 000 000 000 000 000 000 035 894 883 000 250 941 908 943 040	Total Volume	0	873	106	0		981	98	1049	0	0	0	1147	0	0	0	0	0	0	778	447		0	1	1943	4071
Cars	% App. Total	0	89	10.8		0.2			91.5	0	0	0		0	0	0	0	0		40		36.9	0	0.1		
% Cars 0 98.6 99.1 0 100 98.7 99.0 99.1 0 0 99.1 0 0 0 0 0 99.5 94.9 99.4 0 100 98.4 98.7 Trucks 0 2 1 0 0 3 0 2 0	PHF	.000	.925	.803	.000	.500	.922	.721	.817	.000	.000	.000	.831	.000	.000	.000	.000	.000	.000	.935	.894	.883	.000	.250	.941	.908
Trucks 0 2 1 1 0 0 3 3 0 2 0 0 0 0 0 2 0 0 0 0 0 1 22 3 0 0 0 0 0 0 0 0 0 0 0 0 1 22 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Cars	0	861	105	0	2	968	97	1040	0	0	0	1137	0	0	0	0	0	0	774	424	713	0	1	1912	4017
% Trucks 0 0.2 0.9 0 0 0.3 0 0.2 0.9 0 0 0.3 0 0.2 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0 0 0	% Cars	0	98.6	99.1	0	100	98.7	99.0	99.1	0	0	0	99.1	0	0	0	0	0	0	99.5	94.9	99.4	0	100	98.4	98.7
Buses 0 10 0 0 0 10 1 1 7 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trucks	0	2	1	0	0	3	0	2	0	0	0	2	0	0	0	0	0	0	1	22	3	0	0	26	31
% Buses 0 1.1 0 0 1.0 1.0 0.7 0	% Trucks	0	0.2	0.9	0	0	0.3	0	0.2	0	0	0	0.2	0	0	0	0	0	0	0.1	4.9	0.4	0	0	1.3	8.0
Peak Hour Analysis From 12:00 PM to 06:45 PM - Peak 1 of 1 Peak Hour for Entire Intersection Begins at 04:30 PM 04:30 PM 0 254 70 0 0 0 324 67 288 0 0 0 1 386 53 310 0 2 0 365 0 0 0 0 0 0 0 0 0 71 60 48 0 0 179 832 05:00 PM 0 323 53 0 0 376 52 262 0 0 0 2 316 0 0 0 0 0 0 0 0 0 89 72 66 0 0 0 227 919 05:15 PM 0 325 61 0 0 386 53 303 0 0 3 366 53 303 0 0 0 356 0 0 0 0 0 0 0 0 88 72 66 0 0 227 919 05:15 PM 0 131 242 0 1 1374 225 1163 0 2 3 1393 0 0 0 366 67 68 0 0 221 963 Total Volume 0 1131 242 0 1 1374 225 1163 0 2 3 1393 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Buses	0	10	0	0	0	10	1	7	0	0	0	8	0	0	0	0	0	0	3	1	1	0	0	5	23
Peak Hour for Entire Intersection Begins at 04:30 PM	% Buses	0	1.1	0	0	0	1.0	1.0	0.7	0	0	0	0.7	0	0	0	0	0	0	0.4	0.2	0.1	0	0	0.3	0.6
Peak Hour for Entire Intersection Begins at 04:30 PM	Peak Hour Ana	ılvsis Fr	om 12:0	0 PM to	06:45	PM - Pe	eak 1 of 1																			
04:30 PM																										
04:45 PM 0 229 58 0 1 288 53 310 0 2 0 365 0 0 0 0 0 71 60 48 0 0 179 832 05:00 PM 0 323 53 0 0 376 52 262 0 0 2 316 0 0 0 0 0 0 89 72 66 0 0 227 919 05:15 PM 0 325 61 0 0 386 53 303 0 0 0 0 0 0 0 86 67 68 0 0 221 963 Total Volume 0 1131 242 0 1 1374 225 1163 0 2 3 1393 0 0 0 0 366 34.6 28.8 0 0 PHF <		1						67	288	0	0	1	356	0	0	0	0	0	0	65	95	63	0	0	223	903
05:00 PM 0 323 53 0 0 376 52 262 0 0 2 316 0		0			0		- 1					0		0												
05:15 PM 0 325 61 0 0 386 53 303 0 0 0 356 0		0				0								0												
% App. Total 0 82.3 17.6 0 0.1 16.2 83.5 0 0.1 0.2 0 0 0 0 0 0 0 36.6 34.6 28.8 0 0 0 99.7 0		0											1	0		Ö			- 1							
% App. Total 0 82.3 17.6 0 0.1 16.2 83.5 0 0.1 0.2 0 0 0 0 0 0 0 36.6 34.6 28.8 0 0 0 99.7 0	Total Volume	0	1131	242	0	1	1374	225	1163	0	2	3	1393	0	0	0	0	0	0	311	294	245	0	0	850	3617
PHF .000 .870 .864 .000 .250 .890 .840 .938 .000 .250 .375 .954 .000 .000 .000 .000 .000 .874 .774 .901 .000 .000 .939 Cars 0 1123 .241 0 1 1365 .225 1151 0 2 .3 1381 0 0 0 0 0 306 .291 .244 0 0 841 .3587 % Cars 0 99.3 99.6 0 100 99.0 0 100 100 99.1 0 0 0 0 0 0 98.4 99.0 99.6 0 0 98.9 99.2 Trucks 0 4 0 0 1 0 0 0 0 0 0 0 98.9 99.2 Trucks 0 0.4 0 0 0 <t< td=""><td>% App. Total</td><td>0</td><td></td><td>17.6</td><td>0</td><td>0.1</td><td></td><td></td><td>83.5</td><td>0</td><td></td><td>0.2</td><td></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td></td><td>36.6</td><td>34.6</td><td>28.8</td><td>0</td><td>0</td><td></td><td></td></t<>	% App. Total	0		17.6	0	0.1			83.5	0		0.2		0	0	0	0	0		36.6	34.6	28.8	0	0		
Cars 0 1123 241 0 1 1365 225 1151 0 2 3 1381 0 0 0 0 0 0 0 306 291 244 0 0 841 3587		.000	.870		.000		.890	.840	.938	.000	.250		.954	.000	.000	.000	.000	.000	.000	.874		.901	.000	.000	.936	.939
% Cars 0 99.3 99.6 0 100 99.0 0 100 <td></td>																										
Trucks 0 4 0 0 1 0 <td></td> <td>0</td> <td></td> <td></td> <td></td> <td>100</td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> 1</td> <td>Ó</td> <td>0</td> <td></td> <td>Ó</td> <td></td> <td>- 1</td> <td></td> <td></td> <td>99.6</td> <td></td> <td></td> <td></td> <td></td>		0				100							1	Ó	0		Ó		- 1			99.6				
% Trucks 0 0.4 0 0 0.3 0 0.1 0 0 0.1 0 0 0 0 0 0 0 0.4 0 0.4 0	_	0		0			I		1				1	Ó	0				- 1			1				
Buses 0 4 1 0 0 5 0 11 0 0 0 11 0 0 0 0 0 5 0 0 0 5 21		0	0.4	0		Ó	0.3	Ó	0.1	0	0		0.1	Ó					- 1	0		0.4	Ó		0.5	0.2
		_		1			I						- 1	Ó					- 1							
	% Buses	0		0.4			- 1							Ó								Ó				

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

Counter R.C.

File Name: Frontage Rd N. and Camino De Salud

Site Code : 03262019 Start Date : 3/26/2019

Page No : 1

								nino De S				Fro	ontage R	d. N							
			Eastboun	ıd			\	Vestbour	nd			N	Northbou	nd			S	outhbou	nd		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
06:00 AM	0	0	0	0	0	0	0	0	0	0	0	33	31	0	64	0	0	0	0	0	64
06:15 AM	0	0	0	0	0	0	0	0	0	0	0	56	54	0	110	0	0	0	0	0	110
06:30 AM	0	0	0	0	0	0	0	0	0	0	0	66	112	0	178	0	0	0	0	0	178
06:45 AM	0	0	0	0	0	0	0	0	0	0	0	68	80	0	148	0	0	0	0	0	148
Total	0	0	0	0	0	0	0	0	0	0	0	223	277	0	500	0	0	0	0	0	500
07:00 AM	0	0	0	0	0	0	0	0	0	0	0	95	89	0	184	0	0	0	0	0	184
07:15 AM	0	0	0	0	0	0	0	0	0	0	0	121	117	0	238	0	0	0	0	0	238
07:30 AM	0	0	0	0	0	0	0	0	0	0	0	179	98	0	277	0	0	0	0	0	277
07:45 AM	0	0	0	0	0	0	0	2	0	2	0	136	124	0	260	0	0	0	0	0	262
Total	0	0	0	0	0	0	0	2	0	2	0	531	428	0	959	0	0	0	0	0	961
08:00 AM	0	0	0	0	0	0	0	1	0	1	0	137	81	0	218	0	0	0	0	0	219
08:15 AM	0	0	0	0	0	0	0	1	0	1	0	139	54	0	193	0	0	0	0	0	194
08:30 AM	0	0	0	0	0	0	0	0	0	0	Ö	129	45	0	174	0	0	0	0	0	174
08:45 AM	0	0	0	0	0	0	0	1	0	1	0	142	42	0	184	0	0	0	0	0	185
Total	0	0	0	0	0	0	0	3	0	3	0	547	222	0	769	0	0	0	0	0	772
*** BREAK ***																					
04:00 PM	0	0	0	0	0	0	0	9	0	9	0	259	7	0	266	0	0	0	0	0	275
04:15 PM	0	0	0	0	0	0	0	5	0	5	0	205	7	0	212	0	0	0	0	0	217
04:30 PM	0	0	0	0	0	0	0	17	0	17	0	284	8	0	292	0	0	0	0	0	309
04:45 PM	0	0	0	0	0	0	0	11	0	11	0	268	14	0	282	0	0	0	0	0	293
Total	0	0	0	0	0	0	0	42	0	42	0	1016	36	0	1052	0	0	0	0	0	1094
05:00 PM	0	0	0	0	0	0	0	30	0	30	0	329	8	0	337	0	0	0	0	0	367
05:15 PM	0	0	0	0	0	0	0	9	0	9	0	303	8	0	311	0	0	0	0	0	320
05:30 PM	0	0	0	0	0	0	0	4	0	4	0	245	10	0	255	0	0	0	0	0	259
05:45 PM	0	0	0	0	0	0	0	2	0	2	0	169	7	0	176	0	0	0	0	0	178
Total	0	0	0	0	0	0	0	45	0	45	0	1046	33	0	1079	0	0	0	0	0	1124
06:00 PM	0	0	0	0	0	0	0	3	0	3	0	157	4	0	161	0	0	0	0	0	164
06:15 PM	0	0	0	0	0	0	0	5	0	5	0	134	4	0	138	0	0	0	0	0	143
06:30 PM	0	0	0	0	0	0	0	4	0	4	0	113	2	0	115	0	0	0	0	0	119
06:45 PM	0	0	0	0	0	0	0	0	0	0	0	115	4	0	119	0	0	0	0	0	119
Total	0	0	0	0	0	0	0	12	0	12	0	519	14	0	533	0	0	0	0	0	545
Grand Total	0	0	0	0	0	0	0	104	0	104	0	3882	1010	0	4892	0	0	0	0	0	4996
Apprch %	0	0	0	0		0	0	100	0		0	79.4	20.6	0		0	0	0	0		
Total %	0	0	0	0	0	0	0	2.1	0	2.1	0	77.7	20.2	0	97.9	0	0	0	0	0	

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: Frontage Rd N. and Camino De Salud

Site Code : 03262019 Start Date : 3/26/2019

Page No : 2

							Can	nino De S	Salud			Fr	ontage R	d. N							
		I	Eastbour	nd			٧	Vestbour	nd			1	Northbou	nd			S	Southbou	nd		
	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Cars	0	0	0	0	0	0	0	104	0	104	0	3813	1010	0	4823	0	0	0	0	0	4927
% Cars	0	0	0	0	0	0	0	100	0	100	0	98.2	100	0	98.6	0	0	0	0	0	98.6
Trucks	0	0	0	0	0	0	0	0	0	0	0	42	0	0	42	0	0	0	0	0	42
% Trucks	0	0	0	0	0	0	0	0	0	0	0	1.1	0	0	0.9	0	0	0	0	0	0.8
Buses	0	0	0	0	0	0	0	0	0	0	0	27	0	0	27	0	0	0	0	0	27
% Buses	0	0	0	0	0	0	0	0	0	0	0	0.7	0	0	0.6	0	0	0	0	0	0.5

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: Frontage Rd N. and Camino De Salud

Site Code : 03262019 Start Date : 3/26/2019

								nino De S					ontage R								
			Eastbour					Vestbour					Iorthbour					outhbour			
Start Time	Left	Thru	Right		App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analys					ak 1 of 1																
Peak Hour for Ent		ection Be	egins at 0	7:15 AM	- 1										1					. 1	
07:15 AM	0	0	0	0	0	0	0	0	0	0	0	121	117	0	238	0	0	0	0	0	238
07:30 AM	0	0	0	0	0	0	0	0	0	0	0	179	98	0	277	0	0	0	0	0	277
07:45 AM	0	0	0	0	0	0	0	2	0	2	0	136	124	0	260	0	0	0	0	0	262
08:00 AM	0	0	0	0	0	0	0	1_	0	1	0	137	81	0	218	0	0	0	0	0	219
Total Volume	0	0	0	0	0	0	0	3	0	3	0	573	420	0	993	0	0	0	0	0	996
% App. Total	0	0	0	0		0	0	100	0		0	57.7	42.3	0		0	0	0	0		
PHF	.000	.000	.000	.000	.000	.000	.000	.375	.000	.375	.000	.800	.847	.000	.896	.000	.000	.000	.000	.000	.899
Cars	0	0	0	0	0	0	0	3	0	3	0	564	420	0	984	0	0	0	0	0	987
% Cars	0	0	0	0	0	0	0	100	0	100	0	98.4	100	0	99.1	0	0	0	0	0	99.1
Trucks	0	0	0	0	0	0	0	0	0	0	0	6	0	0	6	0	0	0	0	0	6
% Trucks	0	0	0	0	0	0	0	0	0	0	0	1.0	0	0	0.6	0	0	0	0	0	0.6
Buses	0	0	0	0	0	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	3
% Buses	0	0	0	0	0	0	0	0	0	0	0	0.5	0	0	0.3	0	0	0	0	0	0.3
Peak Hour Analys	is From 1	2·00 PM	I to 06:45	PM - Pe	ak 1 of 1																
Peak Hour for Ent					an i oi i																
04:30 PM	0	0	0	0	0	0	0	17	0	17	0	284	8	0	292	0	0	0	0	0	309
04:45 PM	0	0	0	0	0	0	0	11	0	11	0	268	14	Ö	282	0	0	0	0	0	293
05:00 PM	0	0	0	0	0	0	0	30	0	30	0	329	8	0	337	0	0	0	0	0	367
05:15 PM	0	0	0	0	0	0	0	9	0	9	0	303	8	Ö	311	0	0	0	0	0	320
Total Volume	0	0	0	0	0	0	0	67	0	67	0	1184	38	0	1222	0	0	0	0	0	1289
% App. Total	0	0	0	0		0	0	100	0	-	0	96.9	3.1	0		0	0	0	0	-	
PHF	.000	.000	.000	.000	.000	.000	.000	.558	.000	.558	.000	.900	.679	.000	.907	.000	.000	.000	.000	.000	.878
Cars	0	0	0	0	0	0	0	67	0	67	0	1165	38	0	1203	0	0	0	0	0	1270
% Cars	0	0	0	0	0	0	0	100	0	100	0	98.4	100	0	98.4	0	0	0	0	0	98.5
Trucks	0	0	0	0	0	0	0	0	0	0	0	9	0	0	9	0	0	0	0	0	9
% Trucks	0	0	0	0	0	0	0	0	0	0	0	0.8	0	0	0.7	0	0	0	0	n	0.7
Buses	0	0	0	0	0	0	0	0	0	0	0	10	0	0	10	0	0	0	0	0	10
% Buses	0	0	0	0	0	0	0	0	0	0	0	0.8	0	0	0.8	0	0	0	0	0	0.8
% buses	U	U	U	U	U	U	U	U	U	0	U	U.ď	U	U	0.8	U	U	U	U	0	0.0

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

Counter: R.C.

File Name: Frontage Rd. N. and Mountain Rd.

Site Code : 03262019 Start Date : 3/26/2019

Page No : 1

				tain Rd. bound	-				\\/o=+	bound		ited- Car			Fronta	ge Rd. I	٧.				Court	nbound	ı		
Start Time	Right	Thru	Left		Peds	App. Total	Right	Thru	Left		Peds	App. Total	Riaht	Thru	Left		Peds	App. Total	Riaht	Thru				App. Total	Int. Tota
06:00 AM	0	0	26	0	0	26	0	0	0	0	0	App. 10tai	0	38	11	0	0	49	0	0	0	0	0		7
06:15 AM	0	0	50	0	3	53	0	0	0	0	0	0	ő	60	9	0	0	69	ő	0	0	0	0	0	12
06:30 AM	0	0	90	0	0	90	0	0	0	0	0	0	ő	88	36	0	0	124	0	0	0	0	0	0	2
06:45 AM	0	0	70	Ö	0	70	0	0	0	1	1	2	Ö	78	35	0	0	113	Ö	0	Ö	0	0	0	18
Total	0	0	236	0	3	239	0	0	0	1	1	2	0	264	91	0	0	355	0	0	0	0		0	5
07:00 AM	0	0	89	0	1	90	0	0	0	0	0	0	0	95	76	0	0	171	0	0	0	0	0	0	20
07:15 AM	0	0	113	0	0	113	0	0	0	0	0	0	0	125	63	0	0	188	0	0	0	0	0	0	30
07:30 AM	0	0	97	0	0	97	0	0	0	0	0	0	0	180	31	0	0	211	0	0	0	0	0	0	3
07:45 AM	0	0	108	0	0	108	0	0	0	0	0	0	0	152	14	0	0	166	0	0	0	0	0	0	2
Total	0	0	407	0	1	408	0	0	0	0	0	0	0	552	184	0	0	736	0	0	0	0	0	0	114
08:00 AM	0	0	79	0	0	79	0	0	0	0	0	0	0	139	24	0	0	163	0	0	0	0	0	0	2
08:15 AM	0	0	60	1	0	61	0	0	0	0	0	0	0	133	19	0	0	152	0	0	0	0	0	0	2
08:30 AM	0	0	52	0	0	52	0	0	0	0	0	0	0	122	16	0	0	138	0	0	0	0	0	0	1
08:45 AM	0	0	59	0	0	59	0	0	0	0	0	0	0	125	14	0	0	139	0	0	0	0	0	0	1
Total	0	0	250	1	0	251	0	0	0	0	0	0	0	519	73	0	0	592	0	0	0	0	0	0	8
** BREAK ***																									
04:00 PM	0	0	52	1	1	54	0	0	0	0	0	0	0	214	13	0	0	227	0	0	0	0	0	0	2
04:15 PM	0	0	33	0	1	34	0	0	0	0	0	0	0	179	17	0	0	196	0	0	0	0	0	0	2
04:30 PM	0	0	57	0	2	59	0	0	0	0	0	0	0	235	31	0	0	266	0	0	0	0	0	0	3
04:45 PM	0	0	43	0	0	43	0	0	0	0	0	0	0	239	13	0	0	252	0	0	0	0	0	0	2
Total	0	0	185	1	4	190	0	0	0	0	0	0	0	867	74	0	0	941	0	0	0	0	0	0	11
05:00 PM	0	0	72	0	0	72	0	0	0	0	0	0	0	265	20	0	0	285	0	0	0	0	0	0	3
05:15 PM	0	0	63	1	0	64	0	0	0	1	0	1	0	248	17	0	0	265	0	0	0	0	0	0	3
05:30 PM	0	0	58	0	0	58	0	0	0	0	1	1	0	197	25	0	0	222	0	0	0	0	0	0	2
05:45 PM	0	0	33	0	0	33	0	0	0	0	1	1	0	143	4	0	0	147	0	0	0	0	0	0	1
Total	0	0	226	1	0	227	0	0	0	1	2	3	0	853	66	0	0	919	0	0	0	0	0	0	11
06:00 PM	0	0	26	0	0	26	0	0	0	0	0	0	0	135	9	0	0	144	0	0	0	0	0	0	1
06:15 PM	0	0	25	0	0	25	0	0	0	0	0	0	0	113	7	0	0	120	0	0	0	0	0	0	1
06:30 PM	0	0	14	0	0	14	0	0	0	0	0	0	0	101	7	0	0	108	0	0	0	0	0	0	1.
06:45 PM	0	0	16	0	0	16	0	0	0	0	0	0	0	103	7	0	0	110	0	0	0	0	0	0	1
Total	0	0	81	0	0	81	0	0	0	0	0	0	0	452	30	0	0	482	0	0	0	0	0	0	5
Grand Total	0	0	1385	3	8	1396	0	0	0	2	3	5	0	3507	518	0	0	4025	0	0	0	0	0	0	54
Apprch %	0	0	99.2	0.2	0.6		0	0	0	40	60		0	87.1	12.9	0	0		0	0	0	0	0		
Total %	0	0	25.5	0.1	0.1	25.7	0	0	0	0	0.1	0.1	0	64.6	9.5	0	0	74.2	0	0	0	0	0	0	

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: Frontage Rd. N. and Mountain Rd.

Site Code : 03262019 Start Date : 3/26/2019

Page No : 2

										510	apo i ili	itcu- Car	iluo	NO DU	,00										-
			Moun	tain Rd											Fronta	ge Rd. N	٧.								
			East	bound					Wes	tbound					Nortl	hbound					Sout	hbound			
	Right	Thru	Left	Bike s	Peds	App. Total	Right	Thru	Left	Bikes	Peds	App. Total	Right	Thru	Left	Bikes	Peds	App. Total	Right	Thru	Left	Bikes	Peds	App. Total	Int. Total
Cars	0	0	1373	3	8	1384	0	0	0	2	3	5	0	3450	496	0	0	3946	0	0	0	0	0	0	5335
% Cars	0	0	99.1	100	100	99.1	0	0	0	100	100	100	0	98.4	95.8	0	0	98	0	0	0	0	0	0	98.3
Trucks	0	0	4	0	0	4	0	0	0	0	0	0	0	38	2	0	0	40	0	0	0	0	0	0	44
% Trucks	0	0	0.3	0	0	0.3	0	0	0	0	0	0	0	1.1	0.4	0	0	1	0	0	0	0	0	0	0.8
Buses	0	0	8	0	0	8	0	0	0	0	0	0	0	19	20	0	0	39	0	0	0	0	0	0	47
% Buses	0	0	0.6	0	0	0.6	0	0	0	0	0	0	0	0.5	3.9	0	0	1	0	0	0	0	0	0	0.9

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: Frontage Rd. N. and Mountain Rd.

Site Code : 03262019 Start Date : 3/26/2019

			Mount East	ain Rd					West	bound						ge Rd. I	٧.				South	nbound			
Start Time	٠	Thru	Left	Bike s	Peds	App. Total	Right	Thru	Left	Bikes	Peds	App. Total	Right	Thru	Left	Bikes	Peds	App. Total	Right	Thru	Left	Bikes	Peds	App. Total	Int. Total
Peak Hour Anal	lysis Fro	om 06:0	0 AM to	12:30	PM - Pe	eak 1 of 1																			
Peak Hour for E	intire Int	tersection	n Begii	ns at 07	7:00 AM																				
07:00 AM	0	0	89	0	1	90	0	0	0	0	0	0	0	95	76	0	0	171	0	0	0	0	0	0	261
07:15 AM	0	0	113	0	0	113	0	0	0	0	0	0	0	125	63	0	0	188	0	0	0	0	0	0	301
07:30 AM	0	0	97	0	0	97	0	0	0	0	0	0	0	180	31	0	0	211	0	0	0	0	0	0	308
07:45 AM	0	0	108	0	0	108	0	0	0	0	0	0	0	152	14	0	0	166	0	0	0	0	0	0	274
Total Volume	0	0	407	0	1	408	0	0	0	0	0	0	0	552	184	0	0	736	0	0	0	0	0	0	1144
% App. Total	0	0	99.8	0	0.2		0	0	0	0	0		0	75	25	0	0		0	0	0	0	0		
PHF	.000	.000	.900	.000	.250	.903	.000	.000	.000	.000	.000	.000	.000	.767	.605	.000	.000	.872	.000	.000	.000	.000	.000	.000	.929
Cars	0	0	404	0	1	405	0	0	0	0	0	0	0	548	177	0	0	725	0	0	0	0	0	0	1130
% Cars	0	0	99.3	0	100	99.3	0	0	0	0	0	0	0	99.3	96.2	0	0	98.5	0	0	0	0	0	0	98.8
Trucks	0	0	1	0	0	1	0	0	0	0	0	0	0	3	1	0	0	4	0	0	0	0	0	0	5
% Trucks	0	0	0.2	0	0	0.2	0	0	0	0	0	0	0	0.5	0.5	0	0	0.5	0	0	0	0	0	0	0.4
Buses	0	0	2	0	0	2	0	0	0	0	0	0	0	1	6	0	0	7	0	0	0	0	0	0	9
% Buses	0	0	0.5	0	0	0.5	0	0	0	0	0	0	0	0.2	3.3	0	0	1.0	0	0	0	0	0	0	8.0
Peak Hour Anal	lysis Fro	om 12:4	5 PM to	06:45	PM - Pe	eak 1 of 1																			
Peak Hour for E	Entire Int	tersection	n Begii	ns at 04	4:30 PM																				
04:30 PM	0	0	57	0	2	59	0	0	0	0	0	0	0	235	31	0	0	266	0	0	0	0	0	0	325
04:45 PM	0	0	43	0	0	43	0	0	0	0	0	0	0	239	13	0	0	252	0	0	0	0	0	0	295
05:00 PM	0	0	72	0	0	72	0	0	0	0	0	0	0	265	20	0	0	285	0	0	0	0	0	0	357
05:15 PM	0	0	63	1	0	64	0	0	0	1_	0	1	0	248	17	0	0	265	0	0	0	0	0	0	330
Total Volume	0	0	235	1	2	238	0	0	0	1	0	1	0	987	81	0	0	1068	0	0	0	0	0	0	1307
% App. Total	0	0	98.7	0.4	8.0		0	0	0	100	0		0	92.4	7.6	0	0		0	0	0	0	0		
PHF	.000	.000	.816	.250	.250	.826	.000	.000	.000	.250	.000	.250	.000	.931	.653	.000	.000	.937	.000	.000	.000	.000	.000	.000	.915
Cars	0	0	234	1	2	237	0	0	0	1	0	1	0	969	78	0	0	1047	0	0	0	0	0	0	1285
% Cars	0	0	99.6	100	100	99.6	0	0	0	100	0	100	0	98.2	96.3	0	0	98.0	0	0	0	0	0	0	98.3
Trucks	0	0	1	0	0	1	0	0	0	0	0	0	0	8	0	0	0	8	0	0	0	0	0	0	9
% Trucks	0	0	0.4	0	0	0.4	0	0	0	0	0	0	0	0.8	0	0	0	0.7	0	0	0	0	0	0	0.7
Buses	0	0	0	0	0	0	0	0	0	0	0	0	0	10	3	0	0	13	0	0	0	0	0	0	13
% Buses	0	0	0	0	0	0	0	0	0	0	0	0	0	1.0	3.7	0	0	1.2	0	0	0	0	0	0	1.0

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

Counter R.C.

File Name: Lomas and Frontage Rd. N.

Site Code : 03202019 Start Date : 3/20/2019

Groups .	Printed-	Cars -	Trucks -	- Buses

				Lo	omas					Lo	omas					Fronta	age Rd.									
ļ				East	bound					West	bound					North	hbound					South	bound			
Į	Start Time	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
	06:00 AM	13	83	0	0	0	96	0	23	5	1	0	29	22	40	25	0	0	87	0	0	0	0	0	0	212
	06:15 AM	21	128	0	0	1	150	0	49	9	0	0	58	21	58	45	0	0	124	0	0	0	0	0	0	332
	06:30 AM	18	175	0	0	0	193	0	58	16	0	0	74	25	68	77	0	0	170	0	0	0	0	0	0	437
	06:45 AM	26	235	0	0	0	261	0	96	16	0	0	112	41	101	74	0	0	216	0	0	0	0	0	0	589
	Total	78	621	0	0	1	700	0	226	46	1	0	273	109	267	221	0	0	597	0	0	0	0	0	0	1570
	07:00 AM	38	236	0	1	0	275	0	122	35	0	0	157	50	97	64	0	0	211	0	0	0	0	0	0	643
	07:15 AM	53	338	0	0	0	391	0	161	35	0	0	196	55	122	80	0	0	257	0	0	0	0	0	0	844
	07:30 AM	55	388	0	0	0	443	0	209	40	0	0	249	54	82	65	0	0	201	0	0	0	0	0	0	893
	07:45 AM	70	380	0	0	0	450	0	305	53	0	0	358	40	93	56	0	0	189	0	0	0	0	0	0	997
	Total	216	1342	0	1	0	1559	0	797	163	0	0	960	199	394	265	0	0	858	0	0	0	0	0	0	3377
							1							٠					1							l
	08:00 AM	57	373	0	0	0	430	0	230	45	0	0	275	42	66	58	0	0	166	0	0	0	0	0	0	871
	08:15 AM	48	325	0	1	0	374	0	237	32	0	0	269	31	48	62	0	1	142	0	0	0	0	0	0	785
	08:30 AM	43	386	0	0	0	429	0	152	25	0	0	177	19	59	45	0	1	124	0	0	0	0	0	0	730
	08:45 AM	45	396	0	0	0	441	0	237	39	0	0	276	33	46	61	0	0	140	0	0	0	0	0	0	857
	Total	193	1480	0	1	0	1674	0	856	141	0	0	997	125	219	226	0	2	572	0	0	0	0	0	0	3243
	*** BREAK ***	¢																								
	04:00 PM	91	263	0	0	0	354	0	238	112	0	0	350	32	57	41	0	1	131	0	0	0	1	0	1	836
	04:15 PM	81	250	0	0	0	331	0	291	99	0	0	390	31	50	52	0	1	134	0	0	0	0	0	0	855
	04:30 PM	76	241	0	0	0	317	0	320	102	0	0	422	35	75	36	0	0	146	0	0	0	0	0	0	885
	04:45 PM	63	240	0	1	0	304	0	344	107	0	0	451	19	45	46	1	0	111	0	0	0	0	0	0	866
	Total	311	994	0	1	0	1306	0	1193	420	0	0	1613	117	227	175	1	2	522	0	0	0	1	0	1	3442
	05.00.73.6	116	20.6	0		0	412	0	2.00	101	0	0	2.00	۱ ،		2.4			125					0		016
	05:00 PM	116	296	0	0	0	412	0	268	101	0	0	369	46	55	34	0	0	135	0	0	0	0	0	0	916
	05:15 PM	93	320	0	0	0	413	0	334	126	0	0	460	23	56	30	0	0	109	0	0	0	0	0	0	982
	05:30 PM	80	234	0	0	0	314	0	241	69	0	0	310	25	82	78	0	0	185	0	0	0	0	0	0	809
	05:45 PM	39	336	0	0	0	375	0	184	58_	0	0	242	27	60	91	0	0	178	0	0	0	0	0	0	795
	Total	328	1186	0	0	0	1514	0	1027	354	0	0	1381	121	253	233	0	0	607	0	0	0	0	0	0	3502
	06:00 PM	56	351	0	0	0	407	0	160	57	0	0	217	20	61	87	0	0	168	0	0	0	0	0	0	792
	06:15 PM	49	327	0	1	0	377	0	166	66	0	0	232	17	50	50	0	0	117	0	0	0	0	0	0	726
	06:30 PM	28	221	0	0	0	249	0	182	67	0	0	249	19	30	58	0	0	107	0	0	0	0	0	0	605
	06:45 PM	28	183	0	0	0	211	0	157	54	0	0	211	22	24	44	0	0	90	0	0	0	0	0	0	512
	Total	161	1082	0	1	0	1244	0	665	244	0	0	909	78	165	239	0	0	482	0	0	0	0	0	0	2635
	Grand Total	1287	6705	0	4	1	7997	0	4764	1368	1	0	6133	749	1525	1359	1	4	3638	0	0	0	1	0	1	17769
	Appreh %	16.1	83.8	0	0.1	0	,	0	77.7	22.3	0	0		20.6	41.9	37.4	0	0.1		0	0	0	100	0	•	
	Total %	7.2	37.7	0	0.1	0	45	0	26.8	7.7	0	0	34.5	4.2	8.6	7.6	0	0.1	20.5	0	0	0	0	0	0	

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: Lomas and Frontage Rd. N.

Site Code : 03202019 Start Date : 3/20/2019

Page No : 2

											1 -														7
			Lo	omas					Lo	mas					Front	age Rd.									
			East	bound					West	bound					Nortl	hbound					South	nbound			
	Left	Thru	Right	Bike s	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
Cars	1276	6606	0	4	1	7887	0	4698	1344	1	0	6043	736	1475	1353	1	4	3569	0	0	0	1	0	1	17500
% Cars	99.1	98.5	0	100	100	98.6	0	98.6	98.2	100	0	98.5	98.3	96.7	99.6	100	100	98.1	0	0	0	100	0	100	98.5
Trucks	9	26	0	0	0	35	0	14	3	0	0	17	10	35	1	0	0	46	0	0	0	0	0	0	98
% Trucks	0.7	0.4	0	0	0	0.4	0	0.3	0.2	0	0	0.3	1.3	2.3	0.1	0	0	1.3	0	0	0	0	0	0	0.6
Buses	2	73	0	0	0	75	0	52	21	0	0	73	3	15	5	0	0	23	0	0	0	0	0	0	171
% Buses	0.2	1.1	0	0	0	0.9	0	1.1	1.5	0	0	1.2	0.4	1	0.4	0	0	0.6	0	0	0	0	0	0	1

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: Lomas and Frontage Rd. N.

Site Code : 03202019 Start Date : 3/20/2019

Start Time				Lor	mas ound						mas bound						ige Rd.					South	bound			
Peak Hour for Entire Intersection Begins at 07:15 AM	Start Time	Left	Thru		Bike	Peds	App. Total	Left	Thru			Peds	App. Total	Left	Thru			Peds	App. Total	Left	Thru			Peds	App. Total	Int. Total
07:15 AM 53 338 0 0 0 391 0 161 35 0 0 196 55 122 80 0 0 277 0 0 0 0 0 0 0 0 894 07:30 AM 55 588 0 0 0 443 0 209 40 0 0 249 54 82 65 0 0 201 0 0 0 0 0 0 0 0 0	Peak Hour Analy	ysis Fron	n 06:00 Z	AM to 11	:45 AM	I - Peak	1 of 1	•																		
07:30 AM	Peak Hour for E	ntire Inte	ersection	Begins a	t 07:15	AM																				
07:45 AM	07:15 AM	53	338	0	0	0	391	0	161	35	0	0	196	55	122	80	0	0	257	0	0	0	0	0	0	844
OBS-00 AM 57 373 0 0 0 430 0 230 45 0 0 275 42 66 58 0 0 166 0 0 0 0 0 0 0 0 0	07:30 AM	55	388	0	0	0	443	0	209	40	0	0	249	54	82	65	0	0	201	0	0	0	0	0	0	893
Total Volume	07:45 AM	70	380	0	0	0	450	0	305	53	0	0	358	40	93	56	0	0	189	0	0	0	0	0	0	997
Name	08:00 AM	57	373	0	0	0	430	0	230	45	0	0	275	42	66	58	0	0	166	0	0	0	0	0	0	871
PHF 8.89 9.53 0.00 0.00 0.00 0.952 0.00 0.742 8.16 0.00 0.00 0.00 0.753 8.68 7.744 8.89 0.00 0.00 0.791 0.00 0.0	Total Volume	235	1479	0	0	0	1714	0	905	173	0	0	1078	191	363	259	0	0	813	0	0	0	0	0	0	3605
Cars 234 1450 0 0 0 1684 0 894 169 0 0 1063 187 348 259 0 0 794 0 0 0 0 0 0 0 3541 8 6 0 0 98.2 97.7 0 0 98.6 97.9 95.9 100 0 0 97.7 0 0 0 0 0 0 0 98.2 7 10 0 0 0 0 0 0 0 0	% App. Total	13.7	86.3		0	0		0	84	16		0		23.5	44.6	31.9	0	0		0	0	0	0	0		
% Cars	PHF	.839	.953	.000	.000	.000		.000		.816	.000	.000		.868		.809	.000	.000	.791	.000	.000	.000	.000	.000	.000	.904
Trucks	Cars	234	1450	0	0	0	1684	0	894	169	0	0	1063	187	348	259	0	0	794	0	0	0	0	0	0	3541
% Trucks	% Cars	99.6	98.0	0	0	0	98.2	0	98.8	97.7	0	0	98.6	97.9	95.9	100	0	0	97.7	0	0	0	0	0	0	98.2
Buses 0 18 0 0 0 18 0 0 0 18 0 0 0 18 0 0 0 0 12 0 0 12 0 0 0 0 0 0 0 0 0	Trucks	1	11	0	0	0	12	0	3	0	0	0	3	4	11	0	0	0	15	0	0	0	0	0	0	30
Peak Hour Analysis From 12:00 PM to 06:45 PM - Peak 1 of 1 Peak Hour for Entire Intersection Begins at 04:30 PM 04:30 PM 76	% Trucks	0.4	0.7	0	0	0	0.7	0	0.3	0	0	0	0.3	2.1	3.0	0	0	0	1.8	0	0	0	0	0	0	0.8
Peak Hour Analysis From 12:00 PM to 06:45 PM - Peak 1 of 1 Peak Hour for Entire Intersection Begins at 04:30 PM O4:30 PM 76 241 0 0 0 317 0 320 102 0 0 422 35 75 36 0 0 146 0 0 0 0 0 0 0 0 0 885 O4:45 PM 63 240 0 1 0 304 0 344 107 0 0 451 19 45 46 1 0 111 0 0 0 0 0 0 0 0 0 0 866 O5:00 PM 116 296 0 0 0 412 0 268 101 0 0 334 126 0 0 460 23 56 30 0 0 135 0 0 0 0 0 0 0 0 0 0 982 Total Volume 348 1097 0 1 0 1446 0 1266 436 0 0 1702 123 231 146 1 0 501 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Buses	0	18	0	0	0	18	0	8	4	0	0	12	0	4	0	0	0	4	0	0	0	0	0	0	34
Peak Hour for Entire Intersection Begins at 04:30 PM	% Buses	0	1.2	0	0	0	1.1	0	0.9	2.3	0	0	1.1	0	1.1	0	0	0	0.5	0	0	0	0	0	0	0.9
Peak Hour for Entire Intersection Begins at 04:30 PM	Dook Hour Analy	voic Eror	n 12:00 I	OM to 06	.45 DM	Dools 1	of 1																			
04:30 PM 76 241 0 0 0 317 0 320 102 0 0 422 35 75 36 0 0 146 0 <td>•</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>01 1</td> <td></td>	•	-					01 1																			
04:45 PM 63 240 0 1 0 304 0 344 107 0 0 451 19 45 46 1 0 111 0 <td></td> <td>1</td> <td></td> <td>_</td> <td></td> <td></td> <td>317</td> <td>0</td> <td>320</td> <td>102</td> <td>0</td> <td>0</td> <td>422</td> <td>35</td> <td>75</td> <td>36</td> <td>0</td> <td>0</td> <td>146</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>995</td>		1		_			317	0	320	102	0	0	422	35	75	36	0	0	146	0	0	0	0	0	0	995
05:00 PM					1												1									
O5:15 PM 93 320 0 0 0 413 0 334 126 0 0 0 460 23 56 30 0 0 109 0 0 0 0 0 0 0 0 0				-	0								-				0									
Total Volume 348 1097 0 1 0 146 0 1266 436 0 0 1702 123 231 146 1 0 501 0 0 0 0 0 0 0 0 0 3649 MApp. Total 24.1 75.9 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-																				-		-		
% App. Total 24.1 75.9 0 0.1 0 74.4 25.6 0 0 24.6 46.1 29.1 0.2 0																										
PHF .750 .857 .000 .250 .000 .920 .865 .000 .000 .925 .668 .770 .793 .250 .000 .858 .000					-		1440	-					1702				-		301			-		-	Ü	3047
Cars 347 1085 0 1 0 1433 0 1254 432 0 0 1686 123 220 146 1 0 490 0 0 0 0 0 0 0 3609 % Cars 99.7 98.9 0 100 0 99.1 0 99.1 99.1 0 0 99.1 100 95.2 100 100 0 97.8 0 0 0 0 0 0 98.9 Trucks 1 1 0 0 0 0 2 0 1 0 0 0 0 1 0 4 0 0 0 4 0 0 0 0 0 98.9 % Trucks 0.3 0.1 0 0 0 0 0.1 0 0.1 0 0 0 0 0 1 0 0 0 0							875						925						858						000	929
% Cars 99.7 98.9 0 100 0 99.1 99.1 99.1 0 0 99.1 100 95.2 100 100 0 97.8 0 <																										
Trucks 1 1 0 0 0 2 0 1 0 <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td> </td> <td></td>					-																					
% Trucks 0.3 0.1 0 0 0 0.1 0 0.1 0 0 0.1 0 0.1 0 0.1 0 0.2		1	1	-					1					0								-				7
		0.3	0.1	-				-	0.1	-			- 1	0	-	-			- 1	-		-			-	0.2
				-										0	7							-				
% Buses 0 1.0 0 0 0 0.8 0 0.9 0.9 0 0 0.9 0 3.0 0 0 0 1.4 0 0 0 0 0 0 0.9								-		•				0	3.0											

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

Counter R.C.

File Name: University and North Frontage Rd

Site Code : 03192019 Start Date : 3/19/2019

Page No : 1

			Fast	bound				N		ontage I bound		teu- Cars			Univers	sity Blv	d					sity Blvo	t		
Start Time	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru		Bikes	Peds	App. Total	Int. Total
06:00 AM	0	0	0	0	0	0	31	14	21	0	0	66	3	33	0	0	0	36	0	45	4	0	0	49	151
06:15 AM	0	0	0	0	0	0	82	22	45	0	0	149	2	43	0	0	0	45	0	51	8	0	0	59	253
06:30 AM	0	0	0	0	0	0	71	36	48	0	0	155	6	50	0	1	1	58	0	62	2	0	3	67	280
06:45 AM	0	0	0	0	0	0	87	51	74	0	0	212	7	57	0	0	0	64	0	135	6	0	0	141	417
Total	0	0	0	0	0	0	271	123	188	0	0	582	18	183	0	1	1	203	0	293	20	0	3	316	1101
07:00 AM	0	0	0	0	0	0	78	68	59	0	0	205	14	76	0	0	0	90	0	154	6	0	0	160	455
07:15 AM	0	0	0	0	0	0	136	104	70	0	0	310	10	109	0	0	1	120	0	152	10	0	0	162	592
07:30 AM	0	0	0	0	0	0	143	99	64	0	0	306	20	137	0	0	0	157	0	205	12	1	1	219	682
07:45 AM	0	0	0	0	1	1	130	108	90	0	0	328	15	138	0	0	2	155	0	172	4	1	0	177	661
Total	0	0	0	0	1	1	487	379	283	0	0	1149	59	460	0	0	3	522	0	683	32	2	1	718	2390
08:00 AM	0	0	0	0	0	0	117	85	77	0	0	279	15	99	0	0	0	114	0	146	16	0	0	162	555
08:15 AM	0	0	0	1	0	1	95	69	57	0	0	221	10	93	0	1	1	105	0	185	6	0	0	191	518
08:30 AM	0	0	0	0	0	0	106	84	47	0	0	237	11	95	0	0	1	107	0	170	9	1	0	180	524
08:45 AM	0	0	0	1	0	1	141	78	58	0	0	277	17	93	0	0	0	110	0	174	8	1	1	184	572
Total	0	0	0	2	0	2	459	316	239	0	0	1014	53	380	0	1	2	436	0	675	39	2	1	717	2169
** BREAK ***																									
04:00 PM	0	0	0	0	0	0	37	56	53	0	0	146	62	194	0	1	0	257	0	104	17	0	3	124	527
04:15 PM	0	0	0	0	0	0	46	46	54	0	0	146	76	243	0	0	7	326	0	128	13	1	1	143	615
04:30 PM	0	0	0	0	0	0	42	46	45	0	1	134	69	233	0	0	1	303	0	141	12	0	1	154	591
04:45 PM	0	0	0	0	0	0	44	45	70	0	0	159	65	227	0	1	0	293	0	136	14	0	2	152	604
Total	0	0	0	0	0	0	169	193	222	0	1	585	272	897	0	2	8	1179	0	509	56	1	7	573	2337
05:00 PM	0	0	0	0	0	0	37	41	40	0	0	118	85	310	0	0	2	397	0	141	20	0	0	161	676
05:15 PM	0	0	0	0	0	0	39	53	28	1	0	121	77	324	0	0	1	402	0	128	10	1	2	141	664
05:30 PM	0	0	0	0	0	0	42	41	46	0	0	129	49	260	0	0	0	309	0	116	18	1	4	139	577
05:45 PM	0	0	0	0	0	0	50	34	55	0	1	140	52	263	0	1	0	316	0	114	8	0	2	124	580
Total	0	0	0	0	0	0	168	169	169	1	1	508	263	1157	0	1	3	1424	0	499	56	2	8	565	2497
06:00 PM	0	0	0	0	0	0	32	19	43	0	1	95	52	142	0	0	0	194	0	97	6	0	6	109	398
06:15 PM	0	0	0	0	0	0	43	17	34	0	0	94	20	131	0	0	1	152	0	77	7	0	4	88	334
06:30 PM	0	0	0	0	0	0	38	25	26	0	1	90	36	109	0	0	3	148	0	81	5	1	5	92	330
06:45 PM	0	0	0	0	0	0	38	24	20	0	0	82	25	99	0	0	0	124	0	73	6	0	2	81	287
Total	0	0	0	0	0	0	151	85	123	0	2	361	133	481	0	0	4	618	0	328	24	1	17	370	1349
Grand Total	0	0	0	2	1	3	1705	1265	1224	1	4	4199	798	3558	0	5	21	4382	0	2987	227	8	37	3259	11843
Apprch %	0	0	0	66.7	33.3		40.6	30.1	29.1	0	0.1		18.2	81.2	0	0.1	0.5		0	91.7	7	0.2	1.1		
Total %	0	0	0	0	0	0	14.4	10.7	10.3	0	0	35.5	6.7	30	0	0	0.2	37	0	25.2	1.9	0.1	0.3	27.5	

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: University and North Frontage Rd

Site Code : 03192019 Start Date : 3/19/2019

Page No : 2

											<u></u>														_
								N	orth Fr	ontage	Rd.				Unive	sity Blv	d				Unive	sity Blv	d		
			East	bound					West	tbound					Nort	hbound					Sout	hbound			
	Left	Thru	Right	Bike s	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Tota
Cars	0	0	0	2	1	3	1700	1253	1177	1	4	4135	798	3516	0	5	21	4340	0	2925	203	8	37	3173	11651
% Cars	0	0	0	100	100	100	99.7	99.1	96.2	100	100	98.5	100	98.8	0	100	100	99	0	97.9	89.4	100	100	97.4	98.4
Trucks	0	0	0	0	0	0	1	4	47	0	0	52	0	26	0	0	0	26	0	44	21	0	0	65	143
% Trucks	0	0	0	0	0	0	0.1	0.3	3.8	0	0	1.2	0	0.7	0	0	0	0.6	0	1.5	9.3	0	0	2	1.2
Buses	0	0	0	0	0	0	4	8	0	0	0	12	0	16	0	0	0	16	0	18	3	0	0	21	49
% Buses	0	0	0	0	0	0	0.2	0.6	0	0	0	0.3	0	0.4	0	0	0	0.4	0	0.6	1.3	0	0	0.6	0.4

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: University and North Frontage Rd

Site Code : 03192019 Start Date : 3/19/2019

			East					N	orth Fro	ontage bound	Rd.					sity Blvo	d					sity Blv	d		
Start Time	Left	Thru	Right	Bike s	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
Peak Hour Ana	lysis Fro	m 06:0	0 AM to	11:45	AM - Pe	eak 1 of 1												'	'						
Peak Hour for E	ntire In	tersection	n Begir	ns at 07	7:15 AM																				
07:15 AM	0	0	0	0	0	0	136	104	70	0	0	310	10	109	0	0	1	120	0	152	10	0	0	162	592
07:30 AM	0	0	0	0	0	0	143	99	64	0	0	306	20	137	0	0	0	157	0	205	12	1	1	219	682
07:45 AM	0	0	0	0	1	1	130	108	90	0	0	328	15	138	0	0	2	155	0	172	4	1	0	177	661
MA 00:80	0	0	0	0	0	0	117	85	77	0	0	279	15	99	0	0	0	114	0	146	16	0	0	162	555
Total Volume	0	0	0	0	1	1	526	396	301	0	0	1223	60	483	0	0	3	546	0	675	42	2	1	720	2490
% App. Total	0	0	0	0	100		43	32.4	24.6	0	0		11_	88.5	0	0	0.5		0	93.8	5.8	0.3	0.1		
PHF	.000	.000	.000	.000	.250	.250	.920	.917	.836	.000	.000	.932	.750	.875	.000	.000	.375	.869	.000	.823	.656	.500	.250	.822	.913
Cars	0	0	0	0	1	1	526	394	292	0	0	1212	60	472	0	0	3	535	0	656	33	2	1	692	2440
% Cars	0	0	0	0	100	100	100	99.5	97.0	0	0	99.1	100	97.7	0	0	100	98.0	0	97.2	78.6	100	100	96.1	98.0
Trucks	0	0	0	0	0	0	0	1	9	0	0	10	0	9	0	0	0	9	0	12	8	0	0	20	39
% Trucks	0	0	0	0	0	0	0	0.3	3.0	0	0	0.8	0	1.9	0	0	0	1.6	0	1.8	19.0	0	0	2.8	1.6
Buses	0	0	0	0	0	0	0	1	0	0	0	1	0	2	0	0	0	2	0	7	1	0	0	8	11
% Buses	0	0	0	0	0	0	0	0.3	0	0	0	0.1	0	0.4	0	0	0	0.4	0	1.0	2.4	0	0	1.1	0.4
Peak Hour Ana	lysis Fro	om 12:0	0 PM to	06:45	PM - Pe	eak 1 of 1																			
Peak Hour for E	ntire In	tersection	n Begir	ns at 04	4:30 PM																				
04:30 PM	0	0	o o	0	0	0	42	46	45	0	1	134	69	233	0	0	1	303	0	141	12	0	1	154	591
04:45 PM	0	0	0	0	0	0	44	45	70	0	0	159	65	227	0	1	0	293	0	136	14	0	2	152	604
05:00 PM	0	0	0	0	0	0	37	41	40	0	0	118	85	310	0	0	2	397	0	141	20	0	0	161	676
05:15 PM	0	0	0	0	0	0	39	53	28	1	0	121	77	324	0	0	1	402	0	128	10	1	2	141	664
Total Volume	0	0	0	0	0	0	162	185	183	1	1	532	296	1094	0	1	4	1395	0	546	56	1	5	608	2535
% App. Total	0	0	0	0	0		30.5	34.8	34.4	0.2	0.2		21.2	78.4	0	0.1	0.3		0	89.8	9.2	0.2	0.8		
PHF	.000	.000	.000	.000	.000	.000	.920	.873	.654	.250	.250	.836	.871	.844	.000	.250	.500	.868	.000	.968	.700	.250	.625	.944	.938
Cars	0	0	0	0	0	0	161	184	171	1	1	518	296	1083	0	1	4	1384	0	538	55	1	5	599	2501
% Cars	0	0	0	0	0	0	99.4	99.5	93.4	100	100	97.4	100	99.0	0	100	100	99.2	0	98.5	98.2	100	100	98.5	98.7
Trucks	0	0	0	0	0	0	0	0	12	0	0	12	0	5	0	0	0	5	0	7	0	0	0	7	24
% Trucks	0	0	0	0	0	0	0	0	6.6	0	0	2.3	0	0.5	0	0	0	0.4	0	1.3	0	0	0	1.2	0.9
Buses	0	0	0	0	0	0	1	1	0	0	0	2	0	6	0	0	0	6	0	1	1	0	0	2	10
% Buses	0	0	0	0	0	0	0.6	0.5	0	0	0	0.4	0	0.5	0	0	0	0.4	0	0.2	1.8	0	0	0.3	0.4

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

Counter R.C.

File Name: University and South Frontage Rd.

Site Code : 03192019 Start Date : 3/19/2019

Page No : 1

		S	outh Fro	ontage	Rd.						•				Univer	sity Blv	d				Univers	ity Blv	d		
				bound						bound						hbound					South	bound			
Start Time	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
06:00 AM	8	22	12	0	0	42	0	0	0	0	0	0	0	28	6	0	0	34	12	64	0	0	0	76	152
06:15 AM	7	19	24	0	0	50	0	0	0	0	0	0	0	36	9	0	0	45	14	120	0	0	0	134	229
06:30 AM	14	20	34	0	0	68	0	0	0	0	0	0	0	34	25	1	0	60	14	102	0	0	1	117	245
06:45 AM	4	35	37	0	0	76	0	0	0	0	0	0	0	59	24	0	0	83	33	202	0	0	2	237	396
Total	33	96	107	0	0	236	0	0	0	0	0	0	0	157	64	1	0	222	73	488	0	0	3	564	1022
07:00 AM	7	47	41	0	0	95	0	0	0	0	0	0	0	90	31	0	0	121	46	190	0	0	0	236	452
07:15 AM	8	58	68	0	0	134	0	0	0	0	0	0	0	104	36	0	0	140	44	256	0	0	0	300	574
07:30 AM	14	65	58	0	0	137	0	0	0	0	0	0	0	142	48	0	0	190	44	305	0	0	1	350	677
07:45 AM	21	79	64	0	0	164	0	0	0	0	0	0	0	131	33	0	0	164	45	267	0	0	0	312	640
Total	50	249	231	0	0	530	0	0	0	0	0	0	0	467	148	0	0	615	179	1018	0	0	1	1198	2343
08:00 AM	12	81	53	0	0	146	0	0	0	0	0	0	0	99	32	0	0	131	43	229	0	0	0	272	549
08:15 AM	13	78	58	0	0	149	0	0	0	0	0	0	0	87	33	0	0	120	48	239	Ö	0	1	288	557
08:30 AM	8	67	51	0	Ö	126	0	0	0	Ö	1	1	Ö	98	19	0	0	117	38	230	0	1	2	271	515
08:45 AM	14	71	63	0	0	148	0	0	Ö	Ö	0	0	Ö	95	31	0	0	126	48	274	Ö	0	1	323	597
Total	47	297	225	0	0	569	0	0	0	0	1	1	0	379	115	0	0	494	177	972	0	1	4	1154	2218
*** BREAK ***																									
04:00 PM	16	136	12	0	1	165	0	0	0	0	0	0	0	244	86	1	0	331	42	100	0	0	2	144	640
04:15 PM	15	107	12	0	0	134	0	0	0	0	1	1	0	298	118	0	0	416	49	127	0	0	6	182	733
04:30 PM	16	128	23	0	0	167	0	0	0	0	0	0	0	272	103	0	1	376	57	132	0	0	2	191	734
04:45 PM	10	98	22	0	0	130	0	0	0	0	1	1	0	293	106	0	0	399	59	123	0	0	3	185	715
Total	57	469	69	0	1	596	0	0	0	0	2	2	0	1107	413	1	1	1522	207	482	0	0	13	702	2822
05:00 PM	56	68	46	0	2	172	0	0	0	0	0	0	0	315	48	0	0	363	57	122	0	0	1	180	715
05:15 PM	46	63	64	0	1	174	0	0	0	0	2	2	0	354	35	0	1	390	34	136	0	0	5	175	741
05:30 PM	54	73	55	0	0	182	0	0	0	0	0	0	0	244	32	0	0	276	26	132	0	0	6	164	622
05:45 PM	47	63	68	0	0	178	0	0	0	0	0	0	0	261	28	0	1_	290	28	135	0	0	2	165	633
Total	203	267	233	0	3	706	0	0	0	0	2	2	0	1174	143	0	2	1319	145	525	0	0	14	684	2711
06:00 PM	19	88	12	0	0	119	0	0	0	0	0	0	0	177	53	0	0	230	30	100	0	0	5	135	484
06:15 PM	12	53	14	0	1	80	0	0	0	0	0	0	0	141	49	0	0	190	27	91	0	0	6	124	394
06:30 PM	8	44	20	0	2	74	0	0	0	0	0	0	0	134	69	0	0	203	25	96	0	0	4	125	402
06:45 PM	10	34	12	0	0	56	0	0	0	0	0	0	0	113	58	0	0	171	18	95	0	0	4	117	344
Total	49	219	58	0	3	329	0	0	0	0	0	0	0	565	229	0	0	794	100	382	0	0	19	501	1624
Grand Total	439	1597	923	0	7	2966	0	0	0	0	5	5	0	3849	1112	2	3	4966	881	3867	0	1	54	4803	12740
Apprch %	14.8	53.8	31.1	0	0.2		0	0	0	0	100		0	77.5	22.4	0	0.1		18.3	80.5	0	0	1.1		
Total %	3.4	12.5	7.2	0	0.1	23.3	0	0	0	0	0	0	0	30.2	8.7	0	0	39	6.9	30.4	0	0	0.4	37.7	

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: University and South Frontage Rd.

Site Code : 03192019 Start Date : 3/19/2019

Page No : 2

										0.0	<u> </u>														_
		S	outh Fr	ontage	Rd.										Unive	sity Blv	d				Unive	rsity Blv	ď		
			East	bound					Wes	tbound					Nort	hbound					Sout	hbound			
	Left	Thru	Right	Bike s	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
Cars	415	1574	920	0	7	2916	0	0	0	0	5	5	0	3839	1106	2	3	4950	833	3853	0	1	54	4741	12612
% Cars	94.5	98.6	99.7	0	100	98.3	0	0	0	0	100	100	0	99.7	99.5	100	100	99.7	94.6	99.6	0	100	100	98.7	99
Trucks	20	21	2	0	0	43	0	0	0	0	0	0	0	6	6	0	0	12	43	7	0	0	0	50	105
% Trucks	4.6	1.3	0.2	0	0	1.4	0	0	0	0	0	0	0	0.2	0.5	0	0	0.2	4.9	0.2	0	0	0	1	0.8
Buses	4	2	1	0	0	7	0	0	0	0	0	0	0	4	0	0	0	4	5	7	0	0	0	12	23
% Buses	0.9	0.1	0.1	0	0	0.2	0	0	0	0	0	0	0	0.1	0	0	0	0.1	0.6	0.2	0	0	0	0.2	0.2

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: University and South Frontage Rd.

Site Code : 03192019 Start Date : 3/19/2019

		S	outh Fro	ontage bound	Rd.				Wes	tbound						sity Blv bound	d				-	sity Blvo	d		
Start Time	Left	Thru	Right	Bike s	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
Peak Hour Anal																									
Peak Hour for E	ntire In	tersecti	on Begi	ns at 07	':15 AM																				
07:15 AM	8	58	68	0	0	134	0	0	0	0	0	0	0	104	36	0	0	140	44	256	0	0	0	300	574
07:30 AM	14	65	58	0	0	137	0	0	0	0	0	0	0	142	48	0	0	190	44	305	0	0	1	350	677
07:45 AM	21	79	64	0	0	164	0	0	0	0	0	0	0	131	33	0	0	164	45	267	0	0	0	312	640
MA 00:80	12	81	53	0	0	146	0	0	0	0	0	0	0	99	32	0	0	131	43	229	0	0	0	272	549
Total Volume	55	283	243	0	0	581	0	0	0	0	0	0	0	476	149	0	0	625	176	1057	0	0	1	1234	2440
% App. Total	9.5	48.7	41.8	0	0		0	0	0	0	0		0	76.2	23.8	0	0		14.3	85.7	0	0	0.1		
PHF	.655	.873	.893	.000	.000	.886	.000	.000	.000	.000	.000	.000	.000	.838	.776	.000	.000	.822	.978	.866	.000	.000	.250	.881	.901
Cars	51	276	242	0	0	569	0	0	0	0	0	0	0	473	147	0	0	620	164	1053	0	0	1	1218	2407
% Cars	92.7	97.5	99.6	0	0	97.9	0	0	0	0	0	0	0	99.4	98.7	0	0	99.2	93.2	99.6	0	0	100	98.7	98.6
Trucks	4	6	1	0	0	11	0	0	0	0	0	0	0	3	2	0	0	5	10	2	0	0	0	12	28
% Trucks	7.3	2.1	0.4	0	0	1.9	0	0	0	0	0	0	0	0.6	1.3	0	0	0.8	5.7	0.2	0	0	0	1.0	1.1
Buses	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	2	2	0	0	0	4	5
% Buses	0	0.4	0	0	0	0.2	0	0	0	0	0	0	0	0	0	0	0	0	1.1	0.2	0	0	0	0.3	0.2
Peak Hour Anal	ysis Fro	om 12:0	00 PM to	06:45	PM - Pe	eak 1 of 1																			
Peak Hour for E	ntire In	tersecti	on Begi	ns at 04	:30 PM																				
04:30 PM	16	128	23	0	0	167	0	0	0	0	0	0	0	272	103	0	1	376	57	132	0	0	2	191	734
04:45 PM	10	98	22	0	0	130	0	0	0	0	1	1	0	293	106	0	0	399	59	123	0	0	3	185	715
05:00 PM	56	68	46	0	2	172	0	0	0	0	0	0	0	315	48	0	0	363	57	122	0	0	1	180	715
05:15 PM	46	63	64	0	1	174	0	0	0	0	2	2	0	354	35	0	1	390	34	136	0	0	5	175	741
Total Volume	128	357	155	0	3	643	0	0	0	0	3	3	0	1234	292	0	2	1528	207	513	0	0	11	731	2905
% App. Total	19.9	55.5	24.1	0	0.5		0	0	0	0	100		0	80.8	19.1	0	0.1		28.3	70.2	0	0	1.5		
PHF	.571	.697	.605	.000	.375	.924	.000	.000	.000	.000	.375	.375	.000	.871	.689	.000	.500	.957	.877	.943	.000	.000	.550	.957	.980
Cars	120	355	155	0	3	633	0	0	0	0	3	3	0	1231	292	0	2	1525	199	513	0	0	11	723	2884
% Cars	93.8	99.4	100	0	100	98.4	0	0	0	0	100	100	0	99.8	100	0	100	99.8	96.1	100	0	0	100	98.9	99.3
Trucks	6	2	0	0	0	8	0	0	0	0	0	0	0	1	0	0	0	1	8	0	0	0	0	8	17
% Trucks	4.7	0.6	0	0	0	1.2	0	0	0	0	0	0	0	0.1	0	0	0	0.1	3.9	0	0	0	0	1.1	0.6
Buses	2	0	0	0	0	2	0	0	0	0	0	0	0	2	0	0	0	2	0	0	0	0	0	0	4
% Buses	1.6	0	0	0	0	0.3	0	0	0	0	0	0	0	0.2	0	0	0	0.1	0	0	0	0	0	0	0.1

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

Counter R.C.

File Name: University and Indian School

Site Code : 03192019 Start Date : 3/19/2019

Page No : 1

			Indian	Schoo					Indian	Schoo	ľ				Univers	sity Blv	d				Univers	sity Blv	d		
				bound					West	bound						bound						bound			
Start Time	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
06:00 AM	9	6	11	0	0	26	17	12	5	2	0	36	7	21	2	0	0	30	2	57	8	0	0	67	159
06:15 AM	11	8	17	0	0	36	11	21	5	0	1	38	3	26	2	0	0	31	1	101	16	0	0	118	223
06:30 AM	16	14	26	0	0	56	22	34	7	0	0	63	13	31	3	0	0	47	3	115	8	0	0	126	292
06:45 AM	24	21	27	1_	0	73	22	31	8	2	1	64	17	48	14	0	1	80	10	177	22	0	1_	210	427
Total	60	49	81	1	0	191	72	98	25	4	2	201	40	126	21	0	1	188	16	450	54	0	1	521	1101
07:00 AM	23	51	38	1	0	113	23	72	15	0	0	110	30	68	8	0	0	106	6	178	28	0	0	212	541
07:15 AM	51	60	66	1	0	178	58	91	14	0	0	163	38	94	12	0	1	145	7	228	35	0	0	270	756
07:30 AM	33	55	62	1	0	151	50	64	23	0	0	137	15	115	24	0	0	154	12	251	21	0	0	284	726
07:45 AM	25	47	58	3	0	133	70	50	30	0	0	150	20	132	14	0	2	168	8	263	13	0	0	284	735
Total	132	213	224	6	0	575	201	277	82	0	0	560	103	409	58	0	3	573	33	920	97	0	0	1050	2758
08:00 AM	17	32	42	0	0	91	43	65	13	1	0	122	28	97	19	0	0	144	15	225	17	1	0	258	615
08:15 AM	17	32	38	0	0	87	46	68	12	0	2	128	20	90	19	0	2	131	13	199	12	0	1	225	571
08:30 AM	13	47	40	1	0	101	45	47	19	0	0	111	17	89	24	0	0	130	11	217	15	0	1	244	586
08:45 AM	15	47	45	0	0	107	41	60	18	0	1	120	20	93	17	0	0	130	8	273	14	0	0	295	652
Total	62	158	165	1	0	386	175	240	62	1	3	481	85	369	79	0	2	535	47	914	58	1	2	1022	2424
*** BREAK ***																									
04:00 PM	33	47	27	1	4	112	27	71	22	0	0	120	42	240	53	0	0	335	15	86	19	0	0	120	687
04:15 PM	27	57	21	1	0	106	21	63	23	0	0	107	42	293	42	0	0	377	8	109	18	0	0	135	725
04:30 PM	30	61	24	2	0	117	30	57	22	0	2	111	30	269	47	0	2	348	23	107	16	0	0	146	722
04:45 PM	26	52	19	4	1	102	22	55	24	1	0	102	46	275	57	1	0	379	15	113	22	0	0	150	733
Total	116	217	91	8	5	437	100	246	91	1	2	440	160	1077	199	1	2	1439	61	415	75	0	0	551	2867
05:00 PM	25	63	28	1	0	117	37	52	18	3	0	110	40	244	54	0	0	338	38	119	24	0	0	181	746
05:15 PM	28	104	32	1	2	167	35	91	22	0	0	148	43	222	76	0	0	341	45	113	34	1	0	193	849
05:30 PM	33	86	22	1	2	144	20	63	24	0	0	107	43	217	96	0	0	356	36	104	16	0	0	156	763
05:45 PM	37	82	20	1_	3	143	19	55	27	0	0	101	51	220	96	0	0	367	49	117	18	0	0	184	795
Total	123	335	102	4	7	571	111	261	91	3	0	466	177	903	322	0	0	1402	168	453	92	1	0	714	3153
06:00 PM	24	55	17	1	1	98	26	61	26	0	0	113	31	166	44	1	0	242	14	52	24	0	0	90	543
06:15 PM	5	42	13	0	1	61	21	48	19	0	0	88	31	143	25	0	0	199	9	75	19	0	2	105	453
06:30 PM	13	38	18	0	1	70	9	44	13	1	0	67	29	144	22	0	1	196	7	99	14	1	0	121	454
06:45 PM	11_	24	9	0	0	44	14	43	19	0	1	77	25	117	18	0	0	160	6	71	24	0	0	101	382
Total	53	159	57	1	3	273	70	196	77	1	1	345	116	570	109	1	1	797	36	297	81	1	2	417	1832
Grand Total	546	1131	720	21	15	2433	729	1318	428	10	8	2493	681	3454	788	2	9	4934	361	3449	457	3	5	4275	14135
Apprch %	22.4	46.5	29.6	0.9	0.6		29.2	52.9	17.2	0.4	0.3		13.8	70	16	0	0.2		8.4	80.7	10.7	0.1	0.1		
Total %	3.9	8	5.1	0.1	0.1	17.2	5.2	9.3	3	0.1	0.1	17.6	4.8	24.4	5.6	0	0.1	34.9	2.6	24.4	3.2	0	0	30.2	

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: University and Indian School

Site Code : 03192019 Start Date : 3/19/2019

Page No : 2

																									-
			Indian	Schoo	l				Indiar	Schoo	l				Unive	sity Blv	d				Univer	sity Blv	d		
			East	bound					West	tbound					Nort	hbound					Sout	hbound			
	Left	Thru	Right	Bike s	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Tota
Cars	543	1124	705	21	15	2408	725	1308	425	10	8	2476	665	3427	783	2	9	4886	359	3411	454	3	5	4232	1400
% Cars	99.5	99.4	97.9	100	100	99	99.5	99.2	99.3	100	100	99.3	97.7	99.2	99.4	100	100	99	99.4	98.9	99.3	100	100	99	99.
Trucks	2	1	0	0	0	3	0	2	2	0	0	4	0	9	2	0	0	11	1	17	2	0	0	20	3
% Trucks	0.4	0.1	0	0	0	0.1	0	0.2	0.5	0	0	0.2	0	0.3	0.3	0	0	0.2	0.3	0.5	0.4	0	0	0.5	0.
Buses	1	6	15	0	0	22	4	8	1	0	0	13	16	18	3	0	0	37	1	21	1	0	0	23	9
% Buses	0.2	0.5	2.1	0	0	0.9	0.5	0.6	0.2	0	0	0.5	2.3	0.5	0.4	0	0	0.7	0.3	0.6	0.2	0	0	0.5	0.

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: University and Indian School

Site Code : 03192019 Start Date : 3/19/2019

				Schoo bound						Schoo	I					sity Blv	d					sity Blv	d		
Start Time	Left	Thru	Right	Bike s	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
Peak Hour Ana																									
Peak Hour for E	Entire In	tersecti	on Begi	ns at 07	7:15 AM																				
07:15 AM	51	60	66	1	0	178	58	91	14	0	0	163	38	94	12	0	1	145	7	228	35	0	0	270	756
07:30 AM	33	55	62	1	0	151	50	64	23	0	0	137	15	115	24	0	0	154	12	251	21	0	0	284	726
07:45 AM	25	47	58	3	0	133	70	50	30	0	0	150	20	132	14	0	2	168	8	263	13	0	0	284	735
MA 00:80	17	32	42	0	0	91	43	65	13	1	0	122	28	97	19	0	0	144	15	225	17	1_	0	258	615
Total Volume	126	194	228	5	0	553	221	270	80	1	0	572	101	438	69	0	3	611	42	967	86	1	0	1096	2832
% App. Total	22.8	35.1	41.2	0.9	0		38.6	47.2	14	0.2	0		16.5	71.7	11.3	0	0.5		3.8	88.2	7.8	0.1	0		
PHF	.618	.808	.864	.417	.000	.777	.789	.742	.667	.250	.000	.877	.664	.830	.719	.000	.375	.909	.700	.919	.614	.250	.000	.965	.937
Cars	126	193	223	5	0	547	220	268	79	1	0	568	97	431	69	0	3	600	42	956	85	1	0	1084	2799
% Cars	100	99.5	97.8	100	0	98.9	99.5	99.3	98.8	100	0	99.3	96.0	98.4	100	0	100	98.2	100	98.9	98.8	100	0	98.9	98.8
Trucks	0	0	0	0	0	0	0	0	1	0	0	1	0	3	0	0	0	3	0	5	0	0	0	5	9
% Trucks	0	0	0	0	0	0	0	0	1.3	0	0	0.2	0	0.7	0	0	0	0.5	0	0.5	0	0	0	0.5	0.3
Buses	0	1	5	0	0	6	1	2	0	0	0	3	4	4	0	0	0	8	0	6	1	0	0	7	24
% Buses	0	0.5	2.2	0	0	1.1	0.5	0.7	0	0	0	0.5	4.0	0.9	0	0	0	1.3	0	0.6	1.2	0	0	0.6	0.8
Peak Hour Ana	lysis Fro	om 12:0	0 PM to	06:45	PM - Pe	eak 1 of 1																			
Peak Hour for E	Éntire In	tersecti	on Begi	ns at 05	5:00 PM																				
05:00 PM	25	63	28	1	0	117	37	52	18	3	0	110	40	244	54	0	0	338	38	119	24	0	0	181	746
05:15 PM	28	104	32	1	2	167	35	91	22	0	0	148	43	222	76	0	0	341	45	113	34	1	0	193	849
05:30 PM	33	86	22	1	2	144	20	63	24	0	0	107	43	217	96	0	0	356	36	104	16	0	0	156	763
05:45 PM	37	82	20	1	3	143	19	55	27	0	0	101	51	220	96	0	0	367	49	117	18	0	0	184	795
Total Volume	123	335	102	4	7	571	111	261	91	3	0	466	177	903	322	0	0	1402	168	453	92	1	0	714	3153
% App. Total	21.5	58.7	17.9	0.7	1.2		23.8	56	19.5	0.6	0		12.6	64.4	23	0	0		23.5	63.4	12.9	0.1	0		
PHF	.831	.805	.797	1.00	.583	.855	.750	.717	.843	.250	.000	.787	.868	.925	.839	.000	.000	.955	.857	.952	.676	.250	.000	.925	.928
Cars	123	333	100	4	7	567	111	261	91	3	0	466	175	898	322	0	0	1395	168	448	92	1	0	709	3137
% Cars	100	99.4	98.0	100	100	99.3	100	100	100	100	0	100	98.9	99.4	100	0	0	99.5	100	98.9	100	100	0	99.3	99.5
Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	2	0	2	0	0	0	2	4
% Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0.2	0	0	0	0.1	0	0.4	0	0	0	0.3	0.1
Buses	0	2	2	0	0	4	0	0	0	0	0	0	2	3	0	0	0	5	0	3	0	0	0	3	12
% Buses	0	0.6	2.0	0	0	0.7	0	0	0	0	0	0	1.1	0.3	0	0	0	0.4	0	0.7	0	0	0	0.4	0.4

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

Counter R.C.

File Name: University and Camino De Salude

Site Code : 03212019 Start Date : 3/21/2019

Page No : 1

			Camino	De Sal	ud			C	Camino	De Sal		nou our	7 1140		Univers	ity Blv	d				Univers	sity Blv	d		
			East	bound					Westl	oound					North							bound			
Start Time	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
06:00 AM	3	0	10	0	0	13	0	2	0	0	1	3	32	21	1	0	0	54	1	51	28	0	0	80	150
06:15 AM	4	0	7	0	0	11	0	0	0	0	1	1	43	34	0	0	0	77	0	78	51	1	0	130	219
06:30 AM	8	1	11	1	0	21	0	0	0	1	2	3	54	53	1	0	0	108	1	106	64	0	0	171	303
06:45 AM	8	4	16	1	1	30	0	0	0	0	1	1	28	65	3	0	0	96	0	141	43	0	0	184	311
Total	23	5	44	2	1	75	0	2	0	1	5	8	157	173	5	0	0	335	2	376	186	1	0	565	983
07:00 AM	7	2	16	0	0	25	0	0	1	0	1	2	31	97	10	0	0	138	3	166	38	0	0	207	372
07:15 AM	9	9	21	0	0	39	2	0	2	2	1	7	37	94	9	0	0	140	7	232	57	0	1	297	483
07:30 AM	4	12	32	0	0	48	11	0	3	1	0	15	30	131	13	0	1	175	19	250	55	0	0	324	562
07:45 AM	10	10	31	0	0	51	16	1_	6	0	0	23	46	141	21	0	0	208	9	275	53	0	0	337	619
Total	30	33	100	0	0	163	29	1	12	3	2	47	144	463	53	0	1	661	38	923	203	0	1	1165	2036
08:00 AM	12	8	26	0	0	46	15	0	4	0	0	19	40	133	13	0	0	186	5	214	39	0	0	258	509
08:15 AM	15	3	32	0	0	50	10	0	4	Ö	0	14	35	105	8	0	Ō	148	4	205	30	Ö	0	239	451
08:30 AM	14	4	31	0	0	49	8	0	1	0	0	9	23	83	17	0	1	124	6	252	27	0	1	286	468
08:45 AM	10	6	34	0	0	50	12	2	3	0	0	17	32	106	27	0	0	165	10	224	31	0	0	265	497
Total	51	21	123	0	0	195	45	2	12	0	0	59	130	427	65	0	1	623	25	895	127	0	1	1048	1925
*** BREAK ***																									
04:00 PM	51	0	45	0	0	96	11	2	2	0	2	17	14	281	7	0	1	303	5	131	9	0	0	145	561
04:15 PM	55	1	65	0	0	121	11	3	10	0	1	25	12	232	9	0	1	254	7	158	5	0	0	170	570
04:30 PM	77	1	80	1	0	159	19	0	15	0	6	40	23	236	8	0	3	270	7	142	7	0	5	161	630
04:45 PM	51	2	64	0	1	118	15	2	11	0	4	32	16	287	18	0	0	321	7	145	3	0	0	155	626
Total	234	4	254	1	1	494	56	7	38	0	13	114	65	1036	42	0	5	1148	26	576	24	0	5	631	2387
05:00 PM	75	3	68	0	3	149	16	0	28	0	1	45	10	272	14	0	2	298	6	180	5	0	1	192	684
05:15 PM	42	3	58	1	1	105	24	1	26	0	2	53	10	294	27	0	2	333	7	150	5	1	0	163	654
05:30 PM	52	0	50	0	0	102	22	0	26	1	0	49	11	214	4	0	1	230	2	159	4	0	2	167	548
05:45 PM	33	1_	26	0	2	62	5	0	6	0	2	13	9	171	2	1_	0	183	0	130	2	0	0	132	390
Total	202	7	202	1	6	418	67	1	86	1	5	160	40	951	47	1	5	1044	15	619	16	1	3	654	2276
06:00 PM	32	0	26	0	0	58	7	0	4	0	0	11	8	177	2	0	0	187	0	115	2	0	0	117	373
06:15 PM	23	0	15	0	0	38	5	0	4	0	2	11	6	137	1	0	0	144	0	135	0	0	0	135	328
06:30 PM	36	0	31	0	0	67	3	0	1	0	0	4	4	115	2	0	0	121	1	126	2	0	1	130	322
06:45 PM	14	0	13	1	0	28	8	0	1	0	0	9	5	133	4	0	0	142	1	112	0	0	1	114	293
Total	105	0	85	1	0	191	23	0	10	0	2	35	23	562	9	0	0	594	2	488	4	0	2	496	1316
Grand Total	645	70	808	5	8	1536	220	13	158	5	27	423	559	3612	221	1	12	4405	108	3877	560	2	12	4559	10923
Apprch %	42	4.6	52.6	0.3	0.5		52	3.1	37.4	1.2	6.4		12.7	82	5	0	0.3		2.4	85	12.3	0	0.3		
Total %	5.9	0.6	7.4	0	0.1	14.1	2	0.1	1.4	0	0.2	3.9	5.1	33.1	2	0	0.1	40.3	1	35.5	5.1	0	0.1	41.7	

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: University and Camino De Salude

Site Code : 03212019 Start Date : 3/21/2019

Page No : 2

																									,
		(Camino	De Sa	lud			(Camino	De Sal	ud				Unive	sity Blv	d				Unive	sity Blv	d		
			East	bound					West	tbound					Nort	hbound					Sout	hbound			
	Left	Thru	Right	Bike s	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
Cars	645	69	685	5	8	1412	215	13	156	5	27	416	444	3564	217	1	12	4238	104	3822	554	2	12	4494	10560
% Cars	100	98.6	84.8	100	100	91.9	97.7	100	98.7	100	100	98.3	79.4	98.7	98.2	100	100	96.2	96.3	98.6	98.9	100	100	98.6	96.7
Trucks	0	0	3	0	0	3	0	0	1	0	0	1	1	9	0	0	0	10	2	17	1	0	0	20	34
% Trucks	0	0	0.4	0	0	0.2	0	0	0.6	0	0	0.2	0.2	0.2	0	0	0	0.2	1.9	0.4	0.2	0	0	0.4	0.3
Buses	0	1	120	0	0	121	5	0	1	0	0	6	114	39	4	0	0	157	2	38	5	0	0	45	329
% Buses	0	1.4	14.9	0	0	7.9	2.3	0	0.6	0	0	1.4	20.4	1.1	1.8	0	0	3.6	1.9	1	0.9	0	0	1	3

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: University and Camino De Salude

Site Code : 03212019 Start Date : 3/21/2019

		C	Camino Eastl	De Sal	lud			(Camino West	De Sal	ud					sity Blvo	d					sity Blv	d		
Start Time	Left	Thru	Right	Bike s	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
Peak Hour Ana	lysis Fro	m 06:0	0 AM to	11:45	AM - Pe	eak 1 of 1						,							,						
Peak Hour for E																									
07:15 AM	9	9	21	0	0	39	2	0	2	2	1	7	37	94	9	0	0	140	7	232	57	0	1	297	483
07:30 AM	4	12	32	0	0	48	11	0	3	1	0	15	30	131	13	0	1	175	19	250	55	0	0	324	562
07:45 AM	10	10	31	0	0	51	16	1	6	0	0	23	46	141	21	0	0	208	9	275	53	0	0	337	619
08:00 AM	12	8	26	0	0	46	15	0	4	0	0	19	40	133	13	0	0	186	5	214	39	0	0	258	509
Total Volume	35	39	110	0	0	184	44	1	15	3	1	64	153	499	56	0	1	709	40	971	204	0	1	1216	2173
% App. Total	19	21.2	59.8	0	0		68.8	1.6	23.4	4.7	1.6		21.6	70.4	7.9	0	0.1		3.3	79.9	16.8	0	0.1		
PHF	.729	.813	.859	.000	.000	.902	.688	.250	.625	.375	.250	.696	.832	.885	.667	.000	.250	.852	.526	.883	.895	.000	.250	.902	.878
Cars	35	38	92	0	0	165	43	1	15	3	1	63	135	491	55	0	1	682	39	955	203	0	1	1198	2108
% Cars	100	97.4	83.6	0	0	89.7	97.7	100	100	100	100	98.4	88.2	98.4	98.2	0	100	96.2	97.5	98.4	99.5	0	100	98.5	97.0
Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	7	0	0	0	7	8
% Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0.2	0	0	0	0.1	0	0.7	0	0	0	0.6	0.4
Buses	0	1	18	0	0	19	1	0	0	0	0	1	18	7	1	0	0	26	1	9	1	0	0	11	57
% Buses	0	2.6	16.4	0	0	10.3	2.3	0	0	0	0	1.6	11.8	1.4	1.8	0	0	3.7	2.5	0.9	0.5	0	0	0.9	2.6
Peak Hour Ana	lysis Fro	om 12:0	0 PM to	06:45	PM - Pe	eak 1 of 1																			
Peak Hour for E	Íntire In	tersection	on Begir	ns at 04	4:30 PM																				
04:30 PM	77	1	80	1	0	159	19	0	15	0	6	40	23	236	8	0	3	270	7	142	7	0	5	161	630
04:45 PM	51	2	64	0	1	118	15	2	11	0	4	32	16	287	18	0	0	321	7	145	3	0	0	155	626
05:00 PM	75	3	68	0	3	149	16	0	28	0	1	45	10	272	14	0	2	298	6	180	5	0	1	192	684
05:15 PM	42	3	58	1	1	105	24	1_	26	0	2	53	10	294	27	0	2	333	7	150	5	1_	0	163	654
Total Volume	245	9	270	2	5	531	74	3	80	0	13	170	59	1089	67	0	7	1222	27	617	20	1	6	671	2594
% App. Total	46.1	1.7	50.8	0.4	0.9		43.5	1.8	47.1	0	7.6		4.8	89.1	5.5	0	0.6		4	92	3	0.1	0.9		
PHF	.795	.750	.844	.500	.417	.835	.771	.375	.714	.000	.542	.802	.641	.926	.620	.000	.583	.917	.964	.857	.714	.250	.300	.874	.948
Cars	245	9	255	2	5	516	73	3	80	0	13	169	42	1081	66	0	7	1196	27	612	20	1	6	666	2547
% Cars	100	100	94.4	100	100	97.2	98.6	100	100	0	100	99.4	71.2	99.3	98.5	0	100	97.9	100	99.2	100	100	100	99.3	98.2
Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	2	0	0	0	0	0	0	2
% Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0.2	0	0	0	0.2	0	0	0	0	0	0	0.1
Buses	0	0	15	0	0	15	1	0	0	0	0	1	17	6	1	0	0	24	0	5	0	0	0	5	45
% Buses	0	0	5.6	0	0	2.8	1.4	0	0	0	0	0.6	28.8	0.6	1.5	0	0	2.0	0	0.8	0	0	0	0.7	1.7

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

Counter R.C.

File Name: University Blvd and Tucker Ave.

Site Code : 03282019 Start Date : 3/28/2019

Page No : 1

			C41	المحددة						er Ave.	<u> </u>	iteu- Cars	1140			sity Blv	d				Univers				
Start Time	Left	Thru	Right	bound Bikes	Peds	App. Total	Left	Thru	Right	bound Bikes	Peds	App. Total	Left	Thru	Right	bound Bikes	Peds	App. Total	Left	Thru	South Right	<u>bouna</u> Bikes	Peds	App. Total	Int. Total
06:00 AM	0	0	0	0	0	0	0	0	4	0	0	4	0	48	8	0	1	57	12	42	0	0	0	54	115
06:15 AM	0	0	Ö	0	0	0	1	0	12	0	0	13	Ö	67	12	0	0	79	20	51	Ö	0	0	71	163
06:30 AM	0	0	0	0	0	0	1	0	15	0	1	17	0	101	9	1	0	111	32	66	0	0	0	98	226
06:45 AM	0	0	0	0	0	0	3	0	17	1	0	21	0	109	28	1	2	140	65	104	0	0	0	169	330
Total	0	0	0	0	0	0	5	0	48	1	1	55	0	325	57	2	3	387	129	263	0	0	0	392	834
07:00 AM	0	0	0	0	0	0	2	0	23	0	0	25	0	130	28	0	3	161	45	106	0	0	0	151	337
07:15 AM	0	0	0	0	0	0	1	0	36	0	0	37	0	152	36	0	3	191	54	173	0	0	0	227	455
07:30 AM	0	0	0	0	0	0	0	0	56	0	0	56	0	209	61	1	6	277	59	205	0	0	0	264	597
07:45 AM	0	0	0	0	0	0	3	0	36	0	0	39	0	206	68	0	8	282	76	192	0	0	0	268	589
Total	0	0	0	0	0	0	6	0	151	0	0	157	0	697	193	1	20	911	234	676	0	0	0	910	1978
08:00 AM	0	0	0	0	0	0	2	0	26	0	0	28	0	187	41	0	6	234	85	170	0	0	0	255	517
08:15 AM	0	0	0	0	0	0	4	0	29	0	0	33	0	168	59	0	8	235	72	197	0	0	0	269	537
08:30 AM	0	0	0	0	0	0	5	0	25	0	1	31	0	145	48	0	3	196	66	207	0	0	0	273	500
08:45 AM	0	0	0	0	0	0	9	0	25	0	0	34	0	189	51	0	2	242	63	243	0	0	0	306	582
Total	0	0	0	0	0	0	20	0	105	0	1	126	0	689	199	0	19	907	286	817	0	0	0	1103	2136
*** BREAK ***																									
04:00 PM	0	0	0	0	0	0	7	0	74	0	0	81	0	196	17	0	3	216	22	225	0	0	0	247	544
04:15 PM	0	0	0	0	0	0	10	0	59	0	0	69	0	198	16	1	1	216	26	224	0	0	0	250	535
04:30 PM	0	0	0	0	2	2	7	0	63	0	0	70	0	183	15	0	2	200	29	274	0	0	0	303	575
04:45 PM	0	0	0	0	0	0	8	0	54	0	0	62	0	210	19	0	3	232	25	277	0	0	0	302	596
Total	0	0	0	0	2	2	32	0	250	0	0	282	0	787	67	1	9	864	102	1000	0	0	0	1102	2250
05:00 PM	0	0	0	0	0	0	7	0	78	0	0	85	0	215	32	0	4	251	22	281	0	0	0	303	639
05:15 PM	0	0	0	0	1	1	12	0	54	0	0	66	0	223	14	0	5	242	39	278	0	0	0	317	626
05:30 PM	0	0	0	0	0	0	8	0	49	0	0	57	0	144	16	0	2	162	29	189	0	0	0	218	437
05:45 PM	0	0	0	0	0	0	10	0	44	0	0	54	0	113	20	0	3	136	30	167	0	0	0	197	387
Total	0	0	0	0	1	1	37	0	225	0	0	262	0	695	82	0	14	791	120	915	0	0	0	1035	2089
06:00 PM	0	0	0	0	0	0	11	0	35	0	0	46	0	119	10	0	0	129	13	135	0	0	0	148	323
06:15 PM	0	0	0	0	0	0	2	0	36	0	0	38	0	109	11	0	1	121	20	124	0	0	0	144	303
06:30 PM	0	0	0	0	0	0	9	0	34	0	0	43	0	112	12	0	0	124	39	128	0	0	0	167	334
06:45 PM	0	0	0	0	0	0	6	0	29	0	0	35	0	131	13	0	1_	145	27	126	0	0	0	153	333
Total	0	0	0	0	0	0	28	0	134	0	0	162	0	471	46	0	2	519	99	513	0	0	0	612	1293
Grand Total	0	0	0	0	3	3	128	0	913	1	2	1044	0	3664	644	4	67	4379	970	4184	0	0	0	5154	10580
Apprch %	Ö	0	Ö	Ö	100		12.3	Ö	87.5	0.1	0.2		Ö	83.7	14.7	0.1	1.5		18.8	81.2	Ö	0	0		
Total %	0	0	0	0	0	0	1.2	0	8.6	0	0	9.9	0	34.6	6.1	0	0.6	41.4	9.2	39.5	0	0	0	48.7	

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: University Blvd and Tucker Ave.

Site Code : 03282019 Start Date : 3/28/2019

Page No : 2

										Olo	ups i iii	itcu- Car	3 - 11uc	113 - Du	303										_
									Tuck	er Ave.					Unive	rsity Blv	d				Unive	rsity Blv	d		
			East	bound					Wes	tbound					Nort	hbound					Sout	hbound			
	Left	Thru	Right	Bike s	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
Cars	0	0	0	0	0	0	127	0	863	1	2	993	0	3533	641	4	67	4245	921	4049	0	0	0	4970	10208
% Cars	0	0	0	0	0	0	99.2	0	94.5	100	100	95.1	0	96.4	99.5	100	100	96.9	94.9	96.8	0	0	0	96.4	96.
Trucks	0	0	0	0	3	3	1	0	1	0	0	2	0	11	3	0	0	14	3	16	0	0	0	19	38
% Trucks	0	0	0	0	100	100	8.0	0	0.1	0	0	0.2	0	0.3	0.5	0	0	0.3	0.3	0.4	0	0	0	0.4	0.4
Buses	0	0	0	0	0	0	0	0	49	0	0	49	0	120	0	0	0	120	46	119	0	0	0	165	334
% Buses	0	0	0	0	0	0	0	0	5.4	0	0	4.7	0	3.3	0	0	0	2.7	4.7	2.8	0	0	0	3.2	3.2

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: University Blvd and Tucker Ave.

Site Code : 03282019 Start Date : 3/28/2019

			Eastl	oound						er Ave. bound						sity Blv bound	d					sity Blvo	d		
Start Time	Left	Thru	Right	Bike s	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
Peak Hour Anal	ysis Fro	m 06:0	0 AM to	11:45	AM - Pe	eak 1 of 1						•						'	'						
Peak Hour for E	ntire Int	ersection	n Begi	ns at 07	':30 AM																				
07:30 AM	0	0	0	0	0	0	0	0	56	0	0	56	0	209	61	1	6	277	59	205	0	0	0	264	597
07:45 AM	0	0	0	0	0	0	3	0	36	0	0	39	0	206	68	0	8	282	76	192	0	0	0	268	589
08:00 AM	0	0	0	0	0	0	2	0	26	0	0	28	0	187	41	0	6	234	85	170	0	0	0	255	517
08:15 AM	0	0	0	0	0	0	4	0	29	0	0	33	0	168	59	0	8	235	72	197	0	0	0	269	537
Total Volume	0	0	0	0	0	0	9	0	147	0	0	156	0	770	229	1	28	1028	292	764	0	0	0	1056	2240
% App. Total	0	0	0	0	0		5.8	0	94.2	0	0		0	74.9	22.3	0.1	2.7		27.7	72.3	0	0	0		
PHF	.000	.000	.000	.000	.000	.000	.563	.000	.656	.000	.000	.696	.000	.921	.842	.250	.875	.911	.859	.932	.000	.000	.000	.981	.938
Cars	0	0	0	0	0	0	9	0	134	0	0	143	0	749	228	1	28	1006	284	738	0	0	0	1022	2171
% Cars	0	0	0	0	0	0	100	0	91.2	0	0	91.7	0	97.3	99.6	100	100	97.9	97.3	96.6	0	0	0	96.8	96.9
Trucks	0	0	0	0	0	0	0	0	1	0	0	1	0	4	1	0	0	5	1	5	0	0	0	6	12
% Trucks	0	0	0	0	0	0	0	0	0.7	0	0	0.6	0	0.5	0.4	0	0	0.5	0.3	0.7	0	0	0	0.6	0.5
Buses	0	0	0	0	0	0	0	0	12	0	0	12	0	17	0	0	0	17	7	21	0	0	0	28	57
% Buses	0	0	0	0	0	0	0	0	8.2	0	0	7.7	0	2.2	0	0	0	1.7	2.4	2.7	0	0	0	2.7	2.5
Peak Hour Anal	ysis Fro	m 12:0	0 PM to	06:45	PM - Pe	eak 1 of 1																			
Peak Hour for E	ntire Int	ersection	n Begi	ns at 04	:30 PM																				
04:30 PM	0	0	Õ	0	2	2	7	0	63	0	0	70	0	183	15	0	2	200	29	274	0	0	0	303	575
04:45 PM	0	0	0	0	0	0	8	0	54	0	0	62	0	210	19	0	3	232	25	277	0	0	0	302	596
05:00 PM	0	0	0	0	0	0	7	0	78	0	0	85	0	215	32	0	4	251	22	281	0	0	0	303	639
05:15 PM	0	0	0	0	1	1	12	0	54	0	0	66	0	223	14	0	5	242	39	278	0	0	0	317	626
Total Volume	0	0	0	0	3	3	34	0	249	0	0	283	0	831	80	0	14	925	115	1110	0	0	0	1225	2436
% App. Total	0	0	0	0	100		12	0	88	0	0		0	89.8	8.6	0	1.5		9.4	90.6	0	0	0		
PHF	.000	.000	.000	.000	.375	.375	.708	.000	.798	.000	.000	.832	.000	.932	.625	.000	.700	.921	.737	.988	.000	.000	.000	.966	.953
Cars	0	0	0	0	0	0	34	0	242	0	0	276	0	813	80	0	14	907	106	1093	0	0	0	1199	2382
% Cars	0	0	0	0	0	0	100	0	97.2	0	0	97.5	0	97.8	100	0	100	98.1	92.2	98.5	0	0	0	97.9	97.8
Trucks	0	0	0	0	3	3	0	0	0	0	0	0	0	1	0	0	0	1	0	2	0	0	0	2	6
% Trucks	0	0	0	0	100	100	0	0	0	0	0	0	0	0.1	0	0	0	0.1	0	0.2	0	0	0	0.2	0.2
Buses	0	0	0	0	0	0	0	0	7	0	0	7	0	17	0	0	0	17	9	15	0	0	0	24	48
% Buses	0	0	0	0	0	0	0	0	2.8	0	0	2.5	0	2.0	0	0	0	1.8	7.8	1.4	0	0	0	2.0	2.0

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

Counter R.C.

File Name: University blvd and Lomas blvd

Site Code : 03282019 Start Date : 3/28/2019

Page No : 1

				as Blvd						as Blvd	<u> аро т тп</u>	iteu- Cars	1140	no Buc	Univers		d				Univers				
				bound						tbound						bound						bound			
Start Time	Left	Thru			Peds	App. Total	Left	Thru	Right		Peds	App. Total	Left	Thru		Bikes	Peds	App. Total	Left	Thru		Bikes	Peds	App. Total	Int. Total
06:00 AM	29	73	6	0	0	108	6	27	16	0	0	49	2	11	3	0	1	17	16	19	7	0	0	42	216
06:15 AM	37	126	4	0	0	167	15	42	22	0	0	79	3	21	23	0	0	47	17	29	5	0	0	51	344
06:30 AM	59	137	7	0	2	205	16	65	25	0	1	107	5	32	10	1	0	48	23	38	8	0	0	69	429
06:45 AM	63	234	10	0	1	308	22	119	32	0	2	175	11	43	17	0	3	74	30	53	16	0	0	99	656
Total	188	570	27	0	3	788	59	253	95	0	3	410	21	107	53	1	4	186	86	139	36	0	0	261	1645
07:00 AM	67	187	28	0	3	285	25	114	32	0	0	171	14	58	29	0	1	102	37	63	14	0	0	114	672
07:15 AM	80	233	27	0	2	342	42	146	54	0	0	242	24	51	28	0	4	107	44	103	26	1	1	175	866
07:30 AM	96	262	45	0	1	404	61	193	62	0	0	316	20	111	39	1	5	176	55	121	32	0	1	209	1105
07:45 AM	74	303	37	0	9_	423	46	237	64	0	1	348	24	136	38	0	8	206	53	107	39	0	5_	204	1181
Total	317	985	137	0	15	1454	174	690	212	0	1	1077	82	356	134	1	18	591	189	394	111	1	7	702	3824
08:00 AM	72	293	29	0	5	399	55	262	57	0	0	374	34	99	44	0	9	186	55	87	29	0	2	173	1132
08:15 AM	100	287	35	0	5	427	45	195	32	0	1	273	20	94	30	2	8	154	51	125	25	0	1	202	1056
08:30 AM	96	266	41	0	4	407	34	162	26	0	1	223	31	68	29	0	2	130	54	123	30	0	1	208	968
08:45 AM	98	261	44	0	2	405	43	149	40	0	0	232	25	107	41	0	2	175	63	158	36	0	0	257	1069
Total	366	1107	149	0	16	1638	177	768	155	0	2	1102	110	368	144	2	21	645	223	493	120	0	4	840	4225
*** BREAK ***																									
04:00 PM	42	239	19	0	7	307	44	286	45	0	0	375	41	132	62	0	3	238	44	119	59	0	2	224	1144
04:15 PM	34	221	19	0	3	277	58	222	49	0	0	329	49	133	70	1	3	256	41	148	46	0	0	235	1097
04:30 PM	44	257	41	0	1	343	64	271	43	0	0	378	42	110	58	0	3	213	52	140	81	0	2	275	1209
04:45 PM	28	222	38	0	4	292	45	279	36	0	2	362	52	161	68	0	9	290	51	158	79	0	0	288	1232
Total	148	939	117	0	15	1219	211	1058	173	0	2	1444	184	536	258	1	18	997	188	565	265	0	4	1022	4682
05:00 PM	45	291	32	0	22	390	59	312	49	0	0	420	54	152	76	0	11	293	58	136	66	1	0	261	1364
05:15 PM	37	247	44	0	11	339	47	314	41	0	0	402	65	163	85	0	5	318	61	154	85	0	1	301	1360
05:30 PM	30	205	30	0	5	270	64	210	36	0	0	310	40	93	63	1	2	199	37	122	54	0	0	213	992
05:45 PM	26	204	19	1_	0	250	50	189	22	0	1_	262	27	94	67	0	2	190	42	97	39	0	0	178	880
Total	138	947	125	1	38	1249	220	1025	148	0	1	1394	186	502	291	1	20	1000	198	509	244	1	1	953	4596
06:00 PM	19	195	15	0	5	234	43	187	33	0	1	264	21	77	42	0	1	141	40	76	24	0	0	140	779
06:15 PM	17	182	18	0	1	218	37	137	24	0	2	200	24	79	31	0	1	135	45	65	27	0	3	140	693
06:30 PM	23	213	19	1	1	257	37	139	33	0	0	209	19	75	43	0	0	137	47	66	29	0	3	145	748
06:45 PM	22	165	18	1	3	209	44	170	36	0	0	250	23	85	47	0	0	155	39	78	22	0	1	140	754
Total	81	755	70	2	10	918	161	633	126	0	3	923	87	316	163	0	2	568	171	285	102	0	7	565	2974
Grand Total	1238	5303	625	3	97	7266	1002	4427	909	0	12	6350	670	2185	1043	6	83	3987	1055	2385	878	2	23	4343	21946
Apprch %	17	73	8.6	0	1.3		15.8	69.7	14.3	0	0.2		16.8	54.8	26.2	0.2	2.1		24.3	54.9	20.2	0	0.5		
Total %	5.6	24.2	2.8	0	0.4	33.1	4.6	20.2	4.1	0	0.1	28.9	3.1	10	4.8	0	0.4	18.2	4.8	10.9	4	0	0.1	19.8	

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: University blvd and Lomas blvd

Site Code : 03282019 Start Date : 3/28/2019

Page No : 2

																									-
			Loma	is Blvd					Loma	as Blvd					Unive	sity Blv	d				Unive	rsity Blv	d		
			East	bound					Wes	tbound					Nort	hbound					Sout	hbound			
	Left	Thru	Right	Bike s	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
Cars	1226	5193	624	3	97	7143	987	4365	831	0	12	6195	648	2156	1029	6	83	3922	964	2352	870	2	23	4211	21471
% Cars	99	97.9	99.8	100	100	98.3	98.5	98.6	91.4	0	100	97.6	96.7	98.7	98.7	100	100	98.4	91.4	98.6	99.1	100	100	97	97.8
Trucks	1	4	1	0	0	6	1	13	1	0	0	15	0	6	2	0	0	8	4	12	1	0	0	17	46
% Trucks	0.1	0.1	0.2	0	0	0.1	0.1	0.3	0.1	0	0	0.2	0	0.3	0.2	0	0	0.2	0.4	0.5	0.1	0	0	0.4	0.2
Buses	11	106	0	0	0	117	14	49	77	0	0	140	22	23	12	0	0	57	87	21	7	0	0	115	429
% Buses	0.9	2	0	0	0	1.6	1.4	1.1	8.5	0	0	2.2	3.3	1.1	1.2	0	0	1.4	8.2	0.9	8.0	0	0	2.6	2

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: University blvd and Lomas blvd

Site Code : 03282019 Start Date : 3/28/2019

				as Blvd bound						as Blvd bound						sity Blvo	d				Univer	sity Blv	d		
Start Time	Left	Thru	Right	Bike s	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
Peak Hour Anal	ysis Fr	om 06:0	00 AM to	11:45	AM - Pe	eak 1 of 1												'							
Peak Hour for E	ntire In	tersecti	on Begi	ns at 07	7:30 AM																				
07:30 AM	96	262	45	0	1	404	61	193	62	0	0	316	20	111	39	1	5	176	55	121	32	0	1	209	1105
07:45 AM	74	303	37	0	9	423	46	237	64	0	1	348	24	136	38	0	8	206	53	107	39	0	5	204	1181
08:00 AM	72	293	29	0	5	399	55	262	57	0	0	374	34	99	44	0	9	186	55	87	29	0	2	173	1132
08:15 AM	100	287	35	0	5	427	45	195	32	0	1	273	20	94	30	2	8	154	51	125	25	0	1	202	1056
Total Volume	342	1145	146	0	20	1653	207	887	215	0	2	1311	98	440	151	3	30	722	214	440	125	0	9	788	4474
% App. Total	20.7	69.3	8.8	0	1.2		15.8	67.7	16.4	0	0.2		13.6	60.9	20.9	0.4	4.2		27.2	55.8	15.9	0	1.1		
PHF	.855	.945	.811	.000	.556	.968	.848	.846	.840	.000	.500	.876	.721	.809	.858	.375	.833	.876	.973	.880	.801	.000	.450	.943	.947
Cars	339	1122	146	0	20	1627	203	875	203	0	2	1283	94	436	148	3	30	711	197	433	123	0	9	762	4383
% Cars	99.1	98.0	100	0	100	98.4	98.1	98.6	94.4	0	100	97.9	95.9	99.1	98.0	100	100	98.5	92.1	98.4	98.4	0	100	96.7	98.0
Trucks	1	1	0	0	0	2	0	4	0	0	0	4	0	1	1	0	0	2	2	4	0	0	0	6	14
% Trucks	0.3	0.1	0	0	0	0.1	0	0.5	0	0	0	0.3	0	0.2	0.7	0	0	0.3	0.9	0.9	0	0	0	0.8	0.3
Buses	2	22	0	0	0	24	4	8	12	0	0	24	4	3	2	0	0	9	15	3	2	0	0	20	77
% Buses	0.6	1.9	0	0	0	1.5	1.9	0.9	5.6	0	0	1.8	4.1	0.7	1.3	0	0	1.2	7.0	0.7	1.6	0	0	2.5	1.7
Peak Hour Anal	vsis Fro	om 12:0	00 PM to	06:45	PM - Pe	eak 1 of 1																			
Peak Hour for E																									
04:30 PM	44	257	41	0	1	343	64	271	43	0	0	378	42	110	58	0	3	213	52	140	81	0	2	275	1209
04:45 PM	28	222	38	0	4	292	45	279	36	0	2	362	52	161	68	0	9	290	51	158	79	0	0	288	1232
05:00 PM	45	291	32	0	22	390	59	312	49	0	0	420	54	152	76	0	11	293	58	136	66	1	0	261	1364
05:15 PM	37	247	44	0	11	339	47	314	41	0	0	402	65	163	85	0	5	318	61	154	85	0	1	301	1360
Total Volume	154	1017	155	0	38	1364	215	1176	169	0	2	1562	213	586	287	0	28	1114	222	588	311	1	3	1125	5165
% App. Total	11.3	74.6	11.4	0	2.8		13.8	75.3	10.8	0	0.1		19.1	52.6	25.8	0	2.5		19.7	52.3	27.6	0.1	0.3		
PHF	.856	.874	.881	.000	.432	.874	.840	.936	.862	.000	.250	.930	.819	.899	.844	.000	.636	.876	.910	.930	.915	.250	.375	.934	.947
Cars	154	1000	155	0	38	1347	214	1163	155	0	2	1534	207	581	284	0	28	1100	212	584	308	1	3	1108	5089
% Cars	100	98.3	100	0	100	98.8	99.5	98.9	91.7	0	100	98.2	97.2	99.1	99.0	0	100	98.7	95.5	99.3	99.0	100	100	98.5	98.5
Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	2	0	2	0	0	0	2	4
% Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0.3	0	0	0	0.2	0	0.3	0	0	0	0.2	0.1
Buses	0	17	0	0	0	17	1	13	14	0	0	28	6	3	3	0	0	12	10	2	3	0	0	15	72
% Buses	0	1.7	0	0	0	1.2	0.5	1.1	8.3	0	0	1.8	2.8	0.5	1.0	0	0	1.1	4.5	0.3	1.0	0	0	1.3	1.4

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

Counter R.C.

File Name: University and Las Lomas

Site Code : 04032019 Start Date : 4/3/2019

Page No : 1

				omas						omas		nou our	1140		Univers		d				Univers				
				bound			ı			bound				1		bound						bound			
Start Time	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
06:00 AM	1	0	0	0	1	2	2	0	1	0	2	5	0	23	4	0	0	27	4	32	0	0	0	36	70
06:15 AM	0	1	0	0	2	3	3	0	0	1	0	4	0	23	4	0	0	27	4	48	3	0	1	56	90
06:30 AM	0	0	0	0	2	2	10	0	4	1	2	17	0	34	1	1	0	36	6	56	1	0	0	63	118
06:45 AM	0	0	1	0	1	2	10	2	5	1_	0	18	1	69	17	0	0	87	10	92	3	1	1_	107	214
Total	1	1	1	0	6	9	25	2	10	3	4	44	1	149	26	1	0	177	24	228	7	1	2	262	492
07:00 AM	0	0	2	2	0	4	13	1	6	0	0	20	2	73	7	0	0	82	5	93	1	0	1	100	206
07:15 AM	2	2	0	0	2	6	6	2	7	0	2	17	2	128	16	0	2	148	8	142	7	0	1	158	329
07:30 AM	2	0	1	0	4	7	29	4	14	0	4	51	3	124	18	0	3	148	23	141	5	0	6	175	381
07:45 AM	1_	3	2	1	3	10	23	5	17	1	0	46	7	158	21	0	0	186	21	152	6	0	2	181	423
Total	5	5	5	3	9	27	71	12	44	1	6	134	14	483	62	0	5	564	57	528	19	0	10	614	1339
08:00 AM	3	0	1	0	5	9	19	3	10	2	2	36	5	131	21	0	0	157	23	128	7	0	3	161	363
08:15 AM	4	3	1	0	3	11	20	2	11	2	2	37	1	109	12	1	0	123	21	137	8	0	4	170	341
08:30 AM	5	0	2	0	7	14	16	2	9	1	3	31	1	106	28	0	Ō	135	23	168	10	1	4	206	386
08:45 AM	7	4	4	0	6	21	22	3	22	2	11	60	6	113	26	1	0	146	44	179	8	0	5	236	463
Total	19	7	8	0	21	55	77	10	52	7	18	164	13	459	87	2	0	561	111	612	33	1	16	773	1553
*** BREAK ***																									
04:00 PM	5	3	0	0	6	14	41	4	15	1	3	64	4	183	22	0	2	211	19	187	7	1	4	218	507
04:15 PM	4	1	0	0	0	5	46	5	23	0	0	74	1	174	23	0	0	198	9	175	6	0	0	190	467
04:30 PM	2	1	2	2	0	7	49	4	17	0	0	70	2	183	12	0	1	198	18	183	8	0	3	212	487
04:45 PM	6	1	1	0	1	9	40	6	21	2	3	72	2	157	20	0	0	179	16	202	8	0	2	228	488
Total	17	6	3	2	7	35	176	19	76	3	6	280	9	697	77	0	3	786	62	747	29	1	9	848	1949
05:00 PM	2	1	0	2	5	10	50	12	24	1	4	91	1	197	18	0	2	218	19	221	10	1	4	255	574
05:15 PM	9	3	0	2	1	15	50	8	20	1	4	83	3	203	34	0	0	240	20	196	13	1	0	230	568
05:30 PM	4	3	2	1	1	11	36	4	23	0	5	68	2	161	28	0	1	192	9	200	8	0	1	218	489
05:45 PM	1	2	1_	0	3	7	44	6	25	0	7	82	2	120	7	0	0	129	12	137	6	0	4	159	377
Total	16	9	3	5	10	43	180	30	92	2	20	324	8	681	87	0	3	779	60	754	37	2	9	862	2008
06:00 PM	6	0	0	0	5	11	46	2	21	0	0	69	3	105	10	0	3	121	11	130	2	0	0	143	344
06:15 PM	4	1	1	1	5	12	39	1	19	1	6	66	5	86	16	0	1	108	9	119	7	0	1	136	322
06:30 PM	2	0	0	0	3	5	63	4	38	0	3	108	1	121	20	0	0	142	14	99	6	0	2	121	376
06:45 PM	1_	3	1_	1_	1_	7	39	3	24	1_	1	68	2	105	31	0	1_	139	11_	124	5_	0	0	140	354
Total	13	4	2	2	14	35	187	10	102	2	10	311	11	417	77	0	5	510	45	472	20	0	3	540	1396
Grand Total	71	32	22	12	67	204	716	83	376	18	64	1257	56	2886	416	3	16	3377	359	3341	145	5	49	3899	8737
Apprch %	34.8	15.7	10.8	5.9	32.8		57	6.6	29.9	1.4	5.1	- 1	1.7	85.5	12.3	0.1	0.5		9.2	85.7	3.7	0.1	1.3		
Total %	0.8	0.4	0.3	0.1	0.8	2.3	8.2	0.9	4.3	0.2	0.7	14.4	0.6	33	4.8	0	0.2	38.7	4.1	38.2	1.7	0.1	0.6	44.6	

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: University and Las Lomas

Site Code : 04032019 Start Date : 4/3/2019

Page No : 2

										010	ups i iii	itcu- Car	3 - 11uc	13 - Du	303										_
			Las l	omas					Las	Lomas					Unive	sity Blv	d				Unive	rsity Blv	d		
			East	bound					Wes	tbound					Nort	hbound					Sout	hbound			
	Left	Thru	Right	Bike s	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
Cars	69	32	22	12	67	202	700	83	346	18	64	1211	55	2829	413	3	16	3316	359	3300	142	5	49	3855	8584
% Cars	97.2	100	100	100	100	99	97.8	100	92	100	100	96.3	98.2	98	99.3	100	100	98.2	100	98.8	97.9	100	100	98.9	98.2
Trucks	1	0	0	0	0	1	1	0	1	0	0	2	1	8	2	0	0	11	0	8	3	0	0	11	25
% Trucks	1.4	0	0	0	0	0.5	0.1	0	0.3	0	0	0.2	1.8	0.3	0.5	0	0	0.3	0	0.2	2.1	0	0	0.3	0.3
Buses	1	0	0	0	0	1	15	0	29	0	0	44	0	49	1	0	0	50	0	33	0	0	0	33	128
% Buses	1.4	0	0	0	0	0.5	2.1	0	7.7	0	0	3.5	0	1.7	0.2	0	0	1.5	0	1	0	0	0	0.8	1.5

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: University and Las Lomas

Site Code : 04032019 Start Date : 4/3/2019

				omas						Lomas bound						sity Blvo	b					sity Blv	d		
Start Time	Left	Thru	Right	Bike s	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
Peak Hour Ana	lysis Fro	om 06:0	0 AM to	11:45	AM - Pe	eak 1 of 1													'						
Peak Hour for E	entire In	tersection	on Begii	ns at 08	3:00 AM	ļ .																			
08:00 AM	3	0	1	0	5	9	19	3	10	2	2	36	5	131	21	0	0	157	23	128	7	0	3	161	363
08:15 AM	4	3	1	0	3	11	20	2	11	2	2	37	1	109	12	1	0	123	21	137	8	0	4	170	341
08:30 AM	5	0	2	0	7	14	16	2	9	1	3	31	1	106	28	0	0	135	23	168	10	1	4	206	386
08:45 AM	7	4	4	0	6	21	22	3	22	2	11	60	6	113	26	1_	0	146	44	179	8	0	5	236	463
Total Volume	19	7	8	0	21	55	77	10	52	7	18	164	13	459	87	2	0	561	111	612	33	1	16	773	1553
% App. Total	34.5	12.7	14.5	0	38.2		47	6.1	31.7	4.3	11		2.3	81.8	15.5	0.4	0		14.4	79.2	4.3	0.1	2.1		L
PHF	.679	.438	.500	.000	.750	.655	.875	.833	.591	.875	.409	.683	.542	.876	.777	.500	.000	.893	.631	.855	.825	.250	.800	.819	.839
Cars	17	7	8	0	21	53	74	10	46	7	18	155	12	449	87	2	0	550	111	603	31	1	16	762	1520
% Cars	89.5	100	100	0	100	96.4	96.1	100	88.5	100	100	94.5	92.3	97.8	100	100	0	98.0	100	98.5	93.9	100	100	98.6	97.9
Trucks	1	0	0	0	0	1	1	0	1	0	0	2	1	1	0	0	0	2	0	2	2	0	0	4	9
% Trucks	5.3	0	0	0	0	1.8	1.3	0	1.9	0	0	1.2	7.7	0.2	0	0	0	0.4	0	0.3	6.1	0	0	0.5	0.6
Buses	1	0	0	0	0	1	2	0	5	0	0	7	0	9	0	0	0	9	0	7	0	0	0	7	24
% Buses	5.3	0	0	0	0	1.8	2.6	0	9.6	0	0	4.3	0	2.0	0	0	0	1.6	0	1.1	0	0	0	0.9	1.5
Peak Hour Anal	lvsis Fro	om 12:0	0 PM to	06:45	PM - Pe	eak 1 of 1																			
Peak Hour for E																									
04:45 PM	6	1	1	0	1	9	40	6	21	2	3	72	2	157	20	0	0	179	16	202	8	0	2	228	488
05:00 PM	2	1	0	2	5	10	50	12	24	1	4	91	1	197	18	0	2	218	19	221	10	1	4	255	574
05:15 PM	9	3	0	2	1	15	50	8	20	1	4	83	3	203	34	0	0	240	20	196	13	1	0	230	568
05:30 PM	4	3	2	1	1	11	36	4	23	0	5	68	2	161	28	0	1	192	9	200	8	0	1	218	489
Total Volume	21	8	3	5	8	45	176	30	88	4	16	314	8	718	100	0	3	829	64	819	39	2	7	931	2119
% App. Total	46.7	17.8	6.7	11.1	17.8		56.1	9.6	28	1.3	5.1		1	86.6	12.1	0	0.4		6.9	88	4.2	0.2	0.8		l
PHF	.583	.667	.375	.625	.400	.750	.880	.625	.917	.500	.800	.863	.667	.884	.735	.000	.375	.864	.800	.926	.750	.500	.438	.913	.923
Cars	21	8	3	5	8	45	172	30	82	4	16	304	8	707	100	0	3	818	64	815	39	2	7	927	2094
% Cars	100	100	100	100	100	100	97.7	100	93.2	100	100	96.8	100	98.5	100	0	100	98.7	100	99.5	100	100	100	99.6	98.8
Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	1	0	0	0	1	2
% Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0.1	0	0	0	0.1	0	0.1	0	0	0	0.1	0.1
Buses	0	0	0	0	0	0	4	0	6	0	0	10	0	10	0	0	0	10	0	3	0	0	0	3	23
% Buses	0	0	0	0	0	0	2.3	0	6.8	0	0	3.2	0	1.4	0	0	0	1.2	0	0.4	0	0	0	0.3	1.1

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

Counter R.C.

File Name: Camino De Salud and Childrens Campus

Site Code : 03212019 Start Date : 3/21/2019

Page No : 1

		С	amino	De Sal	ud			C	amino	De Sal		Tou Guid	11401		KNI	ME				C	hildren	s Cam	pus		
				ound					West						Northb	oound					South	bound			
Start Time	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
06:00 AM	0	0	0	0	1	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	2
06:15 AM	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
06:30 AM	2	1	0	1	0	4	1	0	0	1	1	3	0	1	0	0	1	2	0	0	0	0	0	0	9
06:45 AM	4	2	0	1	0	7	0	0	0	0	1	1	0	0	0	0	0	0	0	3	0	0	0	3	11_
Total	6	3	0	2	1	12	1	1	0	1	3	6	0	1	0	0	1	2	0	3	0	0	0	3	23
07:00 AM	9	3	4	0	0	16	0	1	0	0	1	2	0	1	0	0	1	2	0	2	1	0	1	4	24
07:15 AM	16	5	5	0	0	26	0	0	0	2	1	3	3	1	0	0	0	4	0	1	1	0	0	2	35
07:30 AM	37	6	4	0	0	47	0	0	0	2	0	2	1	0	0	1	0	2	1	0	12	0	0	13	64
07:45 AM	26	12	2	0	0	40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	22	0	0	22	62
Total	88	26	15	0	0	129	0	1	0	4	2	7	4	2	0	1	1	8	1	3	36	0	1	41	185
08:00 AM	21	7	1	0	0	29	0	2	0	0	0	2	0	1	0	0	0	1	0	1	18	0	2	21	53
08:15 AM	8	0	4	0	0	12	0	0	0	0	0	0	1	1	0	0	0	2	0	1	10	0	0	11	25
08:30 AM	19	5	2	0	0	26	0	1	0	0	0	1	0	1	0	0	1	2	0	0	7	0	0	7	36
08:45 AM	30	10	4	0	0	44	0	3	0	0	0	3	3	0	0	0	0	3	1	0	11	0	0	12	62
Total	78	22	11	0	0	111	0	6	0	0	0	6	4	3	0	0	1	8	1	2	46	0	2	51	176
*** BREAK ***																									
04:00 PM	7	2	0	0	1	10	0	1	0	0	1	2	3	0	0	0	1	4	0	0	10	0	0	10	26
04:15 PM	13	2	0	0	0	15	0	4	0	0	0	4	4	0	0	0	0	4	0	0	13	0	1	14	37
04:30 PM	10	6	0	2	0	18	0	3	0	0	4	7	9	0	0	1	1	11	0	0	21	0	0	21	57
04:45 PM	20	4	0	0	0	24	0	4	0	0	0	4	4	0	0	0	0	4	0	0	22	0	0	22	54
Total	50	14	0	2	1	67	0	12	0	0	5	17	20	0	0	1	2	23	0	0	66	0	1	67	174
05:00 PM	18	4	1	0	0	23	0	7	0	0	1	8	8	1	0	0	1	10	0	1	25	0	1	27	68
05:15 PM	32	7	1	1	0	41	0	8	1	0	0	9	6	1	0	1	0	8	0	1	38	0	2	41	99
05:30 PM	5	1	0	0	0	6	0	11	0	0	0	11	4	0	1	0	0	5	0	1	25	0	0	26	48
05:45 PM	1_	0	1_	0	0	2	0	2	0	0	3	5	2	0	0	0	0	2	0	0	3	0	0	3	12
Total	56	12	3	1	0	72	0	28	1	0	4	33	20	2	1	1	1	25	0	3	91	0	3	97	227
06:00 PM	0	0	0	0	0	0	0	3	0	0	0	3	1	0	0	0	0	1	0	0	6	0	1	7	11
06:15 PM	1	0	0	0	0	1	0	1	0	0	2	3	2	0	0	0	1	3	0	0	7	0	0	7	14
06:30 PM	1	2	0	0	0	3	1	2	0	0	0	3	0	0	0	0	0	0	0	0	2	0	0	2	8
06:45 PM	4	0	0	1_	0	5	0	1_	0	0	0	1	0	0	0	0	0	0	0	0	9	0	1_	10	16_
Total	6	2	0	1	0	9	1	7	0	0	2	10	3	0	0	0	1	4	0	0	24	0	2	26	49
Grand Total	284	79	29	6	2	400	2	55	1	5	16	79	51	8	1	3	7	70	2	11	263	0	9	285	834
Apprch %	71	19.8	7.2	1.5	0.5		2.5	69.6	1.3	6.3	20.3		72.9	11.4	1.4	4.3	10		0.7	3.9	92.3	0	3.2		
Total %	34.1	9.5	3.5	0.7	0.2	48	0.2	6.6	0.1	0.6	1.9	9.5	6.1	1	0.1	0.4	0.8	8.4	0.2	1.3	31.5	0	1.1	34.2	
·																		·							

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: Camino De Salud and Childrens Campus

Site Code : 03212019 Start Date : 3/21/2019

Page No : 2

		(Camino	De Sa	lud			(Camino	De Sa	lud				KI	NME				C	Childrer	ns Cam	ous		
			East	bound					Wes	tbound					Nort	hbound					Sout	hbound			
	Left	Thru	Right	Bike s	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
Cars	284	78	26	6	2	396	1	55	1	5	16	78	49	8	1	3	7	68	2	11	263	0	9	285	827
% Cars	100	98.7	89.7	100	100	99	50	100	100	100	100	98.7	96.1	100	100	100	100	97.1	100	100	100	0	100	100	99.2
Trucks	0	1	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	2
% Trucks	0	1.3	0	0	0	0.2	50	0	0	0	0	1.3	0	0	0	0	0	0	0	0	0	0	0	0	0.2
Buses	0	0	3	0	0	3	0	0	0	0	0	0	2	0	0	0	0	2	0	0	0	0	0	0	5
% Buses	0	0	10.3	0	0	0.8	0	0	0	0	0	0	3.9	0	0	0	0	2.9	0	0	0	0	0	0	0.6

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: Camino De Salud and Childrens Campus

Site Code : 03212019 Start Date : 3/21/2019

		(De Sal	ud			(De Sal	lud					IME bound				С		s Camp	ous		
Start Time	Left	Thru	Right	Bike s	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
Peak Hour Anal	ysis Fro	om 06:0	00 AM to	11:45	AM - Pe	eak 1 of 1									•				'						
Peak Hour for E	ntire In	tersecti	on Begi	ins at 07	7:15 AM																				
07:15 AM	16	5	5	0	0	26	0	0	0	2	1	3	3	1	0	0	0	4	0	1	1	0	0	2	35
07:30 AM	37	6	4	0	0	47	0	0	0	2	0	2	1	0	0	1	0	2	1	0	12	0	0	13	64
07:45 AM	26	12	2	0	0	40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	22	0	0	22	62
08:00 AM	21	7	1	0	0	29	0	2	0	0	0	2	0	1	0	0	0	1	0	1	18	0	2	21	53
Total Volume	100	30	12	0	0	142	0	2	0	4	1	7	4	2	0	1	0	7	1	2	53	0	2	58	214
% App. Total	70.4	21.1	8.5	0	0		0	28.6	0	57.1	14.3		57.1	28.6	0	14.3	0		1.7	3.4	91.4	0	3.4		
PHF	.676	.625	.600	.000	.000	.755	.000	.250	.000	.500	.250	.583	.333	.500	.000	.250	.000	.438	.250	.500	.602	.000	.250	.659	.836
Cars	100	30	10	0	0	140	0	2	0	4	1	7	4	2	0	1	0	7	1	2	53	0	2	58	212
% Cars	100	100	83.3	0	0	98.6	0	100	0	100	100	100	100	100	0	100	0	100	100	100	100	0	100	100	99.1
Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Buses	0	0	2	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
% Buses	0	0	16.7	0	0	1.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.9
Peak Hour Anal	vsis Fro	om 12:0	00 PM to	06:45	PM - Pe	eak 1 of 1																			
Peak Hour for E																									
04:30 PM	10	6	Õ	2	0	18	0	3	0	0	4	7	9	0	0	1	1	11	0	0	21	0	0	21	57
04:45 PM	20	4	0	0	0	24	0	4	0	0	0	4	4	0	0	0	0	4	0	0	22	0	0	22	54
05:00 PM	18	4	1	0	0	23	0	7	0	0	1	8	8	1	0	0	1	10	0	1	25	0	1	27	68
05:15 PM	32	7	1	1	0	41	0	8	1	0	0	9	6	1	0	1	0	8	0	1	38	0	2	41	99
Total Volume	80	21	2	3	0	106	0	22	1	0	5	28	27	2	0	2	2	33	0	2	106	0	3	111	278
% App. Total	75.5	19.8	1.9	2.8	0		0	78.6	3.6	0	17.9		81.8	6.1	0	6.1	6.1		0	1.8	95.5	0	2.7		
PHF	.625	.750	.500	.375	.000	.646	.000	.688	.250	.000	.313	.778	.750	.500	.000	.500	.500	.750	.000	.500	.697	.000	.375	.677	.702
Cars	80	21	2	3	0	106	0	22	1	0	5	28	27	2	0	2	2	33	0	2	106	0	3	111	278
% Cars	100	100	100	100	0	100	0	100	100	0	100	100	100	100	0	100	100	100	0	100	100	0	100	100	100
Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Buses	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Buses	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
,						·												·							

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

Counter R.C.

File Name: Tucker Ave. and Camino De Salud

Site Code : 03272019 Start Date : 3/27/2019

Page No : 1

											ıps Prir	ited- Cars	s - Truci												1
				er Ave.						er Ave.				C	amino		ud			(Camino				
				bound						bound						bound						bound			
Start Time	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left			Bikes	Peds	App. Total	Left	Thru		Bikes	Peds	App. Total	Int. Total
06:00 AM	0	10	5	1	0	16	0	2	0	0	2	4	2	0	0	0	1	3	0	0	0	0	0	0	23
06:15 AM	1	17	13	0	3	34	0	6	0	0	4	10	10	0	0	0	1	11	0	0	0	0	0	0	55
06:30 AM	0	29	26	1	2	58	1	13	0	0	2	16	14	0	0	0	4	18	0	0	0	0	1	1	93
06:45 AM	0	55	39	0	3	97	0	14	0	1	5	20	9	0	1	0	5	15	0	0	0	0	0	0	132
Total	1	111	83	2	8	205	1	35	0	1	13	50	35	0	1	0	11	47	0	0	0	0	1	1	303
07:00 AM	0	42	22	1	3	68	0	24	0	2	4	30	10	0	0	0	3	15	0	0	0	4	0	4	114
07:15 AM	0	59	18	1		80	0	24	0	1	7		12 19	0	0	0	3 6	15	0	0	0	0	1	1	138
07:30 AM	0				2		0		0	•		32 48		1	0	1	6	25	0	0	0	0	0		
	0	68	22	2	2	94	-	32	-	2	14	- 1	33	•	-	-	-	41	-	-	0	-		0	183
07:45 AM		94	30 92	5	6	131 373	0	43	0	<u> </u>	23 48	66	25 89	0 1	0	0	15 30	40 121	0	0	1	0	3	3 5	240 675
Total	0	263	92	5	13	3/3	0	123	0	5	48	176	89	1	U	1	30	121	U	U	1	1	3	Э	0/5
08:00 AM	0	81	38	0	7	126	1	30	0	3	10	44	25	0	1	1	7	34	0	0	1	0	1	2	206
08:15 AM	0	74	38	0	5	117	0	29	0	3	18	50	15	0	1	2	12	30	0	0	0	0	1	1	198
08:30 AM	0	69	44	0	4	117	1	26	0	0	9	36	15	0	0	0	8	23	0	0	0	0	0	0	176
08:45 AM	0	80	44	1	1_	126	0	30	0	0_	15	45	10_	0	0	0	5_	15	0	0	0	0	3	3	189_
Total	0	304	164	1	17	486	2	115	0	6	52	175	65	0	2	3	32	102	0	0	1	0	5	6	769
*** BREAK ***																									
04:00 PM	0	39	23	0	6	68	2	61	1	2	7	73	27	0	2	1	6	36	0	0	0	0	1	1	178
04:15 PM	0	38	18	2	7	65	0	49	0	2	9	60	19	0	1	0	3	23	1	0	0	0	2	3	151
04:30 PM	0	36	20	1	11	68	1	51	0	3	11	66	40	1	3	2	6	52	0	1	0	0	4	5	191
04:45 PM	0	34	18	1	2	55	0	53	0	3	9	65	31	0	3	1	7	42	0	0	0	0	1	1	163
Total	0	147	79	4	26	256	3	214	1	10	36	264	117	1	9	4	22	153	1	1	0	0	8	10	683
05:00 PM	1	38	23	1	8	71	1	52	0	3	20	76	39	0	3	3	15	60	0	1	0	0	1	2	209
05:15 PM	0	43	29	0	9	81	1	43	0	4	9	57	26	0	1	2	11	40	0	0	0	0	1	1	179
05:30 PM	0	31	21	0	4	56	0	36	0	12	11	59	21	0	3	9	7	40	0	Ö	Ő	Ö	3	3	158
05:45 PM	0	24	19	1	4	48	0	44	0	1	10	55	13	0	0	1	3	17	0	0	0	0	5	5	125
Total	1	136	92	2	25	256	2	175	0	20	50	247	99	0	7	15	36	157	0	1	0	0	10	11	671
						1					_	1						1							I
06:00 PM	0	15	12	1	1	29	0	32	0	4	5	41	24	0	0	3	4	31	0	0	0	0	1	1	102
06:15 PM	0	26	15	0	4	45	0	28	0	0	2	30	21	0	1	0	1	23	0	0	0	0	1	1	99
06:30 PM	0	13	30	1	3	47	1	25	0	3	6	35	22	0	0	1	5	28	0	0	0	0	0	0	110
06:45 PM	0	19	21	0	1_	41	0	23	0	0	2	25	14	0	0	0	0	14	0	0	0	0	1_	1	81
Total	0	73	78	2	9	162	1	108	0	7	15	131	81	0	1	4	10	96	0	0	0	0	3	3	392
Grand Total	2	1034	588	16	98	1738	9	770	1	49	214	1043	486	2	20	27	141	676	1	2	2	1	30	36	3493
Apprch %	0.1	59.5	33.8	0.9	5.6		0.9	73.8	0.1	4.7	20.5		71.9	0.3	3	4	20.9		2.8	5.6	5.6	2.8	83.3		
Total %	0.1	29.6	16.8	0.5	2.8	49.8	0.3	22	0	1.4	6.1	29.9	13.9	0.1	0.6	8.0	4	19.4	0	0.1	0.1	0	0.9	1	

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: Tucker Ave. and Camino De Salud

Site Code : 03272019 Start Date : 3/27/2019

Page No : 2

										Oio	ups i iii	itcu- Car	3 - 11uc	113 - Du	303										_
			Tuck	er Ave.					Tuck	er Ave.				(Camino	De Sal	ud			(Camino	De Sa	lud		
			East	bound					West	tbound					Nort	hbound					Sout	hbound			
	Left	Thru	Right	Bike s	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
Cars	2	936	558	16	98	1610	9	675	1	49	214	948	460	2	20	27	141	650	1	2	1	1	30	35	3243
% Cars	100	90.5	94.9	100	100	92.6	100	87.7	100	100	100	90.9	94.7	100	100	100	100	96.2	100	100	50	100	100	97.2	92.8
Trucks	0	3	4	0	0	7	0	2	0	0	0	2	1	0	0	0	0	1	0	0	0	0	0	0	10
% Trucks	0	0.3	0.7	0	0	0.4	0	0.3	0	0	0	0.2	0.2	0	0	0	0	0.1	0	0	0	0	0	0	0.3
Buses	0	95	26	0	0	121	0	93	0	0	0	93	25	0	0	0	0	25	0	0	1	0	0	1	240
% Buses	0	9.2	4.4	0	0	7	0	12.1	0	0	0	8.9	5.1	0	0	0	0	3.7	0	0	50	0	0	2.8	6.9

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: Tucker Ave. and Camino De Salud

Site Code : 03272019 Start Date : 3/27/2019

				er Ave.						er Ave.				(Camino North	De Sal	ud			(De Sal	ud		
Start Time	Left	Thru	Right	Bike s	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
Peak Hour Anal	ysis Fro	om 06:0	00 AM to	11:45	AM - Pe	eak 1 of 1						•							'						
Peak Hour for E	ntire In	tersecti	on Begii	ns at 07	7:30 AM																				
07:30 AM	0	68	22	2	2	94	0	32	0	2	14	48	33	1	0	1	6	41	0	0	0	0	0	0	183
07:45 AM	0	94	30	1	6	131	0	43	0	0	23	66	25	0	0	0	15	40	0	0	1	0	2	3	240
08:00 AM	0	81	38	0	7	126	1	30	0	3	10	44	25	0	1	1	7	34	0	0	1	0	1	2	206
08:15 AM	0	74	38	0	5	117	0	29	0	3	18	50	15	0	1_	2	12	30	0	0	0	0	1	1	198
Total Volume	0	317	128	3	20	468	1	134	0	8	65	208	98	1	2	4	40	145	0	0	2	0	4	6	827
% App. Total	0	67.7	27.4	0.6	4.3		0.5	64.4	0	3.8	31.2		67.6	0.7	1.4	2.8	27.6		0	0	33.3	0	66.7		
PHF	.000	.843	.842	.375	.714	.893	.250	.779	.000	.667	.707	.788	.742	.250	.500	.500	.667	.884	.000	.000	.500	.000	.500	.500	.861
Cars	0	294	122	3	20	439	1	114	0	8	65	188	94	1	2	4	40	141	0	0	1	0	4	5	773
% Cars	0	92.7	95.3	100	100	93.8	100	85.1	0	100	100	90.4	95.9	100	100	100	100	97.2	0	0	50.0	0	100	83.3	93.5
Trucks	0	2	1	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
% Trucks	0	0.6	0.8	0	0	0.6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.4
Buses	0	21	5	0	0	26	0	20	0	0	0	20	4	0	0	0	0	4	0	0	1	0	0	1	51
% Buses	0	6.6	3.9	0	0	5.6	0	14.9	0	0	0	9.6	4.1	0	0	0	0	2.8	0	0	50.0	0	0	16.7	6.2
Peak Hour Anal	ysis Fro	om 12:0	00 PM to	06:45	PM - Pe	eak 1 of 1																			
Peak Hour for E	ntire In	tersecti	on Begii	ns at 04	1:30 PM																				
04:30 PM	0	36	20	1	11	68	1	51	0	3	11	66	40	1	3	2	6	52	0	1	0	0	4	5	191
04:45 PM	0	34	18	1	2	55	0	53	0	3	9	65	31	0	3	1	7	42	0	0	0	0	1	1	163
05:00 PM	1	38	23	1	8	71	1	52	0	3	20	76	39	0	3	3	15	60	0	1	0	0	1	2	209
05:15 PM	0	43	29	0	9	81	1_	43	0	4	9	57	26	0	1_	2	11	40	0	0	0	0	1	1	179
Total Volume	1	151	90	3	30	275	3	199	0	13	49	264	136	1	10	8	39	194	0	2	0	0	7	9	742
% App. Total	0.4	54.9	32.7	1.1	10.9		1.1	75.4	0	4.9	18.6		70.1	0.5	5.2	4.1	20.1		0	22.2	0	0	77.8		
PHF	.250	.878	.776	.750	.682	.849	.750	.939	.000	.813	.613	.868	.850	.250	.833	.667	.650	.808	.000	.500	.000	.000	.438	.450	.888
Cars	1	137	86	3	30	257	3	186	0	13	49	251	131	1	10	8	39	189	0	2	0	0	7	9	706
% Cars	100	90.7	95.6	100	100	93.5	100	93.5	0	100	100	95.1	96.3	100	100	100	100	97.4	0	100	0	0	100	100	95.1
Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Buses	0	14	4	0	0	18	0	13	0	0	0	13	5	0	0	0	0	5	0	0	0	0	0	0	36
% Buses	0	9.3	4.4	0	0	6.5	0	6.5	0	0	0	4.9	3.7	0	0	0	0	2.6	0	0	0	0	0	0	4.9

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

Counter R.C.

File Name: Yale and Camino De Salud Roundabout

Site Code : 04112019 Start Date : 4/11/2019

Page No : 1

				Camino	De Salu	d				Camino	De Salu	d					e Blvd					Yale	Blvd			
				East	bound					West	bound					North	bound					South	oound			
	Start Time	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
•	06:00 AM	0	3	4	0	0	7	7	2	0	0	0	9	2	4	14	0	0	20	2	3	0	1	0	6	42
	06:15 AM	0	9	9	0	0	18	17	5	2	0	0	24	5	5	29	0	0	39	2	5	0	0	0	7	88
	06:30 AM	0	18	13	1	1	33	25	15	3	0	0	43	6	9	64	1	0	80	4	7	2	1	0	14	170
	06:45 AM	1	28	11	1	2	43	19	11	3	0	2	35	4	20	83	0	2	109	8	7	2	3	1	21	208
	Total	1	58	37	2	3	101	68	33	8	0	2	111	17	38	190	1	2	248	16	22	4	5	1	48	508
	07:00 AM	0	20	6	1	1	28	29	6	10	1	1	47	5	15	55	1	1	77	3	12	2	0	0	17	169
	07:15 AM	0	9	11	4	2	26	40	23	5	3	1	72	8	18	69	1	1	97	8	13	1	4	0	26	221
	07:30 AM	1	14	7	0	4	26	79	43	13	0	6	141	10	28	63	0	3	104	6	14	2	1	2	25	296
	07:45 AM	0	16	12	0	8	36	43	10	2	1	9	65	18	31	75	1	4	129	10	22	6	1	1	40	270
	Total	1	59	36	5	15	116	191	82	30	5	17	325	41	92	262	3	9	407	27	61	11	6	3	108	956
	08:00 AM	4	13	15	1	16	49	34	14	13	1	6	68	10	32	83	3	2	130	8	24	2	1	3	38	285
	08:15 AM	2	14	13	0	2	31	27	6	9	1	5	48	9	31	91	2	7	140	6	22	8	2	0	38	257
	08:30 AM	2	14	8	1	7	32	27	10	9	2	4	52	7	32	78	2	1	120	5	24	3	2	1	35	239
	08:45 AM	0	21	13	2	5	41	28	13	5	2	8	56	10	19	67	2	3	101	6	23	3	4	1	37	235
	Total	8	62	49	4	30	153	116	43	36	6	23	224	36	114	319	9	13	491	25	93	16	9	5	148	1016
	*** BREAK ***																									
	04:00 PM	0	16	9	0	2	27	71	14	5	1	2	93	6	17	73	1	5	102	7	46	5	1	2	61	283
	04:15 PM	1	13	13	0	5	32	65	21	11	0	1	98	5	10	60	0	4	79	4	33	1	1	0	39	248
	04:30 PM	0	13	23	0	6	42	78	21	11	1	2	113	2	11	39	2	4	58	4	40	1	1	0	46	259
	04:45 PM	2	11	20	2	5	40	83	19	8	2	4	116	2	16	64	5	9	96	3	33	1	0	2	39	291
-	Total	3	53	65	2	18	141	297	75	35	4	9	420	15	54	236	8	22	335	18	152	8	3	4	185	1081
	05:00 PM	0	10	31	0	9	50	81	12	17	1	3	114	3	20	50	3	7	83	8	49	2	2	0	61	308
	05:15 PM	2	8	26	2	7	45	76	20	13	0	8	117	1	23	59	1	5	89	4	45	1	1	1	52	303
	05:30 PM	3	11	17	0	3	34	69	14	10	0	3	96	3	18	48	3	2	74	1	29	0	0	2	32	236
	05:45 PM	0	12	15	0	4	31	53	9	5	0	3	70	3	15	47	2	4	71	5	35	0	0	0	40	212
	Total	5	41	89	2	23	160	279	55	45	1	17	397	10	76	204	9	18	317	18	158	3	3	3	185	1059
	06:00 PM	0	7	15	0	4	26	50	10	6	0	1	67	2	14	46	7	6	75	3	31	1	0	0	35	203
	06:15 PM	1	18	5	1	0	25	39	14	8	1	1	63	1	11	65	3	1	81	5	15	0	1	1	22	191
	06:30 PM	0	29	12	0	2	43	69	17	5	0	0	91	3	4	89	0	0	96	7	24	0	1	2	34	264
	06:45 PM	1	12	6	0	3	22	60	15	7	0	0	82	2	10	69	0	0	81	3	30	0	0	0	33	218
	Total	2	66	38	1	9	116	218	56	26	1	2	303	8	39	269	10	7	333	18	100	1	2	3	124	876
	Grand Total	20	339	314	16	98	787	1169	344	180	17	70	1780	127	413	1480	40	71	2131	122	586	43	28	19	798	5496
	Apprch %	2.5	43.1	39.9	2	12.5		65.7	19.3	10.1	1	3.9		6	19.4	69.5	1.9	3.3		15.3	73.4	5.4	3.5	2.4		
	Total %	0.4	6.2	5.7	0.3	1.8	14.3	21.3	6.3	3.3	0.3	1.3	32.4	2.3	7.5	26.9	0.7	1.3	38.8	2.2	10.7	0.8	0.5	0.3	14.5	

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: Yale and Camino De Salud Roundabout

Site Code : 04112019 Start Date : 4/11/2019

Page No : 2

			Camino	De Salu	ıd				Camino	De Salu	d				Yal	e Blvd					Yal	e Blvd			
			Eastl	oound					West	bound					Nortl	hbound					South	nbound			
	Left	Thru	Right	Bike s	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
Cars	20	337	288	16	98	759	1157	340	178	17	70	1762	108	374	1466	40	71	2059	122	551	42	28	19	762	5342
% Cars	100	99.4	91.7	100	100	96.4	99	98.8	98.9	100	100	99	85	90.6	99.1	100	100	96.6	100	94	97.7	100	100	95.5	97.2
Trucks	0	0	3	0	0	3	1	0	0	0	0	1	0	3	2	0	0	5	0	1	0	0	0	1	10
% Trucks	0	0	1	0	0	0.4	0.1	0	0	0	0	0.1	0	0.7	0.1	0	0	0.2	0	0.2	0	0	0	0.1	0.2
Buses	0	2	23	0	0	25	11	4	2	0	0	17	19	36	12	0	0	67	0	34	1	0	0	35	144
% Buses	0	0.6	7.3	0	0	3.2	0.9	1.2	1.1	0	0	1	15	8.7	0.8	0	0	3.1	0	5.8	2.3	0	0	4.4	2.6

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: Yale and Camino De Salud Roundabout

Site Code : 04112019 Start Date : 4/11/2019

		(Camino l Eastb		d			(Camino West	De Salubound	d					e Blvd nbound						Blvd bound			
Start Time	Left	Thru	Right	Bike s	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
Peak Hour Analy	sis Fron	1 06:00 A	AM to 11	:45 AM	I - Peak	1 of 1																			
Peak Hour for Er	ntire Inte	rsection	Begins a	t 07:30	AM																				
07:30 AM	1	14	7	0	4	26	79	43	13	0	6	141	10	28	63	0	3	104	6	14	2	1	2	25	296
07:45 AM	0	16	12	0	8	36	43	10	2	1	9	65	18	31	75	1	4	129	10	22	6	1	1	40	270
08:00 AM	4	13	15	1	16	49	34	14	13	1	6	68	10	32	83	3	2	130	8	24	2	1	3	38	285
08:15 AM	2	14	13	0	2	31	27	6	9	1	5	48	9	31	91	2	7	140	6	22	8	2	0	38	257
Total Volume	7	57	47	1	30	142	183	73	37	3	26	322	47	122	312	6	16	503	30	82	18	5	6	141	1108
% App. Total	4.9	40.1	33.1	0.7	21.1		56.8	22.7	11.5	0.9	8.1		9.3	24.3	62	1.2	3.2		21.3	58.2	12.8	3.5	4.3		
PHF	.438	.891	.783	.250	.469	.724	.579	.424	.712	.750	.722	.571	.653	.953	.857	.500	.571	.898	.750	.854	.563	.625	.500	.881	.936
Cars	7	57	41	1	30	136	180	73	37	3	26	319	44	112	308	6	16	486	30	73	17	5	6	131	1072
% Cars	100	100	87.2	100	100	95.8	98.4	100	100	100	100	99.1	93.6	91.8	98.7	100	100	96.6	100	89.0	94.4	100	100	92.9	96.8
Trucks	0	0	2	0	0	2	0	0	0	0	0	0	0	1	1	0	0	2	0	1	0	0	0	1	5
% Trucks	0	0	4.3	0	0	1.4	0	0	0	0	0	0	0	0.8	0.3	0	0	0.4	0	1.2	0	0	0	0.7	0.5
Buses	0	0	4	0	0	4	3	0	0	0	0	3	3	9	3	0	0	15	0	8	1	0	0	9	31
% Buses	0	0	8.5	0	0	2.8	1.6	0	0	0	0	0.9	6.4	7.4	1.0	0	0	3.0	0	9.8	5.6	0	0	6.4	2.8
Peak Hour Analy	sis Fron	n 12:00 F	PM to 06	:45 PM	- Peak 1	of 1																			
Peak Hour for En																									
04:30 PM	0	13	23	0	6	42	78	21	11	1	2	113	2	11	39	2	4	58	4	40	1	1	0	46	259
04:45 PM	2	11	20	2	5	40	83	19	8	2	4	116	2	16	64	5	9	96	3	33	1	0	2	39	291
05:00 PM	0	10	31	0	9	50	81	12	17	1	3	114	3	20	50	3	7	83	8	49	2	2	0	61	308
05:15 PM	2	8	26	2	7	45	76	20	13	0	8	117	1	23	59	1	5	89	4	45	1	1	1	52	303
Total Volume	4	42	100	4	27	177	318	72	49	4	17	460	8	70	212	11	25	326	19	167	5	4	3	198	1161
% App. Total	2.3	23.7	56.5	2.3	15.3		69.1	15.7	10.7	0.9	3.7		2.5	21.5	65	3.4	7.7		9.6	84.3	2.5	2	1.5		
PHF	.500	.808	.806	.500	.750	.885	.958	.857	.721	.500	.531	.983	.667	.761	.828	.550	.694	.849	.594	.852	.625	.500	.375	.811	.942
Cars	4	41	96	4	27	172	316	71	49	4	17	457	4	63	212	11	25	315	19	162	5	4	3	193	1137
% Cars	100	97.6	96.0	100	100	97.2	99.4	98.6	100	100	100	99.3	50.0	90.0	100	100	100	96.6	100	97.0	100	100	100	97.5	97.9
Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	1
% Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	1.4	0	0	0	0.3	0	0	0	0	0	0	0.1
Buses	0	1	4	0	0	5	2	1	0	0	0	3	4	6	0	0	0	10	0	5	0	0	0	5	23
% Buses	0	2.4	4.0	0	0	2.8	0.6	1.4	0	0	0	0.7	50.0	8.6	0	0	0	3.1	0	3.0	0	0	0	2.5	2.0

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

Counter R.C.

File Name: Lomas and Yale

Site Code : 04112019 Start Date : 4/11/2019

Page No : 1

			Loma	s Blvd					Loma	s Blvd		nou our	1140		Yale	Blvd					Yale	Blvd			
			East	bound					West	bound					North	bound					South	bound			
Start Time	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
06:00 AM	12	73	11	0	0	96	3	45	4	0	0	52	0	0	0	2	0	2	2	5	9	2	1	19	169
06:15 AM	29	94	5	0	1	129	3	63	9	0	4	79	0	2	0	0	2	4	2	7	18	0	1	28	240
06:30 AM	51	127	11	0	0	189	3	110	17	0	5	135	1	8	0	1	1	11	8	13	24	1	2	48	383
06:45 AM	58	174	21	0	2	255	8	137	36	1	12	194	1	9	11	0	1	12	4	8	20	5	0	37	498
Total	150	468	48	0	3	669	17	355	66	1	21	460	2	19	1	3	4	29	16	33	71	8	4	132	1290
07:00 AM	46	136	15	0	1	198	7	164	21	0	0	192	5	6	4	1	2	18	12	12	23	2	2	51	459
07:15 AM	51	207	28	2	1	289	8	199	29	0	0	236	4	12	4	3	5	28	7	9	47	3	1	67	620
07:30 AM	52	275	36	0	3	366	17	299	34	0	1	351	5	7	2	0	6	20	32	6	60	2	3	103	840
07:45 AM	70	275	29	0	2	376	31	286	35	1	5	358	8	16	9	1	11	45	11_	11	59	7	7	95	874
Total	219	893	108	2	7	1229	63	948	119	1	6	1137	22	41	19	5	24	111	62	38	189	14	13	316	2793
08:00 AM	78	271	36	0	2	387	18	293	32	0	3	346	7	17	3	3	9	39	6	23	40	4	4	77	849
08:15 AM	95	215	33	0	0	343	10	220	38	0	5	273	8	8	4	4	10	34	9	19	40	1	3	72	722
08:30 AM	77	237	28	0	0	342	16	225	28	0	1	270	3	9	4	4	6	26	13	15	26	3	3	60	698
08:45 AM	59	259	29	1	1	349	25	221	27	0	0	273	5	6	9	3	14	37	12	20	32	3	6	73	732
Total	309	982	126	1	3	1421	69	959	125	0	9	1162	23	40	20	14	39	136	40	77	138	11	16	282	3001
*** BREAK ***																									
04:00 PM	53	250	17	0	0	320	14	219	32	1	2	268	22	10	11	1	6	50	23	6	92	1	3	125	763
04:15 PM	43	274	13	0	0	330	9	223	24	0	0	256	13	6	10	0	6	35	31	9	69	2	1	112	733
04:30 PM	32	266	22	0	5	325	13	242	16	0	1	272	28	5	12	8	11	64	37	15	92	3	3	150	811
04:45 PM	50	322	17	1	1	391	15	243	19	0	0	277	30	13	19	10	22	94	36	12	87	2	10	147	909
Total	178	1112	69	1	6	1366	51	927	91	1	3	1073	93	34	52	19	45	243	127	42	340	8	17	534	3216
05:00 PM	34	308	36	1	1	380	22	263	22	0	0	307	17	10	20	4	11	62	47	18	96	3	12	176	925
05:15 PM	50	308	29	1	2	390	10	253	23	1	1	288	26	8	18	4	9	65	46	15	95	4	6	166	909
05:30 PM	47	239	22	1	0	309	9	220	18	0	1	248	18	4	11	2	2	37	28	12	75	3	3	121	715
05:45 PM	48	238	11	1	1	299	7	207	18	0	2	234	9	4	12	1_	3	29	27	12	64	2	3_	108	670
Total	179	1093	98	4	4	1378	48	943	81	1	4	1077	70	26	61	11	25	193	148	57	330	12	24	571	3219
06:00 PM	35	164	15	0	3	217	11	156	15	0	0	182	17	8	4	4	13	46	26	10	59	0	1	96	541
06:15 PM	55	201	18	0	1	275	8	163	17	1	2	191	12	4	8	6	3	33	16	6	35	3	3	63	562
06:30 PM	67	196	24	0	0	287	13	135	32	1	1	182	25	5	13	2	5	50	27	12	60	1	5	105	624
06:45 PM	62	184	20	0	1_	267	10	124	15	1_	3	153	23	5	18	1	3	50	29	8	59	1	2	99	569
Total	219	745	77	0	5	1046	42	578	79	3	6	708	77	22	43	13	24	179	98	36	213	5	11	363	2296
Grand Total	1254	5293	526	8	28	7109	290	4710	561	7	49	5617	287	182	196	65	161	891	491	283	1281	58	85	2198	15815
Apprch %	17.6	74.5	7.4	0.1	0.4		5.2	83.9	10	0.1	0.9		32.2	20.4	22	7.3	18.1		22.3	12.9	58.3	2.6	3.9		
Total %	7.9	33.5	3.3	0.1	0.2	45	1.8	29.8	3.5	0	0.3	35.5	1.8	1.2	1.2	0.4	1	5.6	3.1	1.8	8.1	0.4	0.5	13.9	

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: Lomas and Yale

Site Code : 04112019 Start Date : 4/11/2019

Page No : 2

										Oiot	apo i ili	itcu- Car	, iiuo	NO DU	303										_
			Loma	as Blvd					Loma	as Blvd					Yal	e Blvd					Yal	e Blvd			
			East	bound					Wes	tbound					Nortl	hbound					Sout	hbound			<u> </u>
	Left	Thru	Right	Bike s	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
Cars	1247	5115	483	8	28	6881	288	4555	551	7	49	5450	283	132	194	65	161	835	484	228	1273	58	85	2128	15294
% Cars	99.4	96.6	91.8	100	100	96.8	99.3	96.7	98.2	100	100	97	98.6	72.5	99	100	100	93.7	98.6	80.6	99.4	100	100	96.8	96.7
Trucks	0	6	0	0	0	6	1	9	2	0	0	12	0	0	0	0	0	0	0	3	2	0	0	5	23
% Trucks	0	0.1	0	0	0	0.1	0.3	0.2	0.4	0	0	0.2	0	0	0	0	0	0	0	1.1	0.2	0	0	0.2	0.1
Buses	7	172	43	0	0	222	1	146	8	0	0	155	4	50	2	0	0	56	7	52	6	0	0	65	498
% Buses	0.6	3.2	8.2	0	0	3.1	0.3	3.1	1.4	0	0	2.8	1.4	27.5	1	0	0	6.3	1.4	18.4	0.5	0	0	3	3.1

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: Lomas and Yale

Site Code : 04112019 Start Date : 4/11/2019

				s Blvd						as Blvd						e Blvd						e Blvd			
Start Time	Left	Thru	Right	Bike	Peds	App. Total	Left	Thru		Bikes	Peds	App. Total	Left	Thru	Right		Peds	App. Total	Left	Thru		Bikes	Peds	App. Total	Int. Total
Peak Hour Anal	ysis Fro	om 06:0	00 AM to	11:45	AM - Pe	ak 1 of 1		1															1		
Peak Hour for E	ntire In	tersecti	on Begi	ns at 07	:30 AM																				
07:30 AM	52	275	36	0	3	366	17	299	34	0	1	351	5	7	2	0	6	20	32	6	60	2	3	103	840
07:45 AM	70	275	29	0	2	376	31	286	35	1	5	358	8	16	9	1	11	45	11	11	59	7	7	95	874
08:00 AM	78	271	36	0	2	387	18	293	32	0	3	346	7	17	3	3	9	39	6	23	40	4	4	77	849
08:15 AM	95	215	33	0	0	343	10	220	38	0	5	273	8	8	4	4	10	34	9	19	40	1_	3	72	722
Total Volume	295	1036	134	0	7	1472	76	1098	139	1	14	1328	28	48	18	8	36	138	58	59	199	14	17	347	3285
% App. Total	20	70.4	9.1	0	0.5		5.7	82.7	10.5	0.1	1.1		20.3	34.8	13	5.8	26.1		16.7	17	57.3	4	4.9		
PHF	.776	.942	.931	.000	.583	.951	.613	.918	.914	.250	.700	.927	.875	.706	.500	.500	.818	.767	.453	.641	.829	.500	.607	.842	.940
Cars	293	1002	127	0	7	1429	74	1067	137	1	14	1293	26	40	17	8	36	127	56	47	194	14	17	328	3177
% Cars	99.3	96.7	94.8	0	100	97.1	97.4	97.2	98.6	100	100	97.4	92.9	83.3	94.4	100	100	92.0	96.6	79.7	97.5	100	100	94.5	96.7
Trucks	0	1	0	0	0	1	1	2	1	0	0	4	0	0	0	0	0	0	0	1	2	0	0	3	8
% Trucks	0	0.1	0	0	0	0.1	1.3	0.2	0.7	0	0	0.3	0	0	0	0	0	0	0	1.7	1.0	0	0	0.9	0.2
Buses	2	33	7	0	0	42	1	29	1	0	0	31	2	8	1	0	0	11	2	11	3	0	0	16	100
% Buses	0.7	3.2	5.2	0	0	2.9	1.3	2.6	0.7	0	0	2.3	7.1	16.7	5.6	0	0	8.0	3.4	18.6	1.5	0	0	4.6	3.0
Peak Hour Anal	ysis Fro	om 12:0	00 PM to	06:45	PM - Pe	ak 1 of 1																			
Peak Hour for E	ntire In	tersecti	on Begi	ns at 04	:30 PM																				
04:30 PM	32	266	22	0	5	325	13	242	16	0	1	272	28	5	12	8	11	64	37	15	92	3	3	150	811
04:45 PM	50	322	17	1	1	391	15	243	19	0	0	277	30	13	19	10	22	94	36	12	87	2	10	147	909
05:00 PM	34	308	36	1	1	380	22	263	22	0	0	307	17	10	20	4	11	62	47	18	96	3	12	176	925
05:15 PM	50	308	29	1	2	390	10	253	23	1	1	288	26	8	18	4	9	65	46	15	95	4	6	166	909
Total Volume	166	1204	104	3	9	1486	60	1001	80	1	2	1144	101	36	69	26	53	285	166	60	370	12	31	639	3554
% App. Total	11.2	81	7	0.2	0.6		5.2	87.5	7	0.1	0.2		35.4	12.6	24.2	9.1	18.6		26	9.4	57.9	1.9	4.9		
PHF	.830	.935	.722	.750	.450	.950	.682	.952	.870	.250	.500	.932	.842	.692	.863	.650	.602	.758	.883	.833	.964	.750	.646	.908	.961
Cars	166	1179	98	3	9	1455	60	980	79	1	2	1122	101	25	69	26	53	274	164	52	370	12	31	629	3480
% Cars	100	97.9	94.2	100	100	97.9	100	97.9	98.8	100	100	98.1	100	69.4	100	100	100	96.1	98.8	86.7	100	100	100	98.4	97.9
Trucks	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
% Trucks	0	0.1	0	0	0	0.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
Buses	0	24	6	0	0	30	0	21	1	0	0	22	0	11	0	0	0	11	2	8	0	0	0	10	73
% Buses	0	2.0	5.8	0	0	2.0	0	2.1	1.3	0	0	1.9	0	30.6	0	0	0	3.9	1.2	13.3	0	0	0	1.6	2.1

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

Counter R.C.

File Name: Lomas and Emergency Entrance

Site Code : 04102019 Start Date : 4/10/2019

Page No : 1

				as Blvd bound						as Blvd bound		icu- cars -			North	bound				Eı		y Entrand bound	ce		
Start Time	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
06:00 AM	0	64	0	0	0	64	0	46	0	0	0	46	0	0	0	0	1	1	0	0	1	0	0	1	112
06:15 AM	0	99	0	0	0	99	0	77	0	0	2	79	0	0	0	0	0	0	0	0	0	0	0	0	178
06:30 AM	1	110	0	0	1	112	0	136	0	2	1	139	0	0	0	0	3	3	0	0	0	1	1	2	256
06:45 AM	0	178	0	0	1	179	0	163	0	1	1	165	0	0	0	0	0	0	0	0	0	0	1	1	345
Total	1	451	0	0	2	454	0	422	0	3	4	429	0	0	0	0	4	4	0	0	1	1	2	4	891
07:00 AM	0	159	0	0	0	159	0	185	0	0	1	186	0	0	0	0	0	0	0	0	1	0	0	1	346
07:15 AM	1	224	0	0	0	225	0	239	1	2	0	242	0	0	0	0	0	0	0	0	1	0	0	1	468
07:30 AM	2	254	0	0	1	257	0	352	1	1	0	354	0	0	0	0	0	0	0	0	0	0	0	0	611
07:45 AM	2	295	0	0	1	298	0	376	1	3	2	382	0	0	0	0	0	0	0	0	3	0	3	6	686
Total	5	932	0	0	2	939	0	1152	3	6	3	1164	0	0	0	0	0	0	0	0	5	0	3	8	
08:00 AM	4	238	0	0	1	243	0	384	1	0	0	385	0	0	0	0	1	1	0	0	2	0	1	3	632
08:15 AM	1	215	0	0	2	218	0	329	1	0	0	330	0	0	0	0	0	0	0	0	0	0	0	0	548
08:30 AM	4	228	0	0	1	233	0	312	0	3	0	315	0	0	0	0	1	1	0	0	5	0	5	10	559
08:45 AM	1_	248	0	0	1	250	0	301	0	0	0	301	0	0	0	0	0	0	0	0	1	0	0	1	552
Total	10	929	0	0	5	944	0	1326	2	3	0	1331	0	0	0	0	2	2	0	0	8	0	6	14	2291
*** BREAK ***																									
04:00 PM	0	295	0	0	0	295	0	255	0	0	0	255	0	0	0	0	0	0	0	0	1	0	0	1	551
04:15 PM	1	338	0	0	0	339	0	268	1	0	0	269	0	0	0	0	1	1	0	0	0	0	0	0	609
04:30 PM	0	313	0	0	0	313	0	283	0	0	0	283	0	0	0	0	0	0	0	0	0	0	0	0	596
04:45 PM	2	321	0	0	0	323	0	264	0	1	1	266	0	0	0	0	1	1	0	0	3	0	2	5	595
Total	3	1267	0	0	0	1270	0	1070	1	1	1	1073	0	0	0	0	2	2	0	0	4	0	2	6	2351
05:00 PM	0	388	0	0	0	388	0	316	1	0	0	317	0	0	0	0	0	0	0	0	2	0	0	2	707
05:15 PM	0	427	0	0	0	427	0	317	2	1	0	320	0	0	0	0	0	0	0	0	1	0	1	2	749
05:30 PM	4	281	0	0	0	285	0	206	0	1	0	207	0	0	0	0	0	0	0	0	0	0	0	0	492
05:45 PM	2	275	0	0	0	277	0	203	0	0	0	203	0	0	0	0	1	1	0	0	4	0	1	5	486
Total	6	1371	0	0	0	1377	0	1042	3	2	0	1047	0	0	0	0	1	1	0	0	7	0	2	9	2434
06:00 PM	5	233	0	0	0	238	0	217	2	0	0	219	0	0	0	0	0	0	0	0	1	0	0	1	458
06:15 PM	2	234	0	0	0	236	0	166	0	0	1	167	0	0	0	0	1	1	0	0	2	0	0	2	406
06:30 PM	2	273	0	0	0	275	0	201	0	0	2	203	0	0	0	0	0	0	0	0	2	0	1	3	481
06:45 PM	3	219	0	0	0	222	0	176	0	1	1	178	0	0	0	0	0	0	0	0	3	0	0	3	403
Total	12	959	0	0	0	971	0	760	2	1	4	767	0	0	0	0	1	1	0	0	8	0	1	9	1748
Grand Total	37	5909	0	0	9	5955	0	5772	11	16	12	5811	0	0	0	0	10	10	0	0	33	1	16	50	11826
Apprch %	0.6	99.2	0	0	0.2		0	99.3	0.2	0.3	0.2		0	0	0	0	100		0	0	66	2	32		
Total %	0.3	50	0	0	0.1	50.4	0	48.8	0.1	0.1	0.1	49.1	0	0	0	0	0.1	0.1	0	0	0.3	0	0.1	0.4	

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: Lomas and Emergency Entrance

Site Code : 04102019 Start Date : 4/10/2019

Page No : 2

																									7
			Loma	as Blvd					Loma	as Blvd										Er	nergenc	y Entrar	nce		
			Eastl	oound					West	bound					Nort	hbound					South	bound			
	Left	Thru	Right	Bike s	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
Cars	37	5729	0	0	9	5775	0	5621	10	16	12	5659	0	0	0	0	10	10	0	0	33	1	16	50	11494
% Cars	100	97	0	0	100	97	0	97.4	90.9	100	100	97.4	0	0	0	0	100	100	0	0	100	100	100	100	97.2
Trucks	0	7	0	0	0	7	0	7	0	0	0	7	0	0	0	0	0	0	0	0	0	0	0	0	14
% Trucks	0	0.1	0	0	0	0.1	0	0.1	0	0	0	0.1	0	0	0	0	0	0	0	0	0	0	0	0	0.1
Buses	0	173	0	0	0	173	0	144	1	0	0	145	0	0	0	0	0	0	0	0	0	0	0	0	318
% Buses	0	2.9	0	0	0	2.9	0	2.5	9.1	0	0	2.5	0	0	0	0	0	0	0	0	0	0	0	0	2.7

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: Lomas and Emergency Entrance

Site Code : 04102019 Start Date : 4/10/2019

				s Blvd oound						s Blvd bound					North	bound				En	-	y Entran	ce		
Start Time	Left	Thru	Right	Bike	Peds	App. Total	Left	Thru			Peds	App. Total	Left	Thru	Right		Peds	App. Total	Left	Thru		Bikes	Peds	App. Total	Int. Total
Peak Hour Analy	sis Fron	n 06:00 Z	AM to 1	U	- Peak	1 of 1									l							-		l.	
Peak Hour for En	ntire Inte	rsection	Begins	at 07:30	AM																				
07:30 AM	2	254	0	0	1	257	0	352	1	1	0	354	0	0	0	0	0	0	0	0	0	0	0	0	611
07:45 AM	2	295	0	0	1	298	0	376	1	3	2	382	0	0	0	0	0	0	0	0	3	0	3	6	686
08:00 AM	4	238	0	0	1	243	0	384	1	0	0	385	0	0	0	0	1	1	0	0	2	0	1	3	632
08:15 AM	1	215	0	0	2	218	0	329	1	0	0	330	0	0	0	0	0	0	0	0	0	0	0	0	548
Total Volume	9	1002	0	0	5	1016	0	1441	4	4	2	1451	0	0	0	0	1	1	0	0	5	0	4	9	2477
% App. Total	0.9	98.6	0	0	0.5		0	99.3	0.3	0.3	0.1		0	0	0	0	100		0	0	55.6	0	44.4		
PHF	.563	.849	.000	.000	.625	.852	.000	.938	1.00	.333	.250	.942	.000	.000	.000	.000	.250	.250	.000	.000	.417	.000	.333	.375	.903
Cars	9	965	0	0	5	979	0	1411	3	4	2	1420	0	0	0	0	1	1	0	0	5	0	4	9	2409
% Cars	100	96.3	0	0	100	96.4	0	97.9	75.0	100	100	97.9	0	0	0	0	100	100	0	0	100	0	100	100	97.3
Trucks	0	1	0	0	0	1	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	2
% Trucks	0	0.1	0	0	0	0.1	0	0.1	0	0	0	0.1	0	0	0	0	0	0	0	0	0	0	0	0	0.1
Buses	0	36	0	0	0	36	0	29	1	0	0	30	0	0	0	0	0	0	0	0	0	0	0	0	66
% Buses	0	3.6	0	0	0	3.5	0	2.0	25.0	0	0	2.1	0	0	0	0	0	0	0	0	0	0	0	0	2.7
D1- II A1	F	- 12.00 I	DN 4 + - O/	. 15 DM	D1- 1	-£1																			
Peak Hour Analy						01 1																			
Peak Hour for En 04:30 PM			_	at 04:30		212	0	202	0	0	0	202	0	0	0	0	0	ا م	0	0	0	0	0	0	500
04:30 PM 04:45 PM	0 2	313	0		0	313	0	283	0	0	0	283 266	0	0	0	0	0	0	0	0	0	0	0	0	596
04:45 PM 05:00 PM	0	321 388	0	0	0	323 388	0	264 316	0	0	1 0	317	0	0	0	0	0	0	0	0	3 2	0	0	5	595 707
05:00 PM 05:15 PM	0	388 427	0	0	0	388 427	0	317	2	1	0	320	0	0	0	0	0	0	0	0	2	0	1	2 2	707
Total Volume	2	1449	0	0	0	1451	0	1180	3	2	1	1186	0	0	0	0	1	1	0	0	6	0	3	9	2647
% App. Total	0.1	99.9	0	0	0	1431	0	99.5	0.3	0.2	0.1	1160	0	0	0	0	100	1	0	0	66.7	0	33.3	9	2047
% App. Total	.250	.848	.000	.000	.000	.850	.000	.931	.375	.500	.250	.927	.000	.000	.000	.000	.250	.250	.000	.000	.500	.000	.375	.450	.884
Cars	2 <u></u>	1419	0	0	0	1421	0	1157	<u>.575</u>	2	230 1	1163	0	0	0	0	.230 1	.230	.000	0	<u>.300_</u> 6	0	<u>.575</u> 3	9	2594
% Cars	100	97.9	0	0	0	97.9	0	98.1	100	100	100	98.1	0	0	0	0	100	100	0	0	100	0	100	100	98.0
% Cars Trucks	0	97.9	0	0	0	97.9	0	98.1	0	0	0	98.1	0	0	0	0	0	0	0	0	0	0	0	0	98.0
% Trucks	0	0.1	0	0	0	0.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	0	29	0	0	0	29	0		0	0			0	0	0	0	0	0	0	0	0	0	0	0	52
Buses	0	2.0	0	0	0	2.0	0	23 1.9	0	0	0	23 1.9	0	0	0	0	0	0	0	0	0	0	0	0	2.0
% Buses	U	2.0	U	U	U	2.0	U	1.9	U	U	0	1.9	U	U	U	U	U	0	U	U	Ü	U	U	0	2.0

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

Counter R.C.

File Name: Lomas and Stanford

Site Code : 04102019 Start Date : 4/10/2019

Page No : 1

Eastbound Westbound Northbound				
	Southbou			
Start Time Left Thru Right Bikes Peds App. Total Left Thru Right R	Right Bike	es Peds	App. Total	Int. Total
06:00 AM 0 35 27 0 1 63 9 46 0 0 1 56 0 0 0 0 3 3 0 0	0	0 0	0	122
06:15 AM 1 55 43 0 0 99 10 72 0 1 1 84 5 0 2 0 14 21 0 0		1 1	3	207
06:30 AM 0 56 57 0 2 115 5 130 2 2 4 143 8 1 2 4 14 29 1 1	0	1 2	5	292
<u>06:45 AM 3 106 65 0 1 175 20 153 3 1 0 177 8 0 4 3 31 46 1 0</u>		0 0	6	404
Total 4 252 192 0 4 452 44 401 5 4 6 460 21 1 8 7 62 99 2 1	6	2 3	14	1025
07:00 AM 3 109 42 0 0 154 8 163 1 0 2 174 21 0 5 2 15 43 0 0	•	0 2	3	374
07:15 AM 3 155 57 0 0 215 14 216 2 2 1 235 22 0 3 1 18 44 1 0	3	1 2	7	501
07:30 AM 2 177 66 0 1 246 4 305 0 1 4 314 43 1 15 3 14 76 1 0		0 6	10	646
<u>07:45 AM 2 190 76 0 0 268 27 349 3 2 2 383 21 0 13 7 23 64 3 0</u>		1 7	13	728
Total 10 631 241 0 1 883 53 1033 6 5 9 1106 107 1 36 13 70 227 5 0	9	2 17	33	2249
08:00 AM 0 177 44 0 0 221 21 361 3 0 5 390 31 0 9 3 23 66 2 0	2	1 5	10	687
08:15 AM		0 2	3	585
08:30 AM	0	0 12	12	597
08:45 AM	2	0 19	21	639
Total 3 693 177 2 6 881 90 1253 3 6 37 1389 72 0 16 12 92 192 2 0	5	1 38	46	2508
*** BREAK ***				
04:00 PM 0 272 23 0 0 295 10 202 4 1 2 219 52 0 16 2 25 95 3 0	1	1 3	8	617
04:15 PM	3	2 3	9	657
04:30 PM	2	0 3	6	681
04:45 PM 2 303 16 0 6 327 16 220 1 1 0 238 40 1 17 1 33 92 0 0	4	2 7	13	670
Total 4 1172 91 0 12 1279 44 870 15 2 9 940 190 1 61 7 111 370 5 0	10	5 16	36	2625
05:00 PM 1 341 46 0 2 390 11 256 3 0 1 271 57 0 29 1 36 123 2 0		3 9	17	801
05:15 PM 6 380 41 0 0 427 10 268 1 1 2 282 44 0 21 1 13 79 3 0	-	0 6	14	802
05:30 PM 2 254 25 0 0 281 15 168 1 1 0 185 34 1 16 2 16 69 2 1		0 4	11	546
<u>05:45 PM 4 230 31 0 0 265 8 179 1 0 1 189 22 0 12 0 17 51 2 0</u>		2 1	7	512
Total 13 1205 143 0 2 1363 44 871 6 2 4 927 157 1 78 4 82 322 9 1	14	5 20	49	2661
06:00 PM 3 202 27 0 1 233 13 190 4 0 0 207 22 0 13 3 13 51 0 0	-	0 1	6	497
06:15 PM 5 206 27 0 2 240 12 135 1 1 2 151 29 0 15 0 14 58 1 0	_	1 1	5	454
06:30 PM		2 1	8	519
<u>06:45 PM 5 179 35 0 1 220 12 142 3 3 2 162 28 1 16 0 12 57 3 1</u>		2 2	14	453
Total 14 806 142 0 4 966 53 628 12 6 5 704 118 1 53 3 45 220 7 2	14	5 5	33	1923
Grand Total 48 4759 986 2 29 5824 328 5056 47 25 70 5526 665 5 252 46 462 1430 30 4	58 2	0 99	211	12991
Apprch % 0.8 81.7 16.9 0 0.5 5.9 91.5 0.9 0.5 1.3 46.5 0.3 17.6 3.2 32.3 14.2 1.9				.=
Total % 0.4 36.6 7.6 0 0.2 44.8 2.5 38.9 0.4 0.2 0.5 42.5 5.1 0 1.9 0.4 3.6 11 0.2 0			1.6	

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: Lomas and Stanford

Site Code : 04102019 Start Date : 4/10/2019

Page No : 2

																									,
			Loma	as Blvd					Loma	as Blvd					Stanf	ord Dr.					Но	spital			İ
			East	bound					West	tbound					North	nbound					Sout	hbound			
	Left	Thru	Right	Bike s	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
Cars	48	4587	978	2	29	5644	326	4904	47	25	70	5372	663	5	252	46	462	1428	28	4	58	20	99	209	12653
% Cars	100	96.4	99.2	100	100	96.9	99.4	97	100	100	100	97.2	99.7	100	100	100	100	99.9	93.3	100	100	100	100	99.1	97.4
Trucks	0	9	1	0	0	10	1	7	0	0	0	8	0	0	0	0	0	0	2	0	0	0	0	2	20
% Trucks	0	0.2	0.1	0	0	0.2	0.3	0.1	0	0	0	0.1	0	0	0	0	0	0	6.7	0	0	0	0	0.9	0.2
Buses	0	163	7	0	0	170	1	145	0	0	0	146	2	0	0	0	0	2	0	0	0	0	0	0	318
% Buses	0	3.4	0.7	0	0	2.9	0.3	2.9	0	0	0	2.6	0.3	0	0	0	0	0.1	0	0	0	0	0	0	2.4

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: Lomas and Stanford

Site Code : 04102019 Start Date : 4/10/2019

				as Blvd bound						as Blvd bound						ord Dr.						spital nbound			
Start Time	Left	Thru	Right	Bike s	Peds	App. Total	Left	Thru		Bikes	Peds	App. Total	Left	Thru			Peds	App. Total	Left	Thru	Right		Peds	App. Total	Int. Total
Peak Hour Analy	ysis Fro	om 06:0	0 AM to	11:45	AM - Pe	eak 1 of 1																			
Peak Hour for E	ntire In	tersecti	on Begi	ns at 07	7:30 AM																				
07:30 AM	2	177	66	0	1	246	4	305	0	1	4	314	43	1	15	3	14	76	1	0	3	0	6	10	646
07:45 AM	2	190	76	0	0	268	27	349	3	2	2	383	21	0	13	7	23	64	3	0	2	1	7	13	728
08:00 AM	0	177	44	0	0	221	21	361	3	0	5	390	31	0	9	3	23	66	2	0	2	1	5	10	687
08:15 AM	1	158	41	0	4	204	19	321	0	1	5	346	9	0	2	0	21	32	0	0	1	0	2	3	585
Total Volume	5	702	227	0	5	939	71	1336	6	4	16	1433	104	1	39	13	81	238	6	0	8	2	20	36	2646
% App. Total	0.5	74.8	24.2	0	0.5		5	93.2	0.4	0.3	1.1		43.7	0.4	16.4	5.5	34		16.7	0	22.2	5.6	55.6		
PHF	.625	.924	.747	.000	.313	.876	.657	.925	.500	.500	.800	.919	.605	.250	.650	.464	.880	.783	.500	.000	.667	.500	.714	.692	.909
Cars	5	669	224	0	5	903	71	1304	6	4	16	1401	103	1	39	13	81	237	5	0	8	2	20	35	2576
% Cars	100	95.3	98.7	0	100	96.2	100	97.6	100	100	100	97.8	99.0	100	100	100	100	99.6	83.3	0	100	100	100	97.2	97.4
Trucks	0	3	1	0	0	4	0	2	0	0	0	2	0	0	0	0	0	0	1	0	0	0	0	1	7
% Trucks	0	0.4	0.4	0	0	0.4	0	0.1	0	0	0	0.1	0	0	0	0	0	0	16.7	0	0	0	0	2.8	0.3
Buses	0	30	2	0	0	32	0	30	0	0	0	30	1	0	0	0	0	1	0	0	0	0	0	0	63
% Buses	0	4.3	0.9	0	0	3.4	0	2.2	0	0	0	2.1	1.0	0	0	0	0	0.4	0	0	0	0	0	0	2.4
Peak Hour Analy	vsis Fro	om 12:0	0 PM to	06:45	PM - Pe	eak 1 of 1																			
Peak Hour for E																									
04:30 PM	1	290	22	0	4	317	6	221	10	0	4	241	60	0	17	1	39	117	1	0	2	0	3	6	681
04:45 PM	2	303	16	0	6	327	16	220	1	1	0	238	40	1	17	1	33	92	0	0	4	2	7	13	670
05:00 PM	1	341	46	0	2	390	11	256	3	0	1	271	57	0	29	1	36	123	2	0	3	3	9	17	801
05:15 PM	6	380	41	0	0	427	10	268	1	1	2	282	44	0	21	1	13	79	3	0	5	0	6	14	802
Total Volume	10	1314	125	0	12	1461	43	965	15	2	7	1032	201	1	84	4	121	411	6	0	14	5	25	50	2954
% App. Total	0.7	89.9	8.6	0	8.0		4.2	93.5	1.5	0.2	0.7		48.9	0.2	20.4	1	29.4		12	0	28	10	50		
PHF	.417	.864	.679	.000	.500	.855	.672	.900	.375	.500	.438	.915	.838	.250	.724	1.00	.776	.835	.500	.000	.700	.417	.694	.735	.921
Cars	10	1286	123	0	12	1431	42	942	15	2	7	1008	201	1	84	4	121	411	6	0	14	5	25	50	2900
% Cars	100	97.9	98.4	0	100	97.9	97.7	97.6	100	100	100	97.7	100	100	100	100	100	100	100	0	100	100	100	100	98.2
Trucks	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
% Trucks	0	0.1	0	0	0	0.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
Buses	0	27	2	0	0	29	1	23	0	0	0	24	0	0	0	0	0	0	0	0	0	0	0	0	53
% Buses	0	2.1	1.6	0	0	2.0	2.3	2.4	0	0	0	2.3	0	0	0	0	0	0	0	0	0	0	0	0	1.8

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

Counter R.C.

File Name: Lomas and Patient drop off Exit

Site Code : 04102019 Start Date : 4/10/2019

Page No : 1

Group	os F	rinted	- Cars -	Trucks -	- Buses

											ups Prir	nted- Cars	s - Iruc	ks - Bus	ses										т
				as Blvd						as Blvd										F	atient d		exit		
				bound						bound						bound						bound			
Start Time	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
06:00 AM	0	0	0	0	0	0	0	50	0	0	1	51	0	0	0	0	0	0	0	0	5	0	0	5	56
06:15 AM	0	0	0	0	0	0	0	73	0	0	0	73	0	0	0	0	2	2	0	0	7	0	0	7	82
06:30 AM	0	0	0	0	0	0	0	132	0	2	1	135	0	0	0	0	0	0	0	0	9	0	0	9	144
06:45 AM	0	0	0	0	0	0	0	142	0	0	1	143	0	0	0	0	0	0	0	0	29	0	0	29	172
Total	0	0	0	0	0	0	0	397	0	2	3	402	0	0	0	0	2	2	0	0	50	0	0	50	454
1																									1
07:00 AM	0	0	0	0	0	0	0	155	0	0	0	155	0	0	0	0	2	2	0	0	12	0	0	12	169
07:15 AM	0	0	0	0	0	0	0	226	0	1	1	228	0	0	0	1	0	1	0	0	13	0	0	13	242
07:30 AM	0	0	0	0	0	0	0	303	0	0	0	303	0	0	0	0	1	1	0	0	25	0	0	25	329
07:45 AM	0	0	3_	0	0	3	0	364	0	1_	0	365	0	0	0	0	0	0	0	0	25	0	0	25	393
Total	0	0	3	0	0	3	0	1048	0	2	1	1051	0	0	0	1	3	4	0	0	75	0	0	75	1133
08:00 AM	0	0	0	0	0	0	0	375	0	0	1	376	0	0	0	0	0	0	0	0	15	0	2	17	393
08:15 AM	0	0	0	0	0	0	0	335	0	0	2	337	0	0	0	0	0	0	0	0	16	0	0	16	353
08:30 AM	0	0	0	0	0	0	0	279	0	1	3	283	0	0	0	0	0	0	0	0	9	0	0	9	292
08:45 AM	0	0	0	0	0	0	0	306	0	2	1	309	0	0	0	0	0	0	0	0	21_	0	0	21	330
Total	0	0	0	0	0	0	0	1295	0	3	7	1305	0	0	0	0	0	0	0	0	61	0	2	63	1368
*** BREAK ***																									
04:00 PM	0	0	0	0	0	0	0	202	0	1	1	204	0	0	0	0	1	1	0	0	17	0	0	17	222
04:15 PM	0	0	0	0	0	0	0	229	0	0	1	230	0	0	0	0	3	3	0	0	12	0	0	12	245
04:30 PM	0	0	0	0	0	0	0	231	0	1	6	238	0	0	0	1	1	2	0	0	18	0	0	18	258
04:45 PM	0	0	0	0	0	0	0	200	0	0	3	203	0	0	0	0	2	2	0	0	21	0	1_	22	227
Total	0	0	0	0	0	0	0	862	0	2	11	875	0	0	0	1	7	8	0	0	68	0	1	69	952
05:00 PM	0	0	0	0	0	0	0	276	0	1	2	279	0	0	0	0	2	2	0	0	18	0	0	18	299
05:15 PM	0	0	0	0	0	0	0	242	0	1	5	248	0	0	0	0	0	0	0	0	14	0	0	14	262
05:30 PM	0	0	0	0	0	0	0	176	0	1	1	178	0	0	0	1	0	1	0	0	18	0	0	18	197
05:45 PM	0	0	0	0	0	0	0	179	0	0	0	179	0	0	0	2	0	2	0	0	6	0	1	7	188
Total	0	0	0	0	0	0	0	873	0	3	8	884	0	0	0	3	2	5	0	0	56	0	1	57	946
06:00 PM	0	0	0	0	0	0	0	187	0	1	1	189	0	0	0	0	1	1	0	0	14	0	0	14	204
06:15 PM	0	0	0	0	0	0	0	137	0	0	1	138	0	0	0	0	1	1	0	0	10	0	0	10	149
06:30 PM	0	0	0	Ö	1	1	0	174	0	0	0	174	0	0	0	0	1	1	0	0	15	0	3	18	194
06:45 PM	0	0	0	Ö	0	0	0	148	0	1	0	149	0	0	0	0	0	0	0	0	11	0	0	11	160
Total	0	0	0	0	1	1	0	646	0	2	2	650	0	0	0	0	3	3	0	0	50	0	3	53	707
Grand Total	0	0	3	0	1	4	0	5121	0	14	32	5167	0	0	0	5	17	22	0	0	360	0	7	367	5560
Apprch %	0	0	75	0	25	*	0	99.1	0	0.3	0.6	0.07	0	0	0	22.7	77.3		0	0	98.1	0	1.9	557	0000
Total %	0	0	0.1	0	0	0.1	0	92.1	0	0.3	0.6	92.9	0	0	0	0.1	0.3	0.4	0	0	6.5	0	0.1	6.6	
10.01 /0	•	•	٠. ١	•	•	U. 1	•		_	5.0	5.5	JJ	•	•	•	٠. ١	5.0	J	•	9	3.0	9	٠. ١	0.0	1

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: Lomas and Patient drop off Exit

Site Code : 04102019 Start Date : 4/10/2019

Page No : 2

Groups Printed- Cars - Trucks - Buses

	Groups F										ups r III	ileu- Cais	s - IIuc	72 - Da	303										
			Loma	as Blvd					Lom	as Blvd										F	atient o	drop off	exit		
			East	bound					Wes	tbound					Nort	hbound					Sout	hbound			
	Left	Thru	Right	Bike s	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
Cars	0	0	3	0	1	4	0	5062	0	14	32	5108	0	0	0	5	17	22	0	0	257	0	7	264	5398
% Cars	0	0	100	0	100	100	0	98.8	0	100	100	98.9	0	0	0	100	100	100	0	0	71.4	0	100	71.9	97.1
Trucks	0	0	0	0	0	0	0	13	0	0	0	13	0	0	0	0	0	0	0	0	1	0	0	1	14
% Trucks	0	0	0	0	0	0	0	0.3	0	0	0	0.3	0	0	0	0	0	0	0	0	0.3	0	0	0.3	0.3
Buses	0	0	0	0	0	0	0	46	0	0	0	46	0	0	0	0	0	0	0	0	102	0	0	102	148
% Buses	0	0	0	0	0	0	0	0.9	0	0	0	0.9	0	0	0	0	0	0	0	0	28.3	0	0	27.8	2.7

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: Lomas and Patient drop off Exit

Site Code : 04102019 Start Date : 4/10/2019

Page No : 3

				s Blvd bound						as Blvd bound					North	nbound				Р		lrop off nbound	exit		
Start Time	Left	Thru	Right	Bike s	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
Peak Hour Anal	ysis Fro	m 06:00	AM to	11:45	AM - Pe	eak 1 of 1													'						
Peak Hour for E																									
07:30 AM	0	0	0	0	0	0	0	303	0	0	0	303	0	0	0	0	1	1	0	0	25	0	0	25	329
07:45 AM	0	0	3	0	0	3	0	364	0	1	0	365	0	0	0	0	0	0	0	0	25	0	0	25	393
08:00 AM	0	0	0	0	0	0	0	375	0	0	1	376	0	0	0	0	0	0	0	0	15	0	2	17	393
08:15 AM	0	0	0	0	0	0	0	335	0	0	2	337	0	0	0	0	0	0	0	0	16	0	0	16	353
Total Volume	0	0	3	0	0	3	0	1377	0	1	3	1381	0	0	0	0	1	1	0	0	81	0	2	83	1468
% App. Total	0	0	100	0	0		0	99.7	0	0.1	0.2		0	0	0	0	100		0	0	97.6	0	2.4		
PHF	.000	.000	.250	.000	.000	.250	.000	.918	.000	.250	.375	.918	.000	.000	.000	.000	.250	.250	.000	.000	.810	.000	.250	.830	.934
Cars	0	0	3	0	0	3	0	1364	0	1	3	1368	0	0	0	0	1	1	0	0	60	0	2	62	1434
% Cars	0	0	100	0	0	100	0	99.1	0	100	100	99.1	0	0	0	0	100	100	0	0	74.1	0	100	74.7	97.7
Trucks	0	0	0	0	0	0	0	2	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	2
% Trucks	0	0	0	0	0	0	0	0.1	0	0	0	0.1	0	0	0	0	0	0	0	0	0	0	0	0	0.1
Buses	0	0	0	0	0	0	0	11	0	0	0	11	0	0	0	0	0	0	0	0	21	0	0	21	32
% Buses	0	0	0	0	0	0	0	8.0	0	0	0	0.8	0	0	0	0	0	0	0	0	25.9	0	0	25.3	2.2
Peak Hour Anal	vsis Fro	m 12:00) PM to	06:45	PM - Pe	eak 1 of 1																			
Peak Hour for E																									
04:30 PM	0	0	0	0	0	0	0	231	0	1	6	238	0	0	0	1	1	2	0	0	18	0	0	18	258
04:45 PM	0	0	0	0	0	0	0	200	0	0	3	203	0	0	0	0	2	2	0	0	21	0	1	22	227
05:00 PM	0	0	0	0	0	0	0	276	0	1	2	279	0	0	0	0	2	2	0	0	18	0	0	18	299
05:15 PM	0	0	0	0	0	0	0	242	0	1	5	248	0	0	0	0	0	0	0	0	14	0	0	14	262
Total Volume	0	0	0	0	0	0	0	949	0	3	16	968	0	0	0	1	5	6	0	0	71	0	1	72	1046
% App. Total	0	0	0	0	0		0	98	0	0.3	1.7		0	0	0	16.7	83.3		0	0	98.6	0	1.4		
PHF	.000	.000	.000	.000	.000	.000	.000	.860	.000	.750	.667	.867	.000	.000	.000	.250	.625	.750	.000	.000	.845	.000	.250	.818	.875
Cars	0	0	0	0	0	0	0	940	0	3	16	959	0	0	0	1	5	6	0	0	57	0	1	58	1023
% Cars	0	0	0	0	0	0	0	99.1	0	100	100	99.1	0	0	0	100	100	100	0	0	80.3	0	100	80.6	97.8
Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Buses	0	0	0	0	0	0	0	9	0	0	0	9	0	0	0	0	0	0	0	0	14	0	0	14	23
% Buses	0	0	0	0	0	0	0	0.9	0	0	0	0.9	0	0	0	0	0	0	0	0	19.7	0	0	19.4	2.2

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

Counter R.C.

File Name: Lomas and Patient drop off

Site Code : 04102019 Start Date : 4/10/2019

Page No : 1

Groups Printed- Cars - Trucks - Buses

				as Blvd					Loma	s Blvd	•										Patient	drop c	off		
				bound						bound						bound						bound			
Start Time	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
06:00 AM	2	31	0	0	0	33	0	50	3	0	1	54	0	0	0	0	0	0	0	0	0	0	0	0	87
06:15 AM	8	51	0	0	0	59	0	73	4	0	0	77	0	0	0	0	2	2	0	0	0	0	0	0	138
06:30 AM	11	49	0	0	0	60	0	132	6	2	3	143	0	0	0	0	0	0	0	0	0	0	0	0	203
06:45 AM	21	98	0	0	0	119	0	142	12	0	1	155	0	0	0	0	0	0	0	0	0	0	0	0	274
Total	42	229	0	0	0	271	0	397	25	2	5	429	0	0	0	0	2	2	0	0	0	0	0	0	702
07:00 AM	10	102	0	0	0	112	0	155	5	0	0	160	0	0	0	0	2	2	0	0	0	0	0	0	274
07:15 AM	14	140	0	0	0	154	0	226	4	1	2	233	0	0	0	1	1	2	0	0	0	0	0	0	389
07:30 AM	15	181	0	0	0	196	0	303	7	0	0	310	0	0	0	0	1	1	0	0	0	0	0	0	507
07:45 AM	17	186	0	0	0	203	0	364	12	1	1	378	0	0	0	0	0	0	0	0	0	0	0	0	581
Total	56	609	0	0	0	665	0	1048	28	2	3	1081	0	0	0	1	4	5	0	0	0	0	0	0	
08:00 AM	11	176	0	0	0	187	0	375	8	0	1	384	0	0	0	0	0	0	0	0	0	0	2	2	573
08:15 AM	12	143	0	0	0	155	0	335	4	0	2	341	0	0	0	0	0	0	0	0	0	0	0	0	496
08:30 AM	8	172	0	0	0	180	0	279	6	1	4	290	0	0	0	0	0	0	0	0	0	0	0	0	470
08:45 AM	11	177	0	0	0	188	0	306	5	2	3	316	0	0	0	0	0	0	0	0	0	0	0	0	504
Total	42	668	0	0	0	710	0	1295	23	3	10	1331	0	0	0	0	0	0	0	0	0	0	2	2	2043
*** BREAK ***																									
04:00 PM	11	276	0	0	0	287	0	202	3	1	2	208	0	0	0	0	1	1	0	0	0	0	0	0	496
04:15 PM	11	306	0	0	0	317	0	229	4	0	1	234	0	0	0	0	3	3	0	0	0	0	0	0	554
04:30 PM	16	291	0	0	0	307	0	231	8	1	7	247	0	0	0	1	2	3	0	0	0	0	0	0	557
04:45 PM	15	305	0	0	0	320	0	200	15_	0	3	218	0	0	0	0	2	2	0	0	0	0	1_	1	541
Total	53	1178	0	0	0	1231	0	862	30	2	13	907	0	0	0	1	8	9	0	0	0	0	1	1	2148
05:00 PM	9	360	0	0	0	369	0	276	5	1	3	285	0	0	0	0	2	2	0	0	0	0	0	0	656
05:15 PM	10	394	0	0	0	404	0	242	6	1	6	255	0	0	0	0	0	0	0	0	0	0	0	0	659
05:30 PM	15	254	0	0	0	269	0	176	6	1	2	185	0	0	0	1	1	2	0	0	0	0	0	0	456
05:45 PM	10	235	0	0	0_	245	0	179	2	0	0	181	0	0	0	2	2	4	0	0	0	0	1_	1	431
Total	44	1243	0	0	0	1287	0	873	19	3	11	906	0	0	0	3	5	8	0	0	0	0	1	1	2202
06:00 PM	12	201	0	0	0	213	0	187	9	1	2	199	0	0	0	0	1	1	0	0	0	0	0	0	413
06:15 PM	11	209	0	0	0	220	0	137	1	0	1	139	0	0	0	0	1	1	0	0	0	0	0	0	360
06:30 PM	11	219	0	0	1	231	0	174	6	0	0	180	0	0	0	0	1	1	0	0	0	0	3	3	415
06:45 PM	11_	181	0	0	0	192	0	148	3	1	1	153	0	0	0	0	0	0	0	0	0	0	0	0	345
Total	45	810	0	0	1	856	0	646	19	2	4	671	0	0	0	0	3	3	0	0	0	0	3	3	1533
Grand Total	282	4737	0	0	1	5020	0	5121	144	14	46	5325	0	0	0	5	22	27	0	0	0	0	7	7	10379
Apprch %	5.6	94.4	0	0	0		0	96.2	2.7	0.3	0.9		0	0	0	18.5	81.5		0	0	0	0	100		
Total %	2.7	45.6	0	0	0	48.4	0	49.3	1.4	0.1	0.4	51.3	0	0	0	0	0.2	0.3	0	0	0	0	0.1	0.1	

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: Lomas and Patient drop off

Site Code : 04102019 Start Date : 4/10/2019

Page No : 2

Groups Printed- Cars - Trucks - Buses

																									-
			Loma	is Blvd					Loma	as Blvd											Patier	nt drop o	off		
			East	bound					Wes	tbound					Nort	hbound					Sout	hbound			
	Left	Thru	Right	Bike s	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
Cars	177	4653	0	0	1	4831	0	5062	133	14	32	5241	0	0	0	5	17	22	0	0	0	0	7	7	10101
% Cars	62.8	98.2	0	0	100	96.2	0	98.8	92.4	100	69.6	98.4	0	0	0	100	77.3	81.5	0	0	0	0	100	100	97.3
Trucks	1	12	0	0	0	13	0	13	0	0	14	27	0	0	0	0	5	5	0	0	0	0	0	0	45
% Trucks	0.4	0.3	0	0	0	0.3	0	0.3	0	0	30.4	0.5	0	0	0	0	22.7	18.5	0	0	0	0	0	0	0.4
Buses	104	72	0	0	0	176	0	46	11	0	0	57	0	0	0	0	0	0	0	0	0	0	0	0	233
% Buses	36.9	1.5	0	0	0	3.5	0	0.9	7.6	0	0	1.1	0	0	0	0	0	0	0	0	0	0	0	0	2.2

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: Lomas and Patient drop off

Site Code : 04102019 Start Date : 4/10/2019

Page No : 3

				s Blvd bound						s Blvd bound					North	nbound						t drop o	ff		
Start Time	Left	Thru	Right	Bike s	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
Peak Hour Ana	lysis Fr	om 06:0	0 AM to	11:45	AM - Pe	eak 1 of 1						-							-						
Peak Hour for E	Entire In	tersection	n Begir	ns at 07	7:30 AM																				
07:30 AM	15	181	0	0	0	196	0	303	7	0	0	310	0	0	0	0	1	1	0	0	0	0	0	0	507
07:45 AM	17	186	0	0	0	203	0	364	12	1	1	378	0	0	0	0	0	0	0	0	0	0	0	0	581
08:00 AM	11	176	0	0	0	187	0	375	8	0	1	384	0	0	0	0	0	0	0	0	0	0	2	2	573
08:15 AM	12	143	0	0	0	155	0	335	4	0	2	341	0	0	0	0	0	0	0	0	0	0	0	0	496
Total Volume	55	686	0	0	0	741	0	1377	31	1	4	1413	0	0	0	0	1	1	0	0	0	0	2	2	2157
% App. Total	7.4	92.6	0	0	0		0	97.5	2.2	0.1	0.3		0	0	0	0	100		0	0	0	0	100		
PHF	.809	.922	.000	.000	.000	.913	.000	.918	.646	.250	.500	.920	.000	.000	.000	.000	.250	.250	.000	.000	.000	.000	.250	.250	.928
Cars	37	664	0	0	0	701	0	1364	28	1	3	1396	0	0	0	0	1	1	0	0	0	0	2	2	2100
% Cars	67.3	96.8	0	0	0	94.6	0	99.1	90.3	100	75.0	98.8	0	0	0	0	100	100	0	0	0	0	100	100	97.4
Trucks	1	5	0	0	0	6	0	2	0	0	1	3	0	0	0	0	0	0	0	0	0	0	0	0	9
% Trucks	1.8	0.7	0	0	0	0.8	0	0.1	0	0	25.0	0.2	0	0	0	0	0	0	0	0	0	0	0	0	0.4
Buses	17	17	0	0	0	34	0	11	3	0	0	14	0	0	0	0	0	0	0	0	0	0	0	0	48
% Buses	30.9	2.5	0	0	0	4.6	0	8.0	9.7	0	0	1.0	0	0	0	0	0	0	0	0	0	0	0	0	2.2
D I. I		40.0	0.0044	00.45	DM D																				
Peak Hour Ana																									
Peak Hour for E			n Begir				•	004	•		-	047	0	•	0		•	0	•	0	0	•	•	•	
04:30 PM	16	291	0	0	0	307	0	231	8	1	/	247	0	0	0	1	2	3	0	0	0	0	0	0	557
04:45 PM	15	305	0	0	0	320	0	200	15	0	3	218	0	0	0	0	2	2	0	0	0	0	1	1	541
05:00 PM	9	360	0	0	0	369	0	276	5	1	3	285	0	0	0	0	2	2	0	0	0	0	0	0	656
05:15 PM	10	394	0	0	0	404	0	242	6	1	6	255	0	0	0	0	0	7	0	0	0	0	0 1	<u> </u>	659
Total Volume	50	1350	0	0	0	1400	•	949	34	3	19	1005	0	0	•	14.0	6	/	0	0	0	0		1	2413
% App. Total	3.6	96.4	0	0	0	000	0	94.4	3.4	0.3	1.9	000		0	0	14.3	85.7	500	0	0	0	0	100	050	045
PHF	.781	.857	.000	.000	.000	.866	.000	.860	.567	.750	.679	.882	.000	.000	.000	.250	.750	.583	.000	.000	.000	.000	.250	.250	.915
Cars	33	1334	0	0	0	1367	0	940	32	3	16	991	0	0	0		5	6	0	0	0	0	1	1	2365
% Cars	66.0	98.8	0	0	0	97.6	0	99.1	94.1	100	84.2	98.6	0	0	0	100	83.3	85.7	0	0	0	0	100	100	98.0
Trucks	0	3	0	0	0	3	0	0	0	0	3	3	0	0	0	0	1	1	0	0	0	0	0	0	/
% Trucks	0	0.2	0	0	0	0.2	0	0	0	0	15.8	0.3	0	0	0	0	16.7	14.3	0	0	0	0	0	0	0.3
Buses	17	13	0	0	0	30	0	9	2	0	0	11	0	0	0	0	0	0	0	0	0	0	0	0	41
% Buses	34.0	1.0	0	0	0	2.1	0	0.9	5.9	0	0	1.1	0	0	0	0	0	0	0	0	0	0	0	0	1.7

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

Counter R.C.

File Name: Lomas and Girard

Site Code : 04032019 Start Date : 4/3/2019

Page No : 1

Groups Printed- Cars - Trucks - Buses

				s Blvd						s Blvd		liou our	1140			d Blvd					_	d Blvd			
			East						Westl							bound						bound			
Start Time	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru		Bikes	Peds	App. Total	Left	Thru		Bikes	Peds	App. Total	Left		Right	Bikes	Peds	App. Total	Int. Total
06:00 AM	2	24	4	0	1	31	13	40	3	0	0	56	2	2	3	0	0	7	2	14	7	0	0	23	117
06:15 AM	1	42	6	1	0	50	17	69	2	0	1	89	5	4	2	0	0	11	2	13	4	0	0	19	169
06:30 AM	1	48	6	0	0	55	19	99	3	0	0	121	12	5	6	0	0	23	2	12	2	0	0	16	215
06:45 AM	10	59	13	0	0	82	24	150	6	0	0	180	12	10	9	1_	1_	33	2	26	13	0	1_	42	337
Total	14	173	29	1	1	218	73	358	14	0	1	446	31	21	20	1	1	74	8	65	26	0	1	100	838
07:00 AM	10	65	13	0	0	88	13	132	7	0	0	152	19	18	11	0	0	48	5	17	15	1	0	38	326
07:15 AM	16	94	15	1	0	126	24	173	24	0	1	222	14	26	1	0	2	43	11	40	27	0	1	79	470
07:30 AM	21	127	19	0	0	167	41	222	31	0	0	294	27	38	7	2	1	75	7	51	24	1	1	84	620
07:45 AM	38	122	15	0	0	175	43	301	41	0	1_	386	29	54	13	2	6	104	8	66	35	3	0	112	777
Total	85	408	62	1	0	556	121	828	103	0	2	1054	89	136	32	4	9	270	31	174	101	5	2	313	2193
08:00 AM	35	122	15	0	0	172	45	292	57	2	3	399	22	70	6	2	3	103	9	56	27	3	0	95	769
08:15 AM	26	110	16	0	1	153	39	257	31	0	2	329	23	38	10	0	2	73	15	58	23	2	3	101	656
08:30 AM	11	119	25	0	1	156	24	232	17	1	0	274	15	28	11	3	0	57	14	56	23	0	3	96	583
08:45 AM	7	114	33	1	0	155	23	229	4	0	1	257	33	35	13	1	0	82	11	90	37	3	1	142	636
Total	79	465	89	1	2	636	131	1010	109	3	6	1259	93	171	40	6	5	315	49	260	110	8	7	434	2644
*** BREAK ***																									
04:00 PM	31	225	16	0	0	272	13	189	12	0	2	216	25	51	26	1	1	104	25	57	17	1	1	101	693
04:15 PM	17	227	41	0	0	285	19	140	16	0	0	175	20	59	30	0	0	109	30	39	15	2	0	86	655
04:30 PM	33	262	21	0	1	317	14	174	17	0	0	205	29	62	30	3	2	126	21	58	17	5	0	101	749
04:45 PM	39	223	30	0	0	292	19	172	18	0	0	209	23	85	26	4	3	141	28	77	19	1	1	126	768
Total	120	937	108	0	1	1166	65	675	63	0	2	805	97	257	112	8	6	480	104	231	68	9	2	414	2865
05:00 PM	49	286	53	0	2	390	15	169	20	0	0	204	22	65	27	1	0	115	33	72	25	2	0	132	841
05:15 PM	43	291	34	2	1	371	30	171	20	0	1	222	28	83	34	1	3	149	27	74	32	2	2	137	879
05:30 PM	24	205	24	0	0	253	24	167	25	0	3	219	27	63	24	2	0	116	25	58	11	1	2	97	685
05:45 PM	23	217	28	0	2	270	19	176	14	0	3	212	6	49	20	0	0	75	15	60	15	0	1_	91	648
Total	139	999	139	2	5	1284	88	683	79	0	7	857	83	260	105	4	3	455	100	264	83	5	5	457	3053
06:00 PM	22	158	28	0	0	208	23	145	16	1	1	186	13	50	23	1	0	87	19	44	19	0	0	82	563
06:15 PM	14	141	31	0	0	186	24	140	11	0	0	175	16	60	23	0	4	103	15	68	16	0	0	99	563
06:30 PM	12	176	18	0	1	207	25	125	16	0	0	166	22	48	26	3	0	99	12	40	14	1	1	68	540
06:45 PM	15	158	19	0	0	192	27	122	3	0	2	154	17	36	24	1	1_	79	9	34	9	1_	0	53	478
Total	63	633	96	0	1	793	99	532	46	1	3	681	68	194	96	5	5	368	55	186	58	2	1	302	2144
Grand Total	500	3615	523	5	10	4653	577	4086	414	4	21	5102	461	1039	405	28	29	1962	347	1180	446	29	18	2020	13737
Apprch %	10.7	77.7	11.2	0.1	0.2		11.3	80.1	8.1	0.1	0.4		23.5	53	20.6	1.4	1.5		17.2	58.4	22.1	1.4	0.9		
Total %	3.6	26.3	3.8	0	0.1	33.9	4.2	29.7	3	0	0.2	37.1	3.4	7.6	2.9	0.2	0.2	14.3	2.5	8.6	3.2	0.2	0.1	14.7	

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: Lomas and Girard

Site Code : 04032019 Start Date : 4/3/2019

Page No : 2

Groups Printed- Cars - Trucks - Buses

	Oroups I										upo i ili	itcu- Car	3 - 11uu	13 - Du	303										_
			Loma	s Blvd					Loma	as Blvd					Gira	rd Blvd					Gira	rd Blvd			
			East	bound					Wes	tbound					Nort	hbound					Sout	hbound			
	Left	Thru	Right	Bike s	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
Cars	497	3571	499	5	10	4582	571	4031	410	4	21	5037	459	1036	403	28	29	1955	347	1177	439	29	18	2010	13584
% Cars	99.4	98.8	95.4	100	100	98.5	99	98.7	99	100	100	98.7	99.6	99.7	99.5	100	100	99.6	100	99.7	98.4	100	100	99.5	98.9
Trucks	0	6	2	0	0	8	1	12	1	0	0	14	2	1	1	0	0	4	0	0	0	0	0	0	26
% Trucks	0	0.2	0.4	0	0	0.2	0.2	0.3	0.2	0	0	0.3	0.4	0.1	0.2	0	0	0.2	0	0	0	0	0	0	0.2
Buses	3	38	22	0	0	63	5	43	3	0	0	51	0	2	1	0	0	3	0	3	7	0	0	10	127
% Buses	0.6	1.1	4.2	0	0	1.4	0.9	1.1	0.7	0	0	1	0	0.2	0.2	0	0	0.2	0	0.3	1.6	0	0	0.5	0.9

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: Lomas and Girard

Site Code : 04032019 Start Date : 4/3/2019

Page No : 3

				as Blvd bound						as Blvd tbound						rd Blvd nbound						rd Blvd nbound			
Start Time	Left	Thru	Right	Bike s	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
Peak Hour Anal	lysis Fro	om 06:0	0 AM to	11:45	AM - Pe	eak 1 of 1						,							,						
Peak Hour for E	ntire In	tersecti	on Begi	ns at 07	7:30 AM																				
07:30 AM	21	127	19	0	0	167	41	222	31	0	0	294	27	38	7	2	1	75	7	51	24	1	1	84	620
07:45 AM	38	122	15	0	0	175	43	301	41	0	1	386	29	54	13	2	6	104	8	66	35	3	0	112	777
08:00 AM	35	122	15	0	0	172	45	292	57	2	3	399	22	70	6	2	3	103	9	56	27	3	0	95	769
08:15 AM	26	110	16	0	1	153	39	257	31	0	2	329	23	38	10	0	2	73	15	58	23	2	3	101	656
Total Volume	120	481	65	0	1	667	168	1072	160	2	6	1408	101	200	36	6	12	355	39	231	109	9	4	392	2822
% App. Total	18	72.1	9.7	0	0.1		11.9	76.1	11.4	0.1	0.4		28.5	56.3	10.1	1.7	3.4		9.9	58.9	27.8	2.3	1		
PHF	.789	.947	.855	.000	.250	.953	.933	.890	.702	.250	.500	.882	.871	.714	.692	.750	.500	.853	.650	.875	.779	.750	.333	.875	.908
Cars	120	473	57	0	1	651	165	1059	159	2	6	1391	101	197	36	6	12	352	39	231	106	9	4	389	2783
% Cars	100	98.3	87.7	0	100	97.6	98.2	98.8	99.4	100	100	98.8	100	98.5	100	100	100	99.2	100	100	97.2	100	100	99.2	98.6
Trucks	0	1	1	0	0	2	1	3	0	0	0	4	0	1	0	0	0	1	0	0	0	0	0	0	7
% Trucks	0	0.2	1.5	0	0	0.3	0.6	0.3	0	0	0	0.3	0	0.5	0	0	0	0.3	0	0	0	0	0	0	0.2
Buses	0	7	7	0	0	14	2	10	1	0	0	13	0	2	0	0	0	2	0	0	3	0	0	3	32
% Buses	0	1.5	10.8	0	0	2.1	1.2	0.9	0.6	0	0	0.9	0	1.0	0	0	0	0.6	0	0	2.8	0	0	8.0	1.1
Peak Hour Anal	lysis Fro	om 12:0	0 PM to	06:45	PM - Pe	eak 1 of 1																			
Peak Hour for E	ntire In	tersecti	on Begi	ns at 04	1:30 PM																				
04:30 PM	33	262	21	0	1	317	14	174	17	0	0	205	29	62	30	3	2	126	21	58	17	5	0	101	749
04:45 PM	39	223	30	0	0	292	19	172	18	0	0	209	23	85	26	4	3	141	28	77	19	1	1	126	768
05:00 PM	49	286	53	0	2	390	15	169	20	0	0	204	22	65	27	1	0	115	33	72	25	2	0	132	841
05:15 PM	43	291	34	2	1	371	30	171	20	0	1	222	28	83	34	1	3	149	27	74	32	2	2	137	879
Total Volume	164	1062	138	2	4	1370	78	686	75	0	1	840	102	295	117	9	8	531	109	281	93	10	3	496	3237
% App. Total	12	77.5	10.1	0.1	0.3		9.3	81.7	8.9	0	0.1		19.2	55.6	22	1.7	1.5		22	56.7	18.8	2	0.6		
PHF	.837	.912	.651	.250	.500	.878	.650	.986	.938	.000	.250	.946	.879	.868	.860	.563	.667	.891	.826	.912	.727	.500	.375	.905	.921
Cars	163	1055	135	2	4	1359	78	676	74	0	1	829	101	295	117	9	8	530	109	281	93	10	3	496	3214
% Cars	99.4	99.3	97.8	100	100	99.2	100	98.5	98.7	0	100	98.7	99.0	100	100	100	100	99.8	100	100	100	100	100	100	99.3
Trucks	0	0	0	0	0	0	0	1	1	0	0	2	1	0	0	0	0	1	0	0	0	0	0	0	3
% Trucks	0	0	0	0	0	0	0	0.1	1.3	0	0	0.2	1.0	0	0	0	0	0.2	0	0	0	0	0	0	0.1
Buses	1	7	3	0	0	11	0	9	0	0	0	9	0	0	0	0	0	0	0	0	0	0	0	0	20
% Buses	0.6	0.7	2.2	0	0	0.8	0	1.3	0	0	0	1.1	0	0	0	0	0	0	0	0	0	0	0	0	0.6

APPENDIX B 2019 EXISTING INTERSECTION CAPACITY ANALYSIS

Existing -	AM			HCS7	Inters	sectio	n Sur	nmary	У						
#1 Locust & Mo	untain														
Signal Informa				Г	П	Г	Г	Т	1	_					1
		Deference Dhace	2	l	215	I . ⊱							c ↑		
Cycle, s	72.5	Reference Phase	2		<u>"</u>	R'						1	2	3	→ 4
Offset, s Uncoordinated	0 Yes	Reference Point Simult. Gap E/W	End	Green		7.9	7.5	0.0	0.0	0.0					
Force Mode			On	Yellow	-	3.5	3.5	0.0	0.0	0.0	_	4	Y		
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.0	2.0	2.0	0.0	0.0	0.0		5	6	7	8
Signal Phase S	Splits A	nd Results			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	T	R	L	Т	R	L	Т	R
Demand (v), v	eh/h				123	94	1	131		0	0		274	1621	424
Phase Split, s					24.0			24.0		Ì	36.0			36.0	
Volume-to-Cap	acity Ra	tio (X)			0.571	0.621	0.006	0.716			0.000		0.296	0.306	0.312
		RQ) (95 th percent	ile)		0.18	0.17	0.00	0.56			0.00		0.10	0.10	0.09
Control Delay (d),s/v	eh			30.0	30.6	27.6	31.7					10.2	10.4	10.5
Level of Service	e (LOS)				С	С	С	С					В	В	В
Approach Dela	y, s/veh	/ LOS		30.3		С	31.7	,	С	0.0			10.3	3	В
Intersection De				i		16	.9			1		E	3		
				1											
#2 I25 SB Front		I40 Frontage		V			_								
Signal Informa	ation				J.										
Cycle, s	58.0	Reference Phase	2		54	ightharpoons						- ↓ ₽	2	_	\rightarrow \downarrow
Offset, s	0	Reference Point	End	Green	:1	12.0	0.0	0.0	0.0	0.0		- 1	2	3	Y *
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		4.0	0.0	0.0	0.0	0.0			st l		
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	0.0	0.0	0.0	0.0		5	6	7	8
Signal Phase S	_	nd Results			EB	Γ		WB			NB			SB	
Approach Move				L	T	R	L	Т	R	L	T	R	L	T	R
Demand (v), v	eh/h				457	320				0	0		47	415	
Phase Split, s					24.0						24.0			24.0	
Volume-to-Cap					0.392	0.617					0.000		0.061	0.359	
		RQ) (95 th percent	ile)		0.04	0.20					0.00		0.01	0.06	
Control Delay (8.3	9.5							7.3	8.2	
Level of Service					A	A		\Box					Α	A	
Approach Delay				8.8		Α	0.0			0.0			8.1		Α
Intersection De	lay, s/ve	eh / LOS				8.	6						4		
#3 I25 SB Front	age & N	I I40 Frontage													
Signal Informa								T		Т					
Cycle, s	58.0	Reference Phase	2	1	⊱	1									ľ
Offset, s	0	Reference Point	End	<u> </u>								1	2	3	4
Uncoordinated	Yes	Simult. Gap E/W	On	Green Yellow		0.0	0.0	0.0	0.0	0.0	-				
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	0.0	0.0	0.0	0.0	0.0	-	5	6	7	8
. c.rcccac		Cililati Cup I ii C	<u> </u>	rtou	1.0	0.0	0.0	0.0	0.0	0.0					
Signal Phase S	Splits A	nd Results			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h						169	382						297	44
Phase Split, s								24.0						24.0	
Volume-to-Cap	acity Ra	tio (X)					0.293	0.334						0.257	0.087
		RQ) (95 th percent	ile)				0.03	0.03						0.02	0.02
Control Delay (eh					8.0	8.1						7.8	7.4
Level of Service							Α	Α						Α	Α
Approach Delay				0.0			8.1		Α	0.0			7.8		Α
Intersection De	lay, s/ve	h / LOS				8.	0					A	١		

Existing -	AM			HCS7	Inters	sectio	n Sur	nmary	y						
#1 Lomas & Loc	cust														
Signal Informa	ition						211								\mathbf{L}
Cycle, s	110.0	Reference Phase	2		~	⊨ ŧ*"	1						→ .		.1 7
Offset, s	58	Reference Point	End	Green	6.0	40.9	47.1	0.0	0.0	0.0		1	Y 2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Yellow		4.0	4.0	0.0	0.0	0.0	-	 			
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	2.0	0.0	0.0	0.0		5	6	7	8
							1			1					
Signal Phase S	_	nd Results			EB	Γ_		WB			NB	г _		SB	
Approach Move				L	Т	R	L	Т	R	L	T	R	L	Т	R
Demand (v), v	eh/h				873	106	98	1049					778	447	717
Phase Split, s					33.0		16.5	49.5						60.5	
Volume-to-Capa					0.528	0.530	0.418	0.492					0.880	0.533	0.911
		RQ) (95 th percent	tile)		0.53	0.53	0.19	0.48					0.63	0.32	2.40
Control Delay (eh			23.3	25.0	21.0	14.4					37.2	23.4	42.0
Level of Service					С	С	С	В			<u></u>		D	С	D
Approach Delay				23.8	<u> </u>	С	15.0		В	0.0			33.3	3	С
Intersection De	lay, s/ve	h / LOS				25	.8					(3		
#2.1 amas 8.0al	l.														
#2 Lomas & Oal				Г	Г	_	Г	Т		Т					
Signal Informa		Deference Dhace		-	Lą –	≃ چر[,	,		KŤ2
Cycle, s Offset, s	110.0 45	Reference Phase Reference Point	2 End	-	\vdash	┌*						1	→ 2	3	4
	-			Green		64.7	22.5	0.0	0.0	0.0					
Uncoordinated	No	Simult. Gap E/W	On	Yellow	-	4.0	4.0	0.0	0.0	0.0	/_				
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	1.0	0.0	0.0	0.0		5	6	7	8
Signal Phase S	Splits A	nd Results			EB			WB			NB			SB	
Approach Move				L	 	R	L	T	R	L	T	R	L	T	R
Demand (v), v				235	1479			905	173	191	363	259			
Phase Split, s				27.5	67.1			39.6			42.9				
Volume-to-Capa	acity Ra	tio (X)		0.494	0.428			0.339	0.210	0.457	0.582	0.856			
	•	RQ) (95 th percent	tile)	0.23	0.39			0.08	0.14	0.60	0.23	0.43			$\overline{}$
Control Delay (7.4	6.5			5.0	1.4	38.7	39.8	45.1			
Level of Service				Α	Α			A	Α	D	D	D			
Approach Delay		/ LOS		6.7		Α	4.5		Α	41.3		D	0.0		
Intersection De						13							В		
				1						1					
#3 Lomas & Uni				10-	0										
Signal Informa					7	7	. ₽	7	211						
Cycle, s	110.0	Reference Phase	2		L, R	ĸ	Ħ	5			7	ightarrow	3	Y	Y
Offset, s	11	Reference Point	End	Green	9.9	0.9	45.8	7.1	1.3	20.0					
Uncoordinated	No	Simult. Gap E/W	On	Yellow		3.0	4.5	3.0	3.0	4.5		•	7	\ \ \	4
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.5	0.5	1.0	0.5	0.5	1.0		5	6	7	8
Signal Phase S	Splits A	nd Results			EB			WB			NB			SB	
Approach Move				L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), v				342	1145	146	207	887	215	98	440	151	214	440	125
Phase Split, s				23.1	41.8		19.8	38.5		15.4	33.0		15.4	33.0	
Volume-to-Capa	acitv Ra	tio (X)		0.872	0.547	0.547	0.653	0.518	0.521	0.493	0.733	0.381	0.781	0.754	0.762
		RQ) (95 th percent	tile)	1.55	0.25	0.26	1.20	0.83	0.88	1.06	0.51	0.32	1.57	0.89	0.84
Control Delay (,	25.8	16.9	19.0	18.7	24.4	29.2	35.0	43.5	32.7	43.8	42.7	43.3
Level of Service				C	В	В	В	C	C	D	D	C	D	D	D
Approach Delay		/ LOS		19.3		В	24.7		С	40.0		D	43.2		D
Intersection Del						28							3		
	j, _,						-								

Existing -	AM			HCS7	Inters	sectio	n Sur	nmar	у						
#4 Lomas & Yal											_				
Signal Informa				l	a _	a	"	7		24		<u> </u>	_	K	<i>1</i>
Cycle, s	110.0	Reference Phase	2			R .	Ħ "	5		1 1	2 ×		→ 2	3	→
Offset, s	46	Reference Point	End	Green	3.9	2.3	62.4	2.4	2.7	14.8			<u> </u>		
Uncoordinated	No	Simult. Gap E/W	On	Yellow		3.0	4.0	3.0	0.0	3.5	/	• •	—		1 >
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.5	0.5	1.5	0.5	0.0	2.0		5	6	7	8
Signal Phase \$	Splits A	nd Results			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			295	1036	134	76	1098	139	28	48	18	58	59	199
Phase Split, s				19.8	40.7		19.8	40.7		16.5	33.0		16.5	33.0	
Volume-to-Capa	acity Ra	tio (X)		0.776	0.367	0.368	0.223	0.427	0.428	0.815	0.235	0.094	0.776	0.254	0.865
-		RQ) (95 th percent	tile)	0.34	0.19	0.14	0.18	0.25	0.24	0.41	0.19	0.90	0.86	0.41	2.86
Control Delay (14.9	5.7	4.7	9.5	13.7	13.9	68.1	42.7	41.8	57.7	40.7	48.6
Level of Service				В	Α	Α	A	В	В	E	D	D	Е	D	D
Approach Delay		/ LOS		7.3		Α	13.5	5	В	50.1		D	48.8		D
Intersection De				- 11		15							В		
	·			,											
#5 Lomas & Sta					г		_	ТТ:		_					
Signal Informa	_	D-f Db		-	L7		. a 🕃	23					,		K 2
Cycle, s	110.0	Reference Phase	2	-	E	E	 3 *	5 2	7				2	3	Y ₄
Offset, s	28	Reference Point	End	Green		2.3	84.2	9.0	0.0	0.0					1
Uncoordinated	No	Simult. Gap E/W	On	Yellow	-	0.0	4.0	3.5	0.0	0.0	/	'			
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.5	0.0	1.0	2.0	0.0	0.0		5	6	7	8
Signal Phase S	Splits A	nd Results			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			5	702	227	71	1336	6	104		39	6		8
Phase Split, s				16.5	60.5		16.5	60.5			33.0			33.0	
Volume-to-Capa	acity Ra	tio (X)		0.015	0.245	0.248	0.148	0.326	0.326	0.532		0.322	0.034		0.066
Queue Storage	Ratio (RQ) (95 th percent	tile)	0.01	0.11	0.11	0.04	0.05	0.05	1.98		0.71	0.28		0.33
Control Delay (d),s/v	eh		3.0	5.0	5.5	2.8	1.8	2.0	50.3		48.1	46.6		46.7
Level of Service	e (LOS)			Α	Α	Α	Α	Α	Α	D		D	D		D
Approach Delay	y, s/veh	/LOS		5.1		Α	1.9		Α	49.7		D	46.7	7	D
Intersection De	lay, s/ve	h / LOS				6.	1					,	4		
#6 Lomas & Gira	d														
Signal Informa					ı	Б.	_	1 1		1 11:					
		Deference Dhace			ے حــا			2					,	~ .	ሗ∃
Cycle, s	110.0	Reference Phase	2	1	E	E	₹*	5	1 51	" <u>"</u>	7 -		→ 2	3	4
Offset, s	101	Reference Point	End	Green		1.8	52.9	2.9	0.4	25.0					
Uncoordinated	No	Simult. Gap E/W	On	Yellow		0.0	4.0	3.0	3.0	3.5	/	'			V
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.5	0.0	1.0	0.5	0.5	2.0		5	6	7	8
Signal Phase S	Splits A	nd Results			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			120	481	65	168	1072	160	101	200	36	39	231	109
Phase Split, s				16.5	44.0		16.5	44.0		16.5	33.0		16.5	33.0	
Volume-to-Capa	acity Ra	tio (X)		0.411	0.216	0.221	0.329	0.487	0.487	0.537	0.527		0.165	0.904	
Queue Storage	Ratio (RQ) (95 th percent	tile)	0.70	0.11	0.11	0.94	0.21	0.21	0.99	0.28		0.39	0.41	
Control Delay (14.4	14.1	14.8	12.2	12.5	13.5	31.8	35.0		32.0	54.0	
Level of Service				В	В	В	В	В	В	С	D		С	D	
Approach Delay	y, s/veh	/LOS		14.4		В	12.7		В	34.1		С	51.7	7	D
Intersection De						21	.0					(Ċ	,	
				n						n					

Existing -	AM			HCS7	Inters	sectio	n Sur	nma	ary						
#1 Oak & Mount	tain														
Signal Informa	ition							Π		T					
Cycle, s	75.0	Reference Phase	2		四小	≓							\mathbf{V}	_	4
Offset, s	0	Reference Point	End	Green	16.0	6.6	0.0	0.0	0.0	0.0		1	2	3	4
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		4.0	0.0	0.0	0.0	0.0	-	1	L		
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	0.0	0.0	0.0	0.0	0.0		5	6	7	8
							0-								
Signal Phase S	Splits A	nd Results			EB			WE	3		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	T	R
Demand (v), v	eh/h			407	0					184	552		0	0	
Phase Split, s					30.0						36.0			36.0	
Volume-to-Capa	acity Ra	ntio (X)		0.611	0.000					0.179	0.330			0.000	
Queue Storage	Ratio (RQ) (95 th percent	tile)	0.23	0.00					0.03	0.04			0.00	
Control Delay (d),s/v	reh		11.7	0.0					4.4	4.6				
Level of Service	e (LOS)			В						Α	Α				
Approach Delay	y, s/veh	/LOS		11.7		В	0.0			4.6		Α	0.0		
Intersection De	lay, s/ve	eh / LOS				7.	1						4		
Copyright © 2020	Universi	ty of Florida, All Rights	Reserve	ed.		HCS™ S	treets Ve	ersion	7.8.5		(Generate	ed: 4/21/2	2020 1:52:	:44 PM

Existing -	AM			HCS7	Inters	sectio	n Sur	nmar	у						
#1 University &	Lacton	200													
Signal Informa		ııdə			П	F 6	г	г	Т	_					
		Deference Dhace			215	∌ ⊱							KŤ2		7
Cycle, s	66.0	Reference Phase	2		<u> </u>	R						1	2	3	→ 4
Offset, s	0	Reference Point	End	Green		7.4	0.0	0.0	0.0	0.0		1			<u> </u>
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		3.5	0.0	0.0	0.0	0.0		4	4		7
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	2.0	0.0	0.0	0.0	0.0		5	6	7	8
Signal Phase S	Splits A	nd Results			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			19	7	8	77	10	52	13	459	87	111	612	33
Phase Split, s					24.0			24.0			32.0			32.0	
Volume-to-Capa	acity Ra	tio (X)			0.104			0.264	0.259	0.036	0.166	0.171	0.320	0.347	0.347
		RQ) (95 th percent	ile)		0.04			0.12	0.64	0.01	0.01	0.01	0.30	0.05	0.05
Control Delay (18.3			19.2	18.8	2.4	1.4	1.6	5.4	4.2	4.5
Level of Service					В			В	В	Α	Α	А	Α	А	Α
Approach Delay		/ LOS		18.3		В	19.0		В	1.5		Α	4.5		Α
Intersection De						4.	9						4		
				1						1					
#2 University &		de Salud		1-											
Signal Informa	ation				7		儿	, ≥	4						_
Cycle, s	90.0	Reference Phase	2		5	512	12	Ħ °	1		>	1		-	↔ .
Offset, s	0	Reference Point	End	Green	2.6	0.4	36.0	11.1	0.0	0.0		1	1 2	3	X *
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		3.0	4.0	3.5	0.0	0.0	_ <	4			₹
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.5	0.5	1.0	2.0	0.0	0.0		5	6	7	8
Cianal Phase 6	Calita A	nd Deculto		Γ	EB			WB			NB		Г	SB	
Signal Phase S Approach Move		na Resuits		L	Т	R	L	T	R	-	T	R	L	T	R
Demand (v), v				35	39	110	44	1	15	153	499	56	40	971	204
Phase Split, s	en/n			33	24.0	110	44	24.0	10	16.0	36.0	30	16.0	36.0	204
Volume-to-Capa	acity Da	tio (V)		0.116	0.599		0.243	0.065		0.795	0.193	0.049	0.793	0.685	0.321
		RQ)(95 th percent	ilo)	0.110	0.399		0.243	0.003		1.33	0.193	0.049	0.793	0.003	0.521
Control Delay (iie)	24.8	26.9		30.4	23.9		33.4	6.6	6.0	33.9	12.1	9.1
Level of Service		C II		C C	20.9 C		C C	23.9 C		C	A	A	C	B	A A
Approach Delay		/1.08		26.5		C	28.7		С	12.4		B B	12.3		В
Intersection De				20.5		13			<u> </u>	12.4			12.3 3)	В
intersection be	iay, sive	117 200				10	.5						,		
#3 University &	Indian S	School													
Signal Informa	ation						25.		Ş						
Cycle, s	137.5	Reference Phase	2		- C	512			1 2		···	, ['	$\mathbf{\Psi}$	<u>_</u> _	4
Offset, s	0	Reference Point	End	Green	2.0	1.3	32.0	7.6	0.8	22.5		1	2	3	4
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		0.0	4.0	3.0	3.0	4.0	-		<u> </u>	7	→
Force Mode	Fixed	Simult. Gap N/S	On	Red	3.0	0.0	4.0	0.5	3.0	1.5		5	6	7	8
Signal Phase \$	Splite A	nd Posults			EB			WB			NB		Γ	SB	
Approach Move	_	iiu ivesuits		L	T	R	L	T	R	-	T	R	L	T	R
Demand (v), v				126	194	228	221	270	80	101	438	69	42	967	86
Phase Split, s	CII/II			22.0	42.0	220	22.0	42.0	00	16.0	32.0	09	16.0	32.0	00
Volume-to-Capa	acity Po	tio (X)		0.348	0.537	0.745	0.674	0.371	0.382	0.506	0.301	0.306	0.136	1.047	1.051
		RQ)(95 th percent	ile)	0.346	0.337	0.743	1.29	0.371	0.362	0.61	0.301	0.300	0.130	0.75	0.74
Control Delay (.110)	26.7	34.4	36.9	25.8	28.0	28.1	25.8	24.1	24.2	20.5	77.9	79.4
Level of Service		OII		C C	C	D D	C C	C C	C C	C C	C C	C C	C C	F	7 9.4 F
Approach Delay		/108		33.7		С	27.2		С	24.4		С	76.4		E
Intersection De				33.7		50		-	0	24.4					
intersection De	iay, S/VE	III / LUS				50	.0					L	,		

Existing -	AM			HCS7	Inters	sectio	n Sur	nmar	y						
#4 University &	140 EB I	Ramp													
Signal Informa	ition				T.				T	T					
Cycle, s	91.0	Reference Phase	2			12	ĸ				>	١ .		_	↔ .
Offset, s	0	Reference Point	End	Green	5.5	32.0	16.0	0.0	0.0	0.0		1	2	3	4
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		4.0	4.0	0.0	0.0	0.0		1	■		
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.5	1.5	1.5	0.0	0.0	0.0		5	6	7	8
Oissand Disease (D., II.4 A	and Deposite		1			1	\A/D			ND			OD	
Signal Phase S	•	na Results			EB			WB		-	NB		-	SB	
Approach Move				L	T	R	L	Т	R		T 470	R	L	T	R
Demand (v), v	en/n			55	283	243	-				476	149	176	1057	
Phase Split, s	:: D	(; /) /		0.400	24.0	0.700					32.0	0.470	20.0	32.0	
Volume-to-Cap				0.120	0.370	0.702					0.250	0.176	0.297	0.495	
		RQ) (95 th percent	ile)	0.11	0.09	0.70					0.08	0.15	0.16	0.35	
Control Delay (en		20.8	22.1	25.0					11.4	11.1	7.4	8.1	
Level of Service		// 00		C	С	С	0.0			44.6	В	В	A	A	
Approach Dela				23.2		C 40	0.0			11.3	3	В	8.0		Α
Intersection De	iay, s/ve	en / LOS				12	./						3		
#5 University &	140 WB	Ramp													
Signal Informa						21	R.								,
Cycle, s	91.0	Reference Phase	2	1	50	54	\{ \(\)	1				י	4	ĺ	Z
Offset, s	0	Reference Point	End	Green		32.0	20.4	0.0	0.0	0.0		1	2	3	4
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		4.0	4.0	0.0	0.0	0.0	- ×		ĺ		
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.5	1.5	1.5	0.0	0.0	0.0		5	6	7	8
Signal Phase S	Splits A	nd Results			EB			WB			NB			SB	
Approach Move				L	T	R	L	T	R	L	Т	R	L	T	R
Demand (v), v	eh/h						526	396	301	60	483			675	42
Phase Split, s								24.0		20.0	32.0			32.0	
Volume-to-Cap		· · ·					0.858	0.564	0.565	0.137	0.220			0.451	0.074
		RQ) (95 th percent	ile)				0.67	0.18	0.34	0.05	0.15			0.24	0.05
Control Delay (d),s/v	eh					32.2	20.9	21.1	9.4	8.4			13.6	10.7
Level of Service	e (LOS)						С	С	С	A	A			В	В
Approach Dela	y, s/veh	/ LOS		0.0			24.8	3	С	8.5		Α	13.5	5	В
Interpostion De	. ,	1 /1 00				10	4						2		

Copyright @ 2020 University of Florida, All Rights Reserved.

Intersection Delay, s/veh / LOS

HCS™ Streets Version 7.8.5

В

Generated: 4/21/2020 1:51:46 PM

18.4

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
	VVDL			INDIX	ODL	ODI
Lane Configurations	0	3	↑ ↑	420	0	0
Traffic Vol, veh/h Future Vol, veh/h	0	3	573	420	0	0
Conflicting Peds, #/hr	0	0	0	420	0	0
			Free	Free		
Sign Control RT Channelized	Stop -	Stop	Free -		Stop -	Stop None
Storage Length	-	0	-	None -	-	None
Veh in Median Storage,		-	0	-		16979
Grade, %	# 0 0	<u>-</u>	0		<u>-</u>	0
Peak Hour Factor	90	90	90	90	90	90
	2	2	2	2	2	2
Heavy Vehicles, %	0	3		467	0	
Mvmt Flow	U	3	637	407	U	0
Major/Minor N	linor1	N	//ajor1			
Conflicting Flow All	-	552	0	0		
Stage 1	-	-	-	-		
Stage 2	-	-	-	-		
Critical Hdwy	-	6.94	-	-		
Critical Hdwy Stg 1	-	-	-	-		
Critical Hdwy Stg 2	-	-	-	-		
Follow-up Hdwy	-	3.32	-	-		
Pot Cap-1 Maneuver	0	477	-	-		
Stage 1	0	-	-	-		
Stage 2	0	-	-	-		
Platoon blocked, %			-	-		
Mov Cap-1 Maneuver	-	477	-	-		
Mov Cap-2 Maneuver	-	-	-	-		
Stage 1	-	-	_	-		
Stage 2	_	_	_	-		
otago _						
A	145		N.D.			
Approach	WB		NB			
HCM Control Delay, s	12.6		0			
HCM LOS	В					
Minor Lane/Major Mvmt		NBT	NBRV	VBLn1		
Capacity (veh/h)			_			
HCM Lane V/C Ratio		_		0.007		
HCM Control Delay (s)		_	_			
HCM Lane LOS		_	_	12.0 B		
HCM 95th %tile Q(veh)		_	_	0		
TOW JOHN JOHN Q(VOII)						

Intersection						
Int Delay, s/veh	5.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	₩.	אופוז	†	אפא) j	↑ ↑
Traffic Vol, veh/h	9	147	770	229	292	764
Future Vol, veh/h	9	147	770	229	292	764
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Stop -	None	-	None	-	None
Storage Length	0	-	-	None -	150	NOHE -
Veh in Median Storage,		<u>-</u>	0	_	150	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	8	8	2	2	3	3
Mvmt Flow	10	156	819	244	311	813
Major/Minor N	/linor1	N	Major1	N	Major2	
Conflicting Flow All	1970	532	0		1063	0
Stage 1	941	-	-	-	-	-
Stage 2	1029	<u>-</u>	_	_	_	_
Critical Hdwy	6.96	7.06	_	_	4.16	_
Critical Hdwy Stg 1	5.96	7.00	_	_		_
Critical Hdwy Stg 2	5.96	_	_	_	_	_
Follow-up Hdwy	3.58	3.38	_	_	2.23	_
Pot Cap-1 Maneuver	51	477	_	_	645	_
•	326	411	_	_	043	_
Stage 1	292	-	-	-		
Stage 2	292	-	-	-	-	-
Platoon blocked, %	00	177	-	-	CAE	-
Mov Cap-1 Maneuver	26	477	-	-	645	-
Mov Cap-2 Maneuver	26	-	-	-	-	-
Stage 1	169	-	-	-	-	-
Stage 2	292	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	48.9		0		4.3	
HCM LOS	E		V		1.0	
TIOW EOO						
				VD. 4	0.01	007
NA' I /NA - ' NA	1	NIDT	NIDDU			
Minor Lane/Major Mvmt	t	NBT	NBRV		SBL	SBT
Capacity (veh/h)	t	NBT -	-	238	645	-
Capacity (veh/h) HCM Lane V/C Ratio	t	NBT - -	-	238 0.697	645 0.482	- -
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	<u>t</u>	-	-	238 0.697 48.9	645 0.482 15.7	-
Capacity (veh/h) HCM Lane V/C Ratio		-	-	238 0.697	645 0.482	-

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	100	30	12	0	2	0	4	2	0	1	2	53
Future Vol, veh/h	100	30	12	0	2	0	4	2	0	1	2	53
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	119	36	14	0	2	0	5	2	0	1	2	63
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB				WB		NB			SB		
Opposing Approach	WB				EB		SB			NB		
Opposing Lanes	1				1		1			1		
Conflicting Approach Left	SB				NB		EB			WB		
Conflicting Lanes Left	1				1		1			1		
Conflicting Approach Right	NB				SB		WB			EB		
Conflicting Lanes Right	1				1		1			1		
HCM Control Delay	8.2				7.3		7.6			7		
HCM LOS	Δ				Δ		Δ			Δ		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	67%	70%	0%	2%	
Vol Thru, %	33%	21%	100%	4%	
Vol Right, %	0%	8%	0%	95%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	6	142	2	56	
LT Vol	4	100	0	1	
Through Vol	2	30	2	2	
RT Vol	0	12	0	53	
Lane Flow Rate	7	169	2	67	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.009	0.195	0.003	0.068	
Departure Headway (Hd)	4.419	4.153	4.19	3.671	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	797	864	846	957	
Service Time	2.518	2.177	2.254	1.764	
HCM Lane V/C Ratio	0.009	0.196	0.002	0.07	
HCM Control Delay	7.6	8.2	7.3	7	
HCM Lane LOS	Α	Α	Α	Α	
HCM 95th-tile Q	0	0.7	0	0.2	

Intersection												
Int Delay, s/veh	2.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			44	
Traffic Vol, veh/h	0	317	128	1	134	0	98	1	2	0	0	2
Future Vol, veh/h	0	317	128	1	134	0	98	1	2	0	0	2
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	_	None	-	_	None	-	-	
Storage Length	_	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	_	-	0	-	-	0	-
Grade, %	_	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	86	86	86	86	86	86	86	86	86	86	86	86
Heavy Vehicles, %	6	6	6	10	10	10	3	3	3	17	17	17
Mvmt Flow	0	369	149	1	156	0	114	1	2	0	0	2
Major/Minor I	Major1		ľ	Major2			Minor1			Minor2		
Conflicting Flow All	156	0	0	518	0	0	603	602	444	603	676	156
Stage 1	-	-	-	_	-	-	444	444	_	158	158	_
Stage 2	_	-	-	_	_	-	159	158	_	445	518	_
Critical Hdwy	4.16	_	-	4.2	_	-	7.13	6.53	6.23	7.27	6.67	6.37
Critical Hdwy Stg 1	_	-	-	-	-	-	6.13	5.53	-	6.27	5.67	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.13	5.53	-	6.27	5.67	-
Follow-up Hdwy	2.254	-	-	2.29	-	-	3.527	4.027	3.327	3.653	4.153	3.453
Pot Cap-1 Maneuver	1400	-	-	1008	-	-	409	412	612	390	357	852
Stage 1	-	-	-	-	-	-	591	573	-	810	739	-
Stage 2	-	-	-	-	-	-	841	765	-	564	509	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1400	-	-	1008	-	-	408	412	612	387	357	852
Mov Cap-2 Maneuver	-	-	-	-	-	-	408	412	-	387	357	-
Stage 1	-	-	-	-	-	-	591	573	-	810	738	-
Stage 2	-	-	-	-	-	-	838	764	-	561	509	-
-												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0.1			17.2			9.2		
HCM LOS							С			А		
Minor Lane/Major Mvm	nt l	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR :	SBL _{n1}			
Capacity (veh/h)		411	1400	-	-	1008	-	-	852			
HCM Lane V/C Ratio		0.286	-	-	-	0.001	-	-	0.003			
HCM Control Delay (s)		17.2	0	-	-	8.6	0	-	9.2			
HCM Lane LOS		С	Α	-	-	Α	Α	-	Α			
HCM 95th %tile Q(veh))	1.2	0	-	-	0	-	-	0			

Intersection				
Intersection Delay, s/veh	6.4			
Intersection LOS	Α			
Approach	EB	WB	NB	SB
Entry Lanes	1	1	1	1
Conflicting Circle Lanes	1	1	1	1
Adj Approach Flow, veh/h	118	312	512	138
Demand Flow Rate, veh/h	122	319	528	147
Vehicles Circulating, veh/h	326	193	104	331
Vehicles Exiting, veh/h	152	439	344	181
Ped Vol Crossing Leg, #/h	0	0	0	0
Ped Cap Adj	1.000	1.000	1.000	1.000
Approach Delay, s/veh	4.9	5.9	7.3	5.3
Approach LOS	Α	Α	Α	Α
Lane	Left	Left	Left	Left
Decimated Mayor				
Designated Moves	LTR	LTR	LTR	LTR
Assumed Moves	LTR LTR	LTR LTR	LTR LTR	LTR LTR
Assumed Moves				
Assumed Moves RT Channelized	LTR	LTR	LTR	LTR
Assumed Moves RT Channelized Lane Util	LTR 1.000	LTR 1.000	LTR 1.000	LTR 1.000
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s	LTR 1.000 2.609	LTR 1.000 2.609	LTR 1.000 2.609	LTR 1.000 2.609
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s	1.000 2.609 4.976	LTR 1.000 2.609 4.976	LTR 1.000 2.609 4.976	LTR 1.000 2.609 4.976
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h	1.000 2.609 4.976 122	1.000 2.609 4.976 319	LTR 1.000 2.609 4.976 528	1.000 2.609 4.976 147
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h	1.000 2.609 4.976 122 990 0.964 118	1.000 2.609 4.976 319 1133 0.979	1.000 2.609 4.976 528 1241 0.970	1.000 2.609 4.976 147 985 0.938 138
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h	1.000 2.609 4.976 122 990 0.964 118 954	1.000 2.609 4.976 319 1133 0.979	1.000 2.609 4.976 528 1241 0.970 512 1204	1.000 2.609 4.976 147 985 0.938 138 924
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h	1.000 2.609 4.976 122 990 0.964 118	1.000 2.609 4.976 319 1133 0.979	1.000 2.609 4.976 528 1241 0.970	1.000 2.609 4.976 147 985 0.938 138
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio Control Delay, s/veh	1.000 2.609 4.976 122 990 0.964 118 954	1.000 2.609 4.976 319 1133 0.979 312 1110	1.000 2.609 4.976 528 1241 0.970 512 1204 0.425 7.3	1.000 2.609 4.976 147 985 0.938 138 924
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio	1.000 2.609 4.976 122 990 0.964 118 954 0.123	1.000 2.609 4.976 319 1133 0.979 312 1110 0.281	1.000 2.609 4.976 528 1241 0.970 512 1204 0.425	1.000 2.609 4.976 147 985 0.938 138 924 0.149

Intersection						
Int Delay, s/veh	0					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LUL		***	וטייי	ODL	7
Traffic Vol, veh/h	0	0	4TT 0	0	0	0
Future Vol, veh/h	0	0	0	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-		-		-	None
Storage Length	-	-	_	-	-	0
Veh in Median Storage	e, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	0	0	0	0	0
Major/Minor I	Major1		Major2	ı	/linor2	
				0		1
Conflicting Flow All	-	0	-		-	I
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	7.14
Critical Hdwy	-	-	-	-	-	
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-		3.92
Follow-up Hdwy Pot Cap-1 Maneuver	0	-	-	-	0	917
	0	-	-	-	0	917
Stage 1 Stage 2	0	-	-	-	0	-
Platoon blocked, %	U	_	_	-	U	-
Mov Cap-1 Maneuver	_	-	-		_	917
Mov Cap-1 Maneuver	-	_	-	-	_	311
Stage 1	-	_	_	-		_
Stage 2	_	_	_	_	_	_
Stage 2	-	-	-	_	_	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS					Α	
Minor Lane/Major Mvm	nt	EBT	WBT	WBR S	SBLn1	
Capacity (veh/h)		_	_	_	_	
HCM Lane V/C Ratio		_	_	_	_	
HCM Control Delay (s)		-	-	_	0	
HCM Lane LOS		-	-	_	A	
HCM 95th %tile Q(veh)	-	-	-	-	
(101)	,					

Intersection						
Int Delay, s/veh	0.1					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	*	ተተተ	ተተኈ			7
Traffic Vol, veh/h	9	1002	1441	4	0	5
Future Vol, veh/h	9	1002	1441	4	0	5
Conflicting Peds, #/hr		0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	50	-	_	-	-	0
Veh in Median Storag	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	_
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	4	4	2	2	2	2
Mvmt Flow	10	1113	1601	4	0	6
				•		¥.
					0	
Major/Minor	Major1		Major2		/linor2	
Conflicting Flow All	1605	0	-	0	-	803
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	5.38	-	-	-	-	7.14
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	3.14	-	-	-	-	3.92
Pot Cap-1 Maneuver	194	-	-	-	0	280
Stage 1	-	-	-	-	0	-
Stage 2	-	-	-	-	0	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	194	-	-	-	-	280
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	_	-	-	-	-
3 13 9						
A I			\A/D		0.5	
Approach	EB		WB		SB	
HCM Control Delay, s	0.2		0		18.1	
HCM LOS					С	
Minor Lane/Major Mvi	mt	EBL	EBT	WBT	WBR :	SBLn1
Capacity (veh/h)		194	-	-	_	280
HCM Lane V/C Ratio		0.052	-	-	_	0.02
HCM Control Delay (s	s)	24.6	_	-	_	18.1
HCM Lane LOS	,	С	-	-	-	С
HCM 95th %tile Q(vel	n)	0.2	-	-	-	0.1

Intersection						
Int Delay, s/veh	1.4					
		CDT	MOT	WED	ODI	000
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	^	†	^	_	_	7
Traffic Vol, veh/h	0	0	1377	0	0	81
Future Vol, veh/h	0	0	1377	0	0	81
Conflicting Peds, #/hr	_ 0	_ 0	_ 0	_ 0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	2	2	25	25
Mvmt Flow	0	0	1481	0	0	87
		_		_		
	ajor1		Major2		/linor2	
Conflicting Flow All	-	0	-	0	-	741
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	7.6
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	<u>-</u>	-	-	_	4.15
Pot Cap-1 Maneuver	0	_	-	0	0	270
Stage 1	0	_	_	0	0	
Stage 2	0	_	_	0	0	_
Platoon blocked, %	U	_	_	- 0	U	
Mov Cap-1 Maneuver	_	-	-	_	_	270
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		24.6	
HCM LOS	U		- 0		C C	
TIOIVI LOO					U	
Minor Lane/Major Mvmt		EBT	WBT	SBLn1		
Capacity (veh/h)		-	-	270		
HCM Lane V/C Ratio		_	_	0.323		
HCM Control Delay (s)		_	-	24.6		
HCM Lane LOS		_	-	С		
HCM 95th %tile Q(veh)		_	_	1.3		
How John June Q(Ven)				1.0		

Intersection						
Int Delay, s/veh	0.7					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ነ		↑ ↑	וטיי	ODL	7
Traffic Vol, veh/h	55	686	1377	31	0	0
Future Vol, veh/h	55	686	1377	31	0	0
Conflicting Peds, #/hr	0	000	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	150	-		-	_	0
Veh in Median Storage		0	0	_	0	-
Grade, %		0	0	<u>-</u>	0	_
Peak Hour Factor	93	93	93	93	93	93
		5	25	25		2
Heavy Vehicles, %	5				2	
Mvmt Flow	59	738	1481	33	0	0
Major/Minor I	Major1		Major2	N	/linor2	
Conflicting Flow All	1514	0	-	0	_	757
Stage 1	_	-	-	_	-	_
Stage 2	_	_	-	-	_	_
Critical Hdwy	5.4	_	_	_	_	7.14
Critical Hdwy Stg 1	-	-	_	_	_	-
Critical Hdwy Stg 2	_	_	_	_	_	_
Follow-up Hdwy	3.15	_	_	_	_	3.92
Pot Cap-1 Maneuver	213	_		_	0	300
Stage 1	210	_	_	<u>-</u>	0	-
Stage 2	_	_		_	0	-
Platoon blocked, %	-	-	-		U	-
	042	-	-	-		200
Mov Cap-1 Maneuver	213	-	-	-	-	300
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay, s	2.1		0		0	
HCM LOS	2.1		U		A	
TIOWI LOO						
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR:	SBLn1
Capacity (veh/h)		213	-	-	-	-
HCM Lane V/C Ratio		0.278	-	-	-	-
HCM Control Delay (s)		28.3	-	-	-	0
HCM Lane LOS		D	-	-	-	Α
HCM 95th %tile Q(veh))	1.1	-	-	-	-

Volume-to-Capacity Ratio (X) 0.693 0.722 0.000 0.504 0.000 0.156 0.163 0.170 Queue Storage Ratio (RQ) (95 th percentile) 0.23 0.22 0.00 0.33 0.00 0.05 0.05 0.05 Control Delay (d) , s/veh 30.5 31.0 0.0 30.4 8.8 8.9 9.0 Level of Service (LOS) C C C C A A A Approach Delay, s/veh / LOS 30.7 C 30.4 C 0.0 8.9 A Intersection Delay, s/veh / LOS 19.0 B B #2 125 SB Frontage & S I40 Frontage Signal Information Cycle, s OR Reference Phase Queue Storage Ratio (RQ) (95 th percentile) OR Reference Point End Uncoordinated Yes Simult. Gap E/W On Intersection Delay, s/veh / LOS OR Reference Phase 2 OR Reference Point End Uncoordinated Yes Simult. Gap E/W OR Reference Point Yellow 4.0 Intersection Delay, s/veh / LOS OR Reference Point End OR Reference Point Yellow 4.0 Intersection Delay, s/veh / LOS OR Reference Point End OR Reference Point Yellow 4.0 Intersection Delay, s/veh / LOS OR Reference Point Yellow 4.0 Intersection Delay, s/veh / LOS OR Reference Point Yellow 4.0 Intersection Delay, s/veh / LOS OR Referenc	Existing -	PM			HCS7	Inters	sectio	n Sur	nmar	у						
Signal Information	#1 Locust & Mo	ıntain														
Cycles 2.5 Reference Phase 2 Offset S Offse	_				г	ГП	Г	Γ	Γ	Т	Г					
Offset S			Poforonco Phaso	2		l .	, ⊱	1						KŤ		
Uncoordinated Yes	-	_		_		;							1	2	3	4
Signal Phase Splits And Results				-												
Signal Phase Spits And Results		_		-		-			-	-		_	² KT	X	7	2 8
Approach Movement	1 orce wode	1 IXCU	Simult. Gap 14/5	OII	Reu	2.0	2.0	2.0	10.0	0.0	10.0			0	,	8
Demand (v), veh/h	Signal Phase S	Splits A	nd Results			EB			WB			NB			SB	
Phase Split. s Phase Split. s	Approach Move	ment			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Volume-to-Capacity Ratio (X)	Demand (v), v	eh/h				209	69	0	81		0	0		28	631	142
Queue Storage Ratio (RQ) (95 th percentile)	Phase Split, s					24.0			24.0			36.0			36.0	
Signal Phase Splits And Results	Volume-to-Capa	acity Ra	tio (X)			0.693	0.722	0.000	0.504			0.000		0.156	0.163	0.170
Level of Service (LOS)	Queue Storage	Ratio (RQ) (95 th percent	tile)		0.23	0.22	0.00	0.33			0.00		0.05	0.05	0.05
Approach Delay, siveh / LOS	Control Delay (d),s/v	eh			30.5	31.0	0.0	30.4					8.8	8.9	9.0
Signal Phase Splits And Results	Level of Service	(LOS)				С	С		С					Α	Α	Α
#2 125 SB Frontage & S 40 Frontage Signal Information	Approach Delay	, s/veh	/ LOS		30.7		С	30.4	i	С	0.0			8.9		Α
Signal Information	Intersection De	lay, s/ve	h / LOS				19	.0					E	3		
Signal Information					1											
Cycle, s 58.0 Reference Phase 2 2 2 2 3 3 3 4 4 4 4 4 4 4		_	I40 Frontage		1-	1										
Cycle, s So. Reference Prints End Green 12.0 11.9 0.0	Signal Informa	tion				72										
Offset S O Reference Point End Ves Simult. Gap E/W On Vellow 4.0 4.0 0.0	Cycle, s	58.0	Reference Phase	2		54	\bowtie						- ₹	1	-	\rightarrow \downarrow
Uncoordinated Yes Simult. Gap E/W On Red 1.0 1.0 0	Offset, s	0	Reference Point	End	Green	:		0.0	0.0	0.0	0.0		-		3	3 "
Signal Phase Splits And Results	Uncoordinated	Yes	Simult. Gap E/W	On			-							ST .		
Approach Movement	Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	0.0	0.0	0.0	0.0		5	6	7	8
Approach Movement																
Demand (v), veh/h		-	nd Results			_						_				
Phase Split, s					L		-	<u> </u>		R			R			R
Volume-to-Capacity Ratio (X) 0.292 0.195 0.000 0.092 0.266 Queue Storage Ratio (RQ) (95 th percentile) 0.03 0.05 0.00 0.00 0.02 0.04 Control Delay (d) , s/veh 8.0 7.7 0.0 7.4 7.8 Level of Service (LOS) A A A A A A Approach Delay, s/veh / LOS 7.9 A 0.0 0.0 7.8 A Intersection Delay, s/veh / LOS 7.9 A 0.0 0.0 7.8 A Signal Information Cycle, s 58.0 Reference Phase 2 2 6reen 12.0 0.0		eh/h					101				0	_		67	-	
Queue Storage Ratio (RQ) (95 th percentile) 0.03 0.05 0.00 0.02 0.04 Control Delay (d) , s/veh 8.0 7.7 7.4 7.8 1.4 7.8 Level of Service (LOS) A <td></td>																
Control Delay (d) , s/veh 8.0 7.7			, ,				-									
A A A A A A A A A A A				tile)		_						0.00		<u> </u>	<u> </u>	
Approach Delay, s/veh / LOS 7.9 A 0.0 0.0 7.8 A Intersection Delay, s/veh / LOS 7.9 A Intersection Delay, s/veh / LOS 7.9 A A Intersection Delay, s/veh / LOS 7.9 A Intersection Delay, s/veh / LOS 7.9 A A A Intersection Delay, s/veh / LOS 7.9 A A Intersection Delay, s/veh / LOS 7.9 A A Intersection Delay, s/veh / LOS 7.9 A A Intersection Delay, s/veh / LOS 7.9 A A Intersection Delay, s/veh / LOS 7.9 A A Intersection Delay, s/veh / LOS 7.9 A A Intersection Delay, s/veh / LOS 7.9 A Intersection Delay (0 , s/veh LOS			eh			_										
Intersection Delay, s/veh / LOS		_ , _ ,				A								-		
3 125 SB Frontage & N 140 Frontage					7.9						0.0					Α
Signal Information	Intersection De	lay, s/ve	eh / LOS				7.	9						٩		
Signal Information	#3 I25 SB Front	age & N	I I40 Frontage													
Cycle, s 58.0 Reference Phase 2									1	1						
Offset, s 0 Reference Point Uncoordinated Yes End Simult. Gap E/W On Yellow 4.0 0.0			Reference Phase	2		⊱	1									ŀ
Uncoordinated Yes Simult. Gap E/W On Yellow 4.0 0.0				_	<u> </u>								1	2	3	4
Force Mode Fixed Simult. Gap N/S On Red 1.0 0.0				-												
Signal Phase Splits And Results EB WB NB SB Approach Movement L T R L T L D L L D L L D L D L D D D		_		-	1	-			-				5	6	7	8
Approach Movement L T R D D D			- 1				10.0	10.0	10.0	0.0	10.0					
Demand (v), veh/h 65 552 315 124 Phase Split, s 24.0 24.0 24.0 Volume-to-Capacity Ratio (X) 0.113 0.470 0.274 0.241 Queue Storage Ratio (RQ) (95 th percentile) 0.01 0.05 0.03 0.07 Control Delay (d) , s/veh 7.4 8.6 7.9 7.9 Level of Service (LOS) A A A A A Approach Delay, s/veh / LOS 0.0 8.5 A 0.0 7.9 A	Signal Phase S	Splits A	nd Results			EB			WB			NB			SB	
Phase Split, s 24.0 24.0 24.0 24.0 24.0 24.0 24.0 0.274 0.241 0.241 0.274 0.241 0.241 0.01 0.05 0.03 0.07 0.03 0.07 0.01 0.05 0.03 0.07 0.03 0.03 0.07 0.03 <td< td=""><td>Approach Move</td><td>ment</td><td></td><td></td><td>L</td><td>Т</td><td>R</td><td>L</td><td>Т</td><td>R</td><td>L</td><td>Т</td><td>R</td><td>L</td><td>T</td><td>R</td></td<>	Approach Move	ment			L	Т	R	L	Т	R	L	Т	R	L	T	R
Volume-to-Capacity Ratio (X) 0.113 0.470 0.274 0.241 Queue Storage Ratio (RQ) (95 th percentile) 0.01 0.05 0.03 0.07 Control Delay (d) , s/veh 7.4 8.6 7.9 7.9 Level of Service (LOS) A A A A Approach Delay, s/veh / LOS 0.0 8.5 A 0.0 7.9 A	Demand (v), v	eh/h						65	552						315	124
Queue Storage Ratio (RQ) (95 th percentile) 0.01 0.05 0.03 0.07 Control Delay (d) , s/veh 7.4 8.6 7.9 7.9 Level of Service (LOS) A A A A A Approach Delay, s/veh / LOS 0.0 8.5 A 0.0 7.9 A	Phase Split, s								24.0						24.0	
Control Delay (d) , s/veh 7.4 8.6 7.9 7.9 Level of Service (LOS) A	Volume-to-Capa	acity Ra	tio (X)					0.113	0.470						0.274	0.241
Level of Service (LOS) A				tile)				0.01								0.07
Approach Delay, s/veh / LOS 0.0 8.5 A 0.0 7.9 A	Control Delay (d),s/v	eh					7.4	8.6						7.9	7.9
		. ,						-							Α	A
Intersection Delay, s/veh / LOS 8.3 A					0.0					Α	0.0			7.9		Α
	Intersection De	lay, s/ve	h / LOS				8.	3					-	4		

Existing -	PM			HCS7	Inters	sectio	n Sur	nmar	у						
#1 Lomas & Loc	ruet														
Signal Informa					<u> </u>	Г	ГШ	Т	Т	Т					
Cycle, s	120.0	Reference Phase	2	1	⊱	L. 😓	242					_			Љ
Offset, s	64	Reference Point	End			F3						1	2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Green		74.8	21.5	0.0	0.0	0.0					ł
Force Mode	Fixed	Simult. Gap N/S	On	Yellow Red	4.0 1.0	4.0 1.0	2.0	0.0	0.0	0.0	-	- i		7	۰
1 orce wode	1 IXEU	Simult. Gap 14/5	OII	Reu	1.0	1.0	2.0	0.0	0.0	10.0		3	0	,	•
Signal Phase S	Splits A	nd Results			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h				1131	242	225	1163					311	294	245
Phase Split, s					49.2		30.0	79.2						40.8	
Volume-to-Capa	acity Ra	tio (X)			0.443	0.443	0.774	0.337					0.846	0.669	0.743
Queue Storage	Ratio (RQ) (95 th percent	tile)		0.27	0.27	0.53	0.22					0.33	0.26	1.02
Control Delay (d),s/v	eh			5.6	6.3	20.9	3.8					51.2	46.3	48.0
Level of Service	e (LOS)				А	А	С	Α					D	D	D
Approach Delay	y, s/veh	/LOS		5.8		Α	6.6		Α	0.0			48.2	2	D
Intersection De	lay, s/ve	h / LOS				16	.1	,				E	В		
#2 Lomas & Oal				10-	-			-							
Signal Informa	ition				7	. ⊱							_		
Cycle, s	120.0	Reference Phase	2		F	≃ ≆ `	512						4	2	Y
Offset, s	49	Reference Point	End	Green	10.5	79.1	15.4	0.0	0.0	0.0		- 1	K	3	- 4
Uncoordinated	No	Simult. Gap E/W	On	Yellow		4.0	4.0	0.0	0.0	0.0	/	• •			
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	1.0	0.0	0.0	0.0		5	6	7	8
Signal Phase S	-	nd Results			EB			WB	1		NB			SB	г
Approach Move				L	T	R	L	Т	R	ᆫ	T	R	L	Т	R
Demand (v), v	eh/h			348	1097			1266	436	123	321	146			
Phase Split, s				31.2	73.2			42.0			46.8				
Volume-to-Capa				0.834	0.291			0.400	0.443	0.460	0.802	0.768			
		RQ) (95 th percent	tile)	0.29	0.28			0.15	0.47	0.45	0.24	0.30			
Control Delay (<u>eh</u>		11.4	4.4			7.2	2.3	49.0	52.0	52.8			
Level of Service				В	A			Α	A	D	D	D	<u> </u>	<u></u>	
Approach Delay				6.1		Α	5.9		Α	51.7		D	0.0		
Intersection De	lay, s/ve	h/LOS				13	.3					<u> </u>	В		
#3 Lomas & Uni	ivorcity														
Signal Informa						F.				1 11:					
Cycle, s	120.0	Reference Phase	2	1	L7 ~	}	. 🤻 🕃	2				_ ,	A		KŤ2
Offset, s	120.0	Reference Point	End	<u> </u>	2	2	5	5		- Fifth	7	T ₁ T	2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Green		2.5	41.4	12.9	0.5	35.5			S _		\mathbf{A}
Force Mode	Fixed	Simult. Gap E/W	On	Yellow Red	3.0 0.5	0.0	4.5 1.0	3.0 0.5	0.0	4.5 1.0	/	5		\ _ \ '	t Ta
1 orce wode	1 IXCU	Simult. Gap 14/5	OII	Reu	0.5	0.0	1.0	0.5	0.0	1.0		5	0	1	٥
Signal Phase S	Splits A	nd Results			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (<i>v</i>), v	eh/h			154	1017	155	215	1176	169	213	586	287	222	588	311
Phase Split, s				24.0	43.2		16.8	36.0		20.4	42.0		18.0	39.6	
Volume-to-Capa	acity Ra	tio (X)		0.688	0.659	0.660	0.743	0.709	0.709	0.887	0.599	0.498	0.658	0.916	0.916
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.93	0.35	0.32	1.63	1.27	1.34	2.51	0.63	0.55	1.36	1.64	1.50
Control Delay (d),s/v	eh		29.9	29.3	30.4	31.0	37.3	45.2	49.1	36.7	27.8	29.4	58.3	60.1
Level of Service	e (LOS)			С	С	С	С	D	D	D	D	С	С	Е	Е
Approach Delay	y, s/veh	/ LOS		29.7		С	38.6	i	D	36.8	3	D	53.3	3	D
Intersection De	lay, s/ve	h / LOS				39	.2						5		

#4 Lomas & Yale	R 370
Signal Information Cycle, s 120.0 Reference Phase 2 Offset, s 50 Reference Point End Uncoordinated No Simult. Gap E/W On Yellow 3.0 3.0 4.0 3.0 3.0 3.5 3.5 Force Mode Fixed Simult. Gap N/S On Red 0.5 0.5 1.5 0.5 0.5 0.5 2.0 Signal Phase Splits And Results EB WB NB SB Red NB SB NB SB NB SB NB SB NB SB NB N	370
Cycle, s 120.0 Reference Phase 2 Offset, s 50 Reference Point End Uncoordinated No Simult. Gap E/W On Force Mode Fixed Simult. Gap N/S On Red 0.5 0.5 1.5 0.5 0.5 2.0 Signal Phase Splits And Results EB WB NB SB Approach Movement L T R <t< td=""><td>370</td></t<>	370
Offset, s 50 Reference Point Uncoordinated No Simult. Gap E/W On Simult. Gap E/W On Force Mode Incompany of Simult. Gap Incompany of Simult. Gap N/S On Red 0.5 0.5 1.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	370
Uncoordinated No Simult Gap E/W On Force Mode Fixed Simult. Gap N/S On Red 0.5 0.5 1.5 0.5 0.5 0.5 2.0 5 6 7 Signal Phase Splits And Results EB WB NB SB Approach Movement L T R L T R L T R L T Demand (v), veh/h 166 1204 104 60 1001 80 101 36 69 166 60 Phase Split, s 21.6 44.4 21.6 44.4 18.0 36.0 18.0 36.0 Volume-to-Capacity Ratio (X) 0.542 0.530 0.530 0.265 0.482 0.483 0.808 0.120 0.206 0.871 0.143 Queue Storage Ratio (RQ) (95 th percentile) 0.28 0.40 0.35 0.22 0.33 0.32 1.35 0.15 3.29 2.84 0.37 Control Delay (d) , s/veh 17.5 15.5 14.3 18.7 26.4 26.9 59.1 37.0 37.8 79.6 33.6 Level of Service (LOS) B B B B C C E D D E C Approach Delay, s/veh / LOS 15.4 B 26.2 C 48.1 D 66.8 Intersection Delay, s/veh / LOS 30.1	370
Uncoordinated No Simult. Gap E/W On Yellow 3.0 3.0 4.0 3.0 3.0 3.5 3.5	370
Signal Phase Splits And Results EB WB NB SB Approach Movement L T R L L D D <	370
Approach Movement L T R L D C	370
Demand (v), veh/h 166 1204 104 60 1001 80 101 36 69 166 60 Phase Split, s 21.6 44.4 21.6 44.4 18.0 36.0 18.0 36.0 Volume-to-Capacity Ratio (X) 0.542 0.530 0.530 0.265 0.482 0.483 0.808 0.120 0.206 0.871 0.143 Queue Storage Ratio (RQ) (95 th percentile) 0.28 0.40 0.35 0.22 0.33 0.32 1.35 0.15 3.29 2.84 0.37 Control Delay (d), s/veh 17.5 15.5 14.3 18.7 26.4 26.9 59.1 37.0 37.8 79.6 33.6 Level of Service (LOS) B B B C C E D D E C Approach Delay, s/veh / LOS 15.4 B 26.2 C 48.1 D 66.8 Intersection Delay, s/veh / LOS 30.1 C C C<	370
Phase Split, s 21.6 44.4 21.6 44.4 18.0 36.0 18.0 36.0 Volume-to-Capacity Ratio (X) 0.542 0.530 0.530 0.265 0.482 0.483 0.808 0.120 0.206 0.871 0.143 Queue Storage Ratio (RQ) (95 th percentile) 0.28 0.40 0.35 0.22 0.33 0.32 1.35 0.15 3.29 2.84 0.37 Control Delay (d), s/veh 17.5 15.5 14.3 18.7 26.4 26.9 59.1 37.0 37.8 79.6 33.6 Level of Service (LOS) B B B B C C E D D E C Approach Delay, s/veh / LOS 15.4 B 26.2 C 48.1 D 66.8 Intersection Delay, s/veh / LOS 30.1 C	
Volume-to-Capacity Ratio (X) 0.542 0.530 0.530 0.265 0.482 0.483 0.808 0.120 0.206 0.871 0.143 Queue Storage Ratio (RQ) (95 th percentile) 0.28 0.40 0.35 0.22 0.33 0.32 1.35 0.15 3.29 2.84 0.37 Control Delay (d) , s/veh 17.5 15.5 14.3 18.7 26.4 26.9 59.1 37.0 37.8 79.6 33.6 Level of Service (LOS) B B B B C C E D D E C Approach Delay, s/veh / LOS 15.4 B 26.2 C 48.1 D 66.8 Intersection Delay, s/veh / LOS 30.1 C C C C	0.936
Queue Storage Ratio (RQ) (95 th percentile) 0.28 0.40 0.35 0.22 0.33 0.32 1.35 0.15 3.29 2.84 0.37 Control Delay (d) , s/veh 17.5 15.5 14.3 18.7 26.4 26.9 59.1 37.0 37.8 79.6 33.6 Level of Service (LOS) B B B B C C E D D E C Approach Delay, s/veh / LOS 15.4 B 26.2 C 48.1 D 66.8 Intersection Delay, s/veh / LOS 30.1 C	0.936
Control Delay (d) , s/veh 17.5 15.5 14.3 18.7 26.4 26.9 59.1 37.0 37.8 79.6 33.6 Level of Service (LOS) B B B B C C E D D E C Approach Delay, s/veh / LOS 15.4 B 26.2 C 48.1 D 66.8 Intersection Delay, s/veh / LOS 30.1 C	
Control Delay (d) , s/veh 17.5 15.5 14.3 18.7 26.4 26.9 59.1 37.0 37.8 79.6 33.6 Level of Service (LOS) B B B B C C E D D E C Approach Delay, s/veh / LOS 15.4 B 26.2 C 48.1 D 66.8 Intersection Delay, s/veh / LOS 30.1 C	5.75
Level of Service (LOS) B B B B C C E D D E C Approach Delay, s/veh / LOS 15.4 B 26.2 C 48.1 D 66.8 Intersection Delay, s/veh / LOS 30.1 C #5 Lomas & Stanford Signal Information	66.4
Approach Delay, s/veh / LOS Intersection Delay, s/veh / LOS #5 Lomas & Stanford Signal Information	E
Intersection Delay, s/veh / LOS #5 Lomas & Stanford Signal Information	E
Signal Information	
Signal Information	
Cycle, s 120.0 Reference Phase 2	K 2
	4
Green 0.9 1.5 86.9 16.7 0.0 0.0	Ţ
Uncoordinated No Simult. Gap E/W On Yellow 3.0 0.0 4.0 3.5 0.0 0.0	
Force Mode Fixed Simult. Gap N/S On Red 0.5 0.0 1.0 2.0 0.0 0.0 5 6 7	8
Signal Phase Splits And Results EB WB NB SB	
Approach Movement L T R L T R L T	R
Demand (v), veh/h 10 1314 125 43 965 15 201 84 6	14
Phase Split, s 18.0 66.0 18.0 66.0 36.0 36.0	
Volume-to-Capacity Ratio (X) 0.024 0.381 0.381 0.167 0.260 0.260 0.700 0.407 0.021	0.068
Queue Storage Ratio (RQ) (95 th percentile) 0.02 0.36 0.36 0.05 0.07 0.07 3.79 1.61 0.25	0.59
Control Delay (d) , s/veh 4.5 13.9 15.2 6.5 3.2 3.3 51.6 47.6 44.6	44.9
Level of Service (LOS) A B B A A A D D D	D
Approach Delay, s/veh / LOS 14.2 B 3.4 A 50.4 D 44.8	D
Intersection Delay, s/veh / LOS 14.2 B	
#6 Lomas & Girard	
Signal Information	\mathbf{L}
Signal Information Cycle, s 120.0 Reference Phase 2	
Signal Information Cycle, s 120.0 Reference Phase 2 Offset, s 110 Reference Point End Green 4.7 3.2 55.2 7.2 0.4 31.7	4
Signal Information Cycle, s 120.0 Reference Phase 2 Offset, s 110 Reference Point End Uncoordinated No Simult. Gap E/W On Yellow 3.0 0.0 4.0 3.0 0.0 3.5	↓
Signal Information Cycle, s 120.0 Reference Phase 2 Offset, s 110 Reference Point End Green 4.7 3.2 55.2 7.2 0.4 31.7	ф *
Signal Information Cycle, s 120.0 Reference Phase 2 Offset, s 110 Reference Point End Uncoordinated No Simult. Gap E/W On Yellow 3.0 0.0 4.0 3.0 0.0 3.5	\ 4 \P 8
Signal Information Cycle, s 120.0 Reference Phase 2 Offset, s 110 Reference Point End Uncoordinated No Simult. Gap E/W On Force Mode Fixed Simult. Gap N/S On Red 0.5 0.0 1.0 0.5 0.0 2.0 5 6 7	4 \\P_8
Signal Information Cycle, s 120.0 Reference Phase 2 Offset, s 110 Reference Point End Uncoordinated No Simult. Gap E/W On Green 4.7 3.2 55.2 7.2 0.4 31.7 Yellow 3.0 0.0 4.0 3.0 0.0 3.5 Force Mode Fixed Simult. Gap N/S On Red 0.5 0.0 1.0 0.5 0.0 2.0 5 6 7 Signal Phase Splits And Results EB WB NB SB	**************************************
Signal Information Cycle, s 120.0 Reference Phase 2 Offset, s 110 Reference Point End Uncoordinated No Simult. Gap E/W On Force Mode Fixed Simult. Gap N/S On Red 0.5 0.0 1.0 0.5 0.0 2.0 Signal Phase Splits And Results EB WB Approach Movement L T R L	
Signal Information Cycle, s 120.0 Reference Phase 2 Offset, s 110 Reference Point End Uncoordinated No Simult. Gap E/W On Force Mode Fixed Simult. Gap N/S On Red 0.5 0.0 1.0 0.5 0.0 2.0 5 6 7 Signal Phase Splits And Results EB WB NB SB Approach Movement L T R L T R L T R L T R L T Demand (v), veh/h 164 1062 138 78 686 75 102 295 117 109 281	
Signal Information Cycle, s 120.0 Reference Phase 2 Offset, s 110 Reference Point End Uncoordinated No Simult. Gap E/W On Fellow 3.0 0.0 4.0 3.0 0.0 3.5 Force Mode Fixed Simult. Gap N/S On Red 0.5 0.0 1.0 0.5 0.0 2.0 5 6 7 Signal Phase Splits And Results EB WB NB NB SB Approach Movement L T R L T R L T R L T R L T R L T R L T R L T R L T R 102 295 117 109 281 Phase Split, s 18.0 52.0 18.0 52.0 18.0 32.0 18.0 32.0	
Signal Information Cycle, s 120.0 Reference Phase 2 Offset, s 110 Reference Point End Uncoordinated No Simult. Gap E/W On Force Mode Fixed Simult. Gap N/S On Red 0.5 0.0 1.0 0.5 0.0 2.0 5 6 7 Signal Phase Splits And Results EB WB NB NB SB Approach Movement L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R 18.0 32.0 18.0 32.0 18.0 32.0 18.0 32.0 18.0 32.0 18.0 32.0 18.0 32.0 0.606 0.837	
Signal Information Cycle, s 120.0 Reference Phase 2 Offset, s 110 Reference Point End Uncoordinated No Simult. Gap E/W On Force Mode Fixed Simult. Gap N/S On Red 0.5 0.0 1.0 0.5 0.0 2.0 Signal Phase Splits And Results EB WB NB SB Approach Movement L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L N <td< td=""><td></td></td<>	
Signal Information Cycle, s 120.0 Reference Phase 2 Offset, s 110 Reference Point End Uncoordinated No Simult. Gap E/W On Force Mode Fixed Simult. Gap N/S On Red 0.5 0.0 1.0 0.5 0.0 2.0 Signal Phase Splits And Results EB WB NB SB Approach Movement L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L	

Existing -	PM			HCS7	Inter	sectio	n Sur	nmar	у						
#1 Oak & Moun	tain														
Signal Informa	ation								T	T					
Cycle, s	75.0	Reference Phase	2		<u> 5</u> ⊕	⊨⊰							\mathbf{V}		4
Offset, s	0	Reference Point	End	Green	:1	5.3	0.0	0.0	0.0	0.0		1	2	3	4
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		4.0	0.0	0.0	0.0	0.0	_		■		
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	0.0	0.0	0.0	0.0	0.0		5	6	7	8
				4											
Signal Phase \$	Splits A	nd Results			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	T	R
Demand (<i>v</i>), v	eh/h			235	0					81	987		0	0	
Phase Split, s					30.0						36.0			36.0	
Volume-to-Cap	acity Ra	ntio (X)		0.415	0.000					0.076	0.571			0.000	
Queue Storage	Ratio (RQ) (95 th percent	tile)	0.12	0.00					0.01	0.06			0.00	
Control Delay (d),s/v	reh		11.3	0.0					3.6	4.9				
Level of Service	e (LOS)			В						Α	Α				
Approach Delay	y, s/veh	/LOS		11.3		В	0.0			4.8		Α	0.0		
Intersection De	lay, s/ve	eh / LOS				6.	0						À		

Copyright © 2020 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.8.5

Generated: 4/21/2020 1:52:13 PM

Existing -	PM			HCS7	Inters	sectio	n Sur	nmar	у							
#1 University 8	LacLon	225														
#1 University & Signal Informa		lias		Г	ГП	F 6	Г	Т	Т	Т						
		Deference Dhace	2	1	215	₹ ⊱							KŤ2		7	
Cycle, s	66.0	Reference Phase	2		<u>"</u>							1	2	3	❤ ₄	
Offset, s	0	Reference Point	End	Green		7.7	0.0	0.0	0.0	0.0		1			<u> </u>	
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow	-	3.5	0.0	0.0	0.0	0.0	-	1	Y	_		
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	2.0	0.0	0.0	0.0	0.0		5	6	7	8	
Signal Phase S	Splits A	nd Results			EB			WB			NB			SB		
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R	
Demand (v), v	eh/h			21	8	3	176	30	88	8	718	100	64	819	39	
Phase Split, s					24.0			24.0			32.0			32.0		
Volume-to-Capa	acity Ra	tio (X)			0.065			0.417	0.275	0.020	0.340	0.343	0.151	0.353	0.355	
Queue Storage	Ratio (RQ) (95 th percent	ile)		0.02			0.15	0.52	0.01	0.02	0.02	0.08	0.03	0.03	
Control Delay (d),s/v	eh			10.2			12.0	10.9	4.9	3.8	3.8	6.9	5.6	5.7	
Level of Service					В			В	В	Α	Α	А	Α	Α	Α	
Approach Delay	y, s/veh	/ LOS		10.2		В	11.7		В	3.8		Α	5.7		Α	
Intersection De						5.	9					,	4			
	İ									1						
#2 University &		de Salud						_		,						
Signal Informa				l	6		4	₂ ⊱					4-		_	
Cycle, s	90.0	Reference Phase	2		5	517	12	R]		7	1		3	←	
Offset, s	0	Reference Point	End	Green	0.9	0.6	16.0	13.9	0.0	0.0			•		5	
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		0.0	4.0	3.5	0.0	0.0	_ <	. 4			7	
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.5	0.0	1.0	2.0	0.0	0.0		5	6	7	8	
Oi ann al Diagram) I!4 A			Г				WD			ND		Г	OD		
Signal Phase S		na Results			EB		-	WB			NB			SB		
Approach Move				L	T	R		T	R	L	T	R	L	T	R	
Demand (v), v	en/n			245	9	270	74	3	80	59	1089	67	27	617	20	
Phase Split, s	:t D -	4:- (V)		0.505	24.0		0.050	24.0		16.0	36.0	0.005	16.0	36.0	0.000	
Volume-to-Capa		· · · ·		0.525	0.614		0.256	0.182		0.973	0.614	0.085	0.787	0.503	0.036	
		RQ) (95 th percent	ile)	0.86	0.10		0.28	0.06		0.59	0.12	0.10	0.08	0.09	0.04	
Control Delay (en		15.7	13.9		18.1	11.6		53.0	11.9	9.4	34.0	11.6	9.6	
Level of Service		// 00		В	В	_	В	В		D	В	_ A	C	В -	A	
Approach Delay				14.8		B 42	14.7		В	13.8	5	В	12.5)	В	
Intersection De	iay, s/ve	en / LOS				13	. /					-	3			
#3 University &	Indian S	School														
Signal Informa						211	215		1 5							
Cycle, s	137.5	Reference Phase	2	1	"	243		100	1 2	743 €		, ,	Φ	<u> </u>	4	
Offset, s	0	Reference Point	End		7.0	0.7	517		1.0	20.5		1	2	3	4	
Uncoordinated	Yes	Simult. Gap E/W	On	Green Yellow		0.7	32.0 4.0	7.3	1.9	22.5 4.0		一人		7	\rightarrow	
Force Mode	Fixed	Simult. Gap N/S	On	Red	3.0	0.0	4.0	0.5	0.0	1.5		5	6	7	8	
Signal Phase \$	Splita A	nd Bosulto		Γ	EB			WB			NB		Γ	SB		
Approach Move	-	iiu Resuits		L	Т	R		T	R	-	T	R	1	T	R	
Demand (v), v				123	335	102	111	261	91	177	903	322	168	453	92	
Phase Split, s	J11/11			22.0	42.0	102	22.0	42.0	31	16.0	32.0	UZZ	16.0	32.0	32	
Volume-to-Capa	acity Ra	tio (X)		0.398	0.613	0.627	0.418	0.450	0.465	0.382	0.837	0.837	0.631	0.430	0.435	
		RQ) (95 th percent	ile)	0.93	0.013	0.027	0.418	0.430	0.463	1.08	0.857	0.637	1.48	0.430	0.433	
Control Delay (.110)	26.5	34.3	34.5	27.2	31.4	31.5	18.9	39.1	40.1	22.9	25.7	26.0	
Level of Service		OI1		20.5 C	C C	C C	C C	C C	C C	В	D D	40.1 D	C C	C C	C C	
Approach Delay		/1.0S		32.7		С	30.4		С	37.0		D	25.		С	
Intersection De				02.1		32				37.0			<u> </u>			
micraconon De	.ay, 3/VE	, 200				52										

Existing -	PM			HCS7	Inters	sectio	n Sur	nmar	у						
#4 University 9	140 EB I	Dama													
#4 University & Signal Informa		капр			П	Т	Г	Т	Т	Г					
		Deference Dhase	2	-	177	l lia	L2 .						1z		7
Cycle, s	91.0	Reference Phase	2	ł		1 17	R					1	2	3	❤ 4
Offset, s	0	Reference Point	End	Green		32.0	16.0	0.0	0.0	0.0					
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow	-	4.0	4.0	0.0	0.0	0.0		t	4		
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.5	1.5	1.5	0.0	0.0	0.0		5	6	7	8
Signal Phase S	Splits A	nd Results			EB			WB			NB			SB	
Approach Move	•			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			128	357	155					1234	292	207	513	
Phase Split, s					24.0						32.0		20.0	32.0	
Volume-to-Cap	acity Ra	tio (X)		0.282	0.482	0.454					0.475	0.252	0.466	0.248	
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.28	0.13	0.42					0.16	0.22	0.20	0.16	
Control Delay (d),s/v	eh		22.1	23.3	23.3					13.5	11.9	8.9	6.4	
Level of Service	e (LOS)			С	С	С					В	В	Α	Α	
Approach Delay	y, s/veh	/ LOS		23.1		С	0.0			13.2	2	В	7.1		Α
Intersection De	lay, s/ve	h / LOS				14	.1						3		
#5 University &	I40 WB	Ramp													
Signal Informa						21	R	Г	T						K
Cycle, s	91.0	Reference Phase	2	1	₅₄	I	\{	1				,	4		7
Offset, s	0	Reference Point	End			22.0	10.0	0.0				1	2	3	4
Uncoordinated	Yes	Simult. Gap E/W	On	Green Yellow		32.0 4.0	16.0 4.0	0.0	0.0	0.0	−				
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.5	1.5	1.5	0.0	0.0	0.0		5	6	7	8
				-											
Signal Phase S	Splits A	nd Results			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	T	R	L	Т	R
Demand (v), v	eh/h						162	185	183	296	1094			546	56
Phase Split, s								24.0		20.0	32.0			32.0	
Volume-to-Cap	acity Ra	tio (X)					0.337	0.323	0.425	0.357	0.336			0.358	0.082
		RQ) (95 th percent	ile)				0.18	0.08	0.20	0.17	0.23			0.17	0.05
Control Delay (d),s/v	eh					22.1	22.0	22.7	7.8	7.0			12.4	10.4
Level of Service	e (LOS)						С	С	С	Α	Α			В	В
Approach Delay				0.0			22.2	2	С	7.2		Α	12.2	<u> </u>	В
						40	_								

Copyright @ 2020 University of Florida, All Rights Reserved.

Intersection Delay, s/veh / LOS

HCS™ Streets Version 7.8.5

В

Generated: 4/21/2020 1:51:17 PM

12.7

Movement	Intersection						
WBL WBR NBT NBR SBL SBT	Int Delay, s/veh	0.9					
Taragraphic Taragraphic		WRI	WRR	NRT	NRR	SRI	SRT
Traffic Vol, veh/h 0 67 1184 38 0 0 Future Vol, veh/h 0 67 1184 38 0 0 Conflicting Peds, #/hr 0 0 0 0 0 0 0 Sign Control Stop Stop Free Free Stop Stop Stop Stop Stop None - None <td></td> <td>WDL</td> <td></td> <td></td> <td>אסור</td> <td>ODL</td> <td>ODI</td>		WDL			אסור	ODL	ODI
Future Vol, veh/h Conflicting Peds, #/hr Conflicting Peds, #/hr Conflicting Peds, #/hr Conflicting Peds, #/hr Conflicting Peds, #/hr Conflicting Peds, #/hr Conflicting Peds, #/hr Conflicting Peds, #/hr Conflicting Peds, #/hr Conflicting Peds, #/hr Conflicting Peds, #/hr Conflicting Peds, #/hr Conflicting Peds, #/hr Conflicting Peds, #/hr Conflicting Storage		Λ			32	٥	0
Conflicting Peds, #/hr							
Sign Control Stop Stop Free Free Stop Stop RT Channelized - None - None - None Storage Length - 0 - - - - Jeak Hour Factor 88 98 98 98 98	·						
RT Channelized		-					
Storage Length							
Veh in Median Storage, # 0							-
Carade, % 0 - 0 - 0 - 0 0 - 0 Cask Hour Factor 88 88 88 88 88 88 88							16979
Peak Hour Factor							
Heavy Vehicles, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2							
Mymit Flow 0 76 1345 43 0 0 Major/Minor Minor1 Major1 Conflicting Flow All - 694 0 0 Stage 1 - - - - Stage 2 - - - - Critical Hdwy - 6.94 - - Critical Hdwy Stg 1 - - - - Critical Hdwy Stg 2 - - - - Critical Hdwy Stg 2 - - - - Corlical Hdwy Stg 2 - - - - Follow-up Hdwy - 3.32 - - Pot Cap-1 Maneuver 0 385 - - Stage 1 0 - - - Mov Cap-1 Maneuver - 385 - - Stage 1 - - - - Stage 2 - - - -							
Major/Minor Minor1 Major1 Conflicting Flow All - 694 0 0 Stage 1 Stage 2 Critical Hdwy - 6.94 Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy - 3.32 Pot Cap-1 Maneuver 0 385 Stage 1 0 Platoon blocked, %							
Conflicting Flow All	WWITHE	U	70	1070	70	U	U
Conflicting Flow All			-				
Stage 1 - - - Stage 2 - - - Critical Hdwy Stg 1 - - - Critical Hdwy Stg 2 - - - Follow-up Hdwy - 3.32 - - Pol Cap-1 Maneuver 0 385 - - Stage 1 0 - - - Stage 2 0 - - - Platoon blocked, % - - - - Mov Cap-1 Maneuver - 385 - - Mov Cap-2 Maneuver - - - - Stage 1 - - - - Stage 2 - - - - Approach WB NB NB HCM Control Delay, s 16.6 0 HCM Lane V/C Ratio - - 0.198 HCM Control Delay (s) - - 16.6 HCM Lane LOS - - - -		1inor1					
Stage 2 - - - - Critical Hdwy - 6.94 - - Critical Hdwy Stg 1 - - - - Critical Hdwy Stg 2 - - - - Follow-up Hdwy - 3.32 - - Pot Cap-1 Maneuver 0 385 - - Stage 1 0 - - - Mov Cap-1 Maneuver - 385 - - Mov Cap-2 Maneuver - - - - Stage 1 - - - - Stage 2 - - - - Approach WB NB HCM Control Delay, s 16.6 0 HCM Lane/Major Mvmt NBT NBRWBLn1 Capacity (veh/h) - - 385 HCM Control Delay (s) - - 0.198 HCM Control Delay (s) - - - - HCM Control Delay (s) - - - - - </td <td></td> <td>-</td> <td>694</td> <td>0</td> <td>0</td> <td></td> <td></td>		-	694	0	0		
Critical Hdwy - 6.94 - - Critical Hdwy Stg 1 - - - Critical Hdwy Stg 2 - - - Follow-up Hdwy - 3.32 - Pot Cap-1 Maneuver 0 385 - Stage 1 0 - - Stage 2 0 - - Platoon blocked, % - - - Mov Cap-1 Maneuver - 385 - - Mov Cap-2 Maneuver - - - - Stage 1 - - - - Stage 2 - - - - Approach WB NB HCM Control Delay, s 16.6 0 HCM Los - 0 - Minor Lane/Major Mvmt NBT NBRWBLn1 Capacity (veh/h) - - 385 HCM Lane V/C Ratio - - 0.198 HCM Control Delay (s) - - - - HCM Control Delay (s) -<		-	-	-	-		
Critical Hdwy Stg 1 -		-		-	-		
Critical Hdwy Stg 2 - - - Follow-up Hdwy - 3.32 - - Pot Cap-1 Maneuver 0 385 - - Stage 1 0 - - - Platoon blocked, % - - - Mov Cap-1 Maneuver - 385 - - Mov Cap-2 Maneuver - - - - Stage 1 - - - - Stage 2 - - - - Approach WB NB HCM Control Delay, s 16.6 0 HCM Los - 0 - Minor Lane/Major Mvmt NBT NBRWBLn1 Capacity (veh/h) - - 385 HCM Lane V/C Ratio - - 0.198 HCM Control Delay (s) - - 16.6 HCM Lane LOS - - -		-	6.94	-	-		
Follow-up Hdwy - 3.32 Pot Cap-1 Maneuver 0 385 Stage 1 0 Stage 2 0 Platoon blocked, % Mov Cap-1 Maneuver - 385 Mov Cap-2 Maneuver Stage 1 Stage 2 Mapproach WB NB HCM Control Delay, s 16.6 HCM LOS C Minor Lane/Major Mvmt NBT NBRWBLn1 Capacity (veh/h) - 385 HCM Lane V/C Ratio - 0.198 HCM Control Delay (s) - 16.6 HCM Lane LOS - C		-	-	-	-		
Stage 1		-		-	-		
Stage 1 0 - - - Stage 2 0 - - - Platoon blocked, % - - - Mov Cap-1 Maneuver - 385 - - Mov Cap-2 Maneuver - - - - Stage 1 - - - - Stage 2 - - - - Approach WB NB HCM Control Delay, s 16.6 0 HCM LoS C - 0 Minor Lane/Major Mvmt NBT NBRWBLn1 Capacity (veh/h) - - 385 HCM Lane V/C Ratio - - 0.198 HCM Control Delay (s) - - 16.6 HCM Lane LOS - - C				-	-		
Stage 2 0 - - - Platoon blocked, % - - - Mov Cap-1 Maneuver - 385 - - Mov Cap-2 Maneuver - - - - Stage 1 - - - - Stage 2 - - - - Approach WB NB HCM Control Delay, s 16.6 0 HCM LOS C - 0 Minor Lane/Major Mvmt NBT NBRWBLn1 Capacity (veh/h) - - 385 HCM Lane V/C Ratio - - 0.198 HCM Control Delay (s) - - 16.6 HCM Lane LOS - - C	•		385	-	-		
Platoon blocked, %			-	-	-		
Mov Cap-1 Maneuver - 385 Mov Cap-2 Maneuver Stage 1 Stage 2 Approach WB NB HCM Control Delay, s 16.6 0 HCM LOS C Minor Lane/Major Mvmt NBT NBRWBLn1 Capacity (veh/h) - 385 HCM Lane V/C Ratio - 0.198 HCM Control Delay (s) - 16.6 HCM Lane LOS - C		0	-	-	-		
Mov Cap-2 Maneuver				-	-		
Stage 1 - - - - - Stage 2 - - - - - Approach WB NB NB HCM Control Delay, s 16.6 0 0 HCM LOS C 0 0 Minor Lane/Major Mvmt NBT NBRWBLn1 Capacity (veh/h) - - 385 HCM Lane V/C Ratio - - 0.198 HCM Control Delay (s) - - 16.6 HCM Lane LOS - - C			385	-	-		
Stage 2 - - - - Approach WB NB HCM Control Delay, s 16.6 0 HCM LOS C Minor Lane/Major Mvmt NBT NBRWBLn1 Capacity (veh/h) - - 385 HCM Lane V/C Ratio - - 0.198 HCM Control Delay (s) - - 16.6 HCM Lane LOS - - C		-	-	-	-		
Approach WB NB HCM Control Delay, s 16.6 0 HCM LOS C Minor Lane/Major Mvmt NBT NBRWBLn1 Capacity (veh/h) - 385 HCM Lane V/C Ratio - 0.198 HCM Control Delay (s) - 16.6 HCM Lane LOS - C		-	-	-	-		
CM Control Delay, s 16.6 0	Stage 2	-	-	-	-		
CM Control Delay, s 16.6 0							
CM Control Delay, s 16.6 0	Approach	WB		NB			
Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s) HCM Lane LOS C NBT NBRWBLn1 - 385 - 0.198 - 16.6 - C							
Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s) HCM Lane LOS NBT NBRWBLn1 - 385 - 0.198 - 16.6 - C				· ·			
Capacity (veh/h) - - 385 HCM Lane V/C Ratio - - 0.198 HCM Control Delay (s) - - 16.6 HCM Lane LOS - - C	TIOM EGO						
Capacity (veh/h) - - 385 HCM Lane V/C Ratio - - 0.198 HCM Control Delay (s) - - 16.6 HCM Lane LOS - - C							
HCM Lane V/C Ratio - 0.198 HCM Control Delay (s) - 16.6 HCM Lane LOS - C			NBT	NBR			
HCM Control Delay (s) 16.6 HCM Lane LOS C	Capacity (veh/h)		-				
HCM Lane LOS C			-	-			
			-	-			
	HCM Lane LOS		-	-			
HCM 95th %tile Q(veh) 0.7	HCM 95th %tile Q(veh)		-	-	0.7		

Intersection						
Int Delay, s/veh	13.3					
		WED	NET	NDD	ODI	ODT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥	0.10	↑ ↑	•	ች	^
Traffic Vol, veh/h	34	249	831	80	115	1110
Future Vol, veh/h	34	249	831	80	115	1110
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	150	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	3	3	2	2	2	2
Mvmt Flow	36	262	875	84	121	1168
Major/Minor	Minor1		/lajor1	Λ.	/lajor2	
		480				0
Conflicting Flow All	1743		0	0	959	
Stage 1	917	-	-	-	-	-
Stage 2	826	-	-	-	-	-
Critical Hdwy	6.86	6.96	-	-	4.14	-
Critical Hdwy Stg 1	5.86	-	-	-	-	-
Critical Hdwy Stg 2	5.86	-	-	-	-	-
Follow-up Hdwy	3.53	3.33	-	-	2.22	-
Pot Cap-1 Maneuver	77	529	-	-	713	-
Stage 1	348	-	-	-	-	-
Stage 2	388	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	64	529	-	-	713	-
Mov Cap-2 Maneuver	64	-	-	-	-	-
Stage 1	289	-	-	-	-	-
Stage 2	388	-	-	-	-	-
Approach	WB		NB		SB	
	109.4		0		1	
HCM LOS	F					
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		_	_		713	
HCM Lane V/C Ratio		_		1.056	0.17	_
HCM Control Delay (s)		_		109.4	11.1	_
HCM Lane LOS		_	_	F	В	_
HCM 95th %tile Q(veh)	_	_		0.6	_
					3.0	

Intersection			
Intersection Delay, s/veh	8		
Intersection LOS	Α		

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	80	21	2	0	22	1	27	2	0	0	2	106
Future Vol, veh/h	80	21	2	0	22	1	27	2	0	0	2	106
Peak Hour Factor	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	114	30	3	0	31	1	39	3	0	0	3	151
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB				WB		NB				SB	
Opposing Approach	WB				EB		SB				NB	
Opposing Lanes	1				1		1				1	
Conflicting Approach Left	SB				NB		EB				WB	
Conflicting Lanes Left	1				1		1				1	
Conflicting Approach Right	NB				SB		WB				EB	
Conflicting Lanes Right	1				1		1				1	
HCM Control Delay	8.5				7.7		8				7.6	
HCM LOS	Α				Α		Α				Α	

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	93%	78%	0%	0%	
Vol Thru, %	7%	20%	96%	2%	
Vol Right, %	0%	2%	4%	98%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	29	103	23	108	
LT Vol	27	80	0	0	
Through Vol	2	21	22	2	
RT Vol	0	2	1	106	
Lane Flow Rate	41	147	33	154	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.054	0.182	0.041	0.164	
Departure Headway (Hd)	4.699	4.442	4.484	3.821	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	766	796	801	944	
Service Time	2.707	2.538	2.499	1.825	
HCM Lane V/C Ratio	0.054	0.185	0.041	0.163	
HCM Control Delay	8	8.5	7.7	7.6	
HCM Lane LOS	А	Α	Α	Α	
HCM 95th-tile Q	0.2	0.7	0.1	0.6	

Intersection	
Int Delay, s/veh 3.8	
Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT	SBR
Lane Configurations 💠 💠	
Traffic Vol, veh/h 1 151 90 3 199 0 136 1 10 0 2	0
Future Vol, veh/h 1 151 90 3 199 0 136 1 10 0 2	0
Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0	0
Sign Control Free Free Free Free Free Stop Stop Stop Stop	Stop
RT Channelized None None None	None
Storage Length	-
Veh in Median Storage, # - 0 0 0	_
Grade, % - 0 0 0	-
Peak Hour Factor 88 88 88 88 88 88 88 88 88 88 88	88
Heavy Vehicles, % 7 7 7 5 5 5 3 3 3 2 2	2
Mvmt Flow 1 172 102 3 226 0 155 1 11 0 2	0
Major/Minor Major1 Major2 Minor1 Minor2	
Conflicting Flow All 226 0 0 274 0 0 458 457 223 463 508	226
Stage 1 225 225 - 232 232	-
Stage 2 233 232 - 231 276	-
Critical Hdwy 4.17 4.15 7.13 6.53 6.23 7.12 6.52	6.22
Critical Hdwy Stg 1 6.13 5.53 - 6.12 5.52	-
Critical Hdwy Stg 2 6.13 5.53 - 6.12 5.52	_
Follow-up Hdwy 2.263 2.245 3.527 4.027 3.327 3.518 4.018	3.318
Pot Cap-1 Maneuver 1313 1272 511 498 814 509 468	813
Stage 1 775 716 - 771 713	-
Stage 2 768 711 - 772 682	-
Platoon blocked, %	
Mov Cap-1 Maneuver 1313 1272 507 496 814 499 466	813
Mov Cap-2 Maneuver 507 496 - 499 466	-
Stage 1 774 715 - 770 711	-
Stage 2 763 709 - 759 681	-
Approach EB WB NB SB	
HCM Control Delay, s 0 0.1 15.2 12.8	
HCM LOS C B	
Minor Lane/Major Mvmt NBLn1 EBL EBT EBR WBL WBT WBR SBLn1	
Capacity (veh/h) 520 1313 1272 466	
HCM Lane V/C Ratio 0.321 0.001 0.003 0.005	
HCM Control Delay (s) 15.2 7.7 0 - 7.8 0 - 12.8	
HOME and LOO	
HCM Lane LOS	

Intersection				
Intersection Delay, s/veh	6.2			
Intersection LOS	А			
Approach	EB	WB	NB	SB
Entry Lanes	1	1	1	1
Conflicting Circle Lanes	1	1	1	1
Adj Approach Flow, veh/h	155	467	309	203
Demand Flow Rate, veh/h	159	477	318	209
Vehicles Circulating, veh/h	549	89	71	433
Vehicles Exiting, veh/h	93	300	637	133
Ped Vol Crossing Leg, #/h	0	0	0	0
Ped Cap Adj	1.000	1.000	1.000	1.000
Approach Delay, s/veh	6.9	6.6	5.1	6.6
Approach LOS	Α	Α	Α	Α
Lane	Left	Left	Left	Left
Designated Moves	LTR	LTR	LTR	LTR
Designated Moves Assumed Moves	LTR LTR	LTR LTR	LTR LTR	LTR LTR
	LTR	LTR	LTR	LTR
Assumed Moves			LTR 1.000	
Assumed Moves RT Channelized	LTR	LTR	LTR	LTR
Assumed Moves RT Channelized Lane Util	LTR 1.000	LTR 1.000	LTR 1.000	LTR 1.000
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s	1.000 2.609 4.976 159	LTR 1.000 2.609	LTR 1.000 2.609	1.000 2.609 4.976 209
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s	1.000 2.609 4.976	LTR 1.000 2.609 4.976	LTR 1.000 2.609 4.976	LTR 1.000 2.609 4.976
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h	1.000 2.609 4.976 159	1.000 2.609 4.976 477	1.000 2.609 4.976 318	1.000 2.609 4.976 209
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h	1.000 2.609 4.976 159 788 0.973 155	1.000 2.609 4.976 477 1260	1.000 2.609 4.976 318 1283	LTR 1.000 2.609 4.976 209 887
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h	1.000 2.609 4.976 159 788 0.973 155 767	1.000 2.609 4.976 477 1260 0.980 467 1235	1.000 2.609 4.976 318 1283 0.971	1.000 2.609 4.976 209 887 0.970 203 860
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h	1.000 2.609 4.976 159 788 0.973 155 767 0.202	1.000 2.609 4.976 477 1260 0.980 467	1.000 2.609 4.976 318 1283 0.971 309	1.000 2.609 4.976 209 887 0.970 203
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio Control Delay, s/veh	1.000 2.609 4.976 159 788 0.973 155 767	1.000 2.609 4.976 477 1260 0.980 467 1235	1.000 2.609 4.976 318 1283 0.971 309 1246	1.000 2.609 4.976 209 887 0.970 203 860
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio	1.000 2.609 4.976 159 788 0.973 155 767 0.202	1.000 2.609 4.976 477 1260 0.980 467 1235 0.379	1.000 2.609 4.976 318 1283 0.971 309 1246 0.248	1.000 2.609 4.976 209 887 0.970 203 860 0.236

Intersection						
Int Delay, s/veh	0					
		- FDT	VA/D.T.	WED	051	000
	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations			↑ ↑			7
Traffic Vol, veh/h	0	0	0	0	0	0
Future Vol, veh/h	0	0	0	0	0	0
Conflicting Peds, #/hr	_ 0	_ 0	_ 0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage, #		0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	0	0	0	0	0
Major/Minor Ma	ajor1		Major2	N	/linor2	
Conflicting Flow All	-	0	-	0	-	1
Stage 1	-	-	-	-	-	-
Stage 2	_	_	_	_	_	_
Critical Hdwy	-	-	-	-	-	7.14
Critical Hdwy Stg 1	_	_	_	_	_	-
Critical Hdwy Stg 2	_	_	_	-	_	-
Follow-up Hdwy	_	_	_	_	_	3.92
Pot Cap-1 Maneuver	0	-	-	-	0	917
Stage 1	0	_	_	_	0	-
Stage 2	0	_	_	_	0	_
Platoon blocked, %		_	_	_		
Mov Cap-1 Maneuver	_	_	_	_	_	917
Mov Cap-2 Maneuver	_	_	_	_	_	-
Stage 1	_	_	_	_	_	_
Stage 2	_	_	_	_	_	_
Olago Z	_			_		
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS					Α	
Minor Lane/Major Mvmt		EBT	WBT	WBR S	SBI n1	
Capacity (veh/h)			1101	יייייי	,5_111	
HCM Lane V/C Ratio		_	-	_	_	
HCM Control Delay (s)		<u>-</u>	_	_	0	
HCM Lane LOS		_	_	_	A	
HCM 95th %tile Q(veh)		<u>-</u>	-	_	-	
HOW JOHN JOHN Q(VOII)			_	<u>-</u>		

Intersection						
Int Delay, s/veh	0					
<u> </u>			14/5-	14/5-5	0	055
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	7		ተ ተጮ			- 7
Traffic Vol, veh/h	2	1449	1180	3	0	6
Future Vol, veh/h	2	1449	1180	3	0	6
Conflicting Peds, #/hr	0	0	0	0	0	0
<u> </u>	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	50	-	-	-	-	0
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	2	1628	1326	3	0	7
Major/Minor M	ajor1	ı	Major2	N	Minor2	
	1329	0		0		665
			-		-	000
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	5.34	-	-	-	-	7.14
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	3.12	-	-	-	-	3.92
Pot Cap-1 Maneuver	271	-	-	-	0	345
Stage 1	-	-	-	-	0	-
Stage 2	-	-	-	-	0	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	271	-	-	-	-	345
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
J						
Annroach	EB		WB		SB	
Approach						
HCM Control Delay, s	0		0		15.6	
HCM LOS					С	
Minor Lane/Major Mvmt		EBL	EBT	WBT	WBR :	SBLn1
Capacity (veh/h)		271	-	_	_	345
HCM Lane V/C Ratio		0.008	_	_	_	0.02
HCM Control Delay (s)		18.4	_	_	_	
HCM Lane LOS		C	_	_	_	C
HCM 95th %tile Q(veh)		0	_	_	_	0.1
HOIVI JOHN JOHN JUHO WIVEII)		U				0.1

Intersection						
Int Delay, s/veh	1.2					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
	EDL			WDK	ODL	
Lane Configurations	٥	^	^	٥	٥	71
Traffic Vol. veh/h	0	0	949	0	0	71
Future Vol, veh/h	0	0	949	0	0	71
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage,	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, %	2	2	2	2	19	19
Mvmt Flow	0	0	1078	0	0	81
Major/Minor N	/lajor1	ı	Major2	N	/linor2	
Conflicting Flow All	- -	0	-	0	-	539
						559
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	7 40
Critical Hdwy	-	-	-	-	-	7.48
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	4.09
Pot Cap-1 Maneuver	0	-	-	0	0	384
Stage 1	0	-	-	0	0	-
Stage 2	0	-	-	0	0	-
Platoon blocked, %		-	-			
Mov Cap-1 Maneuver	-	-	-	-	-	384
Mov Cap-2 Maneuver	_	_	_	_	_	-
Stage 1	_	_	_	_	_	_
Stage 2	_	_	_	_	_	_
Glago L						
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		16.9	
HCM LOS					С	
Minor Lane/Major Mvmt		EBT	\\/DT	SBLn1		
Capacity (veh/h)		-	-			
HCM Lane V/C Ratio		-	-	0.21		
HCM Control Delay (s)		-	-			
HCM Lane LOS		-	-	С		
HCM 95th %tile Q(veh)		-	-	0.8		

Intersection						
Int Delay, s/veh	0.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		^		77011	ODL	₹ T
Traffic Vol, veh/h	50	1350	949	34	0	0
Future Vol, veh/h	50	1350	949	34	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		Stop -	None
	150	NONE -	-		_	
Storage Length			-	-		0
Veh in Median Storage,		0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	16	16	2	2
Mvmt Flow	54	1467	1032	37	0	0
Major/Minor N	/lajor1	N	Major2	N	Minor2	
Conflicting Flow All	1069	0	-	0	_	535
Stage 1	-	_	_	-	_	-
Stage 2	_	_	_	_	_	_
Critical Hdwy	5.34		_	_	_	7.14
Critical Hdwy Stg 1	J.J 4	_		_	_	7.14
Critical Hdwy Stg 2	-	-	_	_	_	
	3.12	_	_	-	-	3.92
Follow-up Hdwy		-	-	-	-	
Pot Cap-1 Maneuver	362	-	-	-	0	419
Stage 1	-	-	-	-	0	-
Stage 2	-	-	-	-	0	-
Platoon blocked, %	000	-	-	-		110
Mov Cap-1 Maneuver	362	-	-	-	-	419
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
	0.6		0		0	
HCM LOS	0.0		U			
HCM LOS					Α	
Minor Lane/Major Mvm	t	EBL	EBT	WBT	WBR :	SBLn1
Capacity (veh/h)		362	-	-		_
HCM Lane V/C Ratio		0.15	_	_	_	-
HCM Control Delay (s)		16.7	_	_	_	0
HCM Lane LOS		C	_	_	_	A
HCM 95th %tile Q(veh)		0.5	_	_	_	-
, , , , , , , , , , , , ,						

MULTI-PERIO	OD ANA	LYSIS HCS	7 Sig	nalize	d Int	ersec	tion F	Resu	lts Su	mmar	У					
General Inform	ation								Intersec	tion Inf	ormatic	on		4144	له لړ	
Agency		BHI							Duration		0.250			411		
Analyst		MB		Analys	is Date	Feb 1	4 2020		Area Typ		Other				<u>t_</u> <u>A</u> L	
Jurisdiction				Time F		AM	+, <u>2020</u>		PHF		1.00		1 	w Î E	~ ~ 	
Urban Street		University			is Year				Analysis	Period	1> 7:	15	_ 		~ _	
Intersection		University & Indian	School	File Na			reity_Ind	lianSc	hool_EX				_		<u></u>	
Project Descript	ion	Existing AM	3611001	THE INC	allie	Offive	i Sity-ii iu	lialio	11001_EX	Alvi_IIIP_	_HOUL.X	J5		1	* I**	
i Toject Descript	1011	LAISTING AIVI											ין אוייראיין ואירי			
Demand Inform	nation				EB			W	В	T	NB		SB			
Approach Move	ment			L	Т	R	L	T	R	L	Т	R	L	Т	R	
Demand (v), ve				204	240	264	232	36	4 56	152	376	48	28	912	140	
, ,,																
Signal Informat	tion					\top		Π_		<u>S</u>	2					
Cycle, s	99.9	Reference Phase	2		R	150		2 H	~	ZZ¥	§	>	Ψ		-	
Offset, s	0	Reference Point	End	Green	17	5.9	32.0	11.	.0 3.8	22.5		1	2	3	¥ 4	
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		0.0	4.0	3.0		4.0				7	→	
Force Mode	Fixed	Simult. Gap N/S	On	Red	3.0	0.0	4.0	0.5		1.5		5	6	7	8	
Timer Results				EBL	-	EBT	WB	L	WBT	NBI	-	NBT	SBI	-	SBT	
Assigned Phase	7		4	3		8	5		2	1		6				
Case Number	1.1		4.0	1.1		4.0	1.1		4.0	1.1		4.0				
Phase Duration,	14.5	5	28.0	18.3	3	31.8	13.6	; ·	45.9	7.7		40.0				
Change Period,	(Y+R	;), s		3.5		8.0	6.0		8.0	6.0		8.0	6.0		8.0	
Max Allow Head	way (/	/AH), s		3.1			3.1		3.1	3.1		3.1	3.1		3.1	
Queue Clearanc	e Time	(gs), s		10.8 1		17.8	12.0		11.9			10.2	3.0		29.2	
Green Extension	n Time	(<i>g</i> _e), s		0.3			0.3		1.8	0.2		3.0	0.0		1.2	
Phase Call Prob	ability			1.00	1.00		1.00		1.00	0.99)	1.00	0.54		1.00	
Max Out Probab	ility			0.00		0.00	0.00)	0.00	0.00		0.02	0.00		1.00	
Movement Gro	•	ults			EB			WE	3		NB			SB		
Approach Move				L	T	R	L	T	R	L	T	R	L	T	R	
Assigned Mover	ment			7	4	14	3	8	18	5	2	12	1	6	16	
Adjusted Flow R	Rate (v), veh/h		204	240	264	232	213	207	152	215	209	28	539	513	
		w Rate (s), veh/h/l	n	1810	1885	1598	1795	188	_	1753	1870	1796	1810	1885	1797	
Queue Service	Time (g	g s), S		8.8	11.7	15.8	10.0	9.7	9.9	5.5	8.0	8.2	1.0	27.2	27.2	
Cycle Queue Cl		e Time (<i>g c</i>), s		8.8	11.7	15.8	10.0	9.7		5.5	8.0	8.2	1.0	27.2	27.2	
Green Ratio (g/				0.31	0.20	0.20	0.32	0.24		0.42	0.38	0.38	0.34	0.32	0.32	
Capacity (c), ve				389	377	320	331	450		231	710	682	374	604	576	
Volume-to-Capa				0.525	0.636	0.825	0.700	0.47	5 0.482	0.659	0.303	0.307	0.075	0.892	0.892	
		In (95 th percentile)		167.5	229.5	258	192.3	196.		104.6	166.3	159.9	19.6	535.2	513.3	
		eh/In (95 th percenti		6.7	9.1	10.3	7.6	7.8	_	4.1	6.5	6.4	0.8	21.2	20.5	
Queue Storage	Ratio (RQ) (95 th percent	ile)	1.52	0.23	0.26	1.37	0.20	0.19	1.23	0.17	0.16	0.28	0.54	0.52	
Uniform Delay (27.2	36.6	38.3	27.9	32.7	32.7	24.0	21.7	21.8	22.4	32.3	32.3	
Incremental Dela		•		0.4	0.7	2.1	1.0	0.3		1.2	1.1	1.2	0.0	18.0	18.7	
Initial Queue De		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
Control Delay (27.6	37.3	40.4	28.9	33.0	_	25.2	22.8	22.9	22.4	50.3	51.0			
Level of Service		С	D	D	С	С	С	С	С	С	С	D	D			
Approach Delay		35.6	6	D	31.6	6	С	23.5	5	С	49.9)	D			
Intersection Dela		37.5										D				
Multimodal Res					EB			WB			NB			SB		
Pedestrian LOS				2.29	_	В	2.29	_	В	2.28	_	В	2.28	_	В	
Bicycle LOS Sco	ore / LC)S		1.07		Α	1.03	3	Α	0.96	6	Α	1.38	3	Α	

MULTI-PERI	OD ANA	ALYSIS HCS	7 Sig	nalize	d Int	ersec	tion F	Resu	ılts Su	mmar	у						
General Inform	nation								Intersed	tion Inf	ormatic	on		4,4,4	يا دل		
Agency	iation	ВНІ							Duration		0.250			411			
Analyst		MB		Analys	is Date	e Feb 1	4 2020		Area Ty		Other		_1 		<u></u>		
Jurisdiction		IND		Time F		AM	1, 2020		PHF		1.00		_ → _^* -	N W‡E	~ ↓ ↓		
Urban Street		University		Analys					Analysis	Period	2> 7:3	30	_ 		√ _ ←		
Intersection		University & Indian	School	File Na		_	rsity_Ind	lianSo	chool EX					5 4 4	<u>_</u>		
Project Descrip	tion	Existing AM	Ochool	T IIC IN	anic	OTIIVC	i Sity-ii io	iiaiiot	311001_LX	Alvi_IIIP		1 T 4 Y	"ן יל				
							7		-	_				OD			
Demand Inform					EB		+	W			NB			SB			
Approach Move				느	Т	R	<u> </u>	-	r R	<u> </u>	Т	R	<u> </u>	T	R		
Demand (v), v	eh/h		_	132	220	248	200	25	6 92	60	460	96	48	1004	84		
Signal Informa	tion				ΠŪ	T		Т		5	5						
Cycle, s	93.2	Reference Phase	2		"	E4		2 L ²	6	F	E	>	V		4		
Offset, s	0	Reference Point	End)	<u> </u>			1 50	00.4	-	1	2	3	4		
Uncoordinated	Yes	Simult. Gap E/W	On	Green Yellow		0.7	32.0 4.0	7. ²		22.5 4.0				7	→		
Force Mode	Fixed	Simult. Gap N/S	On	Red	3.0	0.0	4.0	0.5		1.5		5	6	7	8		
				,										•			
Timer Results				EBL		EBT	WB	L	WBT	NBI	_	NBT	SBI		SBT		
Assigned Phase	7		4	3		8	5		2	1		6					
Case Number	1.1		4.0	1.1	_	4.0	1.1		4.0	1.1		4.0					
Phase Duration				10.6	3	28.0	16.0		33.3	9.2		40.7	8.6		40.0		
Change Period,				3.5		8.0	6.0		8.0	6.0		8.0	6.0		8.0		
Max Allow Head	- `			3.1 3		3.2	3.1		3.2	3.1	3.1		3.1		3.1		
Queue Clearan		, - ,		7.2	_	15.5	9.8		9.4	4.1		13.0	3.6		27.3		
Green Extensio		(<i>g</i> _e), s				1.6	0.3	_	1.6	0.1		3.4	0.0		1.9		
Phase Call Prol	bability					1.00	0.99	9	1.00	0.79		1.00	0.71		1.00		
Max Out Probal	bility			0.00		0.00	0.00)	0.00	0.00)	0.05	0.00		0.73		
Movement Gro	un Ros	eulte			EB			WE	₹		NB			SB			
Approach Move		Juito		L	T	R		T	R	L	T	R		T	R		
Assigned Move				7	4	14	3	8	18	5	2	12	1	6	16		
Adjusted Flow F) veh/h		132	220	248	200	179	_	60	285	271	48	551	537		
		ow Rate (<i>s</i>), veh/h/l	n	1810	1885	1598	1795	188	_	1753	1870	1758	1810	1885	1834		
Queue Service		· /		5.2	9.7	13.5	7.8	7.1	_	2.1	10.9	11.0	1.6	25.3	25.3		
Cycle Queue C	· · ·	- '		5.2	9.7	13.5	7.8	7.1		2.1	10.9	11.0	1.6	25.3	25.3		
Green Ratio (g		(90),0		0.29	0.21	0.21	0.34	0.2	_	0.38	0.35	0.35	0.37	0.34	0.34		
Capacity (c), v				395	404	343	335	513		175	655	616	310	647	629		
Volume-to-Capa		itio (X)		0.334	0.544		0.597	0.34		0.344	0.435	0.440	0.155	0.852	0.852		
		/In (95 th percentile)		98.3	_	222.4	146.1	142.		38.3	219.8	209	29.4	484.2	471.2		
		eh/ln (95 th percenti		3.9	7.8	8.9	5.8	5.6		1.5	8.7	8.4	1.2	19.2	18.8		
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.89	0.20	0.22	1.04	0.14	4 0.13	0.45	0.22	0.21	0.42	0.48	0.47		
Uniform Delay ((d 1), s	/veh		25.4	32.6	34.0	24.6	27.3	3 27.4	22.6	23.2	23.3	19.8	28.4	28.4		
Incremental De	lay (d 2), s/veh		0.2	0.4	1.1	0.6	0.2	0.2	0.4	2.1	2.3	0.1	13.4	13.7		
Initial Queue De		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
Control Delay (25.6	33.0	35.1	25.3	27.	5 27.6	23.0	25.3	25.5	19.9	41.8	42.1				
Level of Service		С	С	D	С	С	С	С	С	С	В	D	D				
Approach Delay		32.2	2	С	26.7	7	С	25.2	2	С	41.0)	D				
Intersection De		33.1					С					С					
Banding and the						\ A /F			ND		0.0						
Multimodal Re		/1.00		0.00	EB	D	0.00	WE		0.00		NB		SB	D		
Pedestrian LOS Bicycle LOS Sc				2.29 0.98	-	B A	0.94	-	B A	2.28		B A	2.28 1.42		B A		
Dicycle LOS SC		0.90	,	٨	0.94	T	A	1.00	,	_	1.42	-					

MULTI-PERI	OD ANA	ALYSIS HCS	7 Sig	nalize	d Int	ersec	tion F	Resu	lts Su	mmar	у						
General Inform	nation								Intersec	tion Inf	ormatio	on		4 74 1	له لړ		
Agency	idtion	ВНІ							Duration		0.250			417			
Analyst		MB		Analys	is Date	e Feb 1	4 2020		Area Ty		Other		_1 		<u>`</u>		
Jurisdiction		IND		Time F		AM	1, 2020		PHF		1.00		_ → _^* -	ν ν‡ε	~ ← ÷		
Urban Street		University		Analys					Analysis	Period	3> 7:4	45	_ 		~ —←		
Intersection		University & Indian	School	File Na			rsity_Ind	lianSc	chool EX					5 4 4	<u></u>		
Project Descrip	tion	Existing AM	Ochool	T IIC IN	anic	OTHVC	i Sity-ii id	iiaiioc	/1001_LX	AW_IIIP	_nour.xi	<u> </u>] [[4 4 Y	"ו יל		
		, , ,					7							C.D.			
Demand Inform					EB		+	W		-	NB			SB			
Approach Move				느	Т	R	<u> </u>	1	_		Т	R	<u> </u>	T	R		
Demand (v), v	eh/h		_	100	188	232	280	20	00 120	80	528	56	32	1052	52		
Signal Informa	tion				ΠŪ	T		Т		5	5						
Cycle, s	98.4	Reference Phase	2	1	E	E4		<u> </u>	2	F	E	\	V				
Offset, s	0	Reference Point	End		1	<u></u>				3	-	1	2	3	4		
Uncoordinated	Yes	Simult. Gap E/W	On	Green Yellow		2.6 0.0	32.0 4.0	5.9 3.0		22.5 4.0				А	-		
Force Mode	Fixed	Simult. Gap N/S	On	Red	3.0	0.0	4.0	0.5		1.5		5	6	7	8		
				,													
Timer Results				EBL		EBT	WB	L	WBT	NBI	_	NBT	SBI		SBT		
Assigned Phase	7		4	3		8	5		2	1		6					
Case Number	1.1		4.0	1.1	-	4.0	1.1		4.0	1.1		4.0					
Phase Duration				9.4		28.0	19.9	9	38.4	10.5	5	42.6	7.9		40.0		
Change Period,				3.5		8.0	6.0		8.0	6.0		8.0	6.0		8.0		
Max Allow Head	- `			3.1 3		3.2	3.1	_	3.2	3.1		3.0	3.1		3.0		
Queue Clearan		, - ,				15.3	13.5		9.0	5.0		14.1	3.2		29.8		
Green Extensio		(<i>g</i> _e), s				1.5	0.4		1.5	0.1		3.4	0.0		1.1		
Phase Call Prob	bability					1.00	1.00		1.00	0.89		1.00	0.58	3	1.00		
Max Out Probal	bility			0.00		0.00	0.01		0.00	0.00)	0.06	0.00		1.00		
Movement Gro	un Pos	eulte			EB			WE	2		NB			SB			
Approach Move		Juito		L	T	R	L	T	R	L	T	R		T	R		
Assigned Move				7	4	14	3	8	18	5	2	12	1	6	16		
Adjusted Flow F) veh/h		100	188	232	280	166	_	80	296	288	32	557	547		
-		ow Rate (s), veh/h/l	n	1810	1885	1598	1795	188	_	1753	1870	1807	1810	1885	1853		
Queue Service				4.2	8.7	13.3	11.5	6.6		3.0	12.0	12.1	1.2	27.8	27.8		
Cycle Queue C	· · ·	- '		4.2	8.7	13.3	11.5	6.6		3.0	12.0	12.1	1.2	27.8	27.8		
Green Ratio (g		5 mms (g v), 5		0.26	0.20	0.20	0.36	0.3		0.37	0.35	0.35	0.34	0.33	0.33		
Capacity (c), v				402	383	325	393	584		174	658	636	284	613	603		
Volume-to-Capa		itio (X)		0.249	0.490	-	0.712	0.28		0.459	0.450	0.453	0.113	0.908	0.908		
		/In (95 th percentile)		81.3	178.5	_	213	130.	_	56.2	238.8	230.5	21.9	551.6	540.9		
		eh/ln (95 th percenti		3.3	7.1	8.9	8.5	5.2		2.2	9.4	9.2	0.9	21.9	21.6		
	•	RQ) (95 th percent		0.74	0.18	0.22	1.52	0.13		0.66	0.24	0.23	0.31	0.55	0.55		
Uniform Delay (d 1), s	/veh	<u>, </u>	28.2	34.7	36.5	25.2	25.7	7 25.9	25.1	24.5	24.6	22.2	31.8	31.8		
Incremental De		0.1	0.4	1.1	1.3	0.1	0.1	0.7	2.2	2.3	0.1	19.6	19.9				
Initial Queue De		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
Control Delay (28.3	35.0	37.6	26.4	25.8	3 26.0	25.8	26.8	26.9	22.3	51.4	51.7				
Level of Service	Level of Service (LOS)						С	С	С	С	С	С	С	D	D		
Approach Delay		34.9)	С	26.1	1	С	26.7	7	С	50.7	7	D				
Intersection Del		37.4										D					
Multimodal Re					EB			WE			NB			SB	_		
Pedestrian LOS				2.29		В	2.28	-	В	2.28		В	2.28		В		
Bicycle LOS Sc	ore / LC	J5		0.92	<u>′</u>	Α	0.98	5	Α	1.04	+	Α	1.42	<u>′</u>	Α		

MULTI-PERIOD ANA	ALYSIS HCS7 S	Signaliz	ed	Inte	ersec	tion R	Resu	ılts Suı	nmar	У				
General Information								Intersec	tion Inf	ormatic	n e			<u> </u>
	ВНІ							Duration		0.250			417	
Agency	МВ	Anal	voic	Doto	Feb 1	4 2020	-			0.250 Other		_# _#		<u>.</u>
Analyst	IMIB		-		_	4, 2020		Area Typ	e e				N W‡E	<u> </u>
Jurisdiction	11	Time			AM			PHF	Danial	1.00	20		**T=	<i>-</i>
Urban Street	University		-	Year				Analysis		4> 8:0				<u></u>
Intersection	University & Indian Sch	ool File	Nam	e	Unive	rsity-ind	iianSc	chool_EX	AIVI_mp_	_nour.xi	JS	_	<u>ጎተ</u> ኮ	- 4
Project Description	Existing AM												1 1 Y T	r I
Demand Information		$\neg \neg$	EB			WB			T	NB		T	SB	
Approach Movement		L		Т	R	L	7	R	L	Т	R	L	Т	R
Demand (v), veh/h		68		128	168	172	26	50 52	112	388	76	60	900	68
Oine al lufa ma atia a		_		—	_	1 11:	<u> </u>							
Signal Information	Deference Dhace (2					Ħ?	≒l		KŤ2	_	7
Cycle, s 94.6		2		5	1 517	" \ "≨∩	7	E	" ⊨3	£	1	2	3	→ 4
Offset, s 0	Reference Point Er	Gree			2.4	32.0	4.0		22.5	_				<u> </u>
Uncoordinated Yes	<u> </u>	n Yello	_		0.0	4.0	3.0		4.0	^	\	<u> </u>	- ∕	
Force Mode Fixed	Simult. Gap N/S O	n Red	3	.0	0.0	4.0	0.5	5 3.0	1.5		5	6	7	8
Timer Results		F	BL	T	EBT	WB		WBT	NBI		NBT	SBI		SBT
Assigned Phase			7		4	3	_	8	5		2	1		6
Case Number	1	.1		4.0	1.1	\neg	4.0	1.1		4.0	1.1		4.0	
Phase Duration, s	7	.5	1	28.0	14.9)	35.4	11.7		42.4	9.2		40.0	
Change Period, (Y+R	c), S	3	.5		8.0	6.0		8.0	6.0		8.0	6.0		8.0
Max Allow Headway (<i>MAH</i>), s	3			3.2	3.1		3.2	3.1		3.1	3.1		3.1
Queue Clearance Time	·	4	4.8 10		10.8	8.7		8.4	5.9		10.9	4.0		24.0
Green Extension Time	, - ,	0	0.1		1.2	0.2		1.2	0.1		2.9	0.1		2.2
Phase Call Probability		0.	83	1	1.00	0.99		1.00	0.95	5	1.00	0.79	9	1.00
Max Out Probability		0.	0.00		0.00	0.00)	0.00	0.00		0.01	0.00)	0.31
M				<u></u>			\ A /F			ND			0.0	
Movement Group Res	Suits	-	_	EB	_		WE			NB		-	SB	
Approach Movement		L	+	T	R	L	T	R	L	T	R	<u> </u>	T	R
Assigned Movement	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7	+	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow Rate (v		68	_	128	168	172	159		112	237	227	60	490	478
Adjusted Saturation Flo		1810	_	885	1598	1795	188		1753	1870	1764	1810	1885	1838
Queue Service Time (2.8	_	5.4	8.8	6.7	6.2		3.9	8.7	8.9	2.0	22.0	22.0
Cross Patio (a/C)	e rime (g c), s	2.8	_	5.4	8.8	6.7	6.2	_	3.9	8.7	8.9	2.0	22.0	22.0
Green Ratio (g/C)		0.25	_	2.21	0.21	0.33	0.29		0.40	0.36	0.36	0.37	0.34	0.34
Capacity (c), veh/h	atio (V)	371	_	399	338	375	545		242	681	642	373	638	622
Volume-to-Capacity Ra Back of Queue (Q), ft		0.18 52.7	_	.321 10.5	0.497 150.5	0.459 126.8	0.29		0.463 71.8	0.348	0.353 171.7	0.161 37.5	0.768 413.6	0.768 402.9
	eh/ln (95 th percentile)	2.1	_	4.4	6.0	5.0	4.9		2.8	7.1	6.9	1.5	16.4	16.1
	RQ) (95 th percentile)	0.48	_).11	0.15	0.91	0.12		0.84	0.18	0.9	0.54	0.41	0.41
Uniform Delay (d 1), s	, , , , ,	27.3	_	1.5	32.9	24.4	26.		21.5	21.9	21.9	19.7	28.0	28.0
Incremental Delay (d 2		0.1	_	0.2	0.4	0.3	0.1	_	0.5	1.4	1.5	0.1	8.6	8.8
Initial Queue Delay (d	0.0	_	0.0	0.0	0.0	0.0	_	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/v	27.4	_	1.7	33.3	24.8	26.2	_	22.0	23.3	23.5	19.7	36.6	36.8	
Level of Service (LOS)	С	_	С	С	С	С	С	С	С	С	В	D	D	
Approach Delay, s/veh			Т	С	25.7		С	23.1		С	35.7		D	
Intersection Delay, s/ve		31.6 C 25.7 30.2									С			
		30.2					 							
Multimodal Results			EB			WE		NB		SE				
Pedestrian LOS Score		_	29	-	B A	2.28			2.28 B		2.28		В	
Bicycle LOS Score / LO	OS	0.	0.79			0.89)	A 0.96		6 A		1.34		Α

APPENDIX C FORECAST TURNING MOVEMENTS AND TRIP DISTRIBUTION

INTERSECTION: 125 SB FRONTAGE AND N 140 FRONTAGE

AM	Peak	Hou
----	------	-----

	S	outhboun	d	1	Westbound	t	ı	Northboun	d	Eastbound			
	125 S	SB FRONT	AGE	N 14	40 FRONTA	\GE	125 9	SB FRONT	AGE	Νŀ	40 FRONTA	.GE	
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	
Existing Volumes (2019)	0	297	44	169	382	0	0	0	0	0	0	0	
Background Growth	0	9	1	5	11	0	0	0	0	0	0	0	
No Build Volumes (2024)	0	306	45	174	393	0	0	0	0	0	0	0	
Subtractions													
Remote Entering													
Remote Exiting	0	0	0	0	2	0	0	0	0	0	0	0	
Main Entering													
Main Exiting	0	0	0	0	7	0	0	0	0	0	0	0	
Build Volumes (2024)	0	306	45	174	402	0	0	0	0	0	0	0	
-													
PHF	0.91			0.91			0.91			0.91			

HV %	Ó	2			2			2					
		Southbour			Westbound 40 FRONTA			Northboun		N I	Eastbound		
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	1
Existing Volumes (2019) 0	315	124	65	552	0	0	0	0	0	0	0	
Background Growt	h 0	9	4	2	17	0	0	0	0	0	0	0]
No Build Volumes (2024	1) 0	324	128	67	569	0	0	0	0	0	0	0	_
Subtractions	·												
Remote Enterin	g												1
Remote Exiting	g 0	0	0	0	4	0	0	0	0	0	0	0	1
Main Enterin	g												
Main Exiting	g 0	0	0	0	18	0	0	0	0	0	0	0	
Build Volumes (2024	l) 0	324	128	67	590	0	0	0	0	0	0	0	
													_
PHF	= 0.90			0.90			0.90			0.90			
HV %	ó	3			2			2			2		
growth rate	s 1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	_
Trip Distribution % Ente	er												Remote
Trip Distribution % Ex	it 0.0%	0.0%	0.0%	0.0%	17.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	_
Trip Distribution % Ente	er												Main
Trip Distribution % Ex		0.0%	0.0%	0.0%	17.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1
•		1	·	1	I		!					1	_

INTERSECTION: 125 SB FRONTAGE AND S 140 FRONTAGE

	Southbound 125 SB FRONTAGE Left Thru Right			Westbound S I40 FRONTAGE				Northboun SB FRONT		Eastbound S 140 FRONTAGE			
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	
Existing Volumes (2019)	47	415	0	0	0	0	0	0	0	0	457	320	
Background Growth	1	12	0	0	0	0	0	0	0	0	14	10	
No Build Volumes (2024)	48	427	0	0	0	0	0	0	0	0	471	330	
Subtractions													
Remote Entering											2	2	
Remote Exiting	0	0	0	0	0	0	0	0	0	0	0	0	
Main Entering											6	6	
Main Exiting	0	0	0	0	0	0	0	0	0	0	0	0	
Build Volumes (2024)	48	427	0	0	0	0	0	0	0	0	479	338	
_													
PHF	0.94			0.94			0.94			0.94			
HV %		2			2			2			2		

HV %		2			2			2			2		
		Southbour SB FRONT		Westbound S I40 FRONTAGE				Northboun	-	Eastbound S I40 FRONTAGE			
Ī	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	1
Existing Volumes (2019)	67	291	0	0	0	0	0	0	0	0	335	101	
Background Growth	2	9	0	0	0	0	0	0	0	0	10	3	-
No Build Volumes (2024)	69	300	0	0	0	0	0	0	0	0	345	104	-
Subtractions													
Remote Entering											1	1	
Remote Exiting	0	0	0	0	0	0	0	0	0	0	0	0	
Main Entering											2	2	
Main Exiting	0	0	0	0	0	0	0	0	0	0	0	0	
Build Volumes (2024)	69	300	0	0	0	0	0	0	0	0	348	107]
L													_
PHF	0.93			0.93			0.93			0.93			
HV %		2			2			2			2		
growth rates	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	
growth rates Trip Distribution % Enter	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	8.5%	8.5%	Remote
Trip Distribution % Exit	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	Remote
THE DISTINGUIGH 1/9 EXIL	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.076	0.0%	0.0%	0.0%	0.0%	
Trip Distribution % Enter											5.7%	5.7%	Main
Trip Distribution % Exit	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1

UNMH NHT EXISTING & PROJECTED TURNING MOVEMENTS

INTERSECTION: LOCUST AND MOUNTAIN

AM Peak Hour	5	Southboun	d	,	Westbound	d	N	Vorthboun	d		Eastbound	I
		LOCUST			MOUNTAIN	١		LOCUST			MOUNTAIN	l
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Existing Volumes (2019)	274	1,621	424	1	131	0	0	0	0	0	123	94
Background Growth	8	49	13	0	4	0	0	0	0	0	4	3
No Build Volumes (2024)	282	1,670	437	1	135	0	0	0	0	0	127	97
Subtractions												
Remote Entering	6										1	
Remote Exiting	0	0	0	0	0	0	0	0	0	0	0	0
Main Entering		6										
Main Exiting	0	0	0	0	0	0	0	0	0	0	0	0
Build Volumes (2024)	288	1,676	437	1	135	0	0	0	0	0	128	97
PHF	0.93			0.93			0.93			0.93		
HV %		2			4			2			3	
PM Peak Hour	Southbound			Westbound			Northbound			Eastbound		

PHF	0.93			0.93			0.93			0.93			
HV %		2			4			2			3		
	S	Southboun LOCUST	d		Westbound		N	Northboun LOCUST	d		Eastbound MOUNTAIN		
-	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	
Existing Volumes (2019)	28	631	142	0	81	0	0	0	0	0	209	69	
Background Growth	1	19	4	0	2	0	0	0	0	0	6	2	
No Build Volumes (2024)	29	650	146	0	83	0	0	0	0	0	215	71	1
Subtractions													
Remote Entering	2										0		
Remote Exiting	0	0	0	0	0	0	0	0	0	0	0	0	
Main Entering		2											
Main Exiting	0	0	0	0	0	0	0	0	0	0	0	0	
Build Volumes (2024)	31	652	146	0	83	0	0	0	0	0	216	71]
L													
PHF	0.92			0.92			0.92			0.92			
HV %		2			4			2			2		
	4.007	4.007	4.007	4.007	4.007	4.00/	4.007	4.00/	4.007	4.00/	4.00/	4.00/	
growth rates	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	٦, ،
Trip Distribution % Enter	24.5%	0.00/	0.00/	0.00/	0.00/	0.00/	0.00/	0.00/	0.00/	0.00/	4.0%	0.00/	Remote
Trip Distribution % Exit	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
Trip Distribution % Enter		5.7%											Main
Trip Distribution % Exit	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	

UNMH NHT EXISTING & PROJECTED TURNING MOVEMENTS

INTERSECTION: LOCUST AND LOMAS

AΜ	Peak	Н	lou	ľ

	S	Southbour LOCUST	ıd	,	Westbound LOMAS	İ	ľ	Northboun LOCUST	d	Eastbound LOMAS			
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	
Existing Volumes (2019)	778	447	717	98	1,049	0	0	0	0	0	873	106	
Background Growth	23	13	22	3	31	0	0	0	0	0	26	3	
No Build Volumes (2024)	801	460	739	101	1,080	0	0	0	0	0	899	109	
Subtractions													
Remote Entering											1		
Remote Exiting	0	0	0	0	0	0	0	0	0	0	0	0	
Main Entering	6										9		
Main Exiting	0	0	0	2	4	0	0	0	0	0	0	0	
Build Volumes (2024)	807	460	739	103	1,085	0	0	0	0	0	910	109	
-		-						-				-	
PHF	0.91			0.91			0.91			0.91			

PHF	0.91			0.91			0.91			0.91			
HV %		2			2			2			2		
	;	Southbour	d	,	Westbound	d	ı	Northboun	d		Eastbound	<u> </u>	7
		LOCUST			LOMAS			LOCUST			LOMAS		
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	
Existing Volumes (2019)	311	294	245	225	1,163	0	0	0	0	0	1,131	242	
Background Growth	9	9	7	7	35	0	0	0	0	0	34	7	
No Build Volumes (2024)	320	303	252	232	1,198	0	0	0	0	0	1,165	249	1
Subtractions													
Remote Entering											0		
Remote Exiting	0	0	0	0	1	0	0	0	0	0	0	0	
Main Entering	2										4		
Main Exiting	0	0	0	5	9	0	0	0	0	0	0	0	
Build Volumes (2024)	323	303	252	236	1,209	0	0	0	0	0	1,169	249	-
l													
PHF	0.94			0.94			0.94			0.94			
HV %		2			2			2			2		
grouth rates	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	
growth rates Trip Distribution % Enter		1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	5.0%	1.0%	Remote
Trip Distribution % Exit		0.0%	0.0%	0.0%	5.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	Remote
ווף טופנווטענוטוו א באונן	0.0 /0	0.070	0.0 /0	0.0 /0	5.070	0.0 /0	0.0 /0	0.0 /0	0.0 /0	0.0 /0	0.0 /0	0.0 /0	_
Trip Distribution % Enter	5.7%										9.0%		Main
Trip Distribution % Exit	0.0%	0.0%	0.0%	4.5%	9.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1
L													_

INTERSECTION: OAK AND CAMINO DE SALUD

AM Peak Hour

	8	Southboun OAK	ıd		Westbound		١	Northboun OAK	d	Eastbound CAMINO DE SALUD			
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	
Existing Volumes (2019)	0	0	0	0	0	3	0	573	420	0	0	0	
Background Growth	0	0	0	0	0	0	0	17	13	0	0	0	
No Build Volumes (2024)	0	0	0	0	0	3	0	590	433	0	0	0	
Subtractions													
Remote Entering									10				
Remote Exiting	0	0	0	0	0	0	0	0	0	0	0	0	
Main Entering													
Main Exiting	0	0	0	0	0	0	0	0	0	0	0	0	
Build Volumes (2024)	0	0	0	0	0	3	0	590	443	0	0	0	
-													
PHF	0.90			0.90			0.90			0.90			
		_			_			_			_		

PHF	0.90			0.90			0.90			0.90			
HV %		2			2			2			2		
		Southboun	d	,	Westbound	d	<u> </u>	Northboun	d		Eastbound		7
		OAK			IINO DE SA			OAK		CAN	IINO DE SA		
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	1
Existing Volumes (2019)	0	0	0	0	0	67	0	1,184	38	0	0	0	1
Background Growth	0	0	0	0	0	2	0	36	1	0	0	0]
No Build Volumes (2024)	0	0	0	0	0	69	0	1,220	39	0	0	0	-
Subtractions													
Remote Entering									4				
Remote Exiting	0	0	0	0	0	0	0	0	0	0	0	0]
Main Entering													
Main Exiting	0	0	0	0	0	0	0	0	0	0	0	0	
Build Volumes (2024)	0	0	0	0	0	69	0	1,220	43	0	0	0	
													_
PHF	0.88			0.88			0.88			0.88			
HV %	0.00	2		0.00	2		0.00	2		0.00	2		
,		_			_			_			_		
growth rates	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	
Trip Distribution % Enter									42.5%				Remote
Trip Distribution % Exit	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
Trip Distribution 0/ Enter		1				l		l				Ι	Main
Trip Distribution % Enter		0.00/	0.00/	0.0%	0.00/	0.00/	0.00/	0.00/	0.00/	0.00/	0.00/	0.0%	INIAIII
Trip Distribution % Exit	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	J

UNMH NHT EXISTING & PROJECTED TURNING MOVEMENTS

INTERSECTION: OAK AND MOUNTAIN

	S	outhbour	nd	,	Westboun	d	N	Northboun	d		Eastbound	
		OAK			MOUNTAI	N		OAK			MOUNTAIN	1
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Existing Volumes (2019)	0	0	0	0	0	0	184	552	0	407	0	0
Background Growth	0	0	0	0	0	0	6	17	0	12	0	0
No Build Volumes (2024)	0	0	0	0	0	0	190	569	0	419	0	0
Subtractions												
Remote Entering								3		7		
Remote Exiting	0	0	0	0	0	0	0	0	0	0	0	0
Main Entering												
Main Exiting	0	0	0	0	0	0	0	0	0	0	0	0
Build Volumes (2024)	0	0	0	0	0	0	190	572	0	426	0	0
PHF	0.93			0.93			0.93			0.93		
HV %		2			2			2			2	

PHF	0.93	0.93			0.93					0.93			
HV %		2			2			2			2		
	5	Southbour OAK	d		Westbound MOUNTAIN		١	Northboun OAK	d		Eastbound MOUNTAIN		
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	1
Existing Volumes (2019)	0	0	0	0	0	0	81	987	0	235	0	0	
Background Growth	0	0	0	0	0	0	2	30	0	7	0	0	
No Build Volumes (2024)	0	0	0	0	0	0	83	1,017	0	242	0	0	
Subtractions													
Remote Entering								1		3			
Remote Exiting	0	0	0	0	0	0	0	0	0	0	0	0	
Main Entering													
Main Exiting	0	0	0	0	0	0	0	0	0	0	0	0	
Build Volumes (2024)	0	0	0	0	0	0	83	1,018	0	245	0	0	
PHF HV %	0.92	2		0.92	2		0.92	2		0.92	2		
growth rates	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	_
Trip Distribution % Enter								14.0%		28.5%			Remote
Trip Distribution % Exit	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
Trip Distribution % Enter													Main
Trip Distribution % Exit	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	

INTERSECTION: OAK AND LOMAS

AM Peak Hour	S	outhbour	nd		Westbound	d	ı	Northboun	d		Eastbound	
		OAK			LOMAS			OAK		LOMAS		
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Existing Volumes (2019)	0	0	0	0	905	173	191	363	259	235	1,479	0
Background Growth	0	0	0	0	27	5	6	11	8	7	44	0
No Build Volumes (2024)	0	0	0	0	932	178	197	374	267	242	1,523	0
Subtractions												
Remote Entering								2		1		
Remote Exiting	0	0	0	0	0	0	0	0	0	0	0	0
Main Entering									9		15	
Main Exiting	0	0	0	0	5	0	0	0	0	0	0	0
Build Volumes (2024)	0	0	0	0	938	178	197	376	276	243	1,539	0
PHF	0.90			0.90			0.90			0.90		
HV %		2			2			2			2	
PM Peak Hour	Southbound				Westbound	d	N	Northboun	d		Eastbound	<u> </u>
	OAK				LOMAS			OAK			LOMAS	
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Existing Volumes (2019)	0	0	0	0	1,266	436	123	231	146	348	1,097	0
Background Growth	0	0	0	0	38	13	4	7	4	10	33	0

PHF	0.90			0.90			0.90			0.90			
HV %		2			2			2					
		Southbour	ıd		Westbound	d	1	Northboun	d		Eastbound	<u> </u>	1
		OAK			LOMAS			OAK			LOMAS		
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	1
Existing Volumes (2019)	0	0	0	0	1,266	436	123	231	146	348	1,097	0	
Background Growth	0	0	0	0	38	13	4	7	4	10	33	0	
No Build Volumes (2024)	0	0	0	0	1,304	449	127	238	150	358	1,130	0	1
Subtractions					,						,		
Remote Entering								1		0			
Remote Exiting	0	0	0	0	1	0	0	0	0	0	0	0	
Main Entering									4		6		
Main Exiting	0	0	0	0	14	0	0	0	0	0	0	0	
Build Volumes (2024)	0	0	0	0	1,319	449	127	239	154	359	1,136	0	4
l													
PHF	0.93			0.93			0.93			0.93			
HV %		2			2			2			2		
growth rates	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	_
Trip Distribution % Enter								9.0%		5.0%			Remote
Trip Distribution % Exit	0.0%	0.0%	0.0%	0.0%	5.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
Trip Distribution % Enter									9.0%		14.7%		Main
Trip Distribution % Exit		0.0%	0.0%	0.0%	13.5%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1
_													

INTERSECTION: UNIVERSITY AND 140 WB RAMP

	S	Southboun	d	1	Westbound	d	N	Vorthboun	d	Eastbound			
	U	INIVERSIT	Υ	14	0 WB RAM	1P	U	INIVERSIT	Υ	4	40 WB RAM	Р	
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	
Existing Volumes (2019)	0	675	42	526	396	301	60	483	0	0	0	0	
Background Growth	0	20	1	16	12	9	2	14	0	0	0	0	
No Build Volumes (2024)	0	695	43	542	408	310	62	497	0	0	0	0	
Subtractions													
Remote Entering		2		4									
Remote Exiting	0	0	0	0	0	0	2	2	0	0	0	0	
Main Entering		7		18									
Main Exiting	0	0	0	0	0	0	7	6	0	0	0	0	
Build Volumes (2024)	0	704	43	564	408	310	70	506	0	0	0	0	
PHF	0.91			0.91			0.91			0.91			

	0.31			0.31			0.31			0.31			
HV %	4				2			2			2		
		Southboun JNIVERSIT			Nestbound 0 WB RAM			Northboun JNIVERSIT		Į ₄	Eastbound 40 WB RAM		
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	1
Existing Volumes (2019)	0	546	56	162	185	183	296	1,094	0	0	0	0	
Background Growth	0	16	2	5	6	5	9	33	0	0	0	0	=
No Build Volumes (2024)	0	562	58	167	191	188	305	1,127	0	0	0	0	
Subtractions													
Remote Entering		1		2									
Remote Exiting	0	0	0	0	0	0	4	6	0	0	0	0	
Main Entering		3		7									
Main Exiting	0	0	0	0	0	0	18	16	0	0	0	0	
Build Volumes (2024)	0	566	58	176	191	188	327	1,148	0	0	0	0	-
PHF HV %	0.94	2		0.94	2		0.94	2		0.94	2		
growth rates_	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	_
Trip Distribution % Enter		7.0%		17.0%									Remote
Trip Distribution % Exit	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	17.0%	23.0%	0.0%	0.0%	0.0%	0.0%	
Trip Distribution % Enter		7.0%		17.0%									Main
Trip Distribution % Exit	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	17.0%	15.0%	0.0%	0.0%	0.0%	0.0%	

INTERSECTION: UNIVERSITY AND 140 EB RAMP

	Southbound UNIVERSITY				Westbound 10 EB RAM			Northboun		Eastbound 140 EB RAMP			
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	
Existing Volumes (2019)	176	1,057	0	0	0	0	0	476	149	55	283	243	
Background Growth	5	32	0	0	0	0	0	14	4	2	8	7	
No Build Volumes (2024)	181	1,089	0	0	0	0	0	490	153	57	291	250	
Subtractions													
Remote Entering		6										2	
Remote Exiting	0	0	0	0	0	0	0	4	2	0	0	0	
Main Entering		25										6	
Main Exiting	0	0	0	0	0	0	0	13	7	0	0	0	
Build Volumes (2024)	181	1,119	0	0	0	0	0	507	162	57	291	258	
_													
PHF	0.90			0.90			0.90			0.90			
LI\/ 0/		2			2			2			2		

HV %	2				2			2		2			
		Southboun JNIVERSIT			Westbound 40 EB RAM			Northboun INIVERSIT			Eastbound 40 EB RAM		
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	1
Existing Volumes (2019)	207	513	0	0	0	0	0	1,234	292	128	357	155	
Background Growth	6	15	0	0	0	0	0	37	9	4	11	5]
No Build Volumes (2024)	213	528	0	0	0	0	0	1,271	301	132	368	160	-
Subtractions													1
Remote Entering		2										1	
Remote Exiting	0	0	0	0	0	0	0	10	4	0	0	0	
Main Entering		10										2	
Main Exiting	0	0	0	0	0	0	0	33	18	0	0	0	
Build Volumes (2024)	213	541	0	0	0	0	0	1,314	323	132	368	163	-
PHF	0.98			0.98			0.98			0.98		1	J
HV %		2			2			2			2		
growth rates	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	
Trip Distribution % Enter		24.0%										8.5%	Remote
Trip Distribution % Exit	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	40.0%	17.0%	0.0%	0.0%	0.0%]
Trip Distribution % Enter		24.0%										5.7%	Main
Trip Distribution % Exit	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	32.0%	17.0%	0.0%	0.0%	0.0%	

INTERSECTION: UNIVERSITY AND INDIAN SCHOOL

AM	Peak	Hour
----	------	------

	Southbound UNIVERSITY				Westboun DIAN SCH(Northboun INIVERSIT		Eastbound INDIAN SCHOOL			
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	
Existing Volumes (2019)	42	967	86	221	270	80	101	438	69	126	194	228	
Background Growth	1	29	3	7	8	2	3	13	2	4	6	7	
No Build Volumes (2024)	43	996	89	228	278	82	104	451	71	130	200	235	
Subtractions													
Remote Entering		8		3									
Remote Exiting	0	0	0	0	0	0	0	5	1	0	0	0	
Main Entering		31		11									
Main Exiting	0	0	0	0	0	0	0	19	4	0	0	0	
Build Volumes (2024)	43	1,035	89	242	278	82	104	476	76	130	200	235	
L												<u> </u>	

 PHF
 0.94
 0.94
 0.94

 HV %
 2
 2
 2

2			2			2						
									IN			
Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	1
168	453	92	111	261	91	177	903	322	123	335	102	1
5	14	3	3	8	3	5	27	10	4	10	3]
173	467	95	114	269	94	182	930	332	127	345	105	1
												1
	3		1									
0	0	0	0	0	0	1	14	3	0	0	0	
	12		5									
0	0	0	0	0	0	0	51	11	0	0	0	
173	482	95	120	269	94	183	995	346	127	345	105	-
0.93	1		0.93			0.93		l	0.93			_
0.00	2		0.00	2		0.00	2		0.00	2		
1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	-
	32.5%		11.0%									Remote
0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	4.0%	57.0%	11.0%	0.0%	0.0%	0.0%	
	29.7%		11.0%									Main
0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	49.0%	11.0%	0.0%	0.0%	0.0%	
	Left 168 5 173 0 0 173 0.93	Southbourn UNIVERSIT Left Thru 168 453 5 14 173 467 3 0 0 12 0 0 173 482 0.93 2 1.0% 1.0% 32.5% 0.0% 29.7%	Southbound UNIVERSITY Left Thru Right 168 453 92 5 14 3 173 467 95 3 0 0 12 0 0 173 482 95 0.93 2 1.0% 1.0% 1.0% 32.5% 0.0% 0.0% 0.0% 0.0% 0.0%	Southbound UNIVERSITY INE Left Thru Right Left 168 453 92 111 5 14 3 3 173 467 95 114 0 0 0 0 12 5 0 0 0 0 0 173 482 95 120 0.93 2 0.93 2 1.0% 1.0% 1.0% 1.0% 0.93 2 11.0% 0.0% 0.03 0.093 0.93 0.93 2 11.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	Southbound UNIVERSITY INDIAN SCHOOL	Southbound UNIVERSITY Horizontal INDIAN SCHOOL	Southbound UNIVERSITY Horizontal Note	Southbound UNIVERSITY INDIAN SCHOOL UNIVERSITE	Southbound UNIVERSITY Westbound INDIAN SCHOOL Northbound UNIVERSITY Left Thru Right Left Thru Right Left Thru Right 168 453 92 111 261 91 177 903 322 5 14 3 3 8 3 5 27 10 173 467 95 114 269 94 182 930 332 3 1 0 0 0 0 114 3 12 5 0 0 0 14 14 3 12 5 0 0 0 0 51 11 173 482 95 120 269 94 183 995 346 0.93 2 2 2 2 2 2 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0%	Southbound UNIVERSITY Westbound INDIAN SCHOOL Northbound UNIVERSITY INDIAN SCHOOL UNIVERSITY INDIAN SCHOOL UNIVERSITY INDIAN SCHOOL UNIVERSITY INDIAN SCHOOL UNIVERSITY INDIAN SCHOOL UNIVERSITY INDIAN SCHOOL UNIVERSITY INDIAN SCHOOL UNIVERSITY INDIAN SCHOOL UNIVERSITY INDIAN SCHOOL UNIVERSITY INDIAN SCHOOL UNIVERSITY INDIAN SCHOOL UNIVERSITY INDIAN SCHOOL UNIVERSITY INDIAN SCHOOL UNIVERSITY INDIAN SCHOOL URITY 993 322 1123 10 0	Southbound UNIVERSITY INDIAN SCHOOL UNIVERSITY INDIAN SCHOOL UNIVERSITY INDIAN SCHOOL UNIVERSITY INDIAN SCHOOL UNIVERSITY INDIAN SCHOOL UNIVERSITY INDIAN SCHOOL UNIVERSITY INDIAN SCHOOL UNIVERSITY INDIAN SCHOOL INDIAN SC	Northbound No

INTERSECTION: UNIVERSITY AND CAMINO DE SALUD

AM	Peak	Hour
----	------	------

		Southboun JNIVERSIT			Westbound CAMINO DE SALUD			lorthboun		Eastbound CAMINO DE SALUD		
Ī	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Existing Volumes (2019)	40	971	204	44	1	15	153	499	56	35	39	110
Background Growth	1	29	6	1	0	0	5	15	2	1	1	3
No Build Volumes (2024)	41	1,000	210	45	1	15	158	514	58	36	40	113
Subtractions												
Remote Entering			11				3					
Remote Exiting	0	0	0	0	0	0	0	0	0	7	0	3
Main Entering		42										
Main Exiting	0	0	0	0	0	0	0	24	0	0	0	0
Build Volumes (2024)	41	1,042	221	45	1	15	161	538	58	43	40	116
_												
PHF	0.88			0.88			0.88			0.88		

HV %		2			2			4			10		
		Southboun JNIVERSIT			Westbound			Northboun JNIVERSIT			Eastbound		
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	1
Existing Volumes (2019)	27	617	20	74	3	80	59	1,089	67	245	9	270	
Background Growth	1	19	1	2	0	2	2	33	2	7	0	8	
No Build Volumes (2024)	28	636	21	76	3	82	61	1,122	69	252	9	278	
Subtractions													
Remote Entering			4				1						
Remote Exiting	0	0	0	0	0	0	0	0	0	18	0	7	
Main Entering		17											
Main Exiting	0	0	0	0	0	0	0	63	0	0	0	0	
Build Volumes (2024)	28	652	25	76	3	82	62	1,184	69	270	9	285	
PHF	0.95			0.95			0.95			0.95			
HV %		2			2			2			3		
growth rates	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	7
Trip Distribution % Enter			43.5%				13.0%						Remote
Trip Distribution % Exit	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	72.0%	0.0%	27.0%	
_, _, _,		1		-		1	1	1		1			٦
Trip Distribution % Enter		40.7%					2						Main
Trip Distribution % Exit	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	60.0%	0.0%	0.0%	0.0%	0.0%	

INTERSECTION: UNIVERSITY AND TUCKER

		Southboun		,	Westbound TUCKER	d		Northboun JNIVERSIT		Eastbound TUCKER			
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	
Existing Volumes (2019)	292	764	0	9	0	147	0	770	229	0	0	0	
Background Growth	9	23	0	0	0	4	0	23	7	0	0	0	
No Build Volumes (2024)	301	787	0	9	0	151	0	793	236	0	0	0	
Subtractions	-34					-9	0						
Remote Entering								3					
Remote Exiting	0	7	0	0	0	0	0	0	0	0	0	0	
Main Entering	42												
Main Exiting	0	0	0	0	0	23	0	1	0	0	0	0	
Build Volumes (2024)	309	794	0	9	0	166	0	797	236	0	0	0	
_													
PHF	0.94			0.94			0.94			0.94			

				• • • •									
HV %		3			8			2			2		
		Southboun		,	Westbound	d		Northboun			Eastbound	I	
	L	JNIVERSIT	Υ		TUCKER		l	JNIVERSIT	Υ		TUCKER		_
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	
Existing Volumes (2019)	115	1,110	0	34	0	249	0	831	80	0	0	0	
Background Growth	3	33	0	1	0	7	0	25	2	0	0	0	
													_
No Build Volumes (2024)		1,143	0	35	0	256	0	856	82	0	0	0	
Subtractions	-16					-23		-1					
Remote Entering								1					_
Remote Exiting	0	7	0	0	0	0	0	0	0	0	0	0	
Main Entering	17												
Main Exiting	0	0	0	0	0	60	0	2	0	0	0	0	
Build Volumes (2024)	119	1,150	0	35	0	294	0	859	82	0	0	0	
PHF	0.95			0.95			0.95			0.95			
HV %	0.00	2		0.00	3		0.00	2		0.00	2		
/2		-			ŭ			-			-		
growth rates	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	
Trip Distribution % Enter		110,70		110,70		1.070		13.0%	110,0			1.070	Remote
Trip Distribution % Exit		27.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
5 5 6 6 1 6 6 6 7 7 6 6 7 6	0.070	2.1070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	3.370	_
Trip Distribution % Enter	40.7%												Main
Trip Distribution % Exit	0.0%	0.0%	0.0%	0.0%	0.0%	58.0%	0.0%	2.0%	0.0%	0.0%	0.0%	0.0%	7

INTERSECTION: UNIVERSITY AND LOMAS

AM Peak Hour	5	outhbour	nd		Westbound	d	Northbound			Eastbound		
	ι	JNIVERSIT	Υ		LOMAS		ι	JNIVERSIT	Υ		LOMAS	
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Existing Volumes (2019)	214	440	125	207	887	215	98	440	151	342	1,145	146
Background Growth	6	13	4	6	27	6	3	13	5	10	34	4
No Build Volumes (2024)	220	453	129	213	914	221	101	453	156	352	1,179	150
Subtractions												
Remote Entering						2		1				
Remote Exiting	1	1	0	0	0	0	0	0	0	0	0	0
Main Entering									28		24	
Main Exiting	0	0	0	7	5	1	0	0	0	0	0	0
Build Volumes (2024)	221	454	129	220	919	224	101	454	183	352	1,204	150

PHF	0.95			0.95			0.95			0.95			
HV %		3			2			2			2		
<u>.</u>		Southboun JNIVERSIT		,	Westbound LOMAS	d		Northboun			Eastbound LOMAS		
F	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	1
Existing Volumes (2019)	222	588	311	215	1,176	169	213	586	287	154	1,017	155	7
Background Growth	7	18	9	6	35	5	6	18	9	5	31	5	
No Build Volumes (2024)	229	606	320	221	1,211	174	219	604	296	159	1,048	160	1
Subtractions													
Remote Entering						1		0					
Remote Exiting	2	3	1	0	0	0	0	0	0	0	0	0	
Main Entering									11		10		
Main Exiting	0	0	0	18	14	2	0	0	0	0	0	0	
Build Volumes (2024)	231	609	322	240	1,225	177	219	604	307	159	1,057	160	+
PHF	0.95	•		0.95			0.95		•	0.95			
HV %		2			2			2			2		
growth rates	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	
Trip Distribution % Enter						9.0%		4.0%					Remote
Trip Distribution % Exit	9.0%	13.0%	5.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
Trip Distribution % Enter									26.7%		23.7%		Main
Trip Distribution % Exit	0.0%	0.0%	0.0%	17.5%	13.5%	2.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1
·		1		<u>I</u>	<u>I</u>	1			1	l	ı	1	_

INTERSECTION: UNIVERSITY AND LAS LOMAS

Δ	M	ΙP	امم	kΙ	Н٥	nι	II
\neg	IV		cai	\ I		υL	41

		outhboun		Westbound LAS LOMAS				Northboun INIVERSIT		Eastbound LAS LOMAS			
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	
Existing Volumes (2019)	111	612	33	77	10	52	13	459	87	19	7	8	
Background Growth	3	18	1	2	0	2	0	14	3	1	0	0	
No Build Volumes (2024)	114	630	34	79	10	54	13	473	90	20	7	8	
Subtractions													
Remote Entering								1					
Remote Exiting	0	1	0	0	0	0	0	0	0	0	0	0	
Main Entering								28					
Main Exiting	0	7	0	0	0	0	0	0	0	0	0	0	
Build Volumes (2024)	114	638	34	79	10	54	13	501	90	20	7	8	
_													
PHF	0.84			0.84			0.84			0.84			

1 1 11	0.04			0.07			0.07			0.07			
HV %		2			6			2			4		
		Southboun JNIVERSIT			Westboun			Northboun JNIVERSIT			Eastbound		
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	
Existing Volumes (2019)	64	819	39	176	30	88	8	718	100	21	8	3	
Background Growth	2	25	1	5	1	3	0	22	3	1	0	0	
No Build Volumes (2024)	66	844	40	181	31	91	8	740	103	22	8	3	1
Subtractions												+	1
Remote Entering								0					
Remote Exiting	0	3	0	0	0	0	0	0	0	0	0	0	7
Main Entering								11					7
Main Exiting	0	17	0	0	0	0	0	0	0	0	0	0	
Build Volumes (2024)	66	864	40	181	31	91	8	751	103	22	8	3	
PHF HV %	0.92	2		0.92	3	L	0.92	2		0.92	2	1	J
growth rates	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	¬₋ .
Trip Distribution % Enter	0.00/	40.00/	0.00/	0.00/	0.00/	0.00/	0.00/	4.0%	0.00/	0.00/	0.00/	0.00/	Remote
Trip Distribution % Exit	0.0%	13.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	_
Trip Distribution % Enter								26.7%				T	Main
Trip Distribution % Exit	0.0%	16.5%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	7
L		-		•	•	•		•	-	-			_

INTERSECTION: KNME/CHILDREN'S CAMPUS AND CAMINO DE SALUD

AM	Peak	Hou
----	------	-----

	Southbound KNME/CHILDREN'S CAMPUS			1	Westbound	k	N	lorthboun	d	Eastbound			
	KNME/CH	HLDREN'S	CAMPUS	CAM	IINO DE SA	ALUD	KNME/CH	IILDREN'S	CAMPUS	CAM	IINO DE SA	LUD	
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	
Existing Volumes (2019)	1	2	53	0	2	0	4	2	0	100	30	12	
Background Growth	0	0	2	0	0	0	0	0	0	3	1	0	
No Build Volumes (2024)	1	2	55	0	2	0	4	2	0	103	31	12	
Subtractions													
Remote Entering													
Remote Exiting	0	0	0	0	0	0	0	0	0	0	0	0	
Main Entering													
Main Exiting	0	0	0	0	0	0	0	0	0	0	0	0	
Build Volumes (2024)	1	2	55	0	2	0	4	2	0	103	31	12	
PHF	0.84			0.84			0.84			0.84			

HV %		2			2			2			2		
		Southbour	id CAMPUS		Westbound			Northboun	id S CAMPUS	CAN	Eastbound		
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	1
Existing Volumes (2019)	0	2	106	0	22	1	27	2	0	80	21	2	1
Background Growth	0	0	3	0	1	0	1	0	0	2	1	0]
No Build Volumes (2024)	0	2	109	0	23	1	28	2	0	82	22	2	+
Subtractions													1
Remote Entering													
Remote Exiting	0	0	0	0	0	0	0	0	0	0	0	0	
Main Entering													
Main Exiting	0	0	0	0	0	0	0	0	0	0	0	0	
Build Volumes (2024)	0	2	109	0	23	1	28	2	0	82	22	2	-
DUE	0.70		<u> </u>	0.70	<u>l</u>		0.70		<u> </u>	0.70			_
PHF	0.70	0		0.70	0		0.70	0		0.70	0		
HV %		2			2			2			2		
growth rates	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	_
Trip Distribution % Enter													Remote
Trip Distribution % Exit	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
Trip Distribution % Enter													Main
Trip Distribution % Exit	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	

INTERSECTION: CAMINO DE SALUD AND TUCKER

AM	Peak	Hour
----	------	------

		Southbour		Westbound TUCKER				Northboun		Eastbound TUCKER			
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	
Existing Volumes (2019)	0	0	2	1	134	0	98	1	2	0	317	128	
Background Growth	0	0	0	0	4	0	3	0	0	0	10	4	
No Build Volumes (2024)	0	0	2	1	138	0	101	1	2	0	327	132	
Subtractions							-9					-34	
Remote Entering													
Remote Exiting	0	0	0	0	0	0	0	0	0	0	0	0	
Main Entering												42	
Main Exiting	0	0	0	0	0	0	23	0	0	0	0	0	
Build Volumes (2024)	0	0	2	1	138	0	115	1	2	0	327	140	
-													
PHF	0.86			0.86			0.86			0.86			

No this continue South bound CAMINO DE SALUD TUCKER CAMINO DE SALUD TUCKER CAMINO DE SALUD TUCKER	FIIF	0.00			0.00			0.00			0.00			
CAMINO DE SALUD TUCKER CAMINO DE SALUD TUCKER Left Thru Right Left Thru Left Thru Left Right Left Thru Left Right Left Thru Right Left Thru Left Right Left Thru Left Right Left Thru Left Right Left Right Left Right Rig	HV %		17			10			3			6		
Left Thru Right Left Thru Right Left Thru Right Left Thru Right Left Thru Right Left Thru Right Left Thru Right Ri			Southboun	ıd	,	Westbound	d	N	Northboun	d		Eastbound	d k	7
Existing Volumes (2019)		CAM	IINO DE SA	ALUD		TUCKER		CAM	INO DE SA	ALUD		TUCKER		_
No Build Volumes (2024)		Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right]
No Build Volumes (2024) O 2 0 3 205 0 140 1 10 1 156 93	Existing Volumes (2019)	0	2	0	3	199	0	136	1	10	1	151	90	
Subtractions	Background Growth	0	0	0	0	6	0	4	0	0	0	5	3	
Remote Entering Remote Exiting O O O O O O O O O	No Build Volumes (2024)	0	2	0	3	205	0	140	1	10	1	156	93	
Remote Exiting 0 0 0 0 0 0 0 0 0	Subtractions							-23					-16	
Main Entering Image: Company of the property of the pr	Remote Entering													
Main Exiting 0 <t< td=""><td>Remote Exiting</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td></td></t<>	Remote Exiting	0	0	0	0	0	0	0	0	0	0	0	0	
PHF 0.88 0.88 0.88 0.88 0.88 0.88 HV % 2 5 5 3 3 7 Trip Distribution % Enter Trip Distribution % Enter Distribution % Enter	Main Entering												17]
PHF 0.88 0.88 0.88 0.88 0.88 0.88 7 growth rates 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0%	Main Exiting	0	0	0	0	0	0	60	0	0	0	0	0	
HV % 2 5 3 7 growth rates 1.0% </td <td>Build Volumes (2024)</td> <td>0</td> <td>2</td> <td>0</td> <td>3</td> <td>205</td> <td>0</td> <td>178</td> <td>1</td> <td>10</td> <td>1</td> <td>156</td> <td>94</td> <td></td>	Build Volumes (2024)	0	2	0	3	205	0	178	1	10	1	156	94	
HV % 2 5 3 7 growth rates 1.0% </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td>														_
Trip Distribution % Enter Remote Trip Distribution % Exit 0.0% 0.0		0.88	2		0.88	5		0.88	3		0.88	7		
Trip Distribution % Enter Remote Trip Distribution % Exit 0.0% 0.0	growth rates	1 በ%	1 0%	1 0%	1 0%	1 በ%	1.0%	1 0%	1.0%	1.0%	1.0%	1.0%	1 0%	
Trip Distribution % Exit 0.0% 0		1.070	1.070	1.070	1.070	1.070	1.070	1.070	1.070	1.070	1.070	1.070	1.070	Remote
	•	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
	Trip Distribution % Enter												40.7%	Main
	•	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	58.0%	0.0%	0.0%	0.0%	0.0%	+]

INTERSECTION: YALE AND CAMINO DE SALUD

Build Volumes (2024)

92

33

AM Peak Hour		Southbound			Westbound			1	Vorthboun	d	Eastbound		
			YALE		CAM	INO DE SA	LUD		YALE		CAN	/INO DE SA	LUD
		Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Existing Vol	umes (2019)	30	82	18	183	73	37	47	122	312	7	57	47
Backgr	ound Growth	1	2	1	5	2	1	1	4	9	0	2	1
No Build Vol	umes (2024)	31	84	19	188	75	38	48	126	321	7	59	48
	Subtractions		-4	-9					-32		-34		
Rem	note Entering												
Re	mote Exiting	0	0	0	0	0	0	0	0	0	0	0	0
N	lain Entering								39		42		
	Main Exiting	0	11	23	0	0	0	0	0	0	0	0	0

188

PHF 0.94 0.94 0.94 0.94 0.94 4

48

133

321

15

59

48

75

	Southbound YALE		Westbound CAMINO DE SALUD			Northbound YALE			Eastbound CAMINO DE SALUD				
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	
Existing Volumes (2019)	19	167	5	318	72	49	8	70	212	4	42	100	
Background Growth	1	5	0	10	2	1	0	2	6	0	1	3	
No Build Volumes (2024)	20	172	5	328	74	50	8	72	218	4	43	103	_
Subtractions		-11	-23	020				-15	2.0	-16	-10	100	1
Remote Entering										,,,			-
Remote Exiting	0	0	0	0	0	0	0	0	0	0	0	0	1
Main Entering								16		17			
Main Exiting	0	30	60	0	0	0	0	0	0	0	0	0	
Build Volumes (2024)	20	191	43	328	74	50	8	73	218	5	43	103	_
Bana Volumoo (2024)			10	020					2.0	_ •	10	100	_
PHF	0.94			0.94			0.94			0.94			
HV %		3			2			3			3		
growth rates	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	
Trip Distribution % Enter													Remote
Trip Distribution % Exit	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
Trip Distribution % Enter			I	I		1	1	38.1%		40.7%			Main
Trip Distribution % Exit	0.0%	29.0%	58.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	IVIAIII
THE DISTRIBUTION /6 LAIL	0.070	23.070	JU.U /0	0.070	0.070	0.076	0.070	0.070	0.070	0.070	0.076	0.076	╛

INTERSECTION: YALE AND LOMAS

AM Peak Hour	5	outhbour	nd		Westbound	ı	ı	Vorthboun	d		Eastbound	
		YALE			LOMAS			YALE			LOMAS	
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Existing Volumes (2019)	58	59	199	76	1,098	139	28	48	18	295	1,036	134
Background Growth	2	2	6	2	33	4	1	1	1	9	31	4
No Build Volumes (2024)	60	61	205	78	1,131	143	29	49	19	304	1,067	138
Subtractions	-1		-3		-2	-3				-28		
Remote Entering					2						0	
Remote Exiting	0	0	0	0	0	0	0	0	0	0	1	0
Main Entering						5				35	17	
Main Exiting	2	0	9	0	4	0	0	0	0	0	0	0
Build Volumes (2024)	61	61	211	78	1,136	144	29	49	19	310	1,085	138
•												
PHF	0.94			0.94			0.94			0.94		

PHF	0.94			0.94			0.94			0.94			
HV %		6			3			8			3		
	5	Southbour YALE	ıd		Westbound LOMAS	d	N	Northboun YALE	d		Eastbound LOMAS		
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	
Existing Volumes (2019)	166	60	370	60	1,001	80	101	36	69	166	1,204	104	1
Background Growth	5	2	11	2	30	2	3	1	2	5	36	3	
No Build Volumes (2024)	171	62	381	62	1,031	82	104	37	71	171	1,240	107	-
Subtractions	-2		-9		-4	-16				-13			1
Remote Entering					1						0		1
Remote Exiting	0	0	0	0	0	0	0	0	0	0	2	0	
Main Entering						2				14	7		
Main Exiting	6	0	24	0	10	0	0	0	0	0	0	0	
Build Volumes (2024)	175	62	396	62	1,038	69	104	37	71	172	1,249	107	_
PHF	0.94			0.94			0.94			0.94			J
HV %		2			2			4			2		
growth rates	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	_
Trip Distribution % Enter					9.0%						0.0%		Remote
Trip Distribution % Exit	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	9.0%	0.0%	
Trip Distribution % Enter						4.5%				33.6%	16.8%		Main
Trip Distribution % Exit	6.0%	0.0%	23.0%	0.0%	10.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%]

INTERSECTION: PROPOSED ENTRANCE AND LOMAS

	S	outhboun	ıd	,	Westbound	k	N	lorthboun	d		Eastbound	
	PROPO	SED ENT	RANCE		LOMAS		PROPO	SED ENT	RANCE		LOMAS	
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Existing Volumes (2019)					1,446						1,112	
Background Growth	0	0	0	0	43	0	0	0	0	0	33	0
No Build Volumes (2024)	0	0	0	0	1,489	0	0	0	0	0	1,145	0
Subtractions												
Remote Entering					2					0		
Remote Exiting	0	0	0	0	0	0	0	0	0	0	1	0
Main Entering					5	5				17		
Main Exiting	1	0	4	0	0	0	0	0	0	0	2	0
Build Volumes (2024)	1	0	4	0	1,497	5	0	0	0	17	1,148	0
PHF	0.94			0.94			0.94			0.94		
HV %		2			2			2			2	

1 1 11	0.01			0.01			0.01			0.01			
HV %		2			2			2			2		
		Southbour			Westbound LOMAS	d		Northboun			Eastbound LOMAS	l	
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	1
Existing Volumes (2019)					1,186						1,439		1
Background Growth	0	0	0	0	36	0	0	0	0	0	43	0	
No Build Volumes (2024)	0	0	0	0	1,222	0	0	0	0	0	1,482	0	
Subtractions					,						,		
Remote Entering					1					0			
Remote Exiting	0	0	0	0	0	0	0	0	0	0	2	0	1
Main Entering					2	2				7			
Main Exiting	3	0	10	0	1	0	0	0	0	0	5	0	
Build Volumes (2024)	3	0	10	0	1,225	2	0	0	0	7	1,489	0	
l PHF	0.94		<u> </u>	0.94			0.94			0.94			J
HV %		2			2			2			2		
growth rates	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	_
Trip Distribution % Enter					9.0%					0.0%			Remote
Trip Distribution % Exit	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	9.0%	0.0%	
Trip Distribution % Enter					4.5%	4.5%				16.8%			Main
Trip Distribution % Exit	3.0%	0.0%	10.0%	0.0%	1.0%	0.0%	0.0%	0.0%	0.0%	0.0%	4.5%	0.0%	
<u> </u>													

INTERSECTION: AMBULANCE ENTRANCE AND LOMAS

AM	Peak	Hour
----	------	------

	S	outhbour	ıd		Westbound	d	1	Northboun	d		Eastbound	
	AMBUL	ANCE EN	TRANCE		LOMAS		AMBUL	ANCE EN	TRANCE		LOMAS	
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Existing Volumes (2019)	0	0	5	0	1,441	4	0	0	0	9	1,002	0
Background Growth	0	0	0	0	43	0	0	0	0	0	30	0
No Build Volumes (2024)	0	0	5	0	1,484	4	0	0	0	9	1,032	0
Subtractions												
Remote Entering					2							
Remote Exiting	0	0	0	0	0	0	0	0	0	0	1	0
Main Entering					9							
Main Exiting	0	0	0	0	0	0	0	0	0	0	4	0
Build Volumes (2024)	0	0	5	0	1,496	4	0	0	0	9	1,036	0
PHF	0.90			0.90			0.90			0.90		
HV %		2			2			2			4	

HV %		2			2			2			4		
		Southbour ANCE EN		,	Westbound LOMAS	d		Northboun			Eastbound LOMAS	l	
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	1
Existing Volumes (2019)	0	0	6	0	1,180	3	0	0	0	2	1,449	0	
Background Growth	0	0	0	0	35	0	0	0	0	0	43	0]
No Build Volumes (2024)	0	0	6	0	1,215	3	0	0	0	2	1,492	0	1
Subtractions													1
Remote Entering					1								1
Remote Exiting	0	0	0	0	0	0	0	0	0	0	2	0	
Main Entering					4								
Main Exiting	0	0	0	0	0	0	0	0	0	0	9	0	
Build Volumes (2024)	0	0	6	0	1,220	3	0	0	0	2	1,504	0]
L													J
PHF	0.89			0.89			0.89			0.89			
HV %		2			2			2			2		
growth rates	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	7
Trip Distribution % Enter					9.0%								Remote
Trip Distribution % Exit	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	9.0%	0.0%	
Trip Distribution % Enter					9.0%								Main
Trip Distribution % Exit	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	9.0%	0.0%	

INTERSECTION: STANFORD/ ER ENTRANCE AND LOMAS

	AM	Peak	Hour	
--	----	------	------	--

		Southboun STANFORI		,	Westbound LOMAS			Northboun STANFORI		Eastbound LOMAS			
-	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	
Existing Volumes (2019)		0	8	71	1,336	6	104	1	39	5	702	227	
Background Growth		0	0	2	40	0	3	0	1	0	21	7	
No Build Volumes (2024)	6	0	8	73	1,376	6	107	1	40	5	723	234	
Subtractions													
Remote Entering					2								
Remote Exiting	0	0	0	0	0	0	0	0	0	0	1	0	
Main Entering					9								
Main Exiting	0	0	0	0	0	0	0	0	0	0	4	0	
Build Volumes (2024)	6	0	8	73	1,388	6	107	1	40	5	727	234	
_													
PHF	0.94			0.94			0.94			0.94			

 PHF
 0.94
 0.94
 0.94

 HV %
 2
 2
 2
 2

HV %		2			2			2			2		
		Southbour STANFOR		,	Westbound LOMAS	t		Northboun STANFORI			Eastbound LOMAS	l	
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	
Existing Volumes (2019)	6	0	14	43	965	15	201	1	84	10	1,314	125	
Background Growth	0	0	0	1	29	0	6	0	3	0	39	4	
No Build Volumes (2024)	6	0	14	44	994	15	207	1	87	10	1,353	129	_
Subtractions													
Remote Entering					1								
Remote Exiting	0	0	0	0	0	0	0	0	0	0	2	0	
Main Entering					4								
Main Exiting	0	0	0	0	0	0	0	0	0	0	9	0	
Build Volumes (2024)	6	0	14	44	999	15	207	1	87	10	1,365	129	
L PHF	0.94			0.94			0.94			0.94			J
HV %		2		0.0.	2		0.0.	2		0.0.	2		
growth rates	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	7
Trip Distribution % Enter					9.0%								Remote
Trip Distribution % Exit	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	9.0%	0.0%	
Trip Distribution % Enter					9.0%								Main
Trip Distribution % Exit	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	9.0%	0.0%	

INTERSECTION: PATIENT DROP-OFF EXIT AND LOMAS

AM	Peak	Hour
----	------	------

		outhbour		,	Westbound LOMAS	i		Northboun OP-OFF E			Eastbound LOMAS	
 	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Existing Volumes (2019)	0	0	81	0	1,377	0	0	0	0	0	0	3
Background Growth	0	0	2	0	41	0	0	0	0	0	0	0
No Build Volumes (2024)	0	0	83	0	1,418	0	0	0	0	0	0	3
Subtractions												
Remote Entering					2							
Remote Exiting	0	0	0	0	0	0	0	0	0	0	1	0
Main Entering					9							
Main Exiting	0	0	0	0	0	0	0	0	0	0	4	0
Build Volumes (2024)	0	0	83	0	1,430	0	0	0	0	0	4	3
PHF	0.93			0.93			0.93			0.93		
HV %		25			2			2			2	

PHF	0.93			0.93			0.93			0.93			
HV %		25			2			2			2		
		Southboun	ıd	,	Westbound	d	N	Northboun	d		Eastbound	<u> </u>	
		OP-OFF E			LOMAS			OP-OFF E			LOMAS		
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	
Existing Volumes (2019)	0	0	71	0	949	0	0	0	0	0	0	0	
Background Growth	0	0	2	0	28	0	0	0	0	0	0	0	-
No Build Volumes (2024)	0	0	73	0	977	0	0	0	0	0	0	0	†
Subtractions													
Remote Entering					1								
Remote Exiting	0	0	0	0	0	0	0	0	0	0	2	0	
Main Entering					4								
Main Exiting	0	0	0	0	0	0	0	0	0	0	9	0	
Build Volumes (2024)	0	0	73	0	982	0	0	0	0	0	12	0	
ļ													
PHF	0.88			0.88			0.88			0.88			
HV %		19			2			2			2		
growth rates	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	
Trip Distribution % Enter					9.0%								Remote
Trip Distribution % Exit	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	9.0%	0.0%	
Trip Distribution % Enter					9.0%								Main
Trip Distribution % Exit		0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	9.0%	0.0%	IVIAIII
וווף סופנווטמנוטוו א באונן	0.0 /0	0.0 /0	0.0 /0	0.0 /0	0.0 /0	0.0 /0	0.0 /0	0.0 /0	0.070	0.0 /0	3.0 /0	0.0 /0	

INTERSECTION: PATIENT DROP-OFF ENTRANCE AND LOMAS

AM	Peak	Hour
----	------	------

		outhboun		,	Westbound LOMAS	d		Northboun OFF ENTF			Eastbound LOMAS	
=				1 6	ı	51.17		1		1 6		
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Existing Volumes (2019)	0	0	0	0	1,377	31	0	0	0	55	686	0
Background Growth	0	0	0	0	41	1	0	0	0	2	21	0
No Build Volumes (2024)	0	0	0	0	1,418	32	0	0	0	57	707	0
Subtractions												
Remote Entering					2							
Remote Exiting	0	0	0	0	0	0	0	0	0	0	1	0
Main Entering					9							
Main Exiting	0	0	0	0	0	0	0	0	0	0	4	0
Build Volumes (2024)	0	0	0	0	1,430	32	0	0	0	57	711	0
_												
PHF	0.93			0.93			0.93			0.93		
HV %		2			25			2			5	

PHF	0.93			0.93			0.93			0.93			
HV %		2			25			2			5		
ſ		Southbour	ıd		Westboun	d	ı	Northboun	ıd		Eastbound	k	
	DROP	-OFF ENTI	RANCE		LOMAS		DROP	-OFF ENT	RANCE		LOMAS		
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	
Existing Volumes (2019)	0	0	0	0	949	34	0	0	0	50	1,350	0	
Background Growth	0	0	0	0	28	1	0	0	0	2	41	0	
No Build Volumes (2024)	0	0	0	0	977	35	0	0	0	52	1,391	0	
Subtractions													
Remote Entering					1								
Remote Exiting	0	0	0	0	0	0	0	0	0	0	2	0	
Main Entering					4								
Main Exiting	0	0	0	0	0	0	0	0	0	0	9	0	
Build Volumes (2024)	0	0	0	0	982	35	0	0	0	52	1,402	0	4
PHF	0.92	_		0.92			0.92			0.92	_		J
HV %		2			16			14			2		
growth rates	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	7
Trip Distribution % Enter					9.0%								Remote
Trip Distribution % Exit	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	9.0%	0.0%	_
Trip Distribution % Enter					9.0%								Main
Trip Distribution % Exit	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	9.0%	0.0%	

INTERSECTION: GIRARD AND LOMAS

AM Peak Hour

	Southbound GIRARD			Westbound LOMAS			N	Northboun GIRARD	d	Eastbound LOMAS		
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Existing Volumes (2019)	39	231	109	168	1,072	160	101	200	36	120	481	65
Background Growth	1	7	3	5	32	5	3	6	1	4	14	2
No Build Volumes (2024)	40	238	112	173	1,104	165	104	206	37	124	495	67
Subtractions												
Remote Entering					2							
Remote Exiting	0	0	0	0	0	0	0	0	0	0	1	0
Main Entering					9							
Main Exiting	0	0	0	0	0	0	0	0	0	0	4	0
Build Volumes (2024)	40	238	112	173	1,116	165	104	206	37	124	500	67
DUE	0.00			0.00			0.00			0.00		

PHF	0.88			0.88			0.88			0.88			
HV %	2 Southbound GIRARD				2			2					
				Westbound LOMAS			N	Northboun GIRARD	d				
-	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	
Existing Volumes (2019)	109	281	93	78	686	75	102	295	117	164	1,062	138	
Background Growth	3	8	3	2	21	2	3	9	4	5	32	4	
No Build Volumes (2024)	112	289	96	80	707	77	105	304	121	169	1,094	142	
Subtractions													
Remote Entering					1								
Remote Exiting	0	0	0	0	0	0	0	0	0	0	2	0	
Main Entering					4								
Main Exiting	0	0	0	0	0	0	0	0	0	0	9	0	
Build Volumes (2024)	112	289	96	80	711	77	105	304	121	169	1,105	142	
PHF	0.91			0.91			0.91			0.91			_
HV %		2			2			2			2		
growth rates	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	
Trip Distribution % Enter					9.0%								Remote
Trip Distribution % Exit	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	9.0%	0.0%	
Trip Distribution % Enter					9.0%								Main
Trip Distribution % Exit	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	9.0%	0.0%	1
٠ ا		ı	l					l	l		l	l .	_

UNMH - Employment Trips - Remote Parking Area Population by Subarea

Subarea	Population* 2016	Distance (mi)	Population / Distance 2016	% Pop. / Dist
1	44,753	19.7	2,270	1.56%
2	55,060	11.9	4,633	3.18%
3	7,709	10.7	724	0.50%
4	13,817	16.2	855	0.59%
5	59,541	8.3	7,148	4.91%
6	7,380	11.6	639	0.44%
7	59,485	6.1	9,782	6.71%
8	31,699	5.8	5,445	3.74%
9	1,534	24.9	62	0.04%
10	64,323	9.0	7,109	4.88%
11	33,210	6.7	4,958	3.40%
12	15,936	6.0	2,637	1.81%
13	9,888	6.0	1,650	1.13%
14	100,318	8.6	11,602	7.96%
15	24,829	2.8	8,836	6.07%
16	107,114	4.2	25,505	17.51%
17	21,499	2.0	10,625	7.29%
18	44,016	1.8	23,869	16.38%
19	66,483	6.5	10,236	7.03%
20	9,636	6.0	1,596	1.10%
21	559	7.0	79	0.05%
22	3,511	7.1	497	0.34%
23	19,163	17.7	1,080	0.74%
24	2,531	14.1	180	0.12%
25	863	16.3	53	0.04%
26	75,621	29.0	2,605	1.79%
27	19,926	46.7	426	0.29%
28	15,584	52.0	300	0.21%
29	10,397	36.9	281	0.19%
Total	926,385	44.5	145,682	100.00%

^{* -} Subarea Population from MRCOG 2040 Socioeconomic Forecasts

UNMH - Employment Trips - Remote Parking Area Population by Subarea

Subarea	Population*	Distance (mi)	Population /	% Pop. /										
Subarea	2016	Distance (IIII)	Distance 2016	Dist	Lo	mas to/from eas	st	Lo	Lomas to/from west			University to/from south		
						% Employees/		% Employees/			% Employees/			
					% Utililizing	Dist. Utilizing	Employees	% Utililizing	Dist. Utilizing	Employees	% Utililizing	Dist. Utilizing	Employees	
1	44,753	19.7	2,270	1.56%		0.00%	0		0.00%	0		0.00%	0	
2	55,060	11.9	4,633	3.18%		0.00%	0		0.00%	0		0.00%	0	
3	7,709	10.7	724	0.50%		0.00%	0		0.00%	0		0.00%	0	
4	13,817	16.2	855	0.59%		0.00%	0		0.00%	0		0.00%	0	
5	59,541	8.3	7,148	4.91%		0.00%	0		0.00%	0		0.00%	0	
6	7,380	11.6	639	0.44%		0.00%	0		0.00%	0		0.00%	0	
7	59,485	6.1	9,782	6.71%		0.00%	0		0.00%	0		0.00%	0	
8	31,699	5.8	5,445	3.74%		0.00%	0	25%	0.93%	7,925		0.00%	0	
9	1,534	24.9	62	0.04%		0.00%	0		0.00%	0		0.00%	0	
10	64,323	9.0	7,109	4.88%		0.00%	0	25%	1.22%	16,081		0.00%	0	
11	33,210	6.7	4,958	3.40%		0.00%	0	25%	0.85%	8,303		0.00%	0	
12	15,936	6.0	2,637	1.81%		0.00%	0		0.00%	0		0.00%	0	
13	9,888	6.0	1,650	1.13%		0.00%	0		0.00%	0		0.00%	0	
14	100,318	8.6	11,602	7.96%		0.00%	0		0.00%	0		0.00%	0	
15	24,829	2.8	8,836	6.07%		0.00%	0		0.00%	0		0.00%	0	
16	107,114	4.2	25,505	17.51%	20%	3.50%	21,423		0.00%	0		0.00%	0	
17	21,499	2.0	10,625	7.29%		0.00%	0	25%	1.82%	5,375		0.00%	0	
18	44,016	1.8	23,869	16.38%	25%	4.10%	11,004		0.00%	0	25%	4.10%	2,751	
19	66,483	6.5	10,236	7.03%	25%	1.76%	16,621		0.00%	0		0.00%	0	
20	9,636	6.0	1,596	1.10%		0.00%	0	25%	0.27%	2,409	25%	0.27%	0	
21	559	7.0	79	0.05%		0.00%	0		0.00%	0		0.00%	0	
22	3,511	7.1	497	0.34%		0.00%	0	25%	0.09%	878		0.00%	0	
23	19,163	17.7	1,080	0.74%		0.00%	0		0.00%	0		0.00%	0	
24	2,531	14.1	180	0.12%		0.00%	0		0.00%	0		0.00%	0	
25	863	16.3	53	0.04%		0.00%	0		0.00%	0		0.00%	0	
26	75,621	29.0	2,605	1.79%		0.00%	0		0.00%	0		0.00%	0	
27	19,926	46.7	426	0.29%		0.00%	0		0.00%	0		0.00%	0	
28	15,584	52.0	300	0.21%		0.00%	0		0.00%	0		0.00%	0	
29	10,397	36.9	281	0.19%		0.00%	0		0.00%	0		0.00%	0	
Total	926,385	44.5	145,682	100.00%		9%			5%			4%		

^{* -} Subarea Population from MRCOG 2040 Socioeconomic Forecasts

UNMH - Employment Trips - Remote Parking Area Population by Subarea

Cubaraa	Population*	Distance (mi)	Population /	% Pop. /										
Subarea	2016	Distance (mi)	Distance 2016	Dist	University to/from north				I-40 to/from west			I-40 to/from east		
						% Employees/			% Employees/			% Employees/		1
					% Utililizing	Dist. Utilizing	Employees	% Utililizing	Dist. Utilizing	Employees	% Utililizing	Dist. Utilizing	Employees	% Utililizing
1	44,753	19.7	2,270	1.56%		0.00%	0	25%	0.39%	11,188		0.00%	0	
2	55,060	11.9	4,633	3.18%		0.00%	0	25%	0.80%	13,765		0.00%	0	1
3	7,709	10.7	724	0.50%		0.00%	0	25%	0.12%	1,927		0.00%	0	1
4	13,817	16.2	855	0.59%		0.00%	0		0.00%	0		0.00%	0	1
5	59,541	8.3	7,148	4.91%		0.00%	0	50%	2.45%	29,771		0.00%	0	1
6	7,380	11.6	639	0.44%		0.00%	0	50%	0.22%	3,690		0.00%	0	1
7	59,485	6.1	9,782	6.71%		0.00%	0	50%	3.36%	29,743		0.00%	0	1
8	31,699	5.8	5,445	3.74%		0.00%	0	75%	2.80%	23,774		0.00%	0	1
9	1,534	24.9	62	0.04%		0.00%	0	100%	0.04%	1,534		0.00%	0	1
10	64,323	9.0	7,109	4.88%		0.00%	0	25%	1.22%	16,081		0.00%	0	50%
11	33,210	6.7	4,958	3.40%		0.00%	0		0.00%	0		0.00%	0	75%
12	15,936	6.0	2,637	1.81%		0.00%	0	45%	0.81%	7,171		0.00%	0	
13	9,888	6.0	1,650	1.13%		0.00%	0		0.00%	0		0.00%	0	1
14	100,318	8.6	11,602	7.96%		0.00%	0		0.00%	0	40%	3.19%	40,127	1
15	24,829	2.8	8,836	6.07%	20%	1.21%	4,966	50%	3.03%	12,415		0.00%	0	1
16	107,114	4.2	25,505	17.51%	10%	1.75%	10,711		0.00%	0	50%	8.75%	53,557	1
17	21,499	2.0	10,625	7.29%		0.00%	0	25%	1.82%	5,375		0.00%	0	25%
18	44,016	1.8	23,869	16.38%	25%	4.10%	11,004		0.00%	0		0.00%	0	1
19	66,483	6.5	10,236	7.03%		0.00%	0		0.00%	0	50%	3.51%	33,242	1
20	9,636	6.0	1,596	1.10%		0.00%	0		0.00%	0		0.00%	0	50%
21	559	7.0	79	0.05%		0.00%	0		0.00%	0		0.00%	0	100%
22	3,511	7.1	497	0.34%	25%	0.09%	878		0.00%	0	25%	0.09%	878	25%
23	19,163	17.7	1,080	0.74%		0.00%	0		0.00%	0	100%	0.74%	19,163	1
24	2,531	14.1	180	0.12%		0.00%	0		0.00%	0		0.00%	0	100%
25	863	16.3	53	0.04%		0.00%	0		0.00%	0		0.00%	0	100%
26	75,621	29.0	2,605	1.79%		0.00%	0		0.00%	0		0.00%	0	100%
27	19,926	46.7	426	0.29%		0.00%	0		0.00%	0		0.00%	0	İ
28	15,584	52.0	300	0.21%		0.00%	0		0.00%	0	100%	0.21%	15,584	İ
29	10,397	36.9	281	0.19%		0.00%	0		0.00%	0	100%	0.19%	10,397	<u> </u>
Total	926,385	44.5	145,682	100.00%	-	7%			17%			17%		

^{* -} Subarea Population from MRCOG 2040 Socioeconomic Forecasts

UNMH - Employment Trips - Remote Parking Area Population by Subarea

Subarea	Population* 2016	Distance (mi)	Population / Distance 2016	% Pop. / Dist	l-25 to/from sout	h		I-25 to/from nort	h	Mo	ountain to/from v	vest	India	n School to/fron	n east
					% Employees/			% Employees/			% Employees/			% Employees/	
					Dist. Utilizing	Employees	% Utililizing		Employees	% Utililizing	Dist. Utilizing	Employees	% Utililizing	Dist. Utilizing	
1	44,753	19.7	2,270	1.56%	0.00%	0	75%	1.17%	33,565		0.00%	0		0.00%	0
2	55,060	11.9	4,633	3.18%	0.00%	0	75%	2.39%	41,295		0.00%	0		0.00%	0
3	7,709	10.7	724	0.50%	0.00%	0	75%	0.37%	5,782		0.00%	0		0.00%	0
4	13,817	16.2	855	0.59%	0.00%	0	100%	0.59%	13,817		0.00%	0		0.00%	0
5	59,541	8.3	7,148	4.91%	0.00%	0	50%	2.45%	29,771		0.00%	0		0.00%	0
6	7,380	11.6	639	0.44%	0.00%	0	50%	0.22%	3,690		0.00%	0		0.00%	0
7	59,485	6.1	9,782	6.71%	0.00%	0	50%	3.36%	29,743		0.00%	0		0.00%	0
8	31,699	5.8	5,445	3.74%	0.00%	0		0.00%	0		0.00%	0		0.00%	0
9	1,534	24.9	62	0.04%	0.00%	0		0.00%	0		0.00%	0		0.00%	0
10	64,323	9.0	7,109	4.88%	2.44%	32,162		0.00%	0		0.00%	0		0.00%	0
11	33,210	6.7	4,958	3.40%	2.55%	24,908		0.00%	0		0.00%	0		0.00%	0
12	15,936	6.0	2,637	1.81%	0.00%	0	45%	0.81%	7,171	10%	0.18%	1,594		0.00%	0
13	9,888	6.0	1,650	1.13%	0.00%	0	75%	0.85%	7,416	25%	0.28%	2,472		0.00%	0
14	100,318	8.6	11,602	7.96%	0.00%	0	40%	3.19%	40,127		0.00%	0	20%	1.59%	20,064
15	24,829	2.8	8,836	6.07%	0.00%	0		0.00%	0	30%	1.82%	7,449		0.00%	0
16	107,114	4.2	25,505	17.51%	0.00%	0		0.00%	0		0.00%	0	20%	3.50%	21,423
17	21,499	2.0	10,625	7.29%	1.82%	5,375		0.00%	0	25%	1.82%	5,375		0.00%	0
18	44,016	1.8	23,869	16.38%	0.00%	0		0.00%	0		0.00%	0	25%	4.10%	11,004
19	66,483	6.5	10,236	7.03%	0.00%	0		0.00%	0		0.00%	0	25%	1.76%	16,621
20	9,636	6.0	1,596	1.10%	0.55%	4,818		0.00%	0		0.00%	0		0.00%	0
21	559	7.0	79	0.05%	0.05%	559		0.00%	0		0.00%	0		0.00%	0
22	3,511	7.1	497	0.34%	0.09%	878		0.00%	0		0.00%	0		0.00%	0
23	19,163	17.7	1,080	0.74%	0.00%	0		0.00%	0		0.00%	0		0.00%	0
24	2,531	14.1	180	0.12%	0.12%	2,531		0.00%	0		0.00%	0		0.00%	0
25	863	16.3	53	0.04%	0.04%	863		0.00%	0		0.00%	0		0.00%	0
26	75,621	29.0	2,605	1.79%	1.79%	75,621		0.00%	0		0.00%	0		0.00%	0
27	19,926	46.7	426	0.29%	0.00%	0	100%	0.29%	19,926		0.00%	0		0.00%	0
28	15,584	52.0	300	0.21%	0.00%	0		0.00%	0		0.00%	0		0.00%	0
29	10,397	36.9	281	0.19%	0.00%	0		0.00%	0		0.00%	0		0.00%	0
Total	926,385	44.5	145,682	100.00%	9%			16%			4%			11%	

^{* -} Subarea Population from MRCOG 2040 Socioeconomic Forecasts

UNMH - Employment Trips - Main Parking Area Population by Subarea

Subarea	Population* 2016	Distance (mi)	Population / Distance 2016	% Pop. / Dist
1	44,753	19.7	2,270	1.56%
2	55,060	11.9	4,633	3.18%
3	7,709	10.7	724	0.50%
4	13,817	16.2	855	0.59%
5	59,541	8.3	7,148	4.91%
6	7,380	11.6	639	0.44%
7	59,485	6.1	9,782	6.71%
8	31,699	5.8	5,445	3.74%
9	1,534	24.9	62	0.04%
10	64,323	9.0	7,109	4.88%
11	33,210	6.7	4,958	3.40%
12	15,936	6.0	2,637	1.81%
13	9,888	6.0	1,650	1.13%
14	100,318	8.6	11,602	7.96%
15	24,829	2.8	8,836	6.07%
16	107,114	4.2	25,505	17.51%
17	21,499	2.0	10,625	7.29%
18	44,016	1.8	23,869	16.38%
19	66,483	6.5	10,236	7.03%
20	9,636	6.0	1,596	1.10%
21	559	7.0	79	0.05%
22	3,511	7.1	497	0.34%
23	19,163	17.7	1,080	0.74%
24	2,531	14.1	180	0.12%
25	863	16.3	53	0.04%
26	75,621	29.0	2,605	1.79%
27	19,926	46.7	426	0.29%
28	15,584	52.0	300	0.21%
29	10,397	36.9	281	0.19%
Total	926,385	44.5	145,682	100.00%

^{* -} Subarea Population from MRCOG 2040 Socioeconomic Forecasts

UNMH - Employment Trips - Main Parking Area Population by Subarea

Subarea	Population*	Distance (mi)	Population /	% Pop. /									
Subarea	2016	Distance (IIII)	Distance 2016	Dist	Lo	mas to/from eas	st	Lo	mas to/from we	st	Univ	versity to/from s	south
						% Employees/			% Employees/			% Employees/	1
					% Utililizing	Dist. Utilizing	Employees	% Utililizing	Dist. Utilizing	Employees	% Utililizing	Dist. Utilizing	Employees
1	44,753	19.7	2,270	1.56%		0.00%	0		0.00%	0		0.00%	0
2	55,060	11.9	4,633	3.18%		0.00%	0		0.00%	0		0.00%	0
3	7,709	10.7	724	0.50%		0.00%	0		0.00%	0		0.00%	0
4	13,817	16.2	855	0.59%		0.00%	0		0.00%	0		0.00%	0
5	59,541	8.3	7,148	4.91%		0.00%	0		0.00%	0		0.00%	0
6	7,380	11.6	639	0.44%		0.00%	0		0.00%	0		0.00%	0
7	59,485	6.1	9,782	6.71%		0.00%	0		0.00%	0		0.00%	0
8	31,699	5.8	5,445	3.74%		0.00%	0	25%	0.93%	7,925		0.00%	0
9	1,534	24.9	62	0.04%		0.00%	0		0.00%	0		0.00%	0
10	64,323	9.0	7,109	4.88%		0.00%	0	25%	1.22%	16,081		0.00%	0
11	33,210	6.7	4,958	3.40%		0.00%	0	25%	0.85%	8,303		0.00%	0
12	15,936	6.0	2,637	1.81%		0.00%	0	10%	0.18%	1,594		0.00%	0
13	9,888	6.0	1,650	1.13%		0.00%	0	25%	0.28%	2,472		0.00%	0
14	100,318	8.6	11,602	7.96%		0.00%	0		0.00%	0		0.00%	0
15	24,829	2.8	8,836	6.07%		0.00%	0	30%	1.82%	7,449		0.00%	0
16	107,114	4.2	25,505	17.51%	20%	3.50%	21,423		0.00%	0		0.00%	0
17	21,499	2.0	10,625	7.29%		0.00%	0	50%	3.65%	10,750		0.00%	0
18	44,016	1.8	23,869	16.38%	25%	4.10%	11,004		0.00%	0	25%	4.10%	2,751
19	66,483	6.5	10,236	7.03%	25%	1.76%	16,621		0.00%	0		0.00%	0
20	9,636	6.0	1,596	1.10%		0.00%	0	25%	0.27%	2,409	25%	0.27%	0
21	559	7.0	79	0.05%		0.00%	0		0.00%	0		0.00%	0
22	3,511	7.1	497	0.34%		0.00%	0	25%	0.09%	878		0.00%	0
23	19,163	17.7	1,080	0.74%		0.00%	0		0.00%	0		0.00%	0
24	2,531	14.1	180	0.12%		0.00%	0		0.00%	0		0.00%	0
25	863	16.3	53	0.04%		0.00%	0		0.00%	0		0.00%	0
26	75,621	29.0	2,605	1.79%		0.00%	0		0.00%	0		0.00%	0
27	19,926	46.7	426	0.29%		0.00%	0		0.00%	0		0.00%	0
28	15,584	52.0	300	0.21%		0.00%	0		0.00%	0		0.00%	0
29	10,397	36.9	281	0.19%		0.00%	0		0.00%	0		0.00%	0
Total	926,385	44.5	145,682	100.00%		9%			9%			4%	

^{* -} Subarea Population from MRCOG 2040 Socioeconomic Forecasts

UNMH - Employment Trips - Main Parking Area Population by Subarea

Subarea	Population*	Distance (mi)	Population /	% Pop. /	1									
Subarea	2016	Distance (IIII)	Distance 2016	Dist	Uni	versity to/from r			I-40 to/from wes	t		I-40 to/from eas	t	
						% Employees/			% Employees/			% Employees/		1
					% Utililizing	Dist. Utilizing	Employees	% Utililizing	Dist. Utilizing	Employees	% Utililizing	Dist. Utilizing	Employees	% Utililizing
1	44,753	19.7	2,270	1.56%		0.00%	0	25%	0.39%	11,188		0.00%	0	
2	55,060	11.9	4,633	3.18%		0.00%	0	25%	0.80%	13,765		0.00%	0	1
3	7,709	10.7	724	0.50%		0.00%	0	25%	0.12%	1,927		0.00%	0	
4	13,817	16.2	855	0.59%		0.00%	0		0.00%	0		0.00%	0	
5	59,541	8.3	7,148	4.91%		0.00%	0	50%	2.45%	29,771		0.00%	0	1
6	7,380	11.6	639	0.44%		0.00%	0	50%	0.22%	3,690		0.00%	0	1
7	59,485	6.1	9,782	6.71%		0.00%	0	50%	3.36%	29,743		0.00%	0	
8	31,699	5.8	5,445	3.74%		0.00%	0	75%	2.80%	23,774		0.00%	0	
9	1,534	24.9	62	0.04%		0.00%	0	100%	0.04%	1,534		0.00%	0	1
10	64,323	9.0	7,109	4.88%		0.00%	0	25%	1.22%	16,081		0.00%	0	50%
11	33,210	6.7	4,958	3.40%		0.00%	0		0.00%	0		0.00%	0	75%
12	15,936	6.0	2,637	1.81%		0.00%	0	45%	0.81%	7,171		0.00%	0	
13	9,888	6.0	1,650	1.13%		0.00%	0		0.00%	0		0.00%	0	
14	100,318	8.6	11,602	7.96%		0.00%	0		0.00%	0	40%	3.19%	40,127	
15	24,829	2.8	8,836	6.07%	20%	1.21%	4,966	50%	3.03%	12,415		0.00%	0	
16	107,114	4.2	25,505	17.51%	10%	1.75%	10,711		0.00%	0	50%	8.75%	53,557	
17	21,499	2.0	10,625	7.29%		0.00%	0	25%	1.82%	5,375		0.00%	0	25%
18	44,016	1.8	23,869	16.38%	25%	4.10%	11,004		0.00%	0		0.00%	0	
19	66,483	6.5	10,236	7.03%		0.00%	0		0.00%	0	50%	3.51%	33,242	
20	9,636	6.0	1,596	1.10%		0.00%	0		0.00%	0		0.00%	0	50%
21	559	7.0	79	0.05%		0.00%	0		0.00%	0		0.00%	0	100%
22	3,511	7.1	497	0.34%	25%	0.09%	878		0.00%	0	25%	0.09%	878	25%
23	19,163	17.7	1,080	0.74%		0.00%	0		0.00%	0	100%	0.74%	19,163	
24	2,531	14.1	180	0.12%		0.00%	0		0.00%	0		0.00%	0	100%
25	863	16.3	53	0.04%		0.00%	0		0.00%	0		0.00%	0	100%
26	75,621	29.0	2,605	1.79%		0.00%	0		0.00%	0		0.00%	0	100%
27	19,926	46.7	426	0.29%		0.00%	0		0.00%	0		0.00%	0	İ
28	15,584	52.0	300	0.21%		0.00%	0		0.00%	0	100%	0.21%	15,584	İ
29	10,397	36.9	281	0.19%		0.00%	0		0.00%	0	100%	0.19%	10,397	
Total	926,385	44.5	145,682	100.00%	•	7%			17%			17%		

^{* -} Subarea Population from MRCOG 2040 Socioeconomic Forecasts

UNMH - Employment Trips - Main Parking Area Population by Subarea

Subarea	Population* 2016	Distance (mi)	Population / Distance 2016	% Pop. / Dist	l-25 to/from sout	n		I-25 to/from nort	h	Mo	ountain to/from v	vest	India	n School to/fron	n east
	20.0		2.01000 20.0	2.01	% Employees/	•		% Employees/			% Employees/		ii idid	% Employees/	
					Dist. Utilizing	Employees	% Utililizing		Employees	% Utililizing	Dist. Utilizing		% Utililizing	Dist. Utilizing	
1	44,753	19.7	2,270	1.56%	0.00%	0	75%	1.17%	33,565		0.00%	0		0.00%	0
2	55,060	11.9	4,633	3.18%	0.00%	0	75%	2.39%	41,295		0.00%	0		0.00%	0
3	7,709	10.7	724	0.50%	0.00%	0	75%	0.37%	5,782		0.00%	0		0.00%	0
4	13,817	16.2	855	0.59%	0.00%	0	100%	0.59%	13,817		0.00%	0		0.00%	0
5	59,541	8.3	7,148	4.91%	0.00%	0	50%	2.45%	29,771		0.00%	0		0.00%	0
6	7,380	11.6	639	0.44%	0.00%	0	50%	0.22%	3,690		0.00%	0		0.00%	0
7	59,485	6.1	9,782	6.71%	0.00%	0	50%	3.36%	29,743		0.00%	0		0.00%	0
8	31,699	5.8	5,445	3.74%	0.00%	0		0.00%	0		0.00%	0		0.00%	0
9	1,534	24.9	62	0.04%	0.00%	0		0.00%	0		0.00%	0		0.00%	0
10	64,323	9.0	7,109	4.88%	2.44%	32,162		0.00%	0		0.00%	0		0.00%	0
11	33,210	6.7	4,958	3.40%	2.55%	24,908		0.00%	0		0.00%	0		0.00%	0
12	15,936	6.0	2,637	1.81%	0.00%	0	45%	0.81%	7,171		0.00%	0		0.00%	0
13	9,888	6.0	1,650	1.13%	0.00%	0	75%	0.85%	7,416		0.00%	0		0.00%	0
14	100,318	8.6	11,602	7.96%	0.00%	0	40%	3.19%	40,127		0.00%	0	20%	1.59%	20,064
15	24,829	2.8	8,836	6.07%	0.00%	0		0.00%	0		0.00%	0		0.00%	0
16	107,114	4.2	25,505	17.51%	0.00%	0		0.00%	0		0.00%	0	20%	3.50%	21,423
17	21,499	2.0	10,625	7.29%	1.82%	5,375		0.00%	0		0.00%	0		0.00%	0
18	44,016	1.8	23,869	16.38%	0.00%	0		0.00%	0		0.00%	0	25%	4.10%	11,004
19	66,483	6.5	10,236	7.03%	0.00%	0		0.00%	0		0.00%	0	25%	1.76%	16,621
20	9,636	6.0	1,596	1.10%	0.55%	4,818		0.00%	0		0.00%	0		0.00%	0
21	559	7.0	79	0.05%	0.05%	559		0.00%	0		0.00%	0		0.00%	0
22	3,511	7.1	497	0.34%	0.09%	878		0.00%	0		0.00%	0		0.00%	0
23	19,163	17.7	1,080	0.74%	0.00%	0		0.00%	0		0.00%	0		0.00%	0
24	2,531	14.1	180	0.12%	0.12%	2,531		0.00%	0		0.00%	0		0.00%	0
25	863	16.3	53	0.04%	0.04%	863		0.00%	0		0.00%	0		0.00%	0
26	75,621	29.0	2,605	1.79%	1.79%	75,621		0.00%	0		0.00%	0		0.00%	0
27	19,926	46.7	426	0.29%	0.00%	0	100%	0.29%	19,926		0.00%	0		0.00%	0
28	15,584	52.0	300	0.21%	0.00%	0		0.00%	0		0.00%	0		0.00%	0
29	10,397	36.9	281	0.19%	0.00%	0		0.00%	0		0.00%	0		0.00%	0
Total	926,385	44.5	145,682	100.00%	9%			16%			0%			11%	

^{* -} Subarea Population from MRCOG 2040 Socioeconomic Forecasts

AWDT on Lomas

(West of University)
Year AWI

Year AWDT 2013 32,435 2014 32,305 2015 32,434 2016 29,365 2017 29,571

Linear Growth Rate = $\{[(29,571 - 32,435)/4]/29,571\}x100 = -2.42\%$

Regression Output						
R Square	0.73					
Standard Error	9.62E+02					
Observations	5					
Intercept	1,777,824					
Std Err of Intercept	6.E+05					
Coefficient	-867					
Std Err of Coefficient	304					

<u>Projected AWDT</u>
2013 32,956
2014 32,089

 2014
 32,089

 2015
 31,222

 2016
 30,355

 2017
 29,488

 2018
 28,622

 2019
 27,755

 2020
 26,888

26,021

25,154

2021

2022

Regression Equation
AWDT = -867 x Year + 1,777,824
Coefficient Growth Rate -2.93%

Estimated Annual Growth Rate [(25,154 - 29,571)/29,571) x 100% = -14.94% -14.94%/4= -3.73%

AWDT on Lomas

(East of University)

Year	AWDT
2013	32,322
2014	31,768
2015	31,895
2016	31,991
2017	33,687

Linear Growth Rate = $\{[(33,687 - 32,322)/4]/33,687\}x100 = 1.01\%$

Regression Output						
R Square	0.354					
Standard Error	7.28E+02					
Observations	5					
Intercept	-562,697					
Std Err of Intercept	4.64E+05					
Coefficient	295					
Std Err of Coefficient	230					

Projected AWDT 2013 31,74

31,742
32,037
32,333
32,628
32,923
33,219
33,514
33,809
34,104
34,400
34,695

Regression Equation AWDT = 295 x Year - 562,697

Coefficient Growth Rate 0.88%

Estimated Annual Growth Rate ((34,695 - 33,687))/33,687) x 100% = 2.99% 2.99%/4 = 0.75%

AWDT on University (North of Lomas)

Year	AWDT
2013	23,208
2014	21,790
2015	21,877
2016	22,954
2017	21,339

Linear Growth Rate = $\{[(21,339-23,208)/4]/21,339\}x100 = -2.19\%$

Regression Output						
R Square	0.26					
Standard Error	8.02E+02					
Observations	5					
Intercept	540,895					
Std Err of Intercept	511,103					
Coefficient	-257					
Std Err of Coefficient	2.54E+02					

Projected AWDT 2013 22.74

2013	22,748
2014	22,491
2015	22,234
2016	21,976
2017	21,719
2018	21,461
2019	21,204
2020	20,947
2021	20,689
2022	20,432
2023	20,174

Regression Equation AWDT = 678 x Year + 540,895

Coefficient Growth Rate -1.21%

Estimated Annual Growth Rate [(20,174 -21,339)/21,339) x 100% = -5.46% -5.46%/4 = -1.36%

AWDT on University (South of Lomas)

Year	AWDT
2013	22,236
2014	22,032
2015	19,702
2016	19,761
2017	17 149

Linear Growth Rate = $\{[(17,149-22,236)/4]/17,149\}x100 = -7.42\%$

Regression Output												
R Square	0.898											
Standard Error	7.66E+02											
Observations	5											
Intercept	2,527,844											
Std Err of Intercept	488,080											
Coefficient	-1,245											
Std Err of Coefficient	2.42E+02											

<u>Projected AWDT</u>
2013 22,665
2014 21,421
2015 20,176

 2014
 21,421

 2015
 20,176

 2016
 18,932

 2017
 17,687

 2018
 16,443

 2019
 15,198

 2020
 13,954

 2021
 12,709

2022 2023 11,465

10,220

Regression Equation AWDT = -1,245 x Year + 2,527,844 C

Coefficient Growth Rate -7.26%

Estimated Annual Growth Rate $[(10,220-17,149)/17,149) \times 100\% = -40.40\%$ -40.4%/4 = -10.10%

AWDT
110,201
107,895
105,908
104,071
101,746

Linear Growth Rate = ${[101,746-110,201)/4]/101,746}x100 = -1.66\%$

Regre	ession Output
R Square	1.00
Standard Error	1.52E+02
Observations	5
Intercept	4,283,865
Std Err of Intercept	96,750
Coefficient	-2,073
Std Err of Coefficient	4.80E+01

AWDT
110,111
108,038
105,964
103,891
101,817
99,744
97,671
95,597
93,524
91,450
89,377

Regression Equation
AWDT = -2,073 x Year + 4,279,718
Coefficient Growth Rate -2.04%

Estimated Annual Growth Rate [(89,377-101,746)/101,746) x 100% = -12.16% -12.16%/4 = -2.43%

Courtyard I 7500 Jefferson St. NE Albuquerque, NM 87109-4335

www.bhinc.com

voice: 505.823.1000 facsimile: 505.798.7988 toll free: 800.877.5332

MEMORANDUM

DATE: June 16, 2019

TO: Eric Wrage, BHI

FROM: Melanie Bishop, BHI

SUBJECT: Staff Parking (Remote Lot vs Main Lot) and Patient Trip Breakdown and Demolished Building Trip Reduction Methodology Assumptions

Due to different parking locations for patients, doctors, and staff, the study utilizes a distributed trip pattern and assigns trips to multiple locations. Trips were distributed to and from the "Main Parking Area" located near the UNMH main campus and the "Remote Parking Area" located at the Landswest parking lots. The methodology used for site traffic forecasting based on numerous staffing and parking scenarios are described below.

I. TRIP GENERATION

Trips generated by the patient bed tower were assumed to include patients, doctors, and staff. To estimate the number of trips to the site, we used the trip generation manual based on the number of net new beds at the hospital.

Based on the UNMH Master Plan Parking Study completed by HDR in 2018, 2,335 employee parking spaces in Landswest are served by shuttle buses. Therefore, it was assumed that 55% is the proportion of staff that use the remote parking (2,335 employee parking spaces / 4,251 employees (shifts?)) and the remaining 45% of staff were assumed to use the main parking lot.

To estimate the number of trips to assign to the remote parking, we determined the number of staff that would generate the same number of trips as the per bed trip generation. This was done to estimate the number of staff. The staff was assumed to have two trips per day, one to arrive to work and one to depart. Dividing the total trips to the hospital by the number of staff trips found that 35% of the trips were due to staff. The remaining 65% of the trips were assumed to be patient trips.

As the parking study suggests that 55% of the staff uses remote parking and the above calculation found 35% of all trips were staff trips, results in approximately 20% of the trips to the site being assigned to the remote parking lot and 80% assigned to the main hospital parking areas (65% due to patients and 15% due to staff (the 45% of the staff that parks at the main campus multiplied by the 35% of the trips due to staff).

These calculations are shown in Appendix C of the report (forecast turning movement appendix).

II. TRIP REDUCTION

Future trips to the site were reduced to account for the buildings that are planned to be demolished and relocated elsewhere on campus (Physics and Astronomy, IT, Lock Shop, etc.).

We estimated the number of trips to the buildings demolished by measuring the building footprint using Google Earth Imagery and using that square footage in a trip generation calculation. The trips determined to be generated by the Physics and Astronomy building were then divided by 2 to account for student pedestrian traffic and the fact that students likely do not park near the building.

Trips were reduced from nearby intersections including University and Tucker, Camino de Salud and Tucker, Yale and Camino de Salud, and Yale and Lomas. Trips were not reduced beyond these intersections/ beyond the immediate vicinity of UNMH as it was assumed that those trips remain on the rest of the roadway network.

I. TRIP DISTRIBUTION

As mentioned, trips were distributed to and from the "Main Parking Area" located near the UNMH main campus and the "Remote Parking Area" located at the Landswest parking lots. Assumptions made for the two parking areas include the following:

- 1. The main parking area is assumed to serve patients and doctors who park near the main hospital area located near Lomas and Yale
 - a. Drivers enter/exit from Lomas and Yale
 - b. Drivers enter/exit from University and Tucker
 - c. A small number of trips were assigned to the patient drop-off entrances on Lomas
- 2. The remote parking area is assumed to serve staff who park at the Landswest employee parking lot located at University and Camino de Salud
 - a. Drivers enter/exit from University and Camino de Salud
 - b. Drivers enter northbound from Locust and Camino de Salud (exiting movements onto Locust is restricted)

Two gravity models were developed to determine the trip distribution – one for trips to/from the main parking area and one for trips to/from the remote parking area. It was necessary to develop two gravity models because trips to/from the two parking areas may utilize different routes. We determined that trips to the remote parking area may utilize Mountain to enter the parking lot from the west, while trips to the main parking area would utilize Lomas from the west.

Trip distribution for the two parking locations resulted in the following percentages:

Roadway	Main Parking	Remote Parking
I-40 to/from West	17%	17%
I-40 to/from East	17%	17%
I-25 to/from North	16%	16%
I-25 to/from South	9%	9%
University to/from North	7%	7%
University to/from South	4%	4%
Lomas to/from West	9%	5%
Lomas to/from East	9%	9%
Indian School to/from East	11%	11%
Mountain to/from West	0%	4%
TOTAL	100%	100%

I. TRIP ASSIGNMENT

The percentage of trips entering each parking area is assumed to be the same as the percentage of trips exiting each parking area. However, the trip assignment differs between entering and exiting trips. This is largely due to the proximity of the study area to nearby interstates, I-25 and I-40, and one-way roadways preventing trips from exiting the same way they enter.

To account for the traffic utilizing the proposed driveway east of Yale, trips were reassigned from the intersection of Yale and Lomas to the new access. As the new driveway will primarily be used by patients, half (50%) of the previously determined percentage for patient trips (65%) was subtracted from movements entering and exiting the Yale and Lomas intersection and were applied to the entering and exiting movements at the proposed driveway.

APPENDIX D 2024 NO BUILD INTERSECTION CAPACITY ANALYSIS

Signal Information Signal Information Signal Information T2 Seference Phase 2 Offset, s 0 Reference Point End Cycle, s 72 Seference Phase 2 Offset, s 0 Reference Point End Cycle, s 72 Seference Phase 2 Offset, s 0 Reference Point End Cycle Simult. Gap NIS On Ref 2 O 2 0 0 0 0 0 0 0 0 0	Signal Information	No Build - AM HCS7 Intersection Summary															
Signal Phase Splits And Results	Signal Information	#1 Locust & Mo	untain														
Cycle S 72.5 Reference Phase 2 Ciffset 3 0 Reference Point End Ciffset 3 0 Reference Point End Ciffset 3 0 Red 2 2 2 2 0 0 0 0 0 0	Cycles						П	Г	Г	T	1	Т					
Offset, s	Offset State Color Col			Peference Phase	2			L⊱						,	KŤ		
Uncoordinated Yes Simult. Gap EW On Force Mode Fixed Simult. Gap N/S On Red Z Z Z Z Z Z Z Z Z	Uncoordinated Ves Simult Gap ENV On Force Mode Fixed Simult Gap NIS On Red Z.0 2.0 2.0 0.0 0.0 0.0 0.0													1	2	3	Y 4
Signal Phase Spilts And Results	Signal Phase Splits And Results		_										_	 	.		
Signal Phase Splits And Results	Signal Phase Spits And Results						-			-			-	² KÎ	X	7	2
Approach Movement	Approach Movement	1 orce Mode	1 IXEU	Olificit. Gap 14/0	OII	Neu	2.0	2.0	2.0	10.0	0.0	0.0		3	0	,	٥
Demand (v), veh/h	Demand (v), veh/h	Signal Phase S	Splits A	nd Results			EB			WB			NB			SB	
Phase Split S	Phase Spilt, s	Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Volume-to-Capacity Ratio (X)	Volume-to-Capacity Ratio (X)	Demand (v), v	eh/h				127	97	1	135		0	0		282	1670	437
Queue Storage Ratio (RQ) (95 th percentile)	Queue Storage Ratio (RQ) (95 th percentile)	Phase Split, s					24.0			24.0			36.0		Ì	36.0	
Queue Storage Ratio (RQ) (95 th percentile)	Queue Storage Ratio (RQ) (95 th percentile)	Volume-to-Capa	acity Ra	tio (X)			0.590	0.640	0.006	0.734			0.000		0.306	0.316	0.322
Control Delay (d), s/veh	Control Delay (d), siveh	Queue Storage	Ratio (RQ) (95 th percent	ile)		0.19	0.18	0.00	0.58			0.00		0.11	0.10	0.10
Approach Delay, s/veh / LOS	Approach Delay, siveh / LOS				,		30.2	30.8	27.6	32.0					10.3	10.5	10.6
Intersection Delay, s/veh / LOS	Intersection Delay, s/veh / LOS	Level of Service	e (LOS)				С	С	С	С					В	В	В
#2 125 SB Frontage & S 140 Frontage Signal Information	#2	Approach Delay	y, s/veh	/LOS		30.5		С	31.9		С	0.0			10.4	Î	В
Signal Information	Signal Information	Intersection De	lay, s/ve	h / LOS				17	.1					E	3		
Signal Information	Signal Information																
Cycle, s 58.0 Reference Phase 2 Offset, s 0 Reference Point End Uncoordinated Yes Simult. Gap E/W On 12.0 12.0 0.0 48 427 P.	Cycle, s 58.0 Reference Phase 2 2 2 2 2 2 0 0 0 0			I40 Frontage		1-					-						
Cycle, s So. Reference Prints End Green 12.0 12.0 12.0 0.0	Cycle, s So. Reference Point End Green 12.0 12.0 12.0 0.0		tion				15										
Offset S O Reference Point End Green 12.0 12.0 0	Offset, s		58.0		2		54	⊨						- ↓ ↓	2	3	\rightarrow
Uncoordinated Yes Simult. Gap E/W On Yellow 4,0 4,0 0,0	Uncoordinated Yes Simult. Gap E/W On Yellow 4.0 4.0 0.0	Offset, s	0	Reference Point	End	Green	12.0		0.0	0.0	0.0	0.0			2	3	3 "
Signal Phase Splits And Results	Signal Phase Splits And Results	Uncoordinated	Yes	Simult. Gap E/W	On									, l	ST		
Approach Movement	Approach Movement	Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	0.0	0.0	0.0	0.0		5	6	7	8
Approach Movement	Approach Movement																
Demand (v), veh/h	Demand (v), veh/h		-	nd Results			_						_	Γ _			
Phase Split, s	Phase Split, s					L			L		R	L		R			R
Volume-to-Capacity Ratio (X)	Volume-to-Capacity Ratio (X)		eh/h					330				0			48	-	
Queue Storage Ratio (RQ) (95 th percentile)	Queue Storage Ratio (RQ) (95 th percentile) 0.04 0.20 0.00 0.01 0.06 Control Delay (d) , s/veh 8.4 9.6 7.3 8.3 1 Level of Service (LOS) A						_										
Control Delay (d') , s/veh	Signal Phase Splits And Results Signal Phase Splits And Results Signal Phase Splits Splits Signal Phase Splits Signal Phas						_								-	-	
Level of Service (LOS)	A				ile)								0.00		<u> </u>	<u> </u>	
Approach Delay, s/veh / LOS	Approach Delay, s/veh / LOS			eh			_	_							_		
Intersection Delay, s/veh / LOS	Signal Phase Splits And Results Signal Phase Splits Signal Results Signal Phase Splits Signal Results Signal Phase Splits Signal Results Signal Phase Splits S						A			\Box					-		
Signal Information Cycle, s 58.0 Reference Phase 2 2 2 3 3 4 4 4 5 5 5 5 5 5 5	Signal Information Cycle, s 58.0 Reference Phase 2 2 2 3 4 4 4 5 5 5 5 5 5 5					8.9						0.0					Α
Signal Information Cycle, s 58.0 Reference Phase 2 Offset, s 0 Reference Point End Uncoordinated Yes Simult. Gap E/W On Red 1.0 0.0	Signal Information Cycle, s 58.0 Reference Phase 2 Offset, s 0 Reference Point End Uncoordinated Yes Simult. Gap E/W On Green 12.0 0.0	Intersection De	lay, s/ve	h / LOS				8.	6					,	4		
Signal Information Cycle, s 58.0 Reference Phase 2 Offset, s 0 Reference Point End Uncoordinated Yes Simult. Gap E/W On Red 1.0 0.0	Signal Information Cycle, s 58.0 Reference Phase 2 Offset, s 0 Reference Point End Uncoordinated Yes Simult. Gap E/W On Green 12.0 0.0	#3 I25 SB Front	age & N	I I40 Frontage													
Cycle, s 58.0 Reference Phase 2 Offset, s 0 Reference Point End Uncoordinated Yes Simult. Gap E/W On Pellow 4.0 0.0	Cycle, s 58.0 Reference Phase 2							Т			1	Т					
Offset, s 0 Reference Point Uncoordinated Yes End Uncoordinated Yes Simult. Gap E/W On Yellow 4.0 0.0	Offset, s 0 Reference Point Uncoordinated Yes End Simult. Gap E/W On Yellow 4.0 0.0			Reference Phase	2		⊱	1									
Uncoordinated Yes Simult. Gap E/W On Yellow 4.0 0.0	Uncoordinated Yes Simult. Gap E/W On Force Mode Fixed Simult. Gap N/S On Red 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0										ļ.,	1		1	2	3	4
Force Mode Fixed Simult. Gap N/S On Red 1.0 0.0	Force Mode Fixed Simult. Gap N/S On Red 1.0 0.0												-				
Signal Phase Splits And Results EB WB NB SB Approach Movement L T R L L L L L L L	Signal Phase Splits And Results EB WB NB SB Approach Movement L T R L X L L A D D A D D D D D												-	5	6	7	8
Approach Movement L T R D A A	Approach Movement L T R D D D			Cilinaia Cap I ii C	rtou	1.0	0.0	0.0	0.0	0.0	0.0						
Demand (v), veh/h 174 393 306 45 Phase Split, s 24.0 24.0 24.0 Volume-to-Capacity Ratio (X) 0.301 0.343 0.264 0.089 Queue Storage Ratio (RQ) (95 th percentile) 0.03 0.03 0.03 0.03 0.02 Control Delay (d) , s/veh 8.1 8.2 7.9 7.4 Level of Service (LOS) A A A A	Demand (v), veh/h 174 393 306 45 Phase Split, s 24.0 24.0 24.0 24.0 Volume-to-Capacity Ratio (X) 0.301 0.343 0.264 0.089 Queue Storage Ratio (RQ) (95 th percentile) 0.03 0.03 0.03 0.02 Control Delay (d) , s/veh 8.1 8.2 7.9 7.4 Level of Service (LOS) A A A A A Approach Delay, s/veh / LOS 0.0 8.1 A 0.0 7.8 A	Signal Phase S		EB			WB			NB			SB				
Phase Split, s 24.0 26.0	Phase Split, s 24.0 26.0<	Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Volume-to-Capacity Ratio (X) 0.301 0.343 0.343 0.264 0.089 Queue Storage Ratio (RQ) (95 th percentile) 0.03 0.03 0.03 0.02 Control Delay (d) , s/veh 8.1 8.2 7.9 7.4 Level of Service (LOS) A A A A A	Volume-to-Capacity Ratio (X) 0.301 0.343 0.343 0.264 0.089 Queue Storage Ratio (RQ) (95 th percentile) 0.03 0.03 0.03 0.02 Control Delay (d) , s/veh 8.1 8.2 5 7.9 7.4 Level of Service (LOS) A A A A A A A Approach Delay, s/veh / LOS 0.0 8.1 A 0.0 7.8 A	Demand (v), v	· '						174	393						306	45
Queue Storage Ratio (RQ) (95 th percentile) 0.03 0.03 0.03 0.02 Control Delay (d) , s/veh 8.1 8.2 7.9 7.4 Level of Service (LOS) A A A A A	Queue Storage Ratio (RQ) (95 th percentile) 0.03 0.03 0.03 0.03 0.02 Control Delay (d) , s/veh 8.1 8.2 5.2 7.9 7.4 Level of Service (LOS) A A A A A A A Approach Delay, s/veh / LOS 0.0 8.1 A 0.0 7.8 A	Phase Split, s								24.0						24.0	
Control Delay (d) , s/veh 8.1 8.2 7.9 7.4 Level of Service (LOS) A A A A A	Control Delay (d) , s/veh 8.1 8.2 7.9 7.4 Level of Service (LOS) A								0.301	0.343						0.264	0.089
Level of Service (LOS) A A A A	Level of Service (LOS) A	Queue Storage Ratio (RQ) (95 th percentile)							0.03	0.03						0.03	0.02
	Approach Delay, s/veh / LOS 0.0 8.1 A 0.0 7.8 A	Control Delay (d) , s/veh						8.1	8.2						7.9	7.4	
Approach Delay s/yeh / LOS 0.0 8.1 Δ 0.0 7.8 Δ		Level of Service (LOS)						Α	Α						Α	А	
7. Apr. 30.01	Intersection Delay, s/veh / LOS 8.0 A	Approach Delay	y, s/veh	/LOS		0.0			8.1		Α	0.0			7.8		Α
Intersection Delay, s/veh / LOS 8.0 A		Intersection De	lay, s/ve	h / LOS				8.	0					/	4		

No Build - AM HCS7 Intersection Summary															
"44															
#1 Lomas & Loc						_	T 111	Т	T	_					_
Signal Informa		5 (5)		4	⊱		2115					_			lack
Cycle, s	110.0	Reference Phase	2		E	式 *						1	→ 2	3	4
Offset, s	58	Reference Point	End	Green	5.9	39.8	48.3	0.0	0.0	0.0					
Uncoordinated	No	Simult. Gap E/W	On	Yellow	-	4.0	4.0	0.0	0.0	0.0		1	7		
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	2.0	0.0	0.0	0.0		5	6	7	8
Signal Phase S	Splits A	nd Results			EB			WB			NB			SB	
Approach Move	ement			L	T	R	L	T	R	L	Т	R	L	Т	R
Demand (v), v	eh/h				899	109	101	1080					801	460	739
Phase Split, s					33.0		16.5	49.5						60.5	
Volume-to-Capa	acity Ra	tio (X)			0.560	0.562	0.430	0.494					0.884	0.535	0.916
Queue Storage	Ratio (RQ) (95 th percent	tile)		0.56	0.56	0.19	0.48					0.64	0.33	2.48
Control Delay (d),s/v	eh			24.7	26.6	21.8	15.0					37.2	22.7	42.4
Level of Service	e (LOS)				С	С	С	В					D	С	D
Approach Delay	y, s/veh	/LOS		25.3		С	15.6	5	В	0.0			33.2	2	С
Intersection De						26	.4					(
										,					
#2 Lomas & Oak															
Signal Informa	tion				-	_ 5_									
Cycle, s	110.0	Reference Phase	2		≓	⊨ \$``	512						→		Y
Offset, s	45	Reference Point	End	Green	8 1	63.9	23.1	0.0	0.0	0.0		1	z	3	4
Uncoordinated	No	Simult. Gap E/W	On	Yellow		4.0	4.0	0.0	0.0	0.0		. ◀			
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	1.0	0.0	0.0	0.0		5	6	7	8
				_						1					
Signal Phase S		nd Results			EB	1		WB			NB			SB	
Approach Move				L	T	R	L	Т	R	L	T	R	L	T	R
Demand (v), v	eh/h			242	1523			932	178	197	374	267			
Phase Split, s				27.5	67.1			39.6			42.9				
Volume-to-Capa				0.497	0.443			0.332	0.206	0.458	0.584	0.859			
		RQ) (95 th percent	ile)	0.24	0.41			0.07	0.14	0.61	0.24	0.45			
Control Delay (eh		7.7	6.9			5.1	1.4	38.3	39.4	45.7			
Level of Service				Α	A			A	A	D	D	D			
Approach Delay				7.0		Α	4.5		Α	41.2	2	D	0.0		
Intersection De	lay, s/ve	h / LOS				14	.2					E	3		
#3 Lomas & Uni	iversity														
Signal Informa					1				1 111	1 11:					
Cycle, s	110.0	Reference Phase	2	1	~ ~	Lą .	l.≉ 🧺	2				_ ,	A		KÎZ
Offset, s	110.0	Reference Point	End		7	R		5		P 1	7	T T	2	3	4
Uncoordinated	No	Simult. Gap E/W		Green		0.8	45.6	7.3	1.1	20.0		. 4		_	
			On	Yellow		3.0	4.5	3.0	3.0	4.5	/			`	4
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.5	0.5	1.0	0.5	0.5	1.0		5	6	7	8
Signal Phase S	Splits A	nd Results		EB			WB			NB			SB		
Approach Move		L	Т	R	L	Т	R	L	Т	R	L	Т	R		
Demand (<i>v</i>), v		352	1179	150	213	914	221	101	453	156	220	453	129		
Phase Split, s		23.1	41.8		19.8	38.5		15.4	33.0		15.4	33.0			
Volume-to-Capacity Ratio (X)				0.898	0.555	0.556	0.672	0.536	0.538	0.517	0.754	0.390	0.814	0.783	0.791
Queue Storage Ratio (RQ) (95 th percentile)				1.61	0.26	0.27	1.23	0.90	0.94	1.10	0.53	0.33	1.67	0.92	0.88
Control Delay (d) , s/veh				28.4	17.4	19.6	19.1	26.1	31.4	35.2	44.1	32.7	48.0	44.2	44.9
Level of Service (LOS)			С	В	В	В	С	С	D	D	С	D	D	D	
Approach Delay, s/veh / LOS				20.3		С	26.4		С	40.3	3	D	45.5	5	D
Intersection De						29						(
	-														

No Build - AM HCS7 Intersection Summary															
#4 Lomas & Yal					1	_	_								
Signal Informa			1	l	a _	l a	. Z	7		24		_ ,		K	.
Cycle, s	110.0	Reference Phase	2		L, ~	Ħ	Ħ ·	7		1 4	7		> ,		•
Offset, s	46	Reference Point	End	Green	4.0	2.6	61.5	2.5	2.7	15.2			<u> </u>		
Uncoordinated	No	Simult. Gap E/W	On	Yellow		3.0	4.0	3.0	0.0	3.5		• •	>		12
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.5	0.5	1.5	0.5	0.0	2.0		5	6	7	8
Signal Phase S	Splits A	nd Results			EB			WB			NB			SB	
Approach Move				L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v				304	1067	138	78	1131	143	29	49	19	60	61	205
Phase Split, s				19.8	40.7		19.8	40.7		16.5	33.0		16.5	33.0	
Volume-to-Cap	acity Ra	tio (X)		0.801	0.377	0.377	0.233	0.447	0.447	0.812	0.233	0.097	0.776	0.256	0.868
		RQ) (95 th percent	tile)	0.42	0.19	0.15	0.19	0.26	0.24	0.42	0.19	0.94	0.89	0.42	2.92
Control Delay (15.9	5.9	4.8	9.8	13.9	14.1	67.4	42.4	41.5	57.4	40.4	48.3
Level of Service				B	A	A.0	A	В	В	E	D 72.4	D D	E	D	D - 0.5
Approach Delay	_ `	/LOS		7.6									48.5		D
Intersection De				7.0		15				10.1		D	3		
	,	200													
#5 Lomas & Sta	nford														
Signal Informa	ition					R	, ,	1	T	T					
Cycle, s	110.0	Reference Phase	2	1	P ~	E	≝ 7 ₹7	E 2	,				4		V
Offset, s	28	Reference Point	End		0.4	0.4	24.0	<u> </u>		-		1	2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Green Yellow		0.0	84.0 4.0	9.2	0.0	0.0	ر ا		>		人
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.5	0.0	1.0	2.0	0.0	0.0		5	6	7	8
		- 1						1=:0	10.0	1000					
Signal Phase S	Splits A	nd Results			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			5	723	234	73	1376	6	107		40	6		8
Phase Split, s				16.5	60.5		16.5	60.5			33.0			33.0	
Volume-to-Cap	acity Ra	tio (X)		0.016	0.250	0.253	0.154	0.337	0.337	0.539		0.323	0.033		0.065
Queue Storage	Ratio (RQ) (95 th percent	tile)	0.01	0.11	0.11	0.05	0.05	0.06	2.04		0.73	0.28		0.33
Control Delay (d),s/v	eh		3.1	4.8	5.4	2.9	1.9	2.1	50.2		48.0	46.4		46.5
Level of Service				Α	Α	Α	Α	Α	Α	D		D	D		D
Approach Dela	y, s/veh	/ LOS		5.0		Α	2.0	<u> </u>	Α	49.6		D	46.5	5	D
Intersection De				Ì		6.	1						4		
	·														
#6 Lomas & Gir															
Signal Informa	ition		_		7	⊱	. №	7		200			_		\mathbf{A}
Cycle, s	110.0	Reference Phase	2	l		~	Ħ*	7	517	z s			> ,		(1)
Offset, s	101	Reference Point	End	Green	6.1	1.9	51.8	3.0	0.5	25.7			x	3	4
Uncoordinated	No	Simult. Gap E/W	On	Yellow		0.0	4.0	3.0	3.0	3.5			>		ΚÎZ
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.5	0.0	1.0	0.5	0.5	2.0		5	6	7	8
Signal Phase S	Splits A	nd Results			EB			WB			NB			SB	
Approach Movement				L	Т	R	L	T	R	L	Т	R	L	Т	R
Demand (v), v	Demand (v), veh/h					67	173	1104	165	104	206	37	40	238	112
Phase Split, s					44.0		16.5	44.0		16.5	33.0		16.5	33.0	
Volume-to-Capacity Ratio (X)				0.434	0.225	0.230	0.345	0.511	0.511	0.548	0.530		0.167	0.907	
Queue Storage Ratio (RQ) (95 th percentile)				0.74	0.11	0.12	0.99	0.22	0.22	1.01	0.29		0.40	0.43	
Control Delay (d) , s/veh			15.1	14.7	15.5	12.6	13.3	14.5	31.5	34.6		31.6	54.7		
Level of Service (LOS)			В	В	В	В	В	В	С	С		С	D		
Approach Delay, s/veh / LOS			15.0		В	13.5	5	В	33.7		С	52.3	3	D	
Intersection De						21						(
	-		n												

	No Build - AM HCS7 Intersection Summary														
No Build	- AM			HCS7	Inter	sectio	n Sur	nmar	У						
#1 Oak & Moun	tain														
Signal Informa	ition						Γ	T		T					
Cycle, s	75.0	Reference Phase	2		- SA	≓						,	\mathbf{V}		4
Offset, s	0	Reference Point	End	Green		6.7	0.0	0.0	0.0	0.0		1	2	3	4
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow	-	4.0	0.0	0.0	0.0	0.0	_		<u> </u>		
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	0.0	0.0	0.0	0.0	0.0		5	6	7	8
Signal Phase	Splits A	nd Results			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			419	0					190	569		0	0	
Phase Split, s					30.0						36.0			36.0	
Volume-to-Cap	acity Ra	ntio (X)		0.616	0.000					0.186	0.342			0.000	
Queue Storage	Ratio (RQ) (95 th percent	tile)	0.24	0.00					0.03	0.04			0.00	
Control Delay (Control Delay (d) , s/veh				0.0					4.4	4.8				
Level of Service (LOS)				В						Α	Α				
Approach Delay	Approach Delay, s/veh / LOS					В	0.0			4.7		Α	0.0		
Intersection De	ntersection Delay, s/veh / LOS			Î		7.	2						4		

Copyright © 2020 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.8.5

Generated: 4/21/2020 1:42:10 PM

No Build - AM HCS7 Intersection Summary															
#1 University &	laslon	nae													
Signal Informa		lias		Г	ГП	ГБ	Γ	Т	Т	Т					
Cycle, s	66.0	Reference Phase	2	1		a }=							KÎZ		7
Offset, s	00.0	Reference Point	End		"M2"	R I						1	2	3	4
Uncoordinated	Yes	Simult. Gap E/W	On	Green		7.6	0.0	0.0	0.0	0.0					A
Force Mode	Fixed	Simult. Gap N/S	On	Yellow Red	3.5 1.0	3.5 2.0	0.0	0.0	0.0	0.0	_	^z xt	X	7	
1 orce wode	1 IXEU	Simult. Gap 14/5	OII	Reu	1.0	2.0	0.0	10.0	0.0	0.0		3	0	,	٥
Signal Phase S	Splits A	nd Results			EB			WB			NB			SB	
Approach Move	_			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			20	7	8	79	10	54	13	473	90	114	630	34
Phase Split, s					24.0			24.0			32.0			32.0	
Volume-to-Capa	acity Ra	tio (X)			0.116			0.293	0.288	0.040	0.189	0.193	0.342	0.351	0.351
Queue Storage	Ratio (RQ) (95 th percent	ile)		0.04			0.14	0.73	0.02	0.01	0.01	0.32	0.05	0.05
Control Delay (d),s/v	eh			18.3			19.3	18.9	2.6	1.5	1.7	5.8	4.3	4.6
Level of Service					В			В	В	Α	Α	Α	А	А	Α
Approach Delay	y, s/veh	/LOS		18.3		В	19.1		В	1.6		Α	4.6		Α
Intersection De	lay, s/ve	h / LOS				5.	0						4		
				1											
#2 University &		de Salud		1											
Signal Informa				ļ			21	₂ ⊱					A _		_
Cycle, s	90.0	Reference Phase	2	l	5	517	12	H °	1		7	1		3	↔ ₄
Offset, s	0	Reference Point	End	Green	2.6	1.3	36.0	12.1	0.0	0.0		1	-		<u> </u>
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		3.0	4.0	3.5	0.0	0.0	_ <	. 4			₹
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.5	0.5	1.0	2.0	0.0	0.0		5	6	7	8
Signal Phase S	_	nd Results			EB			WB		-	NB			SB	
Approach Move				L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), v	en/n			36	40	113	45	1	15	158	514	58	41	1000	210
Phase Split, s	·: D	(° () ()		0.404	24.0		0.004	24.0		16.0	36.0	0.050	16.0	36.0	0.000
Volume-to-Capa		· · · ·	,	0.121	0.609		0.261	0.064		0.802	0.220	0.056	0.792	0.703	0.329
		RQ) (95 th percent	ile)	0.23	0.12		0.33	0.03		1.54	0.06	0.12	0.16	0.20	0.60
Control Delay (en		25.0	27.3		31.2	24.0		33.5	7.1	6.3	34.1	13.0	9.9
Level of Service		// 00		С	С		С	С		C	A	_ A	C	В	A
Approach Delay				26.9	<u> </u>	C	29.3	3	С	12.7		В ,	13.2	<u> </u>	В
Intersection De	iay, s/ve	n / LOS				14	. /					<u> </u>	3		
#3 University &	Indian S	School													
Signal Informa					Ų			Τ	1 8						
Cycle, s	137.5	Reference Phase	2	1	₂	 		100	1 2		· \	, ,	Φ	<u>_</u>	4
Offset, s	0	Reference Point	End	0]]	<u> </u>	517	1 7 7		00.5		1	2	3	4
Uncoordinated	Yes	Simult. Gap E/W	On	Green Yellow		1.7 0.0	32.0 4.0	7.7	0.9 3.0	22.5 4.0	- _~	一人		7	→
Force Mode	Fixed	Simult. Gap N/S	On	Red	3.0	0.0	4.0	0.5	3.0	1.5		5	6	7	8
Signal Phase \$	Snlits A	nd Results		EB			WB			NB			SB		
Approach Movement				L	T	R		T	R		T	R	L	T	R
Demand (v), veh/h				130	200	235	228	278	82	104	451	71	43	996	89
Phase Split, s				22.0	42.0		22.0	42.0		16.0	32.0		16.0	32.0	
	Volume-to-Capacity Ratio (X)					0.757	0.684	0.375	0.386	0.540	0.336	0.341	0.147	1.095	1.099
	Queue Storage Ratio (RQ) (95 th percentile)				0.546	0.24	1.32	0.16	0.16	0.69	0.17	0.17	0.50	0.85	0.84
Control Delay (d) , s/veh				0.99 27.0	34.8	37.4	26.2	28.3	28.4	26.0	24.7	24.8	20.8	93.8	95.9
Level of Service (LOS)			C C	C	D	C	C	C C	C	C C	C C	C	F	F	
	Approach Delay, s/veh / LOS					С	27.5		С	24.9		С	92.0		F
Intersection De				34.1		57							= 52.0		
	, , _, v														

No Build -	No Build - AM						n Sur	nmar	y						
#4 University &	140 EB I	Ramp													
Signal Informa	tion								T	T					
Cycle, s	91.0	Reference Phase	2			12	≓				7			_	↔ .
Offset, s	0	Reference Point	End	Green	5.7	32.0	16.0	0.0	0.0	0.0		1	2	3	Y 4
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		4.0	4.0	0.0	0.0	0.0		1	L		
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.5	1.5	1.5	0.0	0.0	0.0		5	6	7	8
Signal Phase Splits And Results							Ι	\A/D			ND		1	OD	
	•	na Results		-	EB F		-	WB			NB -			SB	
Approach Move				L	T	R	L	Т	R	L	T	R	L 101	T	R
Demand (v), v	en/n			57	291	250	-				490	153	181	1089	
Phase Split, s Volume-to-Capa	ooity Do	itio (V)		0.127	24.0 0.390	0.740					32.0 0.270	0.190	20.0	32.0 0.512	
	•	RQ)(95 th percent	tilo)	0.127	0.390	0.740					0.270	0.190	0.314	0.312	
Control Delay (, ,	uie)	20.9	22.3	25.5	-				11.6	11.3	7.4	8.2	
- ` `	Level of Service (LOS)				C C	C C					В	B	A	A	
Approach Delay, s/veh / LOS				C 23.5		С	0.0			11.5		В	8.1		A
Intersection De				20.0		12				11.0			3		71
	, ., ., .	, 200													
#5 University &	140 WB	Ramp													
Signal Informa	tion					[2]	<u> </u>	T		T					<u> </u>
Cycle, s	91.0	Reference Phase	2	1	50	54	2	1				_ ['	1		
Offset, s	0	Reference Point	End	Green		32.0	21.3	0.0	0.0	0.0		1	2	3	4
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		4.0	4.0	0.0	0.0	0.0	−				
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.5	1.5	1.5	0.0	0.0	0.0		5	6	7	8
				_			_			1					
Signal Phase S		nd Results			EB	1		WB	1		NB	1		SB	
	Approach Movement				T	R	L	T	R	L	T	R	L	T	R
Demand (v), v	eh/h						542	408	310	62	497			695	43
Phase Split, s								24.0		20.0	32.0			32.0	
Volume-to-Capacity Ratio (X)						0.872	0.572	0.574	0.154	0.239			0.476	0.077	
Queue Storage Ratio (RQ) (95 th percentile)						0.72	0.19	0.35	0.06	0.17			0.26	0.05	
	Control Delay(d), s/veh						34.2	20.9	21.2	9.9	8.8			14.4	11.1
_	Level of Service (LOS)				<u></u>		С	C	С	Α	A			В	В
	Approach Delay, s/veh / LOS			0.0 25.6 C 8.9 A 14.2)	В				

 $\textbf{Copyright} \circledcirc \textbf{2020 University of Florida, All Rights Reserved}.$

Intersection Delay, s/veh / LOS

HCS™ Streets Version 7.8.5

В

Generated: 4/21/2020 1:35:35 PM

19.0

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	WDL	7	†	HOIL	ODL	ODI
Traffic Vol, veh/h	0	3	590	433	0	0
Future Vol, veh/h	0	3	590	433	0	0
•	0	0	590	433	0	0
Conflicting Peds, #/hr						
Sign Control	Stop	Stop	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	_	0	-	-	-	-
Veh in Median Storage,		-	0	-		16979
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	3	656	481	0	0
Major/Minor	/linor1		Aniar1			
			Major1	^		
Conflicting Flow All	-	569	0	0		
Stage 1	-	-	-	-		
Stage 2	-	-	-	-		
Critical Hdwy	-	6.94	-	-		
Critical Hdwy Stg 1	-	-	-	-		
Critical Hdwy Stg 2	-	-	-	-		
Follow-up Hdwy	-	3.32	-	-		
Pot Cap-1 Maneuver	0	465	-	-		
Stage 1	0	-	-	-		
Stage 2	0	-	-	-		
Platoon blocked, %			-	-		
Mov Cap-1 Maneuver	-	465	-	-		
Mov Cap-1 Maneuver	_	-	_	_		
Stage 1	_	_	_	_		
Stage 2	_	_	_	-		
Slaye 2	_	-	-	-		
Approach	WB		NB			
HCM Control Delay, s	12.8		0			
HCM LOS	В					
	_					
Minarian and Marin Marin		NDT	NDD	MDL 4		
Minor Lane/Major Mvmt		NBT	NRK	VBLn1		
Capacity (veh/h)		-	-	.00		
HCM Lane V/C Ratio		-	-	0.007		
HCM Control Delay (s)		-	-	12.8		
HCM Lane LOS		-	-	В		
HCM 95th %tile Q(veh)		-	-	0		

Intersection						
Int Delay, s/veh	6.4					
Movement	\//DI	W/PD	NDT	NIDD	CDI	CDT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	- M	4-4	†	000	<u>ነ</u>	^
Traffic Vol, veh/h	9	151	793	236	301	787
Future Vol, veh/h	9	151	793	236	301	787
Conflicting Peds, #/hr	0	0	_ 0	0	0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	150	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	8	8	2	2	3	3
Mymt Flow	10	161	844	251	320	837
IVIVIII (I IOW	10	101	0-1-1	201	020	001
Major/Minor	Minor1	N	//ajor1	N	Major2	
Conflicting Flow All	2029	548	0	0	1095	0
Stage 1	970	-	_	_	-	-
Stage 2	1059	_	_	_	_	_
Critical Hdwy	6.96	7.06	_	_	4.16	_
Critical Hdwy Stg 1	5.96	- 1.00	_	_	T. 10	_
Critical Hdwy Stg 2	5.96	_			_	_
	3.58	3.38	_	_	2.23	
Follow-up Hdwy			-	-		-
Pot Cap-1 Maneuver	46	465	-	-	627	-
Stage 1	315	-	-	-	-	-
Stage 2	282	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	23	465	-	-	627	-
Mov Cap-2 Maneuver	23	-	-	-	-	-
Stage 1	154	-	_	-	-	-
Stage 2	282	_	_	_	_	_
2.5.30 =						
Approach	WB		NB		SB	
HCM Control Delay, s	59.4		0		4.6	
HCM LOS	F					
Minor Long/Major Mar	. +	NDT	NDDV	N/DI ∽1	CDI	CDT
Minor Lane/Major Mvn	IL	NBT		VBLn1	SBL	SBT
Capacity (veh/h)		-	-	223	627	-
HCM Lane V/C Ratio		-	-	0.763		-
HCM Control Delay (s)		-	-	59.4	16.6	-
HCM Lane LOS		-		F	С	-
HCM 95th %tile Q(veh)	-	-	5.3	2.9	-

ntersection	
ntersection Delay, s/veh	7.9
ntersection LOS	Α

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	103	31	12	0	2	0	4	2	0	1	2	55
Future Vol, veh/h	103	31	12	0	2	0	4	2	0	1	2	55
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	123	37	14	0	2	0	5	2	0	1	2	65
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB				WB		NB			SB		
Opposing Approach	WB				EB		SB			NB		
Opposing Lanes	1				1		1			1		
Conflicting Approach Left	SB				NB		EB			WB		
Conflicting Lanes Left	1				1		1			1		
Conflicting Approach Right	NB				SB		WB			EB		
Conflicting Lanes Right	1				1		1			1		
HCM Control Delay	8.2				7.3		7.6			7.1		
HCM LOS	А				Α		Α			Α		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, %	67%	71%	0%	2%
Vol Thru, %	33%	21%	100%	3%
Vol Right, %	0%	8%	0%	95%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	6	146	2	58
LT Vol	4	103	0	1
Through Vol	2	31	2	2
RT Vol	0	12	0	55
Lane Flow Rate	7	174	2	69
Geometry Grp	1	1	1	1
Degree of Util (X)	0.009	0.201	0.003	0.071
Departure Headway (Hd)	4.533	4.159	4.198	3.678
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	794	862	844	955
Service Time	2.533	2.185	2.265	1.774
HCM Lane V/C Ratio	0.009	0.202	0.002	0.072
HCM Control Delay	7.6	8.2	7.3	7.1
HCM Lane LOS	Α	Α	Α	Α
HCM 95th-tile Q	0	0.7	0	0.2

Intersection												
Int Delay, s/veh	2.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	LDL	4	רטוג	WDL	₩	WDIX	NDL	4	אטוז	JDL	- 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ODIX
Traffic Vol, veh/h	0	327	132	1	138	0	101	++>	2	0	0	2
Future Vol, veh/h	0	327	132	1	138	0	101	1	2	0	0	2
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	riee	None	-	-	None	Stop -	Stop -	None	Siup -	Stop -	None
Storage Length	_	_	-	_	_	-	_	_	-	_	_	INOHE
Veh in Median Storage	- - # -	0	_	_	0	_	_	0	_	-	0	_
Grade, %	-, π -	0	_	_	0	-	-	0	-	_	0	-
Peak Hour Factor	86	86	86	86	86	86	86	86	86	86	86	86
Heavy Vehicles, %	6	6	6	10	10	10	3	3	3	17	17	17
Mvmt Flow	0	380	153	10	160	0	117	ა 1	2	0	0	2
IVIVIIIL FIOW	U	300	100		100	U	117		Z	U	U	Z
Major/Minor	Major1		ľ	Major2			Minor1			Minor2		
Conflicting Flow All	160	0	0	533	0	0	620	619	457	620	695	160
Stage 1	-	-	-	-	-	-	457	457	-	162	162	-
Stage 2	-	-	-	-	-	-	163	162	-	458	533	-
Critical Hdwy	4.16	-	-	4.2	-	-	7.13	6.53	6.23	7.27	6.67	6.37
Critical Hdwy Stg 1	-	-	-	-	-	-	6.13	5.53	-	6.27	5.67	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.13	5.53	-	6.27	5.67	-
Follow-up Hdwy	2.254	-	-	2.29	-	-	3.527	4.027	3.327	3.653		3.453
Pot Cap-1 Maneuver	1395	-	-	995	-	-	399	403	602	380	348	847
Stage 1	-	-	-	-	-	-	581	566	-	806	736	-
Stage 2	-	-	-	-	-	-	837	762	-	555	501	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1395	-	-	995	-	-	397	403	602	377	348	847
Mov Cap-2 Maneuver	-	-	-	-	-	-	397	403	-	377	348	-
Stage 1	-	-	-	-	-	_	581	566	-	806	735	-
Stage 2	-	-	-	-	-	-	834	761	-	552	501	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0.1			17.9			9.3		
HCM LOS	- 0			U. I			17.9 C			9.5 A		
TIOWI LOO							U			A		
Minor Lane/Major Mvn	nt 1	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)		400	1395	-	-	995	_	-	- 1-			
HCM Lane V/C Ratio		0.302	-	_	_	0.001	_		0.003			
HCM Control Delay (s)		17.9	0	_	_	8.6	0	-	9.3			
HCM Lane LOS		С	A	_	_	A	A	-	A			
HCM 95th %tile Q(veh)	1.3	0	_	_	0	-	-	0			
2000	1											

Intersection				
Intersection Delay, s/veh	6.5			
Intersection LOS	А			
Approach	EB	WB	NB	SB
Entry Lanes	1	1	1	1
Conflicting Circle Lanes	1	1	1	1
Adj Approach Flow, veh/h	121	320	526	142
Demand Flow Rate, veh/h	126	327	542	151
Vehicles Circulating, veh/h	334	198	108	339
Vehicles Exiting, veh/h	156	452	352	186
Ped Vol Crossing Leg, #/h	0	0	0	0
Ped Cap Adj	1.000	1.000	1.000	1.000
Approach Delay, s/veh	5.0	6.0	7.5	5.4
Approach LOS	А	А	А	Α
L	1 6			
Lane	Left	Left	Left	Left
Designated Moves	Left LTR	Lett LTR	Left LTR	Left LTR
Designated Moves	LTR	LTR LTR	LTR	LTR
Designated Moves Assumed Moves	LTR	LTR	LTR	LTR
Designated Moves Assumed Moves RT Channelized	LTR LTR	LTR LTR	LTR LTR	LTR LTR
Designated Moves Assumed Moves RT Channelized Lane Util	LTR LTR 1.000	LTR LTR 1.000 2.609 4.976	LTR LTR 1.000	LTR LTR 1.000
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s	LTR LTR 1.000 2.609	LTR LTR 1.000 2.609	LTR LTR 1.000 2.609	LTR LTR 1.000 2.609
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s	LTR LTR 1.000 2.609 4.976	LTR LTR 1.000 2.609 4.976	LTR LTR 1.000 2.609 4.976	LTR LTR 1.000 2.609 4.976
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h	LTR LTR 1.000 2.609 4.976 126	LTR LTR 1.000 2.609 4.976 327	LTR LTR 1.000 2.609 4.976 542	LTR LTR 1.000 2.609 4.976 151 977 0.939
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h	LTR LTR 1.000 2.609 4.976 126 982	LTR LTR 1.000 2.609 4.976 327 1128	LTR LTR 1.000 2.609 4.976 542 1236 0.970 526	LTR LTR 1.000 2.609 4.976 151 977
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h	LTR LTR 1.000 2.609 4.976 126 982 0.964 121 946	LTR LTR 1.000 2.609 4.976 327 1128 0.980	LTR LTR 1.000 2.609 4.976 542 1236 0.970 526 1199	LTR LTR 1.000 2.609 4.976 151 977 0.939 142 917
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio	LTR LTR 1.000 2.609 4.976 126 982 0.964 121 946 0.128	LTR LTR 1.000 2.609 4.976 327 1128 0.980 320 1105 0.290	LTR LTR 1.000 2.609 4.976 542 1236 0.970 526 1199 0.439	LTR LTR 1.000 2.609 4.976 151 977 0.939 142 917 0.155
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio Control Delay, s/veh	LTR LTR 1.000 2.609 4.976 126 982 0.964 121 946	LTR LTR 1.000 2.609 4.976 327 1128 0.980 320 1105 0.290 6.0	LTR LTR 1.000 2.609 4.976 542 1236 0.970 526 1199 0.439 7.5	LTR LTR 1.000 2.609 4.976 151 977 0.939 142 917
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio	LTR LTR 1.000 2.609 4.976 126 982 0.964 121 946 0.128	LTR LTR 1.000 2.609 4.976 327 1128 0.980 320 1105 0.290	LTR LTR 1.000 2.609 4.976 542 1236 0.970 526 1199 0.439	LTR LTR 1.000 2.609 4.976 151 977 0.939 142 917 0.155

Intersection						
Int Delay, s/veh	0					
		- FDT	VA/D.T.	WED	051	000
	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations			↑ ↑			7
Traffic Vol, veh/h	0	0	0	0	0	0
Future Vol, veh/h	0	0	0	0	0	0
Conflicting Peds, #/hr	_ 0	_ 0	_ 0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage, #		0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	0	0	0	0	0
Major/Minor Ma	ajor1		Major2	N	/linor2	
Conflicting Flow All	-	0	-	0	-	1
Stage 1	-	-	-	-	-	-
Stage 2	_	_	_	_	_	_
Critical Hdwy	-	-	-	-	-	7.14
Critical Hdwy Stg 1	_	_	_	_	_	-
Critical Hdwy Stg 2	_	_	_	-	_	-
Follow-up Hdwy	_	_	_	_	_	3.92
Pot Cap-1 Maneuver	0	-	-	-	0	917
Stage 1	0	_	_	_	0	-
Stage 2	0	_	_	_	0	_
Platoon blocked, %		_	_	_		
Mov Cap-1 Maneuver	_	_	_	_	_	917
Mov Cap-2 Maneuver	_	_	_	_	_	-
Stage 1	_	_	_	_	_	_
Stage 2	_	_	_	_	_	_
Olago Z	_			_		
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS					Α	
Minor Lane/Major Mvmt		EBT	WBT	WBR S	SBI n1	
Capacity (veh/h)			1101	יייייי	,5_111	
HCM Lane V/C Ratio		_	-	_	-	
HCM Control Delay (s)		<u>-</u>	_	_	0	
HCM Lane LOS		_	_	_	A	
HCM 95th %tile Q(veh)		<u>-</u>	-	_	-	
HOW JOHN JOHN Q(VOII)			_	<u>-</u>		

Intersection						
Int Delay, s/veh	0.1					
		EDT	MOT	WED	CDI	CDD
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	7		41		•	_ ₹
Traffic Vol, veh/h	9	1032	1484	4	0	5
Future Vol, veh/h	9	1032	1484	4	0	5
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	50	-	-	-	-	0
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	4	4	2	2	2	2
Mvmt Flow	10	1147	1649	4	0	6
	. •			•		
	Major1		Major2		Minor2	
Conflicting Flow All	1653	0	-	0	-	827
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	5.38	-	-	-	_	7.14
Critical Hdwy Stg 1	_	_	-	-	-	-
Critical Hdwy Stg 2	-	-	_	_	-	-
Follow-up Hdwy	3.14	_	_	_	-	3.92
Pot Cap-1 Maneuver	183	_	_	_	0	270
Stage 1	-	_	_	_	0	
Stage 2	_	_		_	0	_
Platoon blocked, %	-	_	_	_	U	_
	100		_	-		070
Mov Cap-1 Maneuver	183	-	-	-	-	270
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
	0.2		0		18.6	
HCM Control Delay, s HCM LOS	0.2		U			
HCM LOS					С	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR :	SBLn1
Capacity (veh/h)		183	_	_	_	
HCM Lane V/C Ratio		0.055	_	_		0.021
HCM Control Delay (s)		25.8	_	_	_	
HCM Lane LOS		23.0 D	-	<u> </u>	_	C
HCM 95th %tile Q(veh	١	0.2			-	0.1
HOW SOUT WITH Q(VEI)	1	U.Z	-	-	-	U. I

Intersection						
Int Delay, s/veh	1.4					
		EDT	VAIDT	WED	00:	000
	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations			ተተተ			7
Traffic Vol, veh/h	0	0	1418	0	0	83
Future Vol, veh/h	0	0	1418	0	0	83
Conflicting Peds, #/hr	0	0	0	0	0	0
0	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	2	2	25	25
Mymt Flow	0	0	1525	0	0	89
WWITELLOW	U	U	1020	U	U	00
	ajor1		Major2	N.	/linor2	
Conflicting Flow All	-	0	-	0	-	763
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	7.6
Critical Hdwy Stg 1	_	_	-	_	_	-
Critical Hdwy Stg 2	_	_	_	_	_	_
Follow-up Hdwy	_	_	_	_	_	4.15
Pot Cap-1 Maneuver	0			0	0	260
Stage 1	0	_		0	0	200
	0	-	-	0	0	-
Stage 2	U	-	-	U	U	-
Platoon blocked, %		-	-			000
Mov Cap-1 Maneuver	-	-	-	-	-	260
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		25.9	
HCM LOS	U		U			
					D	
Minor Lane/Major Mvmt		EBT	WBT	SBLn1		
Capacity (veh/h)		-	-			
HCM Lane V/C Ratio		_		0.343		
HCM Control Delay (s)		_	_			
HCM Lane LOS		<u>-</u>	_	20.5 D		
HCM 95th %tile Q(veh)		_	_	1 5		

Intersection						
Int Delay, s/veh	0.8					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	T T	↑		אטא	ODL	JDK 7
Traffic Vol, veh/h	57	707	1418	32	0	0
Future Vol, veh/h	57	707	1418	32	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	riee -	None	riee -		Stop -	None
Storage Length	150	NONE -	-	INOHE -	-	0
		0	0		0	-
Veh in Median Storage				-		
Grade, %	-	0	0	-	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	5	5	25	25	2	2
Mvmt Flow	61	760	1525	34	0	0
Major/Minor N	Major1	ı	Major2	N	Minor2	
Conflicting Flow All	1559	0		0	-	780
Stage 1	-	-	_	_	_	-
Stage 2	_	_	_	_	_	_
Critical Hdwy	5.4				_	7.14
Critical Hdwy Stg 1	J. -	_	_	_	_	7.17
Critical Hdwy Stg 2	-	_	-	-	_	
	3.15	_	-	-		3.92
Follow-up Hdwy		-	-	-	-	
Pot Cap-1 Maneuver	202	-	-	-	0	290
Stage 1	-	-	-	-	0	-
Stage 2	-	-	-	-	0	-
Platoon blocked, %	000	-	-	-		000
Mov Cap-1 Maneuver	202	-	-	-	-	290
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay, s	2.3		0		0	
	2.3		U			
HCM LOS					Α	
Minor Lane/Major Mvm	ıt	EBL	EBT	WBT	WBR :	SBLn1
Capacity (veh/h)		202	_	_	_	_
HCM Lane V/C Ratio		0.303	-	_	-	-
HCM Control Delay (s)		30.4	_	_	_	0
HCM Lane LOS		D	_	_	-	A
HCM 95th %tile Q(veh)		1.2	_	_	_	-
J 222. 702 (1011)						

No Build -	No Build - PM HCS7 Intersection Summary														
#1 Locust & Mo	untain														
Signal Informa				Г	ГП	Г	Г	Т	T	Т					
Cycle, s	72.5	Reference Phase	2	1		, ⊱	1					,	KŤ		
Offset, s	0	Reference Point	End		™	Rĭ						1	2	3	4
Uncoordinated	Yes	Simult. Gap E/W	On	Green		8.3	6.6	0.0	0.0	0.0					
Force Mode	Fixed	Simult. Gap N/S	On	Yellow Red	5.0 2.0	3.5	3.5	0.0	0.0	0.0	_	² KÎ	X	7	2 8
1 orce wode	1 IXEU	Simult. Gap 14/5	OII	Reu	2.0	2.0	2.0	0.0	0.0	0.0		3	0	,	8
Signal Phase S	Splits A	nd Results			EB			WB			NB			SB	
Approach Move	ement		L	Т	R	L	Т	R	L	Т	R	L	T	R	
Demand (v), v	eh/h			215	71	0	83		0	0		29	650	146	
Phase Split, s				24.0			24.0			36.0			36.0		
Volume-to-Capa	acity Ra	tio (X)			0.699	0.727	0.000	0.513			0.000		0.161	0.168	0.176
Queue Storage	Ratio (RQ) (95 th percent	tile)		0.24	0.23	0.00	0.34			0.00		0.05	0.05	0.05
Control Delay (d),s/v	eh			30.5	31.0	0.0	30.5					8.9	9.0	9.1
Level of Service	e (LOS)				С	С		С					Α	Α	Α
Approach Delay	y, s/veh	/ LOS		30.8		С	30.5	5	С	0.0			9.0		Α
Intersection De	lay, s/ve	h / LOS				19	.1					[3		
#2 I25 SB Front		I40 Frontage		10-					-1						
Signal Informa	ition														
Cycle, s	58.0	Reference Phase	2		54	\exists						T T	1	-	\rightarrow \downarrow
Offset, s	0	Reference Point	End	Green	:1	11.9	0.0	0.0	0.0	0.0				3	3 "
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow	-	4.0	0.0	0.0	0.0	0.0			ST .		
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	0.0	0.0	0.0	0.0		5	6	7	8
Signal Phase S		nd Results			EB			WB			NB			SB	
Approach Move				L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), v	eh/h				345	104				0	0		69	300	
Phase Split, s					24.0						24.0			24.0	
Volume-to-Capa	-	, ,			0.300	0.200					0.000		0.095	0.274	
		RQ) (95 th percent	tile)		0.03	0.05					0.00		0.02	0.04	
Control Delay (eh			8.0	7.7							7.4	7.9	
Level of Service					A	_ A		\Box					Α	Α	
Approach Delay				8.0		Α	0.0			0.0			7.8		Α
Intersection De	lay, s/ve	eh / LOS				7.	9					,	٩		
#3 I25 SB Front	age & N	I I40 Frontage													
Signal Informa		TTTO TTOILLAGO				T T	I	1	1	T					
Cycle, s	58.0	Reference Phase	2	1	⊱	1									
Offset, s	0	Reference Point	End									1	2	3	4
Uncoordinated	Yes	Simult. Gap E/W	On	Green		0.0	0.0	0.0	0.0	0.0	_				
Force Mode	Fixed	_	On	Yellow Red	1.0	0.0	0.0	0.0	0.0	0.0		2	6	7	8
1 Gree mede	Тихоч	Cilitata Cap 11/C	011	rteu	1.0	10.0	10.0	10.0	0.0	10.0					
Signal Phase S	Splits A	nd Results			EB			WB			NB			SB	
Approach Move	ement		L	Т	R	L	Т	R	L	Т	R	L	T	R	
Demand (v), v	eh/h					67	569						324	128	
Phase Split, s							24.0						24.0		
Volume-to-Capa				0.117	0.485						0.282	0.249			
Queue Storage				0.01	0.05						0.03	0.07			
Control Delay (7.5	8.7						7.9	7.9			
Level of Service				Α	Α						Α	Α			
Approach Delay		0.0			8.6		Α	0.0			7.9		Α		
Intersection De	lay, s/ve	h / LOS				8.	3						4		

No Build	- PM			HCS7	Inters	sectio	n Sur	nmar	у						
#1 Lomas & Loc) -			T-	_						_
Signal Informa					←		2115					_			lack
Cycle, s	120.0	Reference Phase	2	l	E	⊨₃ ""						1	→ 2	3	4
Offset, s	64	Reference Point	End	Green	7.9	74.0	22.1	0.0	0.0	0.0					
Uncoordinated	No	Simult. Gap E/W	On	Yellow		4.0	4.0	0.0	0.0	0.0			7		
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	2.0	0.0	0.0	0.0		5	6	7	8
Signal Phase \$	Splits A	nd Results			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h				1165	249	232	1198					320	303	252
Phase Split, s				ĺ	49.2		30.0	79.2						40.8	
Volume-to-Cap	acity Ra	tio (X)			0.461	0.461	0.814	0.347					0.848	0.671	0.745
		RQ) (95 th percent	tile)		0.30	0.29	0.54	0.22					0.34	0.27	1.04
Control Delay (•	, ,	,		6.1	6.9	22.9	3.8					51.7	46.0	47.7
Level of Service	•				Α	А	С	Α					D	D	D
Approach Delay	· /	/ LOS		6.3		Α	6.9	\top	Α	0.0		I.	48.1		D
Intersection De						16	.4					[3		
	·														
#2 Lomas & Oa	k														
Signal Informa	ition					_ 5_				Т					
Cycle, s	120.0	Reference Phase	2		⊨	⊨ 3 `							→		Y
Offset, s	49	Reference Point	End	Green	10.7	79.2	15.0	0.0	0.0	0.0		1	2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Yellow		4.0	4.0	0.0	0.0	0.0		• ◀			
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	1.0	0.0	0.0	0.0		5	6	7	8
Signal Phase S	-	nd Results			EB	1		WB			NB	1		SB	
Approach Move				L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), v	eh/h			358	1130			1304	449	127	238	150			
Phase Split, s				31.2	73.2			42.0			46.8				
Volume-to-Cap				0.863	0.298			0.408	0.452	0.487	0.627	0.808			
		RQ) (95 th percent	ile)	0.51	0.29			0.15	0.46	0.46	0.19	0.31			
Control Delay (eh		12.8	4.5			7.0	2.2	49.5	50.3	54.0			
Level of Service				В	A			A	Α	D	D	D			
Approach Delay				6.5		Α	5.7		Α	51.2	2	D	0.0		
Intersection De	lay, s/ve	h / LOS				12	.4						3		
#3 Lomas & Uni	iversity														
Signal Informa	ition					<u></u>	<u></u>	Į,		25					
Cycle, s	120.0	Reference Phase	2		P ~	₽	🛂 🏖		F42				1		V
Offset, s	12	Reference Point	End		2	2	10.4	10.5		<u>""</u>		1	2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Green Yellow		0.0	40.1	13.5 3.0	0.2	36.3 4.5		,	>	T	Δ
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.5	0.0	1.0	0.5	0.0	1.0		5	6	7	8
Signal Phase \$	Splits A	nd Results			EB			WB			NB			SB	
Approach Move	•			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v				159	1048	160	221	1211	174	219	604	296	229	606	320
Phase Split, s				24.0	43.2		16.8	36.0		20.4	42.0		18.0	39.6	
Volume-to-Cap	acitv Ra	tio (X)		0.718	0.702	0.702	0.777	0.746	0.746	0.896	0.605	0.502	0.673	0.932	0.932
	•	RQ) (95 th percent	tile)	0.99	0.37	0.35	1.73	1.31	1.38	2.68	0.65	0.56	1.39	1.73	1.58
Control Delay (- /	31.0	31.4	33.0	34.7	38.9	47.3	52.9	36.4	27.2	29.5	61.7	63.6
Level of Service				C C	C	C	C	D D	D D	D D	D	C	C	E	E
Approach Delay		/1 OS		31.8		С	40.6		D	37.2		D	56.0		E
Intersection De				01.0		41				J 2)		
micraconon De	.ay, 3/VE	,,, LOO				41	.5								

1
1
1 8
1 8
₽ R
₽ R
8 R
T R
R
381
0.940
5.95
67.6
E
E
4
1
8
R
14
0.066
0.59
44.5
D
D
D
D 4 4 P 8
D 4 4 P 8 8 P 8
P R 96
P 8 96
P R 96
P R 96

No Build	- PM		HCS7	Inters	sectio	n Sur	nmar	У							
#1 Oak & Moun	tain														
Signal Information								T	T						
Cycle, s	75.0	Reference Phase	2		<u> 5</u> 4	⊨⊰						,	\mathbf{V}		4
Offset, s	0	Reference Point	End	Green	:	5.3	0.0	0.0	0.0	0.0		1	2	3	4
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		4.0	0.0	0.0	0.0	0.0			■		
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	0.0	0.0	0.0	0.0	0.0		5	6	7	8
Signal Phase	Splits A	and Results			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (<i>v</i>), v	/eh/h			242	0					83	1017		0	0	
Phase Split, s					30.0						36.0			36.0	
Volume-to-Cap	acity Ra	atio (X)		0.425	0.000					0.078	0.589			0.000	
Queue Storage	Ratio (RQ) (95 th percen	tile)	0.13	0.00					0.01	0.07			0.00	
Control Delay (d),s/v	veh		11.3	0.0					3.6	5.0				
Level of Service	e (LOS)			В						Α	Α				
Approach Delay	y, s/veh	/LOS		11.3	3	В	0.0			4.9		Α	0.0		
Intersection De	lay, s/ve	eh / LOS				6.	1			Ī	4		Ä		

Copyright © 2020 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.8.5

Generated: 4/21/2020 1:46:31 PM

No Build -	- PM			HCS7	Inters	sectio	n Sur	nmar	у						
#1 University &	laslon	225													
Signal Informa		lias		Г	П	Гг	Γ	Г	Т	_					
Cycle, s	66.0	Reference Phase	2	ł		a }=						,	KŤ2		7
Offset, s	00.0	Reference Point	End	ł	- SAZ							1	2	3	→ 4
Uncoordinated	Yes	Simult. Gap E/W	On	Green		7.7	0.0	0.0	0.0	0.0		1			A
Force Mode		Simult. Gap E/W	_	Yellow	-	3.5	0.0	0.0	0.0	0.0	_	_ \	Y	_	V
Force Mode	Fixed	Simuit. Gap N/S	On	Red	1.0	2.0	0.0	0.0	0.0	0.0		5	6	7	8
Signal Phase \$	Splits A	nd Results			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			22	8	3	181	31	91	8	740	103	66	844	40
Phase Split, s					24.0			24.0			32.0			32.0	
Volume-to-Capa	acity Ra	tio (X)			0.067			0.429	0.283	0.020	0.351	0.354	0.158	0.364	0.365
Queue Storage	Ratio (RQ) (95 th percent	ile)		0.02			0.16	0.54	0.01	0.02	0.02	0.09	0.03	0.03
Control Delay (d),s/v	eh			10.2			12.1	10.9	5.0	3.8	3.9	7.0	5.7	5.7
Level of Service	(LOS)				В			В	В	Α	Α	Α	Α	Α	Α
Approach Delay	y, s/veh	/LOS		10.2		В	11.7	,	В	3.8		Α	5.8		Α
Intersection De						5.	9						4		
										,					
#2 University &		de Salud						_	_	,					
Signal Informa				l	6		2	a ⊱	-				4-		_
Cycle, s	90.0	Reference Phase	2		5	517	12	r H	1		7	1		3	← ₄
Offset, s	0	Reference Point	End	Green	0.9	0.6	16.0	14.3	0.0	0.0			•		<u> </u>
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		0.0	4.0	3.5	0.0	0.0	_ <	. 4			7
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.5	0.0	1.0	2.0	0.0	0.0		5	6	7	8
	.			г	- FD			14/D			ND			0.0	
Signal Phase S		nd Results			EB			WB			NB			SB	
Approach Move				L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), v	en/h			252	9	278	76	3	82	61	1122	69	28	636	21
Phase Split, s				0.504	24.0		0.004	24.0		16.0	36.0	0.000	16.0	36.0	0.000
Volume-to-Capa			,	0.534	0.619		0.264	0.183		0.964	0.638	0.089	0.793	0.524	0.039
		RQ) (95 th percent	ile)	0.90	0.10		0.29	0.07		0.59	0.12	0.11	0.08	0.09	0.04
Control Delay (en		15.8	13.9		18.3	11.6		50.7	12.3	9.6	34.1	12.0	9.8
Level of Service		// 00		В	В		В	<u>В</u>		D	В	_ A	C	В	_ A
Approach Delay				14.8		B 40	14.7		В	14.0)	В .	12.8	3	В
Intersection De	iay, s/ve	n / LOS				13	.9					l	3		
#3 University &	Indian S	School													
Signal Informa					I L	211	215	Т	7	5					
Cycle, s	137.5	Reference Phase	2	1	"	243		P &	1 2	743 €		, ,	Φ	<u>_</u>	4
Offset, s	0	Reference Point	End		70	0.7	517		1.0	3		1	2	3	4
Uncoordinated	Yes	Simult. Gap E/W	On	Green Yellow		0.7	32.0 4.0	7.5	1.9 0.0	22.5 4.0		一人		7	→
Force Mode	Fixed	Simult. Gap N/S	On	Red	3.0	0.0	4.0	0.5	0.0	1.5		5	6	7	8
Signal Phase \$	Snlite A	nd Results			EB			WB			NB			SB	
Approach Move	-	iiu ivesuits		L	T	R	L	T	R		T	R	1	T	R
Demand (v), v				127	345	105	114	269	94	182	930	332	173	467	95
Phase Split, s	211/11			22.0	42.0	,00	22.0	42.0	0 1	16.0	32.0	302	16.0	32.0	00
Volume-to-Capa	acitv Ra	tio (X)		0.414	0.635	0.648	0.434	0.467	0.482	0.397	0.866	0.866	0.663	0.445	0.450
		RQ) (95 th percent	ile)	0.96	0.23	0.22	0.69	0.407	0.402	1.12	0.47	0.44	1.54	0.443	0.430
Control Delay (26.7	34.7	34.9	27.4	31.8	31.9	19.1	41.5	42.6	23.4	26.2	26.4
Level of Service				C C	C	C C	C C	C	C	В	D D	D 42.0	C C	C C	C C
Approach Delay		/1 OS		33.0		С	30.8		С	39.1		D	25.6		С
Intersection De				00.0		33				00.1			20.0		
microcollon De	.ay, 3/VC	, LOO				- 55									

No Build -	PM			HCS7	Inters	sectio	n Sur	nmar	у						
#4.11min.a.maita.0.1	140 ED I	D													
#4 University & I		Ramp			ГП	Г 1:			_	_					
Signal Informa		D (D)		1	1/7	l fi	La						1		7
Cycle, s	91.0	Reference Phase	2			17	R				_	1	2	3	→ ₄
Offset, s	0	Reference Point	End	Green	6.6	32.0	16.0	0.0	0.0	0.0		1			
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow	+	4.0	4.0	0.0	0.0	0.0		1	¥		
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.5	1.5	1.5	0.0	0.0	0.0		5	6	7	8
Signal Phase S	Splits A	nd Results			EB			WB			NB			SB	
Approach Move	•			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v				132	368	160					1271	301	213	528	
Phase Split, s					24.0						32.0		20.0	32.0	
Volume-to-Capa	acity Ra	itio (X)		0.292	0.498	0.470					0.491	0.261	0.486	0.255	
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.29	0.13	0.44					0.16	0.23	0.21	0.16	
Control Delay (d) , s/v	eh		22.3	23.5	23.5					13.7	12.0	9.1	6.5	
Level of Service	(LOS)			С	С	С					В	В	Α	Α	
Approach Delay	, s/veh	/ LOS		23.3	3	С	0.0			13.4	1	В	7.2		Α
Intersection Del	ay, s/ve	eh / LOS			14.3 B										
#5 University & I	140 WB	Ramp													
Signal Informa						[2]	R			Т					K
Cycle, s	91.0	Reference Phase	2	1	SA	SA.	5	1				, I	4		7
Offset, s	0	Reference Point	End	Green		32.0	16.0	0.0	0.0	0.0		1	2	3	4
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		4.0	4.0	0.0	0.0	0.0	_ <	1		Ì	ĺ
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.5	1.5	1.5	0.0	0.0	0.0		5	6	7	8
							s-			s-			<u></u>		
Signal Phase S		nd Results			EB	1		WB	1	NB			SB		
Approach Move				L	T	R	L	Т	R	L	Т	R	L	T	R
Demand (v), v	eh/h						167	191	188	305	1127			562	58
Phase Split, s								24.0		20.0	32.0			32.0	
Volume-to-Capa							0.348	0.334	0.437	0.372	0.346			0.369	0.086
		RQ) (95 th percent	ile)				0.18	0.08	0.21	0.17	0.23			0.18	0.05
Control Delay (eh					22.3	22.1	22.9	7.9	7.1			12.6	10.5
				1		l .				A	A	I		В	В
Level of Service				0.0	<u> </u>		C 22.4	С	С	7.3					ь

Copyright @ 2020 University of Florida, All Rights Reserved.

Intersection Delay, s/veh / LOS

HCS™ Streets Version 7.8.5

В

Generated: 4/21/2020 1:33:28 PM

12.8

Intersection						
Int Delay, s/veh	0.9					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	WDL	WDK 7		NON	ODL	ODT
Traffic Vol, veh/h	0	69	↑ ↑	39	0	0
Future Vol, veh/h	0	69	1220	39	0	0
Conflicting Peds, #/hr	0	09	0	0	0	0
Sign Control RT Channelized	Stop -	Stop None	Free -	Free None	Stop -	Stop None
	-	None 0	-	None -	-	None
Storage Length						16979
Veh in Median Storage,		-	0	-		
Grade, %	0	- 00	0	- 00	- 00	0
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	78	1386	44	0	0
Major/Minor M	1inor1	N	Major1			
Conflicting Flow All	-	715	0	0		
Stage 1	-	-	-	-		
Stage 2	-	-	-	-		
Critical Hdwy	-	6.94	_	-		
Critical Hdwy Stg 1	_	_	-	-		
Critical Hdwy Stg 2	-	_	-	_		
Follow-up Hdwy	_	3.32	_	_		
Pot Cap-1 Maneuver	0	373	_	-		
Stage 1	0	-	_	_		
Stage 2	0	_	_	_		
Platoon blocked, %	U		_	_		
Mov Cap-1 Maneuver		373	-	_		
Mov Cap-1 Maneuver	_	3/3	_	_		
Stage 1	-	<u>-</u>	-	-		
	_	=		-		
Stage 2	_	-	_	_		
Approach	WB		NB			
HCM Control Delay, s	17.2		0			
HCM LOS	С					
		NBT	NIPDV	VBLn1		
Minor Lane/Major Mumt				VDLIII		
Minor Lane/Major Mvmt		INDI		272		
Capacity (veh/h)		-	-	• • •		
Capacity (veh/h) HCM Lane V/C Ratio		-	- -	0.21		
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		- - -	- - -	0.21 17.2		
Capacity (veh/h) HCM Lane V/C Ratio		-	- -	0.21 17.2 C		

Intersection						
Int Delay, s/veh	17.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
		WDN		NDI	SBL Š	
Lane Configurations Traffic Vol, veh/h	\	256	↑ ↑	82		^
	35	256	856		118	1143
Future Vol, veh/h	35	256	856	82	118	1143
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	150	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	3	3	2	2	2	2
Mvmt Flow	37	269	901	86	124	1203
Major/Miner	Minard		lais=1		Ania-O	
	Minor1		//ajor1		//ajor2	
Conflicting Flow All	1794	494	0	0	987	0
Stage 1	944	-	-	-	-	-
Stage 2	850	-	-	-	-	-
Critical Hdwy	6.86	6.96	-	-	4.14	-
Critical Hdwy Stg 1	5.86	-	-	-	-	-
Critical Hdwy Stg 2	5.86	-	-	-	-	-
Follow-up Hdwy	3.53	3.33	-	-	2.22	-
Pot Cap-1 Maneuver	71	518	-	-	696	-
Stage 1	336	-	-	-	-	-
Stage 2	377	-	-	-	-	-
Platoon blocked, %			_	_		_
Mov Cap-1 Maneuver	58	518	_	_	696	_
Mov Cap-1 Maneuver	58	-	_	_	-	<u>-</u>
Stage 1	276	_	_		_	_
	377		-	•		
Stage 2	3//	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	144.8		0		1.1	
HCM LOS	F					
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	265	696	-
HCM Lane V/C Ratio		-	-	1.156	0.178	-
HCM Control Delay (s))	-	-	144.8	11.3	-
HCM Lane LOS		-	-	F	В	-
HCM 95th %tile Q(veh	1)	-	-		0.6	-
	,					

Intersection			
Intersection Delay, s/veh	8		
Intersection LOS	Α		

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	82	22	2	0	23	1	28	2	0	0	2	109
Future Vol, veh/h	82	22	2	0	23	1	28	2	0	0	2	109
Peak Hour Factor	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	117	31	3	0	33	1	40	3	0	0	3	156
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB				WB		NB				SB	
Opposing Approach	WB				EB		SB				NB	
Opposing Lanes	1				1		1				1	
Conflicting Approach Left	SB				NB		EB				WB	
Conflicting Lanes Left	1				1		1				1	
Conflicting Approach Right	NB				SB		WB				EB	
Conflicting Lanes Right	1				1		1				1	
HCM Control Delay	8.6				7.7		8				7.6	
HCM LOS	Α				Α		Α				Α	

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	93%	77%	0%	0%	
Vol Thru, %	7%	21%	96%	2%	
Vol Right, %	0%	2%	4%	98%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	30	106	24	111	
LT Vol	28	82	0	0	
Through Vol	2	22	23	2	
RT Vol	0	2	1	109	
Lane Flow Rate	43	151	34	159	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.056	0.187	0.043	0.169	
Departure Headway (Hd)	4.719	4.453	4.503	3.836	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	762	793	797	940	
Service Time	2.726	2.553	2.519	1.84	
HCM Lane V/C Ratio	0.056	0.19	0.043	0.169	
HCM Control Delay	8	8.6	7.7	7.6	
HCM Lane LOS	Α	Α	Α	Α	
HCM 95th-tile Q	0.2	0.7	0.1	0.6	

Intersection												
Int Delay, s/veh	3.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	1	156	93	3	205	0	140	1	10	0	2	0
Future Vol, veh/h	1	156	93	3	205	0	140	1	10	0	2	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	_	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	88	88	88	88	88	88	88	88	88	88	88	88
Heavy Vehicles, %	7	7	7	5	5	5	3	3	3	2	2	2
Mvmt Flow	1	177	106	3	233	0	159	1	11	0	2	0
Major/Minor I	Major1		_	Major2			Minor1			Minor2		
Conflicting Flow All	233	0	0	283	0	0	472	471	230	477	524	233
Stage 1	233	-	-	203	-	-	232	232	230	239	239	233
Stage 2	_	_	_	_	_	_	240	239	_	238	285	_
Critical Hdwy	4.17	_	_	4.15	_	_	7.13	6.53	6.23	7.12	6.52	6.22
Critical Hdwy Stg 1	-	_	_	T. 10	<u>-</u>	_	6.13	5.53	0.20	6.12	5.52	0.22
Critical Hdwy Stg 2	_	_	_	_	_	_	6.13	5.53	_	6.12	5.52	_
Follow-up Hdwy	2.263	_	_	2.245	_	_	3.527	4.027	3 327	3.518	4.018	
Pot Cap-1 Maneuver	1306	_	_	1262	_	_	501	489	807	498	458	806
Stage 1	-	_	_	-	<u>-</u>	_	769	711	-	764	708	-
Stage 2	-	_	_	_	-	_	761	706	-	765	676	_
Platoon blocked, %		-	-		_	-	. • .	. 00			J. J	
Mov Cap-1 Maneuver	1306	_	-	1262	_	_	497	487	807	489	456	806
Mov Cap-2 Maneuver	-	-	-	-	_	-	497	487	-	489	456	-
Stage 1	-	-	-	-	-	-	768	710	-	763	706	-
Stage 2	-	-	-	-	-	-	756	704	-	752	675	-
Annroach	ED			WD			ND			CD		
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0.1			15.6			12.9		
HCM LOS							С			В		
Minor Lane/Major Mvm	nt N	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR :	SBL _{n1}			
Capacity (veh/h)		510	1306	-	-	1262	-	-	456			
HCM Lane V/C Ratio		0.336	0.001	-	-	0.003	-	-	0.005			
HCM Control Delay (s)		15.6	7.8	0	-	7.9	0	-	12.9			
HCM Lane LOS		С	Α	Α	-	Α	Α	-	В			
HCM 95th %tile Q(veh)	1.5	0	-	-	0	-	-	0			

Intersection				
Intersection Delay, s/veh	6.4			
Intersection LOS	Α			
Approach	EB	WB	NB	SB
Entry Lanes	1	1	1	1
Conflicting Circle Lanes	1	1	1	1
Adj Approach Flow, veh/h	160	481	318	209
Demand Flow Rate, veh/h	164	491	327	215
Vehicles Circulating, veh/h	566	92	73	446
Vehicles Exiting, veh/h	95	308	657	137
Ped Vol Crossing Leg, #/h	0	0	0	0
Ped Cap Adj	1.000	1.000	1.000	1.000
Approach Delay, s/veh	7.1	6.7	5.2	6.8
Approach LOS	Α	Α	Α	Α
Lane	1 - 44			
Lane	Left	Left	Left	Left
Designated Moves	Leπ LTR	Left LTR	Left LTR	Left LTR
Designated Moves	LTR	LTR	LTR	LTR
Designated Moves Assumed Moves	LTR	LTR	LTR	LTR
Designated Moves Assumed Moves RT Channelized	LTR LTR	LTR LTR	LTR LTR	LTR LTR
Designated Moves Assumed Moves RT Channelized Lane Util	LTR LTR 1.000	LTR LTR 1.000	LTR LTR 1.000	LTR LTR 1.000
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h	LTR LTR 1.000 2.609	LTR LTR 1.000 2.609	LTR LTR 1.000 2.609 4.976 327	LTR LTR 1.000 2.609 4.976 215
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s	LTR LTR 1.000 2.609 4.976	LTR LTR 1.000 2.609 4.976	LTR LTR 1.000 2.609 4.976	LTR LTR 1.000 2.609 4.976
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h	LTR LTR 1.000 2.609 4.976 164	LTR LTR 1.000 2.609 4.976 491	LTR LTR 1.000 2.609 4.976 327	LTR LTR 1.000 2.609 4.976 215
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h	LTR LTR 1.000 2.609 4.976 164 775	LTR LTR 1.000 2.609 4.976 491 1256	LTR LTR 1.000 2.609 4.976 327 1281	LTR LTR 1.000 2.609 4.976 215 876
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor	LTR LTR 1.000 2.609 4.976 164 775 0.973	LTR LTR 1.000 2.609 4.976 491 1256 0.980	LTR LTR 1.000 2.609 4.976 327 1281 0.972	LTR LTR 1.000 2.609 4.976 215 876 0.970
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h	LTR LTR 1.000 2.609 4.976 164 775 0.973 160	LTR LTR 1.000 2.609 4.976 491 1256 0.980 481	LTR LTR 1.000 2.609 4.976 327 1281 0.972 318	LTR LTR 1.000 2.609 4.976 215 876 0.970 209
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h	LTR LTR 1.000 2.609 4.976 164 775 0.973 160 754	LTR LTR 1.000 2.609 4.976 491 1256 0.980 481 1232	LTR LTR 1.000 2.609 4.976 327 1281 0.972 318 1244	LTR LTR 1.000 2.609 4.976 215 876 0.970 209 849
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio	LTR LTR 1.000 2.609 4.976 164 775 0.973 160 754 0.212	LTR LTR 1.000 2.609 4.976 491 1256 0.980 481 1232 0.391	LTR LTR 1.000 2.609 4.976 327 1281 0.972 318 1244 0.255	LTR LTR 1.000 2.609 4.976 215 876 0.970 209 849 0.246

Intersection						
Int Delay, s/veh	0					
		EDT	WDT	WIDD	CDI	CDD
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	_		↑ ↑	_	_	
Traffic Vol, veh/h	0	0	0	0	0	0
Future Vol, veh/h	0	0	0	0	0	0
Conflicting Peds, #/hr	_ 0	_ 0	_ 0	_ 0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage,	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	0	0	0	0	0
Major/Minor N	/lajor1		Major2		Minor2	
						1
Conflicting Flow All	-	0	-	0	-	1
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	7 4 4
Critical Hdwy	-	-	-	-	-	7.14
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3.92
Pot Cap-1 Maneuver	0	-	-	-	0	917
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	-	-	-	-	-	917
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Ammaaah	ED		\A/D		C.D.	
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS					Α	
		EBT	WRT	WBR S	SBI n1	
Minor Lane/Major Mymt	t			***	JULITI	
Minor Lane/Major Mvmt	t	EDI	***			
Capacity (veh/h)	t	- EDI	-	-	-	
Capacity (veh/h) HCM Lane V/C Ratio	t	-	-	-	- - 0	
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	t	- - -	- - -	-	0	
Capacity (veh/h) HCM Lane V/C Ratio		-	-			

Intersection						
Int Delay, s/veh	0					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	T T		↑ ↑↑	אטוע	ODL	JUIN 7
Traffic Vol, veh/h	2	1492	1215	3	0	6
Future Vol, veh/h	2	1492	1215	3	0	6
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	Stop -	None
Storage Length	50	NONE -	-	NOHE	_	0
Veh in Median Storage,		0	0	_	0	-
Grade, %	# -	0	0	-	0	-
Peak Hour Factor	89	89	89		89	89
				89		
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	2	1676	1365	3	0	7
Major/Minor Ma	ajor1		Major2	N	Minor2	
	1368	0		0	-	684
Stage 1	-	-	_	_	-	-
Stage 2	_	_	-	_	_	_
	5.34	_	_	_	_	7.14
Critical Hdwy Stg 1	-	_	_	_	_	-
Critical Hdwy Stg 2	_	_	_	_	_	_
	3.12	_	_	_	_	3.92
Pot Cap-1 Maneuver	259	_	_	_	0	335
Stage 1	_	_	_	_	0	-
Stage 2	_	_	_	_	0	_
Platoon blocked, %		_	_	_	U	
Mov Cap-1 Maneuver	259	_	_	_	_	335
Mov Cap-1 Maneuver	233	_	_	_	_	-
		-	-	-	-	-
Stage 1	-	_	-			-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		16	
HCM LOS					С	
		EBL	EBT	WDT	WDD	2DI 54
Minor Long/Maior Maria		FBI	EBI	WBT	WBR S	ORFUI
Minor Lane/Major Mvmt						00-
Capacity (veh/h)		259	-	-	-	335
Capacity (veh/h) HCM Lane V/C Ratio		259 0.009	-	-	- -	0.02
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		259 0.009 19	-	- - -	-	0.02 16
Capacity (veh/h) HCM Lane V/C Ratio		259 0.009	-	-		0.02

Intersection						
Int Delay, s/veh	1.2					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LDL			אטוע	ODL	JDK 7
Traffic Vol, veh/h	0	↑ ↑↑	↑↑↑ 977	0	0	73
Future Vol, veh/h	0	0	977	0	0	73
· · · · · · · · · · · · · · · · · · ·				0		
Conflicting Peds, #/hr	0	0	0		0	0
Sign Control RT Channelized	Free	Free	Free	Free	Stop	Stop
	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage		0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, %	2	2	2	2	19	19
Mvmt Flow	0	0	1110	0	0	83
Major/Minor I	Major1	ı	Major2	I.	/linor2	
Conflicting Flow All	-	0	-	0	-	555
Stage 1	_	-	_	-	_	-
Stage 2	<u> </u>	_	_	_	_	_
Critical Hdwy	_	-	-	-	-	7.48
		_				7.40
Critical Hdwy Stg 1	-		-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	4.00
Follow-up Hdwy	-	-	-	-	-	4.09
Pot Cap-1 Maneuver	0	-	-	0	0	375
Stage 1	0	-	-	0	0	-
Stage 2	0	-	-	0	0	-
Platoon blocked, %		-	-			
Mov Cap-1 Maneuver	-	-	-	-	-	375
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		17.3	
HCM LOS	U		U		17.3 C	
I IOIVI LOO					U	
Minor Lane/Major Mvm	nt	EBT	WBT	SBLn1		
Capacity (veh/h)		-	-	375		
HCM Lane V/C Ratio		-	-	0.221		
HCM Control Delay (s)		-	-	17.3		
HCM Lane LOS		-	-	С		
HCM 95th %tile Q(veh)	-	-	0.8		
	,					

Intersection						
Int Delay, s/veh	0.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ሻ		4†			7
Traffic Vol. veh/h	52	1391	977	35	0	0
Future Vol, veh/h	52	1391	977	35	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	150	-	_	-	-	0
Veh in Median Storage,		0	0	_	0	_
Grade, %	_	0	0	_	0	_
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	16	16	2	2
Mymt Flow	57	1512	1062	38	0	0
WWW.CT IOW	01	1012	1002	00		
	lajor1		Major2		/linor2	
	1100	0	-	0	-	550
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	5.34	-	-	-	-	7.14
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	_	-	-	-
Follow-up Hdwy	3.12	-	-	-	-	3.92
Pot Cap-1 Maneuver	350	-	-	-	0	410
Stage 1	-	-	-	-	0	-
Stage 2	-	-	_	-	0	-
Platoon blocked, %		_	_	_		
Mov Cap-1 Maneuver	350	_	_	-	_	410
Mov Cap-2 Maneuver	-	_	_	_	_	-
Stage 1	_	_	_	_	_	_
Stage 2	_	_	_	_	_	_
Olugo Z						
Approach	EB		WB		SB	
HCM Control Delay, s	0.6		0		0	
HCM LOS					Α	
Minor Lang/Major Mumt		EBL	EBT	WBT	WBR :	SRI n1
Minor Lane/Major Mvmt				VVDI	WDK	ODLIII
Capacity (veh/h)		350	-	-	-	-
110141 1100 5 11		0.161	-	-	-	-
HCM Lane V/C Ratio						_ ^
HCM Control Delay (s)		17.3	-	-	-	0
			-	-	-	0 A

MULTI-PERIOD ANA	ALYSIS HCS7 Sig	ınalize	d Int	ersec	tion F	Resu	Its Sur	nmar	у					
Canaral Information							Intoroco	tion Inf	ti -		T	4141.	h. L.	
General Information	DUI					-	Intersec				-	411	+- <i>A</i>	
Agency	BHI			le 1 4	4 0000		Duration,		0.250				£_	
Analyst	MB			Feb 1	4, 2020		Area Typ	е	Other		≯		-	
Jurisdiction		Time I		AM			PHF		1.00			w∱E e	~	
Urban Street	University		sis Year				Analysis		1> 7:		7		T F	
Intersection	University & Indian Schoo	File N	ame	Unive	rsity-Ind	lianSc	hool_NB/	AM_mp_	_hour.xi	JS		<u> ጎተ</u> ት		
Project Description	No Build AM	-	-	-	-	-	_	-	-	-	** ****** ****************************			
Demand Information		T	EB		W				NB		T	SB		
Approach Movement		L	Т	R	L	Т	R	L	Т	R	L	Т	R	
Demand (v), veh/h		212	248	272	240	37	_	156	388	48	28	940	144	
Oi al lufa ati a					1 11:									
Signal Information	D (D) 0	-	7		21/5			Ħø -			κŤz	_	A	
Cycle, s 101.0	Reference Phase 2 Reference Point End	-	5	150	Z 5	7	×	" R	E	1	2	3	→ ₄	
Offset, s 0	Green		0.2	32.0	11.	4 3.8	22.9							
Uncoordinated Yes	Simult. Gap E/W On	Yellow		3.0	4.0	3.0		4.0	^		<u> </u>	→		
Force Mode Fixed	Simult. Gap N/S On	Red	3.0	3.0	4.0	0.5	0.0	1.5		5	6	7	8	
Timer Results		EBI		EBT	WB		WBT	NBI		NBT	SBI		SBT	
Assigned Phase		7		4	3	_	8	5		2	1		6	
Case Number		1.1		4.0	1.1		4.0	1.1		4.0	1.1		4.0	
Phase Duration, s		14.9	9	28.4	18.8	3	32.2	13.8	3	46.2	7.7		40.0	
Change Period, (Y+R	c), S	3.5		8.0	6.0		8.0	6.0		8.0	6.0		8.0	
Max Allow Headway (MAH), s	3.1		3.1	3.1	\neg	3.1	3.1		3.1	3.1		3.1	
Queue Clearance Time		11.2	2	18.5	12.5	5	12.3	2.3 7.8		10.5	3.1			
Green Extension Time	, = ,	0.3	\neg	1.9	0.3	\neg	1.9	0.2		3.2	0.0			
Phase Call Probability	(0)	1.00		1.00	1.00		1.00	0.99)	1.00	0.54		1.00	
Max Out Probability		0.00)	0.00	0.00)	0.00	0.00)	0.02	0.00)	1.00	
Mayamant Craye Day			EB			\A/D			ND			SB		
Movement Group Res	Suits	٠.			- -	WB	_	.	NB L T R		.		В	
Approach Movement		L	T	R	L	T	R				L _	T	R	
Assigned Movement		7	4	14	3	8	18	5	2	12	1	6	16	
Adjusted Flow Rate (v		212	248	272	240	219		156	221	215	28	555	529	
Adjusted Saturation Flo Queue Service Time (1810 9.2	1885 12.2	1598 16.5	1795 10.5	1885 10.1		1753 5.8	1870 8.4	1798 8.5	1810	1885 28.8	1797 28.8	
	- ,			_		_						-		
Cycle Queue Clearand	e illie (yc), S	9.2	12.2	16.5	0.33	10.1 0.24		5.8 0.41	8.4 0.38	8.5 0.38	0.33	28.8	28.8	
Green Ratio (g/C)		_	_	_		453								
Capacity (<i>c</i>), veh/h Volume-to-Capacity Ra	atio (V)	391	381	323	332 0.722	0.48		223	707	679	366	597	569	
Back of Queue (Q), ft		0.542 175.7	0.651 238.4	0.842 268.1	199.3	203.		0.698 109.7	174.8	0.316 168.1	0.077	0.929 582.2	0.930 558.8	
	eh/ln (95 th percentile)	7.0	9.5	10.7	7.9	8.1		4.3	6.9	6.7	0.8	23.1	22.4	
	RQ) (95 th percentile)	1.60	0.24	0.27	1.42	0.20		1.29	0.17	0.17	0.29	0.58	0.56	
Uniform Delay (d 1), s	, , , , , , , , , , , , , , , , , , , ,	27.3	37.0	38.8	28.1	33.0		24.6	22.2	22.2	22.9	33.4	33.4	
Incremental Delay (d :		0.4	0.7	2.3	1.1	0.3		1.5	1.2	1.2	0.0	23.0	23.9	
Initial Queue Delay (d	•	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/v		27.7	37.7	41.1	29.2	33.3		26.1	23.3	23.4	22.9	56.4	57.3	
Level of Service (LOS)		С	D	D	С	С	С	С	С	С	С	E	Е	
Approach Delay, s/veh		36.		D	31.9		С	24.1		С	56.0		E	
Intersection Delay, s/ve					0.0						D			
	· ·													
Multimodal Results		EB			WB			NB			SB			
Pedestrian LOS Score		2.29	_	В	2.29	_	В	2.28	_	В	2.28	_	В	
Bicycle LOS Score / LO	US	1.09)	A	1.04	1	Α	0.98	3	Α	1.41		Α	

MULTI-PERIC	DD ANA	LYSIS HCS	7 Sig	nalize	d Int	ersec	tion F	Resu	Its Sur	nmar	у					
Conoral Inform	otion								Interce	tion Inf	ti -		T D	4141.	h. L.	
General Informa		ВНІ							Intersec		0.250		- 1	111		
Agency				A b	is Dat	- F-b 1	4 2020		Duration,						<u> </u>	
Analyst		MB				Feb 1	4, 2020	-	Area Typ	e	Other				→	
Jurisdiction		11		Time F		AM		-	PHF	D : 1	1.00	20	- ₹	w∳E	<u> </u>	
Urban Street		University	0 1 1	Analys					Analysis		2> 7:3				_ F	
Intersection		University & Indian	School	File Na	ame	Unive	rsity-Ind	lianSc	hool_NB	AM_mp	_hour.xi	us	- 1	<u>ጎተ</u>		
Project Description	on	No Build AM											া ব পিকপা দি			
Demand Informa	ation				EB		W				NB		T	SB		
Approach Moven	nent			L	Т	R	L	T	R	L	T	R	L	Т	R	
Demand (v), ve	h/h			136	228	256	208	26	4 96	60	472	100	48	1036	88	
Signal Informati		T	7	1 11:	1		F:	E .								
	93.6	Reference Phase	2	1	7				\mathcal{A}][2]	∄ \		KÎZ		7	
Offset, s				Green	5	<u> </u>				Ĭ R		1	2	3	4	
Uncoordinated						0.7	32.0	7.3		22.5	5			_	A	
						0.0	4.0	3.0		4.0	— l î	\	<u> </u>	- ^ _	Y	
Force Mode I	Fixed	Simult. Gap N/S	On	Red	3.0	0.0	4.0	0.5	0.0	1.5		5	6	7	8	
Timer Results			EBI		EBT	WB	L	WBT	NBI		NBT	SBI		SBT		
Assigned Phase				7		4	3		8	5		2	1		6	
Case Number				1.1		4.0	1.1	_	4.0	1.1		4.0	1.1		4.0	
Phase Duration,	s			10.8	3	28.0	16.3	3	33.5	9.3		40.7	8.6		40.0	
Change Period, ((Y+R :	c), S		3.5		8.0	6.0		8.0	6.0		8.0 6.0		8.0		
Max Allow Heady	way (1	<i>ИАН</i>), s		3.1		3.2	3.1		3.2 3.1			3.1			3.1	
Queue Clearance	e Time	e (g s), s		7.4		16.0	10.1		9.7	4.1		13.5	3.6		28.7	
Green Extension	Time	(<i>g</i> _e), s		0.2		1.7	0.3		1.7	0.1		3.5	0.0		1.5	
Phase Call Proba	ability			0.97	7	1.00	1.00)	1.00	0.79)	1.00	0.71		1.00	
Max Out Probabi	ility			0.00	0.00		0.00)	0.00	0.00)	0.06	0.00)	0.96	
Movement Grou	ın Res	sults			EB			WE	,		NB			SB		
Approach Moven				L	T	R	L	T	R	L	T	R		T	R	
Assigned Movem				7	4	14	3	8	18	5	2	12	1	6	16	
Adjusted Flow Ra) veh/h		136	228	256	208	185		60	293	279	48	570	554	
		ow Rate (s), veh/h/l	n	1810	1885	1598	1795	188		1753	1870	1757	1810	1885	1833	
Queue Service T		· '		5.4	10.1	14.0	8.1	7.4		2.1	11.3	11.5	1.6	26.7	26.7	
Cycle Queue Cle				5.4	10.1	14.0	8.1	7.4		2.1	11.3	11.5	1.6	26.7	26.7	
Green Ratio (g/0		(3),		0.29	0.21	0.21	0.34	0.27	_	0.38	0.35	0.35	0.37	0.34	0.34	
Capacity (c), ve				394	403	341	334	513		166	653	613	302	645	627	
Volume-to-Capac		tio (X)		0.345	0.566	_	0.623	0.36		0.362	0.450	0.454	0.159	0.884	0.884	
		In (95 th percentile))	101.8			152.6	148.		38.7	227.6	216.2	29.6	517.6	503.9	
		eh/In (95 th percenti		4.1	8.0	9.2	6.1	5.9		1.5	9.0	8.6	1.2	20.5	20.2	
		RQ) (95 th percent		0.93	0.20	0.23	1.09	0.15		0.45	0.23	0.22	0.42	0.52	0.51	
Uniform Delay (d 1), s/	/veh		25.5	32.9	34.5	24.7	27.5	27.6	23.2	23.5	23.6	20.0	29.0	29.1	
Incremental Dela	ay (d 2), s/veh		0.2	0.5	1.3	0.7	0.2	0.2	0.5	2.2	2.4	0.1	16.2	16.7	
Initial Queue Del	ay (<i>d</i>	з), s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/ve	eh		25.7	33.4	35.7	25.4	27.6	3 27.8	23.7	25.8	26.0	20.1	45.3	45.7	
Level of Service	(LOS)			С	С	D	С	С	С	С	С	С	С	D	D	
Approach Delay,	Approach Delay, s/veh / LOS					С	26.9	9	С	25.7	7	С	44.4	l	D	
Intersection Dela	Intersection Delay, s/veh / LOS						1.7						С			
Multimadal D								\ A /F			NID			CD		
Multimodal Res	2.00	EB	D	2.00	WE		2.00	NB	D	2.00	SB	D				
Pedestrian LOS				2.29 1.00	-	B A	2.29	_	В	2.28	_	В	2.28	_	В	
Dicycle LOS Sco	Bicycle LOS Score / LOS						0.96	י [Α	1.01		Α	1.45	,	Α	

MULTI-PER	IOD ANA	ALYSIS HCS	7 Sig	nalize	d Int	ersec	tion F	Resu	ilts Su	mmar	у				
General Inform	nation								Interse	ction Inf	ormatio	on		4741	يا دل
Agency	iation	ВНІ							Duration		0.250			417	
Analyst		MB		Analys	is Dat	e Feb 1	4 2020		Area Ty		Other		_1 		<u>t_</u> <u>A</u> L
Jurisdiction		IND		Time F		AM	+, <u>2020</u>		PHF	PC	1.00		→^1 	, W.†E	~ ← ÷
Urban Street		University		Analys					Analysis	Period	3> 7:4	45	_ 		~ ~
Intersection		University & Indian	School	File Na			rsity_Ind	lianSc	chool_NE					K A A	<u></u>
Project Descrip	tion	No Build AM	0011001	I IIC IN	anic	Ollive	i Sity-ii id	iiaiioc	/1001_1 1 L	<i>л</i> ді <u>лір</u>	_nour.x	us		1 1 4 7	†
							_								
Demand Inform					EB		+	W			NB		 	SB	1
Approach Move				L	Т	R		T	_	<u> </u>	T	R	L	T	R
Demand (v), v	eh/h			104	192	240	288	20)8 124	84	544	56	32	1084	52
Signal Informa	ition				T L					R	R.				
Cycle, s	99.0	Reference Phase	2	1	E	F.A.		<u> </u>	2	74	<i>€</i> \	L	V		
Offset, s	0	Reference Point	End		1	<u></u>				3	_	1	2	3	4
Uncoordinated	Yes	Simult. Gap E/W	On	Green Yellow		2.8 0.0	32.0 4.0	6.2 3.0						Я	→
Force Mode	Fixed	Simult. Gap N/S	On	Red	3.0	0.0	4.0	0.5				5	6	7	8
Timer Results				EBL		EBT	WB	L	WBT	NB	L	NBT	SBI		SBT
Assigned Phase	е			7		4	3	_	8	5		2	1		6
Case Number				1.1	_	4.0	1.1	_	4.0	1.1		4.0	1.1		4.0
Phase Duration	·			9.7	_	28.0	20.3	_	38.6	10.7		42.8	7.9	_	40.0
Change Period				3.5		8.0	6.0	_	8.0	6.0		8.0	6.0		8.0
Max Allow Head				3.1	_	3.2	3.1	_	3.2	3.1		3.0	3.1		3.0
Queue Clearan		,		6.4	_	16.0	14.0	_	9.3	5.1		14.5	3.2	_	31.3
Green Extension		(g e), s		0.1	_	1.5	0.4	_	1.5	0.1		3.5	0.0	_	0.4
Phase Call Pro				0.94	_	1.00	1.00	_	1.00	0.90	_	1.00	0.59	_	1.00
Max Out Proba	bility			0.00)	0.00	0.02	2	0.00	0.00)	0.07	0.00)	1.00
Movement Gro	oup Res	sults			EB			WE	3	$\overline{}$	NB			SB	
Approach Move				L	T	R		T	R	L	Т	R		T	R
Assigned Move				7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow I), veh/h		104	192	240	288	172	_	84	304	296	32	573	563
-		ow Rate (s), veh/h/l	n	1810	1885	1598	1795	188		1753	1870	1809	1810	1885	1854
Queue Service		· /		4.4	9.0	14.0	12.0	6.9	_	3.1	12.5	12.5	1.2	29.2	29.3
Cycle Queue C		- '		4.4	9.0	14.0	12.0	6.9	_	3.1	12.5	12.5	1.2	29.2	29.3
Green Ratio (g		(3),		0.26	0.20	0.20	0.37	0.3	_	0.37	0.35	0.35	0.34	0.32	0.32
Capacity (c), v	•			401	381	323	391	583	512	169	658	636	277	609	599
Volume-to-Cap	acity Ra	itio (X)		0.259	0.504	0.744	0.736	0.29	5 0.312	0.496	0.463	0.465	0.115	0.940	0.940
Back of Queue	(Q), ft/	In (95 th percentile)		85.4	184.5	231.7	222.4	137.	5 127.4	59.8	247.1	238.3	22.1	595	583.9
Back of Queue	(Q), ve	eh/ln (95 th percenti	le)	3.4	7.3	9.3	8.8	5.5	5.1	2.3	9.7	9.5	0.9	23.6	23.4
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.78	0.18	0.23	1.59	0.14	1 0.13	0.70	0.25	0.24	0.32	0.59	0.59
Uniform Delay (`			28.4	35.1	37.1	25.5	26.0	26.1	25.6	24.9	24.9	22.5	32.6	32.6
Incremental De	- '	·		0.1	0.4	1.3	2.0	0.1		0.8	2.3	2.4	0.1	24.3	24.7
Initial Queue De				0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (eh		28.5	35.5	38.4	27.5	26.1	_	26.4	27.2	27.3	22.6	56.9	57.3
Level of Service		/1.00		C	D	D	C	С	С	C 07.	С	С	C	E	E
Approach Delay				35.4	-	D	26.8	3	С	27.	I	С	56.2	<u>′ </u>	E
Intersection De	ıay, s/ve	en / LOS				39	9.8						D		
Multimodal Re	sulte				EB			WE	3		NB			SB	
Pedestrian LOS		/LOS		2.29		В	2.28		, В	2.28	-	В	2.28		В
Bicycle LOS Sc				0.93	-	A	1.00	_	A	1.0	_	A	1.45	_	A
•															

MULTI-PERI	IOD ANA	ALYSIS HCS	7 Sig	nalize	d Int	ersec	tion F	Resu	Its Sur	nmar	У				
Canaval Inform	action								Interce	tion Inf	- w		T D	4 74	Js. U.
General Inform	nation	DUI						-	Intersec		-		_	411	4- 4
Agency		BHI				le 1 4	4 0000		Duration,		0.250				<u></u>
Analyst		MB				Feb 1	4, 2020		Area Typ	е	Other		^		~ -
Jurisdiction				Time F		AM		\longrightarrow	PHF		1.00		_ ₹	w 	<u>←</u> <u>←</u>
Urban Street		University		Analys					Analysis		4> 8:0		7		بر د
Intersection		University & Indian	School	File Na	ame	Unive	rsity-Ind	lianSc	hool_NB/	AM_mp	_hour.xı	JS		<u> ጎተ</u> ት	
Project Descrip	tion	No Build AM	_	_	_	_	_		_	_	_	_		14144	<u>ት (</u>
Demand Inform	nation				EB		T	W	В		NB		T	SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v				72	132	172	176	26	8 52	116	400	80	60	928	72
Oi al la fa	4!						1 11:								
Signal Informa	_	Deference Disease		-	7		21/3			∄≉			кŤэ		7
Cycle, s	95.0	Reference Phase	2		15	150	2 SA	2	×	" ⊨3	E .	1	2	3	→ 4
Offset, s	0	Reference Point	End	Green		2.6	32.0	4.3		22.5	<u> </u>				<u> </u>
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		0.0	4.0	3.0		4.0		\ <	<u> </u>	- ∕ ∣	
Force Mode	Fixed	Simult. Gap N/S	On	Red	3.0	0.0	4.0	0.5	3.0	1.5		5	6	7	8
Timer Results				EBI		EBT	WB	L	WBT	NBI		NBT	SBI		SBT
Assigned Phase	e			7	\neg	4	3	\neg	8	5	\neg	2	1	\neg	6
Case Number				1.1		4.0	1.1		4.0	1.1		4.0	1.1		4.0
Phase Duration	, S			7.8		28.0	15.1	1	35.3	11.9) .	42.6	9.3		40.0
Change Period,	, (Y+R	c), S		3.5		8.0	6.0		8.0	6.0		8.0	6.0		8.0
Max Allow Head	dway (/	<i>MAH</i>), s		3.1		3.1	3.1		3.1	3.1		3.1	3.1		3.1
Queue Clearan	ce Time	e (g s), s		4.9		11.0	8.9		8.6	6.0		11.3	4.0		25.1
Green Extensio	n Time	(g e), s		0.1		1.2	0.2	\neg	1.2	0.1		3.0	0.1		2.1
Phase Call Prob	bability			0.85	5	1.00	0.99	9	1.00	0.95	5	1.00	0.79	9	1.00
Max Out Probal	bility			0.00)	0.00	0.00)	0.00	0.00) (0.02	0.00)	0.43
Movement Gro	un Pos	eulte			EB			WB			NB			SB	
Approach Move		Juito		L	T	R	L	T	R	L	T	R		T	R
Assigned Move				7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow F) veh/h		72	132	172	176	163		116	245	235	60	506	494
		ow Rate (s), veh/h/l	n	1810	1885	1598	1795	1885		1753	1870	1762	1810	1885	1837
Queue Service				2.9	5.6	9.0	6.9	6.4	6.6	4.0	9.1	9.3	2.0	23.1	23.1
Cycle Queue C		- ,		2.9	5.6	9.0	6.9	6.4	6.6	4.0	9.1	9.3	2.0	23.1	23.1
Green Ratio (g		(3-7,-		0.26	0.21	0.21	0.33	0.29	_	0.40	0.36	0.36	0.37	0.34	0.34
Capacity (c), v				370	397	336	373	543		236	682	642	366	635	619
Volume-to-Capa		atio (X)		0.195	0.332	_	0.472	0.30		0.492	0.360	0.365	0.164	0.797	0.797
		/In (95 th percentile)		56.1	115	155.4	130.7	127.		75.1	189.2	179.2	37.9	437.2	425.7
		eh/ln (95 th percent		2.2	4.6	6.2	5.2	5.1	4.9	2.9	7.4	7.2	1.5	17.4	17.0
		RQ) (95 th percent		0.51	0.12	0.16	0.93	0.13	_	0.88	0.19	0.18	0.54	0.44	0.43
Uniform Delay ((d 1), s	/veh		27.4	31.8	33.2	24.6	26.4	26.4	22.0	22.1	22.1	19.8	28.6	28.6
Incremental De				0.1	0.2	0.4	0.3	0.1	0.1	0.6	1.5	1.6	0.1	10.0	10.3
Initial Queue De	elay (d	з), s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/ve	eh		27.5	32.0	33.6	24.9	26.5	26.6	22.5	23.6	23.7	19.9	38.6	38.8
Level of Service	(LOS)			С	С	С	С	С	С	С	С	С	В	D	D
Approach Delay	y, s/veh	/ LOS		31.9)	С	26.0)	С	23.4		С	37.7	7	D
Intersection Del	lay, s/ve	eh / LOS				3′	1.1						С		
Multimodal Da	eulte				EB			\ \ /\			NID			SB	
Multimodal Re		/1.08		2.29		R	2.28	WB		2 20	NB	R	2 20		R
Pedestrian LOS Bicycle LOS Sc				0.80	_	В	0.90	_	В	2.28	_	В	2.28	_	В
Dicycle LOS SC	OIE / LC	<i>7</i> 0		0.00		Α	0.90	,	Α	0.98	,	Α	1.36	,	Α

APPENDIX E 2024 BUILD INTERSECTION CAPACITY ANALYSIS

Signal Information Signal Phase Splits And Results Signal Information Signal Phase Splits And Results Signal Information Signal Phase Splits And Results Signal Information Signal Phase Splits And Results Signal Information Signal Phase Splits And Results S	Build - AN	1			HCS7	Inters	sectio	n Sur	nmar	y						
Signal Information																
Cycle, s								_		_		_				
Offset, s		ition			l	الخلالا	←									
Offset S		72.5		2	ļ	54	R≤	1					, '		3	\rightarrow
Signal Phase Splits And Results		-			Green	36.0	7.9	7.5	0.0	0.0	0.0					
Signal Phase Spits And Results				On	Yellow	5.0			0.0	0.0			4	≥		7
Approach Movement	Force Mode	Fixed	Simult. Gap N/S	On	Red	2.0	2.0	2.0	0.0	0.0	0.0		5	6	7	8
Demand (y), veh/h	Signal Phase S	Splits A	nd Results			EB			WB			NB			SB	
Demand (v), veh/h		•			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Phase Split, s 24.0						128	97	1	135		0	0		288	1676	437
Volume-to-Capacity Ratio (X)						24.0			24.0			36.0			36.0	
Queue Storage Ratio (RQ) (95 th percentile)		acity Ra	tio (X)			0.592	0.642	0.006	0.734			0.000		0.309	0.320	0.325
Control Delay (d), siveh 30,2 30,8 27,6 32,0 10,3 10,5 10,6 1			· · · ·	tile)		0.19	0.18	0.00	0.58			0.00		0.11	0.10	0.10
Level of Service (LOS)						30.2	30.8	27.6	32.0					10.3	10.5	10.6
Approach Delay, s/veh / LOS						С	С	С	С					В	В	В
Signal Information			/ LOS		30.5		С	31.9		С	0.0			10.5	5	В
#2 125 SB Frontage & S 40 Frontage	- ' '				i		17	.0					[3		
Signal Information		·			I											
Cycle, s 58.0 Reference Phase 2 2 2 2 2 2 0 0 0 0			140 Frontage			:	Г	Т	Т	Т	_					
Offset, s			Deference Dhace	2	1	l .	,						1	L		
Uncoordinated Yes Simult. Gap E/W On Yellow 4.0 4.0 0.0					ł	<u> </u> "}↑	R						1	2	3	4
Signal Phase Splits And Results		-					-									
Signal Phase Splits And Results						-	-	-	-			_	_ '	$\mathbf{A} \perp$	_	-
Approach Movement	Force Mode	Fixed	Simuit. Gap N/S	<u> </u>	Red	1.0	1.0	0.0	0.0	0.0	0.0		5	6	7	8
Approach Movement	Signal Phase S	Splits A	nd Results			EB			WB			NB			SB	
Phase Split, s					L	Т	R	L	Т	R	L	Т	R	L	Т	R
Volume-to-Capacity Ratio (X)	Demand (v), v	eh/h				479	338				0	0		48	427	
Queue Storage Ratio (RQ) (95 th percentile)	Phase Split, s					24.0	Ì					24.0		i	24.0	
Signal Phase Splits And Results Signal Phase Splits And Results Signal Phase Splits Splits Spl	Volume-to-Capa	acity Ra	tio (X)			0.411	0.652					0.000		0.062	0.370	
Level of Service (LOS)	Queue Storage	Ratio (RQ) (95 th percent	tile)		0.04	0.21					0.00		0.01	0.06	
Approach Delay, s/veh / LOS	Control Delay (d),s/v	eh			8.4	9.7							7.3	8.3	
Intersection Delay, s/veh / LOS	Level of Service	(LOS)				Α	Α							Α	Α	
Signal Information	Approach Delay	y, s/veh	/LOS		9.0		Α	0.0			0.0			8.2		Α
Signal Information Cycle, s 58.0 Reference Phase 2 Offset, s 0 Reference Point End Uncoordinated Yes Simult. Gap E/W On Green 12.0 0.0	Intersection De	lay, s/ve	h / LOS				8.	7					,	4		
Signal Information Cycle, s 58.0 Reference Phase 2 Offset, s 0 Reference Point End Uncoordinated Yes Simult. Gap E/W On Green 12.0 0.0	#2 125 SD Front	000 P N	LIAO Eroptogo													
Cycle, s 58.0 Reference Phase 2			1 140 FTOTILAGE				1	1	1	1	T					
Offset, s			Deference Dhase	2	ł	⊱										
Uncoordinated Yes Simult. Gap E/W On Yellow 4.0 0.0													1	2	3	4
Force Mode Fixed Simult. Gap N/S On Red 1.0 0.0														1		
Signal Phase Splits And Results EB WB NB SB Approach Movement L T R L X L L X L X L X L												_	_ \		_	Y
Approach Movement L T R D D D	roice Mode	rixeu	Simult. Gap N/S	Oii	Rea	1.0	0.0	10.0	10.0	0.0	0.0		5	6	1	8
Demand (v), veh/h 174 402 306 45 Phase Split, s 24.0 24.0 24.0 24.0 0.264 0.089 Volume-to-Capacity Ratio (X) 0.301 0.351 0.351 0.264 0.089 Queue Storage Ratio (RQ) (95 th percentile) 0.03 0.04 0.03 0.02 Control Delay (d) , s/veh 8.1 8.2 0.0 7.9 7.4 Level of Service (LOS) A A A 0.0 7.8 A	Signal Phase S	Splits A	nd Results			EB			WB			NB			SB	
Phase Split, s 24.0	Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Volume-to-Capacity Ratio (X) 0.301 0.351 0.351 0.264 0.089 Queue Storage Ratio (RQ) (95 th percentile) 0.03 0.04 0.03 0.02 Control Delay (d) , s/veh 8.1 8.2 0.0 7.9 7.4 Level of Service (LOS) A A A A A A A Approach Delay, s/veh / LOS 0.0 8.2 A 0.0 7.8 A	Demand (v), v	eh/h						174	402						306	45
Queue Storage Ratio (RQ) (95 th percentile) 0.03 0.04 0.03 0.02 Control Delay (d) , s/veh 8.1 8.2 5 7.9 7.4 Level of Service (LOS) A A A A A A A A A Approach Delay, s/veh / LOS 0.0 8.2 A 0.0 7.8 A	Phase Split, s								24.0						24.0	
Control Delay (d) , s/veh 8.1 8.2 7.9 7.4 Level of Service (LOS) A	Volume-to-Capa	acity Ra	tio (X)					0.301	0.351						0.264	0.089
Level of Service (LOS) A	Queue Storage	Ratio (RQ) (95 th percent	tile)				0.03	0.04						0.03	0.02
Approach Delay, s/veh / LOS 0.0 8.2 A 0.0 7.8 A	Control Delay (d),s/v	eh					8.1	8.2						7.9	7.4
	Level of Service	(LOS)						А	Α						Α	Α
Intersection Delay, s/veh / LOS 8.0 A	Approach Delay	y, s/veh	/LOS		0.0			8.2		Α	0.0			7.8		Α
	Intersection De	lay, s/ve	h/LOS				8.	0						4		

Build - AM	HCS7	Inters	sectio	n Sur	nmar	у						
#1 Lomas & Locust												
Signal Information	_	г	Г	ГШ	Т	т —	_					
	-	⊱	, 5.	21/2					_		⊾	▲ │
	-	"	F3 *					_	1	2	3	4
Offset, s 58 Reference Point End Uncoordinated No Simult. Gap E/W On	Green		39.7	48.3	0.0	0.0	0.0		4			
	Yellow	+	4.0	4.0	0.0	0.0	0.0	_			_	
Force Mode Fixed Simult. Gap N/S On	Red	1.0	1.0	2.0	0.0	0.0	0.0		5	6	/	8
Signal Phase Splits And Results		EB			WB			NB			SB	
Approach Movement	L	T	R	L	Т	R	L	Т	R	L	T	R
Demand (v), veh/h		910	109	103	1085					807	460	739
Phase Split, s		33.0		16.5	49.5						60.5	
Volume-to-Capacity Ratio (X)		0.567	0.569	0.441	0.497					0.890	0.536	0.916
Queue Storage Ratio (RQ) (95 th percentile)		0.57	0.57	0.19	0.47					0.65	0.33	2.48
Control Delay (d) , s/veh		24.9	26.9	22.0	14.7					37.9	22.7	42.4
Level of Service (LOS)		С	С	С	В					D	С	D
Approach Delay, s/veh / LOS	25.6	6	С	15.4		В	0.0			33.4		С
Intersection Delay, s/veh / LOS			26	.5					(2		
#0.1 amag 0. Oals												
#2 Lomas & Oak		Г			т	Т	_					
Signal Information	-	La .	≃ ج									кŤэ
Cycle, s 110.0 Reference Phase 2	-	P	 	SAZ					1	→	3	4
Offset, s 45 Reference Point End	Green		63.1	23.7	0.0	0.0	0.0		1	<u> </u>		
Uncoordinated No Simult. Gap E/W On	Yellow		4.0	4.0	0.0	0.0	0.0	/	' '			
Force Mode Fixed Simult. Gap N/S On	Red	1.0	1.0	1.0	0.0	0.0	0.0		5	6	7	8
Signal Phase Splits And Results		EB			WB			NB			SB	
Approach Movement	L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), veh/h	243	1539			938	178	197	376	276			
Phase Split, s	27.5	67.1	Ì		39.6			42.9				
Volume-to-Capacity Ratio (X)	0.502	0.450			0.338	0.208	0.446	0.570	0.863			
Queue Storage Ratio (RQ) (95 th percentile)	0.25	0.42			0.08	0.14	0.61	0.24	0.46			
Control Delay (d) , s/veh	8.0	7.2			5.2	1.5	37.7	38.8	46.3			
Level of Service (LOS)	Α	Α			Α	Α	D	D	D			
Approach Delay, s/veh / LOS	7.3	<u> </u>	Α	4.6		Α	41.0		D	0.0		
Intersection Delay, s/veh / LOS			14	.4					E	3		
#0.1 0.1 University												
#3 Lomas & University		1	1	_		1 1111	1 11:					
Signal Information	-	La	La .	L# 🕃	9	211			_ ,			кŤэ
Cycle, s 110.0 Reference Phase 2 Offset, s 11 Reference Point End	-	2	R	 	5		F(1)	7 1	ightarrow	→ 2	3	4
Oliset, S The Reference Point End	Cuasa	10.4	0.5	45.6	7.3	1.1	20.0		_ 4	<u></u>	_	1
·						120	4.5	7	1		\	4
Uncoordinated No Simult. Gap E/W On	Yellow	3.0	3.0	4.5	3.0	3.0			1			
·			3.0 0.5	4.5 1.0	0.5	0.5	1.0		5	6	7	8
Uncoordinated No Simult. Gap E/W On	Yellow	3.0						NB	5	6	SB	8
Uncoordinated No Simult. Gap E/W On Force Mode Fixed Simult. Gap N/S On	Yellow	3.0 0.5			0.5			NB T	5 R	6 L	SB T	R
Uncoordinated No Simult. Gap E/W On Force Mode Fixed Simult. Gap N/S On Signal Phase Splits And Results	Yellow Red	3.0 0.5 EB	0.5	1.0	0.5 WB	0.5		_	R 183	L 221		R 129
Uncoordinated No Simult. Gap E/W On Force Mode Fixed Simult. Gap N/S On Signal Phase Splits And Results Approach Movement	Yellow Red	3.0 0.5 EB	0.5 R	1.0 L	WB	0.5	1.0	T			T	
Uncoordinated No Simult. Gap E/W On Force Mode Fixed Simult. Gap N/S On Signal Phase Splits And Results Approach Movement Demand (v), veh/h	Yellow Red	3.0 0.5 EB T 1204	0.5 R	L 220	0.5 WB T 919	0.5	L 101	T 454		221	T 454	
Uncoordinated No Simult. Gap E/W On Force Mode Fixed Simult. Gap N/S On Signal Phase Splits And Results Approach Movement Demand (v), veh/h Phase Split, s	Yellow Red L 352 23.1	3.0 0.5 EB T 1204 41.8	0.5 R 150	L 220 19.8	0.5 WB T 919 38.5	0.5 R 224	L 101 15.4	T 454 33.0	183	221 15.4	T 454 33.0	129
Uncoordinated No Simult. Gap E/W On Force Mode Fixed Simult. Gap N/S On Signal Phase Splits And Results Approach Movement Demand (v), veh/h Phase Split, s Volume-to-Capacity Ratio (X)	Yellow Red L 352 23.1 0.901	3.0 0.5 EB T 1204 41.8 0.567	0.5 R 150 0.567	L 220 19.8 0.696	0.5 WB T 919 38.5 0.540	0.5 R 224 0.542	L 101 15.4 0.518	T 454 33.0 0.756	183 0.454	221 15.4 0.819	T 454 33.0 0.785	129 0.792
Uncoordinated No Simult. Gap E/W On Force Mode Fixed Simult. Gap N/S On Signal Phase Splits And Results Approach Movement Demand (v), veh/h Phase Split, s Volume-to-Capacity Ratio (X) Queue Storage Ratio (RQ) (95 th percentile)	Yellow Red L 352 23.1 0.901 1.61	3.0 0.5 EB T 1204 41.8 0.567 0.27	0.5 R 150 0.567 0.28	L 220 19.8 0.696 1.28	0.5 WB T 919 38.5 0.540 0.91	0.5 R 224 0.542 0.95	L 101 15.4 0.518 1.10	T 454 33.0 0.756 0.53	183 0.454 0.39	221 15.4 0.819 1.68	T 454 33.0 0.785 0.93	0.792 0.88
Uncoordinated No Simult. Gap E/W On Force Mode Fixed Simult. Gap N/S On Signal Phase Splits And Results Approach Movement Demand (v), veh/h Phase Split, s Volume-to-Capacity Ratio (X) Queue Storage Ratio (RQ) (95 th percentile) Control Delay (d) , s/veh	Yellow Red L 352 23.1 0.901 1.61 28.7	3.0 0.5 EB T 1204 41.8 0.567 0.27 17.7 B	0.5 R 150 0.567 0.28 20.0	1.0 L 220 19.8 0.696 1.28 19.8	WB T 919 38.5 0.540 0.91 26.5	0.5 R 224 0.542 0.95 31.9	L 101 15.4 0.518 1.10 35.2	T 454 33.0 0.756 0.53 44.1 D	0.454 0.39 33.2	221 15.4 0.819 1.68 48.7	T 454 33.0 0.785 0.93 44.2 D	0.792 0.88 45.0

Build - AM HCS7 Intersection Summary															
#4 Lomas & Yal	•														
Signal Informa					T .		_	Т	ГШ	ПП					
		Deference Dhace		ł	ے جــا	_2	چ چیا	2		섿			,	< L	<u>1</u>
Cycle, s Offset, s	110.0 46	Reference Phase Reference Point	2	-	"	R	F3 *	15		1 1	7	1	2	3	4
Uncoordinated	No		End	Green		3.0	60.6	2.5	2.8	15.6					
		Simult. Gap E/W	On	Yellow	-	3.0	4.0	3.0	0.0	3.5					7
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.5	0.5	1.5	0.5	0.0	2.0		5	6	7	8
Signal Phase S	Splits A	nd Results			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	T	R	L	Т	R	L	T	R
Demand (<i>v</i>), v	eh/h			310	1085	138	78	1136	144	29	49	19	61	61	211
Phase Split, s				19.8	40.7		19.8	40.7		16.5	33.0		16.5	33.0	
Volume-to-Capa	acity Ra	tio (X)		0.813	0.385	0.386	0.239	0.456	0.456	0.812	0.228	0.095	0.776	0.249	0.871
Queue Storage	Ratio (RQ) (95 th percent	tile)	0.45	0.21	0.16	0.20	0.26	0.24	0.42	0.19	0.94	0.90	0.42	2.99
Control Delay (d),s/v	eh		16.1	6.3	5.2	10.2	14.1	14.4	67.4	42.0	41.1	57.3	40.0	48.1
Level of Service	e (LOS)			В	Α	Α	В	В	В	E	D	D	E	D	D
Approach Delay	y, s/veh	/LOS		8.0		Α	14.0		В	49.4		D	48.3	3	D
Intersection De	lay, s/ve	h / LOS				15	.8					[3		
										1					
#5 Lomas & Sta						ì	_		_	,					
Signal Informa					a _	⊱	. 5	2 5				,	_		
Cycle, s	110.0	Reference Phase	2	ļ		~	Ħ "	5.2	2				→ 2	3	Y
Offset, s	28	Reference Point	End	Green	0.4	2.4	84.0	9.2	0.0	0.0			_		
Uncoordinated	No	Simult. Gap E/W	On	Yellow		0.0	4.0	3.5	0.0	0.0	/	• •	>		\triangle
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.5	0.0	1.0	2.0	0.0	0.0		5	6	7	8
							Г	=					г		
Signal Phase S	-	nd Results			EB	_		WB			NB			SB	
Approach Move				L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), v	eh/h			5	727	234	73	1388	6	107		40	6		8
Phase Split, s				16.5	60.5		16.5	60.5			33.0			33.0	
Volume-to-Capa		· · · ·		0.016	0.251	0.254	0.155	0.340	0.340	0.539		0.323	0.033		0.065
		RQ) (95 th percent	tile)	0.01	0.11	0.11	0.05	0.05	0.06	2.04		0.73	0.28		0.33
Control Delay (eh		3.1	5.0	5.6	2.9	1.9	2.1	50.2		48.0	46.4		46.5
Level of Service				Α	A	Α	Α	A	_ A	D		D	D		D
Approach Delay				5.1		Α	2.0		Α	49.6	<u> </u>	D	46.5	<u> </u>	D
Intersection De	lay, s/ve	h / LOS				6.	1					,	٩		
#6 Lomas & Gira	ard														
Signal Informa						R	R		1	215					
Cycle, s	110.0	Reference Phase	2	1	L7 _		<u></u>	7	l				4	<	Д
Offset, s	101	Reference Point	End				-3	1	SI			1	2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Green		1.9	51.8	3.0	0.5	25.7	٠,	.	>		-4-
Force Mode	Fixed	Simult. Gap N/S	On	Yellow Red	0.5	0.0	4.0 1.0	3.0 0.5	3.0 0.5	3.5		5	6	7	Y
1 0100 Midde	TIXOU	Cimat. Cap 11/C	OII	rtcu	0.5	0.0	1.0	0.0	0.0	2.0					
Signal Phase S	•	nd Results			EB			WB	v-		NB	ų-		SB	u
Approach Move	ement			L	Т	R	L	Т	R	L	T	R	L	T	R
Demand (v), v	eh/h			124	500	67	173	1116	165	104	206	37	40	238	112
Phase Split, s				16.5	44.0		16.5	44.0		16.5	33.0		16.5	33.0	
		tio (X)		0.438	0.227	0.232	0.346	0.515	0.515	0.548	0.530		0.167	0.907	
Volume-to-Capa	acity Ra	110 (X)				0.40	0.99	0.00	0.22	1.01	0.29	I	0.40	0.40	
Volume-to-Capa	•	RQ)(95 th percent	ile)	0.74	0.11	0.12	0.99	0.22	0.22	1.01	0.29		0.40	0.43	
Volume-to-Capa	Ratio (RQ) (95 th percent	tile)	0.74 15.2	14.7	15.5	12.6	13.4	14.5	31.5	34.6		31.6	54.7	
Volume-to-Capa Queue Storage	Ratio(d), s/v	RQ) (95 th percent	tile)								_				
Volume-to-Capa Queue Storage Control Delay (Ratio(d), s/v e (LOS)	RQ) (95 th percenteh	tile)	15.2	14.7 B	15.5	12.6	13.4 B	14.5	31.5	34.6 C	С	31.6	54.7 D	D

Build - Al	Л			HCS7	Inter	sectio	n Sur	nmar	у						
#1 Oak & Moun	tain														
Signal Informa	ation						Τ	T							
Cycle, s	75.0	Reference Phase	2		<u> 5</u> 4	≓						,	\mathbf{V}		4
Offset, s	0	Reference Point	End	Green	:	6.8	0.0	0.0	0.0	0.0		1	2	3	4
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		4.0	0.0	0.0	0.0	0.0	_		L		
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	0.0	0.0	0.0	0.0	0.0		5	6	7	8
Signal Phase	Splits A	nd Results			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (<i>v</i>), v	/eh/h			426	0					190	572		0	0	
Phase Split, s					30.0						36.0			36.0	
Volume-to-Cap	acity Ra	itio (X)		0.619	0.000					0.186	0.345			0.000	
Queue Storage	Ratio (RQ) (95 th percent	tile)	0.24	0.00					0.03	0.04			0.00	
Control Delay (d),s/v	reh		11.6	0.0					4.5	4.8				
Level of Service	e (LOS)			В						Α	Α				
Approach Delay	y, s/veh	/ LOS		11.6	5	В	0.0			4.7		Α	0.0		
Intersection De	lay, s/ve	h / LOS				7.	.2					-	4		

Copyright © 2020 University of Florida, All Rights Reserved. HCS™ Streets Version 7.8.5

Generated: 4/21/2020 3:02:46 PM

Build - AM	1			HCS7	Inters	sectio	n Sur	nmar	у						
W4.11 : :: 0															
#1 University &		nas			г п:	Г	_	Г	_	_					
Signal Informa			_										-1		_
Cycle, s	66.0	Reference Phase	2		542	R						1	2	3	❤ ₄
Offset, s	0	Reference Point	End	Green		7.6	0.0	0.0	0.0	0.0		1			<u> </u>
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow	-	3.5	0.0	0.0	0.0	0.0		4	4		7
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	2.0	0.0	0.0	0.0	0.0		5	6	7	8
Signal Phase S	Splits A	nd Results			EB			WB			NB			SB	
Approach Move	ment			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			20	7	8	79	10	54	13	501	90	114	639	34
Phase Split, s					24.0			24.0			32.0			32.0	
Volume-to-Capa	acity Ra	tio (X)			0.116			0.293	0.288	0.040	0.198	0.202	0.349	0.354	0.354
Queue Storage	Ratio (RQ) (95 th percent	tile)		0.04			0.14	0.73	0.02	0.01	0.01	0.33	0.05	0.05
Control Delay (d),s/v	eh			18.3			19.3	18.9	2.6	1.5	1.7	6.0	4.3	4.6
Level of Service	(LOS)				В			В	В	Α	Α	Α	Α	Α	Α
Approach Delay	, s/veh	/ LOS		18.3		В	19.1	i	В	1.6		Α	4.6		Α
Intersection Del	lay, s/ve	h / LOS				5.	0					A	4		
#2 University &	Camina	do Calud													
Signal Informa		de Salud				Ι	ГП	Г г	Т	т —					
Cycle, s	90.0	Reference Phase	2	1	2		21		=				1z		7
Offset, s	0	Reference Point	End		5	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		<u></u>				1	2	3	4
Uncoordinated	Yes	Simult. Gap E/W	On	Green		1.7	36.0	12.3	0.0	0.0					A
Force Mode	Fixed	Simult. Gap N/S	On	Yellow Red	0.5	3.0 0.5	4.0 1.0	3.5	0.0	0.0	_ \	l " _K t	6	7	
Force wode	rixeu	Silliuit. Gap 14/5	OII	Reu	0.5	0.5	1.0	2.0	0.0	0.0		5	0	1	0
Signal Phase S	Splits A	nd Results			EB			WB			NB			SB	
Approach Move	ment			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			43	40	116	45	1	15	161	538	58	41	1042	221
Phase Split, s					24.0			24.0		16.0	36.0		16.0	36.0	
Volume-to-Capa	acity Ra	tio (<i>X</i>)		0.144	0.614		0.262	0.063		0.804	0.233	0.056	0.794	0.712	0.337
Queue Storage	Ratio (RQ) (95 th percent	tile)	0.27	0.12		0.34	0.03		1.60	0.07	0.12	0.15	0.20	0.60
Control Delay (d) , s/v	eh		25.2	27.5		31.5	24.1		33.6	7.2	6.3	34.3	13.3	10.1
Level of Service				С	С		С	С		С	A	A	С	В	В
Approach Delay				27.0		С	29.5	5	С	12.7	<u></u>	В	13.4	1	В
Intersection Del	lay, s/ve	h / LOS				14	.8					E	3		
#3 University &	Indian S	School													
Signal Informa		JOHOOI					215		1 8						
Cycle, s	137.5	Reference Phase	2	1	7			12 c	1 8			,	D		A
Offset, s	0	Reference Point	End	<u> </u>		517	<u>"17</u>					1	2	3	4
Uncoordinated	Yes	Simult. Gap E/W	On	Green		1.8	32.0	7.8	1.6	22.5	- K	一人			→
Force Mode	Fixed	Simult. Gap N/S	On	Yellow Red	3.0	0.0	4.0	3.0 0.5	3.0	4.0 1.5		5	6	7	8
Signal Phase S		nd Results			EB		-	WB			NB			SB	
Approach Move				L	T	R	L	T	R	L 404	T	R	L	T	R
Demand (v), v Phase Split, s	en/n			130 22.0	200 42.0	235	242	278 42.0	82	104 16.0	476 32.0	76	43 16.0	1035 32.0	89
Volume-to-Capa	acitv Ra	tio (X)		0.349	0.551	0.764	0.708	0.369	0.380	0.548	0.365	0.370	0.153	1.130	1.136
		RQ) (95 th percent	tile)	1.00	0.20	0.24	1.41	0.16	0.16	0.72	0.19	0.19	0.50	0.94	0.93
Control Delay (-,	27.3	35.3	38.0	26.4	28.2	28.3	26.3	25.5	25.6	21.3	107.4	109.9
Level of Service				C	D	D	C	C	C	C	C	C	C	F	F
Approach Delay		/LOS		34.6		C	27.5		С	25.7		С	105.		F
Intersection Del						63									

Build - AN	1			HCS7	Inters	sectio	n Sur	nmar	y						
#4 University &	140 EB I	Ramp													
Signal Informa	ition								T	T					
Cycle, s	91.0	Reference Phase	2			12	Ħ.				7			_	↔ .
Offset, s	0	Reference Point	End	Green	5.6	32.0	16.0	0.0	0.0	0.0		1	2	3	Y 4
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		4.0	4.0	0.0	0.0	0.0		1	L		
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.5	1.5	1.5	0.0	0.0	0.0		5	6	7	8
								=							
Signal Phase S	•	nd Results			EB	г _		WB			NB			SB	Γ
Approach Move				L	Т	R	<u> </u>	Т	R	<u> </u>	T	R	L	Т	R
Demand (v), v	eh/h			57	291	258					507	162	181	1119	
Phase Split, s					24.0						32.0		20.0	32.0	
Volume-to-Capa				0.127	0.390	0.764					0.281	0.202	0.317	0.523	
		RQ) (95 th percent	tile)	0.12	0.10	0.78					0.09	0.18	0.16	0.36	
Control Delay (<u>eh</u>		20.9	22.3	26.0					11.6	11.4	7.5	8.3	
Level of Service				С	С	С		\Box			В	В	Α	A	
Approach Delay				23.8	B	С	0.0			11.6	6	В	8.2		A
Intersection De	lay, s/ve	h / LOS				13	.0						3		
#5 University &	140 WB	Ramp													
Signal Informa	ition					[2]	<u></u>								,
Cycle, s	91.0	Reference Phase	2	1	50	54	\{ \(\)	1				_	1		V
Offset, s	0	Reference Point	End	Green		32.0	22.1	0.0	0.0	0.0		1	2	3	4
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		4.0	4.0	0.0	0.0	0.0	_ <			[
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.5	1.5	1.5	0.0	0.0	0.0		5	6	7	8
							u-			u			<u></u>		
Signal Phase S		nd Results			EB	-		WB			NB			SB	
Approach Move	ement			L	T	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h						564	408	310	70	506			704	43
Phase Split, s								24.0		20.0	32.0			32.0	
Volume-to-Capa	acity Ra	tio (X)					0.888	0.565	0.561	0.177	0.247			0.490	0.078
Queue Storage	Ratio (RQ) (95 th percent	tile)				0.78	0.19	0.36	0.07	0.18			0.27	0.05
Control Delay (eh					36.9	20.9	21.2	10.3	9.1			15.1	11.6
Level of Service							D	С	С	В	A			В	В
Approach Delay	y, s/veh	/LOS		0.0			26.6	5	С	9.3		Α	14.9)	В

Copyright @ 2020 University of Florida, All Rights Reserved.

Intersection Delay, s/veh / LOS

HCS™ Streets Version 7.8.5

В

Generated: 4/21/2020 2:53:23 PM

19.8

Intersection						
Int Delay, s/veh	0					
		MDD	NET	NDD	051	057
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	↑ ↑	115	-	
Traffic Vol, veh/h	0	3	590	443	0	0
Future Vol, veh/h	0	3	590	443	0	0
Conflicting Peds, #/hr	0	0	_ 0	_ 0	0	0
Sign Control	Stop	Stop	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage		-	0	-	-	16979
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	3	656	492	0	0
Major/Minor N	Minor1	N	Major1			
Conflicting Flow All	-	574	0	0		
Stage 1	-	5/4				
	=		-	-		
Stage 2	-	6.94	-	-		
Critical Hdwy	-		-	-		
Critical Hdwy Stg 1	-	-	-	-		
Critical Hdwy Stg 2	-	-	-	-		
Follow-up Hdwy	-	3.32	-	-		
Pot Cap-1 Maneuver	0	462	-	-		
Stage 1	0	-	-	-		
Stage 2	0	-	-	-		
Platoon blocked, %			-	-		
Mov Cap-1 Maneuver	-	462	-	-		
Mov Cap-2 Maneuver	-	-	-	-		
Stage 1	-	-	-	-		
Stage 2	-	-	-	-		
Approach	WB		NB			
HCM Control Delay, s	12.8		0			
HCM LOS	12.0 B		U			
I IOIVI LUO	D					
Minor Lane/Major Mvm	t	NBT	NBRV	VBLn1		
Capacity (veh/h)			-	462		
HCM Lane V/C Ratio		_	_	0.007		
HCM Control Delay (s)		-	_			
HCM Lane LOS		_	-	В		

Intersection						
Int Delay, s/veh	7.6					
		MDD	NET	NDD	051	ODT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		ħβ			^
Traffic Vol, veh/h	9	166	797	236	309	794
Future Vol, veh/h	9	166	797	236	309	794
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	150	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	8	8	2	2	3	3
Mvmt Flow	10	177	848	251	329	845
Majar/Minar	Min1		1-1-1		Anis TO	
	Minor1		Major1		Major2	
Conflicting Flow All	2055	550	0	0	1099	0
Stage 1	974	-	-	-	-	-
Stage 2	1081	-	-	-	-	-
Critical Hdwy	6.96	7.06	-	-	4.16	-
Critical Hdwy Stg 1	5.96	-	-	-	-	-
Critical Hdwy Stg 2	5.96	-	-	-	-	-
Follow-up Hdwy	3.58	3.38	-	-	2.23	-
Pot Cap-1 Maneuver	44	464	-	-	625	-
Stage 1	313	-	-	-	-	-
Stage 2	274	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	21	464	-	-	625	-
Mov Cap-2 Maneuver	21	-	-	-	-	_
Stage 1	148	-	-	-	-	-
Stage 2	274	_	_	_	_	_
- 13.50						
Approach	WB		NB		SB	
HCM Control Delay, s	70.3		0		4.8	
HCM LOS	F					
Minor Lane/Major Mvm	ot	NBT	NIPDV	VBLn1	SBL	SBT
	IL	INDI				SDI
Capacity (veh/h)		-	-		625	-
HCM Lane V/C Ratio		-		0.835		-
		_	-	70.3	17	-
HCM Control Delay (s))					
HCM Lane LOS HCM 95th %tile Q(veh		-	-	F 6.4	C 3.1	-

Intersection					
Intersection Delay, s/ve	eh 7.9				
Intersection LOS	Α				

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4			4			4		
Traffic Vol, veh/h	103	31	12	0	2	0	4	2	0	1	2	55	
Future Vol, veh/h	103	31	12	0	2	0	4	2	0	1	2	55	
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	123	37	14	0	2	0	5	2	0	1	2	65	
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0	
Approach	EB				WB		NB			SB			
Opposing Approach	WB				EB		SB			NB			
Opposing Lanes	1				1		1			1			
Conflicting Approach Le	eft SB				NB		EB			WB			
Conflicting Lanes Left	1				1		1			1			
Conflicting Approach Ri	gh N B				SB		WB			EB			
Conflicting Lanes Right	1				1		1			1			
HCM Control Delay	8.2				7.3		7.6			7.1			
HCM LOS	Α				Α		Α			Α			

Lane	NBLn1	EBLn1\	VBLn1	SBLn1
Vol Left, %	67%	71%	0%	2%
Vol Thru, %	33%	21%	100%	3%
Vol Right, %	0%	8%	0%	95%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	6	146	2	58
LT Vol	4	103	0	1
Through Vol	2	31	2	2
RT Vol	0	12	0	55
Lane Flow Rate	7	174	2	69
Geometry Grp	1	1	1	1
Degree of Util (X)	0.009	0.201	0.003	0.071
Departure Headway (Hd)	4.533	4.159	4.198	3.678
Convergence, Y/N	Yes	Yes	Yes	Yes
Сар	794	862	844	955
Service Time	2.533	2.185	2.265	1.774
HCM Lane V/C Ratio	0.009	0.202	0.002	0.072
HCM Control Delay	7.6	8.2	7.3	7.1
HCM Lane LOS	Α	Α	Α	Α
HCM 95th-tile Q	0	0.7	0	0.2

Intersection												
Int Delay, s/veh	3.1											
•				14/51	MOT	14/55	NE	NET	NDD	0.01	007	000
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	_	4			4			4			4	_
Traffic Vol, veh/h	0	327	140	1	138	0	115	1	2	0	0	2
Future Vol, veh/h	0	327	140	1	138	0	115	1	2	0	0	2
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	_	-	0	-
Peak Hour Factor	86	86	86	86	86	86	86	86	86	86	86	86
Heavy Vehicles, %	6	6	6	10	10	10	3	3	3	17	17	17
Mvmt Flow	0	380	163	1	160	0	134	1	2	0	0	2
Major/Minor I	Major1		N	Major2		- 1	Minor1			Minor2		
Conflicting Flow All	160	0	0	543	0	0	625	624	462	625	705	160
Stage 1	-	_	_	-	_	_	462	462	-	162	162	-
Stage 2	_	<u>-</u>	_	_	_	_	163	162	_	463	543	_
Critical Hdwy	4.16	_	_	4.2	_	_	7.13	6.53	6.23	7.27	6.67	6.37
Critical Hdwy Stg 1	-	_	_		_	_	6.13	5.53	-	6.27	5.67	-
Critical Hdwy Stg 2	_	_	_	_	_	_	6.13	5.53	_	6.27	5.67	_
Follow-up Hdwy	2.254	_	_	2.29	_	_	3.527	4.027	3.327	3.653	4.153	3.453
Pot Cap-1 Maneuver	1395	_	_	987	_	_	396	400	598	377	343	847
Stage 1	-	_	_	-	_	_	578	563	-	806	736	-
Stage 2	_	_	_	_	_	_	837	762	_	551	496	_
Platoon blocked, %		<u>-</u>	_		<u>-</u>	_	001	102		001	100	
Mov Cap-1 Maneuver	1395	_	_	987	_	_	394	400	598	374	343	847
Mov Cap-2 Maneuver	-	_	_	-	_	_	394	400	-	374	343	-
Stage 1	-	_	_	_	_	_	578	563	-	806	735	-
Stage 2	_	_	_	_	_	_	834	761	_	548	496	_
J. 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2							30 1				100	
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0.1			18.8			9.3		
HCM LOS	U			0.1			C			A		
TIOM EGG							J			А		
Minor Lane/Major Mvm	nt N	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)		396	1395			987			847			
HCM Lane V/C Ratio		0.346	-	_		0.001	_		0.003			
HCM Control Delay (s)		18.8	0	_		8.7	0	_	9.3			
HCM Lane LOS		C	A	_	_	Α	A	_	3.5 A			
HCM 95th %tile Q(veh)	1.5	0	_	_	0	-	_	0			
HOW JOHN Johne Q(Ven	1	1.0	U		_	U			U			

Intersection												
Int Delay, s/veh	10.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ĵ.		ሻ	f)		ሻ	ħβ		*	ħβ	
Traffic Vol, veh/h	15	59	48	188	75	38	48	133	321	31	92	33
Future Vol, veh/h	15	59	48	188	75	38	48	133	321	31	92	33
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	100	-	-	100	-	-	100	-	-	100	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	92	94	92	92	92	94	94	92	92	94	94
Heavy Vehicles, %	4	2	4	2	2	2	3	3	2	2	7	7
Mvmt Flow	16	64	51	204	82	41	51	141	349	34	98	35
Major/Minor N	1inor2		ľ	Minor1		ľ	Major1		ľ	Major2		
Conflicting Flow All	398	776	67	567	619	245	133	0	0	490	0	0
Stage 1	184	184	-	418	418	-	-	-	-	-	-	-
Stage 2	214	592	-	149	201	-	-	-	-	-	-	-
Critical Hdwy	7.58	6.54	6.98	7.54	6.54	6.94	4.16	-	-	4.14	-	-
Critical Hdwy Stg 1	6.58	5.54	-	6.54	5.54	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.58	5.54	-	6.54	5.54	-	-	-	-	-	-	-
Follow-up Hdwy	3.54	4.02	3.34	3.52	4.02	3.32	2.23	-	-	2.22	-	-
Pot Cap-1 Maneuver	532	327	976	406	403	755	1442	-	-	1070	-	-
Stage 1	794	746	-	583	589	-	-	-	-	-	-	-
Stage 2	763	492	-	838	734	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	398	305	976	307	376	755	1442	-	-	1070	-	-
Mov Cap-2 Maneuver	398	305	-	307	376	-	-	-	-	-	-	-
Stage 1	766	722	-	563	568	-	-	-	-	-	-	-
Stage 2	596	475	-	701	711	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	15.9			29.3			0.7			1.7		
HCM LOS	С			D								
Minor Lane/Major Mvmt	1	NBL	NBT	NBR E	EBLn1	EBLn2V	VBLn1\	VBLn2	SBL	SBT	SBR	
Capacity (veh/h)		1442		_	398	439	307	452	1070			
HCM Lane V/C Ratio		0.035	_	_		0.262				_	_	
HCM Control Delay (s)		7.6	_	-	14.4	16.1	37.3	15.9	8.5	_	_	
HCM Lane LOS		Α.	_	_	В	C	57.5	C	Α	_	-	
HCM 95th %tile Q(veh)		0.1	_	_	0.1	1	4.4	1.1	0.1	_	_	
TOW JOHN JUNE Q(VOII)		J. 1			J. 1		7.7	1.1	J. 1			

Intersection							
Int Delay, s/veh	0.2						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	T T	↑		WOIX	SBL N	JDK *	
Traffic Vol, veh/h	17	1148	1497	5		4	
Future Vol, veh/h	17	1148	1497	5	1	4	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-		-		- -	None	
Storage Length	100	-	_	-	0	0	
Veh in Median Storage		0	0	-	0	-	
Grade, %	-	0	0	_	0	_	
Peak Hour Factor	94	94	94	94	94	94	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	18	1221	1593	5	1	4	
	,						
N.A. ' (N.A'							
	Major1		Major2		Minor2		
Conflicting Flow All	1598	0	-	0	2120	799	
Stage 1	-	-	-	-	1596	-	
Stage 2	-	-	-	-	524	-	
Critical Hdwy	5.34	-	-	-	5.74	7.14	
Critical Hdwy Stg 1	-	-	-	-	6.64	-	
Critical Hdwy Stg 2	- 0.40	-	-	-	6.04	-	
Follow-up Hdwy	3.12	-	-	-	3.82	3.92	
Pot Cap-1 Maneuver	199	-	-	-	81	282	
Stage 1	-	-	-	-	103	-	
Stage 2	-	-	-	-	510	-	
Platoon blocked, %	400	-	-	-	71	000	
Mov Cap-1 Maneuver		-	-	-	74	282	
Mov Cap-2 Maneuver	-	-	-	-	74	-	
Stage 1	-	-	-	-	94	-	
Stage 2	-	-	-	-	510	-	
Approach	EB		WB		SB		
HCM Control Delay, s	0.4		0		25.3		
HCM LOS					D		
Minor Long/Major Maria	~ 4	EDI	EDT	WDT	WDD	CDI ~4.0	DI 50
Minor Lane/Major Mvn	IIL	EBL	EBT	WBT		SBLn1 S	
Capacity (veh/h)		199	-	-	-	74	282
HCM Cantral Dalay (a)	\	0.091	-	-		0.014	
HCM Control Delay (s)	24.9	-	-	-	54.4	18
HCM Lane LOS	.\	C	-	-	-	F	С
HCM 95th %tile Q(veh	1)	0.3	-	-	-	0	0

Intersection						
Int Delay, s/veh	0.1					
		FDT	\A/DT	WED	00:	000
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	7		^		_	7
Traffic Vol, veh/h	9	1036	1496	4	0	5
Future Vol, veh/h	9	1036	1496	4	0	5
Conflicting Peds, #/hr	_ 0	_ 0	_ 0	_ 0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	50	-	-	-	-	0
Veh in Median Storage,		0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	4	4	2	2	2	2
Mvmt Flow	10	1151	1662	4	0	6
Major/Minor N	lajor1		Major2	٨	/linor2	
						022
Conflicting Flow All	1666	0	-	0	-	833
Stage 1	-	-	-	-	-	-
Stage 2	- -	-	-	-	-	7 4 4
Critical Hdwy	5.38	-	-	-	-	7.14
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	3.14	-	-	-	-	3.92
Pot Cap-1 Maneuver	180	-	-	-	0	268
Stage 1	-	-	-	-	0	-
Stage 2	-	-	-	-	0	-
Platoon blocked, %		-	-	-		_
Mov Cap-1 Maneuver	180	-	-	-	-	268
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Annroach	EB		WB		SB	
Approach						
HCM Control Delay, s	0.2		0		18.7	
HCM LOS					С	
Minor Lane/Major Mvmt		EBL	EBT	WBT	WBR	SBL _{n1}
Capacity (veh/h)		180	-	-	_	268
HCM Lane V/C Ratio		0.056	_	_	_	0.021
HCM Control Delay (s)		26.2	-	-	-	18.7
HCM Lane LOS		D	-	-	-	С
HCM 95th %tile Q(veh)		0.2	-	-	-	0.1

Intersection						
Int Delay, s/veh	1.4					
						0
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		^	ተተተ			- 7
Traffic Vol, veh/h	0	4	1430	0	0	83
Future Vol, veh/h	0	4	1430	0	0	83
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	2	2	25	25
Mvmt Flow	0	4	1538	0	0	89
		•				
	1ajor1	I	Major2		/linor2	
Conflicting Flow All	-	0	-	0	-	769
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	7.6
Critical Hdwy Stg 1	-	_	-	-	-	_
Critical Hdwy Stg 2	_	_	_	-	_	-
Follow-up Hdwy	_	_	_	_	_	4.15
Pot Cap-1 Maneuver	0	_	_	0	0	258
Stage 1	0	_	_	0	0	200
Stage 2	0		-	0	0	_
Platoon blocked, %	U	-	-	U	U	•
		-	-			050
Mov Cap-1 Maneuver	-	-	-	-	-	258
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
	0		0		26.2	
HCM LOS	U		U			
HCM LOS					D	
Minor Lane/Major Mvmt		EBT	WBT	SBLn1		
Capacity (veh/h)		_	_			
HCM Lane V/C Ratio		_		0.346		
HCM Control Delay (s)		_				
HCM Lane LOS		_	-	_		
HCM 95th %tile Q(veh)		-	-	1.5		

Intersection						
Int Delay, s/veh	0.8					
		EDT	WDT	WDD	CDI	CDD
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	<u> </u>	^	1117	00		7
Traffic Vol, veh/h	57	711	1430	32	0	0
Future Vol, veh/h	57	711	1430	32	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	150	-	-	-	-	0
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	5	5	25	25	2	2
Mvmt Flow	61	765	1538	34	0	0
Major/Minor	Major1		Majora	N	lines?	
	Major1		Major2		Minor2	700
Conflicting Flow All	1572	0	-	0	-	786
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	<u>-</u>
Critical Hdwy	5.4	-	-	-	-	7.14
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	3.15	-	-	-	-	3.92
Pot Cap-1 Maneuver	199	-	-	-	0	288
Stage 1	-	-	-	-	0	-
Stage 2	-	-	-	-	0	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	199	-	-	-	-	288
Mov Cap-2 Maneuver	-	_	_	_	_	_
Stage 1	_	_	-	-	-	-
Stage 2	_	_	_	_	_	_
Olago Z						
Approach	EB		WB		SB	
HCM Control Delay, s	2.3		0		0	
HCM LOS					Α	
Minar Lana/Maiar My	-4	EDI	EDT	WDT	WDD	CDL1
Minor Lane/Major Mvn	ι	EBL	EBT	WBT	WBR :	ODLIII
Capacity (veh/h)		199	-	-	-	-
HCM Lane V/C Ratio		0.308	-	-	-	-
HCM Control Delay (s)		30.9	-	-	-	0
HCM Lane LOS		D	-	-	-	Α
HCM 95th %tile Q(veh		1.2	-	-	-	-

Build - PN	1			HCS7	Inters	sectio	n Sur	nmar	y						
#1 Locust & Mo	untain														
Signal Informa	tion							Γ		T					
Cycle, s	72.5	Reference Phase	2		54	k F						_ ['	1	-	\rightarrow
Offset, s	0	Reference Point	End	Green		8.3	6.6	0.0	0.0	0.0		1	2	3	4
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow	-	3.5	3.5	0.0	0.0	0.0		□	L	ĺ	→
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.0	2.0	2.0	0.0	0.0	0.0		5	6	7	8
Signal Phase S	•	nd Results			EB	г _		WB			NB	Γ_		SB	
Approach Move				L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), v	eh/h				216	71	0	83		0	0		31	652	146
Phase Split, s	5				24.0	0.700	0.000	24.0			36.0		0.400	36.0	0.477
Volume-to-Capa		· · · ·	\		0.700	0.728	0.000	0.513			0.000		0.162	0.169	0.177
		RQ) (95 th percent	ile)		0.24	0.23	0.00	0.34			0.00		0.05	0.05	0.05
Control Delay (eh			30.5	31.0	0.0	30.5					9.0	9.0	9.1
Level of Service		// 00			С	С	00.5	С					A	A	A
Approach Delay				30.8		C	30.5	<u> </u>	С	0.0			9.0		Α
Intersection De	ay, s/ve	n / LOS				19	.1					l	3		
#2 I25 SB Front	age & S	I40 Frontage													
Signal Informa		<u> </u>			I.				T	Т					
Cycle, s	58.0	Reference Phase	2			\vdash						1	Y		→ [
Offset, s	0	Reference Point	End		120	R						1	2	3	4
Uncoordinated	Yes	Simult. Gap E/W	On	Green Yellow		11.9 4.0	0.0	0.0	0.0	0.0	-		-		ŀ
	Force Mode Fixed Simult. Gap N/S On				1.0	1.0	0.0	0.0	0.0	0.0	\dashv	5	Y 6	7	8
	Orce Wode Trixed Simult. Gap 14/5 Orr						0.0	0.0	10.0	10.0			•		
Signal Phase S	Splits A	nd Results			EB			WB			NB			SB	
Approach Move	ment			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h				348	107				0	0		69	300	
Phase Split, s					24.0						24.0			24.0	
Volume-to-Capa	acity Ra	tio (<i>X</i>)			0.303	0.206					0.000		0.095	0.274	
Queue Storage	Ratio (RQ) (95 th percent	ile)		0.03	0.05					0.00		0.02	0.04	
Control Delay (d),s/v	eh			8.0	7.8							7.4	7.9	
Level of Service	e (LOS)				Α	Α							Α	Α	
Approach Delay	,, s/veh	/LOS		8.0		Α	0.0			0.0			7.8		Α
Intersection De	lay, s/ve	h / LOS				7.	9					/	4		
#0.105.0D E	O N	1140 5													
#3 I25 SB Front Signal Informa		1140 Frontage								_					
Cycle, s	58.0	Reference Phase	2		⊱	1									
Offset, s	0	Reference Point	End									1	2	3	4
Uncoordinated	Yes	Simult. Gap E/W	On	Green		0.0	0.0	0.0	0.0	0.0					+
Force Mode	Fixed	Simult. Gap E/W	On	Yellow Red	1.0	0.0	0.0	0.0	0.0	0.0		2	6	7	8
. Oldo Midde	i ixeu	Simula Cap 14/0	J11	INGU	1.0	0.0	0.0	0.0	0.0	0.0				-	
Signal Phase S	Splits A	nd Results			EB			WB			NB			SB	
Approach Move	Approach Movement				Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v					67	590						324	128		
Phase Split, s								24.0						24.0	
Volume-to-Capacity Ratio (X)							0.117	0.503						0.282	0.249
Queue Storage Ratio (RQ) (95 th percentile)							0.01	0.05						0.03	0.07
Control Delay (d) , s/veh							7.5	8.8						7.9	7.9
Level of Service (LOS)							Α	Α						Α	Α
	Approach Delay, s/veh / LOS			0.0			8.6		Α	0.0			7.9		Α
Intersection De	tersection Delay, s/veh / LOS					8.	3					/	4		

Build - PN	1			HCS7	Inters	sectio	n Sur	nmar	y						
#4 0	4														
#1 Lomas & Loc					ī	г	ГШ	Т	Т	Т					
Signal Informa		Deference Disease		-	⊱	. 	ᄴ					_			人
Cycle, s	120.0	Reference Phase	2	ł	"	₹*						1	→ 2	3	4
Offset, s	64	Reference Point	End	Green		76.6	19.8	0.0	0.0	0.0					į.
Uncoordinated	No	Simult. Gap E/W	On	Yellow	-	4.0	4.0	0.0	0.0	0.0			7		
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	2.0	0.0	0.0	0.0		5	6	7	8
Signal Phase S	Splits A	nd Results			EB			WB			NB			SB	
Approach Move	•			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v					1169	249	236	1209					232	303	252
Phase Split, s					49.2		30.0	79.2						40.8	
Volume-to-Cap	acity Ra	tio (X)			0.446	0.446	0.821	0.341					0.688	0.719	0.833
	•	RQ) (95 th percent	tile)		0.25	0.25	0.56	0.21					0.25	0.26	1.07
Control Delay (4.8	5.6	22.8	3.5					48.3	48.1	51.2
Level of Service					A	A	С	Α					D	D	D
Approach Delay		/LOS		5.1		Α	6.7		Α	0.0			48.9		D
Intersection De						15							3		
	J, -, -														
#2 Lomas & Oa	k														
Signal Informa	ition					_ 5_									
Cycle, s	120.0	Reference Phase	2		⊨	⊭ \$``							→ .		Y
Offset, s	49	Reference Point	End	Green	10.2	79.7	15.1	0.0	0.0	0.0		1	Z	3	4
Uncoordinated	No	Simult. Gap E/W	On	Yellow		4.0	4.0	0.0	0.0	0.0		• ◀			
Force Mode	Force Mode Fixed Simult. Gap N/S On			Red	1.0	1.0	1.0	0.0	0.0	0.0		5	6	7	8
													_		
Signal Phase S	_	nd Results			EB	_		WB	1		NB	_		SB	_
Approach Move	ment			L	T	R	L	Т	R	L	T	R	L	Т	R
Demand (v), v	eh/h			359	1136			1319	449	127	139	154			
Phase Split, s				31.2	73.2			42.0			46.8				
Volume-to-Capa	acity Ra	tio (X)		0.842	0.285			0.411	0.450	0.484	0.389	0.825			
Queue Storage	Ratio (RQ) (95 th percent	tile)	0.39	0.29			0.15	0.45	0.46	0.12	0.32			
Control Delay (d),s/v	eh		12.2	4.6			6.8	2.1	49.4	48.4	54.4			
Level of Service	e (LOS)			В	Α			Α	A	D	D	D			
Approach Delay	y, s/veh	/ LOS		6.4		Α	5.6		Α	50.8	3	D	0.0		
Intersection De	lay, s/ve	h / LOS				11	.3						3		
#0.1 0.11s															
#3 Lomas & Uni					1	Б.	_	т т	1 1111	1 11:					
Cycle, s	120.0	Reference Phase	2	ł	L7 _			2					A		KŤ2
Offset, s	120.0	Reference Point	End	ł	2	2	₹ *	5			7	口一	2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Green		3.4	39.2	13.5	0.3	36.3			<u> </u>		\mathbf{L}
Force Mode	Fixed	Simult. Gap E/W	On	Yellow		0.0	4.5	3.0	0.0	4.5				\ '	(TA
Force Mode	rixeu	Simult. Gap 14/5	Oll	Red	0.5	0.0	1.0	0.5	0.0	1.0		5	6	1	8
Signal Phase \$	Signal Phase Splits And Results				EB			WB			NB			SB	
Approach Movement				L	Т	R	L	Т	R	L	Т	R	L	T	R
Demand (v), veh/h				159	1057	160	240	1225	177	219	604	307	231	609	322
Phase Split, s				24.0	43.2		16.8	36.0		20.4	42.0		18.0	39.6	
Volume-to-Capacity Ratio (<i>X</i>)				0.704	0.695	0.696	0.809	0.754	0.754	0.896	0.604	0.512	0.676	0.935	0.935
Queue Storage Ratio (RQ) (95 th percentile)				0.96	0.36	0.34	1.90	1.32	1.39	2.68	0.65	0.57	1.40	1.74	1.59
Control Delay (d) , s/veh				31.2	32.0	33.6	37.2	38.5	47.1	53.2	36.3	26.8	29.6	62.2	64.2
Level of Service	Level of Service (LOS)			С	С	С	D	D	D	D	D	С	С	Е	Е
Approach Delay, s/veh / LOS			32.3		С	40.7		D	37.0		D	56.5	5	E	
Intersection De	tersection Delay, s/veh / LOS					41	.3					[)		
	rsection Delay, s/ven / LOS														

Build - PN	1			HCS7	Inters	sectio	n Sur	nmar	у						
#4 Lomas & Yal	_														
Signal Informa				I		г	_	Т	ТШ	ГП					
		Deference Dhace	2	1	ے جــا	ج ا	la 🕃	2		궫			_	< L	1 ∤
Cycle, s Offset, s	120.0 50	Reference Phase Reference Point	2			R	F3 *	15		1 1	7	1	2	3	4
Uncoordinated	No	Simult. Gap E/W	End On	Green		1.2	50.1	9.2	1.7	28.6					
Force Mode	Fixed	Simult. Gap E/W	On	Yellow		3.0	4.0	3.0 0.5	3.0	3.5	/			7	
Force Mode	rixeu	Simuit. Gap N/S	On	Red	0.5	0.5	1.5	0.5	0.5	2.0		5	6	7	8
Signal Phase S	Splits A	nd Results			EB			WB			NB			SB	
Approach Move	ment			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			172	1249	107	62	1038	69	104	37	71	175	62	396
Phase Split, s				21.6	44.4		21.6	44.4		18.0	36.0		18.0	36.0	
Volume-to-Capa	acity Ra	tio (<i>X</i>)		0.566	0.558	0.559	0.281	0.507	0.508	0.812	0.117	0.201	0.878	0.140	0.947
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.30	0.41	0.36	0.23	0.35	0.34	1.41	0.15	3.33	3.01	0.37	6.23
Control Delay (d),s/v	eh		18.9	16.5	15.3	20.0	28.7	29.5	60.3	35.8	36.6	81.8	32.2	69.0
Level of Service	(LOS)			В	В	В	В	С	С	E	D	D	F	С	E
Approach Delay	, s/veh	/LOS		16.5		В	28.5	5	С	48.1		D	69.0)	E
Intersection De	lay, s/ve	h / LOS				32	.0	,				(2		
WE 1 0 01															
#5 Lomas & Sta					1	Г -	_	т т :	Т	_					
Signal Informa		Deference Dhase	_	-	L7 _		. p 🕃	2 3					,		K Z
Cycle, s	120.0	Reference Phase	2	-	L E	E	 	1 5 2	7			1	2	3	4
Offset, s	30	Reference Point	End	Green		1.5	86.5	17.2	0.0	0.0					1
Uncoordinated				Yellow Red	-	0.0	4.0	3.5	0.0	0.0	/				
Force Mode	Force Mode Fixed Simult. Gap N/S On				0.5	0.0	1.0	2.0	0.0	0.0		5	6	7	8
Signal Phase S	Splits A	nd Results			EB			WB			NB			SB	
Approach Move				L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v				10	1365	129	44	999	15	207		87	6		14
Phase Split, s				18.0	66.0		18.0	66.0			36.0			36.0	
Volume-to-Capa	acity Ra	tio (X)		0.024	0.391	0.391	0.173	0.264	0.264	0.706		0.411	0.020		0.066
		RQ) (95 th percent	ile)	0.02	0.38	0.39	0.05	0.07	0.07	3.88		1.66	0.25		0.59
Control Delay (•			4.6	15.1	16.6	6.9	3.3	3.4	51.4		47.3	44.2		44.5
Level of Service				Α	В	В	Α	Α	Α	D		D	D		D
Approach Delay		/LOS		15.5		В	3.5		Α	50.2		D	44.4		D
Intersection De						14	.9					F	В		
#6 Lomas & Gira					u .										
Signal Informa		Γ=			a _	a	π ₹	7					_	K .	$oldsymbol{\downarrow}$
Cycle, s	120.0	Reference Phase	2			R	 	5			7		2	3	4
Offset, s	110	Reference Point	End	Green		3.2	54.2	7.4	0.4	32.4					
Uncoordinated	No	Simult. Gap E/W	On	Yellow		0.0	4.0	3.0	0.0	3.5	/	' '			V
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.5	0.0	1.0	0.5	0.0	2.0		5	6	7	8
Signal Phase S	Signal Phase Splits And Results				EB			WB			NB			SB	
Approach Movement				L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), veh/h				169	1105	142	80	711	77	105	304	121	112	289	96
Phase Split, s				18.0	52.0		18.0	52.0		18.0	32.0		18.0	32.0	
Volume-to-Capacity Ratio (X)				0.415	0.490	0.490	0.307	0.340	0.343	0.547	0.946		0.624	0.842	
Queue Storage Ratio (RQ) (95 th percentile)				1.16	0.21	0.21	0.57	0.17	0.17	1.09	0.68		1.16	0.48	
Control Delay (d) , s/veh				16.0	13.4	14.5	17.0	15.4	16.1	33.1	69.3		33.9	52.4	
Level of Service (LOS)				В	В	В	В	В	В	С	Е		С	D	
Approach Delay, s/veh / LOS				14.0		В	15.8	3	В	62.2	2	E	48.2	2	D
Intersection De	tersection Delay, s/veh / LOS					27	.5					(3		

Build - PN	Л			HCS7	Inter	sectio	n Sur	nmar	у						
#1 Oak & Moun	tain														
Signal Informa	ation						Γ	Τ	Т						
Cycle, s	75.0	Reference Phase	2		<u> 5</u> 4	⊨≆						,	1		4
Offset, s	0	Reference Point	End	Green	:	5.4	0.0	0.0	0.0	0.0		1	2	3	4
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		4.0	0.0	0.0	0.0	0.0			■		
Force Mode	Force Mode Fixed Simult. Gap N/S On					0.0	0.0	0.0	0.0	0.0		5	6	7	8
Signal Phase	Splits A	and Results			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			245	0					83	1018		0	0	
Phase Split, s					30.0						36.0			36.0	
Volume-to-Cap	acity Ra	atio (X)		0.429	0.000					0.078	0.590			0.000	
Queue Storage	Ratio (RQ) (95 th percent	tile)	0.13	0.00					0.01	0.07			0.00	
Control Delay (Control Delay (d) , s/veh				0.0					3.6	5.0				
Level of Service (LOS)				В						Α	Α				
Approach Delay	Approach Delay, s/veh / LOS			11.3	3	В	0.0			4.9		Α	0.0		
Intersection De	ntersection Delay, s/veh / LOS					6.	1			Ī	4		Ä		

Copyright © 2020 University of Florida, All Rights Reserved. HCS™ Streets Version 7.8.5

Generated: 4/21/2020 3:04:08 PM

Build - PN	1			HCS7	Inters	sectio	n Sur	nmar	у						
#1 University &	laslon	225													
Signal Informa		lias		1	ГП	Г	Γ	Γ	Т	_					
Cycle, s	66.0	Reference Phase	2			🤊 ⊱							KŤ2		7
Offset, s	00.0	Reference Point	End		**************************************	R						1	2	3	\
Uncoordinated	Yes	Simult. Gap E/W	On	Green		7.7	0.0	0.0	0.0	0.0		1			A
Force Mode		Simult. Gap E/W		Yellow	-	3.5	0.0	0.0	0.0	0.0	-	_ \ _	Y	_	Y
Force Mode	Fixed	Simuit. Gap N/S	On	Red	1.0	2.0	0.0	0.0	0.0	0.0		5	6	7	8
Signal Phase S	Splits A	nd Results			EB			WB			NB			SB	
Approach Move	ment			L	Т	R	L	Т	R	L	Т	R	L	T	R
Demand (v), v	eh/h			22	8	3	181	31	91	8	751	103	66	865	40
Phase Split, s					24.0			24.0			32.0			32.0	
Volume-to-Capa	acity Ra	tio (X)			0.067			0.429	0.283	0.021	0.355	0.358	0.160	0.374	0.375
Queue Storage	Ratio (RQ) (95 th percent	ile)		0.02			0.16	0.54	0.01	0.02	0.02	0.09	0.03	0.03
Control Delay (d),s/v	eh			10.2			12.1	10.9	5.0	3.8	3.9	7.1	5.7	5.8
Level of Service	e (LOS)				В			В	В	Α	Α	Α	Α	Α	Α
Approach Delay	y, s/veh	/LOS		10.2		В	11.7	7	В	3.8		Α	5.8		Α
Intersection De	lay, s/ve	h / LOS				5.	9						Ā		
				1-											
#2 University &		de Salud						_	_						
Signal Informa					6		21	₂ ⊱	-				4-		
Cycle, s	90.0	Reference Phase	2		5	512	12	R	1		_	1		3	←
Offset, s	0	Reference Point	End	Green	0.9	0.6	16.0	15.0	0.0	0.0			•		<u></u>
Uncoordinated					3.0	0.0	4.0	3.5	0.0	0.0	_ <	. 4			7
Force Mode Fixed Simult. Gap N/S On				Red	0.5	0.0	1.0	2.0	0.0	0.0		5	6	7	8
					ED			14/D			ND			0.0	
Signal Phase S	_	nd Results			EB			WB			NB			SB	
Approach Move				L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), v	en/h			270	9	285	76	3	82	62	1184	69	28	652	25
Phase Split, s				0.500	24.0		0.004	24.0		16.0	36.0	0.007	16.0	36.0	0.047
Volume-to-Capa		· ,		0.562	0.615		0.261	0.178		0.968	0.659	0.087	0.797	0.546	0.047
		RQ) (95 th percent	ile)	0.98	0.10		0.30	0.07		0.60	0.13	0.11	0.08	0.10	0.05
Control Delay (en		15.9	13.8		18.3	11.4		52.2	12.7	9.9	34.6	12.4	10.1
Level of Service		/		В	В	<u> </u>	В	В		D	В	_ A	C	В	В
Approach Delay				14.8		В	14.7		В	14.5)	В ,	13.2	<u> </u>	В
Intersection De	lay, s/ve	en / LOS	_		_	14	.2	_	_		_	ŀ	3	_	
#3 University &	Indian S	School													
Signal Informa					T.		215	Т	1 8						
Cycle, s	137.5	Reference Phase	2		E	E42		P &	1 8	7.2		, ,	V	<u>_</u> _	
Offset, s	0	Reference Point	End				517			3		1	2	3	4
Uncoordinated	Yes	Simult. Gap E/W	On	Green Yellow		0.8	32.0 4.0	7.6	0.0	22.5 4.0	- _~	一人		A	→
Force Mode	Fixed	Simult. Gap N/S	On	Red	3.0	0.0	4.0	0.5	0.0	1.5		5	6	7	8
										_					
_	Signal Phase Splits And Results				EB	R		WB T	П		NB T	П		SB	Б
Approach Movement Demand (v), veh/h				L	T		L 400		R	100	-	R	L 470	T	R
Phase Split, s		127 22.0	345 42.0	105	120 22.0	269 42.0	94	183 16.0	995 32.0	346	173 16.0	482 32.0	95		
-		0.411	0.637	0.650	0.449	0.463	0.478	0.398	0.900	0.901	0.690	0.459	0.463		
Volume-to-Capacity Ratio (<i>X</i>) Queue Storage Ratio (<i>RQ</i>) (95 th percentile)				0.411	0.037	0.650	0.449	0.463	0.476	1.11	0.50	0.901	1.56	0.459	0.463
Control Delay (d) , s/veh				26.8	35.0	35.2	27.4	31.7	31.9	19.3	44.9	46.2	24.0	26.5	26.7
Level of Service (LOS)				26.8 C	35.0 C	35.2 D	27.4 C	31.7 C	C 31.9	19.3 B	44.9 D	46.2 D	24.0 C	26.5 C	26.7 C
` ,				33.2		С	30.7		C	42.4		D D	26.0		C
	Approach Delay, s/veh / LOS					34			0	42.4			<u> 26.0</u>	,	
	ersection Delay, s/veh / LOS														

Build - PN	1			HCS7	Inters	sectio	n Sur	nmar	y						
#4 University &	140 EB I	Ramp													
Signal Informa	ition									T					
Cycle, s	91.0	Reference Phase	2			12	Ħ.				7			_	↔ .
Offset, s	0	Reference Point	End	Green	6.6	32.0	16.0	0.0	0.0	0.0		1	1 2	3	Y 4
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		4.0	4.0	0.0	0.0	0.0		4	¥ │		
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.5	1.5	1.5	0.0	0.0	0.0		5	6	7	8
								11.75							
Signal Phase S	•	nd Results			EB			WB	Γ		NB	Γ		SB	
Approach Move				L	Т	R	<u> </u>	Т	R	<u> </u>	Т	R	L	Т	R
Demand (v), v	eh/h			132	368	163					1314	323	213	541	
Phase Split, s					24.0						32.0		20.0	32.0	
Volume-to-Capa				0.292	0.498	0.479					0.503	0.278	0.494	0.261	
		RQ) (95 th percent	tile)	0.29	0.13	0.45					0.16	0.25	0.21	0.17	
Control Delay (reh		22.3	23.5	23.5					13.8	12.1	9.2	6.5	
Level of Service				С	С	С					В	В	Α	Α	
Approach Delay				23.3	<u> </u>	С	0.0			13.4	-	В	7.3		Α
Intersection De	lay, s/ve	eh / LOS				14	.3					E	3		
#5 University &	140 WB	Ramp													
Signal Informa	ition					[2]	<u> </u>	T							<u></u>
Cycle, s	91.0	Reference Phase	2	1	50	54	\{ \(\)	1				_	1	ĺ	
Offset, s	0	Reference Point	End	Green		32.0	16.0	0.0	0.0	0.0		1	2	3	4
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		4.0	4.0	0.0	0.0	0.0	_ <				
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.5	1.5	1.5	0.0	0.0	0.0		5	6	7	8
				-											
Signal Phase S		nd Results			EB	1		WB			NB	1		SB	
Approach Move				L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), v	eh/h						176	191	188	327	1148			566	58
Phase Split, s								24.0		20.0	32.0			32.0	
Volume-to-Capa							0.369	0.338	0.439	0.393	0.348			0.374	0.086
		RQ) (95 th percent	tile)				0.19	0.08	0.21	0.19	0.24			0.18	0.06
Control Delay (reh					22.6	22.3	23.1	8.0	7.1			12.7	10.6
Level of Service							С	С	С	Α	Α			В	В
Approach Delay	, s/veh	/LOS		0.0			22.6	6	С	7.3		Α	12.5	5	В

Copyright © 2020 University of Florida, All Rights Reserved.

Intersection Delay, s/veh / LOS

HCS™ Streets Version 7.8.5

В

Generated: 4/21/2020 3:00:34 PM

12.9

Intersection						
Int Delay, s/veh	0.9					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
	VVDL			NDK	SDL	ODI
Lane Configurations	٥	7	↑	12	٥	٥
Traffic Vol, veh/h	0	69	1220	43	0	0
Future Vol, veh/h	0	69	1220	43	0	0
Conflicting Peds, #/hr	0	0	_ 0	_ 0	0	0
Sign Control	Stop	Stop	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage,		-	0	-		16979
Grade, %	0	-	0	-	-	0
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	78	1386	49	0	0
Majar/Minar N	1:1		10:001			
	/linor1		Major1			
Conflicting Flow All	-	718	0	0		
Stage 1	-	-	-	-		
Stage 2	-	-	-	-		
Critical Hdwy	-	6.94	-	-		
Critical Hdwy Stg 1	-	-	-	-		
Critical Hdwy Stg 2	-	-	-	-		
Follow-up Hdwy	-	3.32	-	-		
Pot Cap-1 Maneuver	0	371	-	-		
Stage 1	0	-	-	-		
Stage 2	0	-	-	-		
Platoon blocked, %			-	-		
Mov Cap-1 Maneuver	_	371	_	-		
Mov Cap-2 Maneuver	_	-	_	_		
Stage 1	_	_	_	_		
Stage 2	_	_	_	_		
Olugo Z						
Approach	WB		NB			
HCM Control Delay, s	17.3		0			
HCM LOS	С					
Maria de la compania de la compania de la compania de la compania de la compania de la compania de la compania		NDT	NDD	MDL . 4		
Minor Lane/Major Mvm	ι	NBT		VBLn1		
Capacity (veh/h)		-	-	* * * * * * * * * * * * * * * * * * * *		
HCM Lane V/C Ratio		-	-	0.211		
HCM Control Delay (s)		-	-			
HCM Lane LOS		-	-	С		
HCM 95th %tile Q(veh)		-	-	8.0		

Intersection						
Int Delay, s/veh	23.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥	TTDIX.	†	11511	ሻ	† †
Traffic Vol, veh/h	35	294	859	82	119	1150
Future Vol, veh/h	35	294	859	82	119	1150
Conflicting Peds, #/hr	0	0	0.09	0	0	0
Sign Control			Free	Free	Free	Free
	Stop	Stop				
RT Channelized	-	None	-	None	150	None
Storage Length	0	-	-	-	150	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	3	3	2	2	2	2
Mvmt Flow	37	309	904	86	125	1211
Major/Minor	Minor1		laior1		/aiar0	
	Minor1		//ajor1		Major2	
Conflicting Flow All	1803	495	0	0	990	0
Stage 1	947	-	-	-	-	-
Stage 2	856	-	-	-	-	-
Critical Hdwy	6.86	6.96	-	-	4.14	-
Critical Hdwy Stg 1	5.86	-	-	-	-	-
Critical Hdwy Stg 2	5.86	-	-	-	-	-
Follow-up Hdwy	3.53	3.33	-	-	2.22	-
Pot Cap-1 Maneuver	70	517	-	-	694	-
Stage 1	335	-	-	-	-	-
Stage 2	374	_	_	_	_	_
Platoon blocked, %	J, 1		_	_		_
Mov Cap-1 Maneuver	57	517	_	_	694	_
•			-	_		
Mov Cap-2 Maneuver	57	-	-	-	-	-
Stage 1	275	-	-	-	-	-
Stage 2	374	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s			0		1.1	
HCM LOS	F		- 0			
TIOWI LOO	'					
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	278	694	-
HCM Lane V/C Ratio		-	-	1.246	0.18	-
HCM Control Delay (s)		-		174.8	11.3	-
HCM Lane LOS		-	_	F	В	-
HCM 95th %tile Q(veh)	_	_		0.7	_
1.5W John John Gulle Glace	1			10.7	0.1	

Intersection		
Intersection Delay, s/veh	8	
Intersection LOS	A	

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4			4			4		
Traffic Vol, veh/h	82	22	2	0	23	1	28	2	0	0	2	109	
Future Vol, veh/h	82	22	2	0	23	1	28	2	0	0	2	109	
Peak Hour Factor	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	117	31	3	0	33	1	40	3	0	0	3	156	
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0	
Approach	EB				WB		NB				SB		
Opposing Approach	WB				EB		SB				NB		
Opposing Lanes	1				1		1				1		
Conflicting Approach Le	eft SB				NB		EB				WB		
Conflicting Lanes Left	1				1		1				1		
Conflicting Approach R	igh N B				SB		WB				EB		
Conflicting Lanes Right	1				1		1				1		
HCM Control Delay	8.6				7.7		8				7.6		
HCM LOS	Α				Α		Α				Α		

Lane	NBLn1	EBLn ₁ \	NBLn1	SBLn1
Vol Left, %	93%	77%	0%	0%
Vol Thru, %	7%	21%	96%	2%
Vol Right, %	0%	2%	4%	98%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	30	106	24	111
LT Vol	28	82	0	0
Through Vol	2	22	23	2
RT Vol	0	2	1	109
Lane Flow Rate	43	151	34	159
Geometry Grp	1	1	1	1
Degree of Util (X)	0.056	0.187	0.043	0.169
Departure Headway (Hd)	4.719	4.453	4.503	3.836
Convergence, Y/N	Yes	Yes	Yes	Yes
Сар	762	793	797	940
Service Time	2.726	2.553	2.519	1.84
HCM Lane V/C Ratio	0.056	0.19	0.043	0.169
HCM Control Delay	8	8.6	7.7	7.6
HCM Lane LOS	Α	Α	Α	Α
HCM 95th-tile Q	0.2	0.7	0.1	0.6

Int Delay, s/veh
Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR Lane Configurations
Cane Configurations
Traffic Vol, veh/h 1 156 94 3 205 0 178 1 10 0 2 0 Future Vol, veh/h 1 156 94 3 205 0 178 1 10 0 2 0 Conflicting Peds, #/hr 0
Traffic Vol, veh/h 1 156 94 3 205 0 178 1 10 0 2 0 Future Vol, veh/h 1 156 94 3 205 0 178 1 10 0 2 0 Conflicting Peds, #/hr 0 </td
Conflicting Peds, #/hr 0
Sign Control Free Free Free Free Free Free Stop Stop Stop Stop Stop Stop Stop Stop
RT Channelized None None None None Storage Length
Storage Length
7.1. 1. M. II Ottom
Veh in Median Storage, # - 0 0 0 -
Grade, % - 0 0 0 0 -
Peak Hour Factor 88 88 88 88 88 88 88 88 88 88 88 88
Heavy Vehicles, % 7 7 7 5 5 5 3 3 3 2 2 2
Mvmt Flow 1 177 107 3 233 0 202 1 11 0 2 0
Major/Minor Major1 Major2 Minor1 Minor2
Conflicting Flow All 233 0 0 284 0 0 473 472 231 478 525 233
Stage 1 233 233 - 239 239 -
Stage 2 230 239 - 239 286 -
Critical Hdwy 4.17 4.15 7.13 6.53 6.23 7.12 6.52 6.22
Critical Hdwy Stg 1 6.13 5.53 - 6.12 5.52 -
Critical Hdwy Stg 2 6.13 5.53 - 6.12 5.52 -
Follow-up Hdwy 2.263 2.245 3.527 4.027 3.327 3.518 4.018 3.318
D 10 111 1000 1001 1001 100 100 100 100
Pot Cap-1 Maneuver 1306 1261 500 489 806 498 458 806 Stage 1 768 710 - 764 708 -
Stage 2 760 710 - 764 706 - Stage 2 761 706 - 764 675 -
Stage 2
Mov Cap-1 Maneuver 1306 1261 497 487 806 489 456 806
Mov Cap-1 Maneuver 1300 1201 497 487 800 469 450 800 800 800 800 800 800 800 800 800 8
Stage 1 767 709 - 763 706 -
Stage 2 756 704 - 751 674 -
- 100 104 - 101 014 -
Approach EB WB NB SB
HCM Control Delay, s 0 0.1 17.2 12.9
HCM LOS C B
Minor Lane/Major Mvmt NBLn1 EBL EBT EBR WBL WBT WBR SBLn1
Capacity (veh/h) 507 1306 1261 456
HCM Lane V/C Ratio 0.424 0.001 0.003 0.005
HCM Control Delay (s) 17.2 7.8 0 - 7.9 0 - 12.9
HCM Lane LOS C A A - A A - B
HCM 95th %tile Q(veh) 2.1 0 0 0

Intersection	45.0											
Int Delay, s/veh	15.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	f)		ሻ	ĵ.		ሻ	∱ }		ሻ	∱ β	
Traffic Vol, veh/h	5	43	103	328	74	50	8	73	218	20	191	43
Future Vol, veh/h	5	43	103	328	74	50	8	73	218	20	191	43
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	100	-	-	100	-	-	100	-	-	100	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	92	94	92	92	92	94	94	92	92	94	94
Heavy Vehicles, %	3	2	3	2	2	2	3	3	2	2	3	3
Mvmt Flow	5	47	110	357	80	54	9	78	237	22	203	46
Major/Minor N	/linor2		ı	Minor1		_	Major1		N	Major2		
Conflicting Flow All	367	603	125	384	508	158	249	0	0	315	0	0
Stage 1	270	270	123	215	215	-	<u> </u>	-	-	-	-	-
Stage 2	97	333	_	169	293	_	_	_	_	_	_	_
Critical Hdwy	7.56	6.54	6.96	7.54	6.54	6.94	4.16	_	_	4.14	_	_
Critical Hdwy Stg 1	6.56	5.54	- 0.00	6.54	5.54	- 0.0		_	<u>-</u>	- 1.17	_	<u>-</u>
Critical Hdwy Stg 2	6.56	5.54	_	6.54	5.54	_	_	_	_	_	_	_
Follow-up Hdwy	3.53	4.02	3.33	3.52	4.02	3.32	2.23	_	_	2.22	_	<u>-</u>
Pot Cap-1 Maneuver	562	412	899	549	466	859	1306	_	_	1242	_	-
Stage 1	710	685	-	767	724	- 300	-	_	_	- 12 12	_	_
Stage 2	896	642	-	816	669	_	-	_	-	-	_	-
Platoon blocked, %		, <u> </u>			- 500			_	-		-	-
Mov Cap-1 Maneuver	447	402	899	431	454	859	1306	-	-	1242	-	-
Mov Cap-2 Maneuver	447	402	-	431	454	-	-	-	-	-	-	-
Stage 1	705	673	_	762	719	_	_	_	_	_	-	_
Stage 2	740	638	_	655	657	_	_	_	_	_	_	_
A	ED			MD			ND			C.D.		
Approach	EB			WB			NB			SB		
HCM Control Delay, s	12.2			34.4			0.2			0.6		
HCM LOS	В			D								
Minor Lane/Major Mvm	t	NBL	NBT	NBR E	EBLn1	EBLn2V	VBLn1V	VBLn2	SBL	SBT	SBR	
Capacity (veh/h)		1306	-	-	447	656	431	561	1242	-	-	
HCM Lane V/C Ratio		0.007	_	-		0.238			0.018	_	-	
HCM Control Delay (s)		7.8	-	-	13.2	12.2	42.4	13.4	8	-	-	
HCM Lane LOS		A	-	-	В	В	Е	В	A	-	-	
HCM 95th %tile Q(veh)		0	-	-	0	0.9	7.8	0.9	0.1	-	-	

Intersection							
Int Delay, s/veh	0.2						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	FDL	<u>₹</u>	<u>₩₽</u>	WDK	SBL 1	SDR 7	
Traffic Vol, veh/h	7	1489	1225	2	3	10	
Future Vol, veh/h	7	1489	1225	2	3	10	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	100	-	-	-	0	0	
Veh in Median Storage	e,# -	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	94	94	94	94	94	94	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	7	1584	1303	2	3	11	
Major/Minor I	Major1		Major2	I	Minor2		
Conflicting Flow All	1305	0	- viajoiz	0	1952	653	
Stage 1	-	-	_	-	1304	-	
Stage 2	_	_	_	_	648	_	
Critical Hdwy	5.34	-	-	-	5.74	7.14	
Critical Hdwy Stg 1	-	_	_	_	6.64	-	
Critical Hdwy Stg 2	-	_	-	-	6.04	-	
Follow-up Hdwy	3.12	-	-	-	3.82	3.92	
Pot Cap-1 Maneuver	278	-	-	-	99	351	
Stage 1	-	-	-	-	157	-	
Stage 2	-	-	-	-	439	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	278	-	-	-	97	351	
Mov Cap-2 Maneuver	-	-	-	-	97	-	
Stage 1	-	_	-	-	153	-	
Stage 2	-	-	-	-	439	-	
Approach	EB		WB		SB		
HCM Control Delay, s	0.1		0		22		
HCM LOS	0.1		U		22 C		
I IOWI LOO					U		
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR	SBLn1 S	
Capacity (veh/h)		278	-	-	-	97	351
HCM Lane V/C Ratio		0.027	-	-	-	0.033	0.03
HCM Control Delay (s)		18.3	-	-	-	43.4	15.6
HCM Lane LOS		С	-	-	-	Е	С
HCM 95th %tile Q(veh)	0.1	-	-	-	0.1	0.1

Intersection						
Int Delay, s/veh	0					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	1	^	ተ ተጉ			7
Traffic Vol, veh/h	2	1504	1220	3	0	6
Future Vol, veh/h	2	1504	1220	3	0	6
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	_	None	-	None
Storage Length	50	-	_	-	_	0
Veh in Median Storage		0	0	-	0	_
Grade, %	, <i>''</i> -	0	0	_	0	_
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	2	1690	1371	3	0	7
IVIVIIIL FIOW		1030	13/1	J	U	- I
Major/Minor N	//ajor1	ı	Major2	N	/linor2	
Conflicting Flow All	1374	0	-	0	-	687
Stage 1	-	-	-	-	_	-
Stage 2	_	_	_	_	<u>-</u>	_
Critical Hdwy	5.34	_	_	_	_	7.14
Critical Hdwy Stg 1	0.07	_	_	_	_	7.17
Critical Hdwy Stg 2	_		_	_	-	-
Follow-up Hdwy	3.12	_	_	-	_	3.92
Pot Cap-1 Maneuver	257	_	-		0	334
•						
Stage 1	-	-	-	-	0	-
Stage 2	-	-	-	-	0	-
Platoon blocked, %	0	-	-	-		004
Mov Cap-1 Maneuver	257	-	-	-	-	334
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
					16	
HCM LOS	0		0			
HCM LOS					С	
Minor Lane/Major Mvm	t	EBL	EBT	WBT	WBR S	SBLn1
Capacity (veh/h)		257	_	_	-	334
HCM Lane V/C Ratio		0.009	_	_	_	0.02
HCM Control Delay (s)		19.1	_	_	-	16
HCM Lane LOS		C	_	_	_	C
HCM 95th %tile Q(veh)		0	_			0.1
HOW Sour Journe Q(Veri)		U				0.1

Intersection						
Intersection Int Delay, s/veh	1.2					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		^	ተተተ			- 7
Traffic Vol, veh/h	0	12	982	0	0	73
Future Vol, veh/h	0	12	982	0	0	73
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, %	2	2	2	2	19	19
Mvmt Flow	0	14	1116	0	0	83
	ajor1		Major2		/linor2	
Conflicting Flow All	-	0	-	0	-	558
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	7.48
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	4.09
Pot Cap-1 Maneuver	0	-	-	0	0	373
Stage 1	0	_	-	0	0	_
Stage 2	0	_	_	0	0	-
Platoon blocked, %		_	_			
Mov Cap-1 Maneuver	_	_	_	_	_	373
Mov Cap-2 Maneuver	_	<u>-</u>	_	_	_	-
Stage 1				_		
	-	_	_	-	_	_
Stage 2	-	-	-	-	_	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		17.4	
HCM LOS					С	
Minor Lane/Major Mvmt		EBT	WBT:	SBLn1		
Capacity (veh/h)		-	-	373		
HCM Lane V/C Ratio		-	-	0.222		
HCM Control Delay (s)		-	-	17.4		
HCM Lane LOS		-	-	С		
HCM 95th %tile Q(veh)		-	_	0.8		

Intersection						
Int Delay, s/veh	0.4					
		CDT	MOT	WED	ODL	ODD
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	7	^	ተተጉ			7
Traffic Vol, veh/h	52	1402	982	35	0	0
Future Vol, veh/h	52	1402	982	35	0	0
Conflicting Peds, #/hr	_ 0	_ 0	_ 0	_ 0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	150	-	-	-	-	0
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	16	16	2	2
Mvmt Flow	57	1524	1067	38	0	0
Major/Minor	laiar1		Majora	,	liner?	
	lajor1		Major2		Minor2	
<u> </u>	1105	0	-	0	-	553
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	5.34	-	-	-	-	7.14
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	3.12	-	-	-	-	3.92
Pot Cap-1 Maneuver	348	-	-	-	0	408
Stage 1	-	-	-	-	0	-
Stage 2	-	-	-	-	0	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	348	-	-	-	-	408
Mov Cap-2 Maneuver	_	_	-	-	_	_
Stage 1	_	-	-	-	-	-
Stage 2	_	_	_	_	_	_
Approach	EB		WB		SB	
HCM Control Delay, s	0.6		0		0	
HCM LOS					Α	
Minor Lane/Major Mvmt		EBL	EBT	WBT	WBR	SBL n1
			EDI	VVDI	WDK (ODLIII
Capacity (veh/h)		348	-	-	-	-
Capacity (veh/h) HCM Lane V/C Ratio		348 0.162	-	-	-	-
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		348 0.162 17.3	- - -	-	-	0
Capacity (veh/h) HCM Lane V/C Ratio		348 0.162	-			

MULTI-PERIOD	ANAL	ysis HCS	7 Sig	nalize	d Int	ersec	tion R	Resu	ilts Su	mmar	у					
General Information	ion							Intersec	tion Inf	Information						
Agency BHI								$\overline{}$	Duration		0.250			417		
Analyst MB			Analys	is Date	Feb 1	4 2020		Area Typ		Other			<u>~</u> &			
Jurisdiction		VID		Analysis Date Feb 14, Time Period AM			1, 2020		PHF		1.00		_ → _^* -	w ↑ E	~ ← ÷	
Urban Street		Jniversity		Analysis Year 2024					Analysis	Period	1> 7:	15			~ —⊸	
Intersection	_	Jniversity & Indian	School	File Na			reity_Ind	ianSc	chool BA						<u></u> -	
Project Description	_	Build AM	3011001	THE IN	anne	Offive	isity-iiiu	ianoc	IIOOI_BA	w_mp_i	ioui.xus	•	- 1	1 1 (14 1 4 1	^۳ ر۳	
1 Tojout Bocompuon		Sana 7 (IVI														
Demand Informati	ion				EB			W	В		NB			SB		
Approach Moveme	ent			L	Т	R	L	7	R	L	Т	R	L	Т	R	
Demand (v), veh/h	'h			212	248	272	252	37	6 56	156	412	56	28	980	144	
Oissan al lanfa assa attica						_	1 11:									
Signal Information		Deference Disease		1	7			L	\mathcal{A}	∄ ?	Ä∣∖		кŤЯ		7	
	_	Reference Phase	2	1	15	1 51	" \ "≨∩	7	E	" ⊨3	E .	1	2	3	→ 4	
	\rightarrow	Reference Point	End	Green		0.2	32.0	11		23.0)				<u> </u>	
	\rightarrow	Simult. Gap E/W	On	Yellow	-	3.0	4.0	3.0		4.0	_ [\	 	- ∕ ∣		
Force Mode Fix	xed	Simult. Gap N/S	On	Red	3.0	3.0	4.0	0.5	0.0	1.5	_	5	6	7	8	
Timer Results				EBL	$\overline{}$	EBT	WB		WBT	NBI		NBT	SBI		SBT	
Assigned Phase			7		4	3		8	5	_	2	1	_	6		
Case Number			1.1		4.0	1.1		4.0	1.1		4.0	1.1		4.0		
Phase Duration, s				15.0		28.5	19.3	3	32.9	13.9)	46.2	7.7		40.0	
Change Period, (Y	/+R c), s		3.5		8.0	6.0	_	8.0	6.0	-	8.0	6.0		8.0	
Max Allow Headwa				3.1	\neg	3.1	3.1	\neg	3.1	3.1		3.1	3.1	_	3.1	
Queue Clearance Time (g_s), s				11.3		18.7	13.0)	12.3	7.9		11.4	3.1		32.7	
Green Extension Time (g e), s			0.3	\neg	1.9	0.3	\neg	1.9	0.2	_	3.3	0.0		0.0		
Phase Call Probability			1.00		1.00	1.00)	1.00	0.99	_	1.00	0.55	_	1.00		
Max Out Probability			0.00		0.00	0.01		0.00	0.00		0.03	0.00	0.00 1			
Movement Group Results					EB			WE			NB					
Approach Moveme				L	T	R	L	T	R	L	T	R	L	T	R	
Assigned Movement		7	4	14	3	8	18	5	2	12	1	6	16			
Adjusted Flow Rate (v), veh/h		212	248	272	252	219		156	238	230	28	575	549			
Adjusted Saturation Flow Rate (s), veh/h/ln			1810	1885	1598	1795	188		1753	1870	1792	1810	1885	1800		
Queue Service Time (g s), s			9.3	12.3	16.7	11.0	10.		5.9	9.3	9.4	1.1	30.6	30.7		
Cycle Queue Clear		Time (<i>g</i> ε), s		9.3	12.3	16.7	11.0	10.		5.9	9.3	9.4	1.1	30.6	30.7	
Green Ratio (g/C)				0.31	0.20	0.20	0.34	0.24		0.41	0.38	0.38	0.33	0.31	0.31	
Capacity (c), veh/h			396	381	323	340	461		213	702	673	348	592	566		
Volume-to-Capacity Ratio (X)			0.536	0.652	_	0.741	0.47		0.731	0.338	0.342	0.080	0.970	0.971		
Back of Queue (Q), ft/ln (95 th percentile) Back of Queue (Q), veh/ln (95 th percentile)			177.5	240.1	269.9	208.8	203.		112.3	192.6	184.7	20.3	642.6	618		
Queue Storage Ratio (RQ) (95 th percentile)			7.1 1.61	9.5	0.27	8.3 1.49	8.1 0.20	_	4.4 1.32	7.6 0.19	7.4 0.19	0.8	25.5 0.64	0.62		
	Uniform Delay (d 1), s/veh			27.5	37.3	39.1	28.0	32.9	_	25.0	22.8	22.8	23.3	34.4	34.5	
Incremental Delay (d 2), s/veh				0.4	0.7	2.3	1.5	0.3	_	1.8	1.3	1.4	0.0	30.3	31.3	
Initial Queue Delay	. ,			0.0	0.0	0.0	0.0	0.0	_	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh			27.9	38.1	41.4	29.5	33.2		26.8	24.1	24.2	23.3	64.7	65.8		
Level of Service (LOS)			C	D	D	C	C	C	C	C	С	C	E	E		
Approach Delay, s/veh / LOS			36.4		D	31.8		С	24.8		С	64.2		E		
	Intersection Delay, s/veh / LOS					43	3.2						D			
Multimodal Result					EB			WE			NB			SB		
Pedestrian LOS So				2.29		В	2.29	_	В	2.28	-	В	2.28	3	В	
Bicycle LOS Score	LOS	S		1.09		Α	1.05	5	Α	1.00)	Α	1.44	1	Α	

MULTI-PERIO	D ANA	LYSIS HCS	7 Sig	nalize	d Int	ersec	tion R	Resu	lts Sur	nmar	y				
Cananal Informa	tion								Interce	tion Inf			Т	4141	h. L.
General Information Agency BHI				Intersection Information								-	411	+- ·X	
0 7					le 1 4	4 0000		Duration,		0.250			<u></u>		
Analyst MB			Analysis Date Feb 14, 2				-	Area Typ	е	Other				~ -	
Jurisdiction				Time Period AM					PHF		1.00		- ₹ →	w E e	<u>+</u> +
Urban Street		University		Analys					Analysis		2> 7:3		7		بر د
Intersection		University & Indian	School	File Na	ame	Unive	rsity-Ind	lianSc	hool_BAI	И_mp_h	our.xus	<u> </u>		<u> ጎተ</u> ት	
Project Description	on	Build AM	-	-	-	-	-		_	-	-	-		4 1 4 4	<u> </u>
Demand Informa	ation				EB			W	В	1	NB		1	SB	
Approach Movem	nent			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), veh				136	228	256	220	26	4 96	60	500	104	48	1072	88
Oi ann al lunfa mar ati							1 11:								
Signal Information		Deference Disease		ł	7					Ħ?			KŤ2	_	7
	94.1	Reference Phase	2	1	15	150	기 %	7	E	" S	E I	1	2	3	→ 4
Offset, s	0	Reference Point	End	Green		0.7	32.0	7.4		22.5	<u> </u>				<u> </u>
	Yes	Simult. Gap E/W	On	Yellow		0.0	4.0	3.0		4.0	_ `	\	<u> </u>	→	
Force Mode F	ixed	Simult. Gap N/S	On	Red	3.0	0.0	4.0	0.5	0.0	1.5		5	6	7	8
Timer Results				EBL		EBT	WB	L	WBT	NBI		NBT	SBI		SBT
Assigned Phase				7	\neg	4	3	\neg	8	5	\neg	2	1		6
Case Number			1.1		4.0	1.1		4.0	1.1		4.0	1.1		4.0	
Phase Duration, s	s			10.9)	28.0	16.8	3	33.9	9.3		40.7	8.6		40.0
Change Period, (Y+R	c), s		3.5		8.0	6.0		8.0	6.0		8.0	6.0	6.0	
Max Allow Headway (<i>MAH</i>), s				3.1		3.2	3.1	\neg	3.2	3.1		3.1	3.1		3.1
Queue Clearance Time (g s), s			7.4		16.1	10.6	3	9.7	4.1		14.3	3.6		30.2	
Green Extension Time (g e), s			0.2		1.7	0.3	\neg	1.7	0.1		3.7	0.0		1.0	
Phase Call Probability		0.97	,	1.00	1.00		1.00	0.79		1.00	0.71		1.00		
Max Out Probability			0.00)	0.00	0.00)	0.00	0.00		80.0	0.00	0.00 1.0		
Movement Group Pocults			EB			WE			NB			SB			
Movement Group Results Approach Movement				L	T	R	L	T	R	L	T	R		T	R
Assigned Movement		7	4	14	3	8	18	5	2	12	1	6	16		
Adjusted Flow Rate (v), veh/h		136	228	256	220	185		60	310	294	48	588	572		
Adjusted Saturation Flow Rate (s), veh/h/ln		1810	1885	1598	1795	188		1753	1870	1758	1810	1885	1834		
Queue Service Time (g_s), s		5.4	10.2	14.1	8.6	7.4		2.1	12.2	12.3	1.6	28.1	28.2		
Cycle Queue Clea		,		5.4	10.2	14.1	8.6	7.4	7.7	2.1	12.2	12.3	1.6	28.1	28.2
Green Ratio (g/C		(3-),		0.29	0.21	0.21	0.35	0.28		0.37	0.35	0.35	0.37	0.34	0.34
Capacity (c), veh/h			397	401	340	340	520		157	649	610	288	641	624	
Volume-to-Capacity Ratio (X)				0.342	0.569	0.754	0.646	0.35	_	0.383	0.478	0.482	0.167	0.917	0.918
Back of Queue (Q), ft/ln (95 th percentile)			102.8	_	232.1	161	148.		39.2	242.1	229.7	30	558.2	544.7	
Back of Queue (Q), veh/ln (95 th percentile)			4.1	8.1	9.3	6.4	5.9		1.5	9.5	9.2	1.2	22.2	21.8	
Queue Storage Ratio (RQ) (95 th percentile)				0.93	0.20	0.23	1.15	0.15		0.46	0.24	0.23	0.43	0.56	0.55
Uniform Delay (a	d 1), s/	/veh		25.7	33.2	34.7	24.6	27.4	27.5	23.9	24.1	24.1	20.4	29.8	29.8
	Incremental Delay (d 2), s/veh			0.2	0.5	1.3	0.8	0.2	0.2	0.6	2.5	2.7	0.1	20.1	20.7
Initial Queue Delay (d 3), s/veh			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/ve	eh		25.9	33.7	36.0	25.4	27.5	27.7	24.4	26.6	26.8	20.5	49.9	50.4
Level of Service (LOS)			С	С	D	С	С	С	С	С	С	С	D	D	
Approach Delay, s/veh / LOS			32.9)	С	26.7	7	С	26.5	5	С	49.0)	D	
Intersection Delay	y, s/ve	h / LOS				36	6.7						D		
Multipo e de LD -					ED.			14/5			NID			CD	
Multimodal Resu		/1.08		2.20	EB	D	2.00	WE		2.00	NB	D	2.00	SB	D
Pedestrian LOS Sacr				2.29	-	В	2.29	_	В	2.28		В	2.28		В
Bicycle LOS Score / LOS				1.00		Α	0.97		Α	1.04		Α	1.48)	Α

MULTI-PERI	OD ANA	ALYSIS HCS	7 Sig	nalize	d Int	ersec	tion F	Resu	ılts Su	mmar	у					
General Inform	nation								Intersed	tion Inf	n Information					
Agency BHI						Duration, h 0.250								417		
Analyst MB			Analys	is Date	e Feb 1	4 2020		Area Ty		Other				<u>~</u> .≿		
Jurisdiction		IND		Time Period AM			1, 2020		PHF		1.00		_ → _^* -	ν ν‡ε	~ ← ÷	
Urban Street		University		Analysis Year 2024					Analysis	Period	3> 7:4	45	_ 		<u>~</u> ←	
Intersection		University & Indian	School	File Na			rsity_Ind	lianSo	chool BA					5 4 4		
Project Descrip	tion	Build AM	Ochool	T IIC IN	arric	Ollive	i Sity-ii id	iiaiiot	511001_07	<u>ινι_ιτιρ_ι</u>	ioui.xus	•] [[7	
	4.						_	,,	'D	_	A ID		ļ.	0.0		
Demand Inform				.	EB		+ -	W			NB		-	SB		
Approach Move				L 10.1	T	R	L	7		L	T	R	L	T	R	
Demand (v), v	eh/h			104	192	240	304	20	08 124	84	568	64	32	1124	52	
Signal Informa	tion				ΤŢ			Т		<u>Ş</u>	5					
Cycle, s	99.9	Reference Phase	2		<u>"</u>	SA		2 P	6	ZIS .		>	\Pi		-	
Offset, s	0	Reference Point	End		10				2 5 4	00.4	-	1	2	3	4	
Uncoordinated	Yes	Simult. Gap E/W	On	Green Yellow		0.0	32.0 4.0	6.3 3.0		22.5 4.0	<u> </u>			7	→	
Force Mode	Fixed	Simult. Gap N/S	On	Red	3.0	0.0	4.0	0.5		1.5		5	6	7	8	
Timer Results				EBI	-	EBT	WB	L	WBT	NBI	_	NBT	SBI		SBT	
Assigned Phase	9			7		4	3	_	8	5		2	1		6	
Case Number				1.1		4.0	1.1	_	4.0	1.1		4.0	1.1		4.0	
Phase Duration, s				9.8		28.0	21.2	2	39.4	10.7	7	42.9	7.9		40.0	
Change Period, (Y+R c), s				3.5		8.0	6.0		8.0	6.0		8.0	6.0		8.0	
Max Allow Head	- `			3.1		3.2	3.1	_	3.2	3.1		3.0	3.1		3.0	
Queue Clearance Time (g $_{\rm s}$), ${\rm s}$				6.5		16.1	14.8	3	9.3	5.2		15.6	3.2	_	33.2	
Green Extension Time (g_e), s			0.1		1.5	0.4	_	1.5	0.1		3.7	0.0		0.0		
Phase Call Probability			0.94	_	1.00	1.00	_	1.00	0.90		1.00	0.59	9	1.00		
Max Out Probability			0.00)	0.00	0.04	1	0.00	0.00		0.10	0.00	0.00 1.0			
Movement Group Results			EB			WE	2		NB			SB				
Approach Movement			L	T	R	L	T	R	L	T	R		T	R		
Assigned Movement		7	4	14	3	8	18	5	2	12	1	6	16			
Adjusted Flow Rate (v), veh/h		104	192	240	304	172	_	84	321	311	32	592	584			
Adjusted Saturation Flow Rate (s), veh/h/ln			1810	1885	1598	1795	188		1753	1870	1804	1810	1885	1855		
Queue Service Time (g_s), s		4.5	9.1	14.1	12.8	6.9		3.2	13.5	13.6	1.2	31.1	31.2			
Cycle Queue Clearance Time (g c), s			4.5	9.1	14.1	12.8	6.9		3.2	13.5	13.6	1.2	31.1	31.2		
Green Ratio (g		5 mms (g v), 5		0.26	0.20	0.20	0.37	0.3		0.37	0.35	0.35	0.34	0.32	0.32	
Capacity (c), veh/h			399	377	320	401	593		159	653	629	262	604	594		
Volume-to-Capacity Ratio (X)				0.261	0.509	_	0.758	0.29		0.527	0.492	0.494	0.122	0.981	0.982	
Back of Queue (Q), ft/ln (95 th percentile)			86.4	187.2	_	237.7	137.		61	263.7	253.9	22.5	660.3	648.5		
Back of Queue (Q), veh/ln (95 th percentile)			3.5	7.4	9.4	9.4	5.5	5.1	2.4	10.4	10.2	0.9	26.2	25.9		
Queue Storage Ratio (RQ) (95 th percentile)			0.79	0.19	0.24	1.70	0.14	4 0.13	0.72	0.26	0.26	0.32	0.66	0.65		
Uniform Delay (d 1), s/veh			28.8	35.6	37.6	25.6	25.8	3 26.0	26.1	25.6	25.6	23.0	33.7	33.7		
Incremental De	lay (<i>d</i> 2), s/veh		0.1	0.4	1.3	3.1	0.1	0.1	1.0	2.6	2.8	0.1	32.3	32.7	
Initial Queue De	elay (d	з), s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (eh		28.9	36.0	38.9	28.7	25.9	9 26.1	27.1	28.2	28.3	23.1	66.0	66.4	
Level of Service (LOS)			С	D	D	С	С	С	С	С	С	С	E	E		
Approach Delay, s/veh / LOS			35.9		D	27.3	3	С	28.	1	С	65.0)	Е		
Intersection De	lay, s/ve	eh / LOS				43	3.7						D			
Manifelian and all E								\ A /F			ND			0.5		
Multimodal Re		/1.08		2.00	EB	D	2.00	WE	<u>В</u>	2.20	NB	D	2.20	SB	D	
Pedestrian LOS				2.29	_	В	2.28	_	A	2.28		В	2.28	_	B	
Bicycle LOS Score / LOS				0.93	<u> </u>	Α	1.0	<u> </u>	A	1.00	,	Α	1.48	,	Α	

MULTI-PERIOD ANAL	ysis HCS 7	7 Sig	nalize	d Int	ersec	tion R	Resu	lts Sur	nmar	у						
General Information								Intersec	tion Inf	nformation						
Agency BHI								Duration		0.250			417			
Analyst MB			Analys	is Date	Feb 1	4 2020		Area Typ		Other			<u>t</u> &			
Jurisdiction			Time Period AM			1, 2020		PHF		1.00		_ → _^ - ÷ - →	N W ∓ E	~ ← ∻		
	Jniversity		Analysis Year 2024					Analysis	Period	4> 8:0	20	_ -		√		
	Jniversity & Indian S	School	File Na			reity Ind	lianSc	hool BAI								
	Build AM	CHOOL	THE INC	anne	Offive	i Sity-ii iu	lialiou	IIOOI_BAI	vi_iiip_i	ioui.xus	•	- 1) 	1 ≻ (*		
1 Toject Description	Juliu Alvi															
Demand Information				EB		T	W	В	T	NB		T	SB			
Approach Movement			L	Т	R	L	Т	R	L	Т	R	L	Т	R		
Demand (v), veh/h			72	132	172	192	26	8 52	116	424	84	60	964	72		
Signal Information				7			1 2			\exists		-4-		_		
-, ,	Reference Phase	2		15	Str	z §⊕	2 F		TH.	E	Y	\mathbf{Y}_{2}	3	- ← ₄		
	Reference Point	End	Green	3.3	2.6	32.0	4.3	2.1	22.5	5				<u> </u>		
	Simult. Gap E/W	On	Yellow		0.0	4.0	3.0	3.0	4.0		\ 4	<u> </u>	→	7		
Force Mode Fixed S	Simult. Gap N/S	On	Red	3.0	0.0	4.0	0.5	3.0	1.5		5	6	7	8		
								\								
Timer Results			EBL	-	EBT	WBI	L	WBT	NBI	-	NBT	SBI	-	SBT		
Assigned Phase			7		4	3	-	8	5		2	1		6 4.0		
Case Number			1.1	_	4.0	1.1	+	4.0	1.1		4.0					
Phase Duration, s	<u> </u>		7.8		28.0	15.9	_	36.1	11.9	-	42.6			40.0		
Change Period, (Y+Rc)			3.5	-	8.0	6.0	-	8.0	6.0		8.0	6.0	-	8.0		
Max Allow Headway (MAH), s			3.1	_	3.1	3.1	_	3.1	3.1	_	3.1	3.1	_	3.1		
Queue Clearance Time (g s), s			5.0	_	11.1	9.7	_	8.6	6.1	_	12.0	4.1	_	26.6		
Green Extension Time (g e), s			0.1		1.2	0.3	_	1.2	0.1	_	3.1	0.1		1.9		
Phase Call Probability			0.85	_	1.00	0.99	_	1.00	0.95		1.00	0.80		1.00		
Max Out Probability			0.00		0.00	0.00)	0.00	0.00)	0.03	0.00)	0.61		
Movement Group Results				EB			WB			NB			SB			
Approach Movement			L	Т	R	L	Т	R	L	Т	R		Т	R		
Assigned Movement		7	4	14	3	8	18	5	2	12	1	6	16			
Adjusted Flow Rate (v), veh/h		72	132	172	192	163	_	116	260	248	60	524	512			
Adjusted Saturation Flow Rate (s), veh/h/ln			1810	1885	1598	1795	1885		1753	1870	1763	1810	1885	1839		
Queue Service Time (g_s), s		3.0	5.7	9.1	7.7	6.4		4.1	9.9	10.0	2.1	24.6	24.6			
Cycle Queue Clearance	,		3.0	5.7	9.1	7.7	6.4	6.6	4.1	9.9	10.0	2.1	24.6	24.6		
Green Ratio (g/C)	······ (g		0.25	0.21	0.21	0.33	0.29		0.40	0.36	0.36	0.37	0.33	0.33		
Capacity (c), veh/h			375	394	334	383	552		225	676	638	351	630	614		
Volume-to-Capacity Ratio	o (X)		0.192	0.335		0.501	0.29		0.515	0.384	0.389	0.171	0.833	0.833		
Back of Queue (Q), ft/ln (95 th percentile)			56.7	116.5		144.1	127.	_	76.3	202.5	193.3	38.5	469.7	457.8		
Back of Queue (Q), veh/ln (95 th percentile)			2.3	4.6	6.3	5.7	5.1	4.9	3.0	8.0	7.7	1.5	18.6	18.3		
Queue Storage Ratio (RQ) (95 th percentile)			0.52	0.12	0.16	1.03	0.13	_	0.90	0.20	0.20	0.55	0.47	0.46		
Uniform Delay (d 1), s/veh			27.8	32.2	33.6	24.7	26.2		22.7	22.7	22.7	20.3	29.4	29.4		
Incremental Delay (d 2), s/veh			0.1	0.2	0.5	0.4	0.1	0.1	0.7	1.7	1.8	0.1	12.2	12.5		
Initial Queue Delay (d 2)			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Control Delay (d), s/veh			27.9	32.4	34.1	25.1	26.3	_	23.4	24.3	24.5	20.3	41.7	42.0		
Level of Service (LOS)			C	C	С	C	C	C	C	C	C	C	D	D		
Approach Delay, s/veh / LOS			32.3		С	25.9		C	24.2		С	40.6		D		
Approach Delay, s/ven /	Intersection Delay, s/veh / LOS					2.6						C				
	/ LOO															
				EB			WB			NB			SB			
Intersection Delay, s/veh			2.29		В	2.28		В	2.28		В	2.28		В		