APRIL 7, 1978

Architecture Planning Urban Design

DYER / McCLERNON / BEEBE, P.A.

1401 Fifth Street N.W. Albuquerque, New Mexico 87102 505 / 242 5219

MR. BRUNO CONEGLIANO
DRAINAGE ENGINEER
CITY OF ALBUQUERQUE
400 MARQUETTE AVE. N. W.
ALBUQUERQUE, NEW MEXICO 87102

RE: OFFICE BUILDING FOR THE LYLE TALBOT AGENCY 1501 SAN PEDRO, N. E.

DEAR BRUNO:

PLEASE FIND ENCLOSED A REVISED COPY OF THE DRAINAGE PLAN FOR THE ABOVE FACILITY.

AS WE DISCUSSED ON 1/26/78, DUE TO THE POOR SOILS CONDITION [SOILS REPORT ENCLOSED] WE HAVE REVISED OUR DRAINAGE TO PROVIDE A CONTROLED RUNOFF. I HAVE ALSO INCLUDED A SET OF CALCULATIONS FOR YOUR FILES. THE GENERAL CONTRACTOR IS READY TO COMPLETE THE FINAL GRADING WITH-IN THE NEXT WEEK.

SHOULD YOU HAVE ANY QUESTIONS, PLEASE ADVISE.

CORDIALLY,

PATRICK MCCLERNON

PM/cm

Enclosure

Randy Holt & Associates, Inc.

335-A JEFFERSON, S.E. . ALBUQUERQUE, NEW MEXICO 87108

(505) 268-6121

January 19, 1978

Mr. Patrick McClernon Dyer-McClernon-Beebe, P.A. 1401 5th Street N.W Albuquerque, New Mexico 87102

Re: Lyle Talbot Office Building Albuquerque, New Mexico

Gentl...nen:

A subsurface soil investigation was not performed for this project, therefore we had no information regarding the underlying soils prior to commencement of construction. When the foundations were being excavated, the presence of clay was observed in the excavations.

On January 5, 1978 the Contractor excavated a pit with a backhoe to a depth of 8 feet below existing grade. Mr. John King, Project Engineer from our office obtained bag samples of the soil at the 1, 2, 4, 6 and 8 feet depths. These soil samples were taken to Albuquerque Testing Laboratory where a screen analysis and Atterberg Limit Tests were performed on the samples, the results of which are shown on the attached report. From this report it can be seen that the soil at 2 and 4 feet has a plasticity index of 36.7 and 37.6 respectively, and is classified as a CH (inorganic clays of high plasticity, fat clays).

This type of clay is very expansive when it absorbs or is subjected to moisture. The reinforced concrete continuous footing and stem wall foundation system that has been designed for this project should perform satisfactorily provided the moisture content of the clay soil underlying the footings does not increase. It is therefore imperative that the area adjacent to the building be sloped to drain away from the building, and that this area be sealed or protected to prevent moisture intrusion into the underlying soils. The detention ponds located at the north end of the parking area could cause increased moisture in the soil under the parking area and rapid deterioration of the asphalt paving.

If you have any questions regarding this matter, please give me a call.

Very truly yours,

RANDY HOLT & ASSOCIATES, INC

RH/sr

Enclosure: as stated

TESTING LABORATORY SUN SOIL INVESTIGATION - PHYSICAL TESTING - INSPER

832 JEFFERSON ST., N. E.

P. O. BOX 4101

PHONE 255-0916 258-1352

ALBUQUERQUE. NEW MEXICO 87106

Lab No	Date
Report to Dyer-McClernon - Beebe, Architects	
Submitted By Randy Holt & Associates Sampled By Same	ing and the second second
Project Lyle Talbot Office Building Five (5) soil samples submitted to our laborator	ry on January 5, 1977
Source of Material	

TEST RESULTS SAMPLE DESIGNATION

Screen Analysis and Wash Test: (Cumulative % Passing)

Screen Size	1' Below Grade	2' Below Grade	Grade U.	RAND HE HOLD &	6 Grade
No.40 No.40 No.80 No.200 Wash Tast	100 97.5 88.6 84.8 51.9 50.6	100 99.0 96.9 91.8 87.8 86.7	100 98.4 95.2 83.9 82.3	100 97.0 71.2 69.7	100 89.8 88.6 56.8 55.7
ield Moisture: Lof oven dry weight)	6.3	14.3	16.1	13.6	5.7
tterberg Limit Tests: Minus No. 40 Mesh Mate iquid Limit (%) lastic Limit (%) lasticity Index (%)	24.1 12.4 11.7	59.5 22.8 36.7	59.7 22.1 37.6	46.5 18.7 27.8	23.8 12.9 10.9
nified Soils Clasifica	ccl)	(CH)	(CH)	(CL)	(cr)

cc: Randy Holt & Associates

Respectfully Submitted,
ALBUQUERQUE TESTING LAB.
Original Signed

Registered Professional Engineer

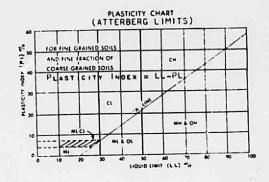
UNIFIED SOIL CLASSIFICATION SYSTEM ASTM: D2487

COARSE-GRAINED SOIL

MORE THAN 50% LARGER THAN 200 SIEVE SIZE

1	7	DISC BIRTURA	MAJOR DIVISIONS
30	GA	MISTERS ITS THAN SE, 200 FIRES	GRAVELS
	GP.	MINIORS GRADED GRAVES OR GRAVEL SAND	More than half of coarse fraction
THE REAL PROPERTY.	G#	MINTERS MORE THAN 12" 200 FINES	is larger than No. 4
12	Gr.	WITCHES MORE THAN 17" TO FINES	sieve size
	54	AFEL CRADED SANDS THE GRAVELLY SANDS.	SANDS
	1,0	POORLY GRACID SANDS OF GRAVILLY SANDS.	More than half of coarse fraction
TH	w	MOST THAN 12" YO FINES	is smaller than No. 4
	v	MORE HAN 12% 200 FINES	sieve size

NOTE Soils with 5 to 12 percent minus 200 fines should be classified with dual symbols.


FINE-GRAINED SOIL

MORE THAN 50% SMALLER THAN 200 SIEVE SIZE

7	3	DESCRIPTION	DIVISIONS
ĬM	MI.	INDECANIC SILTS AND VERY FINE SANDS, BOCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY	SILTS
	cı	PLASTICITY GRAVELLY CLAYS SANDY CLAYS SILTY CLAYS LEAN CLAYS	CLAYS Liquid limit
M	01	OFGANIC SILTS AND OFGANIC SILT CLAYS OF LOW PLASTICITY	less than 50
m	мн	INORGANIC SILTS MICACEOUS OF DIATOMACEOUS FINE SANDY OF SILTY SOILS, ELASTIC SILTS	SILTS
	CH	INCIPGANIC CLAYS OF HIGH PLASTICITY.	CLAYS
1	ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS	Liquid limit
1	PI	PEAT AND OTHER HIGHLY ORGANIC SOILS	greater than 50

SOIL FRACTIONS

Component		Size Range
Boulders		Above 12 in.
Cobbles		3 in. to 12 in.
Grevel		3 in to No. 4 sleve
Coarse Gravel Fine gravel	6	3 in to 44 in 34 in to No. 4 sieve
Sand		No. 4 to No. 200
Coarse	M5 13	No. 4 to No. 10 No. 10 to No. 40
Fine	FS	No 40 to No. 200
Fines tall or clay.	s/C	Salaw No. 200 sieve

Area = <u>Zoo x 139</u> = .63 Ac.

D = 2.6" (100 yr. - 6 hr. percipitation) I = 54"/Ar. for E < 10 min., 1963 Moster Plun

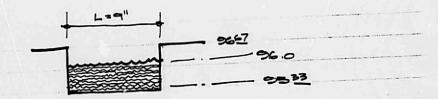
C=.35 undeveloped C=.95 developed Associated = ZZ,938 F= 2,52 Ac.

Q= CIA = (.35) (5.4) (.63) = 1.19 cfs undeveloped

V=(22,938 SF) 3.6 = 4969 Dw., 100cm. Q=CIA=(95)(54)(.5265)= 2.70 cf5(Dw)

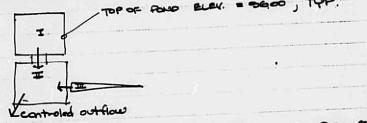
Poer. > Punder.

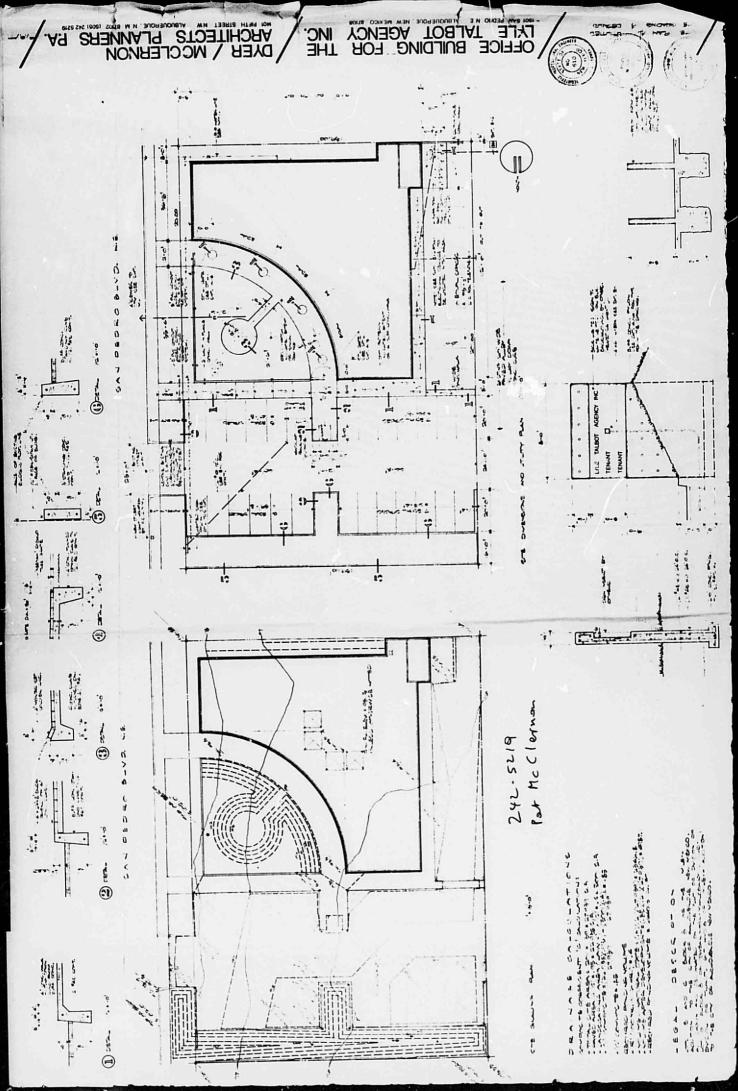
: Controlled runoff rates rate must be developed.


Pand	Colume	Requits.

	ting Interal	Intensity (in/hr.)	+ Run off (CFS)	Rumolf Volume (F+3)	*Ecleased Volume (F+3)	Stovage And (FH3)
	10	5.4	2.66	1596	714	882
H	15	4.73	7.33	2097	1071	1026
	20	4.20	7.07	2484	1428	1056
	25	3.78	1.86	2790	1785	1005
	30	3.44	1.69	3042	2142	400
	35	3.15	1.55	3255	2499	756
	40	2.91	1.43	3432	2856	576
	45	2.70	1.33	3591	3213	378
	20	2,59	1.27	3600	3570	30

Required max. Fond volume @ critical duration of 20 min.


Assume Outlet approximates a broad Crested weir (Assumption in Approximate)


Q=
$$CLH^{\frac{1}{2}}$$
 Q= 1.19
C= 3.08
L= Q/ $CH^{\frac{3}{2}}$ L= ;5'
:. L= (1.19) (5.08) (1) 1.5
= 1.19/3.08× .4643 = .832

USE L= 9"

POUD COUME:

