JZ3109 E.UL 625

(Procedure "B")

83 83651

AGREEMENT TO CONSTRUCT SUBDIVISION IMPROVEMENTS

THIS AGREEMENT made this 22 day of August, 1986, by and between the City of Albuquerque, New Mexico (hereinafter referred to as "City") and Ralph Boone and Charles Griffin, Owners (hereinafter referred to as "Developer") pursuant to Section 6 of the City's Subdivision Ordinance (Enactment No. 56-1983, effective June 29, 1983).

WHEREAS, the Developer is developing certain lands within the City of Albuquerque, County of Bernalillo, State of New Mexico known as Summit Hills (hereinafter referred to as the "Subdivision"); and

WHEREAS, the Developer has submitted and the City has approved a preliminary plat identified as subdivision of Tract A-1 of Summit Hills describing the Subdivision; and

WHEREAS, Section 6 of the City's Subdivision Ordinance requires the Developer to install and construct certain public improvements at no cost to the City; and

WHEREAS, the City requires the execution of an Agreement to construct said public improvements, together with actual satisfactory construction or acceptable guarantees of construction as specified below, as a prerequisite to approval of a Final Plat of the Subdivision; and

WHEREAS, the Developer must obtain City approval of construction plans, specifications, and cost estimates for the improvements and upon City approval of such construction plans, specifications, and cost estimates the City is prepared to issue the Developer a Work Order permitting the commencement of construction activities upon execution of this Agreement and payment of all

Rev. 10/85 (0061E)

..CL 626

required fees, all as set forth and specified in Exhibit "A", which is attached hereto and incorporated herein as if fully set forth in this Agreement; and

WHEREAS, the City is willing to inspect or monitor the private inspection of the improvements during the course of their construction and accept said improvements upon their satisfactory completion, all as set forth and specified in Exhibit "B", which is attached hereto and incorporated herein as if fully set forth in this Agreement; and

WHEREAS, the Developer financially guarantees the satisfactory completion of the infrastructure construction required herein and the payment of all labor and material costs and charges, all as set forth and specified in Exhibit "C", which is attached hereto and incorporated herein as if fully set forth in this Agreement;

NOW, THEREFORE, in consideration of the above, the City and the Developer hereby agree as follows:

1. The Developer shall, on or before the <u>lst</u> day of <u>December</u>, 19<u>86</u>, complete to the satisfaction of the City the improvements required for the Subdivision as set forth, specified and referenced in Exhibit "A" attached hereto. The improvements which the Developer shall satisfactorily complete within the time limitation stated above are described and identified in Exhibit "D", which is attached hereto and incorporated herein as fully set forth in this Agreement.

·01 627

The time limitation stated above may be extended by the City Engineer for a period not to exceed twelve (12) months if the Developer shows adequate reasons for said extension.

- 2. After execution of this Agreement, payment of all fees as specified in Exhibit "A" attached hereto, and, if applicable, delivery of the financial guarantee specified in Exhibit "C" attached hereto, the Developer shall be issued a Work Order by the City. The Developer shall advise the City Engineer in advance of the actual start of construction and arrange for all inspections required and specified in Exhibit "B" attached hereto. The Developer shall permit the City or other participating agencies to make such tests and inspections during the construction of the improvements and upon completion of the improvements as are necessary or desirable.
- 3. Prior to final acceptance of the completed improvements by the City, the Developer shall furnish to the City Engineer all documentation of the completion of construction as set forth and specified in Exhibit "A" attached hereto.
- 4. Until acceptance of the improvements by the City, the Developer shall be solely responsible for maintaining the premises being subdivided in a safe condition. The Developer agrees to defend, indemnify and hold harmless the City and its officers, agents and employees from and against all suits, actions or claims of any character brought because of any injury or damage arising out of the design or construction of the improvements or by reason of any act or omission, or misconduct of the Developer, his agents, employees or the Engineer or Contractor or their agents or employees. The indemnity required hereunder shall not be limited by reason of the specifications of any particular insurance coverage in this Agreement. Nothing herein is intended to impair any right or indemnity under the laws of the State of New Mexico.

- 5. The Developer shall procure or cause to be procured and maintain public liability insurance in the amount of not less than One Million Dollars (\$1,000,000) combined single limit for accidents or occurrences which cause bodily injury, death or property damage to any member of the public resulting from any condition of the lands of the subdivision or improvements therein or the construction activities thereon. The insurance policy must name the City of Albuquerque, its employees, and elected officials, as their interest may appear, as additional insureds. The Developer shall maintain such insurance until acceptance of the improvements by the City. Any cancellation provision must provide that if the policy is cancelled prior to the expiration date hereof, materially changed, or not renewed, the issuing company will mail 30 days written notice to the City, attention City Engineer. The Developer shall furnish the City Engineer a cerificate of said insurance prior to issuance of a Work Order for construction of the improvements.
- 6. If at the time that construction of the Project is completed the City does not own the real property on or in which the improvements are constructed, the Developer shall convey such real property and property rights as the City deems necessary, together with all improvements, to the City free and clear of all claims, encumbrances and liens prior to final acceptance of the improvements by the City. Conveyance may be appropriate dedication on the final plat of the subdivision.
- 7. At the time of acceptance of the completed improvements or any portion thereof by the City, the Developer shall furnish or cause to be furnished a bond or other suitable guarantee in a form and with a surety satisfactory to the City to guarantee the completed project against defective

materials and workmanship for a period of three (3) years following the date of acceptance by the City.

- 8. The City shall either perform or monitor the performance of inspections during the course of construction of the improvements and inspect the improvements upon their completion in a timely manner, all as set forth and specified in Exhibit "B" attached hereto.
- The City shall designate a Construction Engineer and/or Inspector for this project.
- 10. The City shall make available at established reproduction costs for the use of the Developer or its agents all of its maps, records, laboratory tests, or other data pertinent to the work to be performed by the Developer or its agents pursuant to this Agreement and also any other maps, records, or other materials available to the City upon the City's request to any other public agency or body.
- 11. The City shall issue a Certificate of Completion and Acceptance for the Improvements upon final completion to the City's satisfaction of the Improvements as described in the plans and specifications as set forth and specified in Exhibit "A" attached hereto. However, the City Engineer, in his discretion, may issue a Certificate of Completion and Acceptance for a portion of the Improvements in accordance with the conditions and procedures set forth in Exhibit "C" attached hereto.
- 12. If the Developer has requested Final Plat approval by the City prior to the actual construction of the improvements, the City will approve the Final Plat for recordation upon execution of this Agreement, payment of all fees specified in Exhibit "A" attached hereto, delivery of the financial guarantee specified in Exhibit "C" attached hereto and full compliance with the City's Subdivision Ordinance.

- 13. This Agreement shall not be assigned except with the written consent of the parties hereto and the express written concurrence of any surety who has undertaken to guarantee the completion of the Improvements. If so assigned, this Agreement shall extend to and be binding upon the successors and assigns of the parties hereto.
- 14. In the event of the sale, conveyance, or assignment of the Subdivision or any portion thereof, the City will not release the Developer from its obligations under this Agreement and will continue to hold the Developer responsible for all Improvements until a successor in interest to the Developer has posted a suitable guarantee and entered into a Subdivision Improvement Agreement with the City. At such time as acceptable security has been posted by the Developer's successor in interest and the Agreement executed, the City will release the guarantee.
- 15. Should there be a conflict between the terms and conditions of this Agreement (with Exhibits A, B, C, and D) and the terms and conditions of any other document referred to herein, the terms and conditions of this Agreement (with Exhibits A, B, C, and D) shall govern.

IN WITNESS WHEREOF, the parties hereto have executed this Agreement as of the date first above written.

·06 631

CITY OF ALBUQUERQUE, NEW MEXICO

Gene Romo Chief Administrative Officer

IN WITNESS WHEREOF, the parties hereto have executed this Agreement as of the date first above written.

Charles Grafin

ATTEST:

City Clerk

REVIEWED BY:

\ h.

City Attorney

7

. 632 STATE OF NEW MEXICO COUNTY OF BERNALILLO The foregoing instrument was acknowledged before me this 22, 19 86, by Charles Suffix Ralph Boone My commission expires: OFFICIAL SEAL april 4, 1989 JANETTE M. WALKER NOTARY PUBLIC STATE OF NEW MEXICO Notary Bond Filed with Secretary of State
My Commission Expires Copin 4/9 69 STATE OF NEW MEXICO) ss. COUNTY OF BERNALILLO The foregoing instrument was acknowledged before me this 22day of July , 1986, by-C.D. Sheppard, City Engineer of the City of Albuquerque. Notary Public My commission expires:

EXHIBIT "A"

TO SUBDIVISION IMPROVEMENT AGREEMENT
EXECUTED BY AND BETWEEN Ralph Boone & Charles Griffin, Owners (Developer)
AND CITY OF ALBUQUERQUE, NEW MEXICO (CITY) ON
THE 22nd DAY OF (LIGHT), 1986.

. COMMITMENT TO CONSTRUCT IMPROVEMENTS.

The Developer shall construct in a manner satisfactory to the City the improvements listed in Paragraph 1 of the Subdivision Improvement Agreement and which are shown in greater detail on the Developer's proposed and approved Subdivision Improvements Plan, which was filed with the office of the City Engineer and identified as Project No. 2653

DESIGN AND CONSTRUCTION METHODS.

As soon as reasonably practical after approval of the Developer's Preliminary Plat of the Subdivision, the Developer shall submit to the City Engineer final construction plans, specifications, and cost estimates for the proposed public improvements. At this time, the Developer shall pay all fees required under Section 12.0 of the City's Subdivision Ordinance and Paragraph 4 of this Exhibit.

The Developer has engaged	DTM Engineering
as Engineer(s) for the construction Engineers in the State of New Mexi	project, who are Registered Professional co. The Developer shall ensure that the provide the following services prior to, a improvements:

The Developer shall ensure that the Engineer(s) perform all of the above services in a satisfactory manner and submit to the City Engineer any reports required by the City Engineer.

"will notify the City Engineer of selection in The Developer has engaged writing prior to issuance of work order".

as Contractor(s), who is properly licensed in the State of New Mexico. The Developer shall ensure that the Contractor(s), in such capacity, shall in a manner satisfactory to the City construct the improvements as shown on Developer's proposed Subdivision Improvements Plan (Project No. 2653), incorporating any change orders approved by the City Engineer, City of Albuquerque. Interim Standard Specifications for Public Works Construction, 1985, and all other applicable laws, regulations, and policies. Construction surveying and testing shall be performed as set forth in Exhibit "B" of the Subdivision Improvement Agreement between Developer and the City.

3. COMPLETION OF CONSTRUCTION.

The Developer shall report the completion of construction in writing to the City Engineer. Upon receipt of the report, the City Engineer or his representative shall visually inspect the public improvements to verify completion of construction according to plan. Subsequent to verification, the Developer shall submit to the City Engineer a "final acceptance package", which shall consist of the following documents:

- a. "As-built" drawings of reproducible quality, depicting all construction of the public improvements as actually accomplished in the field and certified by a New Mexico Registered Professional Engineer or Land Surveyor, as appropriate,
- b. A list of quantities of contract items in place, using the bid items in the City Engineer's Standard Estimated Unit Prices.

This list shall be divided into the following categories as applicable:

- (1) Sanitary sewer items and quantities;
- (2) Water service items and quantities;
- (3) Street paving quantities;
- (4) Street curb and gutter quantities; and
- (5) Storm drainage improvements and quantities.

The City shall concurrently provide a written certification from the City Engineer that the construction has been performed in substantial compliance with the City of Albuquerque Interim Standard Specifications for Public Works Construction, 1985, and with the approved final plans and specifications for public improvements. If the City is acting as the Contractor for all or a portion of the improvements constructed pursuant to this Agreement, the City shall prepare its own final acceptance package documents for those improvements actually constructed by the City.

Upon receipt of the Developer's "final acceptance package", the City Engineer shall review it for completeness and accuracy. If the documentation has been satisfactorily completed, the City Engineer shall approve the package and issue a Certificate of Completion and Acceptance. Any financial guarantee provided by the Developer in accordance with Section 6.D.2 of the City's Subdivision Ordinance and as described in Exhibit "C" to the Subdivision Improvement Agreement between the Developer and the City shall be released no later than sixty (60) days after approval of the final acceptance package by the City Engineer.

4. PAYMENT OF FEES.

Prior to issuance of a Work Order, the Developer shall pay to the City the following fees:

UC 636

Type of Fee	<u>Amount</u>
Engineering Fee	6% of all construction cost
Excavation Ordinance Fee	As required per City approved engineer's estimate
Sidewalk Ordinance Fee	As required per City approved engineer's estimate

Prior to final acceptance of the improvements by the City, the Developer shall pay any other City fees which may have been incurred during the course of construction.

CL 637

TO SUBDIVISION IMPROVEMENT AGREEMENT
EXECUTED BETWEEN Ralph Boone & Charles Griffin, Owners (DEVELOPER)

AND THE CITY OF ALBUQUERQUE (CITY)
ON THE AND DAY OF Luquet, 1986.

1. CONSTRUCTION INSPECTION METHODS.

Inspection of the subdivision improvement construction shall be performed by City of Albuquerque, a New Mexico Registered Professional Engineer, in accordance with all applicable laws, ordinances and regulations. If said inspection is performed by an entity other than the City, the City may monitor said inspection and the Developer shall ensure that the inspecting entity provides all inspection results, reports and related data to the City as required for review. The City retains the right to perform its own general overall inspection of the construction project at any time prior to final acceptance of the improvements if deemed necessary or advisable by the City Engineer. For any inspections performed by the City, the Developer shall pay to the City a reasonable fee therefor.

2. CONSTRUCTION SURVEYING.

Construction surveying for the subdivision improvement project shall be performed by City of Albuquerque in accordance with all applicable laws, ordinances and regulations. If said construction surveying is performed by an entity other than the City, the City may monitor said construction surveying and the Developer shall ensure that the construction surveying entity provides all construction surveying field notes, plats, reports and related data to the City as required for review. If any construction surveying is performed by the City, the Developer shall pay to the City a reasonable fee therefor.

3. FIELD TESTING.

Field testing of the subdivision improvement construction shall be will notify the City of Selection performed by in writing prior to w.o., Subjection supervision of a New Mexico Registered Professional Engineer, in accordance with the technical standards contained in the applicable contract documents and all applicable laws, ordinances and regulations. If any field testing is performed by an entity other than the City, the City may monitor said field testing and the Developer shall ensure that the field testing entity provides all field testing results, reports and related data to the City as required for review. If any field testing is performed by the City, the Developer shall pay to the City a reasonable fee therefor.

4. RECORD TESTING.

Notwithstanding the provisions of Paragraph 3 above, the City retains the right to perform any and all record testing which may be deemed necessary or advisable by the City Engineer at the expense of the Developer.

cc 639

EXHIBIT "C"

TO SUBDIVISION IMPROVEMENT AGREEMENT

EXECUTED BETWEEN Ralph Boone & Charles Griffin, Owners (DEVELOPER)

AND THE CITY OF ALBUQUERQUE (CITY) ON

THE DAY OF UNAMBLE 1984.

PLAT APPROVAL STATUS

The Developer has has not (circle one) requested final plat approval by the City prior to construction of the Subdivision Improvements described in Paragraph 1 of the Subdivision Improvement Agreement. If the Developer has not requested final plat approval prior to construction of the improvements, no financial guarantee is required by the City. However, the Developer understands and agrees that the City will not approve the Developer's proposed plat until the improvements are completed in accordance with the Agreement to which this document is attached as an Exhibit.

If the Developer has requested final plat approval prior to the construction of the improvements, a financial guarantee in an amount of not less than 125 percent of the costs of completing the improvements (as estimated by the City Engineer) is required pursuant to the City's Subdivision Ordinance. Said financial guarantee must be irrevocable in form and may be effected by a bond, letter of credit, escrow deposit, or other acceptable pledge of liquid assets payable to the City in the event of Developer's default under the Subdivision Improvement Agreement.

2. FINANCIAL GUARANTEE

With respect to the Subdivision Improvement Agreement to which this document is attached as an Exhibit, the Developer has acquired or is able to acquire the following described financial guarantee (describe fully, indicate amount, identification number, names of bank or bonding entity, inclusive dates of guarantee, and all other relevant information):

C-1

A.

The Developer understands and agrees that the original executed financial guarantee described above must be delivered to the City simultaneously with the City's execution of the Subdivision Improvement Agreement between Developer and the City; and must be in an amount of not less than 125 percent of the cost of completing the improvements, as estimated by the City Engineer.

In the event the Developer shall fail or neglect to fulfill his obligations under this Agreement, the City shall have the right to construct or cause to be constructed the Improvements specified herein, as shown on the Final Plat and in the plans and specifications as approved, and the Developer as Principal and the surety or sureties shall be jointly and severally liable to pay to and indemnify the City, the total cost to the City thereof, including but not limited to, engineering, legal, and contingent costs together with any damages, either direct or consequential, which the City may sustain on account of the failure of the Developer to carry out and execute all of the provisions of the Agreement to which this document is attached as an Exhibit. The City shall have the unconditional right to call upon the financial guarantee provided by the Developer described in this paragraph for the purposes specified and in the amounts enumerated in such guarantee.

3. PROCEDURES FOR REDUCTION OF FINANCIAL GUARANTEE UPON PARTIAL COMPLETION OF IMPROVEMENTS.

The Developer may request a reduction in the amount of financial guarantee upon partial completion of the subdivision improvements. To qualify for a financial guarantee reduction, the completed improvements must be of a free-standing nature, functionally independent of any uncompleted.

improvements, and completed in substantial compliance with the subdivision improvement construction plans as determined by an inspection conducted by the City.

If the completed improvements meet the above requirements, the City Engineer will then estimate the cost of completing the remaining improvements. The Developer may then submit the following documents to the City for review and approval:

- a) A revised financial guarantee in an amount of not less than 125
 percent of the City Engineer's estimated cost of completing the remaining
 improvements;
- b) A release of the original financial guarantee for execution by the City;
- c) Documentation that the completed improvements and the land in which the completed improvements are located are subject to no liens, claims or other encumbrances;
- d) A bond or other suitable instrument guaranteeing the completed improvements against defective materials and workmanship for a period of three (3) years as set forth in Paragraph 7 of the Subdivision Improvement Agreement between the Developer and the City.

Upon receipt of the above-described documents in forms acceptable to the City, the City shall issue a Certificate of Completion and Acceptance for the completed improvements and accepts the revised financial guarantee tendered by the Developer.

STATE OF NEW MEXICO COUNTY OF BERNALILLO FILED FOR RECORD

1986 SEP -3 PH 3: 15

Rev. 10/85 Oll From PHT

C-3

DENNEY-GROSS & ASSOCIATES, INC

CONSULTING ENGINEERS 2400 COMANCHE ROAD, N.E. ALBUGERQUE, NEW MEXICO 87107 (505) 884-0696

Exhibit "0"

RECEIVED

PUBLIC INFRASTRUCTURES
FOR
TRACT A-1, SUMMIT HILLS SUBDIVISION
DRB #85-327
JULY 29, 1985

OCT 09 1985

CITY ENGINEER

Sanitary Sewer

Manholes 8" Sewer Line Sewer Services

145 l.f. 8 ea.

Water

Fire Hydrants 6" Water Line Water Services 1 ea. 175 l.f. 8 ea.

Street

Curb & Gutter (Ea. side) Residential Paving (28' Gutter to Gutter) Side Walks (4' Ea. side) 454 lf. 887 s.y.

454 l.f.

Storm Sewer

Single D Inlet Rock Riprap 1 ea. 7 c.y.

Majato SIDEWALK CULUCAT

Approved Ust . 9.24.85

CITY CASIFOCA POMORE

Chairman DRB

The Etropused

THE REPRODUCTION OF THIS DOCUMENT CANNOT BE IMPROVED DUE TO THE CONDITION OF THE ORIGINAL.

9-4-85

FIRST NATIONAL BANK OF CLOVIS DAN HARDISTY, PRESIDENT

June 4, 1986

IRREVOCABLE LETTER OF CREDIT AND AGREEMENT NO. 060486

Amount: \$39,962.75

Mr. Gene Romo Chief Administrative Officer City of Albuquerque P. O. Box 1293 Albuquerque, NM 87103

Dear Mr. Romo:

At the request of Ralph Boone and Charles Griffin, we establish our Irrevocable Letter of Credit in your favor for the account of Ralph Boone and Charles Griffin, to the extent of and not exceeding Thirty-Nine Thousand Nine Hundred Sixty-Two and 75/100 Dollars, (\$39,962.75).

This Letter of Credit has been estrilished to insure the completion of sidewalk improvements in Summit Hills, as provided by the Agreement between Ralph Boone and Charles Griffin, and the CITY OF ALBUQUERQUE which Agreement is recorded in Book Misc. 390-A, at pages 625 to 642, of the records of the County of Bernalillo, State of New Mexico (the 'Agreement'). Draft or Drafts for any amount up to, but not in excess of Thirty-Nine Thousand Nine Hundred Sixty-Two and 75/100 Dollars, (\$39,962.75) is/are available at sight at First National Bank of Clovis, New Mexico, between June 4, 1986 and June 4, 1987.

When presented for negotiation, the Draft(s) is/are to be accompanied by the following document:

The City's notarized certification stating that Ralph Boone and Charles Griffin have failed to comply with the terms of the Agreement, and also certifying that "the undersigned is Chief Administrative Officer of the City of Albuquerque and is authorized to sign this statement," and also certifying that the amount of the Draft does not exceed 125% of the cost of completing the improvements specified in the Agreement.

We hereby agree with the drawer of Draft(s) drawn and under and in compliance with the terms of this credit that such Draft(s) will be duly honored on the presentation to the drawee if negotiated between June 4, 1986 and June 4, 1987.

Page -2-

The Draft(s) drawn under this credit must be endorsed and contain the clause: "Drawn under Letter of Credit and Agreement No. 060486 of First National Bank of Clovis, New Mexico, dated June 4, 1986"; the amount of such Draft(s) must be endorsed on the reverse side thereof, and this Letter of Credit must be attached to that Draft which exhausts this credit.

This credit is subject to the Uniform Customs and Practice for Documentary Credits (1983 Revision), International Chamber of Commerce, Publication No. 400.

This credit terminates at three o'clock p.m., New Mexico time, June 4, 1987.

FIRST NATIONAL BANK OF CLOVIS

Dan Hardisty President

APPROVED AS TO FORM:

James "

DENNEY-GROSS & ASSOCIATES, INC.

CONSULTING ENGINEERS 2400 COMANCHE ROAD, N.E.

ALBUGERQUE, NEW MEXICO 87107

(505) 884-0698

PUBLIC INFRASTRUCTURES FOR TRACT A-1, SUMMIT HILLS SUBDIVISION

DRB #85-327

JULY 29, 1985

Sanitary Sewer

Manholes 8" Sewer Line Sewer Services

1 ea. 145 1.f. 8 ea.

Water

Fire Hydrants 6" Water Line Water Services 1 ea. 175 l.f. 8 ea.

Street

Curb & Gutter (Ea. side) (28' Gutter to Gutter)
Side Walks (4' Ea. side) 454 lf. 887 s.y. 454 1.f.

Storm Sewer

Single D Inlet Rock Riprap

1 ea. 7 c.y.

SIDEWALK CULVERY

Sported Wot . 9.24.85

The Committee Chairman DRB

City of Albuquer que P.O. BOX 1293 ALBUQUEROUE, NEW MEXICO 87103

DESIGN HYDROLOGY SECTION 123 Central NW, Albuquerque, NM 87102 (505) 766-7644

September 27, 1985

Mr. Joe Jones D.T.M. & Association, Inc. 2400 Comanche NE Albuquerque, NM 87110

REF: DRAINAGE REPORT FOR SUMMIT HILLS (J23-D2A)

Dear Mr. Jones:

The referenced plan dated 9/19/85 is approved for preliminary plat sign-off.

If you have any questions or $\,$ comments regarding this project, please call me at 766-7644.

Cordially,

Cala A Mota a Carlos A. Montoya City/County Flood Plain

CAM/c1

DRAINAGE INFORMATION SHEET

PROJECT TITLE: SUMMIT HILLS ZONE	ATLAS/DRNG. FILE #: J-23
LEGAL DESCRIPTION: Tract A-1, Summit Hills	
CITY ADDRESS:	
ENGINEERING FIRM: DENNEY-GROSS & ASSOCIATES, INC	C. CONTACT: Joe Jones
ADDRESS: 2400 Comanche, N.E.	PHONE: 884-0696
OWNER: ENTITY CO., INC.	
ADDRESS: 2920 Axtell, Clovis, NM	
ARCHITECT: N/A	CONTACT: N/A
ADDRESS:	PHONE :
SURVEYOR: DENNEY-GROSS & ASSOCIATES, INC.	CONTACT: Steve Youtsey
ADDRESS: 2400 Comanche N.E.	PHONE: 884-0696
CONTRACTOR:	CONTACT:
ADDRESS:	PHONE:
PRE-DESIGN MEETING:	85.327 (9/10/85)
YES OCOPY OF CONFERENCE RECAP SHEET PROVIDED	DRB No. 46-237 (5-14-85) EPC No. 2-83-18 PROJ. No.
TYPE OF SUBMITTAL:	CHECK TYPE OF APPROVAL SOUGHT:
X DRAINAGE REPORT DRAINAGE PLAN CONCEPTUAL GRADING & DRAINAGE PLAN GRADING PLAN EROSION CONTROL PLAN ENGINEER'S CERTIFICATION	SKETCH PLAT APPROVAL X PRELIMINARY PLAT APPROVAL SITE DEVELOPMENT PLAN APPROVAL FINAL PLAT APPROVAL BUILDING PERMIT APPROVAL FOUNDATION PERMIT APPROVAL CERTIFICATE OF OCCUPANCY APPROVAL ROUGH GRADING PERMIT APPROVAL GRADING/PAVING PERMIT APPROVAL OTHER (SPECIFY)
DATE SUBMITTED: 9/19/85 BY: JOE JONES Joe Jones	SEP 1 9 1985 HYDROLOGY SECTION

Denney-Tibljas-McLean & Associates, Inc. Consulting Engineers ■ Planners ■ Surveyors

September 5, 1985 HYDROLOGY SECTION

SFP 05 1985

Mr. Carlos Montoya Hydrology Department City of Albuquerque 123 Central Avenue NW Albuquerque, NM 87103

Summit Hills Subdivision Re: (J23-D2A) DTM Job No. 723.32

Dear Mr. Montoya:

Enclosed for your approval are two copies of the revisions to the drainage and grading plan for the above referenced project.

The comments in your August 22nd, 1985, letter have been addressed as follows:

- The 18" RCP was constructed under Change Order No. 2 for Project No. 2176.
- Grades indicated on the plan are proposed for the developing adjacent properties.
- 3. Additional spots have been added to the plan.
- 4. An extra copy is enclosed.
- The calculations have been reviewed and revised.
- We have determined that there is no downstream capacity. However, we have determined that there is no downstream capacity. However, the enclosed calculations show that this is an existing problem. Prior to the construction of Summit Hills, the flow at the analysis point was approximately 42 cfs. This resluted in a depthof 1.0 feet for the 100-year flow at the analysis point. Construction in the area has reduced the flow to 16.6 cfs and the depth to 0.66 feet. We propose to discharge an additional 4.3 cfs which will only increas the depth of the 100-year flow by 0.04 feet as shown in the calculations.

If you have any further questions, please feel free to call.

Veny truly yours,

JJ/am Enclosure 2400 COMANCHE ROAD, NE 🛮 ALBUQUERQUE, NM 87107 TELEPHONE (505) 884-0896

nes

City of Albuquerque

P.O. BOX 1293 ALBUQUERQUE, NEW MEXICO 87103

DESIGN HYDROLOGY SECTION 123 Central NW, Albuquerque, NM 87102 (505) 766-7644

August 22, 1985

Mr. Joe Jones D.T.M. & Association, Inc. 2400 Comanche NE Albuquerque, NM 87110

REF: DRAINAGE REPORT FOR SUMMIT HILLS (J23-D2A) RECEIVED AUGUST 15, 1985

Dear Mr. Jones:

I have reviewed the referenced plan and forward the following comments:

- Please submit the approved work order drawing which shows the 18 inch RCP from the rundown to catch basin number one (1). Indicate the work order number on the drainage plan.
- Please show grades on the developing property to the east. Show how your property interfaces with this site.
- Please show more proposed spot elevations on the lots. Especially address lots 3 & 4.
- 4. The use of the unlined channel shown on Section A is not a standard City section. We will be required to maintain this channel. Please submit two copies of your drainage plan for your next submittal. We will request Dan Hogan to review this channel for his concurrence.
- The calculations on page 3 show a 6 to 1 side slope and a 0.0267 invert slope. Please review this design with the drainage plan and Section A. Review the velocity of the channel for erosion posibilities.
- Reducing the developed flows below the existing flows does not relieve the engineer of checking downstream capacity. Please check the capacity of flows at Verbena Place and Snowdrop. We have been receiving complaints on this particular corner.

MUNICIPAL DEVELOPMENT DEPARTMENT

Mr. Joe Jones August 22, 1985 Page -2-

If you should have any questions, please feel free to call me at 766-7644.

Sincerely,

Carlos A. Montoya City/County Finod Plain Admin.

CAM:mrk

City of Albuquerque

P.O. BOX 1293 ALBUQUERQUE, NEW MEXICO 87103

DESIGN HYDROLOGY SECTION 123 Central NW, Albuquerque, NM 87102 (505) 766-7644

July 17, 1985

Mr. Joe Jones Denny-Gross & Assoc., Inc. 2400 Comanche Rd. NE Albuquerque, N.M. 87107

RE: DRAINAGE PLAN FOR SUMMIT HILLS TRACT A-1, 8 LOTS J23/D2A) RECEIVED JUNE 26, 1985.

Dear Mr. Jones:

I have reveiwed the referenced plan and forward the following comments.

- Please indicate slopes in the back yards for the eight lots. Also, show more proposed elevations for each of the lots.
- 2. Please show the proposed interface elevations for the adjoining development to the east (Summit Hills) and to the Rebonito site.
- Mr. Goolsby in his June 24, 1985 letter asked for a cross-section to show the relationship of this development and the existing development to the south. Please supply this cross-section.
- 4. If CMU walls are to be built between lots how will flows be conveyed through the 3 foot drainage easement?
- We have complaints of overflowing in the streets at Verbena Pl. and snowdrop. Your discharge from the site will be directed down these streets. Please address street capacity at the intersection of Verbena Pl. and snowlrop.

MUNICIPAL DEVELOPMENT DEPARTMENT

Mr. Joe Jones July 17, 1985 Page -2-

6. Has the Rebonito Subdivision work order been changed to include 18" RCP from the new site.

If you have any questions, please contact this office at 766-7644.

Sincerely,

Carlos A. Montoya City/County Flood Plain Admin.

CAM/c1

DRAINAGE INFORMATION SHEET

PROJECT TITLE: SUMMIT HILLS ZON	E ATLAS/DRNG. FILE #: J-23/D98
LEGAL DESCRIPTION: Tract A-1, Summit Hills	
CITY ADDRESS:	
ENGINEERING FIRM: DENNEY-GROSS & ASSOCIATES, IN	C CONTACT:Joe_Jones
ADDRESS: 2400 Comanche, N.E.	PHONE: 884-0696
OWNER: ENTITY CO., INC.	CONTACT: Ralph Boone
ADDRESS: 2920 Axtell, Clovis, NM	PHONE: 763-3177
ARCHITECT:N/A	CONTACT: N/A
ADDRESS:	
SURVEYOR: DENNEY-GROSS & ASSOCIATES, INC.	CONTACT: Steve Youtsey
ADDRESS: 2400 Comanche N.E.	PHONE: 884-0696
CONTRACTOR:	CONTACT:
ADDRESS:	
PRE-DESIGN MEETING: X YES	DRB No
X YES NO COPY OF CONFERENCE RECAP JUN 2 6 1985 HYDROLOGY SECTION	PROJ. No
TYPE OF SUBMITTAL:	CHECK TYPE OF APPROVAL SOUGHT:
X DRAINAGE REPORT DRAINAGE PLAN CONCEPTUAL GRADING & DRAINAGE PLAN GRADING PLAN EROSION CONTROL PLAN ENGINEER'S CERTIFICATION	SKETCH PLAT APPROVAL X PRELIMINARY PLAT APPROVAL SITE DEVELOPMENT PLAN APPROVAL FINAL PLAT APPROVAL BUILDING PERMIT APPROVAL FOUNDATION PERMIT APPROVAL CERTIFICATE OF OCCUPANCY APPROVAL ROUGH GRADING PERMIT APPROVAL GRADING/PAVING PERMIT APPROVAL OTHER(SPECIFY)

DATE SUBMITTED: 6-26-85

BY: JONES JONES

NNEY-GROSS & ASSOCIATES, INC.

CONBULTING ENGINEERS 2400 COMANCHE ROAD, N.E. ALBUGERGUE, NEW MEXICO 87107 (505) 884-0898

Mr. Billy Goolsby City Hydrology 123 Central Ave. NW Albuquerque, NM 87104 JUN 2 6 1985
JUN 2 6 1985
HYDROLOGY SECTION

Re: Summit Hills Drainage Plan DGA Job No. 723.32

Dear Mr. Goolsby:

Enclosed is a copy of the Drainage and Grading Plan for the above referenced project.

The comment of your June 12, 1985 letter concerning the pipe outlet has been addressed. The drainage stub from the Rebonito Channel will be extended as part of the Rebonito Project to the southwest corner of Summit Hills Subdivision.

We have also reanalyzed the flow in the Archuleta rundown. The developed flow in the rundown was calculated to be 10.6 cfs in the Rebonito Subdivision Drainage Report. Construction of Summit Hills Subdivision will decrease the flow to 9.4 cfs. The enclosed calculations show a normal depth in the channel of 0.21' and a conjugate depth of 0.44' at the outlet of the channel.

If you have any questions please feel free to call.

Sincerely,

Joe Jones

JJ/bjk Enclosures

DENNEY - GROSS & ASSOCIATES, INC. ENGINEERS SURVEYORS PLANNERS 2400 COMANCHE ROAD N.E. ALBUQUERQUE, NEW MEXICO 87107 (505) 884-0695 DATE 6-26-85

DESIGNER 5 SOMES JUN 1985

PAGE HYDROLOGY SECTION

HANNINGS CHANNEL 0=9.40 CFS YN=0.18 FT n=0.0130 B=9.30 FT H/Y=0.06 V=5.50 FPS S=0.02333 F/F Yc=0.32 FT Vc=3.19 FPS Sc=0.09395 F/F	64° C. 1	B=9.30 FT H/Y=8.00 V=4.82 FPS S=0.01510 F/F Yc=0.32 FT Vc=3.19 FPS S=0.00395 F/F	Super-out	
MANNINGS CHANNEL 0=9.40 CFS YN=0.09 FT n=0.0138 E=9.38 FT H/Y=0.00 V=11.55 FPS S=0.27053 F/F YC=0.32 FT YC=0.32 FT YC=0.39 FPS SC=0.00395 F/F	54"			
MANNINGS CHANNEL 0=9.48 CFS YN=0.12 FT n=0.0130 B=9.30 FT H/V=0.00 V=8.45 FPS S=0.09600 F/F Yc=8.32 FT Vc=3.19 FPS Sc=0.00395 F/F	Soperation			

DENNEY - GROSS & ASSOCIATES, INC. ENGINEERS SURVEYORS PLANNERS 2400 COMANCHE ROAD N.E. ALBUQUERQUE, NEW MEXICO 87107 (505) 884-0695 PROJ. NO. JUN 2 6 1985

DATE HYDROLOGY SECTION

PAGE

STANDARD	11111			
STEP			11.07.14.1	
STA=0.00	STA=6.00	STA=10.00	STA=15.00	STA=20.00
0=9.40	0=9.49	0=9.40	Q=9.40	Q=9.46
X=8.88	X=6.00	X=4.88	X=5.00	X=5.08
B=9.38 .	P=9.30	B=9.30	B=9.30	B=9.30
Y=0.32	Y=8.22	Y=0.12	Y=0.18	Y=0.09
R=2.98	R=2.05	A=1.07	A=0.89	A=0.84
R=8.30	R=0.21	R=0.11	R=8.09	R=0.09
R14/3=0.2003	R14/3=0.1249	R14/3=0.8545	R14/3=0.0425	Rt4/3=0.8393
V=3.16	V=4.59	V=8.75	V=10.58	V=11.24
VH=8.1784	VH=0.3604	VH=1.3073	VH=1.9115	VH=2.1570
Ec=8.4984	Fc=0.5804	Ec=1.4229	Ec=2.0070	Ec=2.2469
dE=8.0000	dE=8.8988	dE=0.8424	dE=0.5842	dE=8.2399
SF=0.00379	SF=8.81286	SF=0.10699	SF=8.20048	SF=8.24471
SFa=0.00000	SFa=0.00833	SFa=0.05993	SFa=0,15369	SFa=0.22256
9=0.02333	S=8.82333	S=0.27053	S=0.27053	S=0.27053
S-STa=0.02333	S-SFa=0.01500	S-SFa=0.21860	S-SFa=0.11684	S-SFa=0.04797
dX=8.0000	dX=6.0000	dX=4.0000	dX=5.0000	dX=5.0000
	a contract of the	International Control		
	ST0=39, 69	210=75 06	STO-de GO	270=50 00
STA=25.88	STA=30.98 0=9.46	STA=35.00	STA=40.00	STA=50.08
0=9.40	Q=9.40	0=9.40	0=9.40	0=9.40
0=9.40 X=5.80	Q=9.40 X=5.00	0=9.40 X=5.00	0=9.40 X=5.80	0=9.48 X=10.88
0=9.40 X=5.80 B=9.30	0=9.40 X=5.00 B=9.30	0=9.40 X=5.00 B=9.30	0=9.40 X=5.80 B=9.30	0=9.40 X=10.60 B=9.30
0=9.40 X=5.80 B=9.30 Y=0.09	0=9.40 Y=5.00 B=9.30 Y=0.10	0=9.40 X=5.80 B=9.30 Y=0.13	0=9.40 X=5.80 B=9.30 Y=0.14	0=9.40 X=10.00 B=9.30 Y=0.18
0=9.40 X=5.80 B=9.30 Y=0.09 A=0.82	Q=9.40 X=5.00 B=9.30 Y=0.10 A=0.95	0=9.46 X=5.00 B=9.30 Y=0.13 R=1.17	0=9.40 X=5.80 B=9.30 Y=0.14 A=1.34	0=9.40 X=10.00 B=9.30 Y=0.18 A=1.63
0=9.40 X=5.80 B=9.30 Y=0.09 A=0.82 R=0.09	0=9.40 %=5.00 B=9.30 %=0.10 A=0.95 R=0.10	0=9.46 X=5.00 B=9.30 Y=0.13 A=1.17 P=0.12	0=9.40 %=5.80 B=9.30 Y=8.14 A=1.34 R=8.14	0=9.40 X=18.80 8=9.30 Y=0.18 A=1.63 R=0.17
0=9,40 X=5.80 B=9.30 Y=0.09 A=0.82 R=0.09 R+4/3=0.0383	0=9.40 X=5.00 B=9.30 Y=0.10 A=0.95 R=0.10 R14/3=0.0466	0=9.40 X=5.80 B=9.30 Y=0.13 A=1.17 P=0.12 R14/3=0.0605	0=9.40 X=5.80 B=9.30 Y=0.14 R=1.34 R=0.14 R14/3=0.0728	0=9.40 X=10.00 8=9.30 Y=0.18 R=0.17 R+4/3=0.0937
0=9.40 X=5.80 B=9.30 Y=8.09 A=6.82 R=8.09 R+4/3=0.0383 V=11.47	0=9.40 X=5.00 B=9.30 Y=0.10 A=0.95 R=0.10 R†4/3=0.0466 V=9.86	0=9.40 X=5.80 B=9.30 Y=0.13 A=1.17 P=0.12 R14/3=0.0605 V=8.07	0=9.40 X=5.80 B=9.30 Y=0.14 A=1.34 R=0.14 R14.73=0.8728 V=6.99	0=9.40 X=10.00 R=9.30 Y=0.18 A=1.63 R=0.17 R+4.73=0.0937 V=5.75
0=9.40 X=5.00 B=9.30 Y=0.09 A=0.09 R=0.09 R=4.3=0.0303 V=11.47 YH=2.2457	0=9.40 X=5.80 B=9.30 Y=9.10 A=0.95 R=0.10 R14/3=0.0466 V=9.86 VH=1.6604	0=9.46 N=5.00 B=9.30 Y=0.13 A=1.17 P=0.12 R14/3=0.0605 V=8.07 VH=1.1115	0=9,40 X=5,80 B=9,30 Y=0,14 A=1,34 R=6,14 R14/3=0,0728 Y=6,99 VH=6,8353	0=9.40 X=10.00 B=9.30 Y=0.18 A=1.63 P=0.17 R+4/3=0.0937 Y=5.75 VH=0.5651
0=9.40 X=5.80 B=9.30 9-0.09 9-6.82 R=0.89 R+4/3=0.0383 V=11.47 VH=2.2457 Ec=2.3338	0=9.40 X=5.80 B=9.30 Y=0.10 A=0.95 R=0.10 R†4/3=0.0466 V=9.86 VH=1.6604 Ec=1.7629	0=9.40 N=5.00 B=9.30 Y=0.13 A=1.17 R=0.12 R14/3=0.0605 V=8.07 YH=1.1115 Ec=1.2368	0=9.40 X=5.80 B=9.30 Y=0.14 A=1.34 R=0.14 R14/3=0.0728 V=6.99 VH=0.8353 Ec=0.9798	0=9.40 X=10.00 8=9.30 Y=0.18 A=1.63 R=0.17 R+4/3=0.0937 V=5.75 VH=0.5651 Ec=0.7408
0=9.40 X=5.80 B=9.30 Y=0.09 A=6.82 R=0.09 R14/3=0.0383 V=11.47 VH=2.2457 E=2.3338 dE=0.0869	0=9.40 X=5.00 B=9.30 Y=0.10 A=0.95 R=0.10 R14/3=0.0466 V=9.86 VH=1.6604 Ec=1.7629 dE=-0.5709	0=9.40 X=5.00 B=9.30 Y=0.13 A=1.17 R=0.12 R14/3=0.0605 V=8.07 YH=1.1115 E==1.2360 dE==0.5261	0=9.40 X=5.80 B=9.30 Y=0.14 A=1.34 R=0.14 R14/3=0.0728 V=6.99 VH=6.8353 Ec=0.9798 dE=-0.2570	0=9.40 X=10.00 8=9.30 Y=0.18 A=1.63 R=0.17 R14/3=0.0937 Y=5.75 VH=0.5651 Ec=0.7408 dE=-0.2390
0=9.40 X=5.00 B=9.30 Y=0.09 R=0.09 R+4/3=0.0383 V=11.47 YH=2.2457 Ec=2.3338 d=0.0869 SF=0.26158	0=9.40 X=5.00 B=9.30 Y=0.10 R=0.95 R=0.10 R14/3=0.0466 V=9.86 VH=1.6604 EC=1.7629 dE=-0.5709 SF=0.15878	0=9.40 X=5.00 B=9.30 Y=0.13 A=1.17 P=0.12 R14/3=0.0605 Y=0.07 VH=1.1115 Ec=1.2360 dE=-0.5261 SF=0.08186	0=9.40 X=5.80 B=9.30 Y=0.14 A=1.34 R=0.14 R14/3=0.0728 V=6.99 VH=6.8353 Ec=8.9798 dE=-0.2570 SF=0.05112	0=9.40 X=10.00 8=9.30 Y=0.18 R=0.17 R+4/3=0.0937 Y=5.75 VH=0.5651 Ec=0.7408 dE=-0.2390 SF=0.02688
0=9.40 X=5.00 B=9.30 P=9.80 A=0.82 R=0.09 R+4/3=0.0383 V=11.47 VH=2.2457 Ec=2.3338 dE=0.26158 SF=0.26158 SF=0.25315	0=9.40 X=5.80 B=9.30 Y=9.10 A=0.95 R=6.10 R14/3=0.0466 V=9.86 VH=1.6604 Ec=1.7629 dE=-0.5709 SF=0.15878 SFa=0.21018	0=9.46 N=5.00 B=9.30 Y=0.13 A=1.17 P=0.12 R14/3=0.0605 V=0.07 VH=1.1115 Ec=1.2360 dE=-0.5261 S=-0.08186 SFa=0.12032	0=9,40 X=5,80 B=9,30 Y=0,14 A=1,34 R=6,14 R14/3=0,0728 Y=6,99 YH=6,8353 Ec=6,9798 dE=-0,2570 SF=0,05112 SF=0,06649	0=9.40 X=10.00 8=9.30 Y=0.18 A=1.63 P=0.17 R+4/3=0.0937 Y=5.75 VH=0.5651 Ec=0.7408 dE=-0.2390 SF=0.02688 SFa=0.03900
0=9.40 X=5.00 B=9.30 Y=0.09 R=0.09 R+4/3=0.0383 V=11.47 YH=2.2457 Ec=2.3338 d=0.0869 SF=0.26158	0=9.40 X=5.00 B=9.30 Y=0.10 R=0.95 R=0.10 R14/3=0.0466 V=9.86 VH=1.6604 EC=1.7629 dE=-0.5709 SF=0.15878	0=9.40 X=5.00 B=9.30 Y=0.13 A=1.17 P=0.12 R14/3=0.0605 Y=0.07 VH=1.1115 Ec=1.2360 dE=-0.5261 SF=0.08186	0=9.40 X=5.80 B=9.30 Y=0.14 A=1.34 R=0.14 R14/3=0.0728 V=6.99 VH=6.8353 Ec=8.9798 dE=-0.2570 SF=0.05112	0=9.40 X=10.00 8=9.30 Y=0.18 R=0.17 R+4/3=0.0937 Y=5.75 VH=0.5651 Ec=0.7408 dE=-0.2390 SF=0.02688

DENNEY - GROSS & ASSOCIATES, INC. ENGINEERS SURVEYORS PLANNERS 2400 COMANCHE ROAD N.E. ALBUQUERQUE, NEW MEXICO 87107 (505) 884-0695

LOCATION	
PROJ. NO.	DECEMBED.
DATE	JUN 26 1985
DESIGNER	HYDRO OGY SECTION
PAGE	SECTION

	STA=88.88	STA=98.00	STA=100.00
STA=70.00	Q=9.48	Q=9.40	0=9.48
			X=18.00
			B=9.30
			7=8.21
			R=1.94
			R=0.20
			R14/3=0.1170
			V=4.84
			VH=0.3994
			Ec=8.6984
			dE=-0.0021
			SF=0.01522
			SFa=0.01531
			S=0.01510
			S-SFa=-0.00021
S-SFa=-0.00314			dx=10.0000
dX=10.0000	dX=10.0001	dx=10.0000	GV-10.0000
STR=115.88	STA=123.00		
	X=8.88		
	B=9.30		
	Y=0,22		
	A=2.06		
	R=0.21		
	Rt4/3=0.1261		
	V=4.56	V2=2.32	FPS
	VH=0.3550		THE RESTRICT OF THE
	Ec=0.5767		
	dE=-0.0307		
	SF=0.01255		
	SFa=0.01384		
	S=0.01060		
	S-SFa=-0.00384		
	dX=8.0000	1.5.	
			and the second second
	A CONTRACTOR OF THE PARTY OF TH		
	9=9.46 X=18.00 B=9.36 Y=8.20 R=1.88 R=0.19 R44/3=0.1123 Y=4.99 VH=0.4256 Ec=0.6281 dE=-0.0314 SF=0.01510 S-SF=0.01824 S=0.01510 S-SF=0.00314 dX=10.0000 STA=115.06 0=9.40 X=5.00 B=9.30 Y=0.21 A=1.95 P=0.20 R44/3=0.1172 Y=4.83 Y=0.21 Y=0.21 A=1.95 P=0.20 R44/3=0.1172 Y=4.83 Y=0.21 SF=0.00004 dX=5.000000000000000000000000000000000000	X=10.00 X=10.00 B=9.30 Y=0.20 Y=0.20 Y=0.21 A=1.88 A=1.92 R=0.20 R+4/3=0.1123 R+4/3=0.1152 Y=4.99 Y=0.28	X=10.00 X=10.0

CITY OF ALBUQUERQUE

ALBUQUERQUE, NEW MEXICO

INTER-OFFICE CORRESPONDENCE

June 24, 1985

REF. NO._____

TO: Richard Dineer, Chairman; D.R.B.

FROM: Fred J. Aguirre, P.E.; Design Hydrologist

SUBJECT: COMMENTS FOR JULY 2, 1985 DRB PUBLIC HEARING

S-65-17 DRB-85-327:

The DRB number on application and legal description of the request is incorrect, it should be DRB-85-327.

- City Surveyor's signature is required prior to preliminary and final plat approval.
- The drainage scheme has been approved conceptually; however, prior to preliminary plat approval, drainage report will be required addressing comments submitted to the developer's engineer on June 24, 1985.
- A listing of the required public/private infrastructures (approved by DRB) will be a requirement for preliminary plat approval.
- An executed Subdivision Improvements Agreement will be required for final plat approval.

J-23/D2A: Drainage Report for Preliminary Plat submitted May 22, 1985.
Approved as to concept (June 12, 1985).

FJA/bsj

City of Albuquerque

P.O. BOX 1293 ALBUQUERQUE, NEW MEXICO 87103

DESIGN HYDROLOGY SECTION 123 Central NW, Albuquerque, NM 87102 (505) 766-7644

June 24, 1985

Mr. Gary Tibljas Denney-Gross & Associates, Inc. 2400 Comanche Road NE Albuquerque, NM 87107

REF: LRAINAGE MANAGEMENT PLAN FOR SUMMIT HILLS SUBDIVISION TRACT A-1 (J23-D2A) RECEIVED MAY 22, 1985

Dear Gary:

I am hereby forwarding this letter as clarification of my previous letter dated June 12, 1985.

I had indicated that I had agreed with the concept of the proposed drainage management. However, I qualified that other conditions would change the plan, whereby, preliminary plat approval cannot be granted at this time. The previously mentioned concerns will need to be addressed. Also, since the proposed outfall configuration is not available, the required listing of infrastructures for preliminary plat approval will have to be revised. Another item of concern that was not previously mentioned in my letter is that there is a significant difference in grade along the south property line, please provide a cross section to show the relationship of this development and the existing development to the south. It will be required that a section be provided to clearly show this condition and address as to how it will be resolved.

Should you have any questions or comments, please call me at 766-7644.

Sincerely,

J. Goolsby, PE Civil Engineer/Hydrology

BJG:mrk

City of Albuquerque

P.O. BOX 1293 ALBUQUERQUE, NEW MEXICO 87103

DESIGN HYDROLOGY SECTION 123 Central NW, Albuquerque, NM 87102 (505) 766-7644

June 12, 1985

Mr. Gary Tibljas Denney-Gross & Associates, Inc. 2400 Comanche Road NE Albuquerque, NM 87107

REF: DRAINAGE MANAGEMENT PLAN FOR SUMMIT HILLS SUBDIVISION TRACT A-1 (J23-D2A)
RECEIVED MAY 22, 1985

Dear Gary:

I have reviewed the above referenced submittal and do agree with the concept; however, it has been brought to my attention that the proposed outlet as identified has been changed. Also, a concerned citizen that lives just south and west of the proposed development has issued a complaint concerning the increased flow in Verbena Place that is flooding his driveway and yard.

Please address and or clarify the above referenced issues. Should you have any questions or comments, please call this office at 766-7644.

Sincerely,

Billy J. goolsby, PE Civil Engineer/Hydrology

BJG:mrk

CITY OF ALBUQUERQUE MUNICIPAL DEVELOPMENT DEPARTMENT ENGINEERING DIVISION/DESIGN HYDROLOGY SECTION

PRE-DESIGN CONFERENCE RECAP

HYDROLOGY SECTION PROJECT NO.: 1-23 DATE: 5/3/85
PLANNING DIVISION NOS. EPC: DRB:
SUBJECT: Revonito 2 - 8 Lots LEBAL DESCRIP.: Tract A-1 of Summit Hills Subid.
APPROVAL REQUESTED
X PRELIMINARY PLAT SITE DEVELOPMENT PLAN X City Work Order Process ROUGH GRADING FINAL PLAT BUILDING PERMIT
ALL DESCRIPTION OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRES
ATTENDANCE: Joe Jones Denny Gross & Assuc. Billy Goolsby City
Approved Drainage Plan/Report required for Preliminary Plat and/or Site Davelopment Plan sign-off. Approved Drainage Plan/Report required for Final Plat and/or Building Parmit sign-off.
X Subdivision Improvements Agreement or Financial Security required.
FINDINGS: O Detailed crading plan per DPM will be required for review approval prior to Construction Plan sign-off. & Discharge to Correspond to existing dewnstream Rehamito Drainage Report 3 Listing of required introstructure The undersigned agrees that the above findings are summarized accurately and are only subject to change if further investigation reveals that they are not reasonable or that they are based on inaccurate information. BIGNED: TITLE: CEl train Hydrody TITLE: DATE: DATE: DATE:
NOTE PLEASE PROVIDE A COPY OF THIS RECAP WITH THE DRAINAGE SUBMITTAL

DRAINAGE MANAGEMENT PLAN SUMMIT HILLS SUBDIVISION TRACT A-1

> PREPARED FOR: ENTITY CO., INC.

AUGUST, 1985 DGA JOB NO. 723.32

PREPARED BY:
DENNEY-TIBLJAS-MCLEAN & ASSOCIATES, INC.
Consulting Engineers
2400 Comanche Road Northeast
Albuquerque, New Mexico 87107

DRAINAGE INFORMATION	N SHEET
PROJECT TITLE: SUMMIT HILLS ZONE A	TLAS/DRNG. F!LE #: J-23
LEGAL DESCRIPTION: Tract A-1, Summit Hills	
CITY ADDRESS:	
ENGINEERING FIRM: DENNEY-TIBLJAS-MCLEAN & ASSOC, INC	. CONTACT: _ Joe Jones
ADDRESS: 2400 Comanche, N.E.	PHONE: 884-0696
OWNER: ENTITY CO., INC.	CONTACT: Ralph Boone
ADDRESS: 2920 Axtell, Clovis, NM	PHONE: 763-3177
ARCHITECT: N/A	CONTACT: N/A
ADDRESS:	PHONE:
SURVEYOR: DENNEY-TIBLJAS-MCLEAN & ASSOCIATES, INC.	CONTACT: Fred Denney
ADDRESS: 2400 Comanche N.E.	PHONE: 884-0696
CONTRACTOR:	
ADDRESS:	PHONE:
PRE-DESIGN MEETING: X YES NO X COPY OF CONFERENCE RECAMYDROLOGY SECTION SHEET PROVIDED	DRB No EPC No PROJ. No
TYPE OF SUBMITTAL: CHE	CK TYPE OF APPROVAL SOUGHT:
CONCEPTUAL GRADING & DRAINAGE PLAN GRADING PLAN EROSION CONTROL PLAN	SKETCH PLAT APPROVAL PRELIMINARY PLAT APPROVAL SITE DEVELOPMENT PLAN APPROVAL FINAL PLAT APPROVAL BUILDING PERMIT APPROVAL FOUNDATION PERMIT APPROVAL CERTIFICATE OF OCCUPANCY APPROVAL ROUGH GRADING PERMIT APPROVAL GRADING/PAVING PERMIT APPROVAL OTHER(SPECIFY)
DATE SUBMITTED: 8/15/85 BY: JOE JONES DATE SUBMITTED: 8/15/85	

DRAINAGE INFORMATION SHEET

PROJECT TITLE: SUMMIT HILLS Z	ONE ATLAS/DRNG. FILE #:
CITY ADDRESS:	
ENGINEERING FIRM: DENNEY-TIBLJAS-MCLEAN & ASSOC ADDRESS: 2400 Comanche, N.E. OWNER: ENTITY CO., INC. ADDRESS: 2920 Axtell, Clovis, NM ARCHITECT: N/A ADDRESS: SURVEYOR: DENNEY-TIBLJAS-MCLEAN & ASSOCIATES, ADDRESS: 2400 Comanche N.E. CONTRACTOR:	PHONE: 884-0696 CONTACT: Ralph Boone PHONE: 763-3177 CONTACT: N/A PHONE: 100 Denney PHONE: 884-0696
ADDRESS: PRE-DESIGN MEETING: X YES COPY OF CONFERENCE RECAP SHEET PROVIDED TYPE OF SUBMITTAL: X DRAINAGE REPORT DRAINAGE PLAN CONCEPTUAL GRADING & DRAINAGE PLAN GRADING PLAN EROSION CONTROL PLAN ENGINEER'S CERTIFICATION	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

DATE SUBMITTED: 9-5-85

BY: JOE JOHNS JONED

STREET CAPACITY

LOCATION SCINMIT HILL	5
PROJ. NO. 72 3, 32	
DATE 9-3-85	
DESIGNER J. JONES	
PAGE 3 (REVISED)	

CAS	ACITY OF	CHAMVEL @	S. WELLS	
				<i>P</i>
Q=2,5 cfs			SECTION	
Q=1.486 5" AZ"				
n S=0.0247 N=0.025	2,5=1,486 0.1025	(,0267) AR 24. AR 245 = 0, 2	<u>.</u>	d= DEITH OF 100 MZ. FLOW
TRY d	= 0.32' A = 1/2 (1.92 R = A/p =	(2.32) 2 = 0.6 0.31 AR	1 /3 = 0.28	(ox)
Q=7.5 c f 5 5= a 0)6		= 2.5/a.61		
AŽ	1.486 (0.016) 0.025 = 0.153	AR -	3'0	Am Cossies
· · · · · · · · · · · · · · · · · · ·		4)(,22)= 0,49		
		12.5 = 0.2 1.16 (OK)		
		2.5/0.49	5.1 FB	USE 3" COBPLES FOR EROSTON
	1 11 11 /	5 1985		CONTROL.

LOCATION_	Sun	1MIT	HILL	5	
PROJ. NO.	723	.32			
DATE	9-3-1	35			
DESIGNER_	2	JONE	2		
DAGE 5					

	SUPERELEVATION
	VERBENA & SNOWDROP
S = 1,15 V2 (b + 27	D) (DPM 22.3 Pg 59)
DEPTH:	
BEFORE DEVELOPMENT	
Q = 420 cfs d =	0.55' V=9:5 fes (den 22.3 D-1)
Z = COT OF BANK B = CHANNEL BOT R = RADIUS OF C	LVE = 165
	5 = 13 (9.5) (20 + 2 (corns)(0.56))
	(32 ±)(185) S=0.45
	TOTAL DEPTH OF FLOW = 5+d = 0.45+.55 = 1.0
DEPTHS	THE PARTY AND THE PARTY HAVE
	INCLUDING FLOW FROM SUMMIT HYLLS
Q= 16.6 cfs d=	$S = 1.3 \frac{(7)^{3}(20 + 2(67226)(.42))}{(322)(185)}$
	<u>s=c.24</u>
DEFTH: INCLUDING SUM	TOTAL DEPTH OF FLOW = 5+d = .24 + .42 = 0.66
	d= 0,44' V=7.4FB
Meenie	5= 1.3 (7.4) (20+2(cot 22.5)(0.44))
SEP 05 1985	S=0.26
HYDROLOGY SECTION	TOTAL DEPTH OF FLOW = Std = 0.26 +0.44 = 0.70

CITY OF ALBUQUEROUE MUNICIPAL DEVELOPMENT DEPARTMENT ENGINEERING DIVISION/DESIGN HYDROLOGY SECTION

PRE-DESIGN CONFERENCE RECAP

HYDROLOGY SECTION PROJECT NO.: $1-23$ DATE: $\frac{5}{3/85}$
PLANNING DIVISION NOS. EPC: DRB:
SUBJECT: Rebonito 2 - 8 Lots LEGAL DESCRIP.: Tract A-1 of Summit Hills Subid.
APPROVAL REQUESTED
PRELIMINARY PLAT SITE DEVELOPMENT PLAN X. City Work Order Process ROUGH GRADING BUILDING PERMIT
WHO: REPRESENTING:
Billy Goolsby City City
Approved Drainage Plan/Report required for Preliminary Plat and/ Site Development Plan sign-off.
Approved Drainage Plan/Report required for Final Plat and/or Build- ing Permit sign-off.
Subdivision Improvements Agreement or Financial Security required.
FINDINGS: O Detailed grading plan per DPM
will be required for review & approval prior to
Construction Plan sign-off- (2) Discharge to
correspond to existing downstream Reports
The undersigned agrees that the above findings are summarized accurately
nd are only subject to change if further investigation reveals that they are not reasonable or that they are based on inaccurate information.
IGNED: Silly of Loolsly SIGNED: Joe Jones
TITLE: CE/ Desleys Hudrology TITLE:
ATE: 5/3/85 DATE: 5/3/85
NOTE PLEASE PROVIDE A COPY OF THIS RECAP WITH THE DRAINAGE SUBMITTAL

I, <u>Gary W. Tibljas</u>, hereby certify that the enclosed documents and drawings were prepared under my supervision and are true and correct to the best of my knowledge and belief.

New Mexico Profession Engineer No. 8117

TABLE OF CONTENTS

																								Page No.
PURPOSE.						٠	٠	٠			٠				٠			•	٠					1
GENERAL.	٠					٠	,		٠	٠	٠		٠					•			•	•	•	1
DRAINAGE																	٠	٠		٠		•	•	1
CONCLUSIO	N							٠			٠	٠	٠	•				٠	٠	٠	•	٠		2
CALCULAT	101	NS																						
APPENDIX			٠																					
EXHIBIT	I			L	0 C	ΑT	10	N	MA	P														
EXHIBIT	ΙI		-	F	. Е	. м	. A		FL	00	D	PL	ΑI	N .	MA	Р								
EXHIBIT	ΙI	I	-	G	RA	DΙ	NG	A	N D	D	RA	ΙN	ΑG	E	PL	AN								

SUMMIT HILLS SUBDIVISION TRACT A-1 DRAINAGE MANAGEMENT PLAN

PURPOSE

The purpose of this report is to determine an effective stormwater management plan for Summit Hills Subdivision, Tract A-1.

GENERAL

Summit Hills Subdivision, Tract A-1, consists of 8 lots and is located at the southern cul-de-sac end of Wells Drive Northeast. (See Exhibit I.) Drainage for this tract has already been established within the Rebonito Subdivision Drainage Report, portions of which are included in the Appendix of this report.

Presently, there are two subdivisions under construction adjacent to Tract A-1. Rebonito Subdivision is adjacent to the north and west of Tract A-1, while Summit Hills is adjacent to the east. The construction of these two subdivisions has resulted in that no offsite flows will cross Tract A-1.

The soil on this site is of the Tesajo Series Type "C", and the site is not located within a Flood Plain. (See Exhibit II.)

DRAINAGE

Presently the development site drains from the northeast to the southwest, and all flows enter the Archuleta Rundown.

The site will be graded such that the eastern most lots will drain into the street and the runoff will flow south to an earthen

channel. The western most lots will be graded to drain to an earthen channel located within a drainage easement along the rear of the lots. (See Exhibit III)

These two channels carry a total flow of 4.3 cfs and intersect at a single Type "D" catch basin at the southwest corner of the site.

The catch basin will connect to an existing 18" RCP Stub located at the property line. This stub was installed specifically for Summit Hills and drains into the Rebonito Channel.

The total discharge from Tract A-1 entering the Rebonito Channel is 4.3 cfs. An additional 5.1 cfs from Archuleta drive also enters the Channel. This total runoff of 9.4 cfs flows into the Archuleta Rundown and into Verbena Place.

Runoff entering the Archuleta Rundown was analyzed at 10.6 cfs within the approved Rebonito Subdivision Drainage Report. (See Appendix) Development in the area has decreased this runoff to 9.4 cfs. Since the flow has decreased, the Archuleta Rundown has not been reanalyzed.

CONCLUSION

Drainage patterns for the proposed development area have already been established within the Rebonito Subdivision Drainage Report.

Although a few changes in design have been made, this report follows the concept of the Rebonito Report. The major difference is that earthen channels and one catch basin will now be used instead of a concrete drainage channel.

LOCAT	ION_7	PACT A-1	SUMMI	T Hill
PROJ. I	vo	2.3.37		
		6-85		
DESIG	NER	5 30,	UES	
PAGE.	/_			

A=199 ACUEL UNDEVELOPED RUNOFF	
O% IMAGNIOUS	SOIL SERIES TE
C = 0.16 (Dem 22.26-1)	SOIL SURVEY OF
L= 400' S = 0,0678 Tc= 0,0078 (400) 0.386	ELKNUTITE COUNTY
R= 2.6 INCHES (DPN 22.2 D-1)	
i = 6.84(2.6)(10) = 5.5	
Q=CiA Q= 0.16 (5.5)(1.99) = 1.75 cfs UNDE	EVILOPED RUPLET
DEVELORED RUNGEF	
% I'MPERUIOUS	
PAD = 50 X50 = 2500 SF DEIVE = 20 10 = 2.00 SF	
57KELT = 70X ZO = 1400 F	
TOTAL IMPRIMITE 4100 SF	
LOT + KOW! = 93/05F	
4100 = 0.44 = 44 % INFIX VIOUS :0 C= 0.35	
9310	
Q=CX A = 0.27 (5.5 X1.77) = 4.3 C45 DEVEL	OPED RUNOFF.

LOCATION	SUMMIT HILL	TRACT-1
PROJ. NO	23.32	
DATE_5-	9-85	
DESIGNER	J. JONES	
PAGE Z		

	LOTS 1-4 (DRAIN TO STREET)
A= 1.1531 Ac	
1 = 5:5 (SEE SIN	s.5X1.1630 = 2.5 = 45
	A COSTALIN CHLVERT
NOTE: 2.6 cfs	LOCATED IN COL- DE SAC.
	LOTS 6-B (DEAIN TO REAR OF LOT INTO DEAINAGE EXEMENT)
A=0.8223 C=0.39	A = 0.39(\$.5×0.8223) = 1.8 G/S
A = 5.5 Q=CX	
ma viving's	ORAINAGE PREPILENT
Q=1.486 5" AR"	ALONS WEST BOUNDARY
Q=1.8C+5 1.8=1	486 (0.03) AR 13
5= 0.03	AR 215 = 0.17
TRY & = O.42'	
A=0,53 ft K=0.18	AR 215 = 0.53 (0.16) = 0-17 (OK)
CONSIL	DENIENGE LISTIENT IS ONE
Q=VA 1.8=V(.53) V=	3.468

LOCATION_	SUMMIT	HILL	TRACT A-
PROJ. NO	723.32		
DATE_8	-14-85		
DESIGNER_	J JONE	3	
PAGE 3			

	SIDEW.	ALK CUL	VERT	CAF	ACITY		
Q=2.5 efs		TC				TC	
WEIR EQUATION					7	Φh	
Q=CLh3/2 L=3'	3,2		K	- 3 ′			
L=3 C=3.0 Z.5=3	O(3)(A)	h = 0.42	(0)	d			
		Manager and			- ,,,,,,,	, ,	
CAPACI	OF C	HANNEL I	\$6	UIN U	WEL	ادع	T
Q= 2.5cfs							
mannyag's							
Q=1.486 5'12 ARTS					6	-	
5=0.0267 (mix)					1111		
n=0,025 TRY &							
	$=\frac{1}{2}(.48)($ $=\frac{A}{0}=0.$	z.88) = a (195F				
Q=1.		(0.69)(0.2	3)67				
		Q= 2.5	cfs	(0x)			
CONCLUSION		V = 3.6	FPS				
	DEFTH	OF FLOW	y in				
CHANT	15	Q.48°.					

LOCATION SUMMIT HILLS	
PROJ. NO. 723,37	
DATE_ 8-14-85	
DESIGNER 5 JONES	
DAGE #	

	CATCH BASIN CAPACITY
	(SUMP CONDITION)
	301111111111111111111111111111111111111
CHECK CLITICAL D.	<u>apth</u>
F= V2 -1 @	CLITICAL DEPTH
ad	
V=Q	7
Ao.	$\left(\frac{4.3}{4.69}\right) = 32.2d$
Q=4.3 cfs	(4.69.)
	A = 0.03 DEPTH OF WATER
OPEN ALEH = A6= 4.69 5	ADOVE "ATCH BASIN GRATE
9=32,2	
	10" 9-0
	APACITY OF 18" RCP
MANNINGS	
Q=1,486 5"A	A ³ / ₂
7	4.3 = 1.486 (.04/12) AK 15 AK 15 0.185
Q= 4,3 cf5	4.3= 1.486 (.04/2) AR AR = 0.185
n=0.013	0.013
5=0.0412	
3 - 5 / 7 / 1 / 1	TRY D/2 = 0.31 (0PM 22.3 B-6)
	R=0.47 R=0.76 AR'S=0.19 (GK)
	00 D= 1.5(31)
	D = 0.47' $V = 9.1 fAS$
CONCLUSION:	
18" RC.	P FLOWS APPROLIMATELY
13 FUL	

1 1	. LOCATION			
DENNEY - GROSS & ASSOCIATES, INC.	PROJ. NO.			
ENGINEERS SURVEYORS PLANNERS	DATE			
ALBUQUERQUE, NEW MEXICO 87107 (505) 884-0695	DESIGNER			
1	PAGE 26 (LEEN MON B, 1994)			
G = TOTAL AREA : 10.16 CFS ()	CTHEOUGH EASEMENT GY. LI CFS (CONFINED TO W.FLOWITHE) END of ARCHULETA			

STED CONTRACTOR STATES OF STREET, ST. ST. ST. ST. ST. ST. ST.

THIS MICROIMAGE IS THE BEST POSSIBLE REPRODUCTION DUE TO THE POOR QUALITY OF THE ORIGINAL DOCUMENT. DA

I ENNEY - GROSS & ASSOCIATES, INC. FIGINEERS SURVEYORS PLANNERS 2400 COMANCHE ROAD N.E. ALBUQUERQUE, NEW MEXICO 87107 (505) 884-0695 PROJ. NO. ______

DATE _____

DESIGNER _____

PAGE _____ 25____

EUNDOWN : 3, END of ARCHULETA (SEE PROFILE P. 88) SECTION ANALYRE REACH WITH \$ 0.0151 QUICK AT \$ \$ \$ AL\$ (On P. 86) A * 0.015 (POULE) CONCRETE) A * 0.304 UP: 24.0150 A * 0.306 A *			
### 10.6 (C.013) ANALYZE LEACH WITH \$: 0.0151 ANALYZE LEACH WITH \$: 0.0151 ANALYZE LEACH WITH \$: 0.0151 A. 1.0.013 (POULE CONCESTE) A. 2.0.013 (POULE CONCESTE) A. 3.30d WIP: ZA: 9.30 WIP: ZA: 9.30 WIP: ZA: 9.30 WIP: ZA: 9.30 A: 9.30(0.23): Z.1A SE WIP: Z(0.23): 9.30 9.76 VIP: Z(0.23): 9.30 9.76	-	[Land 1 at D 4 Land 1 1 2 1 1 4 1 4 4 4 4 5 5 6 6 6 6 6 6 6 6	HILLIAM
SECTION! ANALYZE PEACH WITH \$ 0.0151 ANALYZE PEACH WITH \$ 0.0151 AT 1.06 (0.015) AT 0.015 (POULED CONCRETE) AT 1.06 (0.015) AT 9.30d WP: ZA 9.50 AT 9.30(0.25): ZIA SE UP: Z(0.25): 9.30: 9.16 ZIM 0.215 AT 1.02 (0.215): 0.18 > 0.755 AT 1.03 (0.215): 0.18 > 0.755 AT 1.03 (0.215): 0.18 > 0.755 AT 1.05 (0.215): 0.18 > 0.755 AT 1.	-	THE PROFILE A. S.	1444441
ANALYZE LEACH WITH \$ 0.0151 Q: 1.166 Art \$ \$ => Art & Orall Q: 1.0 6 GFS (1/mm p.e6) A: 0.013 (POULED CONCRETE) Art & 10.6 (0.013) & 0.755 A* 9.30d WP: Zh 9.30 WP: Zh 9.30 A* 9.20(0.23) & Z.1h Sh WP: Z(0.25) & Z.1h Sh WP: Z(0.25) & S.16 Z.1h Z.2h		PURCHAS AND STANDARD	1111111
ANALYZE LEACH WITH \$ 0.0151 Q: 1.166 Art \$ \$ => Art & Orall Q: 1.0 6 GFS (1/mm p.e6) A: 0.013 (POULED CONCRETE) Art & 10.6 (0.013) & 0.755 A* 9.30d WP: Zh 9.30 WP: Zh 9.30 A* 9.20(0.23) & Z.1h Sh WP: Z(0.25) & Z.1h Sh WP: Z(0.25) & S.16 Z.1h Z.2h	-		T1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
ANALYZE LEACH WITH \$ 0.0151 Q: 1.166 Art \$ \$ => Art & Orall Q: 1.0 6 GFS (1/mm p.e6) A: 0.013 (POULED CONCRETE) Art & 10.6 (0.013) & 0.755 A* 9.30d WP: Zh 9.30 WP: Zh 9.30 A* 9.20(0.23) & Z.1h Sh WP: Z(0.25) & Z.1h Sh WP: Z(0.25) & S.16 Z.1h Z.2h			
ANALYZE LEACH WITH \$ 0.0151 Q: 1.166 Art si = Art and a concrete Q: 10 6 GES (1/mm p.e6) A: 0.013 (POULED CONCRETE) Art a 10.6 (0.013) (0.015) (0.015) Art a 2.02 (0.015)	-81		!
ANALYZE LEACH WITH \$ 0.0151 Q: 1.166 Art si = Art and a concrete Q: 10 6 GES (1/mm p.e6) A: 0.013 (POULED CONCRETE) Art a 10.6 (0.013) (0.015) (0.015) Art a 2.02 (0.015)	-		HHHH
ANALYZE LEACH WITH \$ 0.0151 Q: 1.166 Art si = Art and a concrete Q: 10 6 GES (1/mm p.e6) A: 0.013 (POULED CONCRETE) Art a 10.6 (0.013) (0.015) (0.015) Art a 2.02 (0.015)			
ANALYZE LEACH WITH \$ 0.0151 Q: 1.166 Art si = Art and a concrete Q: 10 6 GES (1/mm p.e6) A: 0.013 (POULED CONCRETE) Art a 10.6 (0.013) (0.015) (0.015) Art a 2.02 (0.015)	T		HHHH
ANALYZE LEACH WITH \$ 0.0151 Q: 1.166 Art si = Art and a concrete Q: 10 6 GES (1/mm p.e6) A: 0.013 (POULED CONCRETE) Art a 10.6 (0.013) (0.015) (0.015) Art a 2.02 (0.015)	-		HHHHH
ANALYZE LEACH WITH \$ 0.0151 Q: 1.166 Art si = Art and a concrete Q: 10 6 GES (1/mm p.e6) A: 0.013 (POULED CONCRETE) Art a 10.6 (0.013) (0.015) (0.015) Art a 2.02 (0.015)		3.50	
ANALYZE LEACH WITH \$ 0.0151 Q: 1.166 Art si = Art and a concrete Q: 10 6 GES (1/mm p.e6) A: 0.013 (POULED CONCRETE) Art a 10.6 (0.013) (0.015) (0.015) Art a 2.02 (0.015)	-		
Q: 106 CES (Jrm. p.26) A: 0.013 (POULED CONCRETE) A: 0.30d WP: 2d. 9:50 A: 9.30d WP: 2d. 9:50 A: 9.30(0.23): 7.14 St WP: 2(0.25): 9:30: 9.76 Z. 14 Z. 15 Z. 16		SECTION	$H^{+}H^{+}H$
Q: 106 CES (Jrm. p.26) A: 0.013 (POULED CONCRETE) A: 0.30d WP: 2d. 9:50 A: 9.30d WP: 2d. 9:50 A: 9.30(0.23): 7.14 St WP: 2(0.25): 9:30: 9.76 Z. 14 Z. 15 Z. 16			
Q: 106 CES (Jrm. p.26) A: 0.013 (POULED CONCRETE) A: 0.30d WP: 2d. 9:50 A: 9.30d WP: 2d. 9:50 A: 9.30(0.23): 7.14 St WP: 2(0.25): 9:30: 9.76 Z. 14 Z. 15 Z. 16	-	ANALYZE PEACH WITH S. O. OISH	
- Q: 10 & CFS (from p.eG) A: 0 013 (POULED CONCRETE) Art 10.6 (0.015); 0.755 A: 0.30d WP: 24. 9.30 Jac d: 0.25; A: 9.30(0.23): 7.14 st WA: 2(0.23): 9.30: 9.76 VA: 2.14 VA: 2.14(0.218); 0.718 > 0.755 OK VII.456 (151 = 1.486 (0.218) (0.015) = 5.10 FPS			HHHHH
- Q: 10 & CFS (from p.eG) A: 0 013 (POULED CONCRETE) Art 10.6 (0.015); 0.755 A: 0.30d WP: 24. 9.30 Jac d: 0.25; A: 9.30(0.23): 7.14 st WA: 2(0.23): 9.30: 9.76 VA: 2.14 VA: 2.14(0.218); 0.718 > 0.755 OK VII.456 (151 = 1.486 (0.218) (0.015) = 5.10 FPS	Interes		$\Pi\Pi\Pi\Pi$
A = 0. 013 (POULED CONCRETE) Art = 10.6 (0.013) + 0.755 A = 9.30 d WP: ZA = 9.30 WP: ZA = 9.30 A = 9.50 (0.23) + 7.14 st WP: Z(0.23) + 9.30 + 9.76 d ZIII = 0. ZIS A = 7.14 (0.218) + 0.718 > 0.759 OK V: 1.456	· men	1 1 586 5°	
A = 0. 013 (POULED CONCRETE) Art = 10.6 (0.013)			
A = 0. 013 (POULED CONCRETE) Art = 10.6 (0.013)	_	Q: 106 CFS (Jan 1:66)	HHH-H
$A = 3.30id$ $A = 3.30(0.23) \cdot 7.14 \text{ s.f.}$			11111TH
A = 9.30 id WP: Zh = 9.30 WP: Zh =		A = 0.013 C POUCES CONCESTE	
A = 9.30 id WP: Zh = 9.30 WP: Zh = 9.30 Jor al = 0.25: A : 9.20(0.23) : Z.1h sk WP = Z(0.23) : 9.30 : 9.76 Z.1h Z.1h A : 3.76 O : Z18 A : 3.76 O : Z18 A : 3.76 O : Z18 O	_	1 100 (0.013)	++++++
- A = 9.30d - WP: ZA = 9.30 - Jac 2 = 0.75: - A : 9.30(0.23) · 7.14 sk; - WP: Z(0.23) · 9.30 · 9.76; - WP: Z(0.23) · 9.30 · 9.76; - Z.14 - Z.15 - Z.16 - Z.16		Ar	1111111
WP. ZA. 9.30 Jac al . 0. Z3: A. 9.30(0.23). Z. IA SA: WP: Z(0.23). 9.30. 9.76 Z. IA Z. I		1.486 (0.0151)	
WP. ZA. 9.30 Jac al . 0. Z3: A. 9.30(0.23). Z. IA SA: WP: Z(0.23). 9.30. 9.76 Z. IA Z. I			
		A = 5.30 a	++++++++++++++++++++++++++++++++++++
		C	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		WP . ZA - 9,50	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1:111111
2.14 7.14 7.14 7.14 7.14 7.14 7.14 7.14 7.14 7.14 7.15 7.14 7.14 7.15 7.16			7 7
2.14 7.14 7.14 7.14 7.14 7.14 7.14 7.14 7.14 7.14 7.15 7.14 7.14 7.15 7.16		A: 9.30(0.23) . Z.IA SF.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
A 1 3 1 7.14 (0.215) 3 0.718 > 0.759 0K. V. 1.456 (3 3 = 1.486 (0.215) (0.015) (0.015) (0.015) (0.015) (0.015)		JP: 2(0.23) + 3,30 + 3,16	++++++++++++++++++++++++++++++++++++
A 1 \$ 1 7.14 (0.215) \$ 0.718 > 0.759 0K			1111111111
A 1 3 1 7.14 (0.215) . 0.718 > 0.755 OK		22.19 = 0.218	111111111
V. 1.486 (351 = 1.486 (0.213) (0.0151) = 5.10 FPS		9. 16	11111111
V. 1.486 (351 = 1.486 (0.215) (0.0151) = 5.10 FPS		7 11 0 7 9 7 6 0 7 8 2 0 7 5 0 6	44444
0.018			1-11
0.018		1.486 1.486 (COS) = SIO FPS	
2, ½ = 0, ½ 1 (55.10)½ 1 0.63		0.015	11111
2, V = 0, 23, 1 2 (52.2) 1 0.63		1 (5.10)	+++++=++
		d. V = 0.23 13/1225 1 0.63	11:11-1
		+ + + + 23 + + + + + + + + + + + + + + +	11111111
, [1] 			+++++++

圆

LOCATION	
PROJ. NO	
DATE	
DESIGNER	
PAGE 30	

CROWN ON VELENA : 44.19 45.86 : 0.35 ASSUME FLOWS					COLUMN SANTS	14-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
ASSUME FLOWS A CO.36 STAY EN A FLOW LINE VERENATION OF STAY EN A STAY EN A FLOW LINE VERNATION OF STAY EN A STAY E	[1:111111111111111111111111111111111111	######			114:1111	HHHH
REMATABLE CLOSSES TO SILONLINE S = VERBENA = 100 0.0564 S = VERBENA = 100 0.0565 C = C = C = C = C = C = C = C = C = C	CROWN ON VERSE	NA 1 44:19				PRENA
5 - VERBENA . 100 0.0564 John Plate 22.3 b.1 (for d: 0.35): Q:6.8 cf5, N:4.2 EP5 John Plate 22.3 b.1 (for d: 0.35): Q:6.8 cf5, N:4.2 EP5 Q. CROSSING TO S. ELONITALE : 10.6 - G.8	ASSUME FLOWS	4 d - 0.3	5 5744 FY	12.00	THE A	
	REMATNOES CRE	SSES 19	17111		1 † 1 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	4444
	S VERRENA -	4 00	364	计计计计	排押扭	
Q CROSSING TO S FLOW LINE = 10:6 = 6.8 : 3.8.C. S NOW ADD OFFSITE FLOWS IN VERSENA. 150 DRAINGE, AREA : 250:690 (125) : 56,400 SF = 1.3 AC. SOIL TYPE - TE (C=0.31) ASSUME 12:10 MIN > I : 5.50 Q = 0.31 (5.50) (1.3) : 2.4 CFS Q = 0.31 (5.50) (1.3) : 2.4 CFS HORTH FLOW LINE : 2.6 : 4.8 : 3.4 CFS ASSUME FLOWS WITH 8 = 0.33 STAY IN NI. FLOW LINE 9 VERSENA, REMAINDER CROSSES TO SOUTH FLOW LINE 9 VERSENA, REMAINDER CROSSES TO SOUTH FLOW LINE 9 JOHN PLATE 22:3 D = 1: Q = 6.8 CFS , V = 4.2 FS SOUTH FLOW LINE : 3.8 · (8.4 CFS) SOUTH FLOW LINE : 3.8 · (8.4 CFS) SOUTH FLOW LINE : 3.8 · (8.4 CFS) SOUTH FLOW LINE : 3.8 · (8.4 CFS) SOUTH FLOW LINE : 3.8 · (8.4 CFS) SOUTH FLOW LINE : 3.8 · (8.4 CFS) SOUTH FLOW LINE : 3.8 · (8.4 CFS) SOUTH FLOW LINE : 3.8 · (8.4 CFS) SOUTH FLOW LINE : 3.8 · (8.4 CFS)	20 20 2	N 1 / 1	1 : 0.35 1:	Q:68C	5 V= 4.2	FPS
NOW! ADD. OFFSTTE FLOWS IN VERSENA!		11911	1111111111	6 68	3.8 CFS	
150 150	Q CROSSING 10	3.100		2011	+++++++	HHHHH
SOIL TYPE - TE (C=0.37) A'SSUME 12-10 MIN > I' 5.50 Q:0.27 (5.50) (1.3) - 2.4 CFS FOR PLATE 22.5 D=1: V:3.5 FPS, A:0.26 NORTH FLOWLINE: 2.6:4.8:3.4 CFS A'SSUME FLOWS WITH d = 0.33 STAY IN N. FLOWLINE 7 VERSENA, REMAINDER CROSSES TO SOUTH FLOWLINE VERSENA, REMAINDER CROSSES TO SOUTH FLOWLINE 1 PLATE 22.3 D-1: Q'= 6.8 CFS, N:4.2 FS d:27 : 0.33:12(322) : 0.60 < 0.87 CA SOUTH FLOWLINE: 3.8:(B.1-1.5): G.4 CFS	HOW ADD OFFS	LIE FLOW	- 17	SEN ALLES		
SOIL TYPE - TE (C=0.37) A *SOUNC 12 10 MIN > T * 5.50 Q = 0.27 (5.50) (1.3) * 7.6 CFS FOR PLATE 22.3 D=1: N = 3.3 FPS , A = 0.26 NORTH FLOWILINE: 2.6: (8.8: 3.4 CFS ASSUME FLOWS WITH d = 0.33 STAY IN M. FLOWITHE > VERSENA, REMAINDER CROSSES TO SOUTH FLOWITHE VERSENA, REMAINDER CROSSES TO SOUTH FLOWITHE 1 PATE 22.3 D-1: Q = 6.8 CFS , N = 4.2 FS d : 27 = 0.33 : 2(322) : 0.60 < 0.87 SOUTH FLOWITHE: 3.8 · (B.1 - 1.8) · G.4 CFS	63	d'				
SOIL TYPE - TE (C=0.37) A *SOUNC 12 10 MIN > T * 5.50 Q = 0.27 (5.50) (1.3) * 7.6 CFS FOR PLATE 22.3 D=1: N = 3.3 FPS , A = 0.26 NORTH FLOWILINE: 2.6: (8.8: 3.4 CFS ASSUME FLOWS WITH d = 0.33 STAY IN M. FLOWITHE > VERSENA, REMAINDER CROSSES TO SOUTH FLOWITHE VERSENA, REMAINDER CROSSES TO SOUTH FLOWITHE 1 PATE 22.3 D-1: Q = 6.8 CFS , N = 4.2 FS d : 27 = 0.33 : 2(322) : 0.60 < 0.87 SOUTH FLOWITHE: 3.8 · (B.1 - 1.8) · G.4 CFS						11111
SOIL TYPE - TE (C=0.37) A'SSUME 12-10 MIN > I' 5.50 Q:0.27 (5.50) (1.3) - 2.4 CFS FOR PLATE 22.5 D=1: V:3.5 FPS, A:0.26 NORTH FLOWLINE: 2.6:4.8:3.4 CFS A'SSUME FLOWS WITH d = 0.33 STAY IN N. FLOWLINE 7 VERSENA, REMAINDER CROSSES TO SOUTH FLOWLINE VERSENA, REMAINDER CROSSES TO SOUTH FLOWLINE 1 PLATE 22.3 D-1: Q'= 6.8 CFS, N:4.2 FS d:27 : 0.33:12(322) : 0.60 < 0.87 CA SOUTH FLOWLINE: 3.8:(B.1-1.5): G.4 CFS	110-			1111111	HHHH	1111111
SOIL TYPE - TE (C=0.37) A'SSUME 12-10 MIN > I' 5.50 Q:0.27 (5.50) (1.3) - 2.4 CFS FOR PLATE 22.5 D=1: V:3.5 FPS, A:0.26 NORTH FLOWLINE: 2.6:4.8:3.4 CFS A'SSUME FLOWS WITH d = 0.33 STAY IN N. FLOWLINE 7 VERSENA, REMAINDER CROSSES TO SOUTH FLOWLINE VERSENA, REMAINDER CROSSES TO SOUTH FLOWLINE 1 PLATE 22.3 D-1: Q'= 6.8 CFS, N:4.2 FS d:27 : 0.33:12(322) : 0.60 < 0.87 CA SOUTH FLOWLINE: 3.8:(B.1-1.5): G.4 CFS	190				排拼抽出	
SOIL TYPE - TE (C=0.37) A *SOUNC 12 10 MIN > T * 5.50 Q = 0.27 (5.50) (1.3) * 7.6 CFS FOR PLATE 22.3 D=1: N = 3.3 FPS , A = 0.26 NORTH FLOWILINE: 2.6: (8.8: 3.4 CFS ASSUME FLOWS WITH d = 0.33 STAY IN M. FLOWITHE > VERSENA, REMAINDER CROSSES TO SOUTH FLOWITHE VERSENA, REMAINDER CROSSES TO SOUTH FLOWITHE 1 PATE 22.3 D-1: Q = 6.8 CFS , N = 4.2 FS d : 27 = 0.33 : 2(322) : 0.60 < 0.87 SOUTH FLOWITHE: 3.8 · (B.1 - 1.8) · G.4 CFS	THE TANKS TARKS	250 - 650	(120) 1 56	400 SF	1.3 AC.	
A'SSUME 12 10 MIN = I: 5,50 Q = 0.21 (5.50)(1.3) = 2.6 CFS JOHN PLATE 22.5 D=1: V=3,5 FPS, d=0.26 NORTH FLOWLINE: 2.6 . 4.8 : 9.4 CFS A'SSUME FLOWS WITH d = 0.33 STAY IN N. FLOWLINE X NERBENA, REMAINDER CROSSES TO SOUTH FLOWLINE JEW PATE 22.3 D-1: Q'= 6.8 CFS, V=4.2 FS d : 24 : 0.33 : 2(322) : 0.60 < 0.87 CA SOUTH FLOWLINE: 3.8 . (8.4 - 6.8) : 6.4 CFS SOUTH FLOWLINE: 3.8 . (8.4 - 6.8) : 6.4 CFS	BICATINIGE MEET				#####	
Q = 0.37 (5.50) (1.3) = 7.4 CFS TOWN PLATE 22.5	SOIL TYPE - IE	11-11-11			#####	
HORTH FLOWLINE: 2.6 . 4.8 . 9.4 CFS HORTH FLOWLINE: 2.6 . 4.8 . 9.4 CFS ASSUME FLOWS WITH d = 0.33 STAY IN M. FLOWLINE & VERSENA, REMAINDER CROSSES TO SOUTH FLOWLINE JEW PLATE 22.3 D.L.: Q = 6.8 CFS , N = 4.2 FS d : 21 . 0.33 . 2(32.2) . 0.60 < 0.87 CA SOUTH FLOWLINE: 3.8 . (8.4 - 6.8) . 6.4 CFS SOUTH FLOWLINE: 3.8 . (8.4 - 6.8) . 6.4 CFS						
NORTH FLOWILINE: 2.6.4.8: 3.4 CFS ASSUME FLOWS WITH d = 0.33 STAN IN N. FLOWILDED VERRENA, REMAINDER CROSSES TO SOUTH FLOWILDED JEW PLATE 22.3 D-1: Q=6.8 CFS, N=4.2 FS d:27: 0.33: 2(22) 0.60 < 0.87 CM SOUTH FLOWILDE: 3.8.(8.4-6.8) 6.4 CFS.	Q = 0.37 (5.50)	1.3 7 2.4	cfs			
ASSUME FLOWS WITH \$ 5 0.33 STAY IN NI FLOWING A VERSENA, ZEMAINDER CROSSES TO SOUTH FLOWINE 1 = 1	FOM PLATE 22.5	D-1: V-3	3 FPS , al =	0.26	++++++	
ASSUME FLOWS WITH \$ 5 0.33 STAY IN NI FLOWING A VERSENA, ZEMAINDER CROSSES TO SOUTH FLOWINE 1 = 1		1111111				出掛挂
VERBENA , REMATINDER CROSSES TO SOUTH TO SOUTH THE 22.3 DIT : Q = 6.8 CFS , V = 4.2 FS 1 =	HORTH FLOWLIN	E 2.6 . 0	8 5 5.4 6			
	ASSUME FLOWS	ULTH a 5	0.33 5744	TA A FLO	DALTHE Y	
SOUTH FLOWLINE: 3.8 . (8.4 - 6.8) . 6.4 CFS.	VERBENA , RENA	INDER CHO		1 + 4 + 4 4 2 2	X	####
SOUTH FLOWLINE: 3.8 . (8.4 - 6.8) . 6.4 CF5.	FATE 22.3	9	6.8 45			
SOUTH FLOWLINE: 3.8 . (8.4 - 6.8) . 6.4 CF5.	d 120 = 0.33 1	(32)	60 40.87			
PLATE 72, 3 0-1: N. 4.1 FPS, A = 0.32 = 9.50 04		F 1 3 8 4 /	1-6.85	6.4 CFS .		111111111
1 + 1 · 0.31 · 2(3) · 0.58 · 0.81 O.	South Francisco		11 626 1	0.32 =0	:50 OL	14444
4 + 7	FOM PLATE 22, 3	14.5-1		and the state of the state of	计抽样	
	1 d+ 2 0.31 ·	2 (32.2)	10.01	HIBH		
1444444441444144					1111111	14+++++++++

THIS MICROIMAGE IS THE BEST POSSIBLE REPRODUCTION DUE TO THE POOR QUALITY OF THE ORIGINAL DOCUMENT.

STREET CAPACITY VERBENA @ SNOWDACK

LOCATION SUMMIT HILLS	
PROJ. NO. 72 3, 32	
DATE 9-3-85	
DESIGNER J. JONES	
PAGE 3 (REVISED)	

	CAA	ACTY OF	CHANNEL @ S.	WELLS		
					P	
Q=2.5 cfs					3"	
MANNIN				SECTION	#-#	
Q=1.486 5"	AR					
5=0.0267		2.5= 1.486	(10267) 5 AR 243		d= DEITH	
N=0.025		2,023	AR245 = 0.26			
	TRY d					
		$A = \frac{1}{2}(1.92)$ R = A/p = 0	$(2.32)^2 = 0.61$ $(2.31)^2 = 0.61$	= 0.28	(OK)	
		V = 9/A	= 2.5/0.61 =	4.1 fps		
Q=7.5 c+5	7.5=	1.486 (0.0%)	AR 2/3		V	TIĘ
		c.025		300	m CLEELES	
	TRYO	= 0.72		SPE	TION D-D	
			4)(.22)= 0.49			
			12.5 = 0.2 16 (OK)			
		V= 0/A =	2.5/0.49 = 5		USE 3"CC	ion
				1 1 1 1 1	CONTROL	
			SEP 0	/ / / /		
				Y SECTION		

LOCATION_	SUP	MIT	HIL	15	
PROJ. NO	フセ3	.32			
DATE	9-3-1	85			
DESIGNER_	2	JON	: 5		
PAGE 5					

SUPERELEVATION	
VERBENA & SNOWDROP	
S = 1.15 V2 (b + 27 D) (pm 22.3 P3 57)	
298	
DEFTH;	
BEFORE DEVELOPMENT OF SUMMIT HILLS	
Q = 420 cfs d = 0.55' V = 9.5 fps (dpm 22,3 0-1)	
# = COT OF BANK SLOPE ! ASSUME BANK SLOPE = 22.5° B = CHANNEL BOTTOM WIDTY = 20'	
RE RADIUS OF CULVE = 185	
S = 13 (9.5) (20 + 2 (corns)(0.55)	
(32 = X/85)	
S=0.45	
TOTAL DEFTH OF FLOW = 5+d = 0.45+.55	E 1.0
DEPTHS	
AFTER DEV. BUT NOT INCLUDING FICE FROM SUMMIT HYLLS	
Q= 16.6 cfs d=0.42' V=7.0f.PS	
S = 1.3 (+)2 (20+2(cor226)(.42)) (32,2)(185)	
5=6.24	
TOTAL DEPTH OF FLOW = STI = . 24 + .	And the second s
DEFTH: INCLUDING SUMMOT HILLS	MERRICA
Q= 20.9 C+5 d= 0.44' V=7.4FB	SEP 05 1985)
5-17 (24) (20+2 (cot 225) (5.44))	MANGENT SU
5=1.3 (7.4) (20+2(cot 22.5)(0.44)) (27,2)(185)	HYDROLOGY SECTION
S=0.26	
TOTAL DEPTH OF FLOW = Std = 0.76 to	44 = 0.70°