DRAINAGE REPORT FOR PARADISE RV PARK PHASE I ALBUQUERQUE, NM January 23, 2015

Prepared By Ron E. Hensley P.E. THE Group 300 Branding Iron Road S.E. Rio Rancho, NM 87124

Table of Contents

I.INTRODUCTION & PROECT DESCRIPTION	1
Legal Description	1
Flood Zone	2
Previous Studies	2
Methodology	2
II.EXISTING CONDITIONS	3
Hydrology	3
Hydraulics	4
Basin Map	5
III.DEVELOPED CONDITIONS	3
Hydrology	6
Hydraulics	7
IV.GRADING PLAN	1
V.CONCLUSION	1
VI.Appendix A12	2
Alameda Project Basin Map defined	۱.
Hydrologic Calculations1	3
AHYMO Summary1	3
AHYMO Calculations1	5
HYDRAULIC Calculation	7
VII. EXHIBITS	1

EXHIBITS

Back Sleeve

EXHIBIT A Grading and Drainage Plan

INTRODUCTION & PROJECT DESCRIPTION I.

This report is submitted as support for Paradise RV Park Site Plan and Building Permit. As depicted on Figure 1 Zone Atlas Page K-8 below, the project is a RV Park located at Volcano Rd. and Leonidas Ave.

The runoff from the site will be directed to the depressed landscape areas along the site boundaries and routed to an inlet at the southeast corner of the site. Offsite runoffs to the northwest will we routed to the temporary retention pond west of the site. Offsite runoffs to the west will continue in the existing condition until development requires improvements.

Legal Description Tract 3E, ROW A, UNIT A, West of Westland, Town of Atrisco Grant

Figure 2 - FEMA's FIRM 35001C0328H

This project, as shown on Figure 2 - FEMA's FIRM 35001C0328H, dated August 16, 2012 is not within a designated 100-year floodplain.

Previous Studies

A conceptual analysis of the site was completed under "Drainage Report for Paradise RV Park – Phase I", by Larry D. Read P.E., dated October 15, 2013. The study quantified the runoff from the site and upstream basins for the 100-yr 24-hr duration storm. The review of this submittal identified several points to be addressed for Building Permit approval that are addressed in this submittal. The "Amole-Hubbell Drainage Master Plan", dated May 2013, is a drainage master plan for the area that established the drainage infrastructure and design runoff in the vicinity of the site for developed flows of offsite basins.

Methodology

The drainage plan presented in this report has been prepared in accordance with the City of Albuquerque Drainage Ordinances and Chapter 22 of the Development Process Manual (DPM). Hydrology for the 100-yr 24-hr duration storm was used as the design storm for this analysis. The site is within zone 1 as identified in the city of Albuquerque Development Process Manual, Section 22.2 for rainfall intensity and quantified utilizing AHYMO 97 software.

Zone	P ₆₀	P ₃₆₀	P ₁₄₄₀
1	1.87	2.20	2.66

Rainfall intensities per this report are as follows:

The proposed storm drain systems included in this report were modeled using hydrology, topographic and planimetric data obtained in the design. The hydraulic analysis for this report was performed to determine capacities and HGL utilizing Hydraflow software.

II. EXISTING CONDITIONS

The proposed site is 4.5 acres located on the north side of Volcano Road. west of Leonidas Lane as seen on the Figure 1 Zone Atlas Page . The site is currently undeveloped and has an approved site plan for an RV Park. There is a developed site to the north. This site has a drainage pattern that is generally southward with surface discharge to Volcano Road. There is a temporary retention pond on the site that will be relocated south of the site.

Hydrology

The previous analysis for the 100-yr 24-hr duration storm was done using AHYMO S4 software. A summary of the result of the onsite and adjacent basins as depicted in the Basin Map on page 5 is listed below.

Basin	Area		Land Tr	eatment		Yield	Q ₁₀₀	V ₁₀₀
Dasin	(ac.)	Α	В	С	D	(cfs/ac.)	(cfs)	(cfs)
101	1.16	0	3	5	92	4.43	5.14	0.182
102	1.18	0	0	22	78	4.25	5.02	0.173
103	2.01	0	0	16	84	4.33	8.19	0.286
104	0.09	0	0	100	0	3.34	0.29	0.008
105	0.15	0	0	100	0	3.29	0.51	0.014
200	5.11	0	5	76	19	3.44	17.57	0.526
300	14.85	100	0	0	0	1.62	17.56	0.795
900	24.90	100	0	0	0	1.68	22.62	0.326
990	5.80	0	3	30	67	4.07	23.61	0.311

Hydraulics

.

The previous plans and analyses determined the necessity of the construction of infrastructure adjacent to the site. The runoff from the site and the existing development (basins 100-105 and 990) is to be contained in a storm drain in Leonidas Lane with a discharge to the existing City pond south of Volcano Road.

The runoff from the undeveloped upstream basins that directly flow to the site (basins 200, 300, 800 and 900) were to be contained in a retention pond south of the developed site. The additional upstream basins that flow to the City pond are to be contained in a future storm drain in Volcano Road with a discharge to the City pond. The previous studies did not include hydraulic analyses of the systems.

III. DEVELOPED CONDITIONS

The proposed development is an RV park to be developed in two phases. The site will be developed for Phase I with a single structure and RV parking. As shown on Exhibit A: Grading and Drainage Plan, develop runoff from the site and adjacent development is routed to proposed storm drains. Existing runoff from upstream undeveloped basins is intercepted by the proposed temporary retention pond.

Hydrology

The analysis for the 100-yr 24-hr duration storm was done using AHYMO 97 software. A summary of the result is listed below and detailed in the Appendix. The assumptions included accurately describe the developed conditions of the project.

Pacin	Area		Land Tr	eatment		Yield	Q ₁₀₀	V ₁₀₀
Dasin	(ac.)	Α	В	С	D	(cfs/ac.)	(cfs)	(cfs)
91	0.55	0	0	100	90	4.18	2.30	0.105
101	1.14	0	3	5	92	4.17	4.75	0.219
102	1.43	0	0	22	78	3.99	5.69	0.251
103	1.66	0	0	16	84	4.07	6.74	0.303
104	0.09	0	0	100	0	2.93	0.27	0.008
105	0.15	0	0	100	0	2.89	0.45	0.013
201	3.11	0	0	100	0	2.85	8.86	0.257
202	1.87	0	0	100	0	2.85	5.33	0.155
301	9.90	100	0	0	0	0.83	8.21	0.362
302	4.95	100	0	0	0	0.83	4.11	0.181
900	24.90	100	0	0	0	0.63	15.60	0.913
990	5.80	0	3	30	67	3.79	22.01	0.939

The following table summarizes the variations in runoff from the previous study.

Basin	Previous	Proposed	Diff.
Dasin	(cfs.)	(cfs)	(cfs)
91	0	2.30	+2.30
101	5.14	4.75	-0.39
102	5.02	5.69	+0.67
103	8.19	6.74	-1.45
104	0.29	0.27	-0.02
105	0.51	0.45	-0.06
200	17.57	15.19	-2.28
300	17.56	12.32	-5.26
900	22.62	15.60	-7.02
990	23.61	22.01	-1.60

As shown, there are significant differences in peak flows from the previous study. This is due to the difference in AHYMO software versions. The source of the anomaly is not known. The AHYMO 97 version has been previously accepted as standard and is used as the basis for analysis of the onsite and adjacent basins to the site. The flows previously reported for the offsite basins which due not directly impact the site have remained unchanged.

Hydraulics

The analysis included in this report for developed condition is based on the developed conditions of the site and accommodation of existing offsite runoff. Inlets have been placed to intercept surface flows where surface capacity is reached. Basins 990 and 101 surface discharge to basin 91 and flow to inlets in Leonidas Lane. The remaining onsite basins, 102 through 105, discharge via the inlet in the southeast corner of the site to a storm drain connection in Volcano Road. The inlets intercepting flow in Volcano Road and Leonidas Lane are combined and directed to the City pond south of Volcano Road. Although developed flows may be intercepted at upstream locations, the inlets and connections in Volcano Road are analyzed based on the maximum flow capacity (100 cfs) of the street section and the future installation of opposite curb inlets.

As shown below, the street sections of have the capacity to convey the flows indicated, and the analysis of the storm drain flows are summarized in the following pages:

99.50 -5	0 5	10 15	20 25	30 35	40 45	50 55 60	-0.50
Depth	Q	Area	Veloc	Wp	Yc	TopWidth	Energy
(ft)	(cfs)	(sqft)	(ft/s)	(ft)	(ft)	(ft)	(ft)
0.67	107.1	15.49	8.91	41.40	0.91	40.34	1.41

DRAINAGE REPORT FOR PARADISE RV PARK PHASE I Storm Drain Layout

Storm Drain Summary

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
1	Pipe - (1)	79.18	36	Cir	113.67	5210.00	5221.04	9.713	5212.77	5223.81	n/a	5227.89 i	End	Manhole
2	Pipe - (2)	27.93	24	Cir	59.96	5222.04	5223.98	3.239	5227.89*	5228.67*	1.23	5229.89	1	Manhole
3	Pipe - (3)	13.94	18	Cir	23.00	5224.48	5224.92	1.913	5230.15*	5230.50*	1.45	5231.95	2	Combination
4	Pipe - (4)	10.46	18	Cir	93.41	5225.02	5229.52	4.818	5232.38*	5233.17*	0.54	5233.71	3	Combination
5	Pipe - (5)	13.98	18	Cir	6.50	5224.48	5226.73	34.630	5230.15*	5230.25*	1.46	5231.71	2	Combination
6	Pipe - (6)	10.46	18	Cir	36.98	5226.83	5228.47	4.435	5232.14*	5232.45*	0.54	5232.99	5	Combination
7	Pipe - (7)	51.25	36	Cir	55.67	5221.04	5223.49	4.401	5227.89*	5228.17*	0.82	5228.98	1	Manhole
8	Pipe - (8)	51.25	30	Cir	28.75	5223.99	5224.85	2.991	5228.98*	5229.37*	n/a	5230.51 i	7	Combination
9	Pipe - (9)	23.98	18	Cir	30.00	5225.85	5228.29	8.133	5230.51*	5231.84*	n/a	5236.49 i	8	Combination
10	Pipe - (10)	13.15	18	Cir	35.90	5225.85	5227.50	4.595	5230.51*	5230.99*	0.86	5231.85	8	Grate

Storm Drain Inlets

Line	Inlet ID	Q =	Q	Q	Q	Junc	Curb Ir	nlet	Gra	te Inlet		Gutter						Inlet			Byp	
NO		(cfs)	(cfs)	capt (cfs)	сfs)	Type	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	No
1	SD MH 2	0.00	0.00	0.00	0.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
2	SD MH 3	0.00	0.00	0.00	0.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
3	CB 3	0.00	4.28	3.48	0.80	Comb	8.0	8.00	0.00	8.00	2.00	0.017	2.00	0.050	0.020	0.017	0.28	11.10	0.37	10.17	2.0	Off
4	CB 5	14.74*	0.00	10.46	4.28	Comb	8.0	10.00	0.00	8.00	2.00	0.017	2.00	0.063	0.020	0.017	0.44	17.95	0.52	17.52	2.0	3
5	CB 4	0.00	4.28	3.52	0.76	Comb	8.0	8.00	0.00	8.00	2.00	0.017	2.00	0.063	0.020	0.017	0.30	10.90	0.37	10.17	2.0	Off
6	CB 6	14.74*	0.00	10.46	4.28	Comb	8.0	10.00	0.00	8.00	2.00	0.017	2.00	0.063	0.020	0.017	0.44	17.95	0.52	17.52	2.0	5
7	SD MH 1	0.00	0.00	0.00	0.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
8	CB 2	0.00	26.02	14.12	11.90	Comb	8.0	8.00	0.00	8.00	2.00	0.030	2.00	0.063	0.020	0.017	0.49	20.05	0.56	19.67	2.0	Off
9	CB 1	50.00*	0.00	23.98	26.02	Comb	8.0	10.00	0.00	8.00	2.00	0.030	2.00	0.063	0.020	0.017	0.60	25.80	0.68	25.52	2.0	в
10	CB 7	13.15*	0.00	13.15	0.00	Grate	0.0	0.00	4.47	4.00	2.00	Sag	2.00	0.050	0.020	0.000	0.67	30.47	0.67	30.47	0.0	Off

IV. GRADING PLAN

The Grading and Drainage Plan included in Appendix A depicts the developed grading and drainage characteristics of the area affected by the project. The plan demonstrates that the runoff from the site is directed to appropriate points of discharge and the proposed facilities are adequate to accommodate the flows impacted by the site. In addition, the Grading plan and Drainage Plan included in Appendix A is provided in support of building permit and construction of the improvements.

V. CONCLUSION

As, shown, the capacity of the proposed infrastructure is adequate to accommodate the runoff from the site as described. The flow is contained within the street sections and the downstream storm drain has adequate capacity to accept the runoff.

VI. Appendix A

Hydrologic Calculations

AHYMO Summary

AHYMO PROGRAM S	SUMMARY TABLE (AHYMO_ FROM	97) - TO		- PEAK	VERSION: RUNOFF	1997.02c	RUN DATE TIME TO	(MON/DAY/Y CFS	R) =01/2 PAGE =	3/2015 1
COMMAND I	HYDROGRAPH DENTIFICATION	ID NO.	ID NO.	AREA (SQ MI)	DISCHARGE (CFS)	VOLUME (AC-FT	RUNOFF) (INCHES)	PEAK (HOURS)	PER ACRE	NOTATI	ON
START BATNFALL T	YPF= 2								Т	IME= RATN2	.00
*S	******	*****	******	*****	* *						
*s	RUNOFF	TO LE	ONIDAS LAN	E STORM DR.	AIN						
*s	COMPUT	E RUNO	FF LEONIDA	S LANE							
COMPUTE NM HYD	91.00	-	1	.00086	2.30	.105	2.28382	1.500	4.179 P	ER IMP=	90.00
*S	* * * * * * *	*****	*******	*****	* *						
*S	COMPUT	E RUNO	FF SITE PA	RKING AREA							~~ ~~
COMPUTE NM HYD	101.00	- + + + + +	2	.00178	4.75	.219	2.30156	1.500	4.169 P	ER IMP=	92.00
^S *s	COMPLIT		EE NODTH D		~ ~						
COMPLITE NM HYD	102 00	-	3	00223	5 69	251	2 11172	1 500	3 988 P	FR TMP=	78 00
*s	******	******	********	****	**	1201	2	11000	010001	-11 -1111	/0100
*S	COMPUT	E RUNO	FF SOUTH R	V AREA							
COMPUTE NM HYD	103.00	-	4	.00259	6.74	.303	2.19777	1.500	4.074 P	ER IMP=	84.00
* S	* * * * * *	******	******	******	* *						
*S	COMPUT	E RUNO	FF EAST LA	NDSCAPE AR	EA						
COMPUTE NM HYD	104.00	-	5	.00014	.27	.008	.99307	1.500	2.938 P	ER IMP=	.00
*S	******		**********		**						
		E RUNU	FF SOUTH L	ANDSCAPE A	REA	012	00207	1 500	0 004 0		00
	100.00	- ******	0 *****	.00024	.43 **	.013	.99307	1.500	2.894 P	ER IMP-	.00
*s	COMPUT	F BUNO	FE NORTH O	FESTTE							
COMPUTE NM HYD	990.00	-	7	.00907	22.01	.939	1,94219	1,500	3.794 P	ER IMP=	67.00
*S	* * * * * * *	*****	* * * * * * * * * *	*****	* *						
*S	ADD RU	JNOFF T	0 START LE	ONIDAS LAN	E						
ADD HYD	91.10	1& 7	8	.00993	24.32	1.044	1.97177	1.500	3.828		
*S	******	******	*********	*******	* *						
*S	ADD RU	JNOFF F	ROM SITE T	0 LEONIDAS		4 000	0.00101	1 500	0.070		
ADD HYD	91.20	8& 2	1 *******	.01171	29.07	1.262	2.02191	1.500	3.879		
^S *s	ום חחא			Α ΤΟ ΕΔΩΤ							
ADD HYD	104 10	38 5	2	00237	5 96	259	2 04452	1 500	3 926		
*s	******	******	- ******	****	**	1200	2101102	11000	01020		
*s	ADD RU	JNOFF F	ROM RV ARE	A TO SOUTH	LANDSCAPE						
ADD HYD	105.10	4& 6	1	.00283	7.19	.316	2.09490	1.500	3.973		

COMMAND	HYDROGRAPH IDENTIFICATION	FROM ID NO.	TO ID NO.	AREA (SQ MI)	PEAK DISCHARGE (CFS)	RUNOFF VOLUME (AC-FT)	RUNOFF (INCHES)	TIME TO PEAK (HOURS)	CFS PER ACRE	PAGE = NOTATION	2
*S	* * * * * * *	*****	******	* * * * * * * * * * * * *	****						
*s	COMBIN	IE SITE	RUNOFF	TO INLET							
ADD HYD	105.10	1& 2	3	.00520	13.15	.574	2.07192	1,500	3,952		
*s	*****	*****	******	******	* * * *						
*s	RUNOFF	то те	MPORARY	RETENTION F	POND						
*s	COMPUT	E RUNC	OFF NORT	H PHASE II							
COMPUTE NM H	YD 201.00	-	1	.00486	8.86	.257	.99307	1.500	2.848 P	ER IMP=	.00
*s	******	*****	******	**********	****						
*s	COMPUT	E RUNC	OFF SOUT	H PHASE II							
COMPUTE NM H	YD 202.00	-	2	.00292	5.33	.155	.99307	1.500	2.850 P	ER IMP=	.00
*s	* * * * * * *	*****	******	**********	* * * *						
*s	COMPUT	E RUNC	OFF WEST	OFFSITE							
COMPUTE NM H	YD 301.00	-	3	.01547	8.21	.362	.43936	1.600	.830 P	ER IMP=	.00
*S	******	******	*******	************	* * * *						
*S	COMPUT	E RUNC	OFF WEST	OFFSITE		101	40000	1 000	000 D		~ ~ ~
	YD 302.00	- + + + + +	4	.00773	4.11	.181	.43936	1.600	.830 P	ER IMP=	.00
^S *S											
°S COMDUTE NM H		E RUNC			20 70	1 336	43036	1 600	944 D	ED TMD-	00
	******	-	******	.00700		1.550	.43930	1.000	.044 F	LN IMF-	.00
5 *e	COMPLIE		NEE NORT	HWEST OFEST	F						
COMPLITE NM H		-	6	03890	15 60	912	43936	1 700	627 P	FR TMP=	00
*S	******	*****	******	**********	****	1012	.40000	1.700	.027 1		.00
*s	ADD RU	INOFF F	OR NORT	HWEST OFFSI	ſE						
ADD HYD	900.10	5& 6	7	.09590	45.39	2.247	.43936	1.600	.740		
*s	* * * * * *	*****	******	******	* * * *						
*s	ADD RU	NOFF T	O WEST	OFFSITE							
ADD HYD	301.10	3& 7	8	.11137	53.61	2.610	.43936	1.600	.752		
*s	* * * * * * *	*****	******	**********	* * * *						
*s	RUNOFF	ROUTE	D THROU	GH CULVERT 1	TO POND						
ADD HYD	201.10	1& 8	9	.11623	60.06	2.867	.46251	1.600	.807		
*S	* * * * * * *	*****	******	*******	* * * *						
*s	COMBIN	IE RUNC	OFF FROM	CULVERT AND	D POND						
ADD HYD	202.10	9& 2	1	.11915	63.94	3.022	.47552	1.600	.838		
*S	******	*****	******	***********	* * * *						
*S	ADD RU	INOFF F	ROM OFF	SITE FOR PON	ND TOTAL						
ADD HYD	202.20	1& 4	2	.12688	68.05	3.203	.47332	1.600	.838		

DRAINAGE REPORT FOR PARADISE RV PARK PHASE I AHYMO Calculations

AHYMO PROGRAM (AHYMO_97) -- Version: 1997.02c * * *100 YEAR PROPOSED CONDITIONS * ***** * *** TC = 12 MIN *** * ***** START TIME=0.0 HR PUNCH CODE=0 PRINT LINES=-6 ***** *s *s RAINFALL TYPE=2 RAIN QUARTER=0.0 RAIN ONE=1.87 IN RAIN SIX=2.20 IN

RAIN DAY=2.66 IN DT=0.05 HRS

COMPUTED 24-HOUR RAINFALL DISTRIBUTION BASED ON NOAA ATLAS 2 - PEAK AT 1.40 HR.

DT =	.050000 H	OURS	END T	IME =	24.000000 HOURS		
.0000	.0025	.0050	.0076	.0103	.0131	.0160	
.0190	.0222	.0254	.0289	.0324	.0362	.0401	
.0443	.0487	.0534	.0584	.0637	.0695	.0758	
.0837	.0924	.1176	.1773	.2798	.4384	.6668	
.9790	1.2253	1.3366	1.4295	1.5109	1.5836	1.6495	
1.7096	1.7648	1.8156	1.8624	1.9057	1.9458	1.9548	
1.9631	1.9708	1.9780	1.9848	1.9912	1.9973	2.0031	
2.0087	2.0140	2.0191	2.0240	2.0287	2.0333	2.0377	
2.0420	2.0462	2.0502	2.0542	2.0580	2.0617	2.0653	
2.0689	2.0724	2.0757	2.0791	2.0823	2.0855	2.0886	
2.0916	2.0946	2.0976	2.1005	2.1033	2.1061	2.1088	
2.1115	2.1142	2.1168	2.1193	2.1219	2.1244	2.1268	
2.1293	2.1316	2.1340	2.1363	2.1386	2.1409	2.1431	
2.1453	2.1475	2.1497	2.1518	2.1539	2.1560	2.1580	
2.1601	2.1621	2.1641	2.1660	2.1680	2.1699	2.1718	
2.1737	2.1756	2.1774	2.1793	2.1811	2.1829	2.1847	
2.1864	2.1882	2.1899	2.1916	2.1933	2.1950	2.1967	
2.1984	2.2000	2.2020	2.2039	2.2059	2.2078	2.2097	
2.2117	2.2136	2.2155	2.2174	2.2193	2.2212	2.2231	
2.2249	2.2268	2.2287	2.2305	2.2324	2.2342	2.2361	
2.2379	2.2398	2.2416	2.2434	2.2452	2.2470	2.2488	
2.2506	2.2524	2.2542	2.2559	2.2577	2.2595	2.2612	
2.2630	2.2647	2.2665	2.2682	2.2700	2.2717	2.2734	
2.2751	2.2768	2.2785	2.2802	2.2819	2.2836	2.2853	
2.2870	2.2887	2.2903	2.2920	2.2937	2.2953	2.2970	
2.2986	2.3002	2.3019	2.3035	2.3051	2.3068	2.3084	
2.3100	2.3116	2.3132	2.3148	2.3164	2.3180	2.3196	
2.3212	2.3227	2.3243	2.3259	2.3274	2.3290	2.3305	

2.3321	2.3336	2.3352	2.3367	2.3383	2.3398	2.3413	
2.3428	2.3444	2.3459	2.3474	2.3489	2.3504	2.3519	
2.3534	2.3549	2.3563	2.3578	2.3593	2.3608	2.3622	
2.3637	2.3652	2.3666	2.3681	2.3695	2.3710	2.3724	
2.3739	2.3753	2.3767	2.3782	2.3796	2.3810	2.3824	
2.3839	2.3853	2.3867	2.3881	2.3895	2.3909	2.3923	
2.3937	2.3951	2.3965	2.3978	2.3992	2.4006	2.4020	
2.4033	2.4047	2.4061	2.4074	2.4088	2.4101	2.4115	
2.4128	2.4142	2.4155	2.4168	2.4182	2.4195	2.4208	
2.4222	2.4235	2.4248	2.4261	2.4274	2.4287	2.4300	
2.4314	2.4327	2.4340	2.4352	2.4365	2.4378	2.4391	
2.4404	2.4417	2.4430	2.4442	2.4455	2.4468	2.4480	
2.4493	2.4506	2.4518	2.4531	2.4543	2.4556	2.4568	
2.4581	2.4593	2.4606	2.4618	2.4630	2.4643	2.4655	
2.4667	2.4680	2.4692	2.4704	2.4716	2.4728	2.4740	
2.4753	2.4765	2.4777	2.4789	2.4801	2.4813	2.4825	
2.4837	2.4849	2.4860	2.4872	2.4884	2.4896	2.4908	
2.4919	2.4931	2.4943	2.4955	2.4966	2.4978	2.4990	
2.5001	2.5013	2.5024	2.5036	2.5047	2.5059	2.5070	
2.5082	2.5093	2.5105	2.5116	2.5127	2.5139	2.5150	
2.5161	2.5172	2.5184	2.5195	2.5206	2.5217	2.5229	
2.5240	2.5251	2.5262	2.5273	2.5284	2.5295	2.5306	
2.5317	2.5328	2.5339	2.5350	2.5361	2.5372	2.5383	
2.5394	2.5404	2.5415	2.5426	2.5437	2.5448	2.5458	
2.5469	2.5480	2.5490	2.5501	2.5512	2.5522	2.5533	
2.5544	2.5554	2.5565	2.5575	2.5586	2.5596	2.5607	
2.5617	2.5628	2.5638	2.5649	2.5659	2.5669	2.5680	
2.5690	2.5700	2.5711	2.5721	2.5731	2.5741	2.5752	
2.5762	2.5772	2.5782	2.5792	2.5803	2.5813	2.5823	
2.5833	2.5843	2.5853	2.5863	2.5873	2.5883	2.5893	
2.5903	2.5913	2.5923	2.5933	2.5943	2.5953	2.5963	
2.5973	2.5982	2.5992	2.6002	2.6012	2.6022	2.6031	
2.6041	2.6051	2.6061	2.6070	2.6080	2.6090	2.6099	
2.6109	2.6119	2.6128	2.6138	2.6148	2.6157	2.6167	
2.6176	2.6186	2.6195	2.6205	2.6214	2.6224	2.6233	
2.6243	2.6252	2.6261	2.6271	2.6280	2.6290	2.6299	
2.6308	2.6318	2.6327	2.6336	2.6346	2.6355	2.6364	
2.6373	2.6383	2.6392	2.6401	2.6410	2.6419	2.6428	
2.6438	2.6447	2.6456	2.6465	2.6474	2.6483	2.6492	
2.6501	2.6510	2.6519	2.6528	2.6537	2.6546	2.6555	
2.6564	2.6573	2.6582	2.6591	2.6600			

*S	RUNOFF TO LEONIDAS LANE STORM DRAIN
*S	COMPUTE RUNOFF LEONIDAS LANE
COMPUTE NM HYD	ID=1 HYD NO=91 DA=0.000861 SQ MI

PER A=0 PER B=0 PER C=10 PER D=90 TP=-0.1333 HR MASS RAIN=-1

K =.072649HRTP =.133300HRK/TP RATIO =.545000SHAPE CONSTANT, N =7.106420UNIT PEAK =3.0593CFSUNIT VOLUME =.9959B =526.28P60 =1.8700AREA =.000775 SQ MIIA =.10000 INCHESINF =.04000 INCHES PER HOURRUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT =.050000

K =.105867HRTP =.133300HRK/TP RATIO =.794199SHAPE CONSTANT, N =4.514851UNIT PEAK =.25071CFSUNIT VOLUME =.9512B =388.14P60 =1.8700AREA =.000086 SQ MIIA =.35000 INCHESINF =.83000 INCHES PER HOURRUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT =.050000

PRINT HYD ID=1 CODE=1

OUTFLOW HYDROGRAPH REACH 91.00

RUNOFF VOLUME = 2.28382 INCHES = .1049 ACRE-FEET PEAK DISCHARGE RATE = 2.30 CFS AT 1.500 HOURS BASIN AREA = .0009 SQ. MI.

K =.072649HRTP =.133300HRK/TP RATIO =.545000SHAPE CONSTANT, N =7.106420UNIT PEAK =6.4690CFSUNIT VOLUME =.9975B =526.28P60 =1.8700AREA =.001639 SQ MIIA =.10000 INCHESINF =.04000 INCHES PER HOURRUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT =.050000

K =.115289HRTP =.133300HRK/TP RATIO =.864882SHAPE CONSTANT, N =4.109594UNIT PEAK =.38737CFSUNIT VOLUME =.9681B =362.41P60 =1.8700AREA =.000142 SQ MIIA =.40625 INCHESINF =.98750 INCHES PER HOURRUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT =.050000

PRINT HYD ID=2 CODE=1

PARTIAL HYDROGRAPH 101.00

RUNOFF VOLUME =	2.30156	INCHES	=	.2186 AC	RE-FEET	
PEAK DISCHARGE RATE	=	4.75 CFS	AT	1.500 HOURS	BASIN AREA =	.0018 SQ. MI.

K =.072649HRTP =.133300HRK/TP RATIO =.545000SHAPE CONSTANT, N =7.106420UNIT PEAK =6.8642CFSUNIT VOLUME =.9975B =526.28P60 =1.8700AREA =.001739 SQ MIIA =.10000 INCHESINF =.04000 INCHES PER HOURRUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT =.050000

K =.105867HRTP =.133300HRK/TP RATIO =.794199SHAPE CONSTANT, N =4.514851UNIT PEAK =1.4279CFSUNIT VOLUME =.9928B =388.14P60 =1.8700AREA =.000490 SQ MIIA =.35000 INCHESINF =.83000 INCHES PER HOURRUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT =.050000

PRINT HYD ID=3 CODE=1

PARTIAL HYDROGRAPH 102.00

RUNOFF VOLUME = 2.11172 INCHES = .2510 ACRE-FEET PEAK DISCHARGE RATE = 5.69 CFS AT 1.500 HOURS BASIN AREA = .0022 SQ. MI.

K =.072649HRTP =.133300HRK/TP RATIO =.545000SHAPE CONSTANT, N =7.106420UNIT PEAK =8.5761CFSUNIT VOLUME =.9978B =526.28P60 =1.8700AREA =.002172 SQ MIIA =.10000 INCHESINF =.04000 INCHES PER HOURRUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD -DT =.050000

 K =
 .105867HR
 TP =
 .133300HR
 K/TP RATIO =
 .794199
 SHAPE CONSTANT, N =
 4.514851

 UNIT PEAK =
 1.2048
 CFS
 UNIT VOLUME =
 .9913
 B =
 388.14
 P60 =
 1.8700

AREA = .000414 SQ MI IA = .35000 INCHES INF = .83000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .050000

PRINT HYD ID=4 CODE=1

PARTIAL HYDROGRAPH 103.00

RUNOFF VOLUME = 2.19777 INCHES = .3031 ACRE-FEET PEAK DISCHARGE RATE = 6.74 CFS AT 1.500 HOURS BASIN AREA = .0026 SQ. MI.

K =.105867HRTP =.133300HRK/TPRATIO =.794199SHAPECONSTANT, N =4.514851UNITPEAK =.41347CFSUNITVOLUME =.9702B =388.14P60 =1.8700AREA =.000142SQMIIA =.35000INCHESINF =.83000INCHESPERHOURRUNOFFCOMPUTEDBYINITIALABSTRACTION/INFILTRATIONNUMBERMETHOD -DT =.050000

PRINT HYD ID=5 CODE=1

PARTIAL HYDROGRAPH 104.00

RUNOFF VOLUME = .99307 INCHES = .0075 ACRE-FEET PEAK DISCHARGE RATE = .27 CFS AT 1.500 HOURS BASIN AREA = .0001 SQ. MI.

*s COMPUTE RUNOFF SOUTH LANDSCAPE AREA COMPUTE NM HYD ID=6 HYD N0=105 DA=0.000241 SQ MI PER A=0 PER B=0 PER C=100 PER D=0 TP=-0.1333 HR MASS BAIN=-1

K =.105867HRTP =.133300HRK/TP RATIO =.794199SHAPE CONSTANT, N =4.514851UNIT PEAK =.70174CFSUNIT VOLUME =.9849B =388.14P60 =1.8700AREA =.000241 SQ MIIA =.35000 INCHESINF =.83000 INCHES PER HOURRUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT =.050000

PRINT HYD ID=6 CODE=1

PARTIAL HYDROGRAPH 105.00

RUNOFF VOLUME =.99307 INCHES=.0128 ACRE-FEETPEAK DISCHARGE RATE =.45 CFS AT1.500 HOURSBASIN AREA =.0002 SQ. MI.

K =.072649HRTP =.133300HRK/TP RATIO =.545000SHAPE CONSTANT, N =7.106420UNIT PEAK =23.979CFSUNIT VOLUME =.9987B =526.28P60 =1.8700AREA =.006074 SQ MIIA =.10000 INCHESINF =.04000 INCHES PER HOURRUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT =.050000

K =.108151HRTP =.133300HRK/TP RATIO =.811334SHAPE CONSTANT, N =4.408174UNIT PEAK =8.5620CFSUNIT VOLUME =1.000B =381.52P60 =1.8700AREA =.002991 SQ MIIA =.36364 INCHESINF =.86818 INCHES PER HOURRUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT =.050000

PRINT HYD ID=7 CODE=1

HYDROGRAPH FROM AREA 990.00

RUNOFF VOLUME = 1.94219 INCHES = .9390 ACRE-FEET PEAK DISCHARGE RATE = 22.01 CFS AT 1.500 HOURS BASIN AREA = .0091 SQ. MI.

OUTFLOW HYDROGRAPH REACH 91.10

RUNOFF VOLUME = 1.97177 INCHES = 1.0438 ACRE-FEET PEAK DISCHARGE RATE = 24.32 CFS AT 1.500 HOURS BASIN AREA = .0099 SQ. MI.

****** *s

*s ADD RUNOFF FROM SITE TO LEONIDAS LANE ID=1 HYD NO=91.2 IDS=8 AND 2 ID=1 CODE=1 ADD HYD PRINT HYD

OUTFLOW HYDROGRAPH REACH 91.20

RUNOFF VOLUME = 2.02191 INCHES = 1.2624 ACRE-FEET PEAK DISCHARGE RATE = 29.07 CFS AT 1.500 HOURS BASIN AREA = .0117 SQ. MI.

***** *s *s ADD RUNOFF FROM RV AREA TO EAST LANDSCAPE ID=2 HYD NO=104.1 IDS=3 AND 5 ID=2 CODE=1 ADD HYD PRINT HYD

PARTIAL HYDROGRAPH 104.10

RUNOFF VOLUME = 2.04452 INCHES = .2585 ACRE-FEET PEAK DISCHARGE RATE = 5.96 CFS AT 1.500 HOURS BASIN AREA = .0024 SQ. MI.

*s ***** ADD RUNOFF FROM RV AREA TO SOUTH LANDSCAPE ID=1 HYD NO=105.1 IDS=4 AND 6 ID=1 CODE=1 *s ADD HYD PRINT HYD

PARTIAL HYDROGRAPH 105.10

RUNOFF VOLUME = 2.09490 INCHES = .3159 ACRE-FEET PEAK DISCHARGE RATE = 7.19 CFS AT 1.500 HOURS BASIN AREA = .0028 SQ. MI.

*s *s COMBINE SITE RUNOFF TO INLET *sCOMBINE SITE RUNOFF TO INLETADD HYDID=3 HYD NO=105.1 IDS=1 AND 2PRINT HYDID=3 CODE=1

PARTIAL HYDROGRAPH 105.10

RUNOFF VOLUME =2.07192 INCHES=.5744 ACRE-FEETPEAK DISCHARGE RATE =13.15 CFS AT1.500 HOURSBASIN AREA =.0052 SQ. MI.

K =.105867HRTP =.133300HRK/TP RATIO =.794199SHAPE CONSTANT, N =4.514851UNIT PEAK =14.151CFSUNIT VOLUME =1.001B =388.14P60 =1.8700AREA =.004860 SQ MIIA =.35000 INCHESINF =.83000 INCHES PER HOURRUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT =.050000

PRINT HYD ID=1 CODE=1

PARTIAL HYDROGRAPH 201.00

RUNOFF VOLUME = .99307 INCHES = .2574 ACRE-FEET PEAK DISCHARGE RATE = 8.86 CFS AT 1.500 HOURS BASIN AREA = .0049 SQ. MI.

*s COMPUTE RUNOFF SOUTH PHASE II COMPUTE NM HYD ID=2 HYD NO=202 DA=0.002923 SQ MI PER A=0 PER B=0 PER C=100 PER D=0 TP=-0.1333 HR MASS RAIN=-1

K =.105867HRTP =.133300HRK/TP RATIO =.794199SHAPE CONSTANT, N =4.514851UNIT PEAK =8.5112CFSUNIT VOLUME =1.000B =388.14P60 =1.8700AREA =.002923 SQ MIIA =.35000 INCHESINF =.83000 INCHES PER HOURRUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT =.050000

PRINT HYD ID=2 CODE=1

PARTIAL HYDROGRAPH 202.00

RUNOFF VOLUME = .99307 INCHES = .1548 ACRE-FEET PEAK DISCHARGE RATE = 5.33 CFS AT 1.500 HOURS BASIN AREA = .0029 SQ. MI.

 K =
 .270146HR
 TP =
 .220000HR
 K/TP RATIO =
 1.227936
 SHAPE CONSTANT, N =
 2.899764

 UNIT PEAK =
 19.231
 CFS
 UNIT VOLUME =
 .9990
 B =
 273.54
 P60 =
 1.8700

 AREA =
 .015467 SQ MI
 IA =
 .65000 INCHES
 INF =
 1.67000 INCHES PER HOUR

 RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT =
 .050000

PRINT HYD ID=3 CODE=1

HYDROGRAPH FROM AREA 301.00

RUNOFF VOLUME = .43936 INCHES = .3624 ACRE-FEET PEAK DISCHARGE RATE = 8.21 CFS AT 1.600 HOURS BASIN AREA = .0155 SQ. MI.

*s COMPUTE RUNOFF WEST OFFSITE COMPUTE NM HYD ID=4 HYD NO=302 DA=0.007733 SQ MI PER A=100 PER B=0 PER C=0 PER D=0 TP=-0.22 HR MASS RAIN=-1

K =.270146HRTP =.220000HRK/TP RATIO =1.227936SHAPE CONSTANT, N =2.899764UNIT PEAK =9.6151CFSUNIT VOLUME =.9982B =273.54P60 =1.8700AREA =.007733 SQ MIIA =.65000 INCHESINF =1.67000 INCHES PER HOURRUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT =.050000

PRINT HYD ID=4 CODE=1

HYDROGRAPH FROM AREA 302.00

RUNOFF VOLUME = .43936 INCHES = .1812 ACRE-FEET PEAK DISCHARGE RATE = 4.11 CFS AT 1.600 HOURS BASIN AREA = .0077 SQ. MI.

*s COMPUTE RUNOFF FAR NORTHWEST OFFSITE COMPUTE NM HYD ID=5 HYD NO=800 DA=0.0570 SQ MI PER A=100 PER B=0 PER C=0 PER D=0 TP=-0.216 HR MASS RAIN=-1

 K =
 .265234HR
 TP =
 .216000HR
 K/TP RATIO =
 1.227936
 SHAPE CONSTANT, N =
 2.899764

 UNIT PEAK =
 72.185
 CFS
 UNIT VOLUME =
 .9994
 B =
 273.54
 P60 =
 1.8700

 AREA =
 .057000 SQ MI
 IA =
 .65000 INCHES
 INF =
 1.67000 INCHES PER HOUR

 RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT =
 .050000

PRINT HYD ID=5 CODE=1

HYDROGRAPH FROM AREA 800.00

RUNOFF VOLUME = .43936 INCHES = 1.3356 ACRE-FEET PEAK DISCHARGE RATE = 30.78 CFS AT 1.600 HOURS BASIN AREA = .0570 SQ. MI.

*S COMPUTE RUNOFF NORTHWEST OFFSITE COMPUTE NM HYD ID=6 HYD NO=900 DA=0.0389 SQ MI PER A=100 PER B=0 PER C=0 PER D=0 TP=-0.293 HR MASS RAIN=-1

 K =
 .359785HR
 TP =
 .293000HR
 K/TP RATIO =
 1.227936
 SHAPE CONSTANT, N =
 2.899764

 UNIT PEAK =
 36.317
 CFS
 UNIT VOLUME =
 .9995
 B =
 273.54
 P60 =
 1.8700

 AREA =
 .038900 SQ MI
 IA =
 .65000 INCHES
 INF =
 1.67000 INCHES PER HOUR

 RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT =
 .050000

PRINT HYD ID=6 CODE=1

HYDROGRAPH FROM AREA 900.00

RUNOFF VOLUME = .43936 INCHES = .9115 ACRE-FEET PEAK DISCHARGE RATE = 15.60 CFS AT 1.700 HOURS BASIN AREA = .0389 SQ. MI.

*s ADD RUNOFF FOR NORTHWEST OFFSITE

ADD HYD ID=7 HYD NO=900.1 IDS=5 AND 6 PRINT HYD ID=7 CODE=1

HYDROGRAPH FROM AREA 900.10

RUNOFF VOLUME = .43936 INCHES = 2.2472 ACRE-FEET PEAK DISCHARGE RATE = 45.39 CFS AT 1.600 HOURS BASIN AREA = .0959 SQ. MI.

HYDROGRAPH FROM AREA 301.10

RUNOFF VOLUME = .43936 INCHES = 2.6096 ACRE-FEET PEAK DISCHARGE RATE = 53.61 CFS AT 1.600 HOURS BASIN AREA = .1114 SQ. MI.

PARTIAL HYDROGRAPH 201.10

RUNOFF VOLUME = .46251 INCHES = 2.8670 ACRE-FEET PEAK DISCHARGE RATE = 60.06 CFS AT 1.600 HOURS BASIN AREA = .1162 SQ. MI.

PARTIAL HYDROGRAPH 202.10

RUNOFF VOLUME = .47552 INCHES = 3.0218 ACRE-FEET

25

PEAK DISCHARGE RATE = 63.94 CFS AT 1.600 HOURS BASIN AREA = .1192 SQ. MI.

PARTIAL HYDROGRAPH 202.20

RUNOFF VOLUME = .47332 INCHES = 3.2030 ACRE-FEET PEAK DISCHARGE RATE = 68.05 CFS AT 1.600 HOURS BASIN AREA = .1269 SQ. MI.

* _____

FINISH

Hydraflow Storm Sewers Extension for AutoCAD® Civil 3D® 2010 Plan

Hydraflow Storm Sewers Extension v12.03

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type		
1	Pipe - (1)	79.18	36	Cir	113.67	5210.00	5221.04	9.713	5212.77	5223.81	n/a	5227.89 i	End	Manhole		
2	Pipe - (2)	27.93	24	Cir	59.96	5222.04	5223.98	3.239	5227.89*	5228.67*	1.23	5229.89	1	Manhole		
3	Pipe - (3)	13.94	18	Cir	23.00	5224.48	5224.92	1.913	5230.15*	5230.50*	1.45	5231.95	2	Combination		
4	Pipe - (4)	10.46	18	Cir	93.41	5225.02	5229.52	4.818	5232.38*	5233.17*	0.54	5233.71	3	Combination		
5	Pipe - (5)	13.98	18	Cir	6.50	5224.48	5226.73	34.630	5230.15*	5230.25*	1.46	5231.71	2	Combination		
6	Pipe - (6)	10.46	18	Cir	36.98	5226.83	5228.47	4.435	5232.14*	5232.45*	0.54	5232.99	5	Combination		
7	Pipe - (7)	51.25	36	Cir	55.67	5221.04	5223.49	4.401	5227.89*	5228.17*	0.82	5228.98	1	Manhole		
8	Pipe - (8)	51.25	30	Cir	28.75	5223.99	5224.85	2.991	5228.98*	5229.37*	n/a	5230.51 i	7	Combination		
9	Pipe - (9)	23.98	18	Cir	30.00	5225.85	5228.29	8.133	5230.51*	5231.84*	n/a	5236.49 i	8	Combination		
10	Pipe - (10)	13.15	18	Cir	35.90	5225.85	5227.50	4.595	5230.51*	5230.99*	0.86	5231.85	8	Grate		
Project F	ile: LEONIDAS SD.stm								Number of	lines: 10		Run D	Date: 1/23/2	2015		
NOTES:	Return period = 2 Yrs. ; *Surchar	ged (HGL	above crown).	; i - Inlet d	control.											

Inlet Report

Line	Inlet ID	Q =	Q	Q	Q	Junc	Curb Inlet		Grate Inlet				Gutter Inlet									Byp
		(cfs)	(cfs)	(cfs)	(cfs)	cfs)	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	No
1	SD MH 2	0.00	0.00	0.00	0.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
2	SD MH 3	0.00	0.00	0.00	0.00	мн	0.0	0.00	0.00	0.00	0.00	Saq	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
3	CB 3	0.00	4.28	3.48	0.80	Comb	8.0	8.00	0.00	8.00	2.00	0.017	2.00	0.050	0.020	0.017	0.28	11.10	0.37	10.17	2.0	Off
4	CB 5	14.74*	0.00	10.46	4.28	Comb	8.0	10.00	0.00	8.00	2.00	0.017	2.00	0.063	0.020	0.017	0.44	17.95	0.52	17.52	2.0	3
5	CB 4	0.00	4.28	3.52	0.76	Comb	8.0	8.00	0.00	8.00	2.00	0.017	2.00	0.063	0.020	0.017	0.30	10.90	0.37	10.17	2.0	Off
6	CB 6	14.74*	0.00	10.46	4.28	Comb	8.0	10.00	0.00	8.00	2.00	0.017	2.00	0.063	0.020	0.017	0.44	17.95	0.52	17.52	2.0	5
7	SD MH 1	0.00	0.00	0.00	0.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
8	CB 2	0.00	26.02	14.12	11.90	Comb	8.0	8.00	0.00	8.00	2.00	0.030	2.00	0.063	0.020	0.017	0.49	20.05	0.56	19.67	2.0	Off
9	CB 1	50.00*	0.00	23.98	26.02	Comb	8.0	10.00	0.00	8.00	2.00	p.030	2.00	0.063	0.020	0.017	0.60	25.80	0.68	25.52	2.0	в
10	CB 7	13.15*	0.00	13.15	0.00	Grate	0.0	0.00	4.47	4.00	2.00	Sag	2.00	0.050	0.020	0.000	0.67	30.47	0.67	30.47	0.0	Off
Projec	t File: LEONIDAS S	D.stm												Number	of lines:	10		R	un Date:	1/23/201	5	
NOTE	S: Inlet N-Values = (0.016; Inte	nsity = 6	9.87 / (Ir	nlet time	+ 13.10)	^ 0.87;	Return	period =	2 Yrs. ;	* Indical	es Knov	vn Q add	ed. All c	urb inlets	s are Ho	riz throat					

DRAINAGE REPORT FOR PARADISE RV PARK PHASE I Hydraulic Grade Line Computations

Line	Size	Q	Downstream										Upstream							Check		JL	Minor
	(in)	(cfs)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	'Vel (ft/s)	Ve∎ head (ft)	EGL elev (ft)	Sf (%)	(ft)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	Ave Sf (%)	Enrgy loss (ft)	coeπ (K)	(ft)
1	36	79.18	5210.00	5212.77	2.77	6.81	11.62	2.10	5214.87	n/a	113.67	5221.04	5223.81	2.77**	6.81	11.62	2.10	5225.91i	n/a	n/a	8.940	1.00	n/a
2	24	27.93	5222.04	5227.89	2.00	3.14	8.89	1.23	5229.12	1.300	59.96	5223.98	5228.67	2.00	3.14	8.89	1.23	5229.89	1.299	1.299	0.779	1.00	1.23
3	18	13.94	5224.48	5230.15	1.50	1.77	7.89	0.97	5231.12	1.503	23.00	5224.92	5230.50	1.50	1.77	7.89	0.97	5231.47	1.503	1.503	0.346	1.50	1.45
4	18	10.46	5225.02	5232.38	1.50	1.77	5.92	0.55	5232.92	0.846	93.41	5229.52	5233.17	1.50	1.77	5.92	0.54	5233.71	0.846	0.846	0.790	1.00	0.54
5	18	13.98	5224.48	5230.15	1.50	1.77	7.91	0.97	5231.12	1.511	6.50	5226.73	5230.25	1.50	1.77	7.91	0.97	5231.22	1.511	1.511	0.098	1.50	1.46
6	18	10.46	5226.83	5232.14	1.50	1.77	5.92	0.55	5232.68	0.846	36.98	5228.47	5232.45	1.50	1.77	5.92	0.54	5232.99	0.846	0.846	0.313	1.00	0.54
7	36	51.25	5221.04	5227.89	3.00	7.07	7.25	0.82	5228.70	0.503	55.67	5223.49	5228.17	3.00	7.07	7.25	0.82	5228.98	0.503	0.503	0.280	1.00	0.82
8	30	51.25	5223.99	5228.98	2.50	4.91	10.44	1.70	5230.68	n/a	28.75	5224.85	5229.37	2.50	4.91	10.44	1.70	5231.06i	n/a	n/a	-1.312	1.50	n/a
9	18	23.98	5225.85	5230.51	1.50	1.77	13.57	2.86	5233.37	n/a	30.00	5228.29	5231.84	1.50	1.77	13.57	2.86	5234.71i	n/a	n/a	-1.530	1.00	n/a
10	18	13.15	5225.85	5230.51	1.50	1.77	7.44	0.86	5231.37	1.337	35.90	5227.50	5230.99	1.50	1.77	7.44	0.86	5231.85	1.336	1.336	0.480	1.00	0.86
Pro	ect File: Lt	EONIDA	S SD.stm	1				1	1			1	1	N	umber o	flines: 1	ō	1	Run	Date: 1	1/23/201	5	1
Not	es: ; ** Criti	ical dept	th.;c=ci	ir e = ellip	b = box									I									

Page 1

VII. EXHIBITS