CITY OF ALBUQUERQUE

Richard J. Berry, Mayor

August 30, 2017

Vincent Steiner, PE Bohannan Huston, Inc. 7500 Jefferson St NE Albuquerque, NM 87109

RE: Master Drainage Report for Westpoint 40 Drainage Master Plan Stamp Date: 8/25/17 Hydrology File: K09D041

Dear Mr. Steffen:

PO Box 1293 Based upon the information provided in your submittal received 8/25/17, the Drainage Master Plan **is not** approved for Work Order. The following comments need to be addressed for approval of the above referenced project:

Albuquerque

NM 87103

www.cabq.gov

 Since this DMP is changing the drainage basins of the Amole-Hubbell 2013 DMP, approval by AMAFCA will be need prior to Hydrology approval. Please contact Bradley Bingham, PE at (505) 884-2215 or <u>bbingham@amafca.org</u>.

2. Since this master drainage report's basins differs from the Amole-Hubbell DMP, please provide an analysis of the downstream pipe capacity to include the whole watershed for the storm sewer system including all existing and future development. Please take the analysis to the next manhole after the last proposed discharge point. This analysis should show the existing HGL and the adjusted HGL from the proposed changes in the drainage basins. The off-site drainage from I-40 and 98th Street, are eventually to go into a diversion system along 98th Street as per the Amole-Hubbell DMP. This DMP proposes to include this drainage through your site and into the Bluewater storm drain system. If the Bluewater storm drain system cannot handle this added drainage, then the existing temporary retention pond on Tract 10 will have to stay in place until the 98th Street diversion system is constructed.

Here are also some minor changes that need to be corrected:

1. On your existing model, Point J_OS6 needs to be routed through a reach to J_E-4. This existing drainage channel can be seen on the aerial.

CITY OF ALBUQUERQUE

Richard J. Berry, Mayor

- 2. The second set of Time of Concentration Calculations should be labeled Proposed Conditions.
- 3. On your Street Capacity Calculations, are you including the future Bluewater? If so, then Bluewater is 68 ft R.O.W and is classified a Major Collector.

If you have any questions, please contact me at 924-3995 or rbrissette@cabq.gov.

Sincerely,

Renée C. Brissette

Reneé C. Brissette, P.E. Senior Engineer, Hydrology Planning Department

PO Box 1293

Albuquerque

NM 87103

www.cabq.gov

MASTER DRAINAGE REPORT FOR WESTPOINT 40 (AVALON SUBDIVISION UNIT 5)

AUGUST 25, 2017

Prepared for:

Titan Development 6300 Riverside Plaza, NW, Suite 200 Albuquerque, NM 87120

and

Curb, Inc. 5160 San Francisco Road NE Albuquerque, NM 87109

Prepared by:

Bohannan 🛦 Huston

Engineering Spatial Data Advanced Technologies

MASTER DRAINAGE REPORT

FOR

WESTPOINT 40

(AVALON SUBDIVISION UNIT 5)

AUGUST 25, 2017

Prepared for:

TITAN DEVELOPMENT

6300 RIVERSIDE PLAZA NW, SUITE 200

ALBUQUERQUE, NM 87120

and

CURB, INC.

5160 SAN FRANCISCO ROAD NE

ALBUQUERQUE, NM 87109

Prepared by:

BOHANNAN HUSTON, INC.

7500 JEFFERSON STREET NE

ALBUQUERQUE, NM 87109

Prepared by:

epared by: Reviewed by: Vimunt Atim 8/25/2017 Any Bon 8/25/17

Reviewed by:

Vincent Steiner, PE

Date

Craig Hoover, PE

Date

TABLE OF CONTENTS

I.	INT	RODUCTION1
II.	PR	OJECT DESCRIPTION1
	Α.	Location1
	В.	Legal Description2
	C.	FEMA Flood Hazard Zone2
III.	BA	CKGROUND DOCUMENTS5
IV.	EXI	ISTING CONDITIONS6
	Α.	Offsite Drainage6
	В.	Onsite Drainage7
	C.	Downstream Capacity8
V.	DE	VELOPED CONDITIONS9
	Α.	Offsite Drainage9
	В.	Conceptual Drainage Plan9
		1. Allowable Discharges11
		2. Bluewater Road Drainage Areas – Option A12
		3. Bluewater Road Drainage Areas – Option B13
		4. Bluewater Road Drainage Areas – Option C14
		5. Daytona Road and Los Volcanes Road Drainage Areas15
	C.	Tract 10 Retention Pond15
	D.	Backbone Storm Drain Design16
VI.	GR	ADING PLAN17
VII.	CA	LCULATIONS17
	Α.	Hydrology17
	В.	Hydraulics18
	C.	First Flush Retention18
VIII.	CO	NCLUSION

FIGURES

FIGURE 1 – LOCATION MAP	2
FIGURE 2 – FEMA FIRMETTE	3
FIGURE 3 – LOMR MAP	4

TABLES

	0
TABLE 1 – DOWNSTREAM CAPACITY SUMMARY	8
TABLE 2 – ALLOWABLE DISCHARGE SUMMARY	11
TABLE 3 – OPTION A POND SUMMARY	12
TABLE 4 – OPTION B POND SUMMARY	13
TABLE 5 – OPTION C POND SUMMARY	14
TABLE 6 – TRACTS 2, 6, AND 7 POND SUMMARY	15
TABLE 7 – STORM DRAIN INLET DESIGN DISCHARGE SUMMARY	16

APPENDICES

APPENDIX A – HYDROLOGIC ANALYSIS SUPPORTING DATA

APPENDIX B – HYDRAULIC ANALYSIS SUPPORTING DATA

APPENDIX C – ALLOWABLE DISCHARGE CALCULATIONS

APPENDIX D – REFERENCE DOCUMENTS

APPENDIX E – DIGITAL DATA (ON CD)

EXHIBITS

EXHIBIT 1 – OFFSITE DRAINAGE MAP

EXHIBIT 2 – EXISTING CONDITIONS DRAINAGE MAP

EXHIBIT 3 – DEVELOPED CONDITIONS DRAINAGE MAP

I. INTRODUCTION

This Master Drainage Report has been prepared to support the overall development of Westpoint 40, a portion of the Plat of Tracts 1 through 12 Avalon Subdivision Unit 5 (tracts 1, 2, 6, 7, and 9-11, plat provided in Appendix D). The project site is approximately 116 acres of undeveloped land to the southeast of the I-40 and 98th Street interchange, proposed for commercial/industrial development.

This report presents the overall drainage concept for the Westpoint 40 site and provides recommendations for detention basin sizing to support the development of each tract, in accordance with the City of Albuquerque drainage design criteria provided in the Development Process Manual (DPM). The drainage concept associated with the backbone roadways (Bluewater Road, Daytona Road, and 94th Street) is also included. The proposed drainage concept is based on the existing drainage patterns (including the accommodation of offsite runoff from the I-40 right-of-way) and the capacity of existing downstream infrastructure.

II. PROJECT DESCRIPTION

A. LOCATION

The Westpoint 40 site (herein also referred to as "project site") is located entirely within the City of Albuquerque, zone atlas map numbers J-9-Z and K-9-Z. It is south of I-40, east of 98th Street NW, and to the north of Bluewater Road NW and Los Volcanes Road NW. The site is split by Daytona Road (which becomes 94th Street after it curves to the south) and is bounded on the east (north of Los Volcanes Road) by existing commercial and light industrial development. A newly constructed apartment complex (Village at Avalon) and existing single-family residential developments (across 90th Street NW and Bluewater Road NW) are located to the southeast. (Please see Figure 1.)

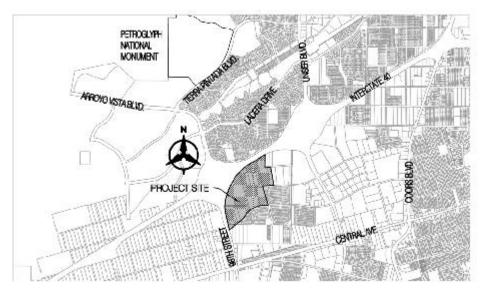
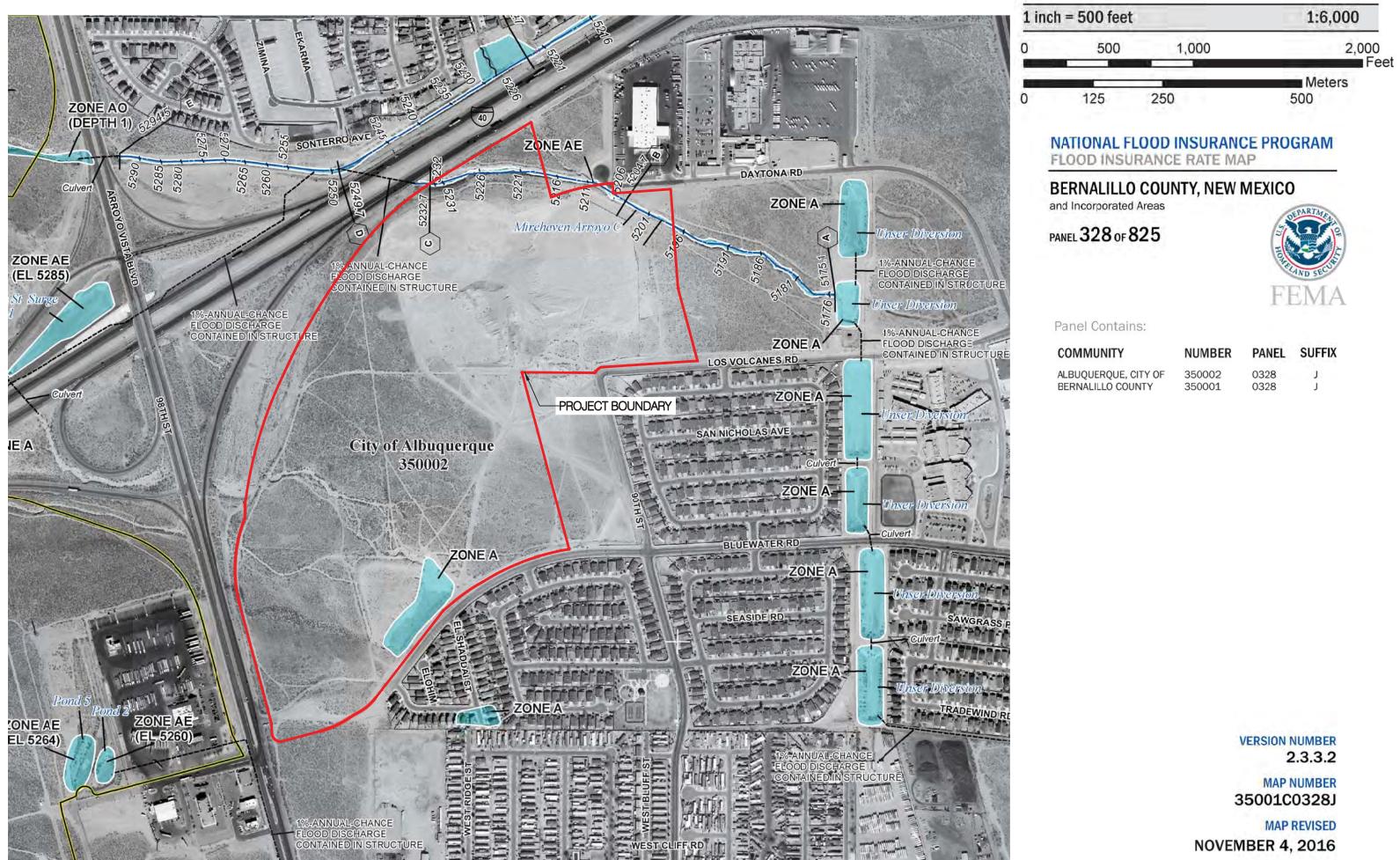


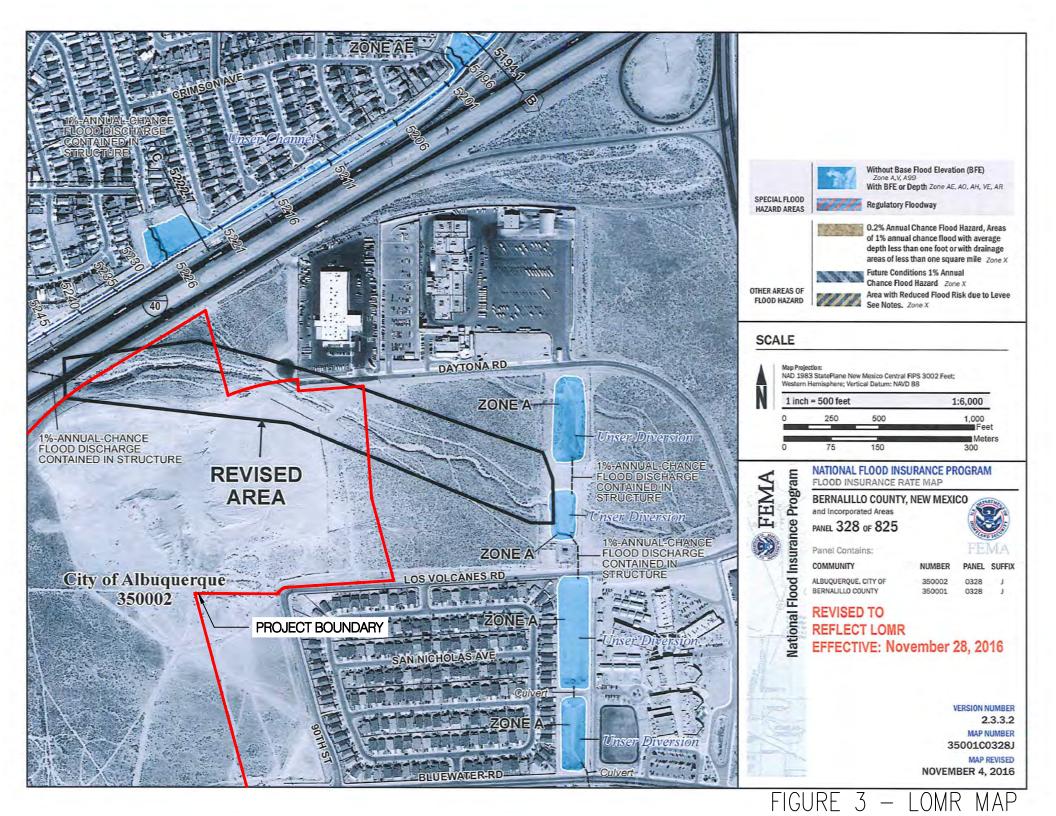
Figure 1 – Location Map

B. LEGAL DESCRIPTION


The site consists of Tracts 1, 2, 6, 7, and 9 through 11 of the Plat of Tracts 1 through 12 Avalon Subdivision Unit 5 (Bernalillo County Clerk's document #2014040949, Appendix D).

C. FEMA FLOOD HAZARD ZONE

The project site is located within FEMA Zone A Special Flood Hazard Area (SFHA) and Zone X, as shown on the effective Flood Insurance Rate Map (FIRM), map number 35001C0328J (revised November 4, 2016) and revised by LOMR 17-06-0267P (effective November 28, 2016). A portion of the FIRM, a FIRMette, (Figure 2) and the LOMR determination document (Figure 3) are provided for reference.


The existing Zone A within the project site is associated with the retention area located within Tract 10. Drainage improvements to eliminate the need for this retention area are discussed later in this report.

The LOMR removed a Zone AE from the project site, associated with Mirehaven Arroyo C, based on the West I-40 Channel and West I-40 Storm Drain constructed by the Albuquerque Metropolitan Arroyo Flood Control Authority (AMAFCA) upstream of I-40 that are designed to convey the 100-year discharge. This LOMR became effective in 2016, and the project site is no longer impacted by the Mirehaven Arroyo C.

COMMUNITY	NUMBER	PANEL	SUFFIX
ALBUQUERQUE, CITY OF	350002	0328	1
BERNALILLO COUNTY	350001	0328	L

FIGURE 2 - FIRMETTE

III. BACKGROUND DOCUMENTS

Various drainage master plans and drainage reports have been prepared that address portions of the project site or larger watersheds of which the Westpoint 40 site is a part.

The *Amole-Hubbell Drainage Master Plan Update* (Wilson & Company, 2013) evaluates the approximately 20 square mile watershed contributing to the Amole Detention Pond and the Hubbell Lake Detention Pond and was prepared on behalf of AMAFCA. Excerpts of the DMP Update are provided in Appendix D for reference. The DMP Update breaks the overall watershed into seven large basins, with the project site located within the Tierra Bayita Basin (a subbasin of the Amole Del Norte Basin). The Tierra Bayita Basin is drained by three storm drain systems that drain to the Tierra Bayita Channel which generally follows the Bridge Boulevard SW alignment. The DMP Update included an extensive review of drainage plans and reports related to the study area, some of which inform the proposed drainage concept for the project site. The DMP Update references "Bluewater Road near 90th Street Drainage Analysis" by Tierra West, dated December 20, 2001, to indicate that the portion of the project site that drains to 90th Street (subbasins TB 202.1 and TB 202.2 or current tracts 1, 7, 9, 10, 11, and a portion of tract 2) should be restricted to a maximum discharge of 2.05 cfs/ac.

The approved *Drainage Report for West Ridge Mobile Home Park* (Tierra West, October 1997) discusses the Westpoint 40 project site in terms of future development in the drainage basins upstream of the mobile home park. Excerpts of the drainage report are provided in Appendix D for reference. The report is consistent with the *Amole-Hubbell Drainage Master Plan Update* in that the portion of the Westpoint 40 project site that drains to 90th Street (basins 10D, 11D, and 12D) has an allowable discharge of 2.05 cfs/ac based on the capacity of the 90th Street storm drain (which has now been constructed). This report clarifies that the 2.05 cfs/ac allowable discharge assumed that flows from the NMDOT ROW north of the project site would be conveyed through the site to the Bluewater Road storm drain. This report also indicates that the existing retention pond within Tract 10 was constructed as a temporary solution to protect downstream development from offsite flows, particularly from flows north of Interstate 40.

The approved *I-40 South and Unser Mini Drainage Master Plan* (Easterling Consultants, November 2014) addresses the northeast portion of the project site that drains to the Unser Diversion Channel System (UDC). Excerpts of the drainage report are provided in Appendix D for reference. Based on that report's analysis of Pond 4 of the UDC, the portion of the project site that drains to Pond 4 can discharge freely. The drainage master plan does not specifically discuss the discharge of the portion of the Westpoint 40 project site that drains to the Daytona Road storm drain and ultimately flows into the UDC Pond 6. These subbasins are modeled in the proposed condition of the *I-40 South and Unser Mini Drainage Master Plan* as discharging freely with 90 percent imperviousness.

IV. EXISTING CONDITIONS

The existing Westpoint 40 site is undeveloped land, a portion of which has been mass graded to provide earth for adjacent development. The site is bounded on the north by the developed I-40 right-of-way (ROW), on the west by the developed 98th Street NW (ROW), on the east by commercial/industrial and residential (both single and multi-family) development, and on the south by residential development. The project site is platted with seven large tracts and is split by the Daytona Road/94th Street (ROW), all of which are undeveloped.

A. OFFSITE DRAINAGE

The site is impacted by flows from the north and west, generally associated with the I-40 and 98th Street rights-of-way. The site was previously impacted by additional runoff from north of I-40, but that is no longer the case with the completion of the I-40 Interceptor improvements by AMAFCA. Existing offsite drainage conditions and the subbasins described below are shown on Exhibit 1 – Offsite Drainage Map and Exhibit 2 – Existing Conditions Drainage Map. Hydrologic modeling summary results are provided in Appendix A.

Subbasins OS-1 and OS-2 represent areas entirely within I-40 (ROW) that drain to the project site by means of culverts and median drains. Subbasin OS-3 is retained within the interior of the southwest ramp of the 98th Street interchange and does not impact the project site. Subbasins OS-4 and OS-5 are mostly within I-40 ROW (a small portion of OS-5 is within private property to the south of I-40 ROW) and are conveyed across 98th Street by concrete box culverts (CBCs). Subbasins OS-6 and OS-7 represent pavement drainage from 98th Street that is captured in a pair of storm drain inlets and discharge to the site via a short 18-inch CMP storm drain. These storm drain inlets only capture a portion of the flow associated with these subbasins. The interception capacity has been estimated based on a hydraulic analysis (external to the hydrologic analysis model – HEC-HMS) and is reflected in the results summary tables. For hydrologic analysis, all I-40 ROW has been considered "mass graded" and the percent imperviousness has been measured based on existing conditions.

Offsite flows from subbasin OS-1 drain through the project site and enter the Daytona Road storm drain at a temporary desiltation pond within Tract 3. Flows from subbasins OS-2, OS-4, OS-5, OS-6, and OS-7 drain through the project site and are retained in the temporary pond within Tract 10.

B. ONSITE DRAINAGE

The site generally slopes from northwest to southeast and consists of undeveloped land. Portions of the site have been mass graded, and this has been considered in the determination of the rainfall loss curve numbers. Existing onsite drainage conditions described below are shown on Exhibit 2 – Existing Conditions Drainage Map. Hydrologic modeling summary results are provided in Appendix A.

Subbasin E-1 combines with offsite subbasin OS-1 and enters the existing storm drain in Daytona Road at a temporary desiltation pond within Tract 3 (i.e. outside the project site). The natural channel associated with the Mirehaven C Arroyo is located within subbasin E-1, but the majority of historical flow to this channel has been diverted. Subbasin E-2 drains to a temporary swale along the west side of the FedEx Ground property and enters the existing Los Volcanes Road storm drain at a temporary desiltation pond in the southeast corner of Tract 6. Subbasin E-3 drains to a temporary swale along the west side of the Village at Avalon apartment complex that drains to a temporary desiltation pond in the southeast corner of Tract 9. Runoff in excess of this temporary desiltation pond is conveyed into Bluewater Road by an overflow spillway. Subbasin E-4 combines with offsite subbasins OS-2, OS-3, OS-4, OS-6, and OS-7 and drains to the existing retention pond on Tract 10. Subbasin E-5 drains to Bluewater Road and enters the storm drain system via existing inlets.

The existing retention pond on Tract 10 was designed for a runoff volume of 5.9 ac-ft. The existing retention pond has adequate capacity to retain the total contributing runoff volume of approximately 3.7 ac-ft (from subbasins E-4, OS-2, OS-3, OS-4, OS-6, and OS-7).

The northeast portion of the existing project site (subbasins E-1 and E-2) ultimately drains to the Unser Diversion Channel System. The rest of the project site not retained in the existing pond on Tract 10 (subbasins E-3and E-5) ultimately drains to the Tierra Bayita Channel and then into the N-S Coors Pond (located at the northwest corner of Coors Boulevard SW and Tower Road SW).

C. DOWNSTREAM CAPACITY

The capacity of downstream drainage infrastructure is limited by the various storm drain systems immediately downstream of the project site and is summarized in Table 1.

Location	Size & Type	Slope (%)	Capacity ¹ (cfs)
Daytona Road – east of existing end of pavement	36" RCP	1.1	75
Los Volcanes Road – south	30" RCP	4.5	93
of FedEx Ground	36" RCP	1.7	93
Diversion Design and Coth Office of	36" RCP	0.9	68
Bluewater Road – 90 th Street to Adonai Road	42" RCP	1.8	145
	48" RCP	2.9	263

Table 1 – Downstream Capacity Summary

¹ Capacity estimated based on normal depth when flowing full. Refer to Appendix B for calculations.

Regional drainage infrastructure (i.e. the UDC and the Tierra Bayita Channel along with the N-S Coors Pond) has capacity to accommodate more flow than the existing local infrastructure summarized in Table 1 can convey. Previous studies were either prepared before this drainage infrastructure was constructed (*Drainage Report for West Ridge Mobile Home Park*) or did not consider the ability of local drainage infrastructure to convey runoff from the project area to the regional drainage infrastructure (*Amole-Hubbell Drainage Master Plan Update* and *I-40 South and Unser Mini Drainage Master Plan*). As a result, allowable discharges for the project site determined by this Master Drainage Report are less than recommended by previous studies. These allowable discharges are provided in Section V below.

V. DEVELOPED CONDITIONS

The project site is zoned SU-1 (Special Use Zone), with portions designated for development as C-2 (Community Commercial) and IP (Industrial Park). The conceptual grading and associated drainage basin boundaries are based on the existing topography, existing tract lines, and the location of proposed roadways (Daytona Road and 94th Street). There are no development plans currently available for the project site to inform developed conditions hydrologic modeling, so various assumptions have been made. Tracts 1, 10, and the southerly portion of Tract 2 have been analyzed as one drainage area (i.e. draining to one detention pond) because it is anticipated that tract lines will shift as this portion of the site is developed. All tracts have been assumed to consist of 85 percent imperviousness in the developed condition based on the City of Albuquerque zoning code for C-2 and IP zoning requiring 15 percent (minimum) landscaping. This is a conservative estimate considering that the recently constructed FedEx Ground facility to the east of Tract 6 is approximately 75 percent impervious. ROW areas are assumed to be 90 percent impervious.

A. OFFSITE DRAINAGE

This report assumes that all offsite flows that currently impact the project site will continue to do so in perpetuity. This differs from the *Amole-Hubbell Drainage Master Plan Update* (Wilson & Company, 2013), which assumed that existing runoff from west of 98th Street would be diverted to the south in the ultimate condition. Given the vast majority of this runoff originates on I-40 ROW and topography would make it difficult to divert flows from drainage subbasins OS-4 and OS-5 to the south, this conservative approach is more appropriate. If this offsite flow from west of 98th Street is diverted away from the project site in the future, there may be an opportunity to reduce the size of or eliminate onsite detention pond(s) based on further analysis.

B. CONCEPTUAL DRAINAGE PLAN

Three options have been developed to allow flexibility as the project site is developed in accommodating offsite flows from the I-40 ROW and from west of 98th Street. Each option is further described below and are illustrated on Exhibit 3 – Developed Conditions Drainage Map. This conceptual drainage plan is intended to support the design of drainage improvements (detention pond sizing, backbone storm drain sizing, etc.) as the project site is developed.

The analyses and assumptions presented herein support the conceptual drainage plan recommendations and do not eliminate the obligation of engineers responsible for future design of the project site to ensure the appropriateness of their design. If development of the project site encounters constraints that are not addressed by this conceptual plan, revisions should be evaluated to ensure the existing downstream capacity is not exceeded.

Detention ponds to accommodate onsite flows are conceptually sized to provide first flush retention (runoff volume associated with 0.44-inch rainfall minus 0.10-inch initial abstraction from all onsite impervious areas) in the pond bottom at a depth of 1 foot and the conceptual pond footprints shown on Exhibit 3 reflect this assumption. As each pond is designed in conjunction with the project site's development and if it is determined that the soils will accommodate greater retention depth while still satisfying City of Albuquerque design criteria for stormwater disposal (or some other method of disposal is employed that satisfies COA criteria), the pond footprint could be reduced and the depth increased. The estimated detention volume requirements for ponds (of which first flush retention volume may be a part) is based on the allowable discharge determined by the existing downstream capacity and the assumption that contributing onsite drainage areas will be developed as 85 percent impervious (a conservative estimate). If future development plans show that a tract or portion of a tract will be less than 85 percent impervious, less detention volume would be necessary to satisfy the allowable discharge criteria established by this report. The pond footprint, depth, location, outlet structure, and other design details may vary from the estimates and assumptions provided below so long as the capacity of downstream infrastructure is not exceeded. Outlet structures in particular should be further evaluated during final design to ensure that conveyance capacity, clogging potential, water quality criteria, etc. are adequately addressed.

For master planning purposes, it has been assumed that each existing tract will contain one detention pond (except in the case of tracts 1, a portion of 2 that drains south, and 10 which are assumed to all drain to one pond). As development of the project site occurs, additional ponds may be constructed within each tract if required. Additional basins within each tract shall be sized based on the allowable unit discharge criteria identified in this report. ROW associated with Bluewater Road, Daytona Road, and 94th Street will discharge freely to the associated storm drain systems.

For the purposes of this study (intended to develop drainage concepts for the project site), the outlet structure for ponds has been assumed to be either City of Albuquerque

(COA) Type D (single or double, depending on the flowrate) storm inlets or storm drains with a headwall inlet condition. The Type D inlet maximizes the conveyance capacity while limiting the necessary headwater depth (and associated pond depth) since the pond footprint has been assumed based on providing first flush retention in the bottom 1 foot of each basin. Alternative outlet structures are acceptable and should be evaluated during final design. Alternative outlet structures may be preferable if deeper ponds with smaller footprints are proposed or if clogging of the Type D inlet is of concern, as long as the allowable discharge is not exceeded and other COA pond design criteria are satisfied. The outlet structure for ponds that accommodate offsite flows or a combination of onsite and offsite flows are assumed to be storm drain with the pipe flowline set 1 foot above the pond bottom. The size of outlet pipe depends on the desired pond peak outflow discharge and peak storage depth.

1. ALLOWABLE DISCHARGES

Allowable discharges from the project site are limited by the capacity of existing downstream storm drain systems summarized in Table 1. Table 2 summarizes the allowable discharges per unit area (cfs per acre) for each tract and option (where applicable). The various drainage options are discussed further below, and allowable discharge calculations are provided in Appendix C.

Tract & Option	Allowable Unit Discharge ¹ (cfs/ac)	Drainage Area (ac)	Allowable Discharge (cfs)
Tract 1 – Options A & B	1.5	32.7	48.8
Tract 1 – Option C	0.6	32.7	19.5
Tract 2 – All Options (North, drains to Daytona Road storm drain)	3.1	9.5	29.4
Tract 2 – Options A & B (South, drains to Bluewater Road storm drain)	1.5	4.3	6.4
Tract 2 – Option C (South, drains to Bluewater Road storm drain)	0.6	4.3	2.6
Tract 3 ² – All Options	3.1	5.7	17.5
Tract 6 – All Options	3.2	14.6	46.7
Tract 7 – All Options	3.2	14.6	46.3
Tract 9 – Options A & B	1.5	16.1	24.0
Tract 9 – Option C	0.6	16.1	9.6

 Table 2 – Allowable Discharge Summary

Tract & Option	Allowable Unit Discharge ¹ (cfs/ac)	Drainage Area (ac)	Allowable Discharge (cfs)
Tract 10 – Options A & B	1.5	7.3	10.8
Tract 10 – Options C	0.6	7.3	4.3
Tract 11 – Options A & B	1.5	16.7	24.9
Tract 11 – Option C	0.6	16.7	10.0

¹ Refer to Appendix C for Allowable Unit Discharge calculations, based on downstream capacity, free discharge from ROW, and accommodation of offsite flows.

² Tract 3 is not a part of this Master Drainage Report, but a developed condition allowable discharge is provided based on the assumption that all tracts draining to Daytona Road will be held to the same detention requirements.

2. BLUEWATER ROAD DRAINAGE AREAS – OPTION A

Option A consists of a detention pond along the western boundary of Tract 1 to capture and attenuate offsite flows from I-40 ROW. This pond would allow sediment to drop out and would be drained by an 18-inch storm drain (with an associated peak outflow of approximately 20 cfs) that passes through Tract 1 within a new drainage easement and connects to the proposed storm drain in 94th Street, which will connect to the existing storm drain in Bluewater Road. Other detention ponds will be provided to accommodate onsite flows only, will discharge to the existing or proposed storm drains in the adjacent public roadways, and ensure downstream capacities are not exceeded. The conceptual size and design parameters for proposed ponds based on the HEC-HMS modeling are provided in Table 3.

Pond Location (HEC-HMS name)	First Flush Volume (ac-ft)	Detention Volume (ac-ft)	Peak Inflow (cfs)	Peak Outflow (cfs)	Max Detention Depth (ft)	Outlet Structure
Tract 1 – offsite flows (B_OS-P2)	N/A	2.66	82	10	2.7	1-18" Storm Drain
Tract 9 (B_TR9)	0.39	1.51	62	24	2.0	COA Single Type D (Std. Dtl. 2206)
Tract 10 (B_TR10)	1.07	4.04	170	66	2.4	COA Double Type D (Std. Dtl. 2206)
Tract 11 (B_TR11)	0.40	1.59	64	23	2.0	COA Single Type D (Std. Dtl. 2206)

Table 3 – Option A Pond Summary

The benefits of Option A include:

- The offsite drainage solution is accommodated in a centralized location at the rear of the site away from the primary points of access along Bluewater Road and Daytona Road/94th Street.
- Each tract can be developed without providing for offsite flows in their detention pond design.
- The large existing retention pond on Tract 10 (a FEMA Zone A) is no longer necessary to accommodate offsite flow and the developable area of Tract 10 is increased. A relatively small detention pond will still be required on Tract 10 to accommodate onsite flows.

3. BLUEWATER ROAD DRAINAGE AREAS – OPTION B

Option B consists of a trainer dike (or other structure to capture offsite flows along the western boundary of Tract 1) and channel within a new drainage easement to convey offsite flows to a detention pond on Tract 10. This pond would accommodate these offsite flows as well as onsite flows (assumed for the purposes of this study to be from tracts 1, a portion of 2 that drains south, and 10) and thus would require greater volume than the pond in the same location for Options A or C (as a result of the increased offsite flows). The other detention ponds will be provided to accommodate onsite flows only. All ponds will discharge to the existing or proposed storm drains in the adjacent public roadways and ensure downstream capacities are not exceeded. The conceptual size and design parameters for proposed ponds based on the HEC-HMS modeling are provided in Table 4.

Pond Location (HEC-HMS name)	First Flush Volume (ac-ft)	Detention Volume (ac-ft)	Peak Inflow (cfs)	Peak Outflow (cfs)	Max Detention Depth (ft)	Outlet Structure
Tract 9 (B_TR9)	0.39	1.51	62	24	2.0	COA Single Type D (Std. Dtl. 2206)
Tract 10 (B_TR10)	1.07	6.70	248	66	4.0	1-36" Storm Drain
Tract 11 (B_TR11)	0.40	1.59	64	23	2.0	COA Single Type D (Std. Dtl. 2206)

The benefits of Option B include:

• The 'regional' pond would be located in approximately the same location as the existing retention pond.

• One less pond would be required than proposed under Option A.

The proposed channel to convey offsite flows through Tract 1 would need to be armored to prevent erosion due to the natural topography that will cause flow velocities in excess of those allowable for earthen channels. The channel could also be replaced by a storm drain sized to convey the 100-year flow if it is preferred based on cost, future site planning, or other factors.

4. BLUEWATER ROAD DRAINAGE AREAS – OPTION C

Option C consists of a trainer dike (or other structure to capture offsite flows along the western boundary of Tract 1) and channel within a new drainage easement, similar to Option B. Rather than conveying offsite flows to a pond, this channel will convey flows to an inlet structure that drains to the proposed storm drain in 94th Street. Detention ponds that ultimately outfall to Bluewater Road will be provided to accommodate onsite flows, like Options A and B, but will provide additional volume and attenuation to account for the offsite flows that would free discharge into the downstream storm drain. All ponds will discharge to the existing or proposed storm drains in the adjacent public roadways and ensure downstream capacities are not exceeded. The conceptual size and design parameters for proposed ponds based on the HEC-HMS modeling are provided in Table 5.

Pond Location (HEC-HMS name)	First Flush Volume (ac-ft)	Detention Volume (ac-ft)	Peak Inflow (cfs)	Peak Outflow (cfs)	Max Detention Depth (ft)	Outlet Structure
Tract 9 (B_TR9)	0.39	1.87	62	9	2.7	1-24" Storm Drain
Tract 10 (B_TR10)	1.07	5.14	170	24	3.5	1-36" Storm Drain
Tract 11 (B_TR11)	0.40	1.94	64	10	2.8	1-24" Storm Drain

Table 5 – Option C Pond Summary

The benefits of Option C include:

- No 'regional' pond is necessary and no one tract is burdened more than others with providing detention volume to accommodate offsite flows.
- One less pond would be required than proposed under Option A.

5. DAYTONA ROAD AND LOS VOLCANES ROAD DRAINAGE AREAS

The proposed drainage concept for the northeast portion of the project site (shown on Exhibit 3, sheet 1 of 4), which drains to the Unser Diversion Channel System, is based on the capacity of immediately downstream existing storm drain systems and allowable discharges discussed above. This portion of the project site is unaffected by the various options for addressing offsite flows that are described above. A drainage easement (to be dedicated in conjunction with future development) is proposed on Tract 2 to allow offsite flows from I-40 to be conveyed to Tract 3, maintaining the existing condition. The existing storm drain systems in Daytona Road and Los Volcanes Road will need to be extended to the west to provide an outfall for the detention ponds on Tract 2 and Tract 7, respectively. If the future detention pond(s) on Tract 6 are not located in the southeast corner of the site, allowing for connection to the existing storm drain manhole in Los Volcanes Road, extension of this storm drain may be necessary to accommodate development of Tract 6. Based on the allowable discharge from the portion of Tract 2 that drains east, a 24-inch storm drain should be extended west in Daytona Road. Based on the allowable discharge from Tract 7, a 24-inch storm drain should be extended west in Los Volcanes Road (assumed to be at 6 percent slope based on the existing road profile). Tract 3 is not a part of the project site. It is assumed that when Tract 3 is developed, a detention pond will be constructed to restrict outflow the allowable unit discharge presented herein. This assumed future condition is reflected in the developed conditions HEC-HMS modeling. The conceptual size and design parameters for proposed ponds based on the HEC-HMS modeling are provided in Table 6.

Pond Location (HEC-HMS name)	First Flush Volume (ac-ft)	Detention Volume (ac-ft)	Peak Inflow (cfs)	Peak Outflow (cfs)	Max Detention Depth (ft)	Outlet Structure
Tract 2 (B_TR2-1)	0.23	0.81	37	28	1.8	COA Double Type D (Std. Dtl. 2206)
Tract 6 (B_TR6)	0.35	0.84	54	44	2.1	COA Double Type D (Std. Dtl. 2206)
Tract 7 (B_TR7)	0.35	0.84	55	41	2.1	COA Double Type D (Std. Dtl. 2206)

Table 6 – Tracts 2, 6, and 7 Pond Summary

C. TRACT 10 RETENTION POND

Development downstream of the project site is currently protected by the existing retention pond on Tract 10. For each developed condition option, this existing pond should

remain in the interim until new drainage infrastructure is constructed to accommodate both onsite flows from the project site and offsite flows from the north. After drainage infrastructure has been constructed (the location and size of which depends on the various options presented in this report), the pond may be eliminated or reduced in size. Similarly, the existing Zone A SFHA associated with this pond may be eliminated or reduced in size through the FEMA map revision processes (CLOMR and/or LOMR).

D. BACKBONE STORM DRAIN DESIGN

Street capacity analysis was performed based on preliminary roadway profiles for the Daytona Road and 94th Street extension. This analysis shows that the proposed 36-foot wide roadway satisfies COA street hydraulic design criteria provided in Chapter 22, Section 3.E of the COA DPM (100-year flow depth less than 0.2 feet above the top of curb and contained within the ROW, 10-year flow depth less than 0.5 feet). As a result, new storm drain inlets will only be necessary in sump conditions. These storm drain inlets shall be designed for the discharges provided in Table 7.

Drainage Area ¹	Design Discharge ² (cfs)	Contributing Drainage Areas
BW2	7	BW1 & BW2
DY2	8	DY2

Table 7 – Storm Drain Inlet Design Discharge Summary

¹ Refer to Exhibit 3 – Developed Conditions Drainage Map for reference. ² Rounded to nearest 1 cfs.

To provide an outfall from future detention pond(s) in Tract 1 and the portion of Tract 2 that drains to Bluewater Road, a storm drain ranging in size from 42 inches to 18 inches should be extended north in 94th Street. The minimum size required for this storm drain will depend on how offsite flows from west of the project size are accommodated (i.e. Options A, B, or C) and the development of Tracts 1 and 2. To allow for flexibility in future development, the range of storm drain sizes specified above is based on the capacity of the existing downstream storm drain in Bluewater Road (145 cfs for the 42-inch RCP at 1.8 percent) and the allowable unit discharges for Tracts 1 and 2 (specified in Table 2 – Allowable Discharge Summary).

Extensions of existing storm drains within Daytona Road and Los Volcanes Road will be necessary to convey outflow from proposed detention ponds on Tract 2 and Tract 7, respectively. These storm drain extensions are discussed further in Section V.B.5 above. These storm drain extensions are not necessary to accommodate roadway drainage which may continue to drain in the historical direction.

VI. GRADING PLAN

The assumed developed conditions drainage patterns are reflected on Exhibit 3 – Developed Conditions Drainage Map. No grading plan for the overall project site is available at this time.

VII. CALCULATIONS

A. HYDROLOGY

Hydrologic analysis of the existing and developed conditions for the 100-year, 6-hour design storm was performed using the Hydrologic Modeling System software developed by the Hydrologic Engineering Center (HEC-HMS, version 4.1). The digital HEC-HMS models are provided in Appendix E. HEC-HMS was applied using methodologies recommended by the AMAFCA *HEC-HMS White Paper*, including:

- Precipitation data is from NOAA Atlas 14 for the project site.
- Rainfall distribution was modeled using the "Frequency Storm" method in HEC-HMS with an intensity position of 25 percent.
- Rainfall losses were estimated using the SCS Curve Number (CN) Method.
- Runoff transformation was modeled using the SCS Unit Hydrograph transform.

Pervious curve numbers were determined for each subbasin using Table 2-2 of the NRCS's *Urban Hydrology for Small Watersheds* (TR-55), and calculations are provided in Appendix A. Percent impervious was entered into HEC-HMS along with the pervious curve number to allow the software to develop the final weighted curve number and calculate the associated rainfall losses. The percent impervious for existing subbasins was measured based on aerial photography. Onsite subbasins that will be developed are assumed to be 85 percent imperviousness based on zoning code landscape requirements.

Lag time was calculated as 0.6 times the time of concentration (Tc) for each subbasin, with a minimum Tc of 12 minutes, based on recommendations in TR-55. Time of concentration was calculated using methods consistent with Chapter 22, Section 2 of the COA DPM. Calculations are provided in Appendix A.

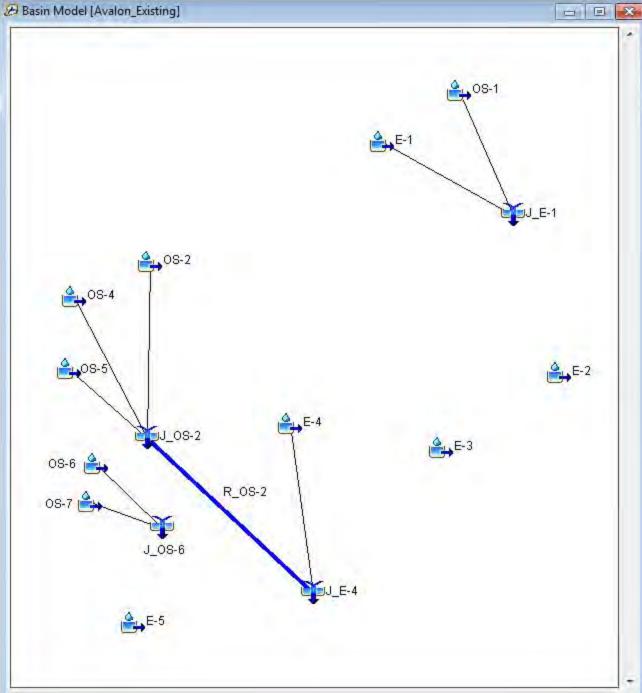
Outlet structures for the conceptual developed conditions detention ponds were modeled in HEC-HMS. The stage-discharge relationship of the Type D storm inlets was modeled using the weir equation based on the open length of the structure grates (excluding bars). The capacity of storm drains with a headwall inlet was modeled as a culvert with assumed length and slope to ensure that they will function under inlet control. The stagedischarge relationship of proposed outlet structures (including consideration of weir flow and orifice flow and potential impacts of downstream conveyance systems) should be evaluated based on final design characteristics. If an outlet structure may be impacted by flow in the storm drain to which it discharges (i.e. the downstream hydraulic grade line is higher than the pond bottom) this should be evaluated during final design.

Sediment bulking has not been considered. For the developed conditions analysis, onsite runoff will be primarily from impervious areas, and sediment discharge should be negligible. Offsite runoff will likely be conveyed through desiltation ponds designed to limit the sediment that enters critical drainage infrastructure.

B. HYDRAULICS

The capacity of existing and proposed storm drains was analyzed assuming the pipe flowing full under gravity flow. Existing pipe sizes, materials, and slopes are taken from asbuilt plans. Proposed pipes are assumed to be reinforced concrete (RCP) with a Manning's n of 0.013. Normal depth calculations are provided in Appendix B.

C. FIRST FLUSH RETENTION

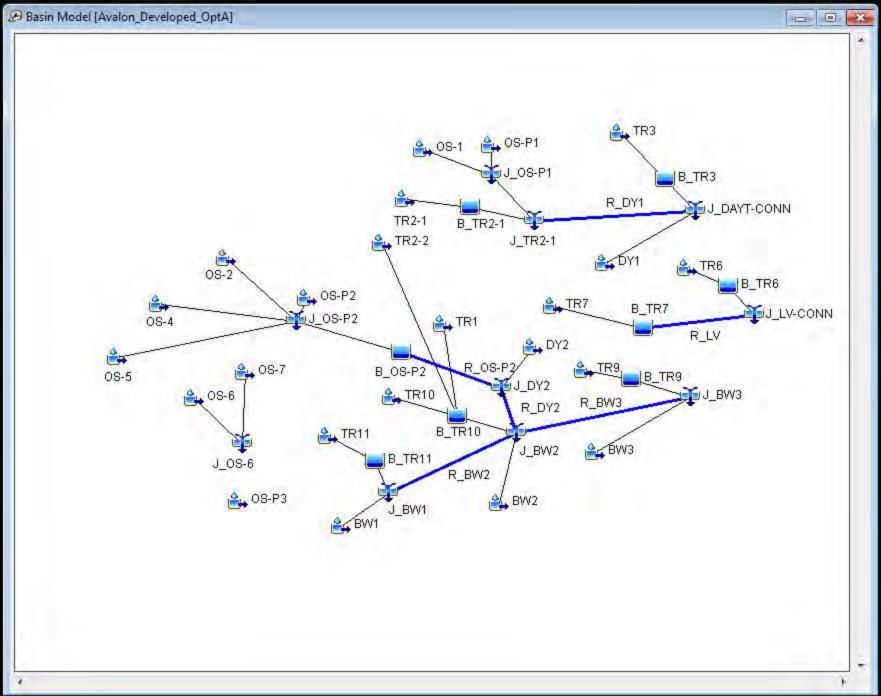

First flush retention volume ("design standard volume") requirements, in accordance with COA Development Process Manual (DPM) Chapter 22, Section 11, are based on 0.34 inches of runoff from onsite impervious areas. The DPM defines the first flush volume as runoff from impervious surfaces from the 90th percentile storm (0.44-inch). The COA allows 0.10 inches of initial abstraction to be excluded from the 0.44-inch rainfall depth, resulting in a design depth of 0.34 inches.

VIII. CONCLUSION

This Master Drainage Report provides the drainage concept to support development of the Westpoint 40 project site in accordance with the City of Albuquerque drainage design criteria provided in the Development Process Manual. Proposed drainage improvements are based on existing drainage patterns and existing downstream capacities. Options are provided to accommodate offsite flows from I-40 ROW to allow for flexibility as the site develops.

APPENDIX A – HYDROLOGIC ANALYSIS SUPPORTING DATA

- 1. HEC-HMS Hydrologic Model Results Summary Existing Conditions
- 2. HEC-HMS Hydrologic Model Results Summary Developed Conditions, Option A
- 3. HEC-HMS Hydrologic Model Results Summary Developed Conditions, Option B
- 4. HEC-HMS Hydrologic Model Results Summary Developed Conditions, Option C
- 5. NOAA 14 Rainfall Data
- 6. NRCS Soil Survey Map
- 7. Weighted Curve Number Calculations
- 8. Lag Time Calculations

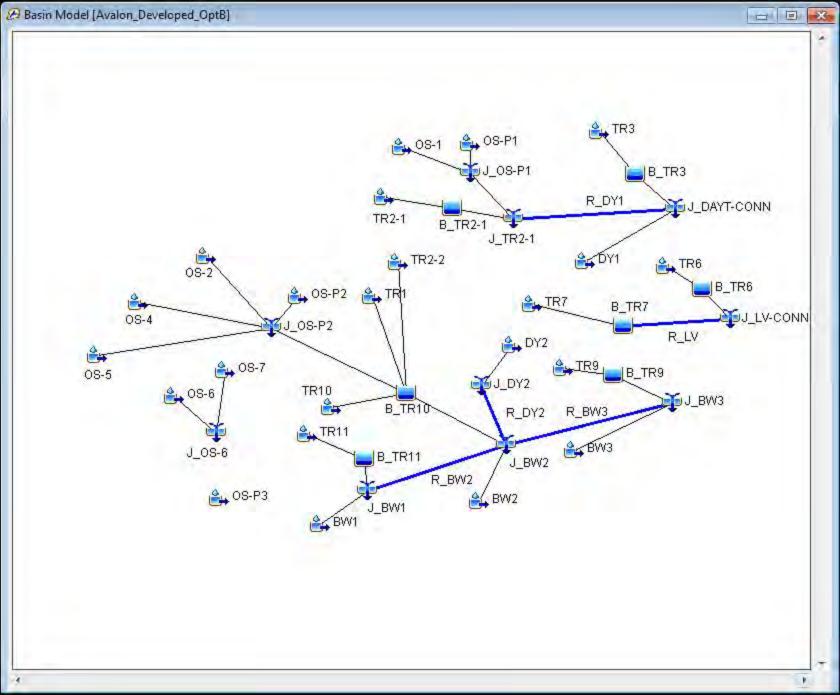


Simulation Run: Existing_100Yr-6Hr

Start of Run:01Jan2001, 00:00End of Run:02Jan2001, 00:00Compute Time: 10Aug2017, 11:43:41

Basin Model: Avalon_Existing Meteorologic Model: Frequency-100Yr-6 Control Specifications:Control 1

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
E-1	0.02009	8.3	01Jan2001, 01:40	0.43
E-2	0.04866	27.9	01Jan2001, 01:44	0.54
E-3	0.07215	5.7	01Jan2001, 01:54	0.12
E-4	0.06520	7.6	01Jan2001, 01:50	0.19
E-5	0.00836	0.2	01Jan2001, 02:04	0.04
J_E-1	0.03023	22.0	01Jan2001, 01:42	0.70
J_E-4	0.12451	72.1	01Jan2001, 01:44	0.56
J_OS-2	0.05931	66.1	01Jan2001, 01:40	0.97
J_OS-6	0.00606	17.5	01Jan2001, 01:38	2.23
OS-1	0.01014	13.8	01Jan2001, 01:42	1.24
OS-2	0.01791	20.4	01Jan2001, 01:40	0.92
OS-4	0.01914	21.7	01Jan2001, 01:40	0.97
OS-5	0.02226	24.3	01Jan2001, 01:42	1.00
OS-6	0.00281	8.1	01Jan2001, 01:38	2.23
OS-7	0.00325	9.4	01Jan2001, 01:38	2.23
R_OS-2	0.05931	65.2	01Jan2001, 01:42	0.97

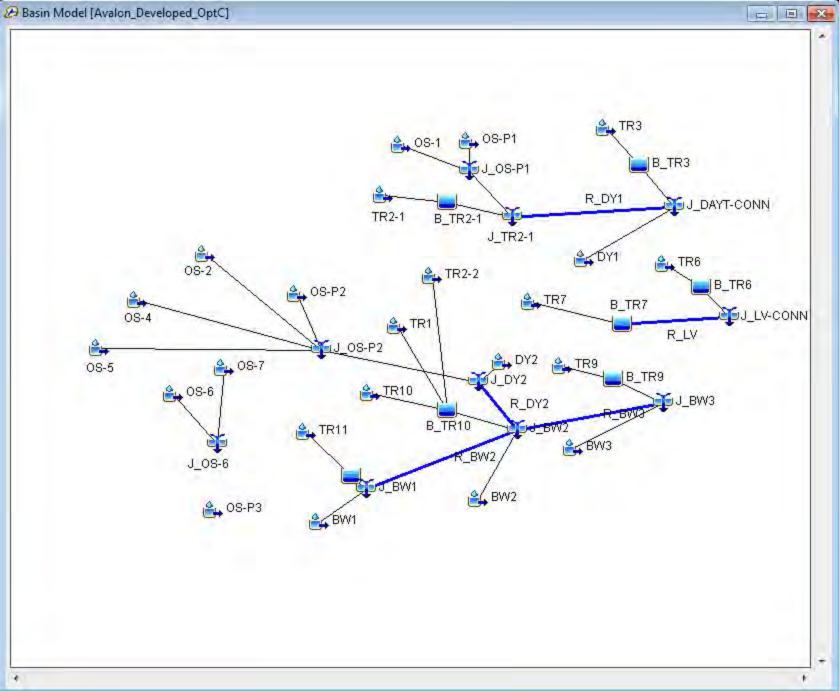

Simulation Run: Devel_100Yr-6Hr-OptA

Start of Run:01Jan2001, 00:00End of Run:02Jan2001, 00:00Compute Time:23Aug2017, 12:31:35

Basin Model: Avalon_Developed_ Meteorologic Model: Frequency-100Yr-6 Control Specifications:Control 1

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
BW1	0.00239	6.2	01Jan2001, 01:38	0.26
BW2	0.00085	2.2	01Jan2001, 01:38	0.09
BW3	0.00143	3.7	01Jan2001, 01:38	0.15
B_OS-P2	0.07759	9.6	01Jan2001, 02:18	3.14
B_TR10	0.06908	65.9	01Jan2001, 01:52	5.40
B_TR11	0.02604	23.1	01Jan2001, 01:52	1.87
B_TR2-1	0.01491	28.2	01Jan2001, 01:44	1.53
B_TR3	0.00884	17.3	01Jan2001, 01:44	0.72
B_TR6	0.02283	44.0	01Jan2001, 01:44	1.94
B_TR7	0.02258	44.0	01Jan2001, 01:44	1.91
B_TR9	0.02516	23.7	01Jan2001, 01:52	1.83
DY1	0.00225	5.8	01Jan2001, 01:38	0.24
DY2	0.00527	9.2	01Jan2001, 01:48	0.57
J_BW1	0.02843	25.5	01Jan2001, 01:50	2.12
J_BW2	0.18122	106.7	01Jan2001, 01:52	11.33
J_BW3	0.20781	131.5	01Jan2001, 01:52	13.31
J_DAYT-CONN	0.04183	71.6	01Jan2001, 01:42	3.54
J_DY2	0.08286	15.0	01Jan2001, 01:54	3.71
J_LV-CONN	0.04541	87.9	01Jan2001, 01:44	3.85
J_OS-P1	0.01583	22.3	01Jan2001, 01:40	1.06
J_OS-P2	0.07759	82.2	01Jan2001, 01:40	3.82
J_OS-6	0.00607	17.5	01Jan2001, 01:38	0.72
J_TR2-1	0.03074	49.8	01Jan2001, 01:42	2.58
OS-P1	0.00568	9.0	01Jan2001, 01:40	0.39
OS-P2	0.01827	16.5	01Jan2001, 01:42	0.76
OS-P3	0.00285	1.7	01Jan2001, 01:46	0.09
OS-1	0.01015	13.8	01Jan2001, 01:42	0.67

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
OS-2	0.01791	20.4	01Jan2001, 01:40	0.88
OS-4	0.01915	21.8	01Jan2001, 01:40	0.99
OS-5	0.02226	24.3	01Jan2001, 01:42	1.19
OS-6	0.00282	8.1	01Jan2001, 01:38	0.34
OS-7	0.00325	9.4	01Jan2001, 01:38	0.39
R_BW2	0.02843	25.4	01Jan2001, 01:52	2.12
R_BW3	0.18122	106.5	01Jan2001, 01:52	11.33
R_DY1	0.03074	49.4	01Jan2001, 01:42	2.58
R_DY2	0.08286	15.0	01Jan2001, 01:56	3.71
R_LV	0.02258	43.9	01Jan2001, 01:44	1.91
R_OS-P2	0.07759	9.6	01Jan2001, 02:20	3.14
TR1	0.05107	125.3	01Jan2001, 01:38	5.23
TR10	0.01134	27.8	01Jan2001, 01:38	1.16
TR11	0.02604	63.9	01Jan2001, 01:38	2.67
TR2-1	0.01491	36.6	01Jan2001, 01:38	1.53
TR2-2	0.00667	16.4	01Jan2001, 01:38	0.68
TR3	0.00884	21.7	01Jan2001, 01:38	0.91
TR6	0.02283	54.2	01Jan2001, 01:40	2.34
TR7	0.02258	55.4	01Jan2001, 01:38	2.31
TR9	0.02516	61.7	01Jan2001, 01:38	2.58


Simulation Run: Devel_100Yr-6Hr-OptB

Start of Run:01Jan2001, 00:00End of Run:02Jan2001, 00:00Compute Time:23Aug2017, 12:31:53

Basin Model: Avalon_Developed_ Meteorologic Model: Frequency-100Yr-6 Control Specifications:Control 1

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
BW1	0.00239	6.2	01Jan2001, 01:38	0.26
BW2	0.00085	2.2	01Jan2001, 01:38	0.09
BW3	0.00143	3.7	01Jan2001, 01:38	0.15
B_TR10	0.14667	65.5	01Jan2001, 02:00	9.06
B_TR11	0.02604	23.1	01Jan2001, 01:52	1.87
B_TR2-1	0.01491	28.2	01Jan2001, 01:44	1.53
B_TR3	0.00884	17.3	01Jan2001, 01:44	0.72
B_TR6	0.02283	44.0	01Jan2001, 01:44	1.94
B_TR7	0.02258	44.0	01Jan2001, 01:44	1.91
B_TR9	0.02516	23.7	01Jan2001, 01:52	1.83
DY1	0.00225	5.8	01Jan2001, 01:38	0.24
DY2	0.00527	9.2	01Jan2001, 01:48	0.57
J_BW1	0.02843	25.5	01Jan2001, 01:50	2.12
J_BW2	0.18122	97.4	01Jan2001, 01:54	11.84
J_BW3	0.20781	121.6	01Jan2001, 01:54	13.82
J_DAYT-CONN	0.04183	71.6	01Jan2001, 01:42	3.54
J_DY2	0.00527	9.2	01Jan2001, 01:48	0.57
J_LV-CONN	0.04541	87.9	01Jan2001, 01:44	3.85
J_OS-P1	0.01583	22.3	01Jan2001, 01:40	1.06
J_OS-P2	0.07759	82.2	01Jan2001, 01:40	3.82
J_OS-6	0.00607	17.5	01Jan2001, 01:38	0.72
J_TR2-1	0.03074	49.8	01Jan2001, 01:42	2.58
OS-P1	0.00568	9.0	01Jan2001, 01:40	0.39
OS-P2	0.01827	16.5	01Jan2001, 01:42	0.76
OS-P3	0.00285	1.7	01Jan2001, 01:46	0.09
OS-1	0.01015	13.8	01Jan2001, 01:42	0.67
OS-2	0.01791	20.4	01Jan2001, 01:40	0.88

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
OS-4	0.01915	21.8	01Jan2001, 01:40	0.99
OS-5	0.02226	24.3	01Jan2001, 01:42	1.19
OS-6	0.00282	8.1	01Jan2001, 01:38	0.34
OS-7	0.00325	9.4	01Jan2001, 01:38	0.39
R_BW2	0.02843	25.4	01Jan2001, 01:52	2.12
R_BW3	0.18122	97.4	01Jan2001, 01:56	11.84
R_DY1	0.03074	49.4	01Jan2001, 01:42	2.58
R_DY2	0.00527	9.2	01Jan2001, 01:48	0.57
R_LV	0.02258	43.9	01Jan2001, 01:44	1.91
TR1	0.05107	125.3	01Jan2001, 01:38	5.23
TR10	0.01134	27.8	01Jan2001, 01:38	1.16
TR11	0.02604	63.9	01Jan2001, 01:38	2.67
TR2-1	0.01491	36.6	01Jan2001, 01:38	1.53
TR2-2	0.00667	16.4	01Jan2001, 01:38	0.68
TR3	0.00884	21.7	01Jan2001, 01:38	0.91
TR6	0.02283	54.2	01Jan2001, 01:40	2.34
TR7	0.02258	55.4	01Jan2001, 01:38	2.31
TR9	0.02516	61.7	01Jan2001, 01:38	2.58

Simulation Run: Devel_100yr-6Hr-OptC

Start of Run:01Jan2001, 00:00End of Run:02Jan2001, 00:00Compute Time:23Aug2017, 12:32:06

Basin Model: Avalon_Developed_ Meteorologic Model: Frequency-100Yr-6 Control Specifications:Control 1

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
BW1	0.00239	6.2	01Jan2001, 01:38	0.26
BW2	0.00085	2.2	01Jan2001, 01:38	0.09
BW3	0.00143	3.7	01Jan2001, 01:38	0.15
B_TR10	0.06908	24.1	01Jan2001, 02:06	5.39
B_TR11	0.02604	9.5	01Jan2001, 02:06	1.89
B_TR2-1	0.01491	28.2	01Jan2001, 01:44	1.53
B_TR3	0.00884	17.3	01Jan2001, 01:44	0.72
B_TR6	0.02283	44.0	01Jan2001, 01:44	1.94
B_TR7	0.02258	44.0	01Jan2001, 01:44	1.91
B_TR9	0.02516	9.2	01Jan2001, 02:06	1.82
DY1	0.00225	5.8	01Jan2001, 01:38	0.24
DY2	0.00527	9.2	01Jan2001, 01:48	0.57
J_BW1	0.02843	10.6	01Jan2001, 02:00	2.15
J_BW2	0.18122	110.4	01Jan2001, 01:42	12.02
J_BW3	0.20781	116.8	01Jan2001, 01:44	14.00
J_DAYT-CONN	0.04183	71.6	01Jan2001, 01:42	3.54
J_DY2	0.08286	89.6	01Jan2001, 01:42	4.39
J_LV-CONN	0.04541	87.9	01Jan2001, 01:44	3.85
J_OS-P1	0.01583	22.3	01Jan2001, 01:40	1.06
J_OS-P2	0.07759	82.2	01Jan2001, 01:40	3.82
J_OS-6	0.00607	17.5	01Jan2001, 01:38	0.72
J_TR2-1	0.03074	49.8	01Jan2001, 01:42	2.58
OS-P1	0.00568	9.0	01Jan2001, 01:40	0.39
OS-P2	0.01827	16.5	01Jan2001, 01:42	0.76
OS-P3	0.00285	1.7	01Jan2001, 01:46	0.09
OS-1	0.01015	13.8	01Jan2001, 01:42	0.67
OS-2	0.01791	20.4	01Jan2001, 01:40	0.88

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
OS-4	0.01915	21.8	01Jan2001, 01:40	0.99
OS-5	0.02226	24.3	01Jan2001, 01:42	1.19
OS-6	0.00282	8.1	01Jan2001, 01:38	0.34
OS-7	0.00325	9.4	01Jan2001, 01:38	0.39
R_BW2	0.02843	10.6	01Jan2001, 02:00	2.15
R_BW3	0.18122	109.6	01Jan2001, 01:44	12.02
R_DY1	0.03074	49.4	01Jan2001, 01:42	2.58
R_DY2	0.08286	89.6	01Jan2001, 01:42	4.39
R_LV	0.02258	43.9	01Jan2001, 01:44	1.91
TR1	0.05107	125.3	01Jan2001, 01:38	5.23
TR10	0.01134	27.8	01Jan2001, 01:38	1.16
TR11	0.02604	63.9	01Jan2001, 01:38	2.67
TR2-1	0.01491	36.6	01Jan2001, 01:38	1.53
TR2-2	0.00667	16.4	01Jan2001, 01:38	0.68
TR3	0.00884	21.7	01Jan2001, 01:38	0.91
TR6	0.02283	54.2	01Jan2001, 01:40	2.34
TR7	0.02258	55.4	01Jan2001, 01:38	2.31
TR9	0.02516	61.7	01Jan2001, 01:38	2.58

Precipitation Frequency Data Server

NOAA Atlas 14, Volume 1, Version 5 Location name: Albuquerque, New Mexico, USA* Latitude: 35.085°, Longitude: -106.7413° Elevation: 5235.19 ft** * source: ESRI Maps ** source: USGS

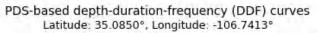
POINT PRECIPITATION FREQUENCY ESTIMATES

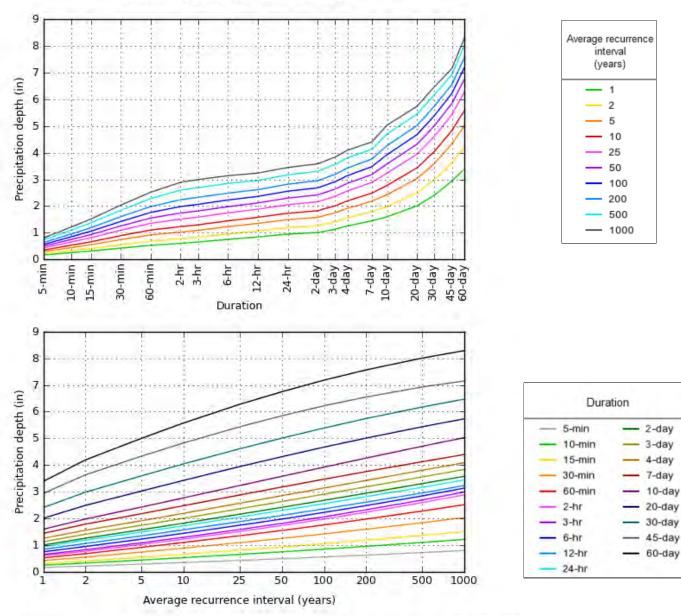
Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

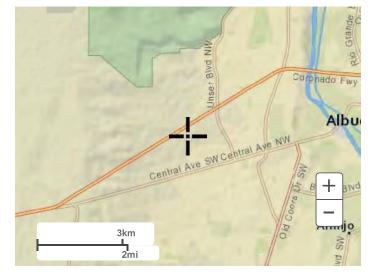

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹										
Duration		-		Avera	ge recurren	ce interval (years)			-
Buration	1	2	5	10	25	50	100	200	500	1000
5-min	0.168	0.217	0.292	0.351	0.431	0.493	0.559	0.629	0.724	0.800
	(0.144-0.196)	(0.186-0.253)	(0.249-0.340)	(0.298-0.407)	(0.364-0.500)	(0.415-0.572)	(0.468-0.648)	(0.522-0.729)	(0.595-0.840)	(0.652-0.927
10-min	0.255 (0.219-0.297)	0.331 (0.283-0.385)	0.444 (0.379-0.518)	0.534 (0.454-0.620)	0.655 (0.554-0.760)	0.750 (0.632-0.871)	0.851 (0.712-0.986)	0.958 (0.795-1.11)	1.10 (0.906-1.28)	1.22 (0.993-1.41)
15-min	0.316	0.409	0.551	0.661	0.813	0.930	1.06	1.19	1.37	1.51
	(0.271-0.369)	(0.351-0.478)	(0.469-0.643)	(0.562-0.768)	(0.686-0.943)	(0.783-1.08)	(0.882-1.22)	(0.986-1.38)	(1.12-1.59)	(1.23-1.75)
30-min	0.425 (0.366-0.496)	0.552 (0.472-0.643)	0.742 (0.632-0.866)	0.891 (0.758-1.03)	1.09 (0.924-1.27)	1.25 (1.06-1.45)	1.42 (1.19-1.65)	1.60 (1.33-1.85)	1.84 (1.51-2.13)	2.03 (1.66-2.36)
60-min	0.527 (0.452-0.615)	0.683 (0.584-0.796)	0.918 (0.782-1.07)	1.10 (0.938-1.28)	1.35 (1.14-1.57)	1.55 (1.31-1.80)	1.76 (1.47-2.04)	1.98 (1.64-2.29)	2.28 (1.87-2.64)	2.52 (2.05-2.92)
2-hr	0.605	0.773	1.03	1.23	1.51	1.74	1.98	2.24	2.60	2.89
	(0.517-0.714)	(0.661-0.916)	(0.874-1.21)	(1.04-1.44)	(1.27-1.77)	(1.46-2.03)	(1.65-2.31)	(1.84-2.61)	(2.11-3.02)	(2.33-3.37)
3-hr	0.652	0.831	1.09	1.30	1.58	1.82	2.06	2.33	2.69	2.99
	(0.565-0.768)	(0.716-0.978)	(0.941-1.28)	(1.12-1.52)	(1.35-1.85)	(1.54-2.12)	(1.74-2.40)	(1.94-2.71)	(2.22-3.13)	(2.44-3.49)
6-hr	0.752	0.951	1.23	1.45	1.75	1.98	2.23	2.48	2.84	3.14
	(0.656-0.876)	(0.830-1.11)	(1.07-1.43)	(1.26-1.68)	(1.51-2.02)	(1.70-2.29)	(1.90-2.57)	(2.11-2.87)	(2.39-3.29)	(2.61-3.63)
12 - hr	0.843	1.06	1.35	1.58	1.88	2.12	2.36	2.61	2.96	3.24
	(0.741-0.962)	(0.936-1.21)	(1.18-1.54)	(1.38-1.79)	(1.64-2.13)	(1.83-2.40)	(2.03-2.67)	(2.23-2.96)	(2.51-3.36)	(2.72-3.68)
24-hr	0.949	1.19	1.49	1.73	2.05	2.30	2.56	2.82	3.17	3.44
	(0.841-1.08)	(1.06-1.35)	(1.32-1.69)	(1.53-1.95)	(1.81-2.32)	(2.02-2.59)	(2.24-2.88)	(2.45-3.17)	(2.74-3.57)	(2.96-3.88)
2-day	1.01	1.26	1.58	1.83	2.16	2.42	2.68	2.95	3.31	3.58
	(0.896-1.13)	(1.12-1.42)	(1.40-1.77)	(1.62-2.04)	(1.91-2.41)	(2.13-2.70)	(2.36-2.99)	(2.58-3.29)	(2.88-3.70)	(3.10-4.01)
3-day	1.13	1.41	1.75	2.01	2.36	2.63	2.91	3.19	3.56	3.84
	(1.02-1.25)	(1.27-1.56)	(1.58-1.93)	(1.81-2.22)	(2.13-2.61)	(2.36-2.91)	(2.60-3.21)	(2.84-3.52)	(3.15-3.93)	(3.38-4.24)
4-day	1.26	1.56	1.91	2.19	2.57	2.85	3.14	3.43	3.81	4.09
	(1.15-1.38)	(1.43-1.71)	(1.75-2.09)	(2.00-2.39)	(2.34-2.80)	(2.59-3.11)	(2.84-3.43)	(3.09-3.74)	(3.42-4.16)	(3.66-4.47)
7-day	1.44	1.79	2.18	2.48	2.88	3.18	3.47	3.76	4.13	4.40
	(1.32-1.57)	(1.64-1.95)	(2.00-2.37)	(2.27-2.70)	(2.63-3.12)	(2.90-3.45)	(3.16-3.77)	(3.42-4.08)	(3.74-4.48)	(3.98-4.78)
10-day	1.60 (1.47-1.74)	1.98 (1.82-2.16)	2.43 (2.23-2.63)	2.77 (2.55-3.01)	3.23 (2.96-3.50)	3.58 (3.27-3.87)	3.92 (3.58-4.25)	4.26 (3.88-4.62)	4.70 (4.26-5.10)	5.03 (4.54-5.46)
20-day	2.01 (1.84-2.19)	2.49 (2.29-2.72)	3.03 (2.78-3.29)	3.43 (3.15-3.73)	3.94 (3.61-4.28)	4.31 (3.95-4.68)	4.67 (4.27-5.06)	5.01 (4.57-5.43)	5.43 (4.95-5.89)	5.73 (5.22-6.23)
30-day	2.41	2.99	3.60	4.05	4.61	5.01	5.39	5.74	6.17	6.47
	(2.21-2.61)	(2.74-3.23)	(3.30-3.89)	(3.71-4.37)	(4.22-4.97)	(4.58-5.40)	(4.93-5.81)	(5.25-6.19)	(5.63-6.65)	(5.89-6.98)
45-day	2.94	3.64	4.33	4.83	5.43	5.84	6.22	6.55	6.92	7.15
	(2.71-3.18)	(3.36-3.93)	(4.00-4.68)	(4.45-5.21)	(5.01-5.86)	(5.39-6.30)	(5.74-6.70)	(6.04-7.06)	(6.39-7.46)	(6.61-7.70)
60-day	3.39	4.19	5.00	5.58	6.27	6.75	7.18	7.57	8.01	8.29
	(3.13-3.67)	(3.87-4.54)	(4.62-5.41)	(5.15-6.02)	(5.79-6.77)	(6.23-7.28)	(6.63-7.75)	(6.98-8.17)	(7.39-8.65)	(7.66-8.95)


¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical


NOAA Atlas 14, Volume 1, Version 5

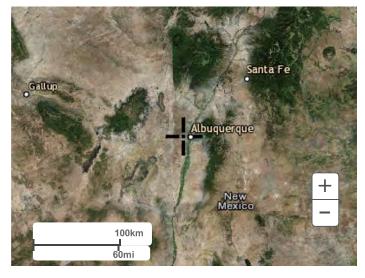
Created (GMT): Tue Jun 27 14:57:22 2017

Back to Top

Maps & aerials

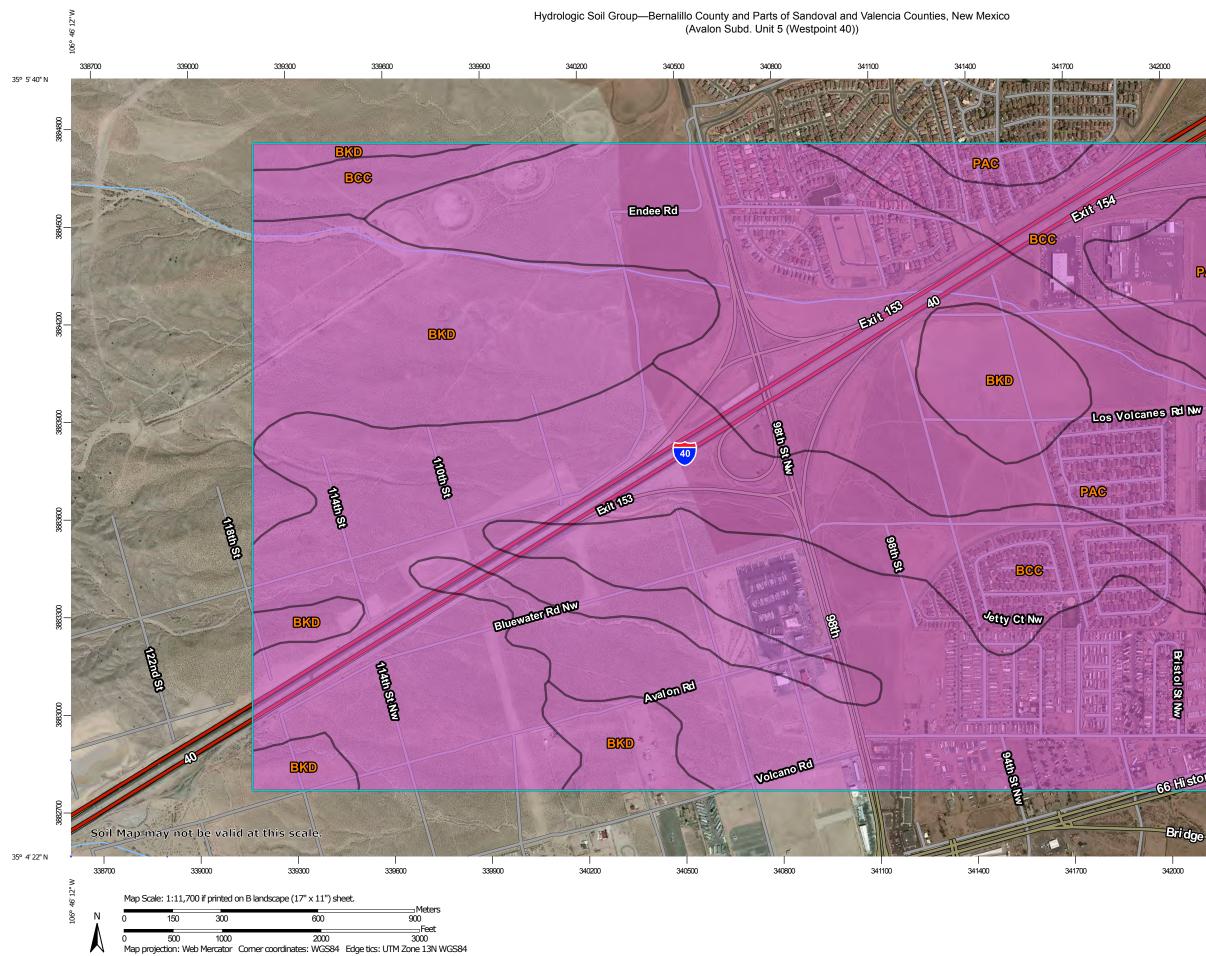
Small scale terrain

Large scale terrain



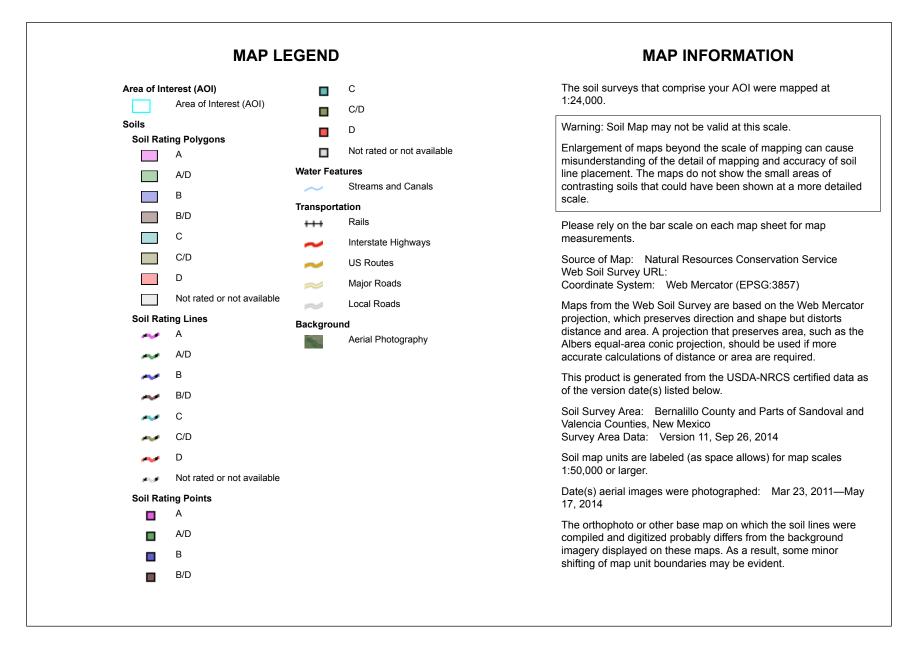
Large scale map

Large scale aerial


Precipitation Frequency Data Server

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>


Disclaimer

Natural Resources Conservation Service

USDA

Hydrologic Soil Group

Hydrologic Soil Group— Summary by Map Unit — Bernalillo County and Parts of Sandoval and Valencia Counties, New Mexico (NM600)									
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI					
BCC	Bluepoint loamy fine sand, 1 to 9 percent slopes MLRA 42	A	526.6	33.3%					
BKD	Bluepoint-Kokan association, hilly	A	277.3	17.6%					
PAC	Pajarito loamy fine sand, 1 to 9 percent slopes	A	775.7	49.1%					
Totals for Area of Inter	rest	-	1,579.6	100.0%					

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

Weighted Curve Number (CN) Calculations

Westpoint 40 (Avalon Subd. Unit 5) Master Drainage Report

Project No.: 20180059

Prepared By: DB/VCS Date: 7/19/2017

Subbasin	Total Area	Impervious Area	Percent Impervious	Hydrologic Soil Group						Land Use							Weighted Pervious CN
					Type 1	Pervious CN 1	Area 1	Percent 1	Type 2	Pervious CN 2	Area 2	Percent 2	Туре 3	Pervious CN 3	Area 3	Percent 3	
	(acres)	(acres)	(%)	-	-	-	(acres)	(%)	-	-	(acres)	(%)	-	-	(acres)	(%)	-
EXISTING																	
E-1	12.9	1.7	13	A	ROW- I-40	77	3.73	29%	Vacant- Mass Graded	77	0.68	5%	Vacant- Desert Shrub	55	8.46	66%	63
E-2	31.1	0.0	0	А	Vacant- Desert Shrub	55	1.09	4%	Vacant- Mass Graded	77	30.06	96%				0%	76
E-3	46.2	0.0	0	А	ROW- I-40	77	0.96	2%	Vacant- Mass Graded	77	11.80	26%	Vacant- Desert Shrub	55	33.42	72%	61
E-4	41.7	1.4	3	А	ROW- I-40	77	11.61	28%	Vacant- Desert Shrub	55	30.12	72%				0%	61
E-5	5.4	0.0	0	A	ROW- I-40	77	0.09	2%	Vacant- Desert Shrub	55	5.26	98%				0%	55
OS-1	6.5	2.6	40	A	ROW- I-40	77	6.49	100%				0%				0%	77
OS-2	11.5	2.4	21	A	ROW- I-40	77	11.47	100%				0%				0%	77
OS-4	12.3	2.9	24	А	ROW- I-40	77	12.26	100%				0%				0%	77
OS-5	14.2	4.7	33	A	ROW- I-40	77	11.16	78%	Vacant- Desert Shrub	55	3.08	22%				0%	72
OS-6	1.8	1.8	100	A	ROW- I-40	77	1.80	100%				0%				0%	77
OS-7	2.1	2.1	100	A	ROW- I-40	77	2.08	100%				0%				0%	77
PROPOSED																	
OS-P1	3.6	1.5	42	A	ROW- I-40	77	3.63	100%									77
OS-P2	11.7	1.4	12	A	ROW- I-40	77	11.70	100%									77
OS-P3	1.8	0.0	0	А	ROW- I-40	77	1.80	100%									77

Notes: 1. Curve numbers (CN) Per TR-55, Tables 2-2a and 2-2d

2. Proposed tracts and ROW assumed to be 90% impervious, with pervious curve number for commercial/industrial land use (CN=63).

Time of Concentration Calculations (Revised COA DPM procedure)

Westpoint 40 (Avalon Subd. Unit 5)

Project No.: 20180059 Prepared By: DB/VCS

Date: 6/26/2017

User inputs columns in blue: 1,2,3,5,6,10,11,15,16,19,20

Existing Conditions

Existing Con	ditions																														
			Overland	Overland	Overland	Overland	Adj. Overlar	nd		Gully		Adj. Gully	Arroyo		Arroyo	Arroyo	Adj. Arroyo		Base	Ground	Adjusted										
Basin	Area	Total Reach	Reach	ĸ	Slope	Slope	Slope	Gully Reach	n Gully K	slope	Gully slope	Slope	Reach	Arroyo K	Slope	Slope	Slope	Lca	Discharge	Slope	Slope	ĸ	Kw	K'	K"	Kn	Orig. TC	Adjusted TC	Final	TC	Lag Time
		L	L1	K1		S1	S1'	L2	K2		S2	S2'	L3	K3		S3	S3'	Lca	Qb	S	S'	К	K _w	K'	K"	Kn	TC	TC'			Lg
	sq ft	Feet	Feet		ft/ft	%	%	Feet		ft/ft	%	%	Feet		ft/ft	%	%	Feet	cfs	%	%						Hrs	Hrs	Hrs	Min	Min
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)	(26)	(27)	(28)	(29)	-		(30)
E-1	560203	1620.00	400	1	0.008	0.77	0.77	1220	2	0.036	3.56	3.56	0	3	0.00001	0.00	0.00	N/A	25.7	2.87	2.87	1.228	1.228	3.197	0.219	0.021	0.216	0.216	0.216	13.0	7.8
E-2	1356699	2740.00	400	1	0.022	2.18	2.18	1600	2	0.038	3.80	3.80	740	3	0.009	0.92	0.92	N/A	62.3	2.78	2.78	1.749	1.749	3.808	0.261	0.025	0.261	0.261	0.261	15.7	9.4
E-3	2011701	2700.00	400	1	0.013	1.33	1.33	1600	2	0.036	3.56	3.56	700	3	0.029	2.86	2.86	N/A	92.4	3.05	3.05	1.701	1.701	3.906	0.268	0.025	0.253	0.253	0.253	15.2	9.1
E-4	1817855	3050.00	400	1	0.013	1.25	1.25	1600	2	0.029	2.87	2.87	1050	3	0.027	2.66	2.66	N/A	83.5	2.59	2.59	1.816	1.816	4.162	0.285	0.025	0.290	0.290	0.290	17.4	10.4
E-5	233075	960.00	400	1	0.022	2.24	2.24	560	2	0.042	4.23	4.21	0	3	0.00001	0.00	0.00	N/A	10.7	3.40	3.40	1.290	1.289	2.509	0.172	0.021	0.112	0.112	0.200	12.0	7.2
OS-1	282841	2310.00	400	1	0.015	1.50	1.50	1600	2	0.021	2.07	2.07	310	3	0.014	1.35	1.35	N/A	13.0	1.88	1.88	1.736	1.736	3.496	0.240	0.025	0.270	0.270	0.270	16.2	9.7
OS-2	499439	1600.00	400	1	0.015	1.50	1.50	1200	2	0.027	2.67	2.67	0	3	0.00001	0.00	0.00	N/A	22.9	2.38	2.38	1.496	1.496	3.444	0.236	0.025	0.193	0.193	0.200	12.0	7.2
OS-3	345815	1060.00	400	1	0.018	1.75	1.75	660	2	0.032	3.18	3.18	0	3	0.00001	0.00	0.00	N/A	15.9	2.64	2.64	1.338	1.338	3.056	0.210	0.033	0.135	0.135	0.200	12.0	7.2
OS-4	533867	2317.00	400	1	0.015	1.50	1.50	1600	2	0.036	3.63	3.63	317	3	0.025	2.52	2.52	N/A	24.5	3.11	3.11	1.616	1.616	3.047	0.209	0.025	0.226	0.226	0.226	13.6	8.1
OS-5	620670	3400.00	400	1	0.018	1.75	1.75	1600	2	0.062	6.19	5.25	1400	3	0.031	3.14	3.14	N/A	28.5	4.41	4.36	1.824	1.780	2.643	0.181	0.021	0.246	0.248	0.248	14.9	8.9
OS-6	78508	1522.00	400	1	0.030	3.00	3.00	1122	2	0.032	3.21	3.21	0	3	0.00001	0.00	0.00	N/A	3.6	3.15	3.15	1.575	1.575	2.142	0.147	0.021	0.151	0.151	0.200	12.0	7.2
OS-7	90733	1555.00	400	1	0.030	3.00	3.00	1155	2	0.031	3.12	3.12	0	3	0.00001	0.00	0.00	N/A	4.2	3.09	3.09	1.586	1.586	2.222	0.152	0.021	0.155	0.155	0.200	12.0	7.2

Notes:

(1) Basin ID name

(2) Area of basin. Obtained from basin delineation in the following file: P:\20180059\WR\Design\workarea\20180059_DRN_EX.dwg

(3) Length of longest flow path possible in drainage basin, determined using linework In the following file: P:\20180059\WR\Design\workarea\20180059_DRN_EX.dwg

(4) Length for sheet flow. Maximum length of 400 used per COA DPM 22-22.

(5) Conveyance condition for L1. Conditions in COA DPM table B-1 on pg. 22-22.

(6) L1 slope in decimal

(7) L1 slope in percentage

(8) S1 adjustment for slopes considered 'steen' per COA DPM

(8) S1 adjustment for slopes considered 'steep' per COA DPN	l.	
* Adjustment should only be used if the slope is greater	if S1 is greater than 4	
than 4%, developed channels, or for hydraulic design of	S1' = 5.2467+(0.062627*s1)-(18.197*e^(-0.62375*s1)	per DPM 22-26, equation b-10
channels or channel elements	if S1 is less than or equal to 4	por 21 m 22 20; 0400m 2 10
	•	
	S1' = S1	
(9) length assumed for Gully flow.		
	if L>2000 ft	
	L2 = 1600	
	if L<2000 ft	
	L2 = L-L1	
(10) Conveyance condition for L2. Conditions in COA DPM tal	ble B-1 on pg. 22-22.	
(11) L2 slope in decimal		
(12) L2 slope in percentage		
(13) adjusted s2	if S2 is greater than 4	
	S2' = 5.2467+(0.062627*s2)-(18.197*e^(-0.62375*s2)	per DPM 22-26, equation b-10
	if S2 is less than or equal to 4%	
	S2' = S2	
(14) Length of arroyo flow along L.	52 = 52	
(14) Longin of anoyo now along L.	L3 = L-(L1+L2)	
(15) Conveyance condition for L3. Conditions in COA DPM tal		
(16) L3 slope in decimal	510 D 1 611 pg. 22 22.	
(17) L3 slope in percentage		
(17) Lo siope in percentage (18) adjusted S3	if S3 is greater than 4%	
	S3' = 5.2467+(0.062627*s3)-(18.197*e^(-0.62375*s3)	per DPM 22-26, equation b-10
	If S3 is less than or equal to 4%	per Dr W 22-20, equation b-10
	S3' = S3	
(19) Distance along L from point of concentration to a point op		with reach lengths greater than 4 000 ft)
(20) Basin discharge of the drainage basin	busic centroid of drainage basin (only necessary for basins	
If discharge is unknown:		
Undeveloped -assume 0.5-1 cfs/ac	Q = (0.5-1) * A	
Developed- assume 2-3 cfs/ac	Q = (2-3) * A	
•	bercent of Q_h the estimate is sufficiently accurate. If not, rep	post the presses using the computed basin discharge
If the computed basin discharge is within 10		eat the process using the computed basin discharge.
(21) Average slope over entire reach length	S - /// 4*S4) · // 2*S2) · // 2*S2))//	per DDM 22.26 equation b 5
	S = ((L1*S1)+(L2*S2)+(L3*S3))/L	per DPM 22-26, equation b-5
(22) Adjusted Slope	if Q is supported them 40/	
	if S is greater than 4%	non DDM 00.00 newstars h. 40
	S' = 5.2467+(0.062627*S)-(18.197*e^(-0.62375*S)	per DPM 22-26, equation b-10
	if S is less than or equal to 4%	
(00)	S' = S	
(23) average K		
	K = ((L1/(K1*S1^.5))+ (L2/(K2*S2^.5))+(L3/(K3*S3^.5))*(S^.5/L))^-1 per DPM 22-23, equation b-4
(0.4) 1/		
(24) K _w		
eqn to find K value for the weighted overall slope and reach	K _w = (L/((S'^.5)*(L1/(K1*(S1^.5)) + L2/(K2*(S2^.5)) + L	3/(K3*(S3'^.5)))
length		
(25) K'		
* K': 20130059(WRREACULATED FOT adjusted slopes_TP-COA DPM N	/ethod_Existing.xis-{Tc-Existing]	per DPM 22-26, equation b-11
Prepared By: Kris Johnson 8/23/2017		

K"= 0.207*(S'^-.5)*(Qb^0.18)

per DPM 22-26, equation b-12

(27) a basin factor based on an estimate of weighted, by stream length, average Manning's n value for the principal watercourses in the drainage basin. For the Albuquerque area, values of Kn may be estimated from COA DPM Table B-2, pg. 22-23 (28) TC

	if the total Reach is less than 4000 ft TC = per DPM 22-22 equation B-1 and B-2	
	If the total Reach is greater than 12000 ft TC does not apply	
(29) TC'	If the total reach is greater than 4000 ft and less than 12000 ft TC = ((1200-L)/(120*K*S ⁻⁵) + ((L-4000)*Kn*(Lca/L) ³³)/(4.305*S ^{0.165}))/60 * variences to compensate for using a non decimal slope	
adjusted TC value for natural channels and steep slopes	If the Ground Slope<4 $TC=$ $((12000-L)/(72000^*K^*S^{-5}) + ((L-4000)^*Kn^*(Lca/L)^{-33})/(552.2^*S^{-0.165}))$ eq. from DPM 22- TC' = TC	23
	If the Ground Slope>4 if L <4000 **determine which K value	**K value determination: If K' <kw< td=""></kw<>
	TC' = L/(K*S ^{1.5})/3600) per DPM 22-22 equation B-1 and B-2 If L>12000 TC' does not apply	Use K' If Kw < K"
	If L is between 4000 and 12000 ***determine which K value	Use K" If Kw > K' & K"
	TC' = ((12000-L)/(120*K*S ⁻⁵) + ((L-4000)*Kn*((Lca/L) ⁻³³))/(4.305*S ^{-0.165}))/60 * variences from DPM equation to compensate for using a non decimal slope TC= ((12000-L)/(72000*K*S ⁻⁵) + ((L-4000)*Kn*(Lca/L) ⁻³³)/(552.2*S ^{-0.165})) eq. from DPM 22-	Use Kw
(30) Lag Time per TR-55	TC= ((12000-L)/(72000*K*S ⁻³) + ((L-4000)*Kn*(Lca/L) ⁻³³)/(552.2*S ^{-0.165})) eq. from DPM 22- Lg= 0.6*TC	23

<u>Time of Concentration Calculations</u> (Revised COA DPM procedure)

Westpoint 40 (Avalon Subd. Unit 5)

Project No.: 20180059 Prepared By: DB/VCS

Date: 8/14/2017

User DEFINED

per DPM 22-26, equation b-10

Existing Conditions

Existing Cond	aitions									• "									-	<u> </u>											
Basin	Area	Total Reach L	Overland Reach L1	Overland K K1	Overland Slope	Overland Slope S1	Adj. Overlan Slope S1'	d Gully Reacl L2	h Gully K K2	Gully slope	Gully slope S2	Adj. Gully Slope S2'	Arroyo Reach L3	Arroyo K K3	Arroyo Slope	Arroyo Slope S3	Adj. Arroyo Slope S3'	Lca Lca	Base Discharge Qb	Ground Slope S	Adjusted Slope S'	К К	K _w Kw	K' K'	K" K"	Kn Kn	Orig. TC TC	Adjusted TC TC'	Final	тс	Lag Time Lg
	sq ft	Feet	Feet		ft/ft	%	%	Feet		ft/ft	%	%	Feet		ft/ft	%	%	Feet	cfs	%	%		w				Hrs	Hrs	Hrs	Min	Min
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)	(26)	(27)	(28)	(29)	(30))	(30)
BW1	66535	652.21	400.00	1	0.025	2.50	2.50	252	2	0.067	6.74	5.40	0	3	0.00001	0.00	0.00	N/A	3.1	4.14	4.13	1.063	1.044	1.817	0.125	0.021	0.084	0.084	0.200	12.0	7.2
BW2	23800	280.00	280.00	1	0.002	0.18	0.18	0	2	0.000	0.00	0.00	0	3	0.00001	0.00	0.00	N/A	1.1	0.18	0.18	1.000				0.025			0.200	12.0	7.2
BW3	39855	622.15	400.00	1	0.013	1.25	1.25	222	2	0.072	7.20	5.49	0	3	0.00001	0.00	0.00	N/A	1.8	3.38	3.38	0.848	0.836	1.833	0.126	0.025	0.111	0.111	0.200	12.0	7.2
DY2	146991	1930.11	400.00	1	0.001	0.13	0.13	1530	2	0.020	1.99	1.99	0	3	0.00001	0.00	0.00	N/A	6.7	1.61	1.61	0.910	0.910	3.360	0.230	0.025	0.465	0.465	0.465	27.9	16.7
DY1	62621	1023.15	400.00	1	0.005	0.50	0.50	623	2	0.056	5.62	5.05	0	3	0.00001	0.00	0.00	N/A	2.9	3.62	3.62	0.772	0.764	1.921	0.132	0.021	0.194	0.194	0.200	12.0	7.2
OS-P1	158286	1330.00	400.00	1	0.010	1.00	1.00	930	2	0.026	2.58	2.58	0	3	0.00001	0.00	0.00	N/A	7.3	2.11	2.11	1.330	1.330	2.974	0.204	0.025	0.192	0.192	0.200	12.0	7.2
OS-P2	509202	1523.51	400.00	1	0.018	1.75	1.75	1124	2	0.012	1.25	1.25	0	3	0.00001	0.00	0.00	N/A	23.4	1.38	1.38	1.611	1.611	4.536	0.311	0.025	0.224	0.224	0.224	13.4	8.1
OS-P3	79354	1076.62	400.00	1	0.003	0.25	0.25	677	2	0.018	1.77	1.77	0	3	0.00001	0.00	0.00	N/A	3.6	1.21	1.21	0.930	0.930	3.468	0.238	0.033	0.293	0.293	0.293	17.6	10.5
TR1	1423762	1691.18	400.00	1	0.025	2.50	2.50	1291	2	0.027	2.71	2.71	0	3	0.00001	0.00	0.00	N/A	65.4	2.66	2.66	1.607	1.607	3.929	0.269	0.025	0.179	0.179	0.200	12.0	7.2
TR2-1	415752	649.69	400.00	1	0.013	1.25	1.25	250	2	0.020	2.00	2.00	0	3	0.00001	0.00	0.00	N/A	19.1	1.54	1.54	1.174	1.174	4.139	0.284	0.021	0.124	0.124	0.200	12.0	7.2
TR2-2	185956	749.21	400.00	1	0.008	0.75	0.75	349	2	0.011	1.15	1.15	0	3	0.00001	0.00	0.00	N/A	8.5	0.93	0.93	1.240	1.240	4.596	0.315	0.021	0.174	0.174	0.200	12.0	7.2
TR3	246378	710.93	400.00	1	0.006	0.63	0.63	311	2	0.010	0.96	0.96	0	3	0.00001	0.00	0.00	N/A	11.3	0.77	0.77	1.217	1.217	5.313	0.364	0.021	0.185	0.185	0.200	12.0	7.2
TR6	636416	1398.76	400.00	1	0.013	1.25	1.25	999	2	0.015	1.50	1.50	0	3	0.00001	0.00	0.00	N/A	29.2	1.43	1.43	1.529	1.529	4.636	0.318	0.021	0.213	0.213	0.213	12.8	7.7
TR7	629613	828.46	400.00	1	0.015	1.50	1.50	428	2	0.016	1.63	1.63	0	3	0.00001	0.00	0.00	N/A	28.9	1.57	1.57	1.338	1.338	4.417	0.303	0.021	0.137	0.137	0.200	12.0	7.2
TR9	701446	1200.00	400.00	1	0.038	3.75	3.75	800	2	0.049	4.88	4.68	0	3	0.00001	0.00	0.00	N/A	32.2	4.50	4.43	1.459	1.457	2.681	0.184	0.021	0.108	0.109	0.200	12.0	7.2
TR10	316272	639.19	400.00	1	0.020	2.00	2.00	239	2	0.021	2.09	2.09	0	3	0.00001	0.00	0.00	N/A	14.5	2.03	2.03	1.226	1.226	3.428	0.235	0.021	0.102	0.102	0.200	12.0	7.2
TR11	726074	1084.31	400.00	1	0.030	3.00	3.00	684	2	0.037	3.65	3.65	0	3	0.00001	0.00	0.00	N/A	33.3	3.41	3.41	1.432	1.432	3.073	0.211	0.021	0.114	0.114	0.200	12.0	7.2
TR COMBO	1925990	2508.00	400.00	1	0.019	1.93	1.93	1600	2	0.020	1.95	1.95	0	3	0.00001	0.00	0.00	N/A	88.4	1.55	1.55	2.338	2.338	5.433	0.372	0.021	0.239	0.239	0.239	14.4	8.6

Notes:

(1) Basin ID name

(2) Area of basin. Obtained from basin delineation in the following file: P:\20180059\WR\Design\workarea\20180059_DRN_PR.dwg

(3) Length of longest flow path possible in drainage basin, determined using linework In the following file: P:\20180059\WR\Design\workarea\20180059_DRN_PR.dwg

if S1 is greater than 4

(4) Length for sheet flow. Maximum length of 400 used per COA DPM 22-22.

(5) Conveyance condition for L1. Conditions in COA DPM table B-1 on pg. 22-22.

(6) L1 slope in decimal

(7) L1 slope in percentage

(8) S1 adjustment for slopes considered 'steep' per COA DPM.

* Adjustment should only be used if the slope is greater than 4%, developed channels, or for hydraulic design of

S1' = 5.2467+(0.062627*s1)-(18.197*e^(-0.62375*s1) if S1 is less than or equal to 4

channels or channel elements	if S1 is less than or equal to 4	
	S1' = S1	
(9) length assumed for Gully flow.		
	if L>2000 ft	
	L2 = 1600	
	if L<2000 ft	
	L2 = L-L1	
(10) Conveyance condition for L2. Conditions in COA DP	M table B-1 on pg. 22-22.	
(11) L2 slope in decimal		
(12) L2 slope in percentage		
(13) adjusted s2	if S2 is greater than 4	
	S2' = 5.2467+(0.062627*s2)-(18.197*e^(-0.62375*s2) if S2 is less than or equal to 4%	per DPM 22-26, equation b-10
	S2' = S2	
(14) Length of arroyo flow along L.		
	L3 = L-(L1+L2)	
(15) Conveyance condition for L3. Conditions in COA DP	M table B-1 on pg. 22-22.	
(16) L3 slope in decimal (17) L3 slope in percentage		
(18) adjusted S3	if S3 is greater than 4%	
	S3' = 5.2467+(0.062627*s3)-(18.197*e^(-0.62375*s3) If S3 is less than or equal to 4%	per DPM 22-26, equation b-10
	S3' = S3	
(19) Distance along L from point of concentration to a point	it opposite centroid of drainage basin (only necessary for basins w	ith reach lengths greater than 4,000 ft).
(20) Basin discharge of the drainage basin		
If discharge is unknown:		
Undeveloped -assume 0.5-1 cfs/ac	Q = (0.5-1) * A	
Developed- assume 2-3 cfs/ac	Q = (2-3) * A	
If the computed basin discharge is within	10 percent of Q_b the estimate is sufficiently accurate. If not, repe	eat the process using the computed basin discharge.
(21) Average slope over entire reach length		
	S = ((L1*S1)+(L2*S2)+(L3*S3))/L	per DPM 22-26, equation b-5
(22) Adjusted Slope		
	if S is greater than 4%	
	S' = 5.2467+(0.062627*S)-(18.197*e^(-0.62375*S)	per DPM 22-26, equation b-10
P:\20180059\WR\Calculations\Misc Calcs\20180059_TP-COA E Prepared By: Kris Johnson 8/23/2017	PM Method_Prophsed xile کر المان کے PM Method_Prophsed xile کر المان S' = S	
· · ·		

(23) average K	K = ((L1/(K1*S1^.5))+ (L2/(K2*S2^.5))+(L3/(K3*S3^.5))*(S^.5/L)))^-1 per DPM 22-23, equation b-4			
$(24)\ K_w$ eqn to find K value for the weighted overall slope and reach length	K _w = (L/((S'^.5)*(L1/(K1*(S1^.5)) + L2/(K2*(S2^.5)) + L3/(K3*(S3*	^.5)))			
(25) K' * K' and K" are calculated for adjusted slopes	K'= 0.302*(S'/100)^5*(Qb^0.18)	per DPM 22-26, equation b-11			
(26) K"	K''= 0.207*(S'^5)*(Qb^0.18)	per DPM 22-26, equation b-12			
(27) a basin factor based on an estimate of weighted, by strear watercourses in the drainage basin. For the Albuquerque area (28) TC					
	if the total Reach is less than 4000 ft TC =	per DPM 22-22 equation B-1 and B-2			
	If the total Reach is greater than 12000 ft TC does not apply				
(29) TC'					
adjusted TC value for natural channels and steep slopes	If the Ground Slope<4 TC= ((1200 TC' = TC If the Ground Slope>4	10-L)/(72000°K°S°) + ((L-4000)°Kn°(LCa/L)°° /(552.2°S°°°))	eq. from DPM 22-23	**K value determination:	
	if L <4000 **determine which K value			K value determination. If K' <kw< td=""><td></td></kw<>	
	TC' = L/(K*S ^{1.5})/3600) per DPM 22-22 equ	ation B-1 and B-2			Use K'
	If L>12000 TC' does not apply			<i>If Kw < K</i> "	
	If L is between 4000 and 12000 **dete	rmine which K value		lf Kw > K' & K'	Use K" "
	TC' = ((12000-L)/(120*K*S ⁺⁵) + ((L-4000)*Kn*((Lca/				Use Kw
	* varie	nces from DPM equation to compensate for using a non decimal slope			
(20) Log Time	TC= ((1200	00-L)/(72000*K*S ^{.5}) + ((L-4000)*Kn*(Lca/L) ^{.33})/(552.2*S ^{0.165}))	eq. from DPM 22-23		
(30) Lag Time per TR-55	Lg= 0.6*TC				

APPENDIX B – HYDRAULIC ANALYSIS SUPPORTING DATA

- 1. Storm Drain Capacity Calculations (Normal Depth)
- 2. Street Capacity Calculations
- 3. Storm Drain Inlet Capacity Calculations

EX-Bluewater-36in RCP.txt 36.000 INCH DIAMETER PIPE

FLOW DEPTH I NCHES	FLOW AREA SQ FT	DI SCHARGE CFS	VELOCI TY FPS
$\begin{array}{c} 2.\ 000\\ 4.\ 000\\ 6.\ 000\\ 8.\ 000\\ 10.\ 000\\ 12.\ 000\\ 14.\ 000\\ 14.\ 000\\ 16.\ 000\\ 20.\ 000\\ 22.\ 000\\ 24.\ 000\\ 24.\ 000\\ 26.\ 000\\ 28.\ 000\\ 30.\ 000\\ 32.\ 000\\ 34.\ 000 \end{array}$	$\begin{array}{c} 0. \ 154 \\ 0. \ 429 \\ 0. \ 774 \\ 1. \ 170 \\ 1. \ 602 \\ 2. \ 063 \\ 2. \ 543 \\ 3. \ 035 \\ 3. \ 534 \\ 4. \ 033 \\ 4. \ 526 \\ 5. \ 006 \\ 5. \ 466 \\ 5. \ 899 \\ 6. \ 294 \\ 6. \ 639 \\ 6. \ 914 \end{array}$	$\begin{array}{c} 0.\ 380\\ 1.\ 648\\ 3.\ 821\\ 6.\ 853\\ 10.\ 667\\ 15.\ 169\\ 20.\ 249\\ 25.\ 783\\ 31.\ 638\\ 37.\ 668\\ 43.\ 713\\ 49.\ 601\\ 55.\ 134\\ 60.\ 089\\ 64.\ 190\\ 67.\ 060\\ 68.\ 045\end{array}$	$\begin{array}{c} 2.\ 463\\ 3.\ 838\\ 4.\ 934\\ 5.\ 859\\ 6.\ 658\\ 7.\ 355\\ 7.\ 964\\ 8.\ 494\\ 8.\ 952\\ 9.\ 339\\ 9.\ 658\\ 9.\ 908\\ 10.\ 086\\ 10.\ 186\\ 10.\ 198\\ 10.\ 101\\ 9.\ 842 \end{array}$
36.000	7.069	63.276	8. 952

EX-Bluewater-42in RCP.txt 42.000 INCH DIAMETER PIPE

FLOW DEPTH	FLOW AREA	DI SCHARGE	VELOCI TY
INCHES	SQ FT	CFS	FPS
$\begin{array}{c} 3.\ 000\\ 6.\ 000\\ 9.\ 000\\ 12.\ 000\\ 15.\ 000\\ 15.\ 000\\ 21.\ 000\\ 21.\ 000\\ 24.\ 000\\ 27.\ 000\\ 30.\ 000\\ 33.\ 000\\ 36.\ 000\\ 39.\ 000 \end{array}$	0. 305	1. 385	4.540
	0. 843	5. 932	7.036
	1. 512	13. 588	8.989
	2. 268	24. 043	10.600
	3. 085	36. 867	11.952
	3. 939	51. 545	13.087
	4. 811	67. 491	14.030
	5. 683	84. 051	14.791
	6. 536	100. 495	15.374
	7. 353	115. 992	15.775
	8. 109	129. 561	15.977
	8. 778	139. 938	15.942
	9. 316	145. 106	15.576
42.000	9. 621	134. 982	14.030

EX-Bluewater-48in RCP.txt 48.000 INCH DIAMETER PIPE

FLOW DEPTH	FLOW AREA	DI SCHARGE	VELOCI TY
INCHES	SQ FT	CFS	FPS
$\begin{array}{c} 3.\ 000\\ 6.\ 000\\ 9.\ 000\\ 12.\ 000\\ 15.\ 000\\ 15.\ 000\\ 21.\ 000\\ 21.\ 000\\ 24.\ 000\\ 27.\ 000\\ 30.\ 000\\ 33.\ 000\\ 33.\ 000\\ 39.\ 000\\ 42.\ 000\\ 45.\ 000\\ \end{array}$	0. 327	1.890	5.779
	0. 907	8.146	8.985
	1. 631	18.790	11.520
	2. 457	33.508	13.639
	3. 355	51.830	15.448
	4. 304	73.185	17.003
	5. 286	96.920	18.336
	6. 283	122.308	19.466
	7. 281	148.550	20.404
	8. 262	174.766	21.153
	9. 211	199.976	21.710
	10. 110	223.060	22.064
	10. 935	242.672	22.192
	11. 660	257.025	22.044
	12. 239	263.134	21.499
48.000	12.566	244.616	19. 466

EX-Daytona-36in RCP.txt 36.000 INCH DIAMETER PIPE

FLOW DEPTH	FLOW AREA	DI SCHARGE	VELOCI TY
INCHES	SQ FT	CFS	FPS
$\begin{array}{c} 2.\ 000\\ 4.\ 000\\ 6.\ 000\\ 8.\ 000\\ 10.\ 000\\ 12.\ 000\\ 14.\ 000\\ 14.\ 000\\ 16.\ 000\\ 18.\ 000\\ 20.\ 000\\ 22.\ 000\\ 24.\ 000\\ 26.\ 000\\ 28.\ 000\\ 30.\ 000\\ 32.\ 000\end{array}$	$\begin{array}{c} 0. \ 154 \\ 0. \ 429 \\ 0. \ 774 \\ 1. \ 170 \\ 1. \ 602 \\ 2. \ 063 \\ 2. \ 543 \\ 3. \ 035 \\ 3. \ 534 \\ 4. \ 033 \\ 4. \ 526 \\ 5. \ 006 \\ 5. \ 466 \\ 5. \ 899 \\ 6. \ 294 \\ 6. \ 639 \end{array}$	0. 421 1. 822 4. 224 7. 576 11. 793 16. 770 22. 386 28. 504 34. 977 41. 643 48. 327 54. 836 60. 953 66. 431 70. 965 74. 138	2.722 4.243 5.455 6.477 7.360 8.131 8.804 9.391 9.896 10.325 10.678 10.954 11.151 11.261 11.275 11.167
34.000	6. 914	<mark>75.227</mark>	10. 880
36.000	7. 069	69.954	9. 896

EX-LosVol canes-30in RCP. txt 30.000 INCH DIAMETER PIPE

FLOW DEPTH INCHES	FLOW AREA SQ FT	DI SCHARGE CFS	VELOCI TY FPS
2.000 4.000 6.000 8.000 10.000 12.000 14.000 16.000 18.000 20.000 22.000 24.000 26.000 28.000	0. 141 0. 389 0. 699 1. 051 1. 432 1. 834 2. 246 2. 663 3. 075 3. 476 3. 858 4. 210 4. 520 4. 768 4. 000	0.771 3.314 7.620 13.539 20.859 29.321 38.632 48.465 58.457 68.206 77.252 85.050 90.882 93.582	5.487 8.517 10.902 12.884 14.563 15.992 17.199 18.202 19.009 19.620 20.025 20.203 20.108 19.626 17.726
30.000	4. 909	87.010	17. 726

EX-LosVol canes-36in RCP. txt 36.000 INCH DIAMETER PIPE

FLOW DEPTH	FLOW AREA	DI SCHARGE	VELOCI TY
INCHES	SQ FT	CFS	FPS
$\begin{array}{c} 2.\ 000\\ 4.\ 000\\ 6.\ 000\\ 8.\ 000\\ 10.\ 000\\ 12.\ 000\\ 14.\ 000\\ 14.\ 000\\ 16.\ 000\\ 18.\ 000\\ 20.\ 000\\ 22.\ 000\\ 24.\ 000\\ 24.\ 000\\ 26.\ 000\\ 28.\ 000\\ 30.\ 000 \end{array}$	$\begin{array}{c} 0. \ 154 \\ 0. \ 429 \\ 0. \ 774 \\ 1. \ 170 \\ 1. \ 602 \\ 2. \ 063 \\ 2. \ 543 \\ 3. \ 035 \\ 3. \ 534 \\ 4. \ 033 \\ 4. \ 526 \\ 5. \ 006 \\ 5. \ 466 \\ 5. \ 899 \\ 6. \ 294 \end{array}$	0. 523 2. 265 5. 251 9. 418 14. 661 20. 848 27. 829 35. 435 43. 482 51. 769 60. 078 68. 170 75. 775 82. 585 88. 221	$\begin{array}{c} 3. \ 384 \\ 5. \ 275 \\ 6. \ 781 \\ 8. \ 052 \\ 9. \ 150 \\ 10. \ 108 \\ 10. \ 945 \\ 11. \ 674 \\ 12. \ 303 \\ 12. \ 836 \\ 13. \ 274 \\ 13. \ 617 \\ 13. \ 862 \\ 14. \ 000 \\ 14. \ 016 \end{array}$
32.000	6. 639	92. 166	13. 882
34.000	6. 914	<mark>93. 520</mark>	13. 526
36.000	7. 069	86. 964	12. 303

PROP-Pond B_OS-P2 outlet-18in RCP@2%.txt 18.000 INCH DIAMETER PIPE

FLOW DEPTH	FLOW AREA	DI SCHARGE	VELOCI TY
INCHES	SQ FT	CFS	FPS
3.000	0. 194	0.897	4.633
6.000	0. 516	3.561	6.907
9.000	0. 884	7.428	8.406
12.000	1. 252	11.645	9.305
15.000	1. 574	<mark>15.070</mark>	9.577
18.000	1. 767	14.855	8.406

					0.01		0.000			
POINT	DIST	ELEV	P	DINT	DIST	ELEV	PO	INT	DIST	ELEV
1.0	-30.0	0.8		4.0	0.0	0.4		7.0	30.0	0.8
2.0	-18.0	0.5		5.0	18.0	0.0				
3.0	-18.0	0.0		6.0	18.0	0.5				
WS	SEL	DEPTH	FLOW	FLO	Ŵ	WETTED	FLOW	TOP	WID	TOTAL
		INC	AREA	RAT	E	PER	VEL	PLU	US	ENERGY
FΊ			SQ.FT.	(CF	S)	(FT)	(FPS)	OBSTRU	UCTIONS	(FT)
0.1	00	0.100	0.500	0.4	14 :	10.202	0.828	10.0	000	0.111
0.2	200	0.200	2.000	2.6	28	20.404	1.314	20.0	000	0.227
0.3	800	0.300	4.500	7.7	48	30.606	1.722	30.0	000	0.346
0.4	100	0.400	7.920	17.5	78	36.807	2.219	36.0	000	0.477
0.5	500	0.500	11.520	32.7	05	37.007	2.839	36.0	000	0.625
0.6	500	0.600	15.582	46.5	03 ·	46.440	2.984	45.3	231	0.739
0.7	00	0.700	20.566	65.2	89	55.873	3.175	54.4	462	0.857

MANNING'S N = 0.017 SLOPE = 0.005

					0.01	. 52012	0.010				
POINT	DIST	ELEV	PC	INT	DIST	ELEV	PO	INT	DIST	ELEV	
1.0	-30.0	0.8		4.0	0.0	0.4		7.0	30.0	0.8	
2.0	-18.0	0.5		5.0	18.0	0.0					
3.0	-18.0	0.0		6.0	18.0	0.5					
WS	EL	DEPTH	FLOW	FLOW	N	WETTED	FLOW	TOP	WID	TOTAL	
		INC	AREA	RATI	E	PER	VEL	PL	US	ENERGY	
FT			SQ.FT.	(CFS	S)	(FT)	(FPS)	OBSTR	UCTIONS	(FT)	
0.1	.00	0.100	0.500	0.58	85	10.202	1.171	10.	000	0.121	
0.2	00	0.200	2.000	3.72	17	20.404	1.858	20.	000	0.254	
0.3	00	0.300	4.500	10.95	58	30.606	2.435	30.	000	0.392	
0.4	00	0.400	7.920	24.85	59	36.807	3.139	36.	000	0.553	
0.5	00	0.500	11.520	46.25	52	37.007	4.015	36.	000	0.751	
0.6	00	0.600	15.582	65.76	б4	46.440	4.221	45.	231	0.877	
0.7	00	0.700	20.566	92.33	33	55.873	4.490	54.	462	1.014	

			1.1221010 11		- 0.01	., prole	- 0.020			
POINT	DIST	ELEV	PC	INT	DIST	ELEV	PO	INT	DIST	ELEV
1.0	-30.0	0.8		4.0	0.0	0.4		7.0	30.0	0.8
2.0	-18.0	0.5		5.0	18.0	0.0				
3.0	-18.0	0.0		6.0	18.0	0.5				
WS	SEL	DEPTH	FLOW	FLOV	N	WETTED	FLOW	TOF	PWID	TOTAL
		INC	AREA	RATI	3	PER	VEL	PI	JUS	ENERGY
FT			SQ.FT.	(CFS	S)	(FT)	(FPS)	OBSTR	RUCTIONS	(FT)
0.1	.00	0.100	0.500	0.82	28	10.202	1.656	10.	000	0.143
0.2	00	0.200	2.000	5.25	56	20.404	2.628	20.	000	0.307
0.3	00	0.300	4.500	15.49	97	30.606	3.444	30.	000	0.484
0.4	00	0.400	7.920	35.15	56	36.807	4.439	36.	000	0.706
0.5	00	0.500	11.520	65.43	11	37.007	5.678	36.	000	1.001
0.6	00	0.600	15.582	93.00) 5	46.440	5.969	45.	231	1.154
0.7	00	0.700	20.566	130.5	78	55.873	6.349	54.	462	1.327

			1111111111		0.01	, DIOLI	0.050			
POINT	DIST	ELEV	PC	INT	DIST	ELEV	PO	INT	DIST	ELEV
1.0	-30.0	0.8		4.0	0.0	0.4		7.0	30.0	0.8
2.0	-18.0	0.5		5.0	18.0	0.0				
3.0	-18.0	0.0		6.0	18.0	0.5				
WS	EL	DEPTH	FLOW	FLO	W	WETTED	FLOW	TOF	PWID	TOTAL
		INC	AREA	RATI	E	PER	VEL	PI	JUS	ENERGY
FT	۰.		SQ.FT.	(CFS	S)	(FT)	(FPS)	OBSTR	RUCTIONS	(FT)
0.1	00	0.100	0.500	1.01	14	10.202	2.028	10.	000	0.164
0.2	00	0.200	2.000	6.43	37	20.404	3.219	20.	000	0.361
0.3	00	0.300	4.500	18.97	79	30.606	4.218	30.	000	0.577
0.4	00	0.400	7.920	43.0	58	36.807	5.437	36.	000	0.860
0.5	00	0.500	11.520	80.13	11	37.007	6.954	36.	000	1.252
0.6	00	0.600	15.582	113.90	07	46.440	7.310	45.	231	1.431
0.7	00	0.700	20.566	159.92	25	55.873	7.776	54.	462	1.641

			1111111111		0.01	L, DIOLI	0.010			
POINT	DIST	ELEV	PC	DINT	DIST	ELEV	PO	INT	DIST	ELEV
1.0	-30.0	0.8		4.0	0.0	0.4		7.0	30.0	0.8
2.0	-18.0	0.5		5.0	18.0	0.0				
3.0	-18.0	0.0		6.0	18.0	0.5				
WS	EL	DEPTH	FLOW	FLO	W	WETTED	FLOW	TOF	WID	TOTAL
		INC	AREA	RAT	E	PER	VEL	PI	JUS	ENERGY
FT	' .		SQ.FT.	(CF)	S)	(FT)	(FPS)	OBSTR	RUCTIONS	(FT)
0.1	00	0.100	0.500	1.1	71	10.202	2.341	10.	000	0.185
0.2	00	0.200	2.000	7.4	33	20.404	3.717	20.	000	0.415
0.3	00	0.300	4.500	21.9	15	30.606	4.870	30.	000	0.669
0.4	00	0.400	7.920	49.7	19	36.807	6.278	36.	000	1.013
0.5	00	0.500	11.520	92.5	05	37.007	8.030	36.	000	1.503
0.6	00	0.600	15.582	131.5	29	46.440	8.441	45.	231	1.708
0.7	00	0.700	20.566	184.6	66	55.873	8.979	54.	462	1.954

			1111111111		0.01	DLOIL	0.050			
POINT	DIST	ELEV	PC	DINT	DIST	ELEV	PO	INT	DIST	ELEV
1.0	-30.0	0.8		4.0	0.0	0.4		7.0	30.0	0.8
2.0	-18.0	0.5		5.0	18.0	0.0				
3.0	-18.0	0.0		6.0	18.0	0.5				
WS	EL	DEPTH	FLOW	FLO	N	WETTED	FLOW	TOP	DIW	TOTAL
		INC	AREA	RATI	E	PER	VEL	PL	US	ENERGY
FT	' .		SQ.FT.	(CFS	S)	(FT)	(FPS)	OBSTR	UCTIONS	(FT)
0.1	00	0.100	0.500	1.30	09	10.202	2.618	10.	000	0.207
0.2	00	0.200	2.000	8.3	11	20.404	4.155	20.	000	0.469
0.3	00	0.300	4.500	24.50	02	30.606	5.445	30.	000	0.761
0.4	00	0.400	7.920	55.58	87	36.807	7.019	36.	000	1.166
0.5	00	0.500	11.520	103.42	23	37.007	8.978	36.	000	1.754
0.6	00	0.600	15.582	147.0	54	46.440	9.438	45.	231	1.985
0.7	00	0.700	20.566	206.40	63	55.873	10.039	54.	462	2.268

MANNING'S N = 0.017 SLOPE = 0.027										
POINT	DIST	ELEV	PO	INT	DIST	ELEV	POI	INT	DIST	ELEV
1.0	-22.0	0.3		4.0	0.0	0.3	5	7.0	22.0	0.3
2.0	-20.8	0.0		5.0	20.0	0.0				
3.0	-20.0	0.0		6.0	20.8	0.0				
WS	EI.	DEPTH	FLOW	FLC	υW	WETTED	FLOW	TOF	PWID	TOTAL
		INC	AREA	RAT		PER	VEL		LUS	ENERGY
FT	•		SQ.FT.	(CF	'S)	(FT)	(FPS)	OBSTR	RUCTIONS	(FT)
0.0		0.030	0.106	0.1	.10	5.463	1.036	5.	.455	0.047
0.0	60	0.060	0.327	0.5	04	9.326	1.540	9.	.309	0.097
0.0	90	0.090	0.664	1.3	802	13.189	1.959	13.	.164	0.150
0.1	20	0.120	1.117	2.6	507	17.053	2.334	17.	.018	0.205
0.1	50	0.150	1.685	4.5	516	20.916	2.680	20.	.873	0.262
0.1	80	0.180	2.369	7.1	.17	24.779	3.004	24.	.727	0.320
0.2	10	0.210	3.169	10.4	91	28.642	3.310	28.	.582	0.380
0.2	40	0.240	4.084	14.7	17	32.505	3.603	32.	.436	0.442
0.2	70	0.270	5.115	19.8	371	36.368	3.885	36.	.291	0.505
0.3	00	0.300	6.262	26.0	24	40.231	4.156	40.	.145	0.569

MANNING'S N = 0.017 SLOPE = 0.027										
POINT	DIST	ELEV	PC	INT	DIST	ELEV	POI	INT	DIST	ELEV
1.0	0.0	0.3		3.0	21.0	0.3	5	5.0	42.0	0.7
2.0	1.2	0.0		4.0	40.8	0.3				
WSE	L	DEPTH	FLOW	FLC		WETTED	FLOW		PWID	TOTAL
		INC	AREA	RAT		PER	VEL		LUS	ENERGY
FT.			SQ.FT.	(CF	'S)	(FT)	(FPS)	OBSTI	RUCTIONS	(FT)
0.03	0	0.030	0.029	0.0	25	1.913	0.872	21	.709	0.042
0.06	0	0.060	0.115	0.1	.59	3.827	1.385	23	.618	0.090
0.09	0	0.090	0.258	0.4	68	5.740	1.814	25	.527	0.141
0.12	0	0.120	0.458	1.0	07	7.654	2.198	27	.436	0.195
0.15	0	0.150	0.716	1.8	26	9.567	2.551	29	.345	0.251
0.18	0	0.180	1.031	2.9	69	11.480	2.880	31	.255	0.309
0.21	0	0.210	1.403	4.4	79	13.394	3.192	33	.164	0.368
0.24	0	0.240	1.833	6.3	95	15.307	3.489	35	.073	0.429
0.27	0	0.270	2.320	8.7	54	17.221	3.774	36	.982	0.492
0.30	0	0.300	2.864	11.5	94	19.134	4.049	38	.891	0.555

AVALON UNIT 5 (WESTPOINT40) MASTER DRAINAGE REPORT BHI PROJECT #: 20180059 DRAINAGE OF ROADWAY PAVEMENTS (HEC-22) METHOD 98TH ST - INTERCEPTION CAPACITY OF EXISTING CURB INLETS

Column requires user input

Inlets:	COF CDI (Std Drawings D-503 & D-504)	L	W	Type B Curb Inlet, Serial 623-14	L	W
	Single (Type I)	2.96	1.48	Single (Type I)	4.50	1.38
	Double (Type II)	5.92	1.48	Double (Type II)	9.58	1.38
				Triple (Type III)	14.67	1.38

Hydrologic Analysis	Deedway	May Danding	Approx	Basin	Total		Inlet	Inlet	Sump	Ponding	Pond	Intercept Q	Bypass Q													
Point	Roadway Description	•	Max Ponding		•			•	Inlet	Q	Rtd Q	Inlet Type	Width	Length	Yes or No?	Width	Depth	Qi	Qb	S	Sx	Vo	v	Eo	Rf	Rs
INLET ID	Description Depth (it)	Station	Station	(cfs)	(cfs)		(ft)	t) (ft)	Tes of No?	(ft)	(ft)	(cfs)	(cfs)	(ft/ft)	(ft/ft) (ft/ft)	(fps)	(fps)	(fps)								
									Villa Vi	ew Drive, u	pstream of	Tarry Terrace														
OS-6 (HALF)						EX NMDOT																				
N BOUND LANES		0.0	N/A			TYPE I																				
N BOOND EANES	Existing 98th St.	Existing 98th St.	Existing 98th St.	N/A	3.75	3.75	(A CURB)	1.38	4.50	NO	10.9	0.19	1.80	1.95	2.70%	1.70%	10.0	3.7	0.30	1.0	0.3					
OS-7						EX NMDOT																				
S BOUND LANES		0.0	N/A			TYPE I																				
3 BOUND LANES	Existing 98th St	. 0.0	N/A	8.60	8.60	(A CURB)	1.38	4.50	NO	14.9	0.25	3.22	5.38	2.70%	1.70%	10.0	4.6	0.23	1.0	0.2						
Totals										Total Inte	rcepted Q:	6.81	l (includes 2x	northbound	lanes inter	ception (2, accou	nting for	r inlets o	n both sid						
										Total	Bypass Q:	9.29)													

Net Efficiency: 42.3%

 NOTES:

 1. Design Criteria from City of Albuquerque DPM

 2. Flows determined using data from HEC-HMS (100yr storm event)

 3. Mannings n=0.017 (COA DPM Chp 22, Sect 3.E)

4. Assumes no grate clogging.

2 existing curb inlets in 98th St (each side of northbound la that drains to roadside swale - total interception for 100-yr e	,
0.48 x2.	
Existing curb inlet on westerly curb of 98th St that drains to roadside swale on east side of road.	

sides of road)

APPENDIX C – ALLOWABLE DISCHARGE CALCULATIONS

Allowable Discharge Calculations - Developed Conditions

Westpoint 40 (Avalon Subd. Unit 5) Master Drainage Report

Project No.: 20180059 Prepared By: VCS Date: 7/25/2017

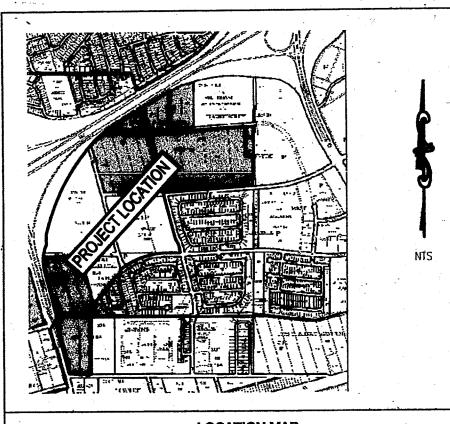
Outfall & Portion of Project Site Drainage Allowable Unit Area Discharge Discharge		Unit	Source of Allowable Discharge Criteria						
	(AC)	(CFS)	(CFS/AC)						
(1)	-	(2)	(3)						
DAYTONA ROAD STORM DRAIN - TOTAL	-	75	-	Existing Daytona Rd storm drain capacity (75cfs for 36" RCP at 1.06% flowing full). Free dicharge allowed per <i>I-40 South and Unser</i> Mini Drainage Master Plan (Easterling Consultants, November 2014), based on UDC capacity.					
ROW (Daytona Road)	1.4	5.8	N/A	Free discharge from ROW.					
ROW-Offsite (I-40)	10.1	22.3	N/A	Existing offsite flows to be conveyed through project site.					
TRACT 2 (North)	9.5	29.4	3.1	Existing Daytona Rd storm drain capacity, free discharge of ROW, & equal unit discharge between Tracts 2 & 3.					
TRACT 3	5.7	17.5	3.1	Existing Daytona Rd storm drain capacity, free discharge of ROW, & equal unit discharge between Tracts 2 & 3.					
LOS VOLCANES ROAD STORM DRAIN - TOTAL	- 93 -		-	Existing Los Volcanes Rd storm drain capacity (93cfs for 30" RCP at 4.5% flowing full & 93cfs for 36" RCP at 1.7% flowing full dicharge allowed per <i>I-40 South and Unser Mini Drainage Master Plan</i> (Easterling Consultants, November 2014), based on I capacity.					
TR6	14.6	46.7	3.2	Existing Los Volcanes Rd storm drain capacity & equal unit discharge between Tracts 6 & 7.					
TR7	14.5	46.3	3.2	Existing Los Volcanes Rd storm drain capacity & equal unit discharge between Tracts 6 & 7.					
BLUEWATER ROAD STORM DRAIN - TOTAL (OPTIONS A & B)	-	145	-	Existing Bluewater Rd storm drain capacity (145cfs for 42" RCP at 1.8% flowing full). Maximum of 2.05cfs/ac per <i>Drainage Report</i> for West Ridge Mobile Home Park (Tierra West, October 1997), based on 90th St storm drain capacity					
ROW (Bluewater Road & Daytona Roa	6.2	20.0	N/A	Free discharge from ROW.					
ROW-Offsite (I-40)	50.4	10	N/A	Portion of offsite flow from I-40 ROW (79cfs) that is allowed to flow to Bluewater Road storm drain.					
TRACT 1	32.7	48.8	1.5	Existing Bluewater Rd storm drain capacity, free discharge of ROW, & equal unit discharge between Tracts 1, 2 (southerly draining portion), 9, 10, & 11.					
TRACT 2 (South)	4.3	6.4	1.5	Existing Bluewater Rd storm drain capacity, free discharge of ROW, & equal unit discharge between Tracts 1, 2 (southerly draining portion), 9, 10, & 11.					
TRACT 9	16.1	24.0	1.5	Existing Bluewater Rd storm drain capacity, free discharge of ROW, & equal unit discharge between Tracts 1, 2 (southerly draining portion), 9, 10, & 11.					
TRACT 10	7.3	10.8	1.5	Existing Bluewater Rd storm drain capacity, free discharge of ROW, & equal unit discharge between Tracts 1, 2 (southerly draining portion), 9, 10, & 11.					
TRACT 11	16.7	24.9	1.5	Existing Bluewater Rd storm drain capacity, free discharge of ROW, & equal unit discharge between Tracts 1, 2 (southerly draining portion), 9, 10, & 11.					

BLUEWATER ROAD STORM DRAIN - TOTAL (OPTION C)	-	145	-	Existing Bluewater Rd storm drain capacity (145cfs for 42" RCP at 1.8% flowing full). Maximum of 2.05cfs/ac per <i>Drainage Report</i> for West Ridge Mobile Home Park (Tierra West, October 1997), based on 90th St storm drain capacity
ROW (Bluewater Road & Daytona Roa	6.2	20.0	N/A	Free discharge from ROW.
ROW-Offsite (I-40)	50.4	79	N/A	Free discharge of offsite flow from I-40 ROW (79cfs) to Bluewater Road storm drain.
TRACT 1	32.7	19.5	0.6	Existing Bluewater Rd storm drain capacity, free discharge of ROW, & equal unit discharge between Tracts 1, 2 (southerly draining portion), 9, 10, & 11.
TRACT 2 (Soutth)	4.3	2.6	0.6	Existing Bluewater Rd storm drain capacity, free discharge of ROW, & equal unit discharge between Tracts 1, 2 (southerly draining portion), 9, 10, & 11.
TRACT 9	16.1	9.6	0.6	Existing Bluewater Rd storm drain capacity, free discharge of ROW, & equal unit discharge between Tracts 1, 2 (southerly draining portion), 9, 10, & 11.
TRACT 10	7.3	4.3	0.6	Existing Bluewater Rd storm drain capacity, free discharge of ROW, & equal unit discharge between Tracts 1, 2 (southerly draining portion), 9, 10, & 11.
TRACT 11	16.7	10.0	0.6	Existing Bluewater Rd storm drain capacity, free discharge of ROW, & equal unit discharge between Tracts 1, 2 (southerly draining portion), 9, 10, & 11.

Indicates User Input

Indicates Calculated Value

Notes:


(1) Portions of project site, grouped by outfall location & drainage concept option.

(2) Allowable discharge at project outfalls (based on downstream capacity) & from each tract or ROW area.

(3) Calculated allowable unit discharge for each tract, based on downstream capacity & contributing ROW/offsite flows.

APPENDIX D – REFERENCE DOCUMENTS

- 1. Plat of Tracts 1 through 12 Avalon Subdivision Unit 5
- 2. Excerpts from Amole-Hubbell Drainage Master Plan Update (Wilson & Company, 2013)
- 3. Excerpts from Drainage Report for West Ridge Mobile Home Park (Tierra West, October 1997)
- 4. Excerpts from I-40 South and Unser Mini Drainage Master Plan (Easterling Consultants, November 2014)

LOCATION MAP ZONE ATLAS MAP NO. J-9-Z AND K-9-Z

SUBDIVISION DATA

- 1. PROJECT # 1009438, 12DRB-70371
- 2. VACATION NO .: 3. ZONE ATLAS INDEX NO .: J-9 AND K-9
- GROSS SUBDIVISION ACREAGE: 172.4503 ACRES
- 5. TOTAL NUMBER OF EXISTING TRACTS: 26 TRACTS
- 6. TOTAL NUMBER OF PROPOSED TRACTS: 12 TRACTS
- 7. VACATION OF EXISTING ROADWAY EASEMENTS: 7.9864 ACRES
- 8. VACATION OF ROADWAY R.O.W .: O. OZEB ACRE
- 9. R.O.W DEDICATION: 4.1238 ACRES
- 10. EXISTING ROADWAY EASEMENTS DEDICATED AS R.O.W.: 2.8755 ACRES
- 11. DEDICATED R.O.W. UNCHANGED: 0.1158 ACRE
- 12. MILEAGE OF STREETS CREATED: 0.54 MILES
- 13. DATE OF SURVEY: SEPTEMBER 2012
- 14. ZONING: SU-1 IP AND C-2

DISCLOSURE STATEMENT

THE PURPOSE OF THIS BULK LAND PLAT IS TO ELIMINATE ANTIQUATED EXISTING TRACT LINES (REDUCE NUMBER OF TRACTS FROM 26 TO 12), TO MERGE OWNERSHIP OF VARIOUS PARCELS, TO DEDICATE RIGHTS-OF-WAYS, TO GRANT EASEMENTS, AND TO VACATE RIGHTS-OF-WAYS AND EASEMENTS PER AGREEMENT WITH THE CITY OF ALBUQUERQUE.

NOTES"

- 1. BEARINGS ARE GRID BASED ON NEW MEXICO STATE PLANE COORDINATE SYSTEM, CENTRAL ZONE, NAD83 DATUM. BASIS OF BEARINGS IS BEARING S59"50"57"E BETWEEN CONTROL STATIONS "8_K9" AND "7_K9". DISTANCES ARE GROUND.
- 2. UNLESS SHOWN OTHERWISE ALL PROPERTY CORNERS ARE MARKED WITH 1/2" REBAR AND CAP MARKED "PS 10464".
- 3. THE DATA SHOWN HEREON IS FROM AN ACTUAL SURVEY ON THE GROUND.
- 4. WATER AND SANITARY SEWER SERVICE TO AVALON SUBDIVISION, UNIT 5 MUST BE VERIFIED AND COORDINATED WITH THE ALBUQUERQUE/BERNALILLO COUNTY WATER UTILITY AUTHORITY.
- 5. THE SUBJECT PROPERTY IS VACANT, THERE ARE NO BUILDINGS OR OTHER STRUCTURES LOCATED ON THE PROPERTY, EXCEPT FOR UTILITY LINES, SOME LOCATED WITHIN EXISTING OR PROPOSED EASEMENTS. OTHER UTILITY LINES MAY EXIST THAT ARE NOT SHOWN.
- 6. THE SUBJECT PROPERTY LIES WITHIN ZONES "X", "A" AND "AO" AS SHOWN ON FEMA FLOOD INSURANCE RATE MAP NO. 35001C0328H DATED 8/16/2012.
- 7. THE SUBJECT PROPERTY IS LOCATED WITHIN THE TOWN OF ATRISCO GRANT, WITHIN PROJECTED SECTIONS 16 AND 21, TOWNSHIP 10 NORTH, RANGE 2 EAST, NEW MEXICO PRINCIPAL MERIDIAN.
- 8. THE PLAT SHOWS ALL EASEMENTS PER RECORDED PLATS AND MADE KNOW TO THE SURVEYOR BY THE OWNERS, UTILITY COMPANIES AND/OR OTHER PARTIES EXPRESSING AN INTEREST.
- 9. MAINTENANCE OF UTILITY LINES AND OTHER FACILITIES WITHIN EXISTING OR PROPOSED EASEMENTS IS THE RESPONSIBILITY OF THE GRANTEES OF THOSE EASEMENT RIGHTS.
- 10. NO PROPERTY WITHIN THE AREA OF REQUESTED FINAL ACTION SHALL AT ANY TIME BE SUBJECT TO A DEED RESTRICTION, COVENANT, OR BINDING AGREEMENT PROHIBITING SOLAR COLLECTORS FROM BEING INSTALLED ON BUILDINGS OR ERECTED ON THE LOTS OR PARCELS WITHIN THE AREA OF PROPOSED PLAT. THE FOREGOING REQUIREMENT SHALL BE A CONDITION TO APPROVAL OF THIS PLAT OR SITE DEVELOPMENT PLAN FOR THE SUBDIVISION.
- 11. BERNALILLO COUNTY BOARD OF COUNTY COMMISSIONERS APPROVED THE ANNEXATION REQUEST OF PORTIONS OF LANDS SHOWN HEREON ON JANUARY 11, 2011. FILE NO. AXBC-2010-03 AND AXBC-2010-04. PRE-ANNEXATION AGREEMENTS BETWEEN THE CITY OF ALBUQUERQUE AND PROPERTY OWNERS WERE RECORDED WITH BERNALILLO COUNTY CLERK ON DECEMBER 27, 2011 AS DOCUMENTS NO. 2011119832 AND 2011119833. ANNEXATION WAS APPROVED BY THE CITY COUNCIL ON NOVEMBER 7, 2011, FILE NO. O-11-67 AND O-11-68.
- 12. UNTIL A GRADING PLAN IS APPROVED FOR THE PORTION OF 94th STREET N.W. AS SHOWN ON THIS PLAT (BETWEEN LOS VOLCANES ROAD N.W. WESTERLY EXTENSION AND DAYTONA ROAD N.W.) A TEMPORARY SLOPE EASEMENT IS GRANTED BY THIS PLAT TO THE CITY OF ALBUQUERQUE, OF 150 FEET ON EITHER SIDE OF 94th STREET N.W. AND DAYTONA ROAD N.W. AND AT THE TIME THE CITY OF ALBUQUERQUE ACCEPTS A GRADING PLAN FOR SUCH PORTIONS OF 94th STREET N.W. AND DAYTONA ROAD N.W. (DAYTONA LOOP), THE TEMPORARY SLOPE EASEMENT SHALL TERMINATE.

SEE ADDITIONAL NOTES ON SHEET 2

LEGAL DESCRIPTION

BEING THAT CERTAIN PARCEL OF LAND SITUATED WITHIN THE TOWN OF ATRISCO GRANT, WITHIN PROJECTED SECTIONS 16 AND 21, TOWNSHIP 10 NORTH, RANGE 2 EAST, NEW MEXICO PRINCIPAL MERIDIAN, CITY OF ALBUQUERQUE, BERNALILLO COUNTY, NEW MEXICO, AND BEING MORE PARTICULARLY DESCRIBED AS FOLLOWS;

TRACTS OR PORTIONS OF TRACTS B-11 TROUGH B-13, B-22 THROUGH B-27, B-29 THROUGH B-33, AND VARIOUS ROADWAY EASEMENTS, TOWN OF ATRISCO GRANT UNIT NO. 5, AS SAID TRACTS AND ROADWAY EASEMENTS ARE SHOWN AND DESIGNATED ON THE PLAT TITLED "PLAT SHOWING A PORTION OF TRACTS ALLOTED FROM TOWN OF ATRISCO GRANT IN SCHOOL DISTRICT 28, BERNALILLO COUNTY, NEW MEXICO" FILED IN THE OFFICE OF THE COUNTY CLERK OF BERNALILLO COUNTY, NEW MEXICO, ON DECEMBER 5, 1944 IN VOLUME D, FOLIO 117;

TOGETHER WITH TRACT B-14A, UNSER DIVERSION CHANNEL CORRIDOR, AS SAID TRACT IS SHOWN AND DESIGNATED ON THE PLAT THEREOF FILED IN THE OFFICE OF THE COUNTY CLERK OF BERNALILLO COUNTY, NEW MEXICO, ON FEBRUARY 21, 1996 IN VOLUME 96C, FOLIO 77;

TOGETHER WITH TRACTS A, B AND C, AVALON SUBDIVISION UNIT NO. 4, AS SAID TRACTS ARE SHOWN AND DESIGNATED ON THE PLAT THEREOF, FILED IN THE OFFICE OF THE COUNTY CLERK OF BERNALILLO COUNTY, NEW MEXICO, ON MAY 8, 2003 IN VOLUME 2003C, FOLIO 129;

TOGETHER WITH TRACT C, WESTRIDGE MOBILE HOME PARK PHASE 2, AS SAID TRACT IS SHOWN AND DESIGNATED ON THE PLAT THEREOF FILED IN THE OFFICE OF THE COUNTY CLERK OF BERNALILLO COUNTY, NEW MEXICO, ON MAY 21, 2001 IN VOLUME 2001C, FOLIO 151;

TOGETHER WITH TRACTS 4, 5. 6 AND 7, TOWN OF ATRISCO GRANT, AS SAID TRACTS ARE SHOWN AND DESIGNATED ON THE SURVEY THEREOF FILED IN THE OFFICE OF THE COUNTY CLERK OF BERNALILLO COUNTY, NEW MEXICO, ON SEPTEMBER 27, 2000 IN BOOK 2000S, PAGE 139;

TOGETHER WITH TRACTS 14, 15 AND 16 OF THE WESTERLY EXTENSION OF C.H. HALL SURVEY, AS SAID SURVEY IS SHOWN AND DESIGNATED ON THE PLAT THEREOF FILED IN THE OFFICE OF THE COUNTY CLERK OF BERNALILLO COUNTY, NEW MEXICO, ON DECEMBER 30, 1946 IN VOLUME B1, FOLIO 120.

AND BEING MORE PARTICULARLY DESCRIBED AS FOLLOWS:

BEGINNING AT A POINT ON THE WEST SIDE OF THE PARCEL OF LAND HEREIN DESCRIBED BEING A POINT ON THE PRESENT EASTERLY RIGHT-OF-WAY LINE OF 98th STREET N.W., WHENCE THE ALBUQUERQUE CONTROL STATION "8_K9" BEARS \$01°37'59"E, 892.61 FEET DISTANCE; THENCE,

NORTHEASTERLY, 1,537.37 FEET DISTANCE ALONG THE ARC OF A CURVE BEARING TO THE RIGHT (SAID ARC HAVING A RADIUS OF 3,543.44 FEET, A CENTRAL ANGLE OF 24°51'31" AND A CHORD WHICH BEARS N24°44'22"E, 1,525.34 FEET DISTANCE) TO A POINT ON CURVE; THENCE,

NORTHEASTERLY, 676.52 FEET DISTANCE ALONG THE ARC OF A CURVE BEARING TO THE RIGHT (SAID ARC HAVING A RADIUS OF 1,637.02 FEET, A CENTRAL ANGLE OF 23°40'42" AND A CHORD WHICH BEARS N46°55'56"E, 671.72 FEET DISTANCE) TO A POINT; THENCE,

N58°48'39"E, 1,117.57 FEET DISTANCE TO A POINT ON CURVE; THENCE,

NORTHEASTERLY, 108.44 FEET DISTANCE ALONG THE ARC OF A CURVE BEARING TO THE RIGHT (SAID ARC HAVING A RADIUS OF 2,291.83 FEET, A CENTRAL ANGLE OF 02°42'40" AND A CHORD WHICH BEARS N60°12'57"E, 108.43 FEET DISTANCE) TO THE MOST NORTHERLY CORNER OF THE PARCEL OF LAND HEREIN DESCRIBED BEING A POINT ON THE SOUTHERLY **RIGHT-OF-WAY LINE OF INTERSTATE 40; THENCE,**

S00°18'08"W, 652.02 FEET DISTANCE TO A POINT ON THE NORTHERLY LINE OF DAYTONA ROAD N.W EASEMENT; THENCE, S04°12'32"E, 60.00 FEET DISTANCE TO A POINT ON THE SOUTHERLY LINE OF DAYTONA ROAD N.W. EASEMENT; THENCE, , N85°47'28"E, 563.87 FEET DISTANCE TO A POINT; THENCE, N85°51'15"E, 450.34 FEET DISTANCE TO A POINT; THENCE, N85°47'44"E, 322.60 FEET DISTANCE TO A POINT; THENCE, S00°39'36"W, 510.34 FEET DISTANCE TO A POINT; THENCE, S89°20'24"E, 130.64 FEET DISTANCE TO A POINT; THENCE, S00°19'40"W, 365.76 FEET DISTANCE TO A POINT; THENCE, S86°17'40"W, 150.00 FEET DISTANCE TO A POINT; THENCE, S00°19'40"W, 150.00 FEET DISTANCE TO THE POINT ON THE NORTHERLY LINE OF LOS VOLCANES ROAD N.W; THENCE, S86°17'40"W, 231.70 FEET DISTANCE TO A POINT; THENCE, S86°22'20'W, 381.37 FEET DISTANCE TO A POINT; THENCE, S86°17'50"W, 763.40 FEET DISTANCE TO THE POINT OF CURVATURE; THENCE,

SOUTHWESTERLY, 76.42 FEET DISTANCE ALONG THE ARC OF A CURVE BEARING TO THE LEFT (SAID ARC HAVING A RADIUS OF 46.40 FEET, A CENTRAL ANGLE OF 94°21'30" AND A CHORD

WHICH BEARS S39°07'05"W, 68.07 FEET DISTANCE) TO THE POINT OF TANGENCY; THENCE,

S08°03'40"E, 32.36 FEET DISTANCE TO THE POINT OF CURVATURE ON THE WESTERLY LINE OF 90th STREET N.W.; THENCE, SOUTHEASTERLY, 82.51 FEET DISTANCE ALONG THE ARC OF A CURVE BEARING TO THE LEFT (SAID ARC HAVING A RADIUS OF 684.00 FEET, A CENTRAL ANGLE OF 06°54'40" AND A CHORD WHICH BEARS S11°31'00"E, 82.46 FEET DISTANCE) TO THE POINT OF TANGENCY; THENCE,

S14°58'20"E, 565.35 FEET DISTANCE TO THE POINT OF CURVATURE; THENCE,

SOUTHEASTERLY, 143.97 FEET DISTANCE ALONG THE ARC OF A CURVE BEARING TO THE LEFT (SAID ARC HAVING A RADIUS OF 684.00 FEET, A CENTRAL ANGLE OF 12°03'34" AND A CHORD WHICH BEARS S21°00'07"E, 143.70 FEET DISTANCE) TO THE POINT OF REVERSE CURVATURE; THENCE,

SOUTHEASTERLY, 196.73 FEET DISTANCE ALONG THE ARC OF A CURVE BEARING TO THE RIGHT (SAID ARC HAVING A RADIUS OF 616.00 FEET, A CENTRAL ANGLE OF 18°17'55" AND A CHORD WHICH BEARS S17°52'57"E, 195.90 FEET DISTANCE) TO THE POINT OF COMPOUND CURVATURE; THENCE,

SOUTHWESTERLY, 43.22 FEET DISTANCE ALONG THE ARC OF A CURVE BEARING TO THE RIGHT (SAID ARC HAVING A RADIUS OF 25.00 FEET, A CENTRAL ANGLE OF 99°03'39" AND A CHORD WHICH BEARS S40°47'50"W, 38.04 FEET DISTANCE) TO THE POINT OF TANGENCY BEING A POINT ON THE NORTHERLY LINE OF BLUEWATER ROAD N.W.; THENCE,

N89°40'20"W, 181.06 FEET DISTANCE TO THE POINT OF CURVATURE; THENCE,

SOUTHWESTERLY, 841.91 FEET DISTANCE ALONG THE ARC OF A CURVE BEARING TO THE LEFT (SAID ARC HAVING A RADIUS OF 1,358.17 FEET, A CENTRAL ANGLE OF 35°31'01" AND A CHORD WHICH BEARS S72°34'10"W, 828.50 FEET DISTANCE TO A POINT; THENCE,

S14°58'20°E, 72.73 FEET DISTANCE TO A THE POINT ON THE SOUTHERLY LINE OF BLUEWATER ROAD N.W.; THENCE,

SOUTHWESTERLY, 65.08 FEET DISTANCE ALONG THE ARC OF A CURVE BEARING TO THE LEFT (SAID ARC HAVING A RADIUS OF 1,290.17 FEET, A CENTRAL ANGLE OF 02°53'25" AND A CHORD WHICH BEARS \$52°14'59"W, 65.08 FEET DISTANCE) TO A POINT; THENCE,

N14°58'20"W. 37.19 FEET DISTANCE TO A POINT ON CURVE; THENCE.

SOUTHWESTERLY, 315.99 FEET DISTANCE ALONG THE ARC OF A CURVE BEARING TO THE LEFT (SAID ARC HAVING A RADIUS OF 1,324.17 FEET, A CENTRAL ANGLE OF 13°40'22" AND A CHORD WHICH BEARS \$44°37'42"W, 315.24 FEET DISTANCE) TO THE POINT OF TANGENCY; THENCE,

S37°47'31"W, 421.74 FEET DISTANCE TO A POINT: THENCE. S14°58'20"E, 195.30 FEET DISTANCE TO A POINT; THENCE, N89°40'20"W, 107.16 FEET DISTANCE TO A POINT; THENCE

S00°19'40"W, 1,048.69 FEET DISTANCE TO A POINT ON THE NORTHERLY LINE OF VOLCANO ROAD N.W.; THENCE, N89°40'20 W, 393.34 FEET DISTANCE TO THE SOUTHWEST CORNER OF THE PARCEL OF LAND HEREIN DESCRIBED BEING A POINT ON THE WESTERLY LINE OF 98th STREET N.W.; THENCE, N14°50'48"W, 785.21 FEET DISTANCE TO A POINT: THENCE. N02°45'59"W, 305.53 FEET DISTANCE TO A POINT; THENCE,

N14°59'29"W, 726.83 FEET DISTANCE TO A POINT ON CURVE; THENCE,

NORTHEASTERLY, 525.78 FEET DISTANCE ALONG THE ARC OF A CURVE BEARING TO THE RIGHT (SAID ARC HAVING A RADIUS OF 818.51 FEET, A CENTRAL ANGLE OF 36°48'17" AND A CHORD WHICH BEARS N03°25'20'E, 516.79 FEET DISTANCE) TO A POINT; THENCE,

N00°00'00'E, 155.75 FEET DISTANCE TO THE POINT OF BEGINNING OF THE PARCEL OF LAND HEREIN DESCRIBED.

THE ABOVE DESCRIBED PARCEL OF LAND CONTAINS 7,511,937 SQUARE FEET (172,4503 ACRES), MORE OR LESS.

THE PURPOSE OF THE METES AND BOUNDS LEGAL DESCRIPTION IS TO COMPLY WITH THE CITY OF ALBUQUERQUE SURVEY SECTION REQUIREMENT, AND TO SHOWN AN OVERALL EXTENT OF THE BULK LAND PLAT DEVELOPMENT AREA. NOT ALL LANDS INCLUDED IN THE METES AND BOUNDS LEGAL DESCRIPTION ARE OWNED BY THE OWNERS AS SHOWN HEREON, SMALL PORTIONS WERE DEDICATED TO THE CITY OF ALBUQUERQUE BY PREVIOUS PLATTING ACTIONS SHOWN HEREON.

. . . . <u>.</u>

PLAT OF TRACTS 1 THROUGH 12 **AVALON SUBDIVISION UNIT 5** ALBUQUERQUE, BERNALILLO COUNTY, NEW MEXICO

JANUARY 2013 TITLE SHEET

APPROVED AND ACCEPTED BY:

PROJECT # 1009438, 12DRB-70371 CASE NO. DRB CHAIRPERSON, PLANNING DEPARTMENT

ALBUQUERQUE/BERNALILLO COUNTY WATER UTILITY AUTHORITY

TRAFFIC ENGINEER TRANSPORTATION DIVISION

 $\mathcal{A}\mathcal{I}$

COMCAST

NEW MEXICO GAS COMPANY tital promilio Kita Varianov

SURVEYOR'S CERTIFICATION-

I, VLADIMIR JIRIK A DULY QUALIFIED PROFESSIONAL SURVEYOR REGISTERED UNDER THE LAWS OF THE STATE OF NEW MEXICO, DO HEREBY CERTIES THAT THIS PLAT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION, SHOWS ALL EASEMENTS MADE KNOWN TO ME BY THE OWNERS, UTILITY COMPANIES OR OTHER PARTIES EXPRESSING AN INTEREST AND THAT THE SURVEY MEETS THE MINIMUM REQUIREMENTS FOR MONUMENTATION AND SURVEYS OF THE CITY OF ALBUQUERQUE SUBDIVISION ORDINANCE AND MINIMUM STANDARDS FOR LAND SURVEYS IN NEW MEXICO, AND IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF.

2/12/2013

VLADIMIR JIRIK, NMPS NO. 10484 PROFESSIONAL SURVEYING LLC. DATE P.O. BOX 94595, ALBUQUERQUE, NM 87199 505.892.4597, professional.surveying@comcast.net

INNAL ANTE Q 202 10464 SHEET 1 OF 6

2-13-1

20/2013

DATE 3

DOC# 2014040949 05/22/2014 02:52 PM Page. 1 of 6 tyPLAT R:\$25.00 B: 2014C P: 0046 M. Toulous Olivere, Bernalillo Cour · 聽知: [] What we have a start of the start

FREE CONSENT AND DEDICATION

THE SUBDIVISION SHOWN HEREON IS WITH THE FREE CONSENT AND IN ACCORDANCE WITH THE DESIRES OF THE UNDERSIGNED OWNERS AND/OR PROPRIETORS THEREOF. SAID OWNERS WARRANT THAT THEY HOLD AMONG THEM COMPLETE AND INDEFEASIBLE TITLE IN FEE SIMPLE TO THE LANDS SUBDIVIDED, AND SAID OWNERS AND/OR PROPRIETORS DO HEREBY DEDICATE RIGHTS-OF-WAYS IN FEE SIMPLE WITH WARRANTY COVENANTS TO THE CITY OF ALBUQUERQUE, AND GRANT EASEMENTS AS SHOWN HEREON FOR THE PURPOSES NOTED. SAID OWNERS AND/OR PROPRIETORS DO HEREBY CONSENT TO ALL OF THE FOREGOING AND DO HEREBY CERTIFY THAT THIS SUBDIVISION IS THEIR FREE ACT AND DEED.

ACKNOWLEDGEMENT Denise Ferners STATE OF NEW MEXICO FOR CURB INC., GHARLES & HAEGELIN, PRESIDENT. DLAISC. PLANCIS COUNTY OF BERNALILLO 2013 DAY OF DECEMBER BY DENISE PENNERS THIS INSTRUMENT WAS ACKNOWLEDGED BEFORE ME ON 13 MY COMMISSION EXPIRES: ACKNOWLEDGEMENT Lenise enners STATE OF NEW MEXICO My commission expires: (6/2/2015 FOR BLUEWATER NORTH LLC. CHARLES A. HAEGELIN, MANAGING MEMBER COUNTY OF BERNALILLO ひえ Denise Renners 13 DAY OF DELEMBER BY DENISE PENNERS. THIS INSTRUMENT WAS ACKNOWLEDGED BEFORE ME ON MY COMMISSION EXPIRES OFFICIAL SEAL ACKNOWLEDGEMENT STATE OF New Mexico FOR RPS I-25 & VASSAR LLC, BEN SPENCER, MANAGING MEMBER COUNTY OF Bernalillo THIS INSTRUMENT WAS ACKNOWLEDGED, BEFORE ME ON 27th Un DAY OF December, BY MULLION LONDAN MY COMMISSION EXPIRES: 08/02/2016 OFFICIAL SEAL Theresa Casares Noizry Public ACKNOWLEDGEMENT State of New Mexico Enners STATE OF NEW MEXILO FOR BLUEWATER 98TH LLC, CHARLES A. HAEGELIN, MANAGING MEMBER COUNTY OF BERNALILLO 2013 DAY OF DELEMISE BY DENISE PENNERS. Denise tenners THIS INSTRUMENT WAS ACKNOWLEDGED BEFORE ME ON MY COMMISSION EXPIRES: OFFICIAL SEAL RICHARD J. SQUIRES N ACKNOWLEDGEMENT STATE OF New MCYICO COUNTY OF SELENALILO NOTARY PUBLIC-STATE OF NEW MEXICO My commission expires; | D 2 2015 ARIE S. BACA. OPERATING MANAGER 2013 DAY OF DECAMORY Maric S. Bacc THIS INSTRUMENT WAS ACKNOWLEDGED BEFORE ME ON MY COMMISSION EXPIRES: ACKNOWLEDGEMENT STATE OF NEW MEXILO FOR IVANHOE INVESTMENT LLC. CHAPLED A. HAEGELIN. MANAGING MEMBER COUNTY OF BERNALILLO DAY OF DECEMBER BY BO K. JOHNSON. Bo K. Johnson THIS INSTRUMENT WAS ACKNOWLEDGED BEFORE ME ON MY COMMISSION EXPIRES: RICHARD J. SQUIRES ACKNOWLEDGEMENT STATE OF Aun Mexico FOR I-40'SOUTH LLC, THOMAS KELEHER, MANAGING MEMBER COUNTY OF Benchillo *eleher* homas THIS INSTRUMENT WAS ACKNOWLEDGED BEFORE ME ON ______ MY COMMISSION EXPIRES: 1/22/13 Muy your h 1 2 1 Margaiet A. Bois NOTARY PUBLIC STATE OF NEW MEXICO My Commission Expires: //22/13 ACKNOWLEDGEMENT STATE OF New Mexico RUCK SALES INC., CHRISTOPHER BRUCKNER, PRESIDENT COUNTY OF BERNALILLO DAY OF January, BY Chris Bruckner THIS INSTRUMENT WAS ACKNOWLEDGED BEFORE ME ON 32 MY COMMISSION EXPIRES: /1-30-2016 CYNTHIA LOUISE ABEY TA **OWNERSHIP NOTE**

SEE SHEETS 5 AND 6 FOR CURRENT OWNERSHIP OF EXISTING PARCELS AND TRACTS.

PLAT OF TRACTS 1 THROUGH 12 **AVALON SUBDIVISION UNIT 5** ALBUQUERQUE, BERNALILLO COUNTY, NEW MEXICO

JANUARY 2013

OWNERS SIGNATURE SHEET, NOTES

RICHARD J. SQUIRES V

RICHARD J. SQUIRES () () YOTARY PUBLIG-STATE OF NEW MEXICO DEN SPENCER Miresa Caroux

U(

BULK LAND VARIANCE NOTE

A VARIANCE OR WAIVER FROM CERTAIN SUBDIVISION REQUIREMENTS HAS BEEN GRANTED BY THE CITY OF ALBUQUERQUE AND ALBUQUERQUE METROPOLITAN FLOOD CONTROL AUTHORITY (A.M.A.F.C.A.) (N TH THIS PLAT. FUTURE SUBDIVISIONS OF LANDS WITHIN THIS PLAT, ZONING SITE PERMITS MAY BE CONDITIONED UPON DEDICATION OF MENTS BY THE OWNERS OF ROUE MAKES APPROVAL OF ALL NCLUDING (BUT NOT LIMITED TO) THE FOLLOWING ITEMS: WATER AND SANITARY SEWER AVAILABILITY; FUTURE STREET DEDICATION AND/OR IMPROVEMENTS; AND EXCAVATION, FILLING OR GRADING REQUIREMENTS. ANY PERSON INTENDING DEVELOPMENT OF LANDS WITHIN THIS SUBDIVISION IS CAUTIONED TO INVESTIGATE THE STATUS OF THESE ITEMS

ALBUQUERQUE/BERNALILLO COUNTY WATER UTILITY AUTHORITY (ABCWUA) NOTE

WITHIN THE LANDS SHOWN ON THIS PLAT, AND DEPENDING ON FUTURE DEVELOPMENT PLANS. DEVELOPMENT SIZE, PARCEL(S), TRACT LOCATION AND LAND USE; ADDITIONAL UTILITY PLANNING, DESIGN AND CONSTRUCTION ACROSS 140 MAY BE REQUIRED, ANYONE INTENDING DEVELOPMENT OF ANY OF THESE LANDS OR PORTIONS THEREOF IS ENCOURAGED TO COORDINATE WITH THE ABCWUA.

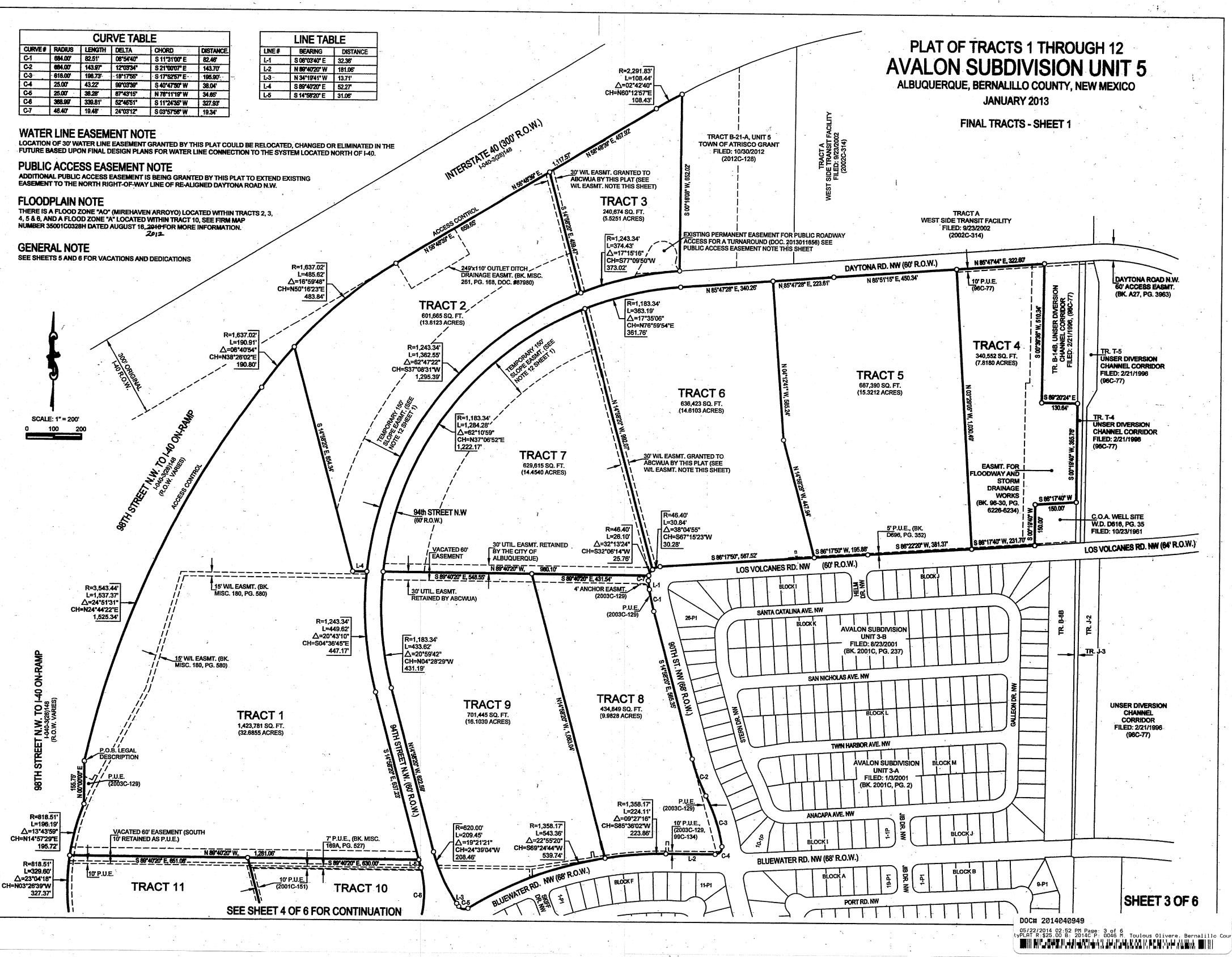
PUBLIC UTILITY EASEMENTS

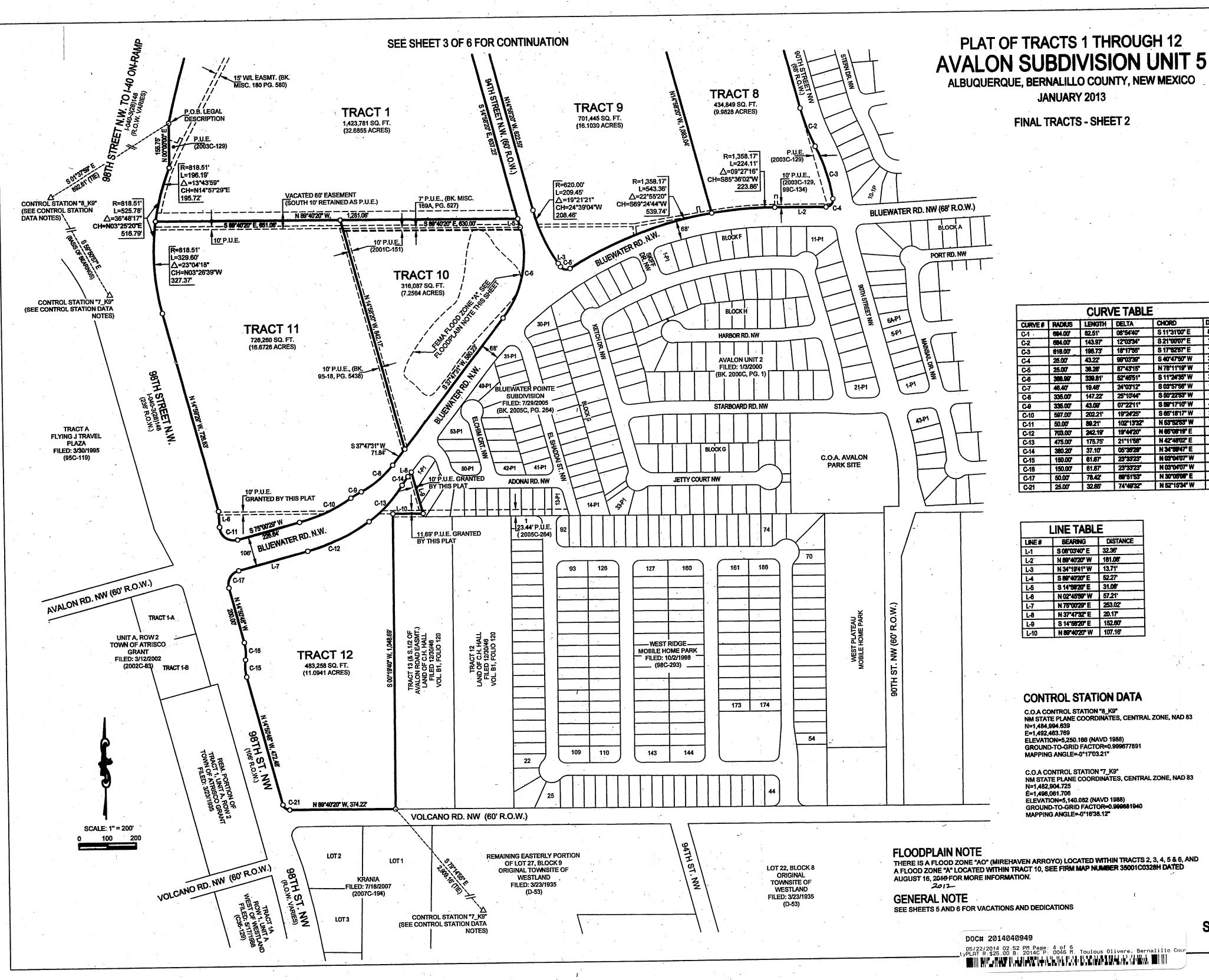
PUBLIC UTILITY EASEMENTS SHOWN ON THIS PLAT ARE GRANTED FOR THE COMMON AND JOINT USE OF:

- /ICE COMPANY OF NEW MEXICO ("PNM"), A NEW MEXICO CORPORATION, (PNM ELECTRIC) FOR INSTALLATION, MAINTENANCE, AND SERVICE OF OVERHEAD AND UNDERGROUND ELECTRICAL LINES, TRANSFORMERS, AND OTHER EQUIPMENT AND RELATED FACILITIES REASONABLY NECESSARY TO PROVIDE ELECTRICAL SERVICES
- B. NEW MEXICO GAS COMPANY FOR INSTALLATION, MAINTENANCE, AND SERVICE OF NATURAL GAS LINES, VALVES AND OTHER EQUIPMENT AND FACILITIES REASONABLY NECESSARY TO PROVIDE NATURAL GAS SERVICES
- C. CENTURYLINK FOR THE INSTALLATION, MAINTENANCE, AND SERVICE OF SUCH LINES, CABLE, AND OTHER RELATED EQUIPMENT AND REASONABLY NECESSARY TO PROVIDE COMMUNICATION SERVICES.
- D. COMCAST FOR THE INSTALLATION, MAINTENANCE, AND SERVICE OF SUCH LINES, CABLE, AND OTHER RELATED EQUIPMENT AND FACILITIES REASONABLY NECESSARY TO PROVIDE CABLE SERVICE

INCLUDED, IS THE RIGHT TO BUILD, REBUILD, CONSTRUCT, RECONSTRUCT, LOCATE, RELOCATE, CHANGE, REMOVE, REPLACE, MODIFY, RENEW, OPERATE AND MAINTAIN FACILITIES FOR PURPOSES DESCRIBED ABOVE, TOGETHER WITH FREE ACCESS TO, FROM, AND OVER SAID EASEMENTS, WITH THE RIGHT AND PRIVILEGE OF GOING UPON, OVER AND ACROSS ADJOINING LANDS OF GRANTOR FOR THE PURPOSES SET FORTH HEREIN AND WITH THE RIGHT TO UTILIZE THE RIGHT OF WAY AND EASEMENT TO EXTEND SERVICES TO CUSTOMERS OF GRANTEE, INCLUDING SUFFICIENT WORKING AREA SPACE FOR ELECTRIC TRANSFORMERS, WITH THE RIGHT AND PRIVILEGE TO TRIM AND REMOVE TREES, SHRUBS OR BUSHES WHICH INTERFERE WITH THE PURPOSES SET FORTH HEREIN. NO BUILDING, SIGN, POOL (ABOVEGROUND OR SUBSURFACE), HOT TUB, CONCRETE OR WOOD POOL DECKING, OR OTHER STRUCTURE SHALL BE ERECTED OR CONSTRUCTED ON SAID EASEMENTS, NOR SHALL ANY WELL BE DRILLED OR OPERATED THEREON. PROPERTY OWNERS SHALL BE SOLELY RESPONSIBLE FOR CORRECTING ANY VIOLATIONS OF NATIONAL ELECTRICAL SAFETY CODE BY CONSTRUCTION OF POOLS, DECKING, OR ANY STRUCTURES ADJACENT TO OR NEAR EASEMENTS SHOWN ON THIS PLAT. EASEMENTS FOR ELECTRIC TRANSFORMER/SWITCHGEARS, AS INSTALLED, SHALL EXTEND TEN (10) FEET IN FRONT OF

TRANSFORMER/SWITCHGEAR DOORS AND FIVE (5) FEET ON EACH SIDE.


DISCLAMER


IN APPROVING THIS PLAT, PUBLIC SERVICE COMPANY OF NEW MEXICO (PNM) AND NEW MEXICO GAS COMPANY (NMGC) DID NOT CONDUCT A TITLE SEARCH OF THE PROPERTIES SHOWN HEREON. CONSEQUENTLY, PNM AND NMGC DO NOT WAIVE OR RELEASE ANY EASEMENT OR EASEMENT RIGHTS WHICH MAY HAVE BEEN GRANTED BY PRIOR PLAT, REPLAT OR OTHER DOCUMENT AND WHICH ARE NOT SHOWN ON THIS PLAT.

DOC# 2014040949

05/22/2014 02:52 PM Page: 2 of 6 tyPLAT R:\$25.00 B: 2014C P: 0046 M. Toulous Olivere, Bernalillo Cour

SHEET 2 OF 6

		CUR	/E TABLE		
CURVE #	RADIUS	LENGTH	DELTA	CHORD	DISTANCE
C-1	664.00"	82.51'	06*54'40"	S 11'31'00" E	82.46
C-2	684.007	143.97	12'03'34"	\$21'00'07"E	143.70*
C-3	616.00	196.73	18 17 55	S 17'52'57" E	195.90*
C-4	25.00	43.22	99"03"39"	S 40°47'50" W	38.04'
C-5	25.00	38.25	87"43"15"	N 78*11*19" W	34.65
C-6	366.99	339.81'	52"45"51"	S 11*24'35" W	327.93
C-7	48.40	19.48	24"03"12"	S 03*57'56" W	19.34'
C-8	335.00	147.22	25"10"44"	S 50 22 55 W	146.04"
<u>C-8</u>	335.00"	43.09	07"22"11"	S 59"17"10" W	43.06
C-10	597.00	202.21'	19"24"25"	S 65*18*17* W	201.25
C-11	50.00"	89.21'	102 1332	N 53"52"53" W	77.84
C-12	703.00	242.19	19'44'20"	N 65'08'19" E	240.99
C-13	475.00*	175.75	21-1158	N 42"48"02" E	174.75
C-14	380.20	37.10	05'36'28'	N 34'5947" E	37.00
C-15	150.00	61 <i>.</i> 67	25 3323	N 03"04'07" W	61.24
C-16	150.00*	61.67	23*3323*	N 03'04'07" W	61.24"
C-17	50.00	78.AZ	89*51*53*	N 30'05'08' E	70.65
C-21	25.00	32.65	74*4932*	N 52°15'34" W	30.38

	LINE TABL	E
LINE#	BEARING	DISTANCE
L-1	S 08'03'40" E	32.36
L-2	N 89*40'20" W	181.05
L-3	N 34*1941" W	13.71'
L-4	S 89'40'20" E	52.27
L-5	S 14"5820" E	31.06"
L-6	N 02"45"59" W	57.21'
L-7	N 75'00'29" E	253.02
L-8	N 37"47"32" E	20.17
L-9	S 14'58'20" E	152.60*
L-10	N 89"40'20" W	107.16

JANUARY 2013

FINAL TRACTS - SHEET 2

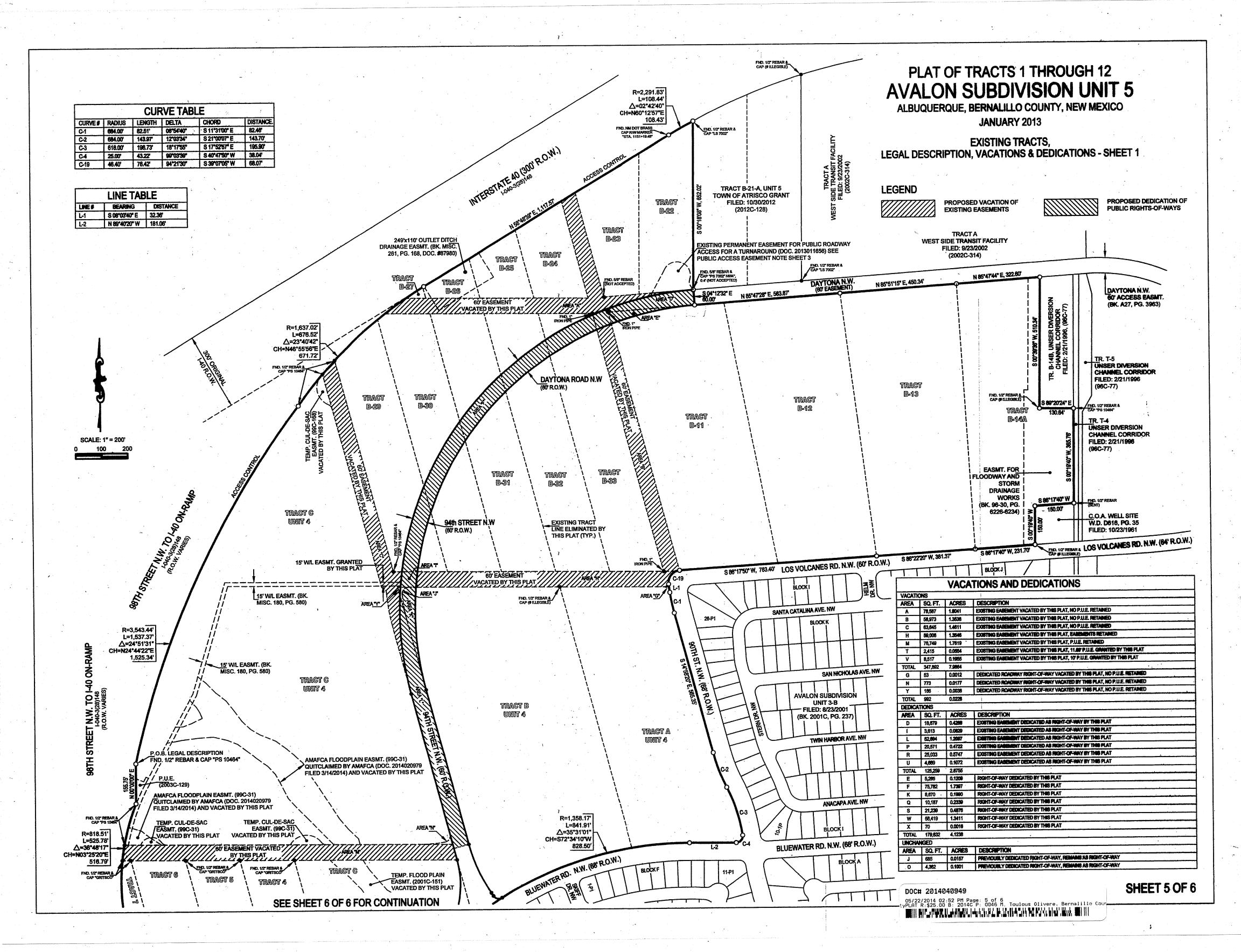
CONTROL STATION DATA

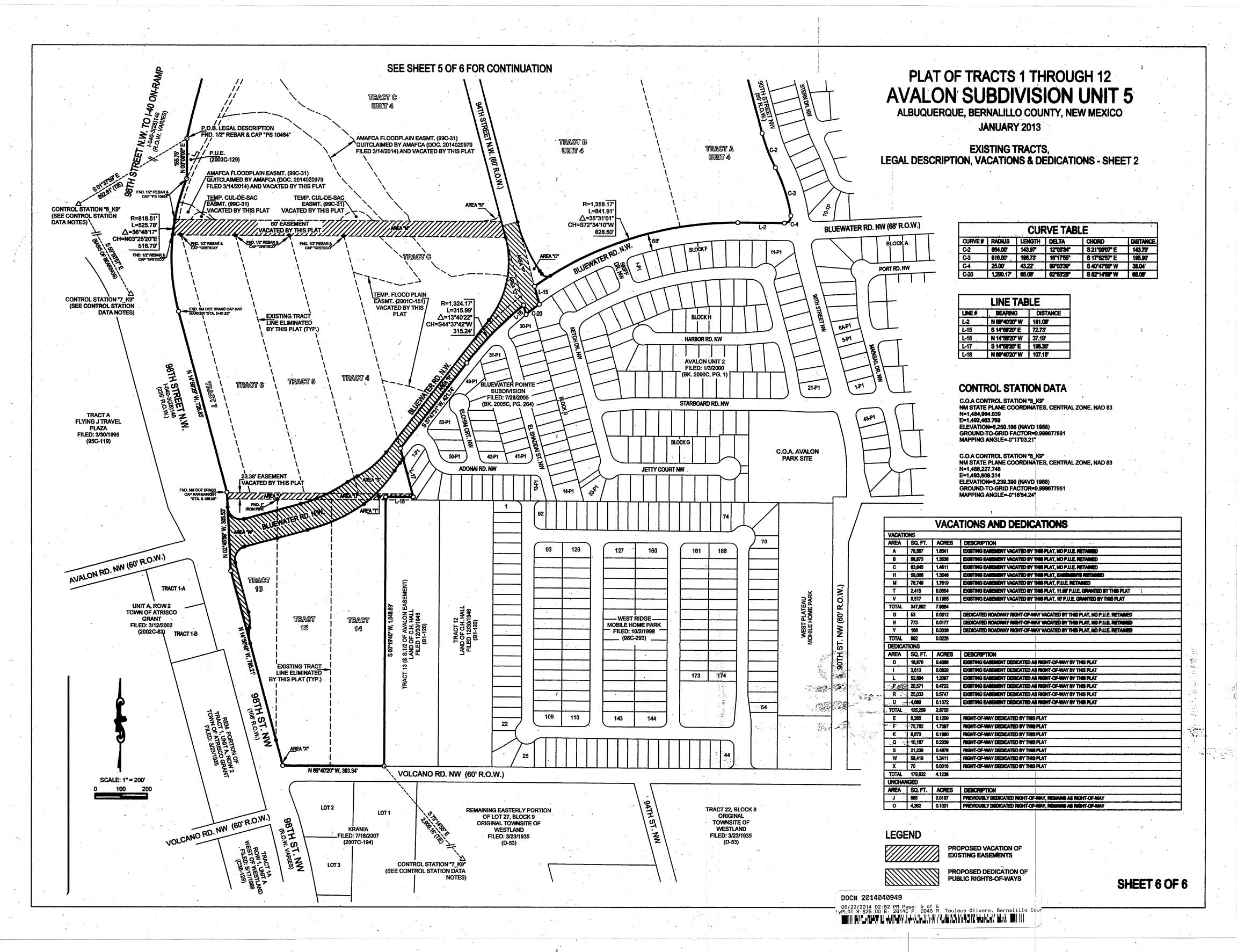
C.O.A CONTROL STATION "8_K9" NM STATE PLANE COORDINATES, CENTRAL ZONE, NAD 83

N=1,484,994.639 E=1,492,463.769

E=1,492,403.709 ELEVATION=5,250.168 (NAVD 1988) GROUND-TO-GRID FACTOR=0.999677891 MAPPING ANGLE=-0°17'03.21"

C.O.A CONTROL STATION "7_K9" NM STATE PLANE COORDINATES, CENTRAL ZONE, NAD 83 N=1,482,904.725 É=1,496,061.706 ELEVATION=5,140.082 (NAVD 1988)


GROUND-TO-GRID FACTOR=0.999681940 MAPPING ANGLE=-0°18'38.12"


THERE IS A FLOOD ZONE "AO" (MIREHAVEN ARROYO) LOCATED WITHIN TRACTS 2, 3, 4, 5 & 6, AND A FLOOD ZONE "A" LOCATED WITHIN TRACT 10, SEE FIRM MAP NUMBER 35001C0328H DATED

SEE SHEETS 5 AND 6 FOR VACATIONS AND DEDICATIONS

SHEET 4 OF 6

05/22/2014 02:52 PM Page: 4 of 6 tyPLAT R:\$25.00 B: 2014C P: 0046 M. Toulous Olivere, Bernalillo Cour water and the second secon

Table of Contents

Executive Summary 1. Literature Review 1.1 Amole-Hubbell DMP 1999..... 1.2 Other Researched Documents..... 2. Hydrologic Analysis 2.1 Methodology..... 2.2 Hydrologic Characteristics..... 2.2.1 Watershed Delineation 2.2.2 Precipitation 2.2.3 Sediment Bulking 2.2.4 Land Use 3. Basin Evaluation..... 3.1 Powerline Basin..... 3.2 South Powerline Basin 3.3 Snow Vista Basin 3.4 Amole Basin 3.5 Amole Del Norte 3.5.1 98th & Central Basin 3.5.2 Unser/214 Basin..... 3.5.3 Tierra Bayita Area 3.5.4 Atrisco Business Park Basin 3.5.5 Tower/Sage Area 3.5.6 South Amole del Norte Basin 3.6 Borrega Basin..... 3.7 Rio Bravo Basin.....

AMOLE-HUBBELL DRAINAGE MASTER PLAN UPDATE **NOVEMBER 2013**

I, Tyler J. Ashton, do hereby certify that this report was prepared by me or under my direction and that I am a duly registered Professional Engineer under the laws of the State of New Mexico.

Tyler J. Ashton, P.E. State of New Mexico P.E. No. 16205

3-26-14

Date

Amole-Hubbell Plan Update 2013 Report

																																																											:		
																																																									•••				
•					•	•	•	•	•	•	•	•	1							•			•		•	•		•			• •			•	•	•	•	•	•	•		•			•	•		•	•	•	• •	• •			•	•	•••		1		
•								•										•																							•						•			•	•					•			1		
																																																											1		
Ì														ļ								ļ	l		ļ							į				l			Ì							Ì	1	l			9 						1		5	;	
																																																											50		
																																																											5		
																																																											50		
																																																											5		
	•	•													•		•	•	•	•		•	•		•	•					•	•	•	•	•		•									•	•	•	•	•	•	•	•	 	•			•	6	5	
				1																•	•									•				•		•			2						 					•		•		 					6	5	
																																																						 					0)	
																	1	1			-		6								1				j																		Ì				Ì		9)	
																																																												13	2
																																																												17	
																																																												25	
																																																												31	
																																																												31	
		•	è	•					•					•		ł	•	•	•			•		á					•		•							. ,					•		•						•								50	35	
																											į																																	39	
																										l					5											1							1							1	l		1	43	2
																																																												17	
																																																												5	
																																																												57	
																																														•		.,											e	3'	

2. Hydrologic Analysis

2.1 Methodology

The Arid-lands Hydrologic Model-S4 (AHYMO) was used to calculate the 100-year peak flow rates and volumetric runoff. The unit hydrograph procedure is utilized in the AHYMO program to compute individual sub-basin runoff hydrographs. AHYMO's hydrologic methodology is discussed in the COA's Development Process Manual (DPM), Chapter 22-Drainage, Flood Control and Erosion Control (July 1997). The basin's physical properties input into the command include sub-basin area, percent of land treatment types, rainfall distribution, and the time to peak. Previous computations for the rainfall distribution and time to peak are linked into the command. The "Rainfall" and "Compute LT TP" commands compute the rainfall distribution and the time to peak, respectively. The AHYMO computations for 24-hour storm will be used for volumes; the 6-hour storm computations will be used for peak flow rates.

Hydrographs were routed using the channel, pipe, and reservoir routing commands. A rating curve command, followed by the computed travel time for channels and pipes, was used to account for the discharge relations based on headwater and slope. Ponds were modeled using the route reservoir command. Input of the route reservoir command requires stage, storage, and discharge for each incremental elevation.

2.2 Hydrologic Characteristics

2.2.1 Watershed Delineation

The Amole-Hubbell Watershed is divided into seven sub-basin for evaluation. The following list outlines the seven basins that were delineated:

- 1. Powerline Basin (PL)
- 2. South Powerline Basin (SP)
- 3. Snow Vista Basin (SV)

- 4. Amole Basin (A)
- 5. Amole del Norte Basin
 - 98th & Central Basin (NE)
 - Unser/214 Basin (U)
 - Tierra Bayita Basin (TB)
 - Atrisco Business Park Basin (AB)
 - Tower/Sage Basin (TS)
 - South Amole del Norte Basin (SA)
- 6. Borrega Basin (B)
- 7. Rio Bravo Basin (RB)

The basin boundaries vary slightly from the original DMP. Basin variations are due to drainage infrastructure realignments, constructed development since the adopted Amole-Hubbell DMP routed runoff differently, and master plans differing from the original DMP. The basin names were kept the same as those used in the original Amole-Hubbell DMP. The existing sub-basin identifications are 100 series; the proposed sub-basin identifications are 200 series.

Resources used to define sub-basins included 2010 Bernalillo County Light Detection and Ranging (LIDAR) mapping data, 2010 Bernalillo County Orthoimagery, and the latest COA parcel shapefile. LIDAR point and breakline files were provided by AMAFCA. By using the mapping data, contour intervals of 2-ft were generated in AutoCAD.

2.2.2 Precipitation

The precipitation depths for the 0.25-, 1-, 6-, and 24-hour storms, 100-year storm frequency were obtained from the original Amole-Hubbell DMP. Rainfall amounts were gathered from the COA DPM and the National Oceanographic and Atmospheric Administration (NOAA), Atlas 14. Table 2-1 lists the precipitation depths used to determine the rainfall distribution.

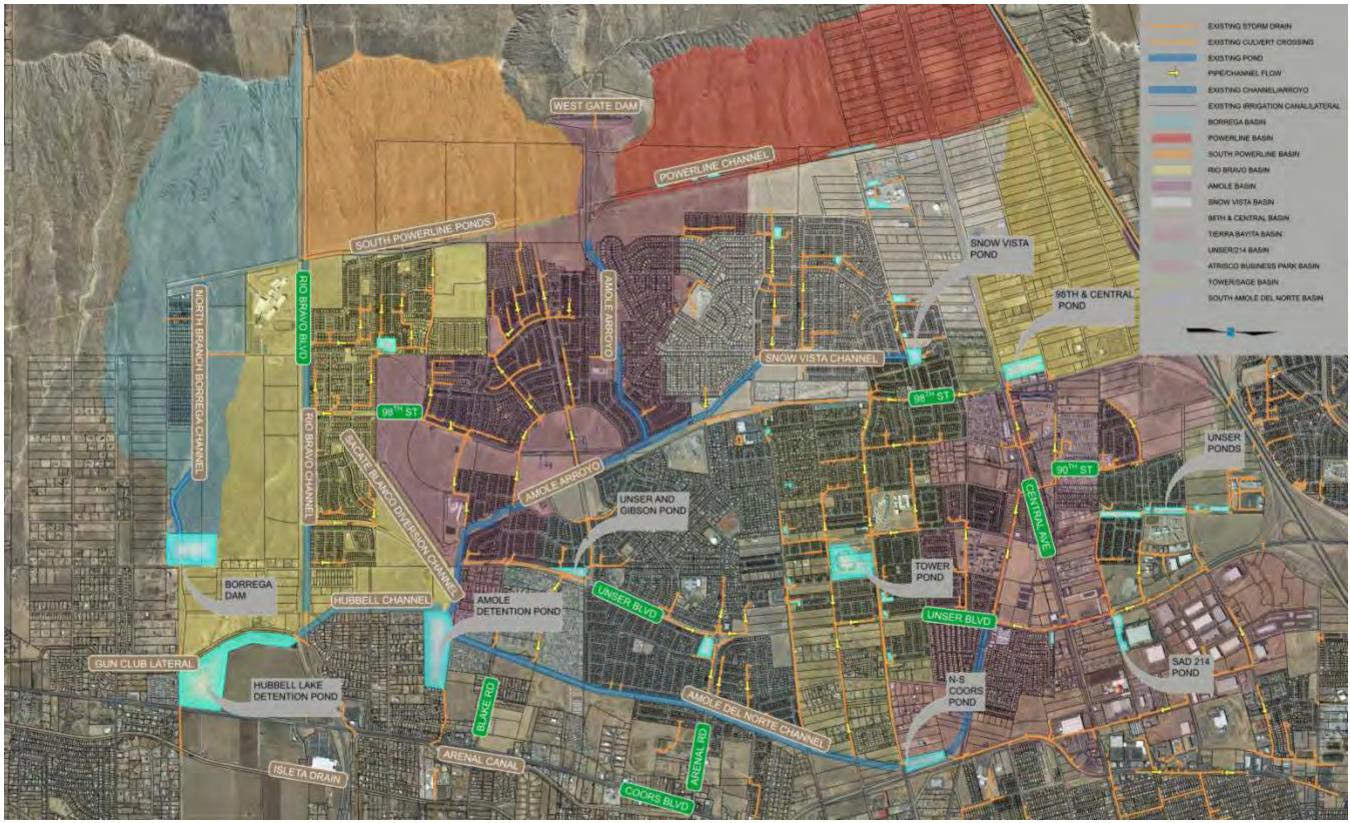


Figure 2-1: Amole-Hubbell Watershed Overall Basin Map

Amole-Hubbell Plan Update

2013 Report

3.5.2 Unser/214 Basin

Existing Conditions

The Unser/214 Area is the smallest sub-basin in the Amole del Norte Basin, with approximately 0.57 sq. mi. It is generally bound by Avalon Road to the south, Unser Boulevard to the east, I-40 to the north, and 98th Street to the west. Off-site runoff enters the sub-area at a peak rate equal to 108 cfs from the culvert crossing on the I-40 Diversion Channel. The hydrograph was obtained from the West I-40 DMP by Bohannon Huston, 2013. Land uses in the sub-area include industrial, residential, undeveloped platted lots, and mass graded platted lots. There are seven regional ponds, six of which are in a series and referred to as the Unser Ponds. The seventh pond is Pond U214. Major storm drain systems are located on Avalon Road and Unser Boulevard.

The off-site runoff is conveyed via an incised arroyo, which discharges into Pond U5. The residential area in Sub-Basin U103 has free discharge to Unser Ponds, while the residential area in Sub-Basin U104 controls runoff via a private pond (Pond U7) prior to releasing runoff to the Unser Ponds. Pond U1 through Pond U3 discharge at the same rate as the inflow; thus, not attenuating the runoff. Pond U6 outlets into a storm drain system on Avalon Road, which is connected to the storm drain system on Unser Boulevard. A storm drain system on Bluewater Road intercepts runoff from the industrial area located in Sub-Basin U106. This system also ties into the storm drain system on Unser Boulevard. The analysis point at the intersection of Unser Boulevard and Bluewater Road seems to be high for the downstream pipe size. The pipe size on Unser Boulevard between Bluewater Road and Avalon Road is 42" diameter. Further analysis is needed to confirm if the peak discharge at the analysis point is correct, or the pipe should be analyzed for its conveyance capacity. The peak discharge may not be correct if the industrial area in Sub-Basin U106 has restricted runoff. Pond U214 accepts water from the storm drain system in Unser Boulevard from north of Avalon Road and basin U209. Refer to Appendix A for hydrologic data and existing hydrologic model diagram.

Proposed Conditions

The off-site runoff is currently conveyed through an incised arroyo discharging into Pond U5. We recommend the offsite flow be cut off and redirected to the La Presa Detention Basin. To accomplish this, the West I-40 channel needs to be completed from 98th St to La Presa Dam. The Dam was designed to take this flow. This diversion will eliminate the need for additional storage volume downstream in the Unser/214 basin. Recommendations for storm drainage ponds and infrastructure can be found below. Refer to Table 3-10 for hydrologic data and Figure 3-12 for proposed hydrologic model diagram.

Recommendations:

Below are the recommendations from 1999 Amole-Hubbell DMP for the basin along with the status of the recommendation.

No recommendations from the 1999 Amole Hubbell DMP

Additional Recommendations for the basin based on updated basin analysis are below:

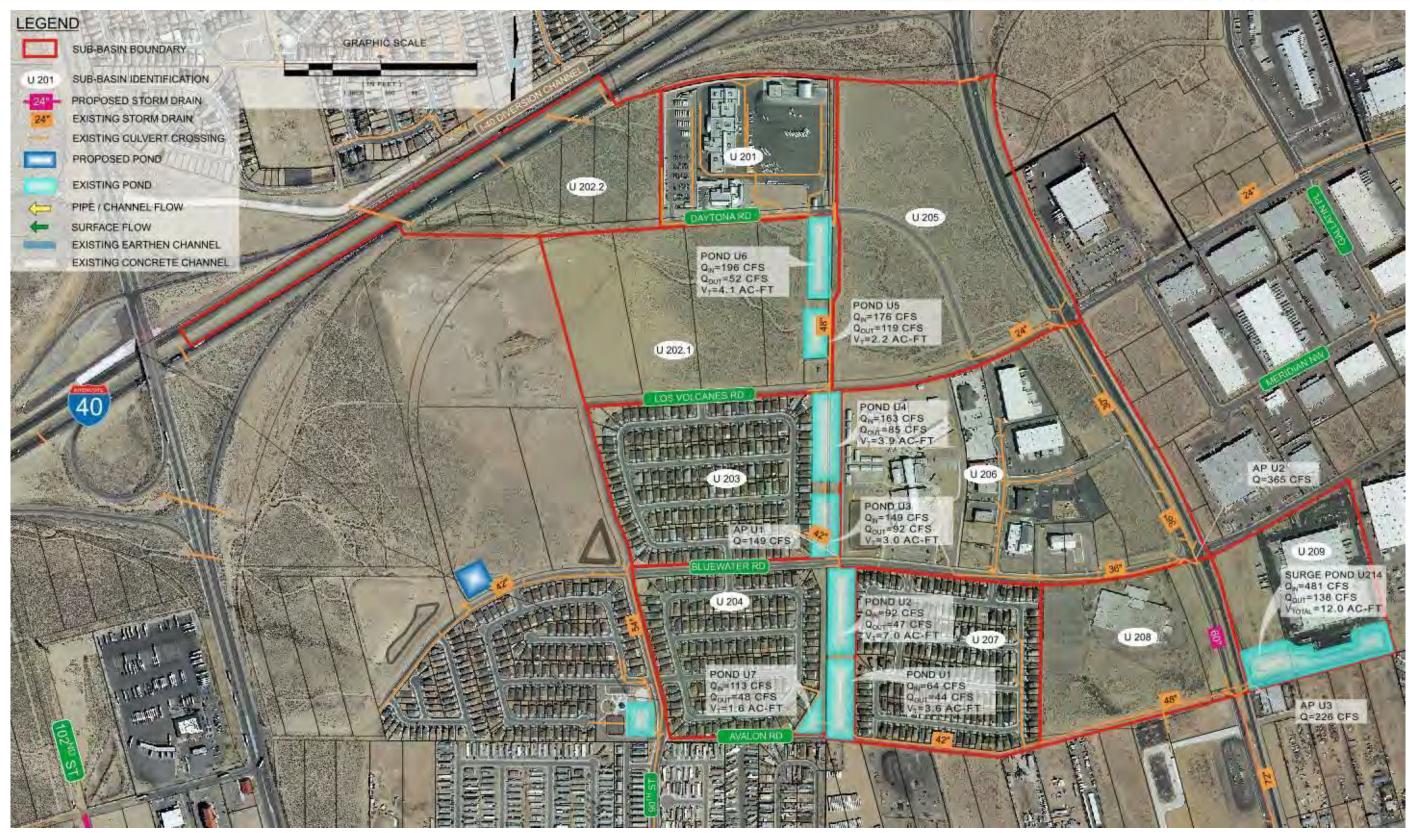
- determine if the runoff restriction is still valid. Developer cost.
- storm drain system.
- Avalon Rd

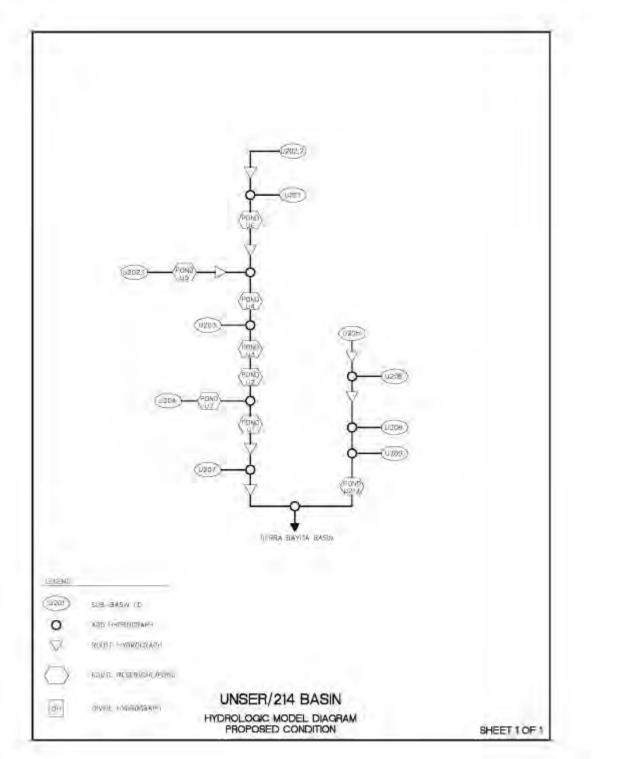
• Due to the current zoning of SU-1 in Basin 202.1, Ponds U5 and U6 will need to remain and the basin needs to have a runoff restriction of 2.0 cfs per acre to avoid downstream improvements. Previous reports have modeled the basin as residential and once the basin is developed hydrology should be redone to

• Remove the offsite flow by eliminating the pipe connection north of I-40 and completing the construction of the West I-40 channel to La Presa Dam.

• Install a 30" orifice plate in the outlet structure on pond U1 to restrict flows to the

• Increase Storm drain size in Unser Blvd from a 42" to a 60" from Bluewater Rd to




Figure 3-11: Unser/214 - Proposed Basin Map

Amole-Hubbell Plan Update

2013 Re

Table 3-10: Ur	nser/214 Area - I	Proposed Sub-Basin Peal	C Discharge and Volumes
Sub-Basin	Area (ac)	Q _{100yr-6hr} (cfs)	V _{100yr-24hr} (ac-ft)
U201	23	99.89	4.316
U202.1	43	176.49	7.502
U202.2	30	104.70	4.227
U203	34	124.07	4.784
U204	32	113.17	4.334
U205	51	176.04	8.550
U206	62	189.28	10.116
U207	29	114.77	4.610
U208	25	98.33	3.902
U209	21	85.47	3.341

Figure 3-12: Unser/214 Area - Proposed Hydrologic Model Diagram

Amole-Hubbell Plan Update 2013 Report

Amole-Hubbell Plan Update 2013 Report

3.5.3 Tierra Bayita Area

Existing Conditions

The Tierra Bayita Basin is approximately 1.40 sq. mi. and is irregularly shaped with I-40 bounding the north, 98th Street bounding the west, Eucariz Avenue being the most southern boundary, and Coors Boulevard being the most eastern boundary. Several land uses in Tierra Bayita Basin include industrial, commercial, undeveloped platted lots, mass graded platted lots, and residential. Main storm drain systems have been constructed in the Tierra Bayita Basin. Stub-outs have been set along the storm drain portion on Bluewater Road. Most developments are allowed free discharge to the public storm drain. The developments in Sub-Basin TB103 and TB105 were required to construct Pond TB2 and Pond TB3, respectively. There are three major storm drain systems which convey runoff to the Tierra Bayita Channel.

Runoff from Sub-Basin TB101 and Sub-Basin TB102 is retained in Pond TB1. Once these sub-basins are developed, the storm drain on Bluewater Road will intercept its controlled runoff release. From the Bluewater Road and 90th Street intersection, this storm drain system bends 90 degrees and follows 90th Street to Volcano Road, then bends at 90th Street to Bridge, then finally it runs along Bridge Boulevard until outletting into the Tierra Bayita Channel. Pond TB2 and TB3 release a controlled rate into this system. A lateral is extended from 90th Street on Central Avenue to the two cell pond located in the 98th & Central Area.

The second major storm drain in the Tierra Bayita Basin is on Sunset Garden Road, which begins near its intersection with 86th Street and runs east to Unser Boulevard, then north on Unser Boulevard until emptying into the Tierra Bayita Channel. This system receives free discharge from its respective drainage area. The third system begins in the Unser/214 Area. The portion in the Tierra Bayita Basin is in Unser Boulevard from Avalon Road to Tierra Bayita Channel. Refer to Appendix A for hydrologic data and existing hydrologic model diagram.

Proposed Conditions

Per the Bluewater Road near 90th Street Drainage Analysis by Tierra West dated 12-20-01 basins 202.1 and 202.2 have been restricted to 2.05 cfs/ac. To achieve this restriction, ponds were created in AHYMO to reduce runoff to the restricted rate. Also, in the proposed condition TB 101 has been shifted to the 98th & Central Basin. The Coors North South pond in the proposed condition is overtopping. The pond needs to be increased in size to hold 75 acft of runoff. Refer to Table 3-11 for hydrologic data and Figure 3-14 for proposed hydrologic model diagram.

Recommendations:


Below are the recommendations from 1999 Amole-Hubbell DMP for the basin along with the status of the recommendation:


No recommendations from the 1999 Amole Hubbell DMP

Additional Recommendations for the basin based on updated basin analysis are below:

- Restrict future basin flows to 2.5 cfs/acre for basins 202.1 and 202.2.
- Increase volume of Coors N-S Pond to 75 ac-ft.

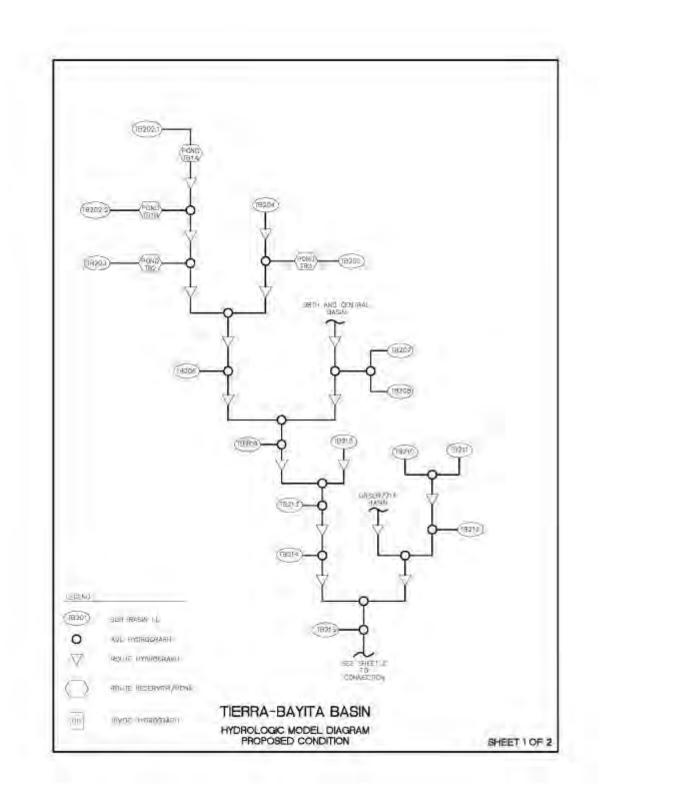


Figure 3-14: Tierra Bayita Basin - Proposed Hydrologic Model Diagram

see mich)

LINDONE

(Tieżm)

0

 ∇

124

3.8-114504-111

ADD HYDRODIA ARH

REARDINERY I FLORE

OWNE RESERVORVEDAD

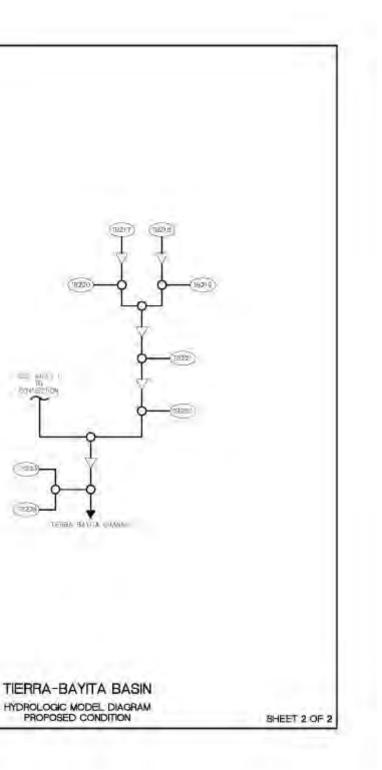

NWINE HINDRIDGRAFIT

Figure 3-14: Tierra Bayita Basin - Proposed Hydrologic Model Diagram

Amole-Hubbell Plan Update

2013 R

Table 3-11: Tier	ra Bayita Area -	Proposed Sub-Basin Pea	ak Discharge and Volumes
Sub-Basin	Area (ac)	Q _{100yr-6hr} (cfs)	V _{100yr-24hr} (ac-ft)
TB202.1	88	286.10	11.871
TB202.2	56	234.77	9.208
TB203	32	123.90	4.854
TB204	25	106.80	4.584
TB205	29	115.37	4.583
TB206	16	64.63	2.570
TB207	44	180.99	7.480
TB208	32	125.02	5.303
TB209	20	85.75	3.659
TB210	47	175.08	7.917
TB211	15	66.05	2.870
TB212	44	159.66	7.680
TB213	30	133.59	5.771
TB214	17	68.55	2.713
TB215	72	195.06	9.623
TB216	21	89.82	3.817
TB217	12	50.87	2.147
TB218	23	73.14	2.353
TB219	15	58.43	2.347
TB220	24	96.97	3.995
TB221	37	137.45	5.770
TB222	45	155.17	7.233
TB223	46	129.70	6.937
TB224	102	236.51	15.234
TB202.1	88	286.10	11.871

Amole-Hubbell Plan Update 2013 Report

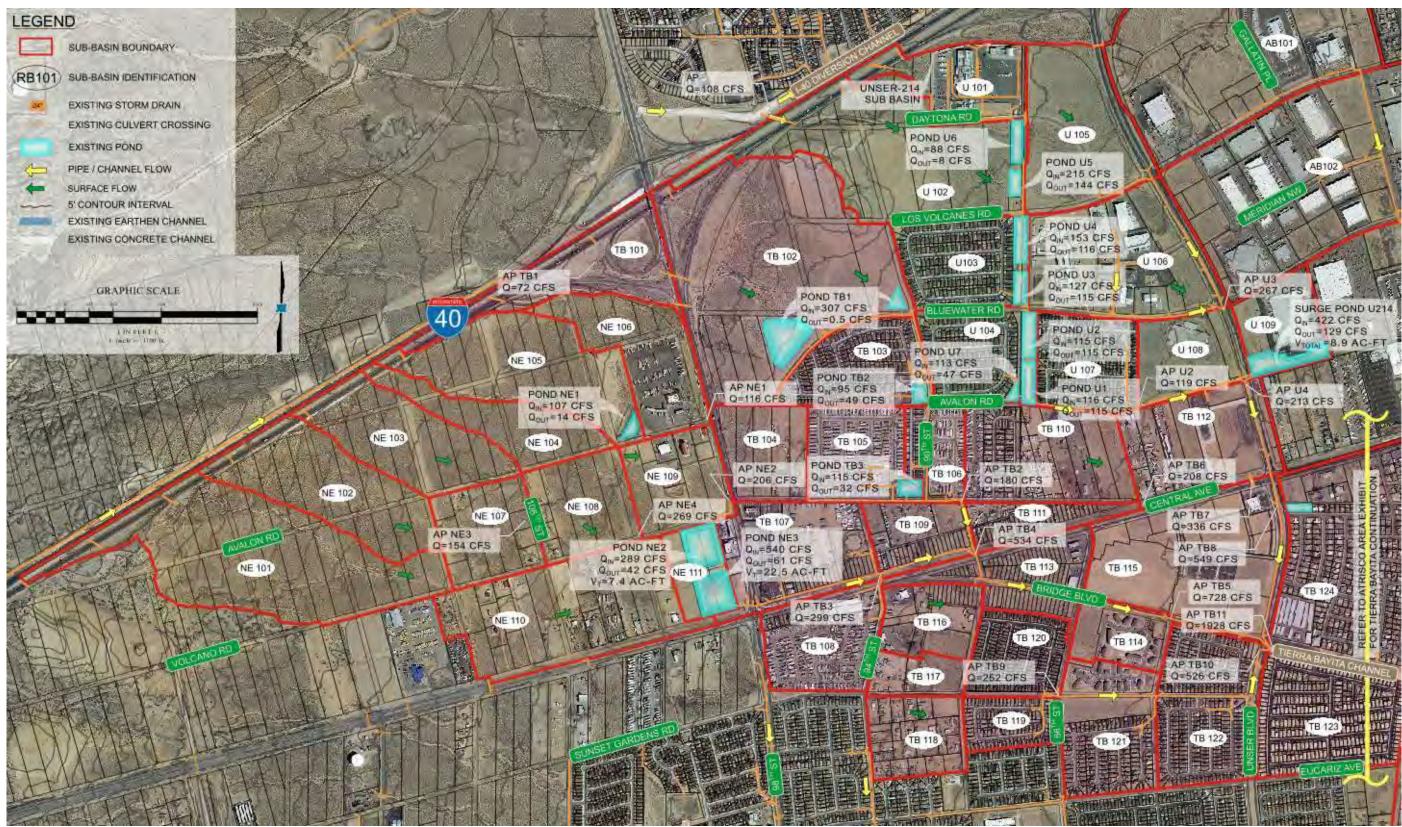


Figure A-11: 98th & Central, Unser/214 and Tierra Bayita Area - Existing Basin Map

Amole-Hubbell Plan Update

January 20, 1998

Martin J. Chávez, Mayor

Sara McCollam Tierra West, LLC 4421 McLeod Road NE, Suite D Albuquerque, New Mexico 87109

RE: Drainage Report and Grading and Drainage Plan for West Ridge Mobile Home Park (K9/D6) Submitted for Preliminary Plat, Site Development Plan, Building Permit and Grading Permit Approval, Engineer's Stamp Dated 1/9/98.

Dear Ms. McCollam:

Based on the information provided in the submittal of January 9, 1998, the above referenced plan and report are approved for Preliminary Plat, Site Development Plan and Building Permit Approval.

As you are aware, Agreement and Covenants are required for each of the proposed ponds prior to Work Order approval. The Grading and Drainage Certification is required prior to release of Financial Guarantees.

If you have any questions, please call me at 924-3982.

Sincerely,

Juna _ Color

Susan M. Calongne, P.E. City/County Floodplain Administrator

c: Ronald R. Bohannan, P.E. Fred Seeley, Great Western Realty File

Good for You, Albuquerque!

DRAINAGE REPORT

for

West Ridge Mobile Home Park

Prepared by

Tierra West, LLC 4421 McLeod Road NE, Suite D Albuquerque, New Mexico 87109

Prepared for

Fred Seeley Great Western Realty 3511 Carlisle Blvd, NE Albuquerque, New Mexico 87107

VE D JAN 0 9 1998 HYDROLOGY SECTION

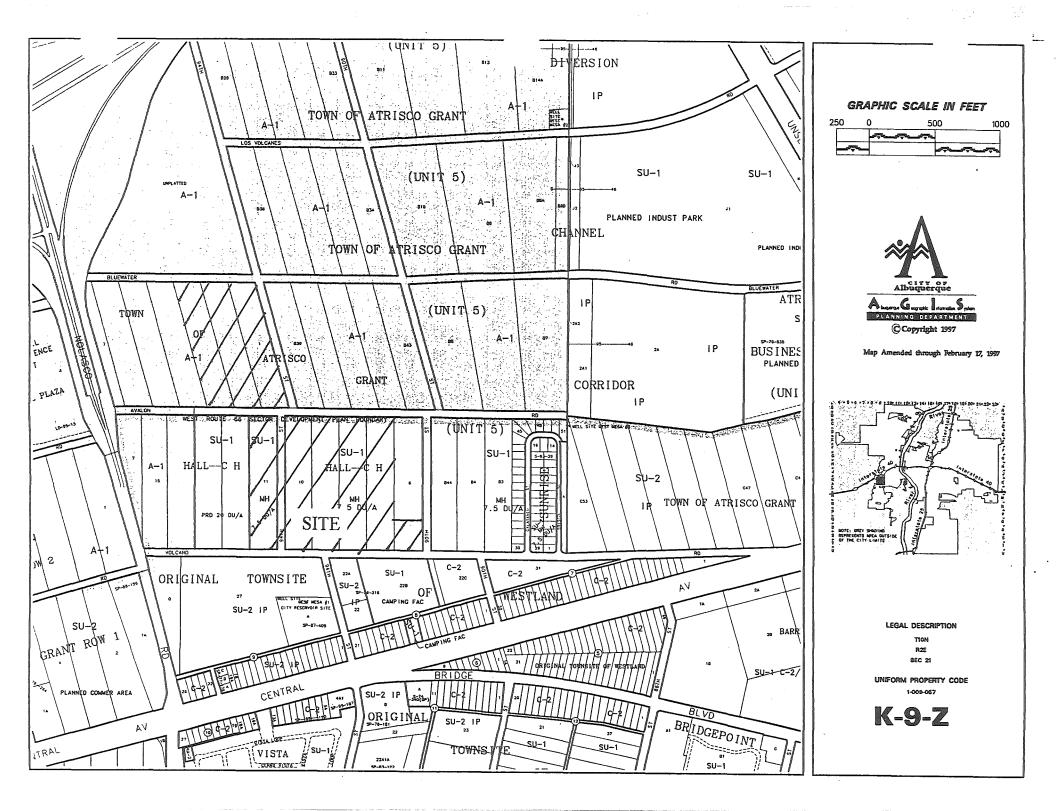

HNON REBISTENT RAY BOH October 1997 Ronald R. Bohannan P.E. No. 7868

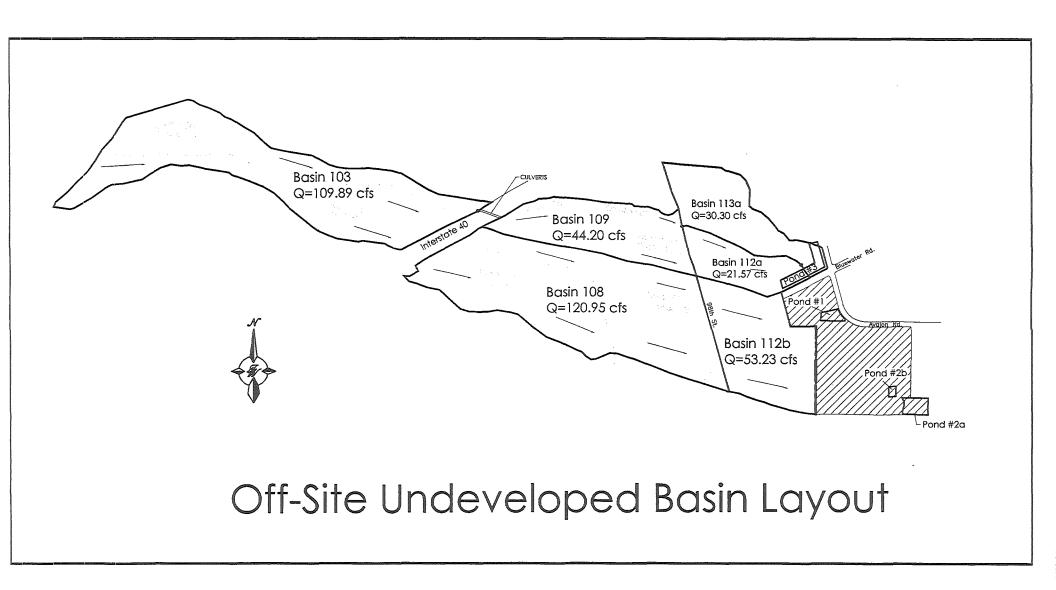
TABLE OF CONTENTS

.

Zone Atlas Map K-91
Location
FEMA Map and Soil Conditions
Off-site Drainage Management Plan
FIRM Map 350001C0328 D
Interim Solution
Off-site Undeveloped Basin Layout
Future Solution
City of Albuquerque Developed Basin Map7
On-Site Drainage Management Plan
Developed Basin Layout
Summary
Runoff Calculations
Street Capacity
Storm Sewer
Pond Calculations
AHYMO Runoff Input and Summary Output for Proposed and Existing Drainage Basins 53

.

Off-site Drainage Management Plan


The site is currently undeveloped and drains to the southeast with 44.27 cfs of undeveloped runoff. The offsite undeveloped flows impacting the site have been divided into six basins, Basins 103, 108, 109, 112a, 112b, and 113a. These six basins consist of several smaller basins that were used for ease in computation but are not needed for narrative purposes. Basin 103 consists of basins 103a and 103b. Basin 108 consists of basins 108.1 and 109a. Basin 109 consists of basins 109b and 110. (see attached exhibit). These basins directly impact the site from the northwest.

Undeveloped flows that consist of Basins 103, 109, 112a, 113a will be cut off from the site by Bluewater Road. This undeveloped offsite flow will be ponded in an temporary off-site pond north of Bluewater Road and west of 94th Street (Pond 3). Pond 3 will be designed for the undeveloped upstream runoff. The pond will not have capacity for developed flows and is not intended as an outfall for upstream basins. Offsite Basins 108, and 112b will be captured in a proposed 48" RCP storm sewer in Volcano Road and routed to a proposed retention pond on the mobile home park site (Pond 2a).

In the future, the developed flows from the west will be cut off by Interstate 40 and 98th Street. The temporary retention ponds will be removed and the proposed storm sewer will be designed for the developed flows east of 98th Street.

Interim Solution

Basin 103 consists of the area west of Interstate 40. Basin 103 has an undeveloped runoff of 109.89 cfs. This basin flows southeast and passes under the Interstate through a series of existing culverts. The runoff will be detained in a temporary off-site retention pond located north of Bluewater Road (Pond 3). In the future, the developed runoff from Basin 103 will not affect the site as it will be contained at the Interstate with the I-40 Interceptor Project.

.

Basins 109 is located between Interstate 40 and 98th Street. Basin 109 has an undeveloped runoff flow of 44.20 cfs. This basin drains southeast towards the site and will be contained in the same temporary off-site retention pond (Pond 3) located north of Bluewater Road (Pond 3). In the future, Basin 109 will be intercepted by 98th Street and will not affect the site.

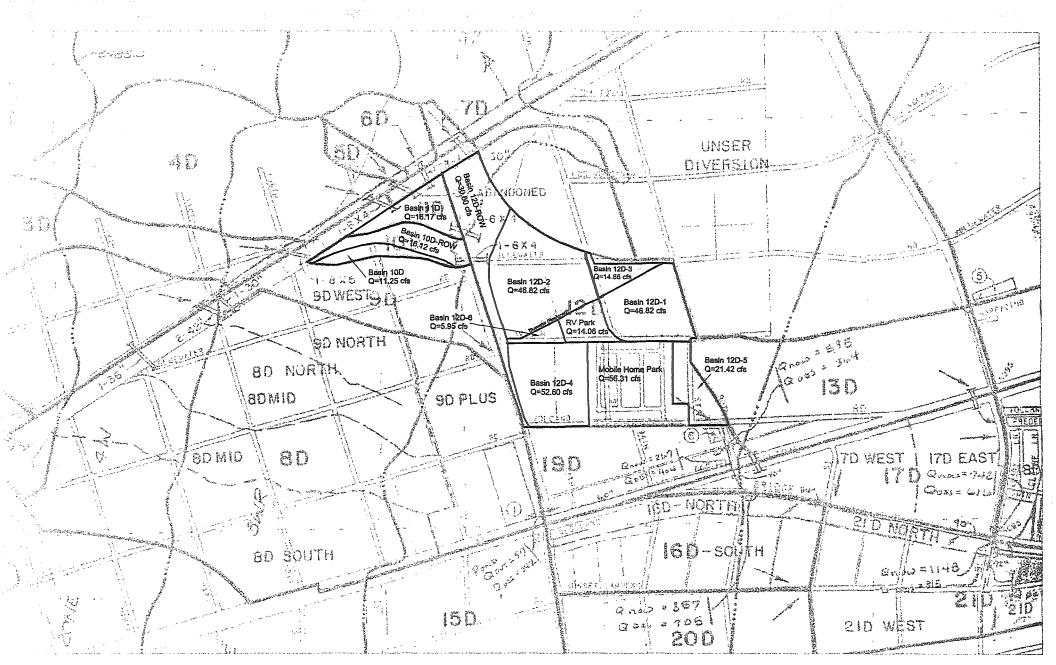
Basin 112a will have an undeveloped runoff of 21.57 cfs and is located between 98th Street and the site. This runoff will be captured in the temporary retention pond (Pond 3) located north of Bluewater Road.

Basin 113a will have an undeveloped runoff of 30.30 cfs and is located north of basin 112a and east of 98th Street. The basin consists of the northern portion of the floodplain impacting the site. This runoff and the floodplain will be captured in the temporary retention pond (Pond 3) located north of Bluewater Road.

The proposed off-site retention pond (Pond 3) is located north of Bluewater Road. It will collect a total flow of 205.96 cfs. The pond has a capacity of 6.46 ac-ft which is greater than the required capacity of 5.86 ac-ft. In the event of an emergency, the runoff will overflow from a 70.0 foot wide spillway. The pond will be removed after 98th Street is improved and the offsite basins intercepted.

Basin 108 drains east towards the site and is too far south to be captured in the temporary retention pond near Bluewater Road. Basin 108 has an undeveloped runoff of 120.95 cfs. This basin will sheet flow east until it reaches the western edge of the mobile home park and is directed south to Volcano Road via a waterproofed wall. The flows will then be conveyed to Volcano Road and captured in a cattleguard inlet. The proposed 48" RCP storm drain in Volcano Road has been designed to have capacity for the undeveloped flows from west of the site. The 48" RCP storm drain will transport the off-site flows to a proposed on-site temporary retention pond (Pond 2a). In the future, Basin 108 will be intercepted by

improvements in 98th Street and will no longer affect the site.


Basin 112b will flow east with an undeveloped runoff of 53.23 cfs. This basin is located between 98th Street and the site, and south of Basin 112a. Basin 112b will be captured by the storm drain in Volcano Road and conveyed to the proposed on-site retention pond (Pond 2a).

Offsite basins 108, and 112b will drain to a proposed on-site retention pond (Pond 2a) located in the southeast corner of the mobile home park. A total of 10.43 ac-ft of volume from the undeveloped off-site flows and the developed on-site flows must be ponded on the site. There will be a large pond (Pond 2a) in the southeast corner of the mobile home park and a second smaller pond (Pond 2b) located near the basketball court in the center of the site. Pond 2a will have a capacity of 9.9813 ac-ft and Pond 2b will have a capacity of 0.49 ac-ft. These two ponds total 10.47 ac-ft which is greater than the 10.43 required. In the event of an emergency, the runoff from Pond 2a will overflow from a 90.0 foot wide spillway.

The proposed 48" RCP storm drain in Volcano Road has been designed to carry the undeveloped flow of 174.18 cfs from the offsite basins to the retention pond (Pond 2a). A cattle guard inlet will capture the offsite flows as they enter Volcano Road at the west end of the mobile home park. In the future, when downstream improvements are constructed, the on-site retention ponds will be removed and a permanent detention pond constructed. The upstream basins will be cut off at 98th Street when upstream improvements are constructed. The storm drain in Volcano Road will be required to convey the offsite developed basin 12D-4 with a developed runoff flow of 52.60 cfs and the controlled discharge from the site of 56.31 cfs, which is a total of 108.91 cfs.

Future Solution

The developed future basins are based on the City of Albuquerque's long range storm sewer plan for the 98th Street and I-40 area. According to this plan, the site is located within

City of Albuquerque Developed Basin Map Sub-basins for Storm Sewer Analysis Basin 12D (see attached developed offsite basin map). Basins 10D and 11D are routed through Basin 12D. Basin 10D and 11D are located northwest of the site between 98th Street and I-40. Basin 12D includes the area north of the site all the way to I-40. These three basins flow to a proposed 66" storm drain in 90th Street.

The original hydrology for the proposed storm drain in 90th Street estimated the flow from Basins 10D, 11D, and 12D to be 364 cfs. New hydrology for the area estimates the developed runoff for the area as 595 cfs. The proposed 66" RCP in 90th Steet was designed using the old hydrology and will not have capacity for the new runoff flow of 595 cfs. The City of Albuquerque has made no provisions for the discrepancy. For the purposes of this report, we have assumed each tract will be required to detain the difference in flows onsite. A portion of each basin is right-of-way belonging to the State Highway Department. This ROW is undeveloped with no improvements planned. This land cannot be expected to detain the difference in flows. The undeveloped right-of-way will discharge a total of 63.09 cfs. This leaves 300.70 cfs for the developable portion of the basins to discharge. There is a total of 146.94 developable acres in the three basins. This will be an allowable discharge of 2.05 cfs/acre, not including the ROW which will discharge the existing undeveloped flow rate. The allowable discharge rate includes street flow from streets within and adjacent to each parcel.

This offsite flow must be routed around the site in a storm sewer system located within the public streets. A 48" RCP storm sewer in Bluewater west of 94th Street will collect the offsite flows from the north, which includes Basins 10D, 11D, and 12D-2 and the ROW areas. This is a total developed flow of 152.49 cfs. The storm drain in Bluewater will connect to a proposed 48" RCP storm sewer in 94th Street. The storm drain in 94th Street will connect to a 54" storm drain Avalon. This system will convey the developed flows from the RV Park, Basin 12D-6 and Basin 12D-1, located south of Bluewater Road and north of Avalon Road, and also the incoming flows from the Bluewater storm drain. The Avalon storm sewer will convey a total of 219.32 cfs from the developed upland basins and the RV park. The 54" storm drain in Avalon will flow east to 90th Street. A second storm drain located west of 94th Street in Bluewater will convey the 14.66 cfs from Basin 12D-3 via a 24" pipe to 90th Street. At 90th Street the 60" RCP storm drain will flow south until it connects with the proposed 66" storm sewer located at the intersection of 90th Street and Volcano Road.

The storm sewer in Volcano Road will collect the flow from the west of the site. The developed offsite basin 12D-3 has a developed runoff of 52.60 cfs. A 48" RCP storm drain in Volcano Road will collect the developed flows from Basin 12D-3. This storm drain has been sized for the offsite undeveloped flow rate of 174.18 and will have capacity for the 52.60 of developed future offsite flows.

When the temporary on-site retention pond is removed, the developed flows from the mobile home park will drain to the storm drain in Volcano Road. The 48" RCP storm drain will contain 108.91 cfs at this point. The 60" RCP in north 90th Street will connect to the storm drain in Volcano and a total of 364.31 cfs will continue to drain east in a 66" RCP in Volcano Road to south 90th Street. This storm sewer will connect to the proposed 66" storm sewer in 90th Street and the flows conveyed south to the eventual outfall.

On-Site Drainage Management Plan

The proposed drainage solution is to route the onsite runoff to three temporary retention ponds located onsite. One retention pond (Pond 1) will be located on the future RV park site. The other two ponds (Ponds 2a and 2b) will be located on the proposed mobile home park site. The undeveloped offsite runoff from basins 108 and 112b will be ponded in the mobile home park site in the onsite retention pond (Ponds 2a).

In the future, the developed flows from offsite basins Basin 103, 108, and 109 will be intercepted by Interstate 40 and 98th Street. The offsite developed runoff from basins 112a

CITY OF ALBUQUERQUE

December 2, 2014

Charles Easterling, P.E. Easterling Consultants 3613 NM 528, Suite E-2 Albuquerque, NM 87114

Re: I40 South and Unser Mini DMP Engineer's Stamp Date 11-5-14 (K09D026)

Dear Mr. Easterling,

Based upon the information provided in your submittal received 11-5-14, the above referenced report is approved for Drainage Masterplan with the following condition:

Hydrology's comment that the freeboard for Pond 6 is insufficient at 0.4 feet is still valid. Future drainage reports for basins that drain to Pond 6 will have to address this comment. Most likely it will not be an issue as development will most likely occur at a lower impervious percentage than used in the report and this report was submitted prior to the City's first flush requirement of retaining the runoff from 0.44" storm events.

Albuquerque If you have any questions, you can contact me at 924-3986.

New Mexico 87103

PO Box 1293

Sincerely,

into a Chen

www.cabq.gov

Curtis Cherne, P.E. Principal Engineer, Hydrology Planning Dept.

C: file

Engineer Certification

I, Charles Easterling, do hereby certify that this report and the analyses which were done in its production were prepared by me or under my direction and that I am a duly registered Professional Engineer under the laws of the State of New Mexico.

Charles M. Easterling, P.E. #6411

11-5-14

Date

I-40 South and Unser Mini Drainage Master Plan

Prepared for: I-40 SOUTH LLC

c/o Tom Keleher P.O. Box AA Albuquerque, NM 87103

Prepared by: Easterling Consultants LLC 3613 NM 528 Suite E-2 Albuquerque, NM 87114

> November 2014 Revision #4

Table of Contents

A.	Introduction	.1
B.	Background	.1
C.	Purpose	.2
D.	Hydrology	.2
E.	Results	.7
F.	Conclusions/Discussion	.8
	References	

<u>Appendix A.1</u> NOAA Atlas 14 Rainfall Data

<u>Appendix A.2</u> NRCS Curve Number Tables, Curve Number Calculations, HEC-HMS User Manual Excerpt on Curve Numbers & Percent Imperviousness

<u>Appendix A.3</u> NRCS Web Soil Survey Reports

<u>Appendix A.4</u> Time of Concentration Calculations

<u>Appendix A.5</u> Rating Curve Data for Ponds

<u>Appendix A.6</u> NRCS Rainfall Distribution

<u>Appendix B.1</u> HEC-HMS Model (Digital Copy Only-Refer to DVD)

<u>Appendix B.2</u> HEC-HMS Global Output Summary

<u>Appendix B.3</u> Pond Routing Summary and HEC-HMS Pond Summary Tables

<u>Appendix B.4</u> Hydraulic Computations

<u>Appendix C</u> Reference Projects (Digital Copy Only-Refer to DVD)

<u>Appendix D</u> Full Size Plates 1 and 2

A. Introduction

Easterling Consultants was commissioned by I-40 South LLC to perform a Mini-Drainage Management Plan for an area bounded by I-40 on the north, on the west by the large sand hill located west of 98th Street, on the east by the Unser Diversion Channel, and on the south by Los Volcanes Road. The watershed area is approximately 119 acres or 0.186 square miles and is largely undeveloped land consistent with the semi-arid environment of suburban Albuquerque's west side. **Figure 1** shows the vicinity map. This watershed drains into a series of 6 ponds known as the Unser Diversion Channel (UDC).

Figure 1- Vicinity Map

B. Background

Historically, this watershed received flows from the north side of I-40 from a tributary of the Mirehaven Arroyo (Trib C). However, after the construction of the I-40 Interceptor on the north side of I-40, the offsite flows from the north are now diverted east via an AMAFCA channel that runs parallel to I-40.

The Unser Diversion Drainage Analysis Report in 1993 by Easterling and Associates (EA) was the foundation for the design of the UDC.

The original EA study modeled fully developed conditions using AHYMO in order to design the UDC system of interconnected ponds. A second drainage master plan was completed in 2001 by Smith Engineering Company (SEC) in support of the City's Westside Transit Center design.

The major premise for developed conditions in both these reports and subsequent construction of facilities was that the West I-40 interceptor would be in place diverting the off-site flows from the north and that Pond 5, which is a temporary sedimentation basin, would no longer be part of the system. Pond 5 of the UDC was constructed as a temporary sediment pond with a reversion clause in the easement that dedicated it. The easement and pond anticipated the removal of flows from north of I-40 and elimination of the pond, easement and resulting flood plain upon completion of the channel north of I-40. Both studies used AHYMO as the primary hydrologic modeling software with developed subbasin zoning conditions assumed to be R-LT (high density residential). Digital copies of these reports are included in **Appendix C**.

However with the construction of the Westside Transit Center and Bruckner's Truck Sales facility on the north side of Daytona Rd and rezoning of the RLT lands to commercial, the watershed is most likely going to develop as commercial/light industrial area. Currently, FedEx is proposing to buy and develop Tracts 4 and 5 as their FedEx Ground service facility.

C. Purpose

In light of the proposed FedEx Ground site and zone changes affecting the watershed, <u>the</u> <u>primary purpose of this Mini Drainage Master Plan is to analyze and determine an</u> <u>equitable distribution of the downstream capacity of the UDC Ponds 6 and 4 and the final</u> <u>disposition of Pond 5 under fully developed conditions with the assumption that there is no</u> <u>off site flow from north of I-40 and that the watershed develops as a commercial/light</u> <u>industrial area as opposed to R-LT.</u>

Natural Resources Conservation Service (NRCS) Runoff Curve Number method as described in TR-55 was applied to the hydrologic analysis in conjunction with the Army Corp of Engineers HEC-HMS V.3.5 hydrologic software.

D. <u>Hydrology</u>

Existing Conditions

Subbasins within the watershed were delineated using Bernalillo County LIDAR topography from 2012. **Plate 1** shows the existing conditions subbasins. The Majority of the subbasin boundaries were adopted from The Drainage Master Plan for West Side Transit Facility by Smith Engineering.

E. Results

It is clear that the Unser Diversion Channel System has sufficient capacity to accept the runoff from the existing undeveloped drainage area for all reasonable development scenarios. Very conservative assumptions were used in this effort in order to establish the maximum allowable. DEVEX option 1 had to be simulated because the existing discharge rating curve for Pond 5 was not restricting the peak inflow in the DEVEX 2 model. The peak inflow was 98.2 cfs and the peak outflow was 78.4 cfs meaning the pond only stored 1.59 ac-ft. of water. As a result the rating curve was modified to simulate a 12 inch orifice in order to achieve storage higher efficiency in Pond 5.

The pond routing results for Existing and DEVEX_Option 1 are summarized below. A detailed pond routing summary for all options is included in **Appendix B.3**.

The effects of modifying the discharge rating curve for Pond 5 are quite clear in Table 1. The peak inflow is 98.2 cfs and the peak discharge is 10.5 cfs. Consequently the storage in Pond 5 increases from 1.59 ac-ft. to 3.14 ac-ft. Consequently the storage in Pond 4 goes down from 5.69 ac-ft. to 4.93 ac-ft.

This leaves an excess of 3.58 ac-ft. of capacity in Pond 4.

	and a second				SL	mmary	of Pond	Routings				
Pond	Model Description	Design Volume	100 Yr- 24 Hr Peak Storage Volume	100 Yr- 24 Hr Inflow Volume	100 Yr- 24 Hr Outflow Volume	100 Yr- 24 Hr Inflow	100 Yr- 24 Hr Outflow	Elevation of Emergency Spillway	100 Yr-24 Hr Peak Water Surface Elevation	Freeboard from Emergency Spillway	Available Storage	Comments
	1.0.00	ac-ft	ac-ft	ac-ft	cfs	cfs	cfs	ft	ft	ft	ac-ft	
	A CONTRACTOR	а	1.1.1.1	1.001				a	10.001.00	b	111.9	1. T. P. M. L.
Pond 4	Smith DEVEX Conditions Results from Report	8.51	4.50	1	1	×	-	5155.1	5152.9	2,2	1000	All values reported on this table are taken directly from The Master Drainage Plan for the West Side Transit Facility by Smith Engineering
Pond 6	"	9.01	6.20	÷	+	ł	+	5177.9	5176.7	1,2	2.81	Company, 2001.
Pond 4	DEVEX Option 1	8.51	4,93	23.5	23,5	147.1	96,4	5155.1	5153.33	1.8	3 5 8	Watershed modeled as fully developed commercial/business site at 90% impervious, using
Pond 5	DEVEX Option 1	4.73	3.14	5.43	5.43	98.2	10,5	5168.8	5167.66	1.1	1.59	latest NOAA 14 100-Yr- 24Hr rainfall depth of 2.52 In, Basin C-2D.2 drains to Pond 5 with modified
Pond 6	DEVEX Option 1	9.01	6.90	13.8	13.8	231.4	83.1	5177.9	5177.5	0.4	2.11	outfall restricting discharge using a 12" outlet pipe as principal spillway

Table 1

a- All values reported on this table are taken directly from The Master Drainage Plan for the West Side Transit Facilit

100 Yr 24 Hr rainfall depth based on lates NOAA Atlas 14 data

b - Freeboard = Elevation of Emergency Spillway - Peak Water Surface Elevation

The peak flow at AP-7 was 72 cfs in the 100-yr-24 hr. storm. This flow was used to size the proposed storm drain in Los Volcanes Road as it was higher than the 100-yr-6 hr. storm. It was determined that a 36 inch storm drain would be sufficient to convey fully developed flows in Los Volcanes Road. See **Appendix B.4** for detailed calculations.

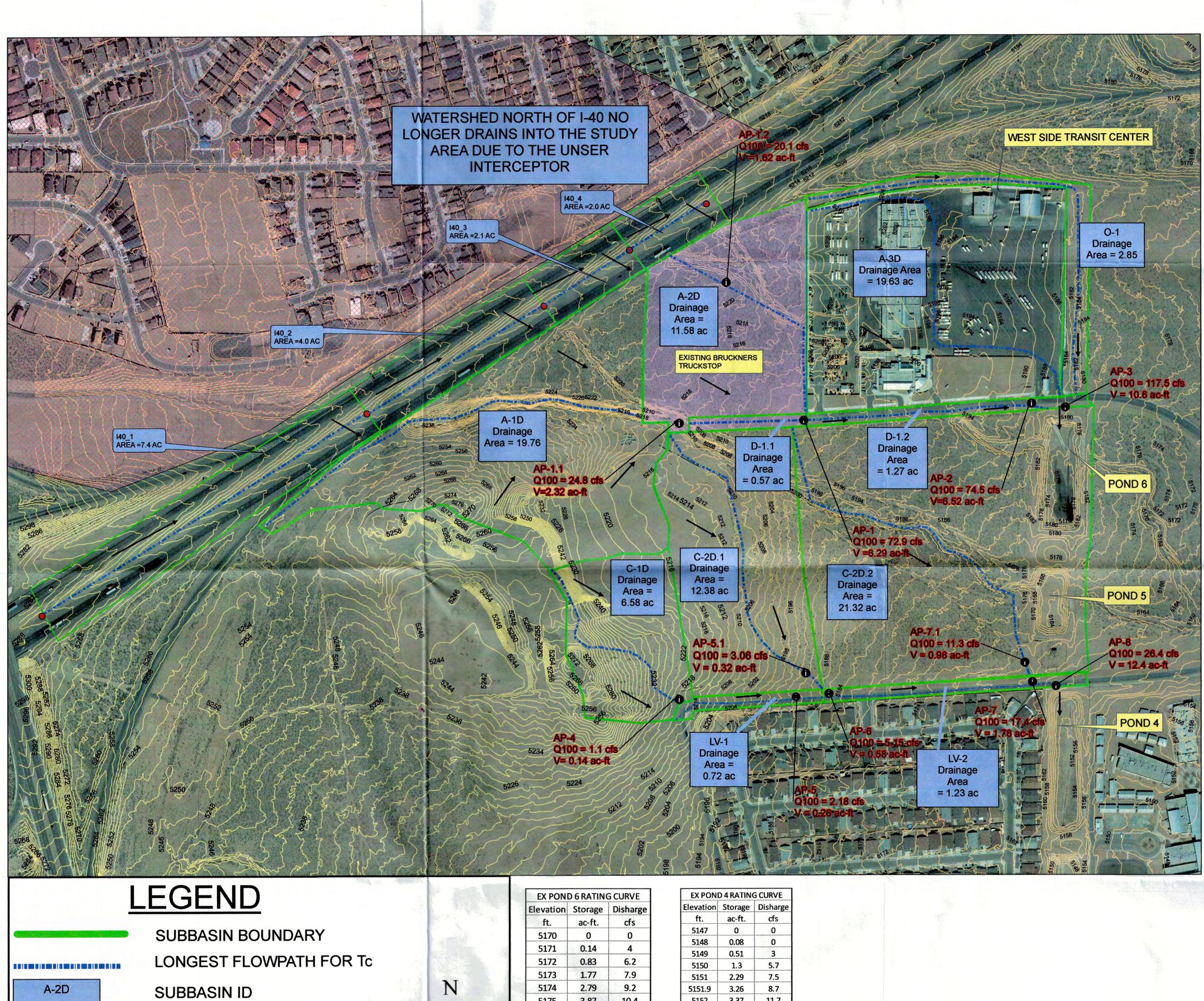
F. Conclusions/Discussion

The general conclusion of this DMP is that the UDC ponds will have sufficient capacity to handle the developed conditions 100-yr-24-Hr runoff volume. In other words, subbasins C-1.D and C-2D.1 should be able to free discharge into Pond 4 without compromising the downstream capacity of the UDC. By making Pond 5 into a permanent pond and modifying its outfall structure to restrict the outflow, the entire system is able to operate well within the bounds of COA guidelines for the design and function of ponds.

The reductions in Pond 5 outflow provide flexibility to the future development of the subbasins C-1 and C-2D.1 as the Smith Master plan as well as this DMP indicates that these subbasins assume to drain to Pond 4.

A recently completed 1 ft. interval topographic survey indicates that the side slopes of Pond 5 are much steeper than the 1V:3H slopes shown on the as-builts. This means that there is more storage available at Pond 5 than what is being modeled. This also provides a lot of flexibility to the final design of Pond 5 in terms of incorporating water quality features (if required or desired) while restricting the discharge in order to maximize the available storage in the pond and minimize the cost of any required modifications to the outlet structure.

Manning's Equation was used to determine the appropriate storm drain pipe size to the developed conditions from C-1, C-2D.1 and fully paved Los Volcanes Rd. A 36 inch RCP will safely convey the 72 cfs. See detailed calculations in Appendix B.4.


Using HEC-HMS with TR 55 CN hydrology rather than the traditional AHYMO'97 raises the question as to its effect on the modeling results compared to what was previously generated using AHYMO. Referring to **Table 1**, it is clear that the net results are almost identical in terms of the resulting impact on downstream facilities as determined by volumes stored and freeboard retained in Ponds 4 and 6 when compared to the developed conditions Smith Westside Transit Facility model and that any differences found are not significant. <u>Note that the modeling performed for this study assumed 100% of the runoff from the future impervious areas south of Daytona (assumed at 90% impervious) is an extremely conservative assumption, particularly given that the proposed FedEx development plans are in the 75% range.</u>

A further consideration is that the Smith DMP simulated only Ponds 4 and 6 with a higher rainfall depth under fully developed conditions.

The most significant impact of this DMP is the demonstration that Ponds 4, 5, and 6 have significant additional capacity when modeled with the lower NOAA 14 rainfall depth. For a volume-bound system like the UDC, using a lower design/evaluation rainfall depth has the effect of increasing downstream capacity for the benefit of the upstream properties, whose owners contributed to the construction of the UDC for that very purpose. The choice of a hydrologic modeling system (HEC-HMS with TR 55 vs AHYMO'97) had a less significant impact.

Appendix D

Full Size Plates 1 and 2

ANALYSIS POINT

AP-1

FLOW DIRECTION

140 MEDIAN DROP

50100 200

Elevation	Storage	Disharge
ft.	ac-ft.	cfs
5170	0	0
5171	0.14	4
5172	0.83	6.2
5173	1.77	7.9
5174	2.79	9.2
5175	3.87	10.4
5176	5.04	11.5
5177	6.27	79.5
5178	7.46	86.1
5179	9.01	93.2
DATA FROM PLAN FOR TH FACILITY		

Elevation	Storage	Disharge
ft.	ac-ft.	cfs
5147	0	0
5148	0.08	0
5149	0.51	3
5150	1.3	5.7
5151	2.29	7.5
5151.9	3.26	8.7
5152	3.37	11.7
5152.5	3.94	50.6
5153	4.52	92.5
5154	5.76	104.3
5155	7.18	115.9
5156	8.51	124.6
DATA FROM	MASTER DR	AINAGE
PLAN FOR T	HE WEST SID	E TRANSIT
FACILITY		

Sub-basin	Area	Existing Weighted Curve	and the second se	t of Hydro	the second se		% Impervious	Тс	Q100	V100
	(Number		-			0/	(mine)	(252)	(
	(acres)		A	B	<u> </u>	D	%	(mins)	(cfs)	(ac-ft)
A-1D	19.8	69	58	42	0	0	0	12	8.02	0.72
A-2D	11.6	90	53	47	0	0	90	12	29.3	2.36
A-3D	19.6	91	28	72	0	0	90	17	43.5	4.01
C-1D	6.6	63	100	0	0	0	0	12	1.14	0.14
C-2D.1	12.4	65	86	14	0	0	0	12	3.06	0.32
C-2D.2	26.8	69	58	42	0	0	0	12	11.3	0.98
D-1.1	0.6	87	37	63	0	0	60	12	1.28	0.10
D-1.2	1.3	87	37	63	0	0	60	12	2.85	0.22
LV-1	0.7	87	32	68	0	0	60	12	1.61	0.12
LV-2	1.2	87	32	68	0	0	60	12	2.72	0.21
O-1	2.9	66	72	27	0	0	0	16	1.00	0.08
40_1	7.4	89	0	100	0	0	90	18	15.6	1.49
40_2	4.0	89	0	100	0	0	90	12	9.99	0.80
40_3	2.1	89	0	100	0	0	90	12	5.24	0.42
40 4	2.0	83	100	0	0	0	90	12	4.89	0.39

Pond	Model Description	Design Volume	100 Yr- 24 Hr Peak Storage Volume	100 Yr- 24 Hr Inflow Volume	100 Yr- 24 Hr Outflow Volume	100 Yr- 24 Hr Inflow	100 Yr- 24 Hr Outflow	Elevation of Emergency Spillway	100 Yr-24 Hr Peak Water Surface Elevation	Freeboard from Emergency Spillway	Storage	Comments
		ac-ft	ac-ft	ac-ft	cfs	cfs	cfs	ft	ft	ft	ac-ft	
		a	2.20		47.4	26.4		а		b	F 99	
Pond 4	Ex Conditions HEC-HMS	8.51	3.28	12.4	12.4	26.4	9.3	5155.1	5151.92	3.2	5.23	Model uses current watershed conditions using latest NOAA 14 100
Pond 6	Ex Conditions HEC-HMS	9.01	4.58	10.6	10.6	117.5	11.1	5177.9	5175.61	2.3	4.43	Yr-24 Hr rainfall depth of 2.52 in. Pond 5 not modeled

100 Yr 24 Hr rainfall depth based on lates NOAA Atlas 14 data b - Freeboard = Elevation of Emergency Spillway - Peak Water Surface Elevatio

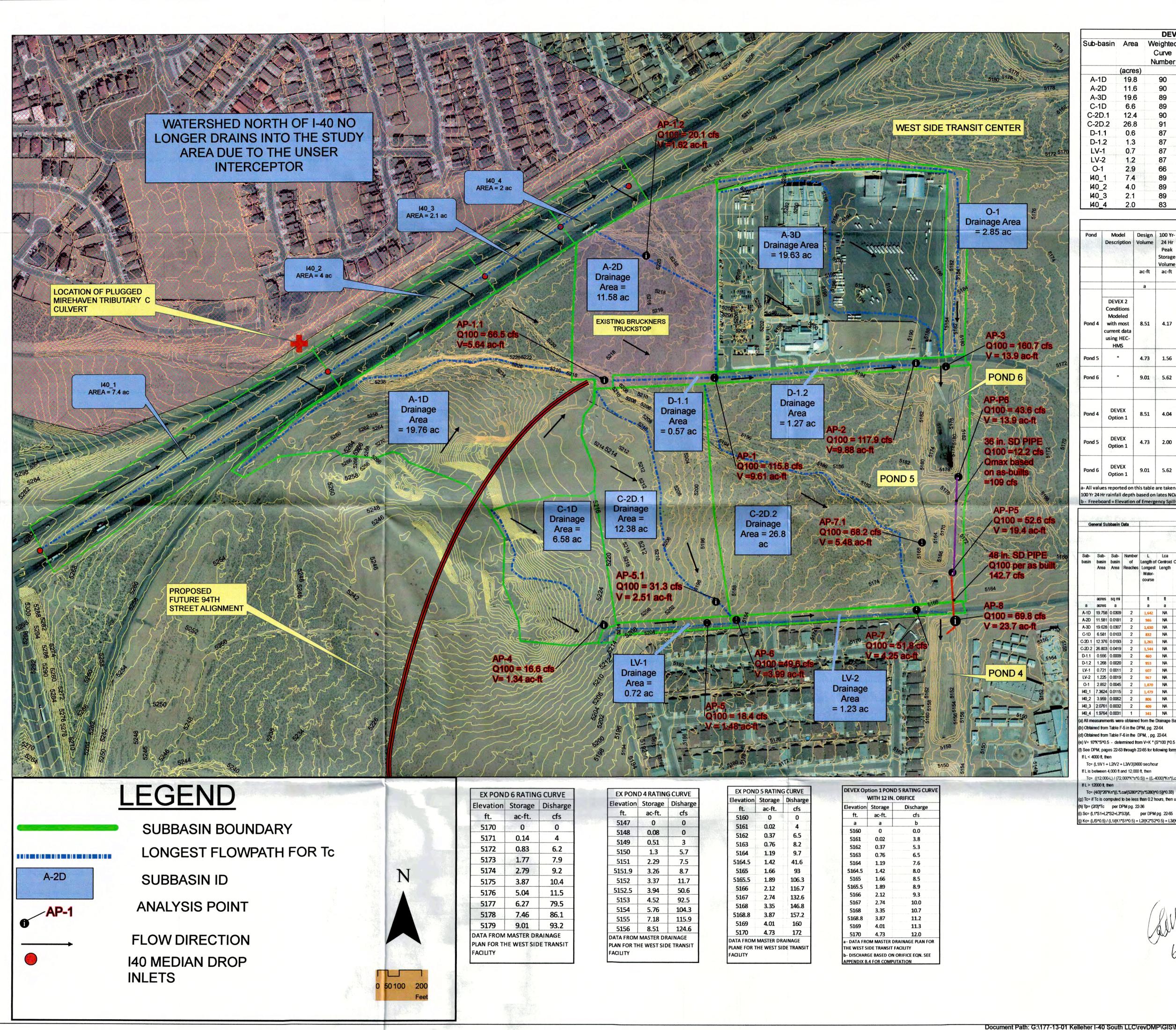
G	eneral Su	bbasin D	ata						Time of C	Concent	ration (Tc) Dat	a								Lag Tim	e Results	1	'c and	tp Ro	esults	-
									Upper R (0 t		Entire (length)						die Rea 1600-ft le				Lag Time	Lag Time	Actual Tc	Final Tc	Тр	Composite CN	Sub basii
Sub- basin	Sub- basin Area	Sub- basin Area	Number of Reaches	L Length of Longest Water- course		Sc Composite Slope	Kc Composite K	Top Elevation at beginning of water course	Bottom Elevation	Length (L ₁)	Slope (S1)	K _{N1}	K1	V ₁	Elevation at lower end of water course	Length (L ₂)	(S ₂)	K _{N2}	K ₂	V ₂							
	acres	sq mi		t	t	t/t		t	t	t	t/t			t/sec	t	t	1/t			t/sec	(hours)	(minutes)	hours	hours	hours	ailmini	-
a	acres	а		а	a	I	j	a	а	а		d	b	e	a	a		d	b	e	(k)	N. 199	f	9	h	1	a
A-1D	19.758	0.0309	2	1,642	NA	0,0292	1.4457	5258	5252	400	0.0150		1.0	1.22	5210	1,242	0.0338		2.0	3,68	0.15	9	0.18	0.20	0.13	69	A-1
A-2D	11.581	0.0181	2	986	NA	0.0144	1.2671	5221.19	5210	400	0.0280		1.0	1.67	5207	586	0.0051		2.0	1.43	0.15	9	0.18	0.20	0.13	90	A-2
A-3D	19.628	0.0307	2	1,630	NA	0.0112	1.5227	5203.2	5193	400	0.0255		1.0	1.60	5185	1,230	0.0065		2.0	1.61	0.21	13	0.28	0.28	0.19	91	A-3
C-1D	6.581	0.0103	2	832	NA	0.0433	0.7292	5256	5250	400	0.0150		0.7	0.96	5220	432	0.0694		2.0	5.27	0.15	9	0.15	0.20	0.13	63	C-1
C-2D.1	12.376	0.0193	2	1,261	NA	0.0222	1.1500	5216	5210	400	0.0150		0.7	0.86	5188	861	0.0256		2.0	3.20	0,15	9	0,20	0.20	0.14	65	C-20
C-2D.2	26.803	0.0419	2	1,544	NA	0.0233	1.6145	5206	5192	400	0.0350		1.0	1.87	5170	1,144	0.0192		2.0	2.77	0.15	9	0.17	0.20	0.13	69	C-20
D-1.1	0.556	0.0009	2	460	NA	0,0130	1.0571	5212	5207	400	0.0125	aller-	1.0	1.12	5206	60	0.0167	Cite and	2.0	2.58	0.15	9	0.11	0.20	0,13	87	D-1
D-1.2	1.268	0.0020	2	953	NA	0.0210	1.3981	5206	5198	400	0,0200	0.00	1.0	1.41	5186	553	0.0217		2.0	2.95	0.15	9	0.13	0.20	0.13	87	D-1
LV-1	0.721	0.00113	2	607	NA	0.0478	1.2222	5217	5196	400	0.0525	1	1.0	2.29	5188	207	0.0386	1	2.0	3.93	0.15	9	0.06	0.20	0.13	87	LV
LV-2	1.225	0.00191	2	967	NA	0.0248	1.4428	5188	5175	400	0.0325		1.0	1.80	5164	567	0.0194	11.84	2.0	2.79	0.15	9	0.12	0.20	0.13	87	LV-
0-1	2.852	0.00446	2	1,870	NA	0.0171	1.4742	5214	5200	400	0.0350		0.7	1.31	5182	1,470	0.0122	1.38	2.0	2.21	0.20	12	0.27	0.27	0.18	66	0-
140_1	7.3624	0.0115	2	1,479	NA	0.0176	1.0249	5276	5273.5	400	0.0063		0.7	0.55	5250	1079	0.0218		2.0	3.0	0.23	14	0.30	0.30	0.20	89	140
140_2	3.959	0.00619	2	806	NA	0.0199	1.0426	5250	5242	400	0.0200		0.7	0.99	5234	406	0.0197		2.0	3	0.15	9	0.15	0.20	0.13	89	140
140_3	2.0761	0.00324	2	409	NA	0.0171	0.6681	5234	5228	400	0.0150		0.7	0.86	5227	9	0.1111		2.0	7	0.15	9	0.13	0.20	0.13	89	140
140 4	1 9764	0.00309	1	341	NA	0.0176	0.7000	5227	5221	341	0.0176		0.7	0.93	5221	1	0.0000		2.0	0	0.15	9	0.10	0.20	0.13	83	140

(f) See DPM, pages 22-63 If L < 4000 ft, then

Tc= (L1/V1 + L2/V2 + L3/V3)3600 sec/hou If L is between 4,000 ft and 12,000 ft, then

Tc= ((12,000-L) / (72,000*K*s^0.5)) + ((L-4000)*Kn*(Lca/L)*0.33 / (552.2*s^0.165)) fignore upper reach K - it is insignificant for long lengths and assume middle reach K for this equation

lfL > 12000 ft, then Tc= (4/3)*26*Kn*((L*Lca/(5280^2*(s*5280)*0.5))*0.33) (g) Tc= if Tc is computed to be less than 0.2 hours, then use 0.2 hours DPM pg. 22-3


(g) TC= II TC IS COMPUTED TO DE JESS INTAL 0.2 HOURS, INCH USE 0.2 HOURS DFM pg. 22-37 (h) Tp= (2/3)"TC per DPM pg. 22-36 (i) SC= (L1*S1+L2*S2+L3*S3YL per DPM pg. 22-65 (j) KC= (L/S*0.5) / (L1/(K1*S1*0.5) + L2/(K2*S2*0.5) + L3/(K3*S3*0.5)) per DPM pg. 22-65

EASTERLING CONSULTANTS

I-40 SOUTH AND UNSER **DIVERSION MINI DMP** PLATE 1

EXISTING CONDITIONS DRAINAGE BASIN MAP WITH HEC-HMS INPUT AND OUTPUT SUMMARY JUNE, 2014

A second second	
CURVE	100
Disharge	1.314
cfs	
0	an size in and
4	
6.2	
7.9	
9.2	
10.4	
11.5	
79.5	
86.1	
93.2	
NAGE	
TRANSIT	

Elevation	Storage	Disharge
ft.	ac-ft.	cfs
5147	0	0
5148	0.08	0
5149	0.51	3
5150	1.3	5.7
5151	2.29	7.5
5151.9	3.26	8.7
5152	3.37	11.7
5152.5	3.94	50.6
5153	4.52	92.5
5154	5.76	104.3
5155	7.18	115.9
5156	8.51	124.6
DATA FROM PLAN FOR TH FACILITY		

	D 5 RATING	GCURVE
Elevation	Storage	Disharge
ft.	ac-ft.	cfs
5160	0	0
5161	0.02	4
5162	0.37	6.5
5163	0.76	8.2
5164	1.19	9.7
5164.5	1.42	41.6
5165	1.66	93
5165.5	1.89	106.3
5166	2.12	116.7
5167	2.74	132.6
5168	3.35	146.8
5168.8	3.87	157.2
5169	4.01	160
5170	4.73	172
DATA FROM PLANE FOR T FACILITY		

Elevation	Storage	Discharge
ft.	ac-ft.	cfs
а	а	b
5160	0	0.0
5161	0.02	3.8
5162	0.37	5.3
5163	0.76	6.5
5164	1.19	7.6
5164.5	1.42	8.0
5165	1.66	8.5
5165.5	1.89	8.9
5166	2.12	9.3
5167	2.74	10.0
5168	3.35	10.7
5168.8	3.87	11.2
5169	4.01	11.3
5170	4.73	12.0
	M MASTER DE	AINAGE PLAN FOR

		DEVE	X - Optic	on 1 Sumi	nary of l	nput and	d Output Paran	neters		
asin	Area	Weighted Curve Number	Percer	nt of Hydro	logic Soi	l Group	% Impervious	Тс	Q100	V100
-	(acres)		Α	В	С	D	%	(mins)	(cfs)	(ac-ft)
D	19.8	90	58	42	0	0	90	12	50.10	4.03
2D	11.6	90	53	47	0	0	90	12	29.35	2.36
D	19.6	89	28	72	0	0	90	17	43.14	3.99
D	6.6	89	100	0	0	0	90	12	16.64	1.34
D.1	12.4	90	86	14	0	0	90	12	31.29	2.51
D.2	26.8	91	58	42	0	0	90	12	68.17	5.48
.1	0.6	87	37	63	0	0	90	12	1.28	0.116
.2	1.3	87	37	63	0	0	90	12	2.85	0.258
-1	0.7	87	32	68	0	0	90	12	1.81	0.15
-2	1.2	87	32	68	0	0	90	12	3.07	0.25
1	2.9	66	72	27	0	0	0	16	1.00	0.08
1	7.4	89	0	100	0	0	90	18	15.65	1.49
2	4.0	89	0	100	0	0	90	12	9.99	0.80
3	2.1	89	0	100	0	0	90	12	5.24	0.42
4	2.0	83	100	0	0	0	90	12	4.89	0.39

			100.11	the second se	And the second se		Routings		1	and the	
transmission and a second	Design 'olume	100 Yr- 24 Hr Peak Storage Volume	100 Yr- 24 Hr Inflow Volume	100 Yr- 24 Hr Outflow Volume	100 Yr- 24 Hr Inflow	100 Yr- 24 Hr Outflow	Elevation of Emergency Spillway	100 Yr-24 Hr Peak Water Surface Elevation	Freeboard from Emergency Spillway	Available Storage	Comments
1	ac-ft	ac-ft	ac-ft	cfs	cfs	cfs	ft	ft	ft	ac-ft	and the second
	а						а		b		
2 ns d st ata C-	8.51	4.17	23.7	23.7	122.1	67.9	5155.1	5152.71	2.4	4.34	Watershed modeled as fully developed commercial/business site at 90% impervious, using latest NOAA 14 100-Yr- 24Hr rainfall depth of 2.52 in. Basin C-2D.2 drains to Pond 5 with existing
	4.73	1.56	19.4	19.4	78.1	70.8	5168.8	5164.8	4.0	3.17	outfall structure
	9.01	5.62	13.9	13.9	160.7	43.6	5177.9	5176.47	1.4	3.39	
1	8.51	4.04	23.7	23.7	69.9	57.9	5155.1	5152.59	2.5	4.47	Watershed modeled as fully developed commercial/business site at 90% impervious, using
1	4.73	2.00	5.48	5.5	68.2	9.1	5168.8	5165.73	3.1	2.73	latest NOAA 14 100-Yr- 24Hr rainfall depth of 2.52 in. Basin C-2D.2 drains to Pond 5 with modified
1	9.01	5.62	13.9	13.9	160.7	43.6	5177.9	5176.47	1.4	3.39	outfall restricting discharge using a 12" outlet pipe as principal spillway

100 Yr 24 Hr rainfall depth based on lates NOAA Atlas 14 data - Freeboard = Elevation of Emergency Spillway - Peak Water Surface Elevatio

2 34	is give	an secie	a.s.		ji.		DEV	EX COND	TIONS	HEC	HMSI	NPUT	PARA	METERS						32.0						
I Sul	basin I	Data	1.1		Sec. Sec.	10 9		Time of (Concent	tration (Tc) Da	ta							-	Lag Tim	e Results	Tc and tp Results				
			33					Upper R (01		Entire length						dle Rea 1600-ft le	SE			Lag Time	Lag Time	Actual Tc	Final Tc	Tp	Composite CN	Sub- basin
ub- asin rea	Sub- basin Area	Number of Reaches	L Length of Longest Water- course		Sc Composite Slope	Kc Composite K	Top Elevation at beginning of water course	Bottom Elevation	Length (L ₁)	Slope (S ₁)	K _{N1}	K1	V ₁	Elevation at lower end of water course	Length (L ₂)	Slope (S ₂)	K _{N2}	K2	Vz	7						
res	sq mi		ft	ft	ft/ft		ft	ft	t	ft/ft			fl/sec	ft	t	fl∕ft		1	fl/sec	(hours)	(minutes)	hours	hours	hours		
res	а		a	а	i	J	а	а	а		d	b	е	а	а		d	b	e	(k)		f	g	h		а
	0.0309	2	1,642	NA	0.0292	1.4457	5258	5252	400	0.0150		1.0	1.22	5210	1,242	0.0338		2.0	3.68	0.15	9	0,18	0.20	0.13	90	A-1D
.581	0.0181	2	986	NA	0.0144	1.2671	5221.19	5210	400	0.0280		1.0	1.67	5207	586	0.0051		2.0	1.43	0.15	9	0.18	0.20	0.13	90	A-2D
	0.0307	2	1,630	NA	0.0112	1.5227	5203.2	5193	400	0.0255		1.0	1.60	5185	1,230	0.0065		2.0	1.61	0.21	13	0.28	0.28	0.19	89	A-3D
	0.0103	2	832	NA	0.0433	0.9790	5256	5250	400	0.0150		1.0	1.22	5220	432	0.0694		2.0	5.27	0.15	9	0.11	0.20	0.13	89	C-1D
376	0.0193	2	1,261	NA	0.0222	1.4201	5216	5210	400	0.0150		1.0	1.22	5188	861	0.0256	- 1	2.0	3.20	0.15	9	0.17	0.20	0.13	90	C-2D.1
.803	0.0419	2	1,544	NA	0.0233	1.6145	5206	5192	400	0.0350		1.0	1.87	5170	1,144	0.0192		2.0	2.77	0.15	9	0.17	0.20	0.13	91	C-2D.2
556	0.0009	2	460	NA	0.0130	1.0571	5212	5207	400	0.0125		1.0	1.12	5206	60	0.0167		2.0	2.58	0.15	9	0.11	0.20	0.13	87	D-1.1
268	0.0020	2	953	NA	0.0210	1.3981	5206	5198	400	0.0200		1.0	1.41	5186	553	0.0217		2.0	2.95	0.15	9	0.13	0.20	0.13	87	D-1.2
	0.0011	2	607	NA	0.0478	1.2222	5217	5196	400	0.0525		1.0	2.29	5188	207	0.0386		2.0	3.93	0.15	9	0.06	0.20	0.13	87	LV-1
225	0.0019	2	967	NA	0.0248	1.4428	5188	5175	400	0.0325		1.0	1.80	5164	567	0.0194		20	2.79	0.15	9	0.12	0.20	0.13	87	LV-2
	0.0045	2	1,870	NA	0.0171	1.4742	5214	5200	400	0.0350		0.7	1.31	5182	1,470	0.0122		2.0	2.21	0.20	12	0.27	0.27	0.18	66	0-1
	0.0115	2	1,479	NA	0.0176	1.0249	5276	5273.5	400	0.0063		0.7	0.55	5250	1079	0.0218		2.0	3.0	0.23	14	0.30	0.30	0.20	89	140_1
959	0.0062	2	806	NA	0.0199	1.0426	5250	5242	400	0.0200		0.7	0.99	5234	406	0.0197		2.0	3	0.15	9	0.15	0.20	0.13	89	140_2
0761	0.0032	2	409	NA	0.0171	0.6681	5234	5228	400	0.0150		0.7	0.86	5227	9	0.1111		2.0	7	0.15	9	0.13	0.20	0.13	89	140_3
9764	0.0031	1	341	NA	0.0176	0.7000	5227	5221	341	0.0176		0.7	0.93	5221	1	0.0000		2.0	0	0.15	9	0.10	0.20	0.13	83	140_4

(ignore upper reach K - it is insignificant for long lengths and assume middle reach K for this equation)

(a) All measurements were obtained from the Drainage Basin Maps, based on Lidar contour mapping dated 2010. (b) Obtained from Table F-5 in the DPM, pg. 22-64.

(d) Obtained from Table F-6 in the DPM, , pg. 22-64.

(e) V= 10*K*S^0.5 - determined from V=K * (S*100)*0.5 (f) See DPM, pages 22-63 through 22-65 for following fo

Tc= (L1/V1 + L2/V2 + L3/V3)3600 sec/hour fLis between 4,000 ft and 12,000 ft, then

Tc= ((12,000-L) / (72,000*K*s^0.5)) + ((L-4000)*Kn*(Lca/L)^0.33 / (552,2*s^0.165))

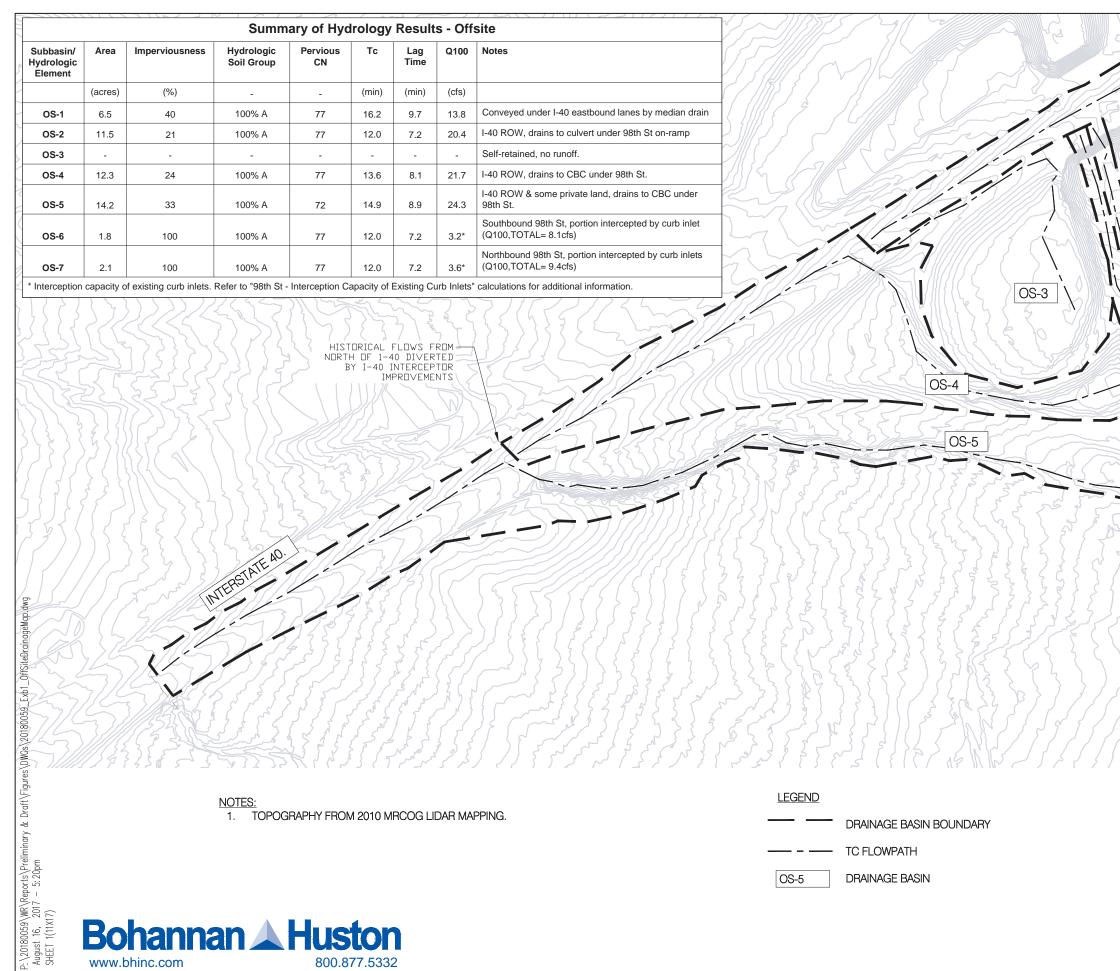
Tc= (4/3)*26*Kn*((L*Lca/(5280^2*(s*5280)^0.5))^0.33) (g) Tc= if Tc is computed to be less than 0.2 hours, then use 0.2 hours DPM pg. 22-37

(h) Tp= (2/3)*Tc per DPM pg. 22-36

(j) Kc= (L/S^0.5) / (L1/(K1*S1^0.5) + L2/(K2*S2^0.5) + L3/(K3*S3^0.5)) per DPM pg. 22-65

EASTERLING CONSULTANTS

I-40 SOUTH AND UNSER **DIVERSION MINI DMP** PLATE 2


FINAL DEVELOPED CONDITIONS DRAINAGE BASIN MAP JUNE, 2014

APPENDIX E – DIGITAL DATA (ON CD)

1. PDF of this Report

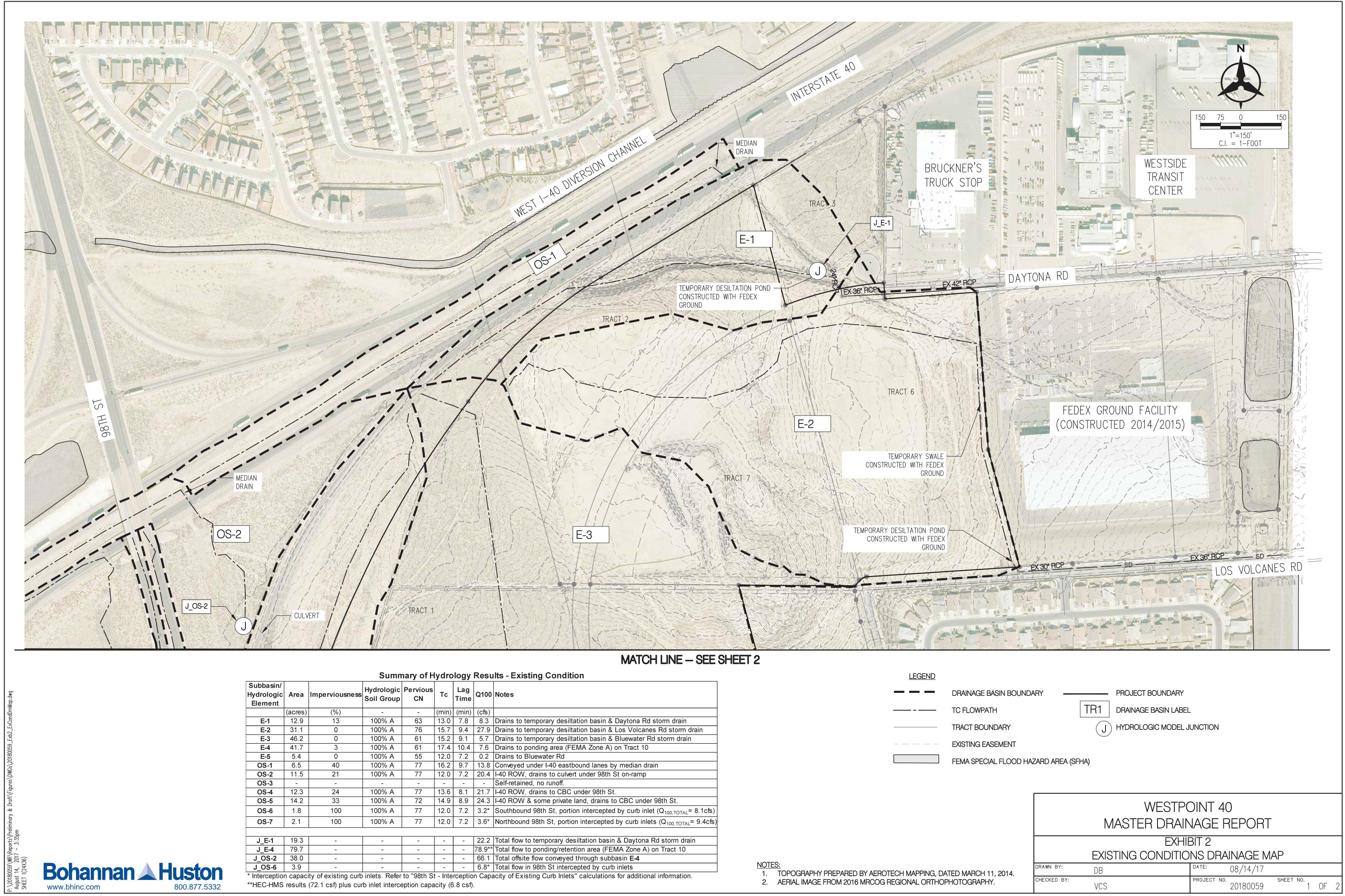
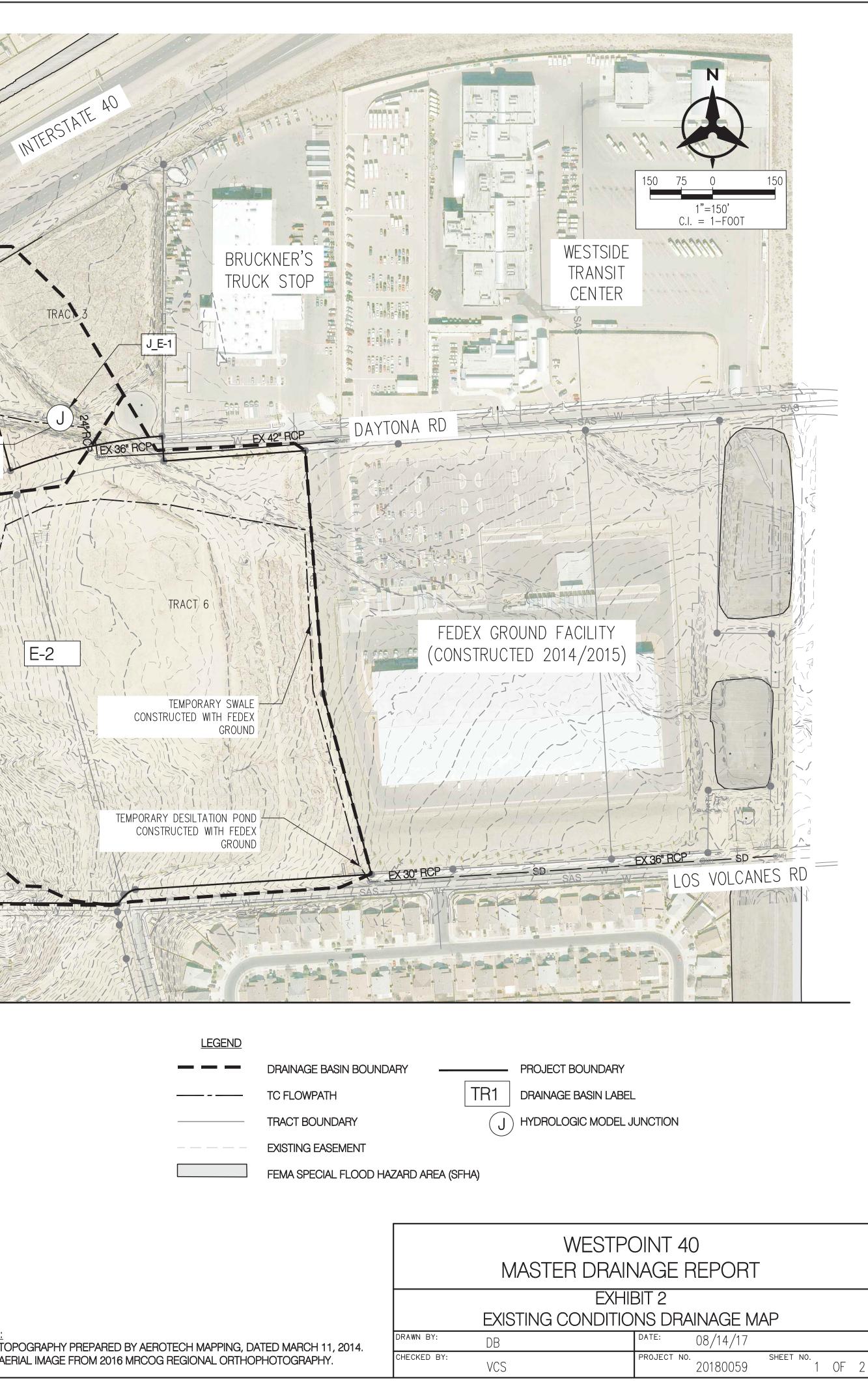
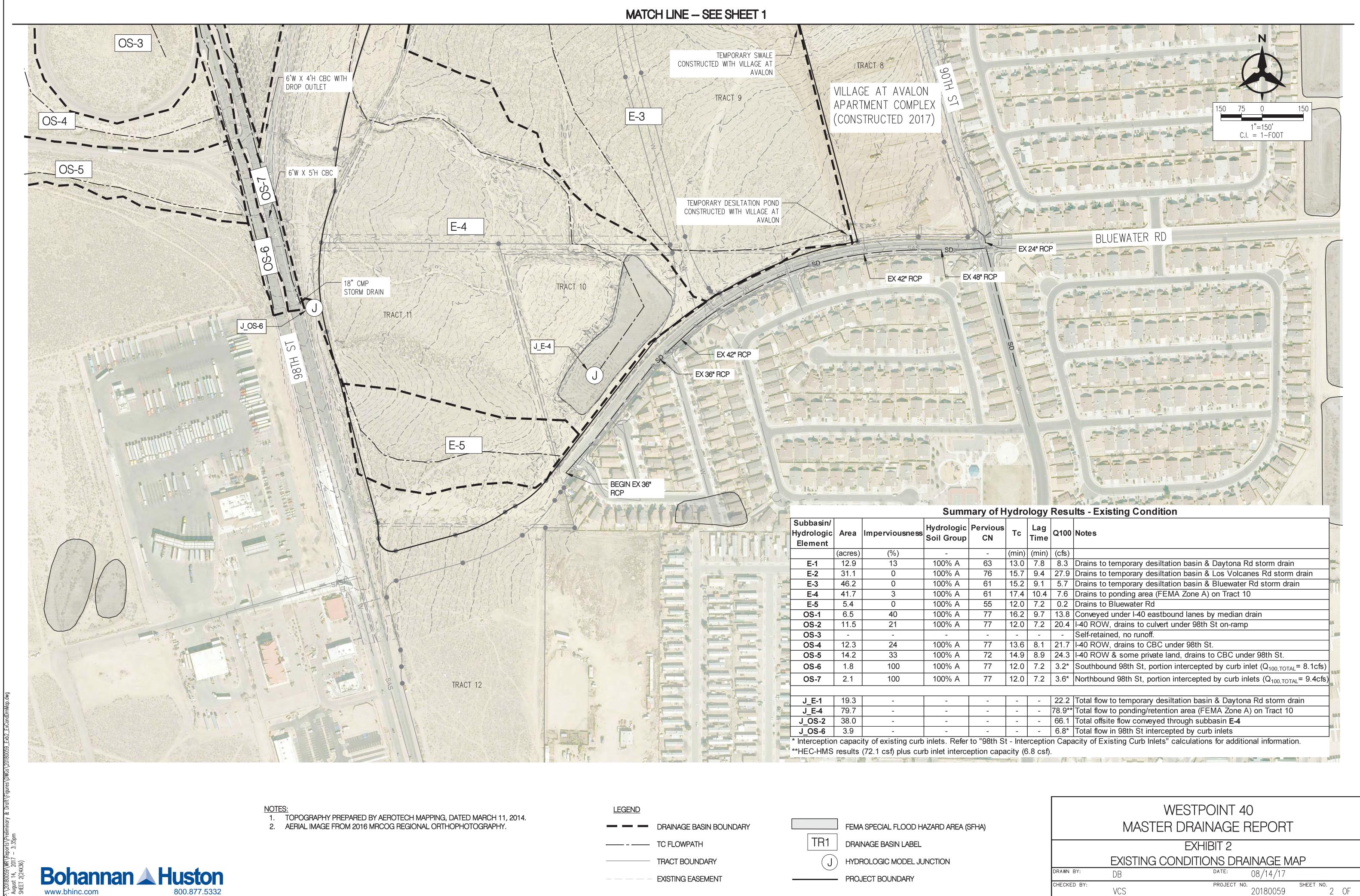
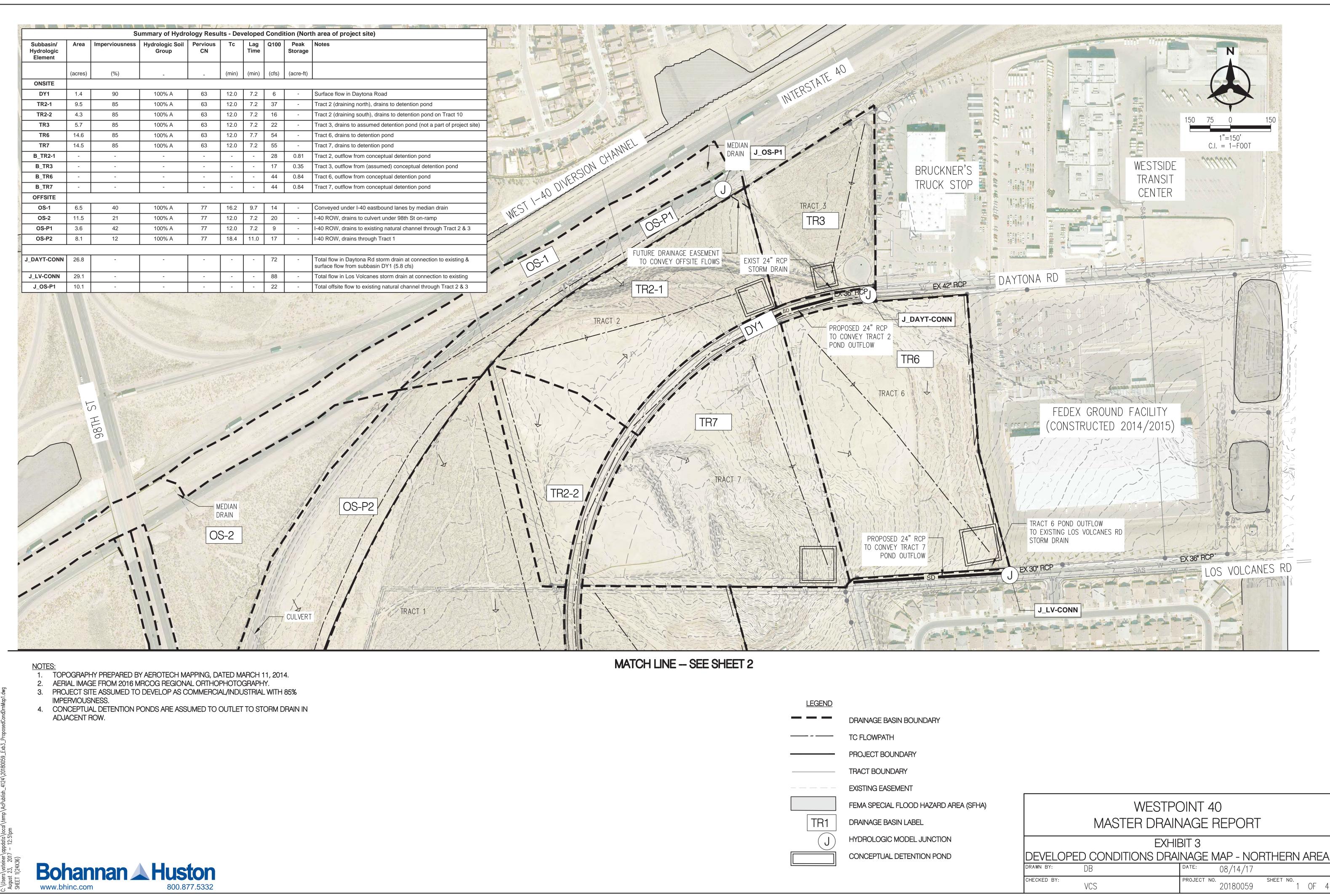

2. HEC-HMS Models

EXHIBIT 1 – OFFSITE DRAINAGE MAP


ME DIAN DRAIN	
OS-2	0 300
	1"=300' C.I. = 2-F00T
CULVERT	
6'W X 4'H CBC W DUTLET	VITH DROP
6'W X 5'H CBC	
000	E-4 / / /
18" CMP STURM I	DRAIN
B8TH ST.	
	5 - F-5
WESTPO	
EXHII OFFSITE DRA DRAWN BY: DB	NAGE MAP DATE: 08/14/17
CHECKED BY: VCS	PROJECT NO. 20180059 SHEET NO. 1 OF 1


EXHIBIT 2 – EXISTING CONDITIONS DRAINAGE MAP

	-	Soil Group	CN	Тс	Lag Time	Q100	Notes
acres)	(%)	-	-	(min)	(min)	(cfs)	
12.9	13	100% A	63	13.0	7.8	8.3	Drains to temporary desiltation basin & Daytona Rd storm drain
31.1	0	100% A	76	15.7	9.4	27.9	Drains to temporary desiltation basin & Los Volcanes Rd storm drair
46.2	0	100% A	61	15.2	9.1	5.7	Drains to temporary desiltation basin & Bluewater Rd storm drain
41.7	3	100% A	61	17.4	10.4	7.6	Drains to ponding area (FEMA Zone A) on Tract 10
5.4	0	100% A	55	12.0	7.2	0.2	Drains to Bluewater Rd
6.5	40	100% A	77	16.2	9.7	13.8	Conveyed under I-40 eastbound lanes by median drain
11.5	21	100% A	77	12.0	7.2	20.4	I-40 ROW, drains to culvert under 98th St on-ramp
-	-	-	-	-	-	-	Self-retained, no runoff.
12.3	24	100% A	77	13.6	8.1	21.7	I-40 ROW, drains to CBC under 98th St.
14.2	33	100% A	72	14.9	8.9	24.3	I-40 ROW & some private land, drains to CBC under 98th St.
1.8	100	100% A	77	12.0	7.2	3.2*	Southbound 98th St, portion intercepted by curb inlet (Q _{100,TOTAL} = 8.7
2.1	100	100% A	77	12.0	7.2	3.6*	Northbound 98th St, portion intercepted by curb inlets ($Q_{100, TOTAL}$ = 9.
19.3			_	_	_	22.2	Total flow to temporary desiltation basin & Daytona Rd storm drain
79.7	_	_	_	_	-		Total flow to ponding/retention area (FEMA Zone A) on Tract 10
38.0	-	-	-	_	-		Total offsite flow conveyed through subbasin E-4
3.9	-	-	-	-	-	6.8*	Total flow in 98th St intercepted by curb inlets
	12.9 31.1 46.2 41.7 5.4 6.5 11.5 - 12.3 14.2 1.8 2.1 19.3 79.7 38.0 3.9	$\begin{array}{c cccccc} 12.9 & 13 \\ 31.1 & 0 \\ 46.2 & 0 \\ 41.7 & 3 \\ 5.4 & 0 \\ 6.5 & 40 \\ 11.5 & 21 \\ - & - \\ 12.3 & 24 \\ 14.2 & 33 \\ 1.8 & 100 \\ 2.1 & 100 \\ \hline \\ 19.3 & - \\ 79.7 & - \\ 38.0 & - \\ 3.9 & - \\ \end{array}$	12.9 13 100% A 31.1 0 100% A 46.2 0 100% A 41.7 3 100% A 5.4 0 100% A 6.5 40 100% A 11.5 21 100% A - - - 12.3 24 100% A 14.2 33 100% A 1.8 100 100% A - - - 79.7 - - 3.9 - -	12.9 13 $100%$ A 63 31.1 0 $100%$ A 76 46.2 0 $100%$ A 61 41.7 3 $100%$ A 61 5.4 0 $100%$ A 55 6.5 40 $100%$ A 77 11.5 21 $100%$ A 77 $ 12.3$ 24 $100%$ A 77 14.2 33 $100%$ A 77 1.8 100 $100%$ A 77 2.1 100 $100%$ A 77 3.9 3.9	12.913100% A6313.031.10100% A7615.746.20100% A6115.241.73100% A6117.45.40100% A5512.06.540100% A7716.211.521100% A7712.012.324100% A7713.614.233100% A7712.02.1100100% A7712.038.03.9	12.913100% A6313.07.831.10100% A7615.79.446.20100% A6115.29.141.73100% A6117.410.45.40100% A5512.07.26.540100% A7716.29.711.521100% A7712.07.212.324100% A7713.68.114.233100% A7712.07.22.1100100% A7712.07.29.73.9	12.913100% A6313.07.88.331.10100% A7615.79.427.946.20100% A6115.29.15.741.73100% A6117.410.47.65.40100% A5512.07.20.26.540100% A7716.29.713.811.521100% A7712.07.220.412.324100% A7713.68.121.714.233100% A7712.07.23.2*2.1100100% A7712.07.23.2*9.778.9**38.078.9**



Group	CN	Тс	Time	Q100	Notes
	-	(min)	(min)	(cfs)	
% A	63	13.0	7.8	8.3	Drains to temporary desiltation basin & Daytona Rd storm drain
% A	76	15.7	9.4	27.9	Drains to temporary desiltation basin & Los Volcanes Rd storm drain
% A	61	15.2	9.1	5.7	Drains to temporary desiltation basin & Bluewater Rd storm drain
% A	61	17.4	10.4	7.6	Drains to ponding area (FEMA Zone A) on Tract 10
% A	55	12.0	7.2	0.2	Drains to Bluewater Rd
% A	77	16.2	9.7	13.8	Conveyed under I-40 eastbound lanes by median drain
% A	77	12.0	7.2	20.4	I-40 ROW, drains to culvert under 98th St on-ramp
	-	-	-	-	Self-retained, no runoff.
% A	77	13.6	8.1	21.7	I-40 ROW, drains to CBC under 98th St.
% Α	72	14.9	8.9	24.3	I-40 ROW & some private land, drains to CBC under 98th St.
% Α	77	12.0	7.2	3.2*	Southbound 98th St, portion intercepted by curb inlet ($Q_{100,TOTAL}$ = 8.1cfs)
% A	77	12.0	7.2	3.6*	Northbound 98th St, portion intercepted by curb inlets ($Q_{100,TOTAL}$ = 9.4cfs)
	-	-	-	22.2	Total flow to temporary desiltation basin & Daytona Rd storm drain
	-	-	-	78.9**	Total flow to ponding/retention area (FEMA Zone A) on Tract 10
	-	-	-	66.1	Total offsite flow conveyed through subbasin E-4
	-	-	-	6.8*	Total flow in 98th St intercepted by curb inlets

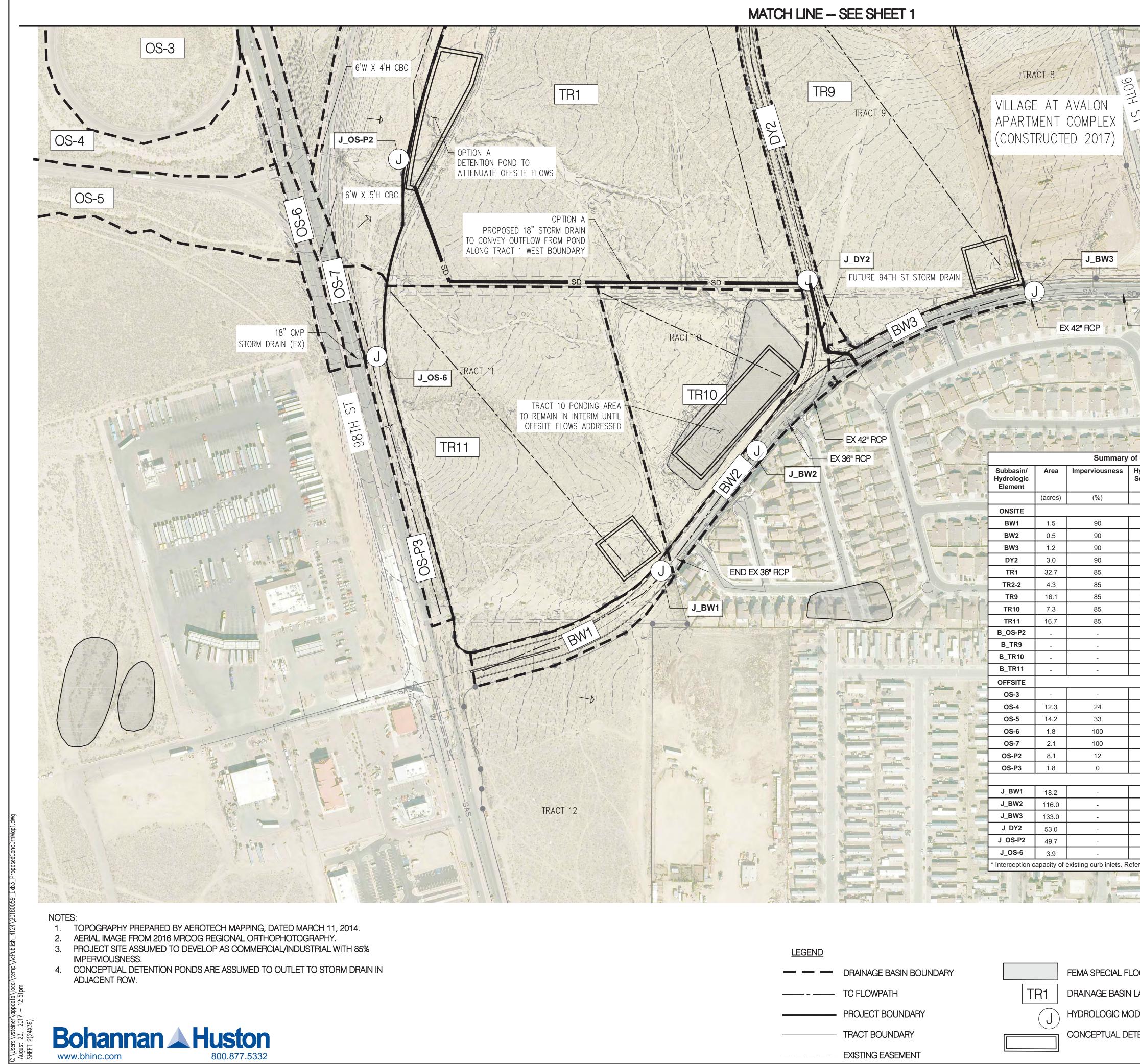

AREA (SFHA)		WESTPO MASTER DRAIN		•			
		EXHI	BIT 2				
l		EXISTING CONDITIO	NS DRA	AINAGE M	AP		
	DRAWN BY:	DB	DATE:	08/14/17			
	CHECKED BY:	VCS	PROJECT NO	20180059	sheet no. 2	OF	2

EXHIBIT 3 – DEVELOPED CONDITIONS DRAINAGE MAP

<u>LEGEND</u>	
	DRAINAGE
	TC FLOWP
	PROJECT
	TRACT BO
	EXISTING E
	FEMA SPE
TR1	DRAINAGE
	HYDROLO
	CONCEPT

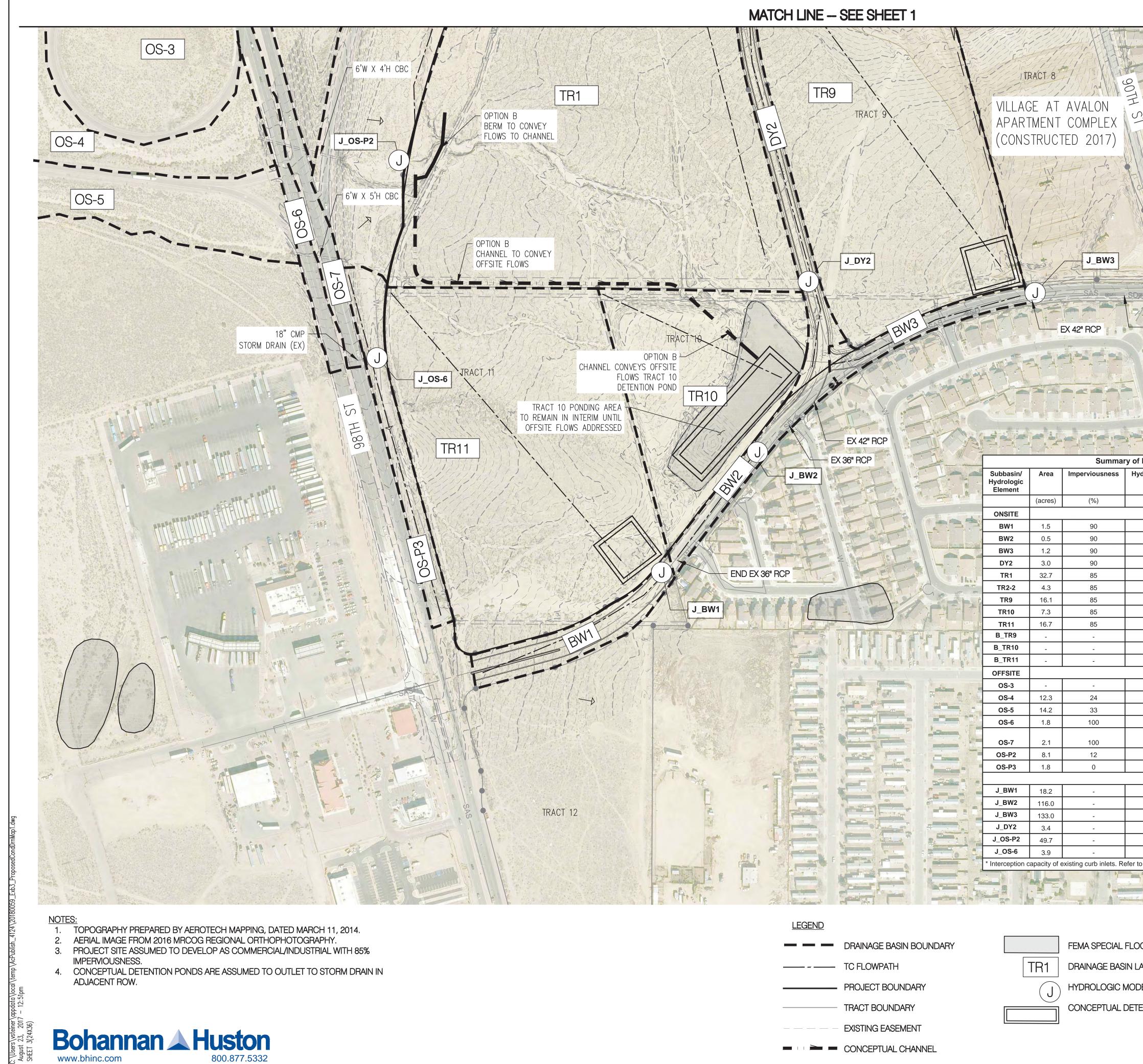
CONCEPTUAL DETENTION POND

CHECKED BY:

DR

VCS

				6	EC		
1-8	ta latia	1 1000				and the second s	
10000	(1.24A	2.2				
	T. A.		a love		6		the fait
1				2			
			S. 8	-	244		
		- m		in the	-	1"=150' C.I. = 1-FOOT	
A.C.	1			1.1			2. 10.
						Seast	
	E					State and the second state of the second state	
1		Neal A			14 10 , 6 1 H		
1 6-3							
		1.4		-	1 - Andrews	March Carles and March March	
24		line in			BLUEV	WATER RD	in and the
531		EX 24" F	RCP	AX	XA		
EX 48"		A.		1		All all the first and and a state of the	
		100			in the start of the	was have been all all a state of the second	
		-					7.87
			0	-	1.100		
		The state	14				
15mg	10						and the second sec
				-			and a start of the
		-					
	-	-			-	draining to Bluewater Rd - Option A)	
drologic il Group	Pervious CN	Тс	Lag Time	Q100	Peak Storage	Notes	-
-	-	(min)	(min)	(cfs)	(acre-ft)		-
00% A	63	12.0	7.2	6	-	Surface runoff from ROW	
00% A	63	20.2	7.2	2	-	Surface runoff from ROW, flows to future storm drain inlet in sump	The second
00% A	63	12.0	7.2	4	-	Surface runoff from ROW, continues flowing east	
00% A 00% A	63 63	12.0 27.9	7.2 16.7	4 9	- - -	· · · · ·	
00% A 00% A 00% A	63	12.0	7.2	4	-	Surface runoff from ROW, continues flowing eastSurface runoff from ROW, flows to future storm drain inlet in sumpTract 1, assumed to drain to detention pond on Tract 10Tract 2 (south), assumed to drain to detention pond on Tract 10	
00% A 00% A 00% A 00% A 00% A	63 63 63 63 63	12.0 27.9 12.0 12.0 12.0	7.2 16.7 7.2 7.2 7.2	4 9 125 16 62	- - - -	Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond	
00% A 00% A 00% A 00% A 00% A 00% A 00% A	63 63 63 63	12.0 27.9 12.0 12.0	7.2 16.7 7.2 7.2	4 9 125 16	- - -	Surface runoff from ROW, continues flowing eastSurface runoff from ROW, flows to future storm drain inlet in sumpTract 1, assumed to drain to detention pond on Tract 10Tract 2 (south), assumed to drain to detention pond on Tract 10	
00% A 00% A 00% A 00% A 00% A 00% A -	63 63 63 63 63 63 63 -	12.0 27.9 12.0 12.0 12.0 12.0 12.0 -	7.2 16.7 7.2 7.2 7.2 7.2 7.2 7.2 7.2 -	4 9 125 16 62 28 64 10	- - - - - - 2.66	Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Outflow from basin to attenuate offsite flows	
00% A 00% A 00% A 00% A 00% A 00% A	63 63 63 63 63 63 63 63	12.0 27.9 12.0 12.0 12.0 12.0	7.2 16.7 7.2 7.2 7.2 7.2 7.2 7.2 7.2	4 9 125 16 62 28 64	- - - - - -	Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond	
00% A 00% A 00% A 00% A 00% A 00% A - -	63 63 63 63 63 63 63 - -	12.0 27.9 12.0 12.0 12.0 12.0 12.0 -	7.2 16.7 7.2 7.2 7.2 7.2 7.2 7.2 7.2 -	4 9 125 16 62 28 64 10 24	- - - - - 2.66 1.51	Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Outflow from basin to attenuate offsite flows Tract 9, outflow from conceptual detention pond	
00% A 00% A 00% A 00% A 00% A 00% A - - -	63 63 63 63 63 63 - - - -	12.0 27.9 12.0 12.0 12.0 12.0 12.0 -	7.2 16.7 7.2 7.2 7.2 7.2 7.2 7.2 7.2 -	4 9 125 16 62 28 64 10 24 66	- - - - - 2.66 1.51 4.04	Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Outflow from basin to attenuate offsite flows Tract 9, outflow from conceptual detention pond Tract 10, outflow from conceptual detention pond	
00% A 00% A 00% A 00% A 00% A - - - - - - - - 00% A	63 63 63 63 63 63 63 - - - - - - 77	12.0 27.9 12.0 12.0 12.0 12.0 - - - - - - - - - - - - 13.6	7.2 16.7 7.2 7.2 7.2 7.2 7.2 7.2 - - - - - - 8.1	4 9 125 16 62 28 64 10 24 66 23 - 22	- - - - - 2.66 1.51 4.04 1.59 - -	Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Outflow from basin to attenuate offsite flows Tract 9, outflow from conceptual detention pond Tract 10, outflow from conceptual detention pond Self-retained, no runoff. I-40 ROW, drains to CBC under 98th St.	
00% A 00% A 00% A 00% A 00% A 00% A - - - - - - - 00% A	63 63 63 63 63 63 63 - - - - - -	12.0 27.9 12.0 12.0 12.0 12.0 - - - - -	7.2 16.7 7.2 7.2 7.2 7.2 7.2 7.2 7.2 - - - -	4 9 125 16 62 28 64 10 24 66 23 -	- - - - - 2.66 1.51 4.04 1.59	Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Outflow from basin to attenuate offsite flows Tract 9, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Self-retained, no runoff.	
00% A 00% A 00% A 00% A 00% A 00% A - - - - - 00% A 00% A 00% A	63 63 63 63 63 63 63 63 - - - - - 77 77 72 77 77	12.0 27.9 12.0 12.0 12.0 12.0 - - - - - - - - - - - - - - - - - - -	7.2 16.7 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7	4 9 125 16 62 28 64 10 24 66 23 - 22 24 3.2* 3.6*	- - - - - 2.66 1.51 4.04 1.59 - -	Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Outflow from basin to attenuate offsite flows Tract 9, outflow from conceptual detention pond Tract 10, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Self-retained, no runoff. I-40 ROW, drains to CBC under 98th St. I-40 ROW & some private land, drains to CBC under 98th St. Southbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 8.1cfs) Northbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 9.4cfs)	Bash.
00% A 00% A 00% A 00% A 00% A 00% A - - - - - 00% A 00% A 00% A 00% A	63 63 63 63 63 63 63 63 - - - - - 77 72 77	12.0 27.9 12.0 12.0 12.0 12.0 12.0 - - - - 13.6 14.9 12.0	7.2 16.7 7.2 7.2 7.2 7.2 7.2 7.2 7.2 - - - - - 8.1 8.9 7.2	4 9 125 16 62 28 64 10 24 66 23 - 22 24 3.2*	- - - - - 2.66 1.51 4.04 1.59 - -	Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Outflow from basin to attenuate offsite flows Tract 9, outflow from conceptual detention pond Tract 10, outflow from conceptual detention pond Self-retained, no runoff. I-40 ROW, drains to CBC under 98th St. I-40 ROW & some private land, drains to CBC under 98th St. Southbound 98th St, portion intercepted by curb inlet (Q100,TOTAL= 8.1cfs)	
D0% A D0% A	63 63 63 63 63 63 63 63 - - - - - 77 77 72 77 77 77 78	12.0 27.9 12.0 12.0 12.0 12.0 - - - - - - - - 13.6 14.9 12.0 12.0 12.0 12.0	7.2 16.7 7.2 7.2 7.2 7.2 7.2 7.2 7.2 - - - 8.1 8.9 7.2 7.2 11.0	4 9 125 16 62 28 64 10 24 66 23 - 22 24 3.2* 3.6* 17 2	- - - - - - 2.66 1.51 4.04 1.59 - - - - - - - - - - - - - - -	Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Outflow from basin to attenuate offsite flows Tract 9, outflow from conceptual detention pond Tract 10, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Self-retained, no runoff. I-40 ROW, drains to CBC under 98th St. I-40 ROW & some private land, drains to CBC under 98th St. Southbound 98th St, portion intercepted by curb inlet (Q100,TOTAL= 8.1cfs) Northbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 9.4cfs) I-40 ROW, drains through Tract 1 98th St ROW, drains in roadside ditch to future culvert under 94th St	
00% A 00% A 00% A 00% A 00% A - - - - - - 00% A 00% A 00% A 00% A	63 63 63 63 63 63 63 63 - - - - - 77 77 72 77 77 77 78	12.0 27.9 12.0 12.0 12.0 12.0 - - - - - - - - 13.6 14.9 12.0 12.0 12.0 12.0	7.2 16.7 7.2 7.2 7.2 7.2 7.2 7.2 7.2 - - - 8.1 8.9 7.2 7.2 11.0	4 9 125 16 62 28 64 10 24 66 23 - 22 24 3.2* 3.6* 17 2 2 24 3.2*	- - - - - - 2.66 1.51 4.04 1.59 - - - - - - - - - - - - - - -	Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Outflow from basin to attenuate offsite flows Tract 9, outflow from conceptual detention pond Tract 10, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Self-retained, no runoff. I-40 ROW, drains to CBC under 98th St. I-40 ROW & some private land, drains to CBC under 98th St. Southbound 98th St, portion intercepted by curb inlet (Q100,TOTAL= 8.1cfs) Northbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 9.4cfs) I-40 ROW, drains through Tract 1 98th St ROW, drains in roadside ditch to future culvert under 94th St	
00% A 00% A 00% A 00% A 00% A - - - - - - 00% A 00% A 00% A 00% A 00% A	63 63 63 63 63 63 63 63 - - - - - 77 77 72 77 77 77 78	12.0 27.9 12.0 12.0 12.0 12.0 - - - - - - - - 13.6 14.9 12.0 12.0 12.0 12.0	7.2 16.7 7.2 7.2 7.2 7.2 7.2 7.2 7.2 - - - 8.1 8.9 7.2 7.2 11.0	4 9 125 16 62 28 64 10 24 66 23 - 22 24 3.2* 3.6* 17 2	- - - - - - 2.66 1.51 4.04 1.59 - - - - - - - - - - - - - - -	Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Outflow from basin to attenuate offsite flows Tract 9, outflow from conceptual detention pond Tract 10, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Self-retained, no runoff. I-40 ROW, drains to CBC under 98th St. I-40 ROW, drains to CBC under 98th St. Southbound 98th St, portion intercepted by curb inlet (Q100,TOTAL= 8.1cfs) Northbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 9.4cfs) I-40 ROW, drains in roadside ditch to future culvert under 94th St	
D0% A D0% A	63 63 63 63 63 63 63 63 - - - - - 77 77 72 77 77 77 78	12.0 27.9 12.0 12.0 12.0 12.0 - - - - - - - - 13.6 14.9 12.0 12.0 12.0 12.0	7.2 16.7 7.2 7.2 7.2 7.2 7.2 7.2 7.2 - - - 8.1 8.9 7.2 7.2 11.0	4 9 125 16 62 28 64 10 24 66 23 - 24 66 23 - 24 3.2* 3.6* 17 2 24 3.2* 3.6* 17 2 24 3.2* 3.6* 17 2	- - - - - - - 2.66 1.51 4.04 1.59 - - - - - - - - - - - - - - - - - - -	Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Outflow from basin to attenuate offsite flows Tract 9, outflow from conceptual detention pond Tract 10, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Self-retained, no runoff. I-40 ROW, drains to CBC under 98th St. I-40 ROW, drains to CBC under 98th St. I-40 ROW & some private land, drains to CBC under 98th St. Southbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 8.1cfs) Northbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 9.4cfs) I-40 ROW, drains through Tract 1 98th St ROW, drains in roadside ditch to future culvert under 94th St Combination of surface flow & outflow from detention basin Total flow in Bluewater Rd storm drain at 94th St intersection Total flow in 94th St storm drain @ Tract 1 south boundary	
00% A 00% A 00% A 00% A 00% A 00% A - - - - - 00% A 00% A 00% A 00% A 00% A 00% A 00% A	63 63 63 63 63 63 63 63 - - - - - 77 77 72 77 77 77 78	12.0 27.9 12.0 12.0 12.0 12.0 - - - - - - - - 13.6 14.9 12.0 12.0 12.0 12.0	7.2 16.7 7.2 7.2 7.2 7.2 7.2 7.2 7.2 - - - 8.1 8.9 7.2 7.2 11.0	4 9 125 16 62 28 64 10 24 66 23 - 24 66 23 - 22 24 3.2* 3.6* 17 2 24 3.2* 3.6* 17 2 26 107 132	- - - - - - - 2.66 1.51 4.04 1.59 - - - - - - - - - - - - - - - - - - -	Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Outflow from basin to attenuate offsite flows Tract 9, outflow from conceptual detention pond Tract 10, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Self-retained, no runoff. I-40 ROW, drains to CBC under 98th St. I-40 ROW, drains to CBC under 98th St. Southbound 98th St, portion intercepted by curb inlet (Q100,TOTAL= 8.1cfs) Northbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 9.4cfs) I-40 ROW, drains in roadside ditch to future culvert under 94th St	
00% A 00% A 00% A 00% A 00% A 00% A - - - - - 00% A 00% A 00% A 00% A 00% A 00% A 00% A 00% A 00% A 00% A - - -	63 63 63 63 63 63 63 63 63 63 63 63 63 63 77 77 77 77 77 78 79 - <td>12.0 27.9 12.0 12.0 12.0 12.0 - - - - - - - - - - - - - - - - - - -</td> <td>7.2 16.7 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7</td> <td>4 9 125 16 62 28 64 10 24 66 23 - 22 24 3.2* 3.6* 17 22 24 3.2* 3.6* 17 2 26 107 132 26 107 132 15 82 6.8*</td> <td>- - - - - - - 2.66 1.51 4.04 1.59 - - - - - - - - - - - - - - - - - - -</td> <td>Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond Tract 10, flows to detention pond Outflow from basin to attenuate offsite flows Tract 9, outflow from conceptual detention pond Tract 11, flows from conceptual detention pond Tract 11, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Self-retained, no runoff. I-40 ROW, drains to CBC under 98th St. I-40 ROW & some private land, drains to CBC under 98th St. Southbound 98th St, portion intercepted by curb inlet (Q100,TOTAL= 8.1cfs) Northbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 9.4cfs) I-40 ROW, drains through Tract 1 98th St ROW, drains in roadside ditch to future culvert under 94th St Combination of surface flow & outflow from detention basin Total flow in Bluewater Rd storm drain at 94th St intersection Total flow in 94th St storm drain @ Tract 1 south boundary Total offsite flow at Tract 1 west boundary</td> <td></td>	12.0 27.9 12.0 12.0 12.0 12.0 - - - - - - - - - - - - - - - - - - -	7.2 16.7 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7	4 9 125 16 62 28 64 10 24 66 23 - 22 24 3.2* 3.6* 17 22 24 3.2* 3.6* 17 2 26 107 132 26 107 132 15 82 6.8*	- - - - - - - 2.66 1.51 4.04 1.59 - - - - - - - - - - - - - - - - - - -	Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond Tract 10, flows to detention pond Outflow from basin to attenuate offsite flows Tract 9, outflow from conceptual detention pond Tract 11, flows from conceptual detention pond Tract 11, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Self-retained, no runoff. I-40 ROW, drains to CBC under 98th St. I-40 ROW & some private land, drains to CBC under 98th St. Southbound 98th St, portion intercepted by curb inlet (Q100,TOTAL= 8.1cfs) Northbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 9.4cfs) I-40 ROW, drains through Tract 1 98th St ROW, drains in roadside ditch to future culvert under 94th St Combination of surface flow & outflow from detention basin Total flow in Bluewater Rd storm drain at 94th St intersection Total flow in 94th St storm drain @ Tract 1 south boundary Total offsite flow at Tract 1 west boundary	
00% A 00% A 00% A 00% A 00% A 00% A - - - - - 00% A 00% A 00% A 00% A 00% A 00% A 00% A 00% A - - - - -	63 63 63 63 63 63 63 63 63 63 63 63 63 63 77 77 77 77 77 78 79 - <td>12.0 27.9 12.0 12.0 12.0 12.0 - - - - - - - - - - - - - - - - - - -</td> <td>7.2 16.7 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7</td> <td>4 9 125 16 62 28 64 10 24 66 23 - 22 24 3.2* 3.6* 17 22 24 3.2* 3.6* 17 2 26 107 132 26 107 132 15 82 6.8*</td> <td>- - - - - - - 2.66 1.51 4.04 1.59 - - - - - - - - - - - - - - - - - - -</td> <td>Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Outflow from basin to attenuate offsite flows Tract 9, outflow from conceptual detention pond Tract 10, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Self-retained, no runoff. I-40 ROW, drains to CBC under 98th St. I-40 ROW, drains to CBC under 98th St. Southbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 8.1cfs) Northbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 9.4cfs) I-40 ROW, drains through Tract 1 98th St ROW, drains in roadside ditch to future culvert under 94th St Combination of surface flow & outflow from detention basin Total flow in Bluewater Rd storm drain at 94th St intersection Total flow in 94th St storm drain @ Tract 1 south boundary Total offsite flow at Tract 1 west boundary Total flow in 98th St intercepted by curb inlets</td> <td></td>	12.0 27.9 12.0 12.0 12.0 12.0 - - - - - - - - - - - - - - - - - - -	7.2 16.7 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7	4 9 125 16 62 28 64 10 24 66 23 - 22 24 3.2* 3.6* 17 22 24 3.2* 3.6* 17 2 26 107 132 26 107 132 15 82 6.8*	- - - - - - - 2.66 1.51 4.04 1.59 - - - - - - - - - - - - - - - - - - -	Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Outflow from basin to attenuate offsite flows Tract 9, outflow from conceptual detention pond Tract 10, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Self-retained, no runoff. I-40 ROW, drains to CBC under 98th St. I-40 ROW, drains to CBC under 98th St. Southbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 8.1cfs) Northbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 9.4cfs) I-40 ROW, drains through Tract 1 98th St ROW, drains in roadside ditch to future culvert under 94th St Combination of surface flow & outflow from detention basin Total flow in Bluewater Rd storm drain at 94th St intersection Total flow in 94th St storm drain @ Tract 1 south boundary Total offsite flow at Tract 1 west boundary Total flow in 98th St intercepted by curb inlets	
00% A 00% A 00% A 00% A 00% A 00% A - - - - - 00% A 00% A 00% A 00% A 00% A 00% A 00% A 00% A - - - - -	63 63 63 63 63 63 63 63 63 63 63 63 63 63 77 77 77 77 77 78 79 - <td>12.0 27.9 12.0 12.0 12.0 12.0 - - - - - - - - - - - - - - - - - - -</td> <td>7.2 16.7 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7</td> <td>4 9 125 16 62 28 64 10 24 66 23 - 22 24 3.2* 3.6* 17 22 24 3.2* 3.6* 17 2 26 107 132 26 107 132 15 82 6.8*</td> <td>- - - - - - - 2.66 1.51 4.04 1.59 - - - - - - - - - - - - - - - - - - -</td> <td>Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Outflow from basin to attenuate offsite flows Tract 9, outflow from conceptual detention pond Tract 10, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Self-retained, no runoff. I-40 ROW, drains to CBC under 98th St. I-40 ROW, drains to CBC under 98th St. Southbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 8.1cfs) Northbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 9.4cfs) I-40 ROW, drains through Tract 1 98th St ROW, drains in roadside ditch to future culvert under 94th St Combination of surface flow & outflow from detention basin Total flow in Bluewater Rd storm drain at 94th St intersection Total flow in 94th St storm drain @ Tract 1 south boundary Total offsite flow at Tract 1 west boundary Total flow in 98th St intercepted by curb inlets</td> <td></td>	12.0 27.9 12.0 12.0 12.0 12.0 - - - - - - - - - - - - - - - - - - -	7.2 16.7 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7	4 9 125 16 62 28 64 10 24 66 23 - 22 24 3.2* 3.6* 17 22 24 3.2* 3.6* 17 2 26 107 132 26 107 132 15 82 6.8*	- - - - - - - 2.66 1.51 4.04 1.59 - - - - - - - - - - - - - - - - - - -	Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Outflow from basin to attenuate offsite flows Tract 9, outflow from conceptual detention pond Tract 10, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Self-retained, no runoff. I-40 ROW, drains to CBC under 98th St. I-40 ROW, drains to CBC under 98th St. Southbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 8.1cfs) Northbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 9.4cfs) I-40 ROW, drains through Tract 1 98th St ROW, drains in roadside ditch to future culvert under 94th St Combination of surface flow & outflow from detention basin Total flow in Bluewater Rd storm drain at 94th St intersection Total flow in 94th St storm drain @ Tract 1 south boundary Total offsite flow at Tract 1 west boundary Total flow in 98th St intercepted by curb inlets	
00% A 00% A 00% A 00% A 00% A 00% A - - - - - 00% A 00% A 00% A 00% A 00% A 00% A 00% A 00% A - - - - -	63 63 63 63 63 63 63 63 63 63 63 63 63 63 77 77 77 77 77 78 79 - <td>12.0 27.9 12.0 12.0 12.0 12.0 - - - - - - - - - - - - - - - - - - -</td> <td>7.2 16.7 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7</td> <td>4 9 125 16 62 28 64 10 24 66 23 - 22 24 3.2* 3.6* 17 22 24 3.2* 3.6* 17 2 26 107 132 26 107 132 15 82 6.8*</td> <td>- - - - - - - 2.66 1.51 4.04 1.59 - - - - - - - - - - - - - - - - - - -</td> <td>Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 3, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Outflow from basin to attenuate offsite flows Tract 9, outflow from conceptual detention pond Tract 10, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Self-retained, no runoff. I-40 ROW, drains to CBC under 98th St. I-40 ROW, drains to CBC under 98th St. Southbound 98th St, portion intercepted by curb inlet (Q100,TOTAL= 8.1cfs) Northbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 9.4cfs) I-40 ROW, drains in roadside ditch to future culvert under 94th St Combination of surface flow & outflow from detention basin Total flow in Bluewater Rd storm drain at 94th St intersection Total flow in Bluewater Rd storm drain, including Tract 9 pond outflow Total flow in 98th St intercepted by curb inlets cons for additional information.</td> <td></td>	12.0 27.9 12.0 12.0 12.0 12.0 - - - - - - - - - - - - - - - - - - -	7.2 16.7 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7	4 9 125 16 62 28 64 10 24 66 23 - 22 24 3.2* 3.6* 17 22 24 3.2* 3.6* 17 2 26 107 132 26 107 132 15 82 6.8*	- - - - - - - 2.66 1.51 4.04 1.59 - - - - - - - - - - - - - - - - - - -	Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 3, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Outflow from basin to attenuate offsite flows Tract 9, outflow from conceptual detention pond Tract 10, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Self-retained, no runoff. I-40 ROW, drains to CBC under 98th St. I-40 ROW, drains to CBC under 98th St. Southbound 98th St, portion intercepted by curb inlet (Q100,TOTAL= 8.1cfs) Northbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 9.4cfs) I-40 ROW, drains in roadside ditch to future culvert under 94th St Combination of surface flow & outflow from detention basin Total flow in Bluewater Rd storm drain at 94th St intersection Total flow in Bluewater Rd storm drain, including Tract 9 pond outflow Total flow in 98th St intercepted by curb inlets cons for additional information.	
00% A 00% A	63 63 63 63 63 63 63 63 63 63 63 63 63 63 77 77 77 77 77 78 79 - <td>12.0 27.9 12.0 12.0 12.0 12.0 12.0 12.0 - - - - - 13.6 14.9 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0</td> <td>7.2 16.7 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7</td> <td>4 9 125 16 62 28 64 10 24 66 23 - 22 24 3.2* 3.6* 17 22 24 3.2* 3.6* 17 2 26 107 132 26 107 132 15 82 6.8*</td> <td>- - - - - - - 2.66 1.51 4.04 1.59 - - - - - - - - - - - - - - - - - - -</td> <td>Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 3, flows to detention pond Tract 10, flows to detention pond Outflow from basin to attenuate offsite flows Tract 9, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Self-retained, no runoff. 1-40 ROW, drains to CBC under 98th St. 1-40 ROW, drains to CBC under 98th St. Southbound 98th St, portion intercepted by curb inlet (Q100,TOTAL= 8.1cfs) Northbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 9.4cfs) 1-40 ROW, drains in roadside ditch to future culvert under 94th St Combination of surface flow & outflow from detention basin Total flow in Bluewater Rd storm drain at 94th St intersection Total flow in Bluewater Rd storm drain, including Tract 9 pond outflow Total offsite flow at Tract 1 west boundary Total offsite flow at Tract 1 west boundary Total offsite flow at Tract 1 west boundary Total flow in 98th St intercepted by curb inlets ons for additional information. WESTPOINT 40</td> <td></td>	12.0 27.9 12.0 12.0 12.0 12.0 12.0 12.0 - - - - - 13.6 14.9 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	7.2 16.7 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7	4 9 125 16 62 28 64 10 24 66 23 - 22 24 3.2* 3.6* 17 22 24 3.2* 3.6* 17 2 26 107 132 26 107 132 15 82 6.8*	- - - - - - - 2.66 1.51 4.04 1.59 - - - - - - - - - - - - - - - - - - -	Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 3, flows to detention pond Tract 10, flows to detention pond Outflow from basin to attenuate offsite flows Tract 9, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Self-retained, no runoff. 1-40 ROW, drains to CBC under 98th St. 1-40 ROW, drains to CBC under 98th St. Southbound 98th St, portion intercepted by curb inlet (Q100,TOTAL= 8.1cfs) Northbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 9.4cfs) 1-40 ROW, drains in roadside ditch to future culvert under 94th St Combination of surface flow & outflow from detention basin Total flow in Bluewater Rd storm drain at 94th St intersection Total flow in Bluewater Rd storm drain, including Tract 9 pond outflow Total offsite flow at Tract 1 west boundary Total offsite flow at Tract 1 west boundary Total offsite flow at Tract 1 west boundary Total flow in 98th St intercepted by curb inlets ons for additional information. WESTPOINT 40	
00% A 00% A	63 77 77 78 79 - - - - - - - - - - - - - - - - - - <t< td=""><td>12.0 27.9 12.0 12.0 12.0 12.0 12.0 12.0 - - - - - 13.6 14.9 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0</td><td>7.2 16.7 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7</td><td>4 9 125 16 62 28 64 10 24 66 23 - 22 24 3.2* 3.6* 17 22 24 3.2* 3.6* 17 2 26 107 132 26 107 132 15 82 6.8*</td><td>- - - - - - - 2.66 1.51 4.04 1.59 - - - - - - - - - - - - - - - - - - -</td><td>Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond Tract 10, flows to detention pond Outflow from basin to attenuate offsite flows Tract 9, outflow from conceptual detention pond Tract 10, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Self-retained, no runoff. I-40 ROW, drains to CBC under 98th St. I-40 ROW, drains to CBC under 98th St. Southbound 98th St, portion intercepted by curb inlet (Q100,TOTAL= 8.1cfs) Northbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 9.4cfs) I-40 ROW, drains in roadside ditch to future culvert under 94th St Combination of surface flow & outflow from detention basin Total flow in Bluewater Rd storm drain at 94th St intersection Total flow in 98th St intercepted by curb inlets Sons for additional information. WESTPOINT 40 MASTER DRAINAGE REPORT</td><td></td></t<>	12.0 27.9 12.0 12.0 12.0 12.0 12.0 12.0 - - - - - 13.6 14.9 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	7.2 16.7 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7	4 9 125 16 62 28 64 10 24 66 23 - 22 24 3.2* 3.6* 17 22 24 3.2* 3.6* 17 2 26 107 132 26 107 132 15 82 6.8*	- - - - - - - 2.66 1.51 4.04 1.59 - - - - - - - - - - - - - - - - - - -	Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond Tract 10, flows to detention pond Outflow from basin to attenuate offsite flows Tract 9, outflow from conceptual detention pond Tract 10, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Self-retained, no runoff. I-40 ROW, drains to CBC under 98th St. I-40 ROW, drains to CBC under 98th St. Southbound 98th St, portion intercepted by curb inlet (Q100,TOTAL= 8.1cfs) Northbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 9.4cfs) I-40 ROW, drains in roadside ditch to future culvert under 94th St Combination of surface flow & outflow from detention basin Total flow in Bluewater Rd storm drain at 94th St intersection Total flow in 98th St intercepted by curb inlets Sons for additional information. WESTPOINT 40 MASTER DRAINAGE REPORT	
00% A 00% A	63 63 63 63 63 63 63 63 63 63	12.0 27.9 12.0 12.0 12.0 12.0 12.0 12.0 - - - - - 13.6 14.9 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	7.2 16.7 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7	4 9 125 16 62 28 64 10 24 66 23 - 22 24 3.2* 3.6* 17 2 24 3.2* 3.6* 17 2 26 107 132 15 82 6.8* 9 Curb Inle	- - - - - - 2.66 1.51 4.04 1.59 - - - - - - - - - - - - - - - - - - -	Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 3, flows to detention pond Tract 10, flows to detention pond Outflow from basin to attenuate offsite flows Tract 9, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Self-retained, no runoff. 1-40 ROW, drains to CBC under 98th St. 1-40 ROW, drains to CBC under 98th St. Southbound 98th St, portion intercepted by curb inlet (Q100,TOTAL= 8.1cfs) Northbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 9.4cfs) 1-40 ROW, drains in roadside ditch to future culvert under 94th St Combination of surface flow & outflow from detention basin Total flow in Bluewater Rd storm drain at 94th St intersection Total flow in Bluewater Rd storm drain, including Tract 9 pond outflow Total offsite flow at Tract 1 west boundary Total offsite flow at Tract 1 west boundary Total offsite flow at Tract 1 west boundary Total flow in 98th St intercepted by curb inlets ons for additional information. WESTPOINT 40	

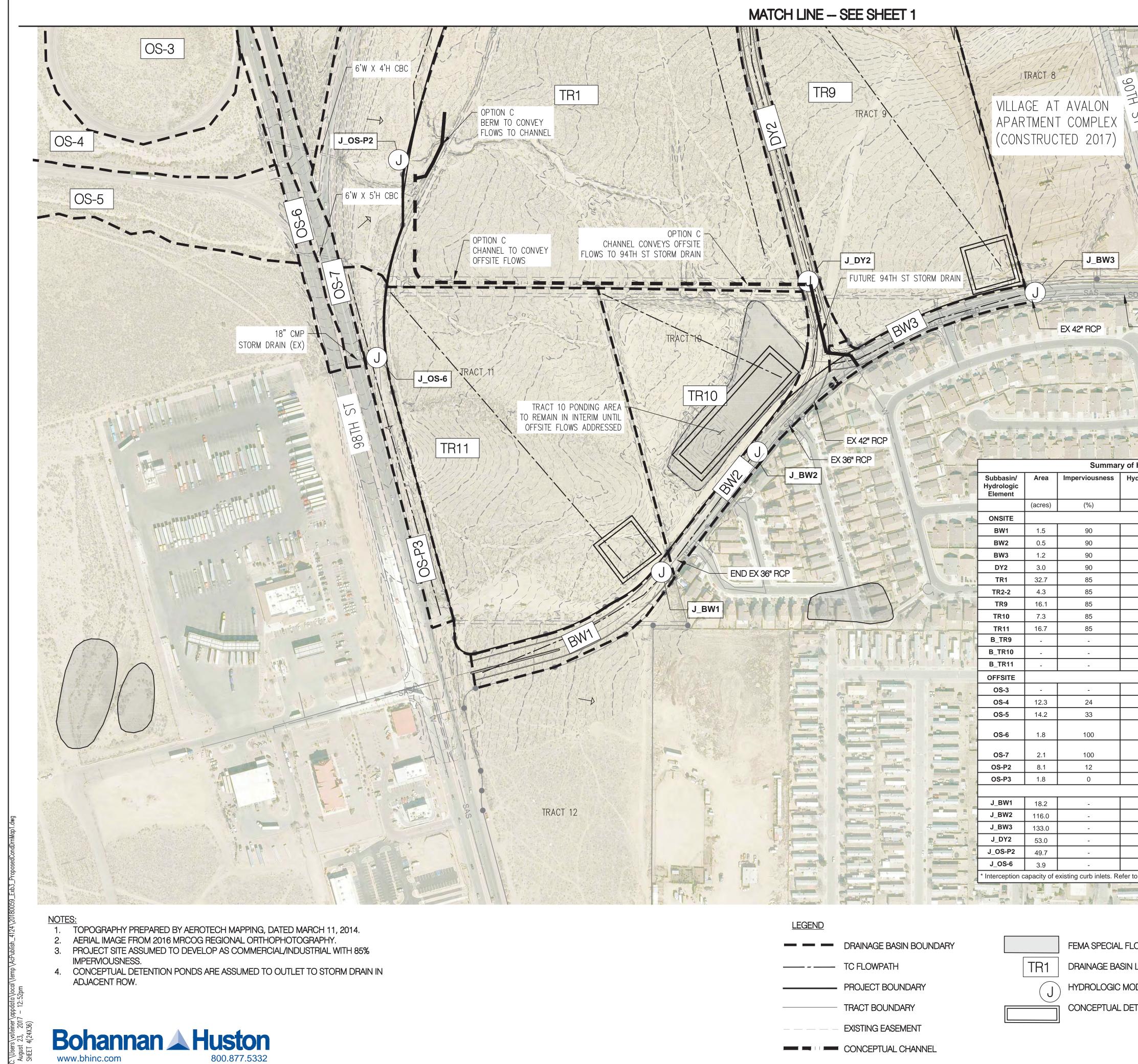

PROJECT NO.

08/14/17

20180059

SHEET NO.

2 OF



VCS

	20		6	3			
		11000 01	198 25				
		The start of			1		and.
		in i Gasti (Cit					State of the
TIME					1.1.1	150 75 0 150	
TTT .	- 1 M	Pi Ti	6. Bland			1"=150'	
A COL				ent d		C.I. = 1-FOOT	
	1 书			71 - 0 - - 11 - 1			8.
T. F.		6					
B. IE	1		4		In the P	- Charles and a start of the st	
	A Co		er Varia	1. 1904	a thi		E.
			36				
- YAKA		10		1			
CALLEMH C	FX	24" RCF		B	LUEWA	TER RD	6
A							
	P	19 1:	1	1	1.		
			6.0		atin' anis	Sand and and and and and	
1			15.				
		16	ALL TO O				
		114					
1 Sant	SD		-BR	1.1			Contrast Internet
The Party			1		-		
74			-	4.			
		i				ining to Bluewater Rd - Option B)	
ydrologic Soil Group	Pervious CN	Тс	Lag Time	Q100	Peak Storage	Notes	a se
-	-	(min)	(min)	(cfs)	(acre-ft)		-
4000/ 4		40.0	7.0				
100% A 100% A	63 63	12.0 20.2	7.2 7.2	6 2	-	Surface runoff from ROW Surface runoff from ROW, flows to future storm drain inlet in sump	
100% A	63	12.0	7.2	4	-	Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump	a la fa
100% A 100% A	63 63	27.9 12.0	16.7 7.2	9 125	-	Tract 1, assumed to drain to detention pond on Tract 10	
100% A	63	12.0	7.2	16	-	Tract 2 (south), assumed to drain to detention pond on Tract 10	
100% A 100% A	63 63	12.0 12.0	7.2 7.2	62 28	-	Tract 9, flows to detention pond Tract 10, flows to detention pond	
100% A	63	12.0	7.2	64	-	Tract 11, flows to detention pond	
-	-	-	-	24 66	1.51 6.70	Tract 9, outflow from conceptual detention pond Tract 10, outflow from conceptual detention pond	
-	-	-	-	23	1.59	Tract 11, outflow from conceptual detention pond	
						Colf rotained as mucht	
- 100% A	- 77	- 13.6	- 8.1	- 22	-	Self-retained, no runoff. I-40 ROW, drains to CBC under 98th St.	
100% A	72	14.9	8.9	24	-	I-40 ROW & some private land, drains to CBC under 98th St.	
100% A	77	12.0	7.2	3.2*	-	Southbound 98th St, portion intercepted by curb inlet (Q100,TOTAL= 8.1cfs Northbound 98th St, portion intercepted by curb inlets (Q100,TOTAL=	;)
100% A	77	12.0	7.2	3.6*	-	9.4cfs)	
100% A 100% A	78 79	18.4 17.6	11.0 10.5	17 2	-	I-40 ROW, drains through Tract 1 98th St ROW, drains in roadside ditch to future culvert under 94th St	
	I	i		<u>.</u>	I		
-	-	-	-	26 97	-	Combination of surface flow & outflow from detention basin Total flow in Bluewater Rd storm drain at 94th St intersection	
-	-	-	-	122	-	Total flow in Bluewater Rd storm drain, including Tract 9 pond outflow	
-	-	-	-	9	-	Total flow in 94th St storm drain @ Tract 1 south boundary Total offsite flow at Tract 1 west boundary	IT V
-	-	-	-	82 6.8*	-	Total offsite flow at Tract 1 west boundary Total flow in 98th St intercepted by curb inlets	
to "98th St - Inter	ception Capa	city of Exi	sting Curb	o Inlets" ca	lculations for	additional information.	
		1.		He AT	10 F		
	THE PLANT OF THE			AR'S			
OOD HAZARD	AREA (SFH	14)				WESTPOINT 40	
LABEL					K 4		
DEL JUNCTIO	N				M	ASTER DRAINAGE REPORT	
TENTION PON	D					EXHIBIT 3	
						CONDITIONS DRAINAGE MAP - OPTIC	DN B
			DRAWN B		DB	DATE: 08/14/17	
			CHECKED	BY:		PROJECT NO. SHEET N	0.

20180059

3 OF 4

DRAINAGE BASIN LABEL HYDROLOGIC MODEL JUNCTION CONCEPTUAL DETENTION POND

			R. Halle	1.001 3			
	A W		Do . The Dist	13	1.4	and a state of the	a sale in the
		The second second	10.2	-		1 ["] =150'	ANS AND
A CONTRACT	And the second	5-1		and f	P.F.	C.I. = 1 - FOOT	
11.		F. L.	1	The Mark			
FILE	1	6					
		(i.	. h. i		n m le i		
C-3	1 Co			a her	in Settle		pa_
	1 A	12	PE	4. 4			
Yay		1		1 - Car		ATER RD	e
11	E	EX 24" RC	P		JLUE Wr	ATER ND	(
3300		29					
EX 48" R	CP	. 19 1	16	1000	1.6.6.		
			le				
			Lt.				-
		91	-	In I			
		C. A			· . · · · ·		
19-	100	A		at the			the second
and a state					inthe l		A La Contra
			To P	RM 4 -			770
drology R	esults - De	veloped	Conditio	on (Proje	ct site dra	ining to Bluewater Rd - Option C)	
logic Soil iroup	Pervious	Тс	Lag	Q100	Peak		226
	CN		Time	QIUU	Storage	Notes	a de
		(min)		(cfs)	Storage	Notes	
		(min)	Time			Notes	
	- 63	12.0	Time (min) 7.2	(cfs) 6	Storage (acre-ft)	Surface runoff from ROW	
00% A	-		Time (min)	(cfs)	Storage		
00% A 00% A 00% A	- 63 63	12.0 20.2 12.0 27.9	Time (min) 7.2 7.2 7.2 7.2 16.7	(cfs) 6 2 4 9	Storage (acre-ft)	Surface runoff from ROW Surface runoff from ROW, flows to future storm drain inlet in sump Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump	
00% A 00% A 00% A 00% A	- 63 63 63 63 63 63	12.0 20.2 12.0 27.9 12.0	Time (min) 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 16.7 7.2	(cfs) 6 2 4 9 125	Storage (acre-ft) - - -	Surface runoff from ROW Surface runoff from ROW, flows to future storm drain inlet in sump Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10	
00% A 00% A 00% A 00% A 00% A	- 63 63 63 63 63	12.0 20.2 12.0 27.9	Time (min) 7.2 7.2 7.2 7.2 16.7	(cfs) 6 2 4 9	Storage (acre-ft)	Surface runoff from ROW Surface runoff from ROW, flows to future storm drain inlet in sump Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump	
00% A 00% A 00% A 00% A 00% A 00% A	- 63 63 63 63 63 63 63 63 63 63	12.0 20.2 12.0 27.9 12.0 12.0 12.0 12.0 12.0 12.0 12.0	Time (min) 7.2	(cfs) 6 2 4 9 125 16 62 28	Storage (acre-ft) -	Surface runoff from ROW Surface runoff from ROW, flows to future storm drain inlet in sump Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond Tract 10, flows to detention pond	
00% A 00% A 00% A 00% A 00% A 00% A	- 63 63 63 63 63 63 63 63	12.0 20.2 12.0 27.9 12.0 12.0 12.0	Time (min) 7.2	(cfs) 6 2 4 9 125 16 62	Storage (acre-ft) - - - - - - - - - - - - - - - - - - -	Surface runoff from ROW Surface runoff from ROW, flows to future storm drain inlet in sump Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond	
00% A 00% A 00% A 00% A 00% A 00% A 00% A	- 63 63 63 63 63 63 63 63 63 63 63	12.0 20.2 12.0 27.9 12.0 12.0 12.0 12.0 12.0 12.0 12.0	Time (min) 7.2	(cfs) 6 2 4 9 125 16 62 28 64	Storage (acre-ft) -	Surface runoff from ROW Surface runoff from ROW, flows to future storm drain inlet in sump Surface runoff from ROW, continues flowing east Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Tract 9, outflow from conceptual detention pond Tract 10, outflow from conceptual detention pond	
00% A 00% A 00% A 00% A 00% A 00% A 00% A -	- 63 63 63 63 63 63 63 63 63 63 63 -	12.0 20.2 12.0 27.9 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	Time (min) 7.2	(cfs) 6 2 4 9 125 16 62 28 64 9	Storage (acre-ft) - -	Surface runoff from ROW Surface runoff from ROW, flows to future storm drain inlet in sump Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Tract 9, outflow from conceptual detention pond	
00% A 00% A 00% A 00% A 00% A 00% A 00% A - -	- 63 63 63 63 63 63 63 63 63 63 63 - -	12.0 20.2 12.0 27.9 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	Time (min) 7.2 7.2 7.2 16.7 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7	(cfs) 6 2 4 9 125 16 62 28 64 9 24	Storage (acre-ft) - -	Surface runoff from ROW Surface runoff from ROW, flows to future storm drain inlet in sump Surface runoff from ROW, continues flowing east Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Tract 9, outflow from conceptual detention pond Tract 10, outflow from conceptual detention pond	
00% A 00% A 00% A 00% A 00% A 00% A - - - - - -	- 63 63 63 63 63 63 63 63 63 63	12.0 20.2 12.0 27.9 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 13.6	Time (min) 7.2 8.1	(cfs) 6 2 4 9 125 16 62 28 64 9 24 10 - 22	Storage (acre-ft) - - - - - - - - - - 1.87 5.14 1.94	Surface runoff from ROW Surface runoff from ROW, flows to future storm drain inlet in sump Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Tract 9, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Self-retained, no runoff. I-40 ROW, drains to CBC under 98th St.	
00% A 00% A 00% A 00% A 00% A 00% A - - - - - -	- 63 63 63 63 63 63 63 63 63 63 63 63 - - -	12.0 20.2 12.0 27.9 12.0 12.0 12.0 12.0 12.0 - - -	Time (min) 7.2 - - - - - - - - - - - - - - - - - - <tr td=""> <tr td=""></tr></tr>	(cfs) 6 2 4 9 125 16 62 28 64 9 24 10 -	Storage (acre-ft) - - - - - - - - - - 1.87 5.14 1.94	Surface runoff from ROW Surface runoff from ROW, flows to future storm drain inlet in sump Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Tract 10, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Self-retained, no runoff.	
-	- 63 63 63 63 63 63 63 63 63 63	12.0 20.2 12.0 27.9 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 13.6	Time (min) 7.2 8.1	(cfs) 6 2 4 9 125 16 62 28 64 9 24 10 - 22	Storage (acre-ft) - - - - - - - - - - - - - - - - - - -	Surface runoff from ROW Surface runoff from ROW, flows to future storm drain inlet in sump Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Tract 10, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Self-retained, no runoff. I-40 ROW, drains to CBC under 98th St. I-40 ROW & some private land, drains to CBC under 98th St. Southbound 98th St, portion intercepted by curb inlet (Q100,TOTAL= 8.1cfs)	
00% A 00% A 00% A 00% A 00% A 00% A - - - - - 00% A 00% A	- 63 63 63 63 63 63 63 63 63 63	12.0 20.2 12.0 27.9 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 13.6 14.9	Time (min) 7.2 8.1 8.9	(cfs) 6 2 4 9 125 16 62 28 64 9 24 10 - 22 24 10	Storage (acre-ft) - - - - - - - - - - - - - - - - - - -	Surface runoff from ROW Surface runoff from ROW, flows to future storm drain inlet in sump Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond Tract 10, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Tract 10, outflow from conceptual detention pond Tract 10, outflow from conceptual detention pond Self-retained, no runoff. I-40 ROW, drains to CBC under 98th St. I-40 ROW & some private land, drains to CBC under 98th St. Southbound 98th St, portion intercepted by curb inlet (Q100,TOTAL= 8.1cfs) Northbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 9.4cfs)	
00% A 00% A 00% A 00% A 00% A 00% A - - - - 00% A 00% A 00% A	- 63 63 63 63 63 63 63 63 63 63	12.0 20.2 12.0 27.9 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 13.6 14.9 12.0 12.0 12.0 12.0 12.0 12.0 12.0	Time (min) 7.2 <t< td=""><td>(cfs) 6 2 4 9 125 16 62 28 64 9 24 10 24 10 - 22 24 10 - 22 24 8 9 17</td><td>Storage (acre-ft) - - - - - - - - - - - - - - - - - - -</td><td>Surface runoff from ROW Surface runoff from ROW, flows to future storm drain inlet in sump Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Tract 10, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Self-retained, no runoff. I-40 ROW, drains to CBC under 98th St. I-40 ROW & some private land, drains to CBC under 98th St. Southbound 98th St, portion intercepted by curb inlet (Q100,TOTAL= 8.1cfs) Northbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 9.4cfs) I-40 ROW, drains through Tract 1</td><td></td></t<>	(cfs) 6 2 4 9 125 16 62 28 64 9 24 10 24 10 - 22 24 10 - 22 24 8 9 17	Storage (acre-ft) - - - - - - - - - - - - - - - - - - -	Surface runoff from ROW Surface runoff from ROW, flows to future storm drain inlet in sump Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Tract 10, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Self-retained, no runoff. I-40 ROW, drains to CBC under 98th St. I-40 ROW & some private land, drains to CBC under 98th St. Southbound 98th St, portion intercepted by curb inlet (Q100,TOTAL= 8.1cfs) Northbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 9.4cfs) I-40 ROW, drains through Tract 1	
00% A 00% A 00% A 00% A 00% A 00% A - - - - 00% A 00% A 00% A	- 63 63 63 63 63 63 63 63 63 63	12.0 20.2 12.0 27.9 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 13.6 14.9 12.0 12.0	Time (min) 7.2 <t< td=""><td>(cfs) 6 2 4 9 125 16 62 28 64 9 24 10 - 22 24 10 - 22 24 8 8 9</td><td>Storage (acre-ft) - - - - - - - - - - - - 1.87 5.14 1.94</td><td>Surface runoff from ROW Surface runoff from ROW, flows to future storm drain inlet in sump Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond Tract 10, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Tract 10, outflow from conceptual detention pond Tract 10, outflow from conceptual detention pond Self-retained, no runoff. I-40 ROW, drains to CBC under 98th St. I-40 ROW & some private land, drains to CBC under 98th St. Southbound 98th St, portion intercepted by curb inlet (Q100,TOTAL= 8.1cfs) Northbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 9.4cfs)</td><td></td></t<>	(cfs) 6 2 4 9 125 16 62 28 64 9 24 10 - 22 24 10 - 22 24 8 8 9	Storage (acre-ft) - - - - - - - - - - - - 1.87 5.14 1.94	Surface runoff from ROW Surface runoff from ROW, flows to future storm drain inlet in sump Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond Tract 10, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Tract 10, outflow from conceptual detention pond Tract 10, outflow from conceptual detention pond Self-retained, no runoff. I-40 ROW, drains to CBC under 98th St. I-40 ROW & some private land, drains to CBC under 98th St. Southbound 98th St, portion intercepted by curb inlet (Q100,TOTAL= 8.1cfs) Northbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 9.4cfs)	
00% A 00% A 00% A 00% A 00% A 00% A - - - - 00% A 00% A 00% A	- 63 63 63 63 63 63 63 63 63 63	12.0 20.2 12.0 27.9 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 13.6 14.9 12.0 12.0 12.0 12.0 12.0 12.0 12.0	Time (min) 7.2 <t< td=""><td>(cfs) 6 2 4 9 125 16 62 28 64 9 24 10 - 22 24 8 9 17 2 11</td><td>Storage (acre-ft) - - - - - - - - - - - - - - - - - - -</td><td>Surface runoff from ROW Surface runoff from ROW, flows to future storm drain inlet in sump Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 10, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Tract 10, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Self-retained, no runoff. I-40 ROW, drains to CBC under 98th St. I-40 ROW & some private land, drains to CBC under 98th St. Southbound 98th St, portion intercepted by curb inlet (Q100,TOTAL= 8.1cfs) Northbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 9.4cfs) I-40 ROW, drains through Tract 1 98th St ROW, drains in roadside ditch to future culvert under 94th St Combination of surface flow & outflow from detention basin</td><td></td></t<>	(cfs) 6 2 4 9 125 16 62 28 64 9 24 10 - 22 24 8 9 17 2 11	Storage (acre-ft) - - - - - - - - - - - - - - - - - - -	Surface runoff from ROW Surface runoff from ROW, flows to future storm drain inlet in sump Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 10, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Tract 10, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Self-retained, no runoff. I-40 ROW, drains to CBC under 98th St. I-40 ROW & some private land, drains to CBC under 98th St. Southbound 98th St, portion intercepted by curb inlet (Q100,TOTAL= 8.1cfs) Northbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 9.4cfs) I-40 ROW, drains through Tract 1 98th St ROW, drains in roadside ditch to future culvert under 94th St Combination of surface flow & outflow from detention basin	
00% A 00% A 00% A 00% A 00% A 00% A - - - 00% A 00% A 00% A 00% A 00% A 00% A 00% A	- 63 63 63 63 63 63 63 63 63 63	12.0 20.2 12.0 27.9 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 - - 13.6 14.9 12.0 12.0 13.6 14.9 12.0 12.0 12.0 12.0	Time (min) 7.2 10.5	(cfs) 6 2 4 9 125 16 62 28 64 9 24 10 - 22 24 10 - 22 24 8 9 17 2 24 17 2 11 110	Storage (acre-ft) - - - - - - - - - - - - 1.87 5.14 1.94	Surface runoff from ROW Surface runoff from ROW, flows to future storm drain inlet in sump Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 10, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Tract 10, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Self-retained, no runoff. I-40 ROW, drains to CBC under 98th St. I-40 ROW & some private land, drains to CBC under 98th St. Southbound 98th St, portion intercepted by curb inlet (Q100,TOTAL= 8.1cfs) Northbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 9.4cfs) I-40 ROW, drains through Tract 1 98th St ROW, drains in roadside ditch to future culvert under 94th St Combination of surface flow & outflow from detention basin Total flow in Bluewater Rd storm drain at 94th St intersection	
00% A 00% A 00% A 00% A 00% A 00% A 00% A - - - - 00% A 00% A 00% A 00% A 00% A 00% A	- 63 63 63 63 63 63 63 63 63 63	12.0 20.2 12.0 27.9 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 13.6 14.9 12.0 12.0 12.0 12.0 17.6	Time (min) 7.2 <t< td=""><td>(cfs) 6 2 4 9 125 16 62 28 64 9 24 10 - 22 24 8 9 17 2 11</td><td>Storage (acre-ft) - - - - - - - - - - - 1.87 5.14 1.94 - <</td><td>Surface runoff from ROW Surface runoff from ROW, flows to future storm drain inlet in sump Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 10, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Tract 10, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Self-retained, no runoff. I-40 ROW, drains to CBC under 98th St. I-40 ROW & some private land, drains to CBC under 98th St. Southbound 98th St, portion intercepted by curb inlet (Q100,TOTAL= 8.1cfs) Northbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 9.4cfs) I-40 ROW, drains through Tract 1 98th St ROW, drains in roadside ditch to future culvert under 94th St Combination of surface flow & outflow from detention basin</td><td></td></t<>	(cfs) 6 2 4 9 125 16 62 28 64 9 24 10 - 22 24 8 9 17 2 11	Storage (acre-ft) - - - - - - - - - - - 1.87 5.14 1.94 - <	Surface runoff from ROW Surface runoff from ROW, flows to future storm drain inlet in sump Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 10, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Tract 10, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Self-retained, no runoff. I-40 ROW, drains to CBC under 98th St. I-40 ROW & some private land, drains to CBC under 98th St. Southbound 98th St, portion intercepted by curb inlet (Q100,TOTAL= 8.1cfs) Northbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 9.4cfs) I-40 ROW, drains through Tract 1 98th St ROW, drains in roadside ditch to future culvert under 94th St Combination of surface flow & outflow from detention basin	
D0% A D0% A	- 63 63 63 63 63 63 63 63 63 63	12.0 20.2 12.0 27.9 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 13.6 14.9 12.0 12.0 12.0 13.6 14.9 12.0 <t< td=""><td>Time (min) 7.2 <t< td=""><td>(cfs) 6 2 4 9 125 16 62 28 64 9 24 10 - 22 24 8 9 17 2 24 8 9 17 2 11 110 117 90 82</td><td>Storage (acre-ft) - - - - - - - - - - - 1.87 5.14 1.94 - <</td><td>Surface runoff from ROW Surface runoff from ROW, flows to future storm drain inlet in sump Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Tract 12, outflow from conceptual detention pond Tract 10, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Self-retained, no runoff. I-40 ROW, drains to CBC under 98th St. I-40 ROW & some private land, drains to CBC under 98th St. Southbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 9.4cfs) I-40 ROW, drains through Tract 1 98th St ROW, drains in roadside ditch to future culvert under 94th St Combination of surface flow & outflow from detention basin Total flow in Bluewater Rd storm drain at 94th St intersection Total flow in Bluewater Rd storm drain, including Tra</td><td></td></t<></td></t<>	Time (min) 7.2 <t< td=""><td>(cfs) 6 2 4 9 125 16 62 28 64 9 24 10 - 22 24 8 9 17 2 24 8 9 17 2 11 110 117 90 82</td><td>Storage (acre-ft) - - - - - - - - - - - 1.87 5.14 1.94 - <</td><td>Surface runoff from ROW Surface runoff from ROW, flows to future storm drain inlet in sump Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Tract 12, outflow from conceptual detention pond Tract 10, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Self-retained, no runoff. I-40 ROW, drains to CBC under 98th St. I-40 ROW & some private land, drains to CBC under 98th St. Southbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 9.4cfs) I-40 ROW, drains through Tract 1 98th St ROW, drains in roadside ditch to future culvert under 94th St Combination of surface flow & outflow from detention basin Total flow in Bluewater Rd storm drain at 94th St intersection Total flow in Bluewater Rd storm drain, including Tra</td><td></td></t<>	(cfs) 6 2 4 9 125 16 62 28 64 9 24 10 - 22 24 8 9 17 2 24 8 9 17 2 11 110 117 90 82	Storage (acre-ft) - - - - - - - - - - - 1.87 5.14 1.94 - <	Surface runoff from ROW Surface runoff from ROW, flows to future storm drain inlet in sump Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Tract 12, outflow from conceptual detention pond Tract 10, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Self-retained, no runoff. I-40 ROW, drains to CBC under 98th St. I-40 ROW & some private land, drains to CBC under 98th St. Southbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 9.4cfs) I-40 ROW, drains through Tract 1 98th St ROW, drains in roadside ditch to future culvert under 94th St Combination of surface flow & outflow from detention basin Total flow in Bluewater Rd storm drain at 94th St intersection Total flow in Bluewater Rd storm drain, including Tra	
D0% A D0% A	- 63 63 63 63 63 63 63 63 63 63	12.0 20.2 12.0 27.9 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 13.6 14.9 12.0 18.4 17.6 -<	Time (min) 7.2 <t< td=""><td>(cfs) 6 2 4 9 125 16 62 28 64 9 24 10 - 22 24 8 9 17 22 24 8 9 17 2 24 10 - 11 110 117 90 82 6.8*</td><td>Storage (acre-ft) - - - - - - - - - - - 1.87 5.14 1.94 - <</td><td>Surface runoff from ROW Surface runoff from ROW, flows to future storm drain inlet in sump Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Tract 10, outflow from conceptual detention pond Tract 10, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Self-retained, no runoff. I-40 ROW, drains to CBC under 98th St. I-40 ROW & some private land, drains to CBC under 98th St. Southbound 98th St, portion intercepted by curb inlet (Q100,TOTAL= 8.1cfs) Northbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 9.4cfs) I-40 ROW, drains through Tract 1 98th St ROW, drains in roadside ditch to future culvert under 94th St Combination of surface flow & outflow from detention basin Total flow in Bluewater Rd storm drain at 94th St intersection Total flow in 94th St storm drain @ Tract 1 south boundary</td><td></td></t<>	(cfs) 6 2 4 9 125 16 62 28 64 9 24 10 - 22 24 8 9 17 22 24 8 9 17 2 24 10 - 11 110 117 90 82 6.8*	Storage (acre-ft) - - - - - - - - - - - 1.87 5.14 1.94 - <	Surface runoff from ROW Surface runoff from ROW, flows to future storm drain inlet in sump Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Tract 10, outflow from conceptual detention pond Tract 10, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Self-retained, no runoff. I-40 ROW, drains to CBC under 98th St. I-40 ROW & some private land, drains to CBC under 98th St. Southbound 98th St, portion intercepted by curb inlet (Q100,TOTAL= 8.1cfs) Northbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 9.4cfs) I-40 ROW, drains through Tract 1 98th St ROW, drains in roadside ditch to future culvert under 94th St Combination of surface flow & outflow from detention basin Total flow in Bluewater Rd storm drain at 94th St intersection Total flow in 94th St storm drain @ Tract 1 south boundary	
D0% A D0% A	- 63 63 63 63 63 63 63 63 63 63	12.0 20.2 12.0 27.9 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 13.6 14.9 12.0 18.4 17.6 -<	Time (min) 7.2 <t< td=""><td>(cfs) 6 2 4 9 125 16 62 28 64 9 24 10 - 22 24 8 9 17 22 24 8 9 17 2 24 10 - 11 110 117 90 82 6.8*</td><td>Storage (acre-ft) - - - - - - - - - - - 1.87 5.14 1.94 - <</td><td>Surface runoff from ROW Surface runoff from ROW, flows to future storm drain inlet in sump Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Tract 12, outflow from conceptual detention pond Tract 10, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Self-retained, no runoff. I-40 ROW, drains to CBC under 98th St. I-40 ROW & some private land, drains to CBC under 98th St. Southbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 8.1cfs) I-40 ROW, drains through Tract 1 98th St ROW, drains in roadside ditch to future culvert under 94th St Combination of surface flow & outflow from detention basin Total flow in Bluewater Rd storm drain at 94th St intersection Total flow in Bluewater Rd storm drain, including Tract 9 pond outflow</td><td></td></t<>	(cfs) 6 2 4 9 125 16 62 28 64 9 24 10 - 22 24 8 9 17 22 24 8 9 17 2 24 10 - 11 110 117 90 82 6.8*	Storage (acre-ft) - - - - - - - - - - - 1.87 5.14 1.94 - <	Surface runoff from ROW Surface runoff from ROW, flows to future storm drain inlet in sump Surface runoff from ROW, continues flowing east Surface runoff from ROW, flows to future storm drain inlet in sump Tract 1, assumed to drain to detention pond on Tract 10 Tract 2 (south), assumed to drain to detention pond on Tract 10 Tract 9, flows to detention pond Tract 10, flows to detention pond Tract 11, flows to detention pond Tract 12, outflow from conceptual detention pond Tract 10, outflow from conceptual detention pond Tract 11, outflow from conceptual detention pond Self-retained, no runoff. I-40 ROW, drains to CBC under 98th St. I-40 ROW & some private land, drains to CBC under 98th St. Southbound 98th St, portion intercepted by curb inlets (Q100,TOTAL= 8.1cfs) I-40 ROW, drains through Tract 1 98th St ROW, drains in roadside ditch to future culvert under 94th St Combination of surface flow & outflow from detention basin Total flow in Bluewater Rd storm drain at 94th St intersection Total flow in Bluewater Rd storm drain, including Tract 9 pond outflow	

WESTPOINT 40 MASTER DRAINAGE REPORT

			EXH	IBIT 3				
	DEVEL		ONDITIONS	DRAINA	AGE MAP -	OPTION	С	
DRAWN	BY:	DB		DATE:	08/14/17			
СНЕСК	ED BY:	VCS		PROJECT N	^{NO.} 20180059	SHEET NO. 4	OF	4