CITY OF ALBUQUERQUE

Planning Department Brennon Williams, Director

Mayor Timothy M. Keller

April 19, 2021

Dan Skeehan, P.E. Kimley-Horn and Associates, Inc. 4582 S Ulster St, Suite 1500 Denver, CO 80237

RE: RV Storage Volcano Rd. NW Conceptual Grading & Drainage Plan and Drainage Report Engineer's Stamp Date: No Stamp Hydrology File: K09D046

Dear Mr. Skeehan:

- PO Box 1293 Based upon the information provided in your submittal received 04/19/2021, the Conceptual Grading & Drainage Plan and Drainage Report are approved for action by the DRB on Site Plan for Building Permit.
- Albuquerque
 As a reminder, if the project total area of disturbance (including the staging area and any work within the adjacent Right-of-Way) is 1 acre or more, then an Erosion and Sediment Control (ESC) Plan and Owner's certified Notice of Intent (NOI) is required to be submitted to the
 NM 87103
 Stormwater Quality Engineer (Doug Hughes, PE, jhughes@cabq.gov, 924-3420) 14 days prior to any earth disturbance.

www.cabq.gov If you have any questions, please contact me at 924-3995 or <u>rbrissette@cabq.gov</u>.

Sincerely,

Renée C. Brissette

Renée C. Brissette, P.E. CFM Senior Engineer, Hydrology Planning Department

City of Albuquerque

Planning Department Development & Building Services Division DRAINAGE AND TRANSPORTATION INFORMATION SHEET (REV 11/2018)

Project Title:	Building	Permit #: Hydrology File #:
DRB#:	EPC#:	Work Order#:
Legal Description:		
City Address:		
Applicant:		Contact:
Address:		
		E-mail:
Owner:		Contact:
Address:		
		E-mail:
TYPE OF SUBMITTAL: PLAT (_# OF LOTS)	RESIDENCE DRB SITE ADMIN SITE
IS THIS A RESUBMITTAL?:	Yes	No
DEPARTMENT: TRAFFIC/ TRAN	SPORTATION _	HYDROLOGY/ DRAINAGE
Check all that Apply: TYPE OF SUBMITTAL: ENGINEER/ARCHITECT CERTIFICA PAD CERTIFICATION CONCEPTUAL G & D PLAN GRADING PLAN DRAINAGE MASTER PLAN	ATION	TYPE OF APPROVAL/ACCEPTANCE SOUGHT: BUILDING PERMIT APPROVAL CERTIFICATE OF OCCUPANCY PRELIMINARY PLAT APPROVAL SITE PLAN FOR SUB'D APPROVAL SITE PLAN FOR BLDG. PERMIT APPROVAL ENAL PLAT APPROVAL
DRAINAGE MASTER PLAN DRAINAGE REPORT FLOODPLAIN DEVELOPMENT PER ELEVATION CERTIFICATE CLOMR/LOMR TRAFFIC CIRCULATION LAYOUT TRAFFIC IMPACT STUDY (TIS) OTHER (SPECIFY) PRE-DESIGN MEETING?	(TCL)	FINAL PLAT APPROVAL SIA/ RELEASE OF FINANCIAL GUARANTEE FOUNDATION PERMIT APPROVAL GRADING PERMIT APPROVAL SO-19 APPROVAL PAVING PERMIT APPROVAL GRADING/ PAD CERTIFICATION WORK ORDER APPROVAL CLOMR/LOMR FLOODPLAIN DEVELOPMENT PERMIT OTHER (SPECIFY)
DATE SUBMITTED	Bv	

COA STAFF:

ELECTRONIC SUBMITTAL RECEIVED:

FEE PAID:

Final Drainage Report

RV Storage City of Albuquerque, New Mexico

Prepared for: Ben Lokhorst Macritchie, Inc. 715 5th Ave, Suite 1700 Calgary AB T2P 2X6, Canada

Prepared by: Kimley-Horn and Associates, Inc. 4582 S Ulster St, Suite 1500 Denver, CO 80237 (303) 228-2300 Contact: Dan Skeehan, P.E.

Project #: 096648005

Prepared: February 24, 2021

Kimley »Horn

CERTIFICATION

DESIGN ENGINEER'S STATEMENT

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparation of this report.

SIGNATURE (Affix Seal):

State of New Mexico P.E. No. 21773

Date

OWNER/DEVELOPER'S STATEMENT

I, the developer, have read and will comply with all of the requirements specified in this Drainage Report and Plan.

Name of Developer

Authorized Signature

Date

Printed Name

Title

Address:

City of Albuquerque Planning Department Development Review Services HYDROLOGY SECTION				
PRELIMINARY APPROVED DATE: 04/19/21 BY: 0 2016 C. Brissette				
HydroTrans # K09D046				
Hydro I rans # THESE PLANS AND/OR REPORT ARE CONCEPTUAL ONLY. MORE INFORMATION MAY BE NEEDED IN THEM AND SUBMITTED TO HYDROLOGY FOR BUILDING PERMIT APPROVAL.				

Kimley **»Horn**

TABLE OF CONTENTS

CERTIFICATION	2
DESIGN ENGINEER'S STATEMENT Owner/Developer's Statement	
TABLE OF CONTENTS	3
EXECUTIVE SUMMARY	4
INTRODUCTION	4
PURPOSE AND SCOPE OF STUDY PROJECT REQUIREMENTS	
PROJECT DESCRIPTION	4
LOCATION LEGAL DESCRIPTION	
BACKGROUND DOCUMENTS	6
PLANNING HISTORY DRAINAGE HISTORY AND RELATED DOCUMENTS	
EXISTING CONDITIONS	6
SITE INVESTIGATION Form of Analysis Downstream Capacity	6
DEVELOPED CONDITIONS	6
ONSITE OFFSITE	
CALCULATIONS	7
CONCLUSION	7
REFERENCES	8
APPENDIX	9
APPENDIX A: FIGURES	
APPENDIX B: HYDROLOGY	
APPENDIX C: HYDRAULICS APPENDIX D: REFERENCES	
APPENDIX D. REFERENCES APPENDIX E: EROSION AND SEDIMENT CONTROL PLAN	
APPENDIX F: GRADING AND DRAINAGE PLAN.	

EXECUTIVE SUMMARY

The project is located on the northwestern corner of Volcano Rd and Central Ave within the City of Albuquerque. The RV parking facility will consist of canopied spots and associated facilities to operate the RV parking facility. Only canopied RV storage will be provided for the development. Stormwater runoff from the project will be retained on-site for water quality and to reduce the allowed site runoff. The site has no major offsite flows being conveyed to the project site per the AMAFCA Amole-Hubbell Drainage Master Plan Update Final Report completed by Wilson & Company Engineers & Architects, dated May 2013 (AMAFCA). Onsite flow will be directed to the proposed onsite private retention pond. The pond has been designed to infiltrate the storm water quality volume required per the City of Albuquerque Development Process Manual, dated September 2020 (DPM) and infiltrate the excess volume being capture in the pond to meet the allowable site peak discharge per the DPM. The site will outfall into Volcano Road as the site has done historically.

In conjunction with this submittal, approval is also being requested for the Site Development Plan for Building Permit, Grading Permit, and Building Permit.

INTRODUCTION

PURPOSE AND SCOPE OF STUDY

The purpose of this Final Drainage Report (FDR) is to provide the hydrologic and hydraulic calculations and to document and finalize the drainage design methodology in support of the proposed RV Storage ("the Site"); for Macritchie, Inc. The Site is located within the jurisdictional limits of City of Albuquerque ("the City"). Thus, the guidelines for the hydrologic and hydraulic design components were based on the criteria for the City of Albuquerque, described below.

PROJECT REQUIREMENTS

Offsite roadway improvements on the frontage road of the property are required and will be included as part of this development.

PROJECT DESCRIPTION

LOCATION

The Site is located within Section 21, Township 10 North, Range 2 East of the New Mexico Principle Meridian, County of Bernalillo, State of New Mexico. More specifically, this site is located north of Volcano Rd and south of Avalon Rd, City Zone Atlas page K9.

LEGAL DESCRIPTION

Current legal description: Parcel 1:

A certain tract of land situated within the Town of Atrisco Grant, Projected Section 21, Township 10 North, Range 2 East of the N.M.P.M., City of Albuquerque, Bernalillo County, New Mexico as the same is shown and designated on the quitclaim deed filed in the Office of the County Clerk of Bernalillo County, New Mexico on September 28, 1994, in Book 94-27, page 6350, said tract being more particularly described by metes and bounds as follows:

Beginning as the southwest corner of said tract, being a set 5/8 rebar with plastic cap stamped Is 8911, also being a point on the northerly right of way line of Volcano Road northwest being the true place of point and beginning, whence for a tie to the ACS Control Station S 64° 57' 12" W, a distance of 1244.30 feet;

Thence, N 15° 19' 45" W, a distance of 1009.53 feet to the northwest corner of said tract, also being a point on the southerly boundary of Sundance Subdivision Unit 2, being a set 5/8" rebar with plastic cap stamped "8911";

Thence, S 83° 32' 41" E, a distance of 228.21 feet along southerly boundary of the Sundance Subdivision Unit 2 to the northeast corner of said tract, being a 5/8" rebar with plastic cap stamped "8911";

Thence, N 14° 53' 31" W, a distance of 1017.19 feet distance to the southeast corner of said tract also being a point on the northerly right of way line of Volcano Road northwest, being a set 5/8" rebar with plastic cap stamped "8911";

Thence; N 68° 43' 02" W, a distance of 97.76 feet distance along said right of way set 5/8" rebar with plastic cap stamped "8911";

Thence, S 89° 48' 54" W, a distance of 130.19 feet distance along said right of way to a set 5/8" rebar with plastic cap stamped "8911"; being the southwest corner of said tract and being the true point of beginning.

Parcel 2:

A certain tract of land situated within the Town of Atrisco Grant, Projected Section 21, Township 10 North, Range 2 East, of the N.M.P.M., City of Albuquerque Bernalillo County, New Mexico as the same is shown and designated on the quitclaim deed filed in the office of the County Clerk of Bernalillo County, New Mexico on September 28, 1994, in Book 94-27, page 6350, said tract being more particularly described by metes and bounds as follows:

Beginning at the southeast corner of said tract, being a set 5/8" rebar with plastic cap stamped "8911" and being a point on the northerly right of way line of Volcano Road northwest, being the true place and point of beginning, whence for a tie to the ACS Control Station "7-k9", bears S 64° 57' 12" W, a distance of 1244.30 feet distance;

Thence, N 89° 48' 54" W, a distance of 211.54 feet along said right of way to the southwest corner of said tract being a found 5/8" rebar set on concrete "disturbed",

Thence, N 15° 19' 45" W, a distance of 1035.88 feet to the northwest corner of said tract, also being point on the southerly boundary of Sundance Subdivision, Unit 2, found an aluminum cap,

Thence, S 83° 32' 41" E, a distance of 219.89 feet along said right subdivision to the northeast corner of said tract, being a set 5/8" rebar with plastic cap stamped "8911";

Thence, S 15° 19' 45" E, a distance of 1009.53 feet distance to a set 5/8" rebar with plastic cap stamped "8911", being the southeast corner of said tract and the northerly right of way line of Volcano Road northwest, being the true place and point of beginning.

PLANNING HISTORY

The Site is current an existing vacant undeveloped property and is currently zoned as NR-BP. The Site is identified within the AMAFCA with a future land use of Light Industrial. This aligns with what is being proposed for the Site. Please refer to **Appendix D** for excerpts from the AMAFCA.

DRAINAGE HISTORY AND RELATED DOCUMENTS

The following AMAFCA Final Report was used to determine the allowable developed discharge for the Site. Per the AMAFCA the Site is located within the Tierra Bayita Basin and sub-basin TB210. Per the AMAFCA report the proposed developed flow determined for sub-basin TB210 was determined to have an overall area of 47 acres and a peak runoff of 175.08 cfs for the 100yr, 6-hr storm. Which equates to a runoff of 3.73 cfs/acre. There are no known recommendations or requirements mentioned for the Site beyond the proposed peak flow determine for the sub-basin TB210. Refer to **Appendix D** for the excerpts from the AMAFCA Final Report.

EXISTING CONDITIONS

SITE INVESTIGATION

The site is vacant and undeveloped. The existing Site drains from the northwest to the southeast and ultimately outfalls to Volcano Road. Runoff sheet flows to the east and south sides of the property. Along the west side of the site is an existing berm that directs runoff south from the property to the west to Volcano Road. There are no storm drain facilities located within Volcano Road adjacent to the Site. The property to the east is an existing concrete plant and the east property line of the site is the east boundary of sub-basin TB 210. To the north is Avalon Rd NW which is a dirt road and acts as the north basin boundary of sub-basin TB 210, to the west is a Department of Transportation maintenance yard, and to the south is Volcano Road which acts as the south boundary of sub-basin TB 210 outfall is located near the southeast corner of the site in Volcano Road.

Form of Analysis

The existing and proposed drainage conditions at the Site were analyzed by calculating onsite runoff using the Peak Discharge Rate for Small Watersheds per Section 6-2(A)(5) of the DPM. These calculations are provided in **Appendix B**.

Downstream Capacity

The site outfalls into the flowline of Volcano Road where flows will be conveyed in the existing roadway as they have done historically.

DEVELOPED CONDITIONS

ONSITE

The proposed development will include 432 canopied RV parking spots, paved drive aisles, as well as the facilities required to operate the RV storage facility. The proposed site will maintain

the historic drainage pattern as much as practical. The proposed grading will continue to drain the site from the northwest to the southeast to a proposed retention pond. Runoff will sheet flow to the proposed pond. The pond is design to drain within the required 96-hours per the DMP. The proposed improvements will produce a peak 100-hr, 6-hr flow of 40.14 cfs. The allowed 100-yr, 6-hr peak flow for the site per the AMAFCA is 36.76 cfs. This was determined by taking the ratio of the areas, which was determined by dividing the site area (10 acres) by the TB 210 basin area (47 acres). By doing that the ratio was determined to be 0.21. This value was then multiplied by the TB 210 basin peak flow of 175.08 cfs, and resulted in a allowable peak discharge of 36.76 cfs. The proposed retention pond is designed to drain the required storm water quality volume (SWQV) (0.32 ac-ft) within the required 96-hours. In addition to the pond has been oversized to accommodate an additional 0.11 ac-ft to reduce the peak flow from 40.14 to 36 cfs which, is below the allowable peak flow for the site. Refer to **Appendix B** for the site peak flows and **Appendix C** for SWQV, spillway sizing, and pond drain time calculations. The proposed pond will be a private pond that will be privately operated and maintained. Measures will be taken during construction to reduce the potential of stormwater pollution.

The pond is designed to have 1-ft of freeboard while the conveying the 100-yr, 6-hr peak flow discharging through the pond spillway. The spillway will be lined with riprap to reduce the potential of erosion to the spillway and the landscape downstream of the spillway. It is not anticipated that downstream properties will be negatively impacted as the peak site discharge is discharging into Volcano Road as the site has historically done. The required pond volume for the site is the SWQV (0.32 ac-ft) plus reduce peak flow volume (0.11 ac-ft) which totals a required pond volume of 0.41 ac-ft. The proposed pond is designed to provide 0.43 ac-ft of storage.

OFFSITE

Currently off-site flow discharge to Volcano Road. Where flows will continue to the east as they have done historically. The proposed development will generally maintain the historic location for the site and outfall into the flow line of Volcano Road. This aligns with the proposed conditions identified in the AMAFCA Final Report. The City is currently installing and constructing storm drain infrastructure approximately 850 ft east of the site in Central Ave SW.

CALCULATIONS

The peak flow for existing and proposed conditions was determined using the Peak Discharge Rate for Small Watersheds per Section 6-2(A)(5) of the DMP. The site was determined to be precipitation Zone 1. The pond was sized for the required SWQV as described in Section 6-12 of the DMP for new development and sized to detain additional volume per Section 6-2(A)(7) of the DMP to meet the allowable site discharge per the AMAFCA Final Report. Refer to **Appendix B** for peak flows, **Appendix C** for pond calculations and **Appendix D** for the excerpts from the AMAFCA.

CONCLUSION

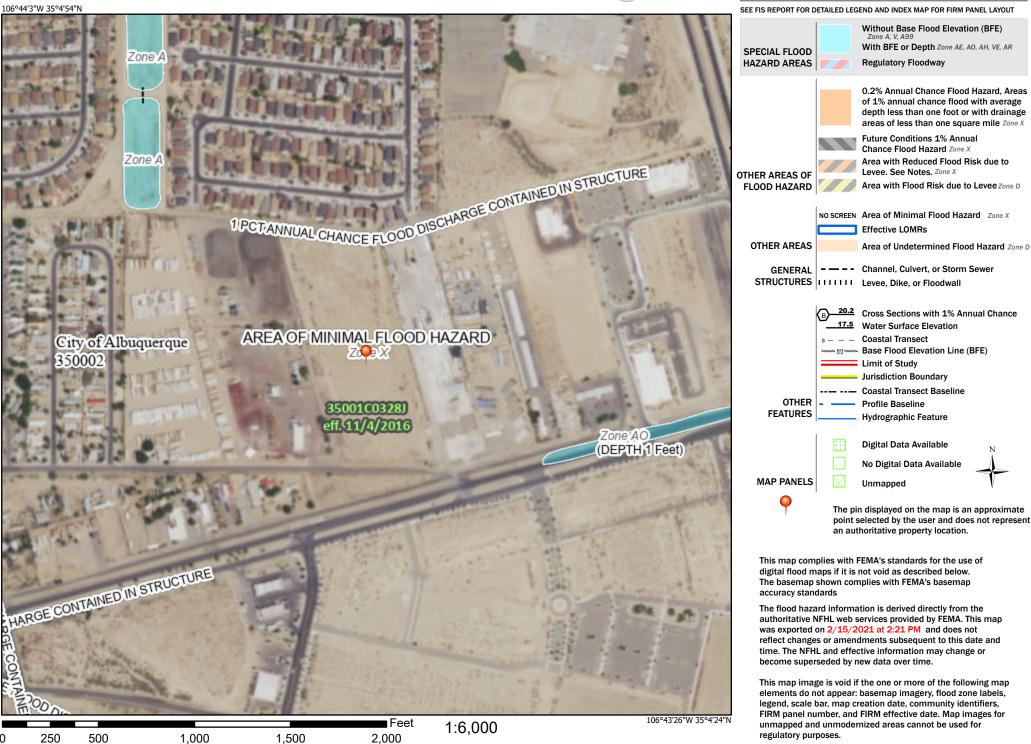
The proposed development will maintain the historic drainage patterns onsite. The site will include proposed landscaping, paved drive isles, curb and gutter, canopies over parking stalls, and the proposed retention pond. The pond will account for the required SWQV and additional storage to reduce the site peak discharge for the 100-yr, 6-hr storm is equal or less than the allowable discharge determined from the AMAFCA Final Report. The site will not have any significant offsite flows being conveyed onto the site. The pond spillway will be lined with riprap to reduce the potential of erosion. The proposed pond will be a private pond that will be privately operated and maintained.

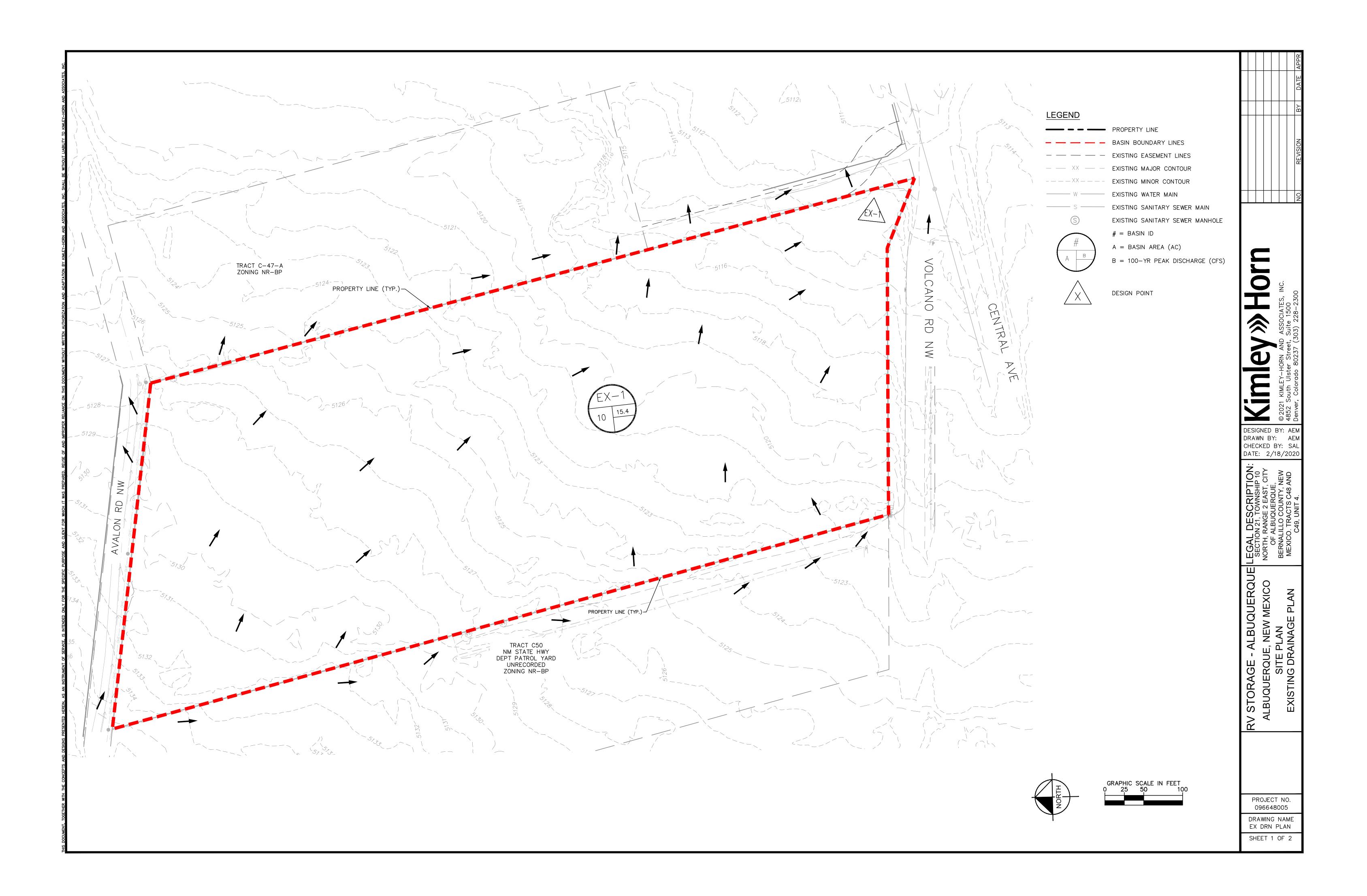
REFERENCES

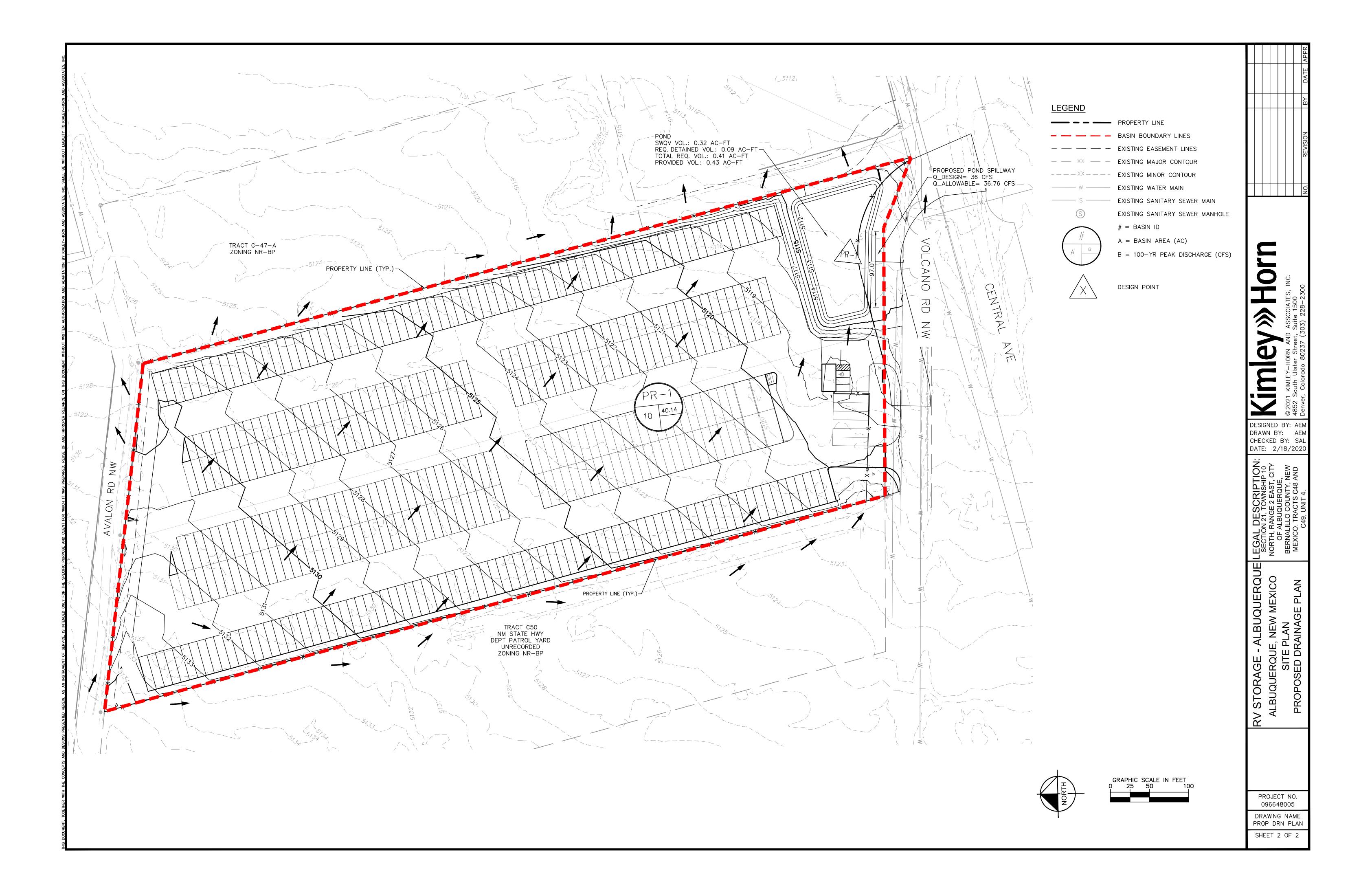
- 1. City of Albuquerque "Development Process Manual" (DPM), dated September 2020
- 2. AMAFCA Amole-Hubbell Drainage Master Plan Update Final Report (AMAFCA), dated May 2013
- 3. Flood Insurance Rate Map, Bernalillo County, Colorado and Incorporated Areas, Map Number 35001C0328J, Effective Date November 4, 2016, prepared by the Federal Emergency Management Agency (FEMA).

APPENDIX

APPENDIX A: FIGURES


Site Vicinity Map


National Flood Hazard Layer FIRMette



Legend

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

APPENDIX B: HYDROLOGY

Kimley » Horn

Peak Discharge Rate for Small Watersheds - Exisitng Conditions

Project Name:	RV Storage
Project Number:	96648005

Per : DPM Chapter 6, Section 6-2(A)(5)

The peak discharge rate is given in <u>TABLE 6.2.14</u> for small watersheds, less than or equal to 40 acres, where the time of concentration is assumed to be 12 minutes.

TABLE 6.2.14 Peak Discharge					
Zone	Land Treatment				
	A	В	С	D	
100-YE	AR PEAK DISCHA	ARGE (CSF/ACRE)			
1	1.54	2.16	2.87	4.12	
2	1.71	2.36	3.05	4.34	
3	1.84	2.49	3.17	4.49	
4	2.09	2.73	3.41	4.78	
2-YEA	R PEAK DISCHAR	GE (CSF/ACRE)			
1	0.00	0.02	0.50	1.56	
2	0.00	0.08	0.61	1.66	
3	0.00	0.15	0.71	1.73	
4	0.00	0.28	0.87	1.88	
10-YEA	AR PEAK DISCHAI	RGE (CSF/ACRE)			
1	0.30	0.81	1.46	2.57	
2	0.41	0.95	1.59	2.71	
3	0.51	1.07	1.69	2.81	
4	0.70	1.28	1.89	3.04	

 Determine the peak rate of discharge,
 Determine the area in each treatment, A_A, A_B, A_C, A_D
 Multiply the peak rate for each treatment by the respective areas and sum to compute the total Q.

EQUATION 6.6 Total $Q_p = Q_{PR}A_A + Q_{PB}A_B + Q_{PC}A_C + Q_{PD}A_D$

Existing Project Site Q_P Assumptions:

t_c is 12 minutes

100-yr Peak Discharge (CFS/ACRE)

Site is in Zone 1 Per Table 6 2 1/

Per Table 6.2.14					
	Land Treatment				
Zone	A B C D				
1	1.54	2.16	2.87	4.12	

Basin EX-1

Eq 6.6:

Q _{PA} =	1.54	cfs/ac
A _A =	10	acres
Q _{PB} =	2.16	cfs/ac
A _B =	0	acres
Q _{PC} =	2.87	cfs/ac
A _C =	0	acres
Q _{PD} =	4.12	cfs/ac
A _D =	0	acres

Total $Q_p = 15.40$ cfs

Kimley »Horn

Peak Discharge Rate for Small Watersheds - Proposed Conditions

Project Name: **RV Storage** 96648005 Project Number:

Per : DPM Chapter 6, Section 6-2(A)(5)

The peak discharge rate is given in TABLE 6.2.14 for small watersheds, less than or equal to 40 acres, where the time of concentration is assumed to be 12 minutes.

TABLE 6.2.14 Peak Discharge					
Zone	Land Treatment				
	А	В	С	D	
100-YE	AR PEAK DISCHA	ARGE (CSF/ACRE)			
1	1.54	2.16	2.87	4.12	
2	1.71	2.36	3.05	4.34	
3	1.84	2.49	3.17	4.49	
4	2.09	2.73	3.41	4.78	
2-YEAF	R PEAK DISCHAR	GE (CSF/ACRE)			
1	0.00	0.02	0.50	1.56	
2	0.00	0.08	0.61	1.66	
3	0.00	0.15	0.71	1.73	
4	0.00	0.28	0.87	1.88	
10-YEA	10-YEAR PEAK DISCHARGE (CSF/ACRE)				
1	0.30	0.81	1.46	2.57	
2	0.41	0.95	1.59	2.71	
3	0.51	1.07	1.69	2.81	
4	0.70	1.28	1.89	3.04	

To determine the peak rate of discharge,

Determine the area in each treatment, A_A, A_B, A_C, A_D
 Multiply the peak rate for each treatment by the respective areas and sum to compute the total Q_p.

EQUATION 6.6 Total $Q_p = Q_{PA}A_A + Q_{PB}A_B + Q_{PC}A_C + Q_{PD}A_D$

Proposed Project Site Q_P Assumptions:

Basin PR-1

 t_c is 12 minutes

100-yr Peak Discharge (CFS/ACRE)

Site is in Zone 1 Por Table 6 2 14

Per Table 6.2.14				
	Land Treatment			
Zone	Α	В	С	D
1	1.54	2.16	2.87	4.12

Eq 6.6:

Q _{PA} =	1.54	cfs/ac
A _A =	0	acres
Q _{PB} =	2.16	cfs/ac
A _B =	0	acres
Q _{PC} =	2.87	cfs/ac
A _C =	0.85	acres
Q _{PD} =	4.12	cfs/ac
A _D =	9.15	acres

Total $Q_p = 40.14$ cfs

APPENDIX C: HYDRAULICS

Kimley Horn Project Name: RV Storage Project Number: 96648005

Hyd Per

Hydrograph for Small Watersheds

ect Number: 96648005						
graph for Small Watershed PM, Chapter 6, Section 6-2(A)(7)				Determine Required Pond Volume:		
and the second second sector and the second sector second sector second sector second sector second s				Allowable Site Discharge (Q _A) =	36.76	fs
ase time, t_y , for a small watershed hydrograph is, QUATION 6.8 $t_y = (2.107 * E * A_{\tau} / Q_y) - (0.25 * A_p / A_{\tau})$				Pond Design Discharge (Q _D) =	36	fs
		E = A _t =	2.13 inches 10 acres	Required Pond Volume: Pond Volume for Designed Discharge		ac-ft ac-ft
here $t_{\rm g}$ is in hours, E is the excess precipitation in inches (from <u>TABLE 6.2.13</u>), is the peak flow in cfs, A _c is the area in treatment D, and A _c is the total area acces. Using the time of concentration, t _c (hours), the time to peak in hours is:		A _t =	9.15 acres	Solve for:		uired Pond Volume
UATION 6.9 $\mathbf{t}_{\mu} = (0.7 * t_c) + ((1.6 - (A_p / A_j)) / 12)$		Q _p	40.14 cfs	-		
				$Q_p - Q_A =$		fs
SURE 6.2.5 Time to Peak In 10-years	Eq 6.8:	t _b =	0.89 hrs	Require Pond Volume A _{A1} =	302 0	cu. ft.
$T_{\mu} = 0.7t_{c} + (1.6 - A_{\mu}/A_{\mu})/2$ $0.25 - A_{\mu}/A_{\tau}$				Require Pond Volume A _{A2} =	2,781 0	:u. ft.
Required Pond Volume (CF)		t _c =	12 minutes			
Nequired Pond Volume (Cr) Allowable Discharge (CrS)	Eq 6.9:	t _p =	0.20 hrs	Require Pond Volume A _{A3} =	712 0	cu. ft.
Allowable Discharge (CFS)				Leading Leg:		
← T _a = 2.107 - E - A _a /OP - 25 - AD/AT →		0.25 x A _D /A _T =	0.23 hrs	Slope of line =	203.66	
TIME (HOUR) T _p = 0.7t _c + (1.6 - A ₁₀ /A ₂)/12		(t _p + (0.25 x A _D /A _T) =	0.42 brc	Intersection point of lines =	0.18	
0.25 - A _p /A _r		$(t_p + (0.25 \times A_D/A_T) = t_p - (t_p + (0.25 \times A_D/A_T) =$				
* * ***				Falling Leg:		
	Area 1:	1.5*T_*O =	42,716 cu. ft.	Slope of line Intersection point of lines =	-86.55 0.46	
				increation point of lines =		
$- T_{\mu} = 2.107 \cdot E - A_{\mu}/D_{\mu} - 25 \cdot A_{\mu}/A_{\mu} \rightarrow$ TIME (HOUR) TIME (HOUR)	Area 2:	(0.25*A _D /A _T)*Q _p =	33,053 cu. ft.	T	0.00	
a. (rivery	Area 3:	1.5*(t _b - (t _p + (0.25 x A _D /A _T))*Q _p =	100,511 cu. ft.	Total Required Pond Volume =	<u>0.09</u> a	ac-ft
	=	Site Total Volume =	4.05 ac-ft	Solve for:	Pond Volu	me for Designed Discha
				source tour_	T ONG TOTAL	ne for besigned bisene
				$Q_p - Q_p =$:fs
				Pond Volume for Design Discharge A_{A1} =	454 0	:u. ft.
				Pond Volume for Design Discharge $A_{\rm A2}$ =	3,407 0	cu. ft.
				Pond Volume for Design Discharge $A_{\rm A3}$ =	1068 0	:u. ft.
				Leading Leg: Slope of line =	203.66	
				Intersection point of lines =	0.18	
				Falling Leg:		
				Slope of line	-86.55	
				Intersection point of lines =	0.47	
				Total Provided Pond Volume =	0.11 a	ac-ft
		Time to Peak in 100-year	Storm			
45						
40						
		\rightarrow				
35						
30						
25						
Q (cfs)				- Time to Peak in 100-years		
20				Allowable Discharge Pond Volume for Designed D	ischarge	
			\searrow		iocnolge	
15						
10						
5						
				\mathbf{X}		
0 0.1 0.2 0	0.3 0.4	0.5 0.6	0.7 0.8	0.9 1		
u 0.1 0.2 (u.a 0.4	0.5 0.6 Time (Hour)	u./ 0.8	0.9 1		

Project Description		
Solve For	Headwater Elevation	
Input Data		
Discharge	36.76 cfs	
Crest Elevation	0.00 ft	
Tailwater Elevation	0.35 ft	
Crest Surface Type	Gravel	
Crest Breadth	5.00 ft	
Crest Length	40.0 ft	
Results		
Headwater Elevation	0.49 ft	
Headwater Height Above Crest	0.49 ft	
Tailwater Height Above Crest	0.35 ft	
Weir Coefficient	2.69 ft^(1/2)/s	
Submergence Factor	1.000	
Adjusted Weir Coefficient	2.69 ft^(1/2)/s	
Flow Area	19.6 ft ²	
Velocity	1.88 ft/s	
Wetted Perimeter	41.0 ft	
Top Width	40.00 ft	

Worksheet for Spillway

Kimley »Horn

Storm Water Quality Volume (SWQC)

Project Name: RV Storage Project Number: 96648005

Per Drainage, Flood Control, and Erosion Control Manual, Chapter 6, Section 6-12

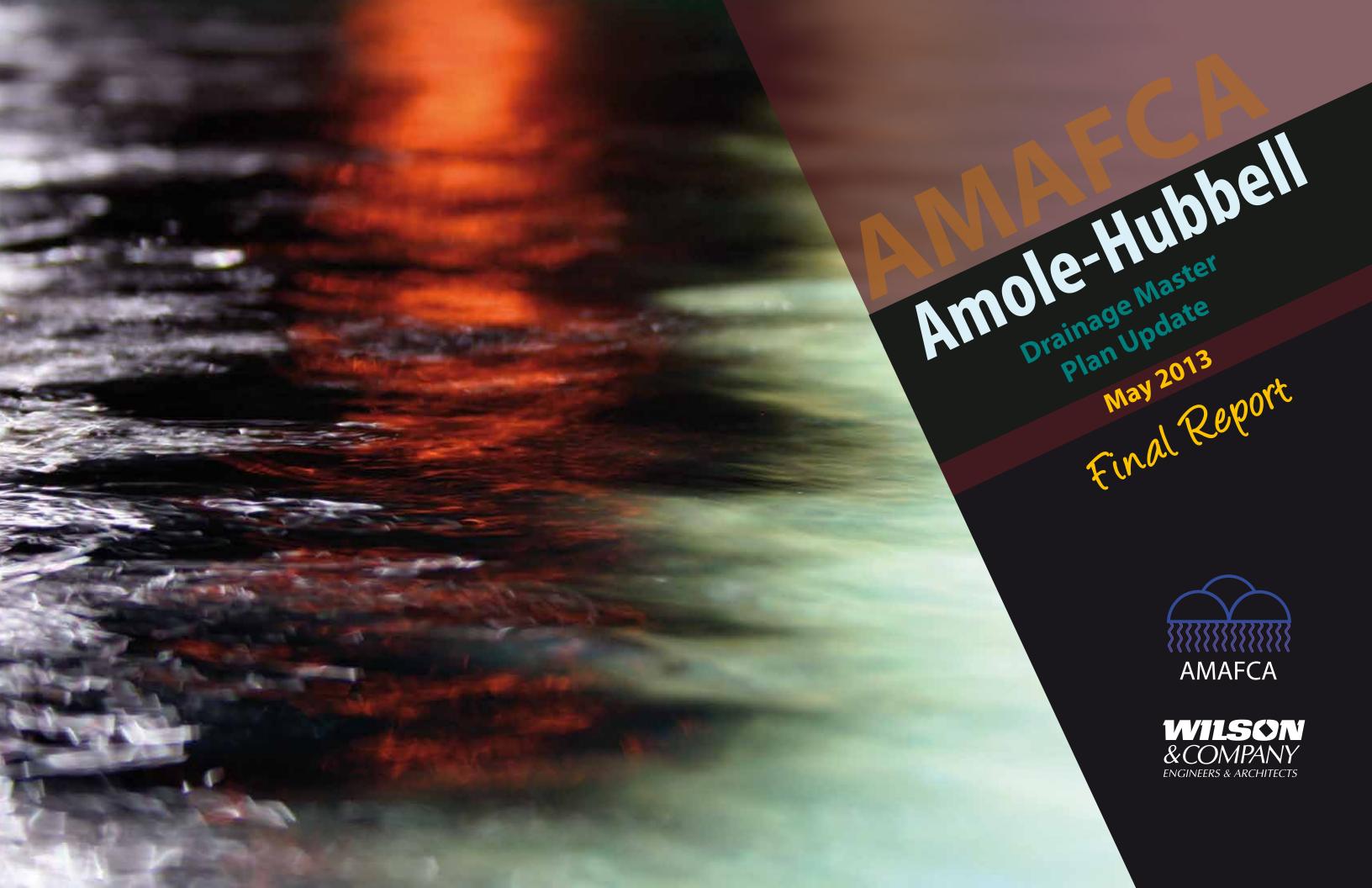
SWQV:

New Development

SWQV: (Impervious area x 0.42)/12

Impervious Area = 9.15 acres

SWQV = 0.32 ac-ft


Kimley **»Horn**

Project Name: RV Storage Project Number: 96648005 **Retention Pond Drain Time**

	Retention Pond Drain Time											
Pond	Percolation Rate	Pond Bottom	Drain Time									
rolld cf	inches/hr	Sq. Ft.	hr									
A 18,731	0.83	12,000	23									

Pond Volume 0.43 ac-ft

APPENDIX D: REFERENCES

RESOLUTION 2014-03 ADOPTION OF THE AMOLE-HUBBELL DRAINAGE MANAGEMENT PLAN 2013 UPDATE

WHEREAS, July 1999, the Amole Hubbell Drainage Management Plan (DMP) was adopted by the AMAFCA Board of Directors; and

WHEREAS, the DMP identified existing drainage facilities that were to be expanded and new facilities to be constructed to address existing and future runoff quantities; and

WHEREAS, since adoption by the Board, the watershed has experienced rapid growth and many facilities identified in the DMP have been constructed, often in conjunction with development; and

WHEREAS, the aforementioned development has dictated that AMAFCA re-assess the validity of the DMP; and

WHEREAS, in November 2011, the Board engaged Wilson & Company to prepare an update to the Amole Hubbell DMP (DMP Update); and

WHEREAS, the City of Albuquerque (CITY), Bernalillo County (COUNTY) and AMAFCA all have jurisdiction in the watershed; and

WHEREAS, accordingly AMAFCA entered into a funding agreement with the CITY and the COUNTY for the preparation of the DMP Update; and

WHEREAS, AMAFCA, the COUNTY and the CITY desire to address stormwater control through the Amole Hubbell DMP Update; and

WHEREAS, AMAFCA desires to adopt the Amole Hubbell DMP Update, subject to certain limitations.

NOW, THEREFORE, BE IT RESOLVED BY THE BOARD OF DIRECTORS OF THE ALBUQUERQUE METROPOLITAN ARROYO FLOOD CONTROL AUTHORITY THAT:

The improvements recommended by the Amole Hubbell Drainage Management Plan Update, prepared by Wilson & Company, dated November, 2013 are hereby adopted, subject to the following conditions:

- 1. Modifications to the adopted plan may be made as circumstances dictate, but major deviations shall be approved by the AMAFCA Board of Directors.
- 2. The DMP Update utilizes various criteria to establish general project priorities from a technical perspective. It identifies drainage and flood control infrastructure necessary to provide protection to the community from storm water runoff. It does not necessarily reflect

RESOLUTION 2014-03 ADOPTION OF THE AMOLE-HUBBELL DRAINAGE MANAGEMENT PLAN 2013 UPDATE

the priorities to be used by the AMAFCA Board of Directors for funding and construction. Specific projects, if any, will be funded and scheduled by AMAFCA Board of Directors action based on evaluation of public safety needs, cost sharing benefits, orderly development of flood control infrastructure, overall community needs and regional planning requirements.

PASSED, ADOPTED, AND SIGNED this 23th day of January 2014.

ATTEST:

Buie M. Thomas

Bruce M. Thomson, Secretary/Treasurer

ALBUQUERQUE METROPOLITAN ARROYO FLOOD CONTROL AUTHORITY

Danny Hernandez, Chair, Board of Directors

Table of Contents

Executive Summary 1. Literature Review 1.1 Amole-Hubbell DMP 1999..... 1.2 Other Researched Documents..... 2. Hydrologic Analysis 2.1 Methodology..... 2.2 Hydrologic Characteristics..... 2.2.1 Watershed Delineation..... 2.2.2 Precipitation 2.2.3 Sediment Bulking 2.2.4 Land Use..... 3. Basin Evaluation..... 3.1 Powerline Basin..... 3.2 South Powerline Basin 3.3 Snow Vista Basin 3.4 Amole Basin 3.5 Amole Del Norte 3.5.1 98th & Central Basin 3.5.2 Unser/214 Basin..... 3.5.3 Tierra Bayita Area 3.5.4 Atrisco Business Park Basin 3.5.5 Tower/Sage Area 3.5.6 South Amole del Norte Basin 3.6 Borrega Basin.....

3.7 Rio Bravo Basin.....

AMOLE-HUBBELL DRAINAGE MASTER PLAN UPDATE **NOVEMBER 2013**

I, Tyler J. Ashton, do hereby certify that this report was prepared by me or under my direction and that I am a duly registered Professional Engineer under the laws of the State of New Mexico.

Tyler J. Ashton, P.E. State of New Mexico P.E. No. 16205

3-26-14

Date

Amole-Hubbell Plan Update 2013 Report

													•						•						•		•		 							•		•												i	
																				1											2																			1	l
																																																		Ę	
																																																		L.	
	•	•	• •			•	•	•	•	.,			•		•	•	•	•	•	•			1					•	•	• •				•	•	•	•	•	•			•	•		•	•••		•••		5	5
					9																					 							35																	1	5
																																									2									ļ	5
																																																		(
																																																		(
																																																		(
																																																		(
e			•																			•										•					-										 			Ĵ	13
				 																																								 			 			3	17
																																																			25
																																																			31
																																																			31
																																																			35
																																																			39
				•	•																•						3					•								•									•••		43
																																		 																	47
																																																			51
•			•		•				•	•	•	•		•		2		•	•		•			•							•		•		0	-							1			•					57
																																																		. 1	61

Amole-Hubbell Plan Update 2013 Report

List of Figures

Figure 2-1: Amole-Hubbell Watershed Overall Basin Map	7
Figure 2-2: Proposed Land Use Map	
Figure 3-1: Powerline Basin - Proposed Basin Map	11
Figure 3-2: Powerline Basin - Proposed Hydrologic Model Diagram	12
Figure 3-3 South Powerline Basin - Proposed Basin Map	15
Figure 3-4: South Powerline Basin - Proposed Hydrologic Model Diagram	16
Figure 3-5: Snow Vista Basin - Proposed Basin Map	20
Figure 3-6: Snow Vista Basin - Proposed Hydrologic Model Diagram	21
Figure 3-7: Amole Basin - Proposed Basin Map	28
Figure 3-8: Amole Basin - Proposed Hydrologic Model Diagram	29
Figure 3-9 - 98th & Central Basin Proposed Basin Map	32
Figure 3-10: 98th & Central Area - Proposed Hydrologic Model Diagram	33
Figure 3-11: Unser/214 - Proposed Basin Map	36
Figure 3-12: Unser/214 Area - Proposed Hydrologic Model Diagram	37
Figure 3-13: Tierra Bayita Area - Proposed Basin Map	40
Figure 3-14: Tierra Bayita Basin - Proposed Hydrologic Model Diagram	41
Figure 3-15: Atrisco Business Park Area - Proposed Basin Map	44
Figure 3-16: Atrisco Business Park Area - Proposed Hydrologic Model Diagram	45
Figure 3-17: Tower/Sage Area - Proposed Basin Map	
Figure 3-18: Tower/Sage Area - Proposed Hydrologic Model Diagram	
Figure 3-19: South Amole del Norte Area - Proposed Basin Map	53
Figure 3-20: South Amole del Norte - Proposed Hydrologic Model Diagram	54
Figure 3-21: Borrega Basin - Proposed Basin Map	58
Figure 3-22: Borrega Basin - Proposed Hydrologic Model Diagram	59
Figure 3-23: Rio Bravo Basin - Proposed Basin Map	62
Figure 3-24: Rio Bravo Basin - Proposed Hydrologic Model Diagram	63

List of Tables

Table 0-1:Summary of Recommendations from 1 Table 0-2:Summary of Recommendations for 207 Table 2-1: NOAA Precipitation Depths..... Table 2-2: Land Treatment Type Percentage Sur Table 3-1: Powerline Basin - Proposed Sub-Basi Table 3-2: South Powerline Basin - Proposed Su Table 3-3: Snow Vista Basin - Proposed Sub-Bas Table 6-1: Amole Analysis Characteristics..... Table 3-5: Amole Design Characteristics Table 3-6: Hubbell Design Characteristics Table 3-7: Hubbell Analysis Characteristics...... Table 3-8: Amole Basin - Proposed Sub-Basin P Table 3-9: 98th & Central Area - Proposed Sub-E Table 3-10: Unser/214 Area - Proposed Sub-Bas Table 3-11: Tierra Bayita Area - Proposed Sub-B Table 3-12: Atrisco Business Park Area - Propos Table 3-13: Tower/Sage Area - Proposed Sub-Ba Table 3-14: South Amole del Norte Area - Propos Table 3-15: Borrega Basin - Proposed Sub-Basir Table 3-16: Rio Bravo Basin - Proposed Sub-Bas

List of Photos

Photo 2: Pond SV10 Inlet	17
Photo 3: Pond SV8	17
Photo 4: Pond SV4	18
Photo 5: Bridge at Benavides Road	18

Appendix

Appendix A - Existing Conditions Appendix B - Hydrology Appendix C - Hydraulics Appendix D - Cost Estimates Appendix E - Literature Review Documents

1999 Amole-Hubbell Report	i
13 Amole-Hubbell Update Report	ii
· · ·	
mmary	
in Peak Discharge and Volumes	12
Ib-Basin Peak Discharge and Volumes	16
sin Peak Discharge and Volumes	
~	
eak Discharge and Volumes	
Basin Peak Discharge and Volumes	
sin Peak Discharge and Volumes	
Basin Peak Discharge and Volumes	
sed Sub-Basin Peak Discharge and Volumes	
asin Peak Discharge and Volumes	
sed Sub-Basin Peak Discharge and Volumes	
n Peak Discharge and Volumes	
sin Peak Discharge and Volumes	

Executive Summary

The objective of the Amole-Hubbell Drainage Master Plan (DMP) Update is to evaluate the 1999 Amole-Hubbell Report's recommendations and determine what has been done to date and what infrastructure is still needed. In 2011 the Albuquerque Metropolitan Arroyo Flood Control Authority (AMAFCA) contracted Wilson & Company to update the original 1999 Amole-Hubbell DMP by Leedshill-Herkenhoff, Inc. The contract was separated into two phases. Phase I Services included literature review/as-built collection and existing hydrologic/hydraulic analysis. Phase II Services analyzed existing facilities for adequacy and provided recommendations for proposed drainage facilities identified in the original DMP.

Approximately 20 square miles (sq. mi.) are analyzed and encompass the area generally bounded by Interstate 40 (I-40) to the north, Westgate Dam basin divided to the west, Gun Club Road to the south, and Coors Boulevard to the east. The project area is separated into the following nine basins as in the original DMP:

- 1. Powerline Channel Basin (PL)
- 2. South Powerline Basin (SP)
- Snow Vista Basin (SV) 3.
- Amole Basin (AA) 4.
- 5. Amole del Norte Basin (ADN)
- Borrega Basin (BR) 6.
- Rio Bravo Basin (RB) 7.
- 8. Sacate Blanco (SB)
- 9. Amole-Hubbell Detention (AH)

A total of 80 reports were gathered for the literature review. Key information was taken from these reports, such as sub-basin boundaries, stage-storage-outflow tables, and existing/proposed infrastructure, and these analysis points aided in the existing and proposed condition modeling.

The table below summarizes the recommendations from the 1999 report and also states whether the recommendation has been completed or if it is still needed today.

Table 0-1:Summary of Recommendations from 1999 Amole-Hubbell Report										
Project Identification	Description from 1999 Report	Status 2013								
1999 Deficiencies Updated Reco										
BR1	A 51 ac-ft Borrega Detention Basin	Completed								
BR4	Borrega Inlet Freeboard Upgrade	Completed								
AA1	Blake Rd. profile regrading	Completed								
AA2	Westgate Heights Earthen Channel regrading	Completed								

Project Identification	Description from 1999 Report	Status 2013					
4A3	Earthen channel bank improvements	Completed					
SV1A	Snow Vista Channel/Benavides Rd. Inlet	Not completed, still needed					
SV1B	Westgate Heights Benavides Rd. Storm Drain	Not completed, still needed					
PL2	Powerline Channel Freeboard Upgrade	Not completed, still needed					
1999 Amole-Hubbell System St	orage Capacity Recommendations						
AH1	Stage 1 Revise emergency spillway, connect Guac and Amole Basins, provide 150 ac-ft additional storage	Not completed, still needed					
AH2	Stage 2 Increase Guac storage by 300 ac-ft	Not completed, still needed					
AH3	Stage 3 Increase Guac storage to 862 ac-ft	Not completed, still needed					
AH4	PMF Spillway improvements at Hubbell Lake Dam	Not completed, still needed					
1999 Amole Arroyo Stabilizatio	n						
PL1	Additional detention on Powerline Channel (58 ac-ft)	Not completed, still needed					
AA4	Stabilize Amole Arroyo mid reach	Completed					
AA5	Construct Amole Arroyo below Snow Vista	Completed					
SV2	Maintain runoff constraints in Snow Vista Basin	Completed, still needed					
SV3	Snow Vista Channel freeboard upgraded	Not completed, still needed					
AA6	Construct channel for lower reach of Amole Arroyo	Completed					
AA7	Increase freeboard of transition and chute into Amole Basin	Completed					
1999 South Powerline Channel	/Detention						
SP1	Construct diversion channel with detention basins	Partially completed, still needed					
1999 South Rio Bravo Arroyo a	t Hubbell Lake						
RB1	Convey South Rio Bravo Arroyo discharge across the Gun Club Lateral	Partially completed, still needed					
1999 Development Driven Impr	ovements/Facilities						
AD1	Tower/Sage Detention Basin	Completed					
SB1	Sacate Blanco Diversion Channel	Not completed, still needed					
SB2	S. Sacate Blanco Arroyo Conveyance	Not completed, still needed					
SB3	Sacate Blanco Avulsion Conveyance	Not needed					
BR2	N. and S. Borrega Arroyo Conveyance	Not completed, still needed					
RB2	S. Rio Bravo Arroyo Conveyance	Not needed					
BR3	Borrega "6B" Diversion Storm Drain	Partially completed, still needed					
ADN	Amole del Norte Basin Controls	Still needed, continued enforcemer required					

Amole-Hubbell Drainage Master

The 20 sq. mi. watershed was reevaluated utilizing the information obtained through the literature review process. Based on the updated data the watershed was divided into seven basins for the updated DMP. The original Sacate Blanco Basin and Amole-Hubbell basin were incorporated into the South Powerline and Amole Basins respectively resulting in the follow basins for evaluation:

- 1. Powerline Channel Basin (PL)
- South Powerline Basin (SP) 2.
- 3. Snow Vista Basin (SV)
- 4. Amole Basin (AA)
- Amole del Norte Basin (ADN) 5.
- Borrega Basin (BR) 6.
- Rio Bravo Basin (RB) 7.

The updated watershed basins and hydrological analysis for the proposed conditions model resulted in additional recommendations to those presented in the original DMP. .

These recommendations, along with the recommendations that are still needed, are summarized in Table 0-2 including conceptual costs by basin.

Table 0-2:S	ummary of Recommendations for 2013 Amole	-Hubbell Update Report					
Project Identification	Description of Project	Cost					
Powerline Basin	•						
Pond PL1	Increase Pond storage to 21 ac-ft	\$328,200					
Sediment Removal PL1- PL6	Remove sediment from existing ponds to design conditions, see Figure 3-1	\$/yr- AMAFCA					
South Powerline							
Sediment Removal	Remove sediment from existing ponds to design conditions, see Figure 4-1	\$/yr- COA					
Pond SP8	Construct 17.5 ac-ft pond	\$\$\$/Developer Cost					
Pond SP1	Combine ponds SP1A and SP!B	\$\$\$/Developer Cost					
Snow Vista Basin							
Sediment Removal	Remove sediment from existing ponds to design conditions, see Figure 5-1	\$/yr-AMAFCA/COA					
SV4A	Route Basins SV229 and SV230 to Amole Arroyo	\$\$\$ Developer Cost					
SV1	Westgate Heights Benavides Rd. Storm Drain	\$2,434,000					
SV2	Maintain runoff constraints in Snow Vista Basin	Developer Cost					
Pond SV8	Increase Pond size to 4 ac-ft, reconstruct outlet structure	\$212,500					
Pond SV205	Construct 28 ac-ft pond	\$1,080,300					

Amole Basin		
AH1-4	A GuacAmole/Hubbell Lake System Analysis is needed to address capacity/discharge.	\$\$\$
Amole del Norte Basin		·
Pond NE3	Relocate pond spillway	\$222,800
Pond Modifications	Install orifice plates in Ponds NE2 and NE3	\$
98 th & Central Storm Drain	Install Storm drain per Figure 7-1	\$\$\$/Developer Cost
Unser/214 Area		•
Basin 202.1 restriction	Restrict future development to 2.0 cfs/ac.	\$\$
West I-40 Diversion	Complete construction of channel	\$3,000,000
Pond U1	Install orificeplate in Pond	\$
Unser Storm Drain	Upsize 42" to 60"	\$\$\$
Tierra Bayita	•	
Pond TB1	Construct detention pond	\$\$\$
Basin 202.1 and 202.2 restrictions	Restrict future developments to 2.05 cfs/ac	Developer cost
Coors N-S Pond	Increase volume to 75 ac-ft.	\$\$/AMAFCA
Atrisco Business Park Basin		
Basin Restrictions	Continue to restrict all development to 0.1 cfs/ac	Developer cost
Tower/Sage Basin		·
Tower Road Storm drain	Complete storm drain	\$\$\$
Pond TS2	Install storm drain in Sage Rd.	\$\$\$
South Amole del Norte		·
Pond SA2	5 ac-ft expansion of pond	\$175,900
Pond SA3	Increase pond size by 1 ac-ft	\$61,800
Borrega Basin		
Pond B1	Construct 6 ac-ft pond	\$
Borrega Dam Expansion	Expand Borrega Dam to ultimate condition	\$540,700
Rio Bravo Basin		
	GuacAmole/Hubbell System analysis	\$\$\$

Amole-Hubbell Plan Update

2013 Report

1. Literature Review

The following documents were included in the Phase I Literature Review to develop the existing conditions study and identify critical drainage features in the study area. These resources were revisited to guide and inform proposed recommendations.

1.1 Amole-Hubbell DMP 1999

Wilson & Company, Inc., Engineers & Architects (Wilson & Company) was contracted by Albuquerque Metropolitan Arroyo Flood Control Authority (AMAFCA) to update the Amole-Hubbell Drainage Management Plan (DMP) dated July 1999 (original Amole-Hubbell DMP). The original DMP was prepared by Leedshill-Herkenhoff, Inc. and was prepared for AMAFCA. Four volumes were prepared and include the following:

"Amole-Hubbell Drainage Management Plan Volume I" July 1999 "Amole-Hubbell Drainage Management Plan Volume II" July 1999 "Amole-Hubbell Drainage Management Plan Volume III" July 1999 "Amole-Hubbell Drainage Management Plan Volume IV" July 1999

1.2 Other Researched Documents

Wilson & Company researched documents at City of Albuquerque's (COA's) Drainage Division, COA's Maps and Records, and Bernalillo County Public Works Department.

Continued efforts for investigating drainage patterns and problems at a macro level led to researching site development drainage reports and plans for areas within the Amole-Hubbell Watershed. These reports and plans are not summarized in this section, yet are referenced throughout the text. Valuable insight into the hydrologic patterns and proposed development is provided in these reports and is helpful in sub-basin delineation, as well as in determining the existing and proposed infrastructure. Drainage reports, construction plan sets, and basin maps were acquired to aid in the hydrologic and hydraulic analysis. The list is provided below. The COA categorizes their drainage reports by the zone atlas number, followed by the number that represents the order in which the reports were submitted. For example, a file number of M-09/D023 is a drainage report located in zone M-9 and was the 23rd drainage report submitted in that zone.

- 1. "Amole-Hubbell Drainage Management Plan Volume I, II, III, & IV" July 1999
- 2000
- 3. "West I-40 DMP" 2006
- 4. "Final Design Report for Amole Arroyo including Revisions to the Amole-Hubbell Drainage Management Plan" August 2003, File M-09/D023
- 6. "Anderson Hills Subdivision Drainage Report", File P-09/D002
- 7. "Drainage Report for Ceja Vista Subdivision" January 9, 2007
- 8. "El Rancho Subdivisions Drainage Reports"
- 9. "Rio Bravo Sector Development Plan"
- 10. "Facility Plan for Arroyos" AMAFCA #376.04.00
- down to the Amole Dam" July 2004, File J-08
- 12. "Arenal/Unser Drainage Management Plan" June 1997
- 13. "Borrega/PaakWeree Village Final Design Report"
- 15. "Unser Diversion-Design Analysis Report" September 1993

Amole-Hubbell Drainage Master

2. "Borrega Detention Dam and North Borrega Channel-Design Analysis Report" April

5. "Drainage Report for Anderson Heights Subdivision" April 2004, File P-08/D003

11. "Drainage Report for the Amole Channel from Confluence with Snow Vista Channel 14. "Amole del Norte Tower/Sage Drainage Master Plan" April 1995, AMAFCA #359.03 16. "Drainage Study for Sierra Ranch Subdivision" December 16, 2004, File N-08/D003

- 17. "Talavera Subdivision Drainage Management Plan" January 2009
- 18. "Southwest Valley Flood Damage Reduction Study Volume I, II, and III"
- 19. "Drainage Report for Sunrise Ranch Subdivision" June 2000, File L-09/D006
- 20. "Final Design Report Amole del Norte Storm Diversion Facilities Tierra Bayita Drainage Facilities Phase III" March 1998
- 21. "Anderson Heights Grading & Drainage Plan" COA #753981
- 22. "Anderson Heights Unit 9 Grading and Drainage Plan" COA #753981
- 23. "Preliminary Design Report for Amole del Norte Storm Diversion Facilities Tierra Bayita Drainage Facilities" October 31, 1990 COA #4076-01
- 24. "Design Report for Amole del Norte Storm Diversion Facilities Tierra Bayita Drainage Facilities Phase IIIC"
- 25. "Design Report for Amole Arroyo including Revisions to the Amole-Hubbell Drainage Management Plan" February 2003
- 26. "El Rancho Grande Units 14 & 15" October 10, 2003, File N-09/D005
- 27. "Sunrise Ranch Unit 4 Pond Reclamation" August 6, 2002, File L-09/D006
- 28. "Sunrise Ranch Unit 2 Supplemental Information" November 21, 00, File L-09/D006
- 29. "Master Drainage Plan Sunrise Terrace Units III, IV, & V" March 1994: Revised June 1994, File L-08/D01A
- 30. "Drainage Study for Timarron West Subdivision" April 6, 2000, File M-08/D005A
- 31. "Drainage Study for the Timarron West Subdivision Unit 5" May 25, 2000, File M-08/D005B
- 32. "Master Drainage Study Gibson Blvd. Corridor Between 118th Street and the Amole Arroyo" May 8, 2003, File N-09
- 33. "Sierra Ranch Unit 2 Offsite Pond" June 2002, File N-08/D003
- 34. "Sierra Ranch Subdivision Unit I Grading and Drainage Plan" N-08/D003
- 35. "Anderson Heights Units 4 & 6" File N-08/D003A

NILSON &COMPANY

- 36. "Drainage Study for Sun Gate Subdivision" January 8, 2004, File N-09/D007
- 37. "Arrowwood Development Phase I Grading and Drainage Plan" COA #747281
- 38. "Longford at Arrowwood Grading and Drainage Plan" COA #747281
- 39. "Tracts 29, 30, 31 at Arrowwood Drainage Master Plan" October 11, 2004, File N-09/D008A
- 40. "Drainage Report for Sun Gate Estates" September 8, 2004, File N-09/D008B
- 41. "118th Street Powerline Ponds Revisions to Ponds #5 and #6" File P-08/D003
- 42. "Anderson Heights Grading and Drainage Plan" COA #753981
- 43. "As-builts for Anderson Heights Grading and Drainage Plan" File P-08/D003
- 44. "Supplemental Drainage Information for Ceja Vista Unit 1, 2, 3" April 2010, DRB 1004428
- 45. "Drainage Management Plan for Anderson Hills The Highlands, The Meadows, The

- Mesa Volume II" August 19, 2003, File P-09/D002 46. "Sunrise Estates Units 2 & 3"
- 47. "Timarron West Unit 5 Grading & Erosion Control Plan"
- 48. "Timarron West Unit 4 Grading & Erosion Control Plan"

- 52. "Unser Towne Crossing Plan Set" COA #26048
- 53. "Preliminary Drainage Report for Paradise RV Park-Phase I" August 2011, File K-09/D003
- Avenue" February 2007, File K-9/D033
- 55. "Drainage Masterplan for Avalon Subdivision" February 1998, File K-9/D012
- 56. "Zanios Food Warehouse Addition Phase 4 Grading and Drainage Plan"
- 57. "Unser Crossing Plan Set"
- 58. "Central and Unser Site Plan" File K-10/D055
- 09/D006
- 61. "Drainage Analysis for Bluewater Road near 90th Street" December 2001, File K-09/D022
- 63. "Town of Atrisco Grant, Unit 5 Plan Set" File K-09/D026
- 64. "Drainage Report for Southwynd Subdivision" January 2002, File L10-D020
- 09/D18
- 67. "Sunset West, Unit 2 Temporary Retention Pond Reclamation Improvements" File L-09/D004A
- 68. "Supplemental Information for Sage & Unser Marketplace" File M-10/D019
- 09/D013
- 70. "Drainage Report for Sunset West Unit 2" April 1994, File M-09/D004
- 71. "Drainage Report for Blake Road Subdivision" June 1998, File N-10/D003
- 72. "Casa del Sueno & Casa de Ver" File N-10/D001
- 74. "Revision to the Master Drainage Plan for the Rio Bravo Sector Development Plan"

Amole-Hubbell Drainage Master 2013 Report

49. "Drainage Report for Meridian Business Park II A Supplement to the Master Drainage Plan for Atrisco Business Park" August 2007, File J-10/D002G 50. "Master Drainage Plan for Atrisco Business Park" September 1992, File J-10/D002 51. "Master Drainage Plan for Atrisco Business Park" October 1993, File J-10/D002 54. "Drainage Report for Commercial Development NW Corner of 98th Street & Central 59. "West Ridge Mobile Home Park" October 1997, File K-09/D006 60. "West Ridge Mobile Home Park Detention Pond Grading and Drainage Plan" File K-62. "Drainage Report for Clifford West Business Park" September 1997, File K-09/D023 65. "Sunset West Unit III Units 17, 18, and 19 Grading and Drainage Plan" File L-09/D012A 66. "Drainage Report & Grading Plan for Valle del Canto Subdivision" August 1997, File L-69. "Truman Middle School Phase I Improvements Grading and Drainage Plan" File M-

73. "Master Drainage Plan for the West Side Transit Facility" February 2001, File S-9/D016

March 2000, AMAFCA #377.05.03

- 75. "Final Drainage Report for PaakWeree Village" March 2000, AMAFCA #358.02.05
- 76. "Westgate Diversion Channels Snow Vista Channel-Phase I"
- 77. "Westgate Diversion Channels Snow Vista Channel-Phase II & III"
- 78. "Amole del Norte Storm Diversion Facilities Tierra Bayita Drainage Facilities" June 1995
- 79. "Master Drainage Report Tracts B, C, & D PaakWeree Bulk Land Plat" County #PWDN 70112
- 80. "Paradise RV Park Drainage Report" August 2011

Amole-Hubbell Drainage Master

2013 Report

2. Hydrologic Analysis

2.1 Methodology

The Arid-lands Hydrologic Model-S4 (AHYMO) was used to calculate the 100-year peak flow rates and volumetric runoff. The unit hydrograph procedure is utilized in the AHYMO program to compute individual sub-basin runoff hydrographs. AHYMO's hydrologic methodology is discussed in the COA's Development Process Manual (DPM), Chapter 22-Drainage, Flood Control and Erosion Control (July 1997). The basin's physical properties input into the command include sub-basin area, percent of land treatment types, rainfall distribution, and the time to peak. Previous computations for the rainfall distribution and time to peak are linked into the command. The "Rainfall" and "Compute LT TP" commands compute the rainfall distribution and the time to peak, respectively. The AHYMO computations for 24-hour storm will be used for volumes; the 6-hour storm computations will be used for peak flow rates.

Hydrographs were routed using the channel, pipe, and reservoir routing commands. A rating curve command, followed by the computed travel time for channels and pipes, was used to account for the discharge relations based on headwater and slope. Ponds were modeled using the route reservoir command. Input of the route reservoir command requires stage, storage, and discharge for each incremental elevation.

2.2 Hydrologic Characteristics

2.2.1 Watershed Delineation

The Amole-Hubbell Watershed is divided into seven sub-basin for evaluation. The following list outlines the seven basins that were delineated:

- 1. Powerline Basin (PL)
- 2. South Powerline Basin (SP)
- 3. Snow Vista Basin (SV)

- 4. Amole Basin (A)
- 5. Amole del Norte Basin
 - o 98th & Central Basin (NE)
 - Unser/214 Basin (U)
 - Tierra Bayita Basin (TB)
 - Atrisco Business Park Basin (AB)
 - Tower/Sage Basin (TS)
 - South Amole del Norte Basin (SA)
- 6. Borrega Basin (B)
- 7. Rio Bravo Basin (RB)

The basin boundaries vary slightly from the original DMP. Basin variations are due to drainage infrastructure realignments, constructed development since the adopted Amole-Hubbell DMP routed runoff differently, and master plans differing from the original DMP. The basin names were kept the same as those used in the original Amole-Hubbell DMP. The existing sub-basin identifications are 100 series; the proposed sub-basin identifications are 200 series.

Resources used to define sub-basins included 2010 Bernalillo County Light Detection and Ranging (LIDAR) mapping data, 2010 Bernalillo County Orthoimagery, and the latest COA parcel shapefile. LIDAR point and breakline files were provided by AMAFCA. By using the mapping data, contour intervals of 2-ft were generated in AutoCAD.

2.2.2 Precipitation

The precipitation depths for the 0.25-, 1-, 6-, and 24-hour storms, 100-year storm frequency were obtained from the original Amole-Hubbell DMP. Rainfall amounts were gathered from the COA DPM and the National Oceanographic and Atmospheric Administration (NOAA), Atlas 14. Table 2-1 lists the precipitation depths used to determine the rainfall distribution.

Table 2-1: NOAA Precipitation Depths								
Storm Duration for 100-Year Frequency (hr)	Precipitation Depth (in)							
0.25	1.46							
1	1.87							
6	2.20							
24	2.66							

2.2.3 Sediment Bulking

Sediment is gathered into flowing water when the land surface erodes. Sediment bulking factors are applied to both the existing and proposed conditions to account for the increase in runoff due to sediment transport. Two factors influence sediment bulking: pervious area and slope of the terrain. An undeveloped site produces more sediment due to the higher percentage of pervious area. Existing conditions produce a higher bulking factor due to the undeveloped sites. All basins have undeveloped areas, but the basins' undeveloped percentages vary. Basins with a higher percentage of undeveloped sites than developed sites were allocated a 12% bulking factor. These basins include the Powerline Basin, South Powerline Basin, and Borrega Basin. An increase of impervious area reduces land surface erosion. Therefore, a bulking factor of 6% was applied for the basins that have a higher percentage of developed sites than undeveloped sites. These basins include the Amole Basin, Amole del Norte Basin, Rio Bravo Basin, and Snow Vista Basin. An increase of impervious area in a fully-developed watershed reduces land surface erosion.

2.2.4 Land Use

A sub-basin's land condition is recognized in AHYMO by either land treatment or curve number. Land treatment percentages were input into AHYMO_97 under this analysis. COA's 1997 DPM describes and classifies the land treatments into four categories (A, B, C, and D). A 2010 orthoimagery, 2010 LIDAR, digitized parcel base map, and current zoning were used to help determine the land use for the existing condition. Table 2-2 distributes the land treatment percentages accordingly. The right column of the table (Methodology/Notes) presents the procedure used to distribute the land treatment percentages. Land treatment percentages were weighted for sub-basins with two or more land uses. Each basin may

contain a land treatment or a mixture of land treatments. For an illustration of the existing land uses, refer to Figure A-2 (Existing Land Use Map). For the proposed conditions, various sector plans were used to determine proposed land uses. Land treatments were determined by using Table 2-2. Refer to Figure 2-2 (Proposed Land Use Map) for an illustration of the proposed land uses.

Table 2-2:	Land Tr	eatment	Type Pe	ercentag	ge Summary
	Land Tr	reatment	Percenta	iges (%)	
Layer	Туре	Туре	Туре	Туре	Methodology/Notes
	A	B	С	D	
Land Use 1 Du/Ac	0	41	42	17	DPM for D, Split B & C
Land Use 4 Du/Ac	0	29	29	42	DPM for D, Split B & C
Land Use 5 Du/Ac	0	25	26	49	DPM for D, Split B & C
Land Use 6 Du/Ac	0	21	22	57	DPM for D, Split B & C
Land Use 7 Du/Ac	0	18	18	64	DPM for D, Split B & C
Land Use 8 Du/Ac	0	14	15	71	DPM for D, Split B & C
Land Use 9 Du/Ac	0	10	11	79	DPM for D, Split B & C
Land Use Commercial	0	5	5	90	DPM for D, Split B & C
Land Use Heavy Industrial	0	10	10	80	DPM for D, Split B & C
Land Use Light Industrial	0	15	15	70	DPM for D, Split B & C
Land Use Mobile Homes	0	20	20	60	DPM for D, Split B & C
Land Use Open Space	79	8	8	5	DPM for 5 Ac
Land Use Platted Mass Graded	0	0	95	5	Assumed 5% D, Remaining C
Land Use Platted Undeveloped	79	8	8	5	Treatment from SSCAFCA Table
Land Use School	0	25	25	50	DPM for D, Split B & C
Land Use Townhomes	0	15	15	70	DPM for D, Split B & C
Land Use Slope 0 to 10	100	0	0	0	DPM
Land Use Slope 10 to 20	0	100	0	0	DPM
Land Use SU-1	0	5	5	90	DPM for D, Split B & C
Land Use SU-2	0	5	5	90	DPM for D, Split B & C

Amole-Hubbell Drainage Master 2013 Report

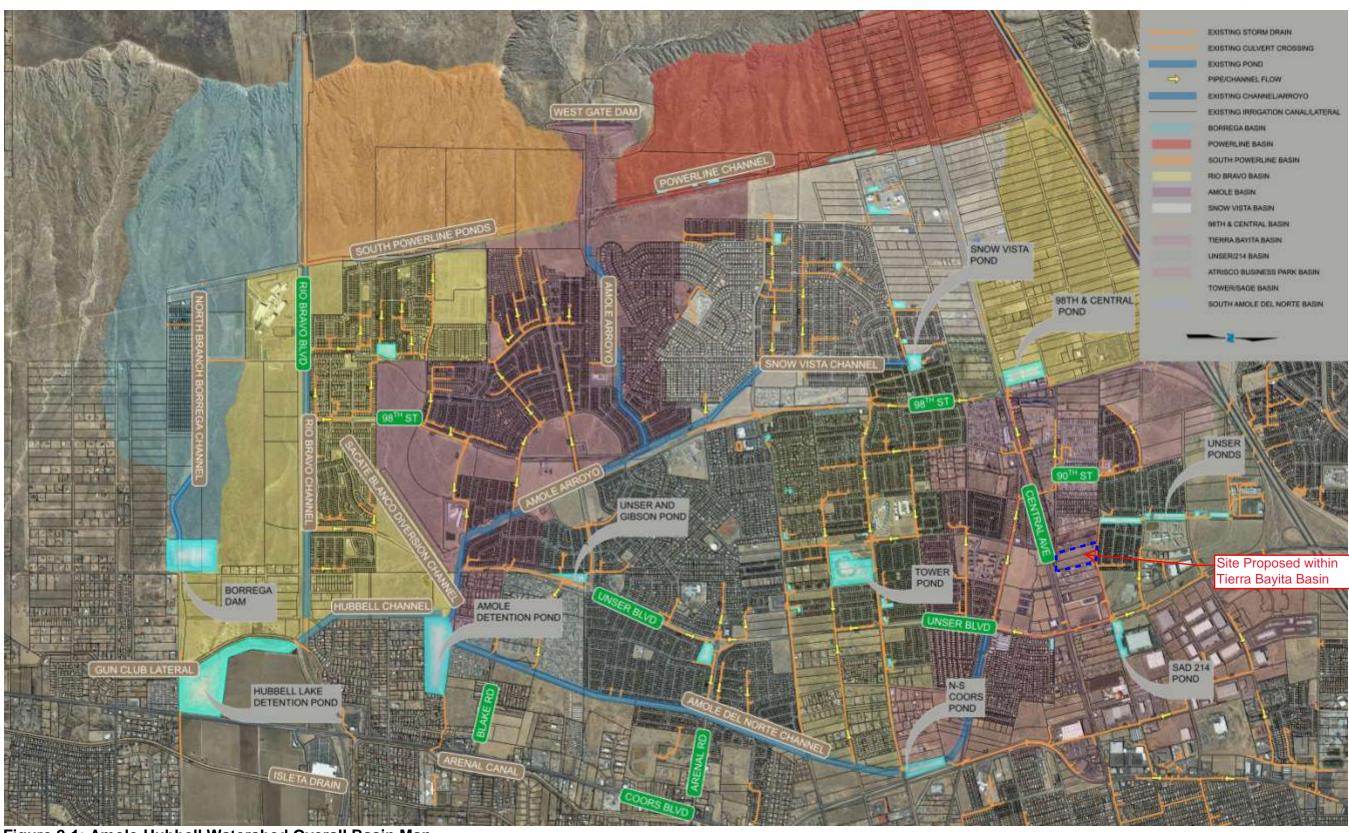


Figure 2-1: Amole-Hubbell Watershed Overall Basin Map

Amole-Hubbell Drainage Master 2013 Report

Figure 2-2: Proposed Land Use Map

Amole-Hubbell Drainage Master 2013 Report

LEGEND

COMMERCIAL HEAVY INDUSTRIAL LIGHT INDUSTRIAL RESIDENTIAL ESTATES 4 DU/AC RESIDENTIAL ESTATES 5 DU/AC RESIDENTIAL ESTATES 6 DU/AC RESIDENTIAL ESTATES 7 DU/AC **RESIDENTIAL ESTATES 8 DU/AC** RESIDENTIAL ESTATES 9 DU/AC PLATTED UNDEVELOPED LOTS PLATTED MASS GRADED LOTS ESCARPMENT 0 TO 10% SLOPES ESCARPMENT 10 TO 20% SLOPES

Site Proposed land use Light Industrial

SAD 214

POND

3.5.3 Tierra Bayita Area

Existing Conditions

The Tierra Bayita Basin is approximately 1.40 sq. mi. and is irregularly shaped with I-40 bounding the north, 98th Street bounding the west, Eucariz Avenue being the most southern boundary, and Coors Boulevard being the most eastern boundary. Several land uses in Tierra Bayita Basin include industrial, commercial, undeveloped platted lots, mass graded platted lots, and residential. Main storm drain systems have been constructed in the Tierra Bayita Basin. Stub-outs have been set along the storm drain portion on Bluewater Road. Most developments are allowed free discharge to the public storm drain. The developments in Sub-Basin TB103 and TB105 were required to construct Pond TB2 and Pond TB3, respectively. There are three major storm drain systems which convey runoff to the Tierra Bayita Channel.

Runoff from Sub-Basin TB101 and Sub-Basin TB102 is retained in Pond TB1. Once these sub-basins are developed, the storm drain on Bluewater Road will intercept its controlled runoff release. From the Bluewater Road and 90th Street intersection, this storm drain system bends 90 degrees and follows 90th Street to Volcano Road, then bends at 90th Street to Bridge, then finally it runs along Bridge Boulevard until outletting into the Tierra Bayita Channel. Pond TB2 and TB3 release a controlled rate into this system. A lateral is extended from 90th Street on Central Avenue to the two cell pond located in the 98th & Central Area.

The second major storm drain in the Tierra Bayita Basin is on Sunset Garden Road, which begins near its intersection with 86th Street and runs east to Unser Boulevard, then north on Unser Boulevard until emptying into the Tierra Bayita Channel. This system receives free discharge from its respective drainage area. The third system begins in the Unser/214 Area. The portion in the Tierra Bayita Basin is in Unser Boulevard from Avalon Road to Tierra Bayita Channel. Refer to Appendix A for hydrologic data and existing hydrologic model diagram.

Proposed Conditions

Per the Bluewater Road near 90th Street Drainage Analysis by Tierra West dated 12-20-01 basins 202.1 and 202.2 have been restricted to 2.05 cfs/ac. To achieve this restriction, ponds were created in AHYMO to reduce runoff to the restricted rate. Also, in the proposed condition TB 101 has been shifted to the 98th & Central Basin. The Coors North South pond in the proposed condition is overtopping. The pond needs to be increased in size to hold 75 acft of runoff. Refer to Table 3-11 for hydrologic data and Figure 3-14 for proposed hydrologic model diagram.

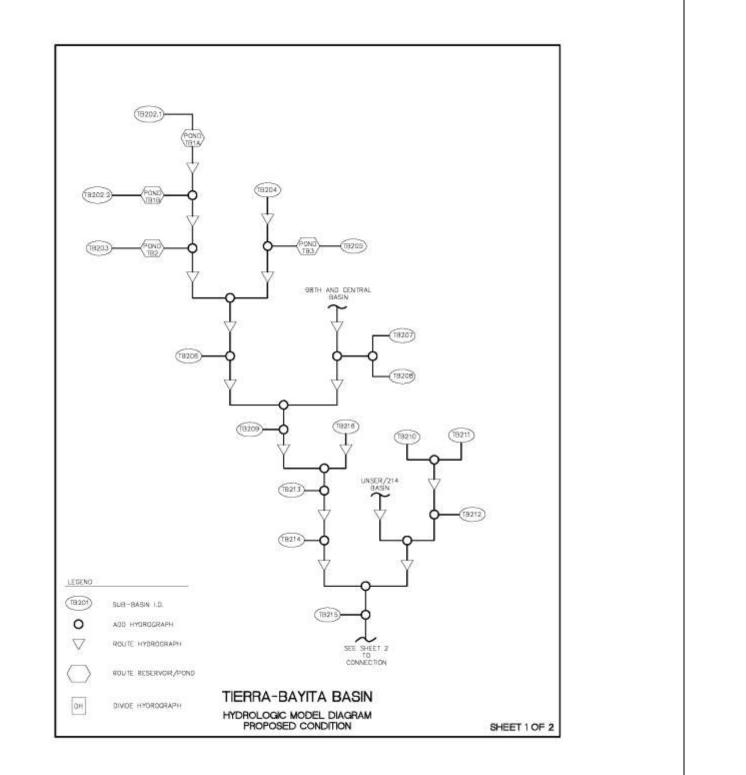
Recommendations:


Below are the recommendations from 1999 Amole-Hubbell DMP for the basin along with the status of the recommendation:

No recommendations from the 1999 Amole Hubbell DMP

Additional Recommendations for the basin based on updated basin analysis are below:

- Restrict future basin flows to 2.5 cfs/acre for basins 202.1 and 202.2.
- Increase volume of Coors N-S Pond to 75 ac-ft.



Amole-Hubbell Drainage Master

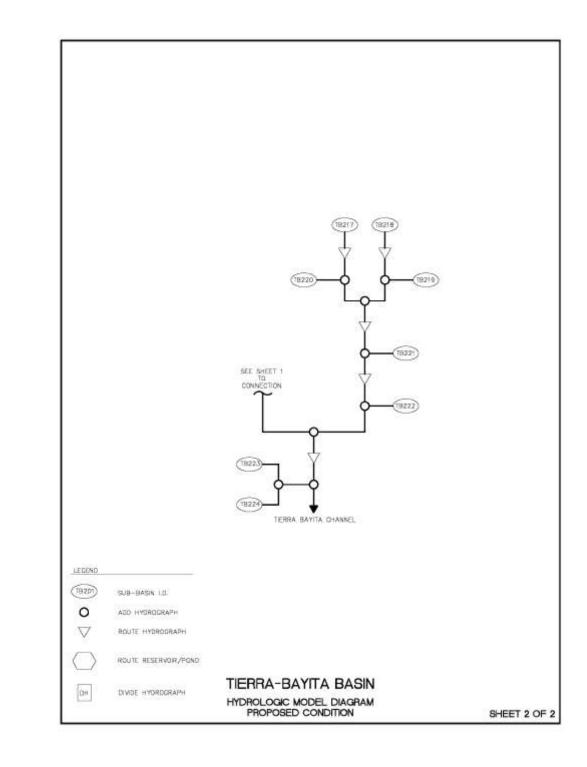


Figure 3-14: Tierra Bayita Basin - Proposed Hydrologic Model Diagram

Figure 3-14: Tierra Bayita Basin - Proposed Hydrologic Model Diagram

Table 3-11: Tie	erra Bayita Area -	Proposed Sub-Basin Pe	ak Discharge and Volumes	
Sub-Basin	Area (ac)	Q _{100yr-6hr} (cfs)	V _{100yr-24hr} (ac-ft)	
TB202.1	88	286.10	11.871	
TB202.2	56	234.77	9.208	
TB203	32	123.90	4.854	
TB204	25	106.80	4.584	
TB205	29	115.37	4.583	
TB206	16	64.63	2.570	
TB207	44	180.99	7.480	
TB208	32	125.02	5.303	
TB209	20	85.75	3.659	
TB210	47	175.08	7.917 ←	Site is 10 acres of su
TB211	15	66.05	2.870	basin TB210.
TB212	44	159.66	7.680	
TB213	30	133.59	5.771	
TB214	17	68.55	2.713	
TB215	72	195.06	9.623	
TB216	21	89.82	3.817	
TB217	12	50.87	2.147	
TB218	23	73.14	2.353	
TB219	15	58.43	2.347	
TB220	24	96.97	3.995	
TB221	37	137.45	5.770	
TB222	45	155.17	7.233	
TB223	46	129.70	6.937	
TB224	102	236.51	15.234	
TB202.1	88	286.10	11.871	

Amole-Hubbell Prainage Master 2013 Report

Appendix A

Amole-Hubbell Plan Update

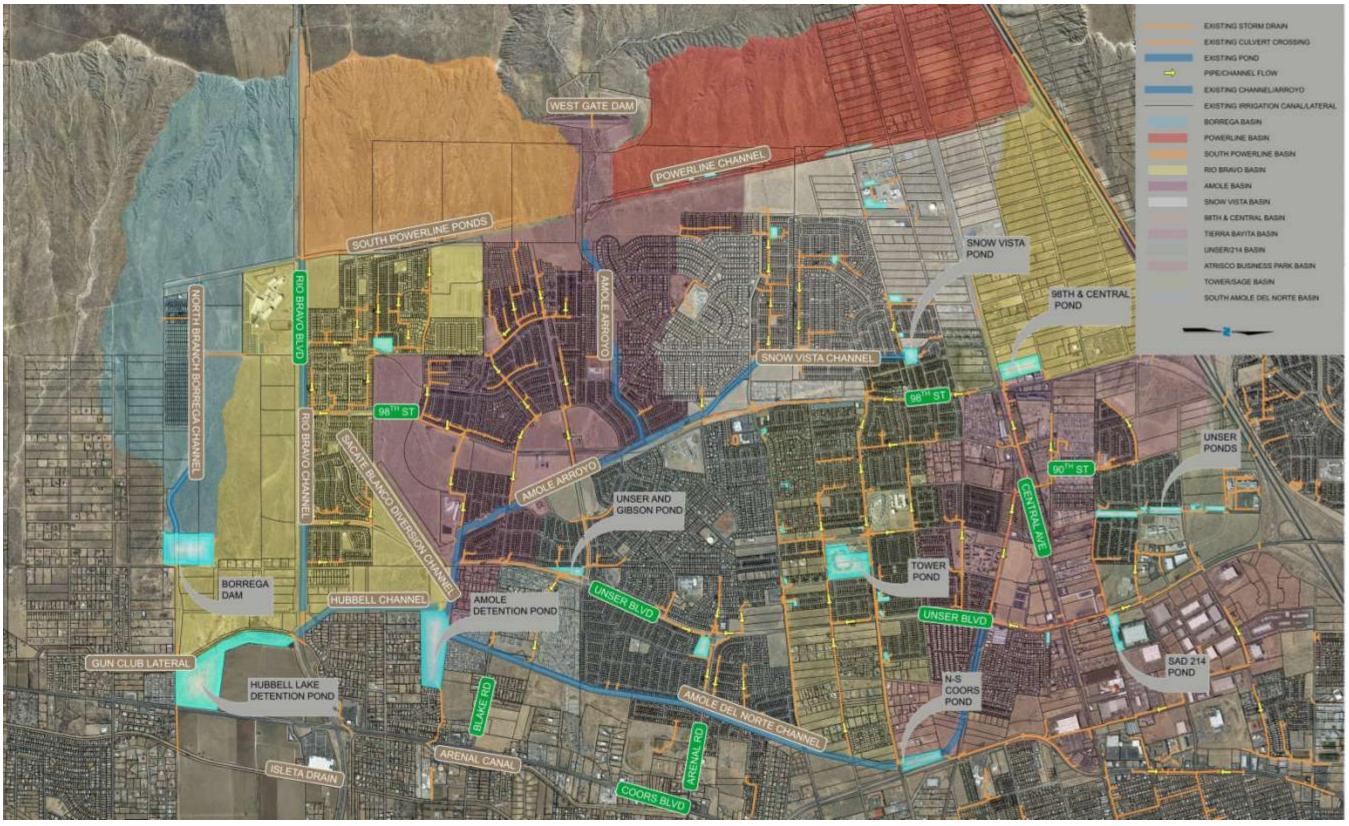


Figure A-1: Existing Amole-Hubbell Watershed Overall Basin Map

Amole-Hubbell Drainage Master

Amole-Hubbell Drainage Master 2013 Report

Appendix A-2

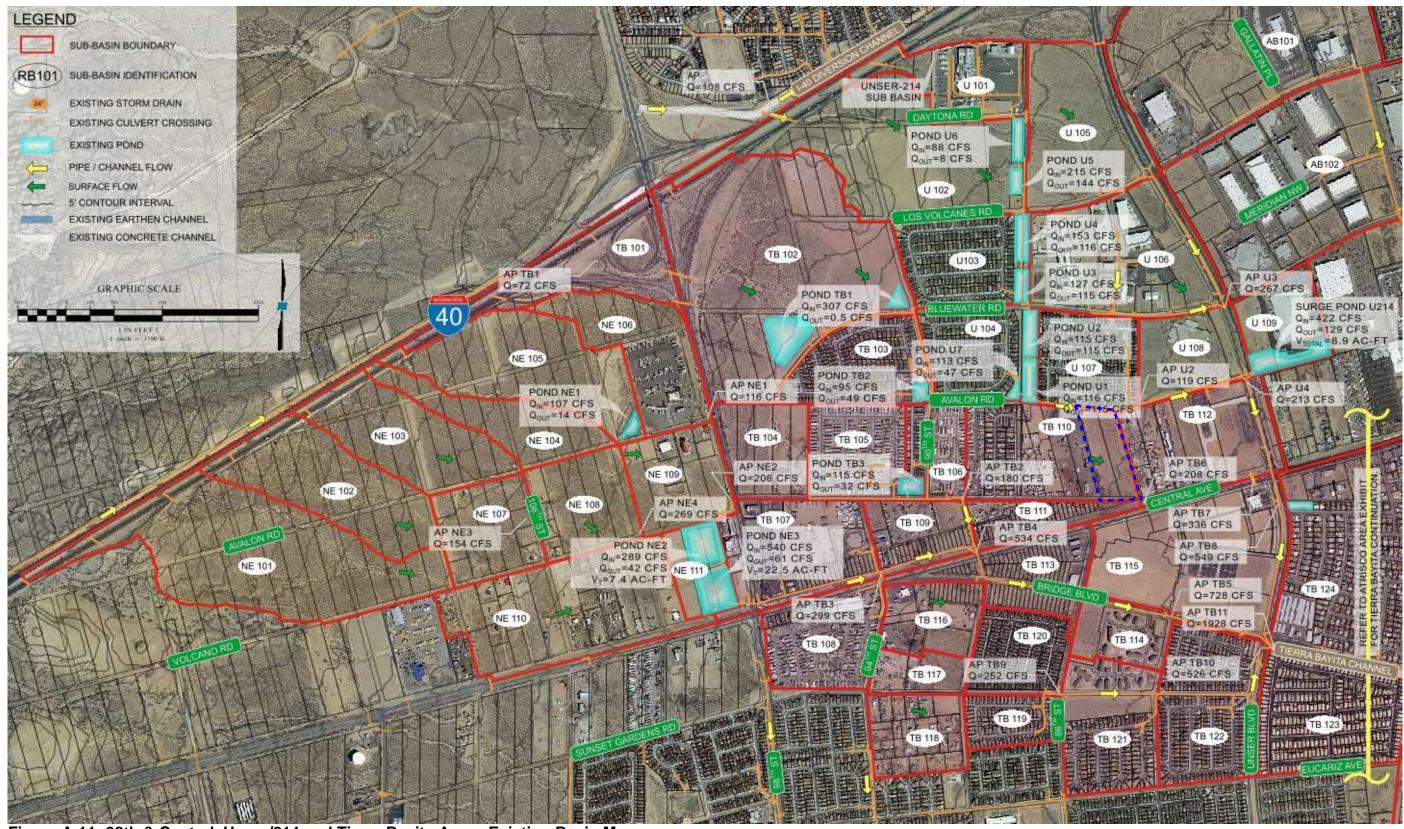


Figure A-11: 98th & Central, Unser/214 and Tierra Bayita Area - Existing Basin Map

Amole-Hubbell Drainage Master

Table A-5: 98th & Central Area - Existing Sub-Basin Peak Discharge and Volumes									
Sub-Basin	Area (ac)	Q _{100yr-6hr} (cfs)	V _{100yr-24hr} (ac-ft)						
NE101	92.9344	174.96	6.135						
NE102	48.6656	104.16	3.213						
NE103	41.2224	86.91	2.721						
NE104	26.8608	50.09	1.773						
NE105	54.0096	107.10	3.565						
NE106	36.7424	112.05	4.958						
NE107	27.68	62.04	1.933						
NE108	28.9408	66.03	2.060						
NE109	27.7504	70.00	2.429						
NE110	83.104	226.50	11.018						
NE111	15.0784	21.87	0.995						

Figure A-12: 98th & Central Area - Existing Hydrologic Model Diagram

Amole-Hubbell Drainage Master

Table A-6: Unser/214 Area - Existing Sub-Basin Peak Discharge and Volumes								
Sub-Basin	Area (ac)	Q _{100yr-6hr} (cfs)	fs) V _{100yr-24hr} (ac-ft)					
U101	29	87.84	3.250					
U102	83	210.77	6.342					
U103	34	124.08	4.785					
U104	32	113.20	4.336					
U105	50	87.38	3.688					
U106	62	185.29	8.330					
U107	29	114.78	4.611					
U108	25	100.24	3.901					
U109	21	85.46	3.341					

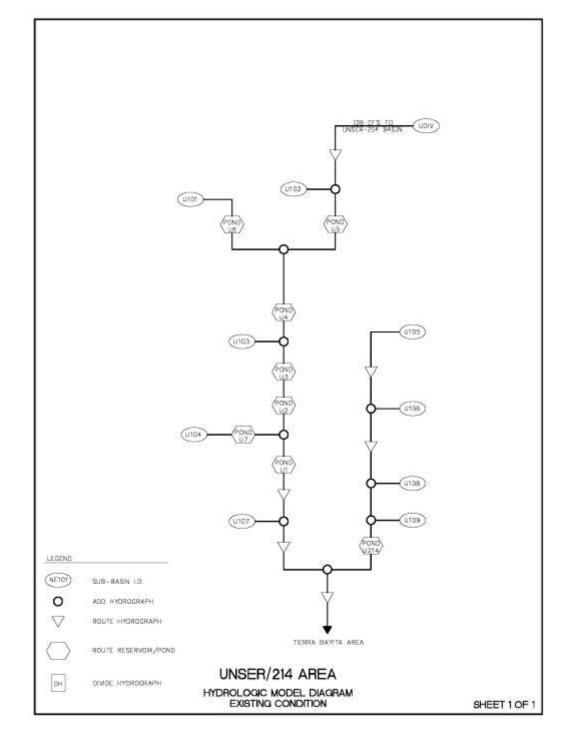
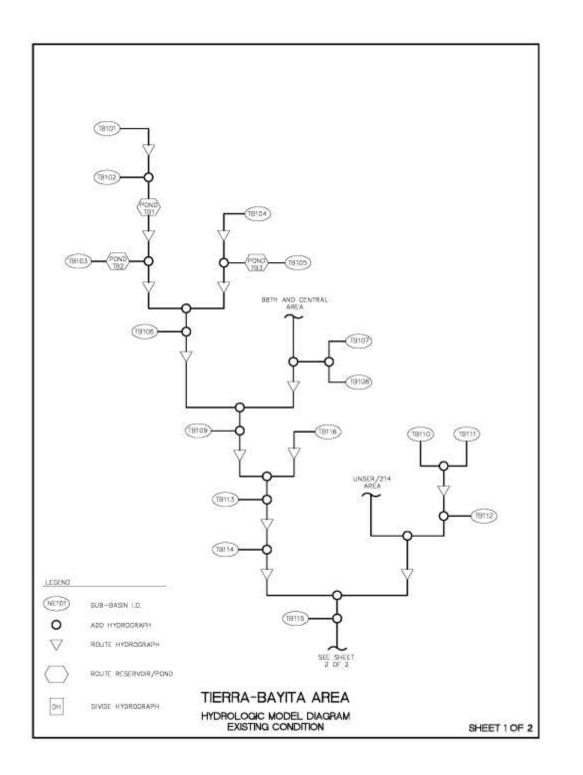
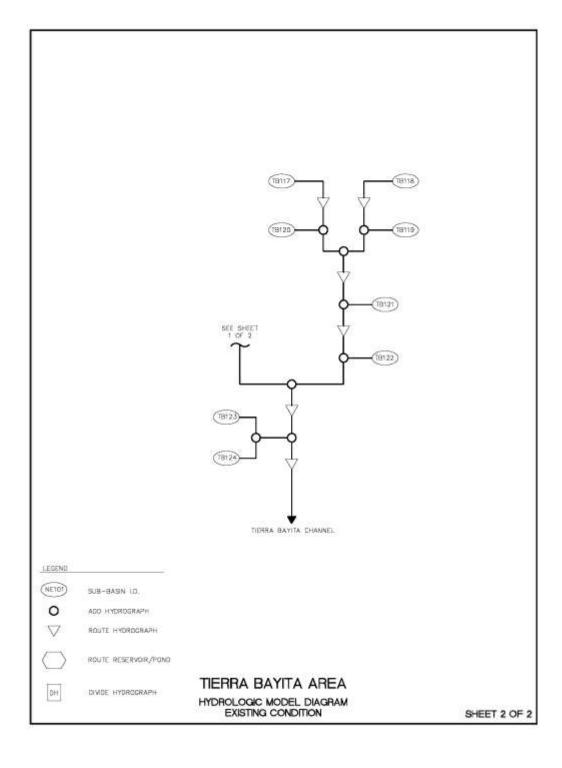



Figure A-13: Unser/214 Area - Existing Hydrologic Model Diagram



Amole-Hubbell Plan Update

Figure A-14: Tierra Bayita Area - Existing Hydrologic Model Diagram

Amole-Hubbell Drainage Master

2013 Report

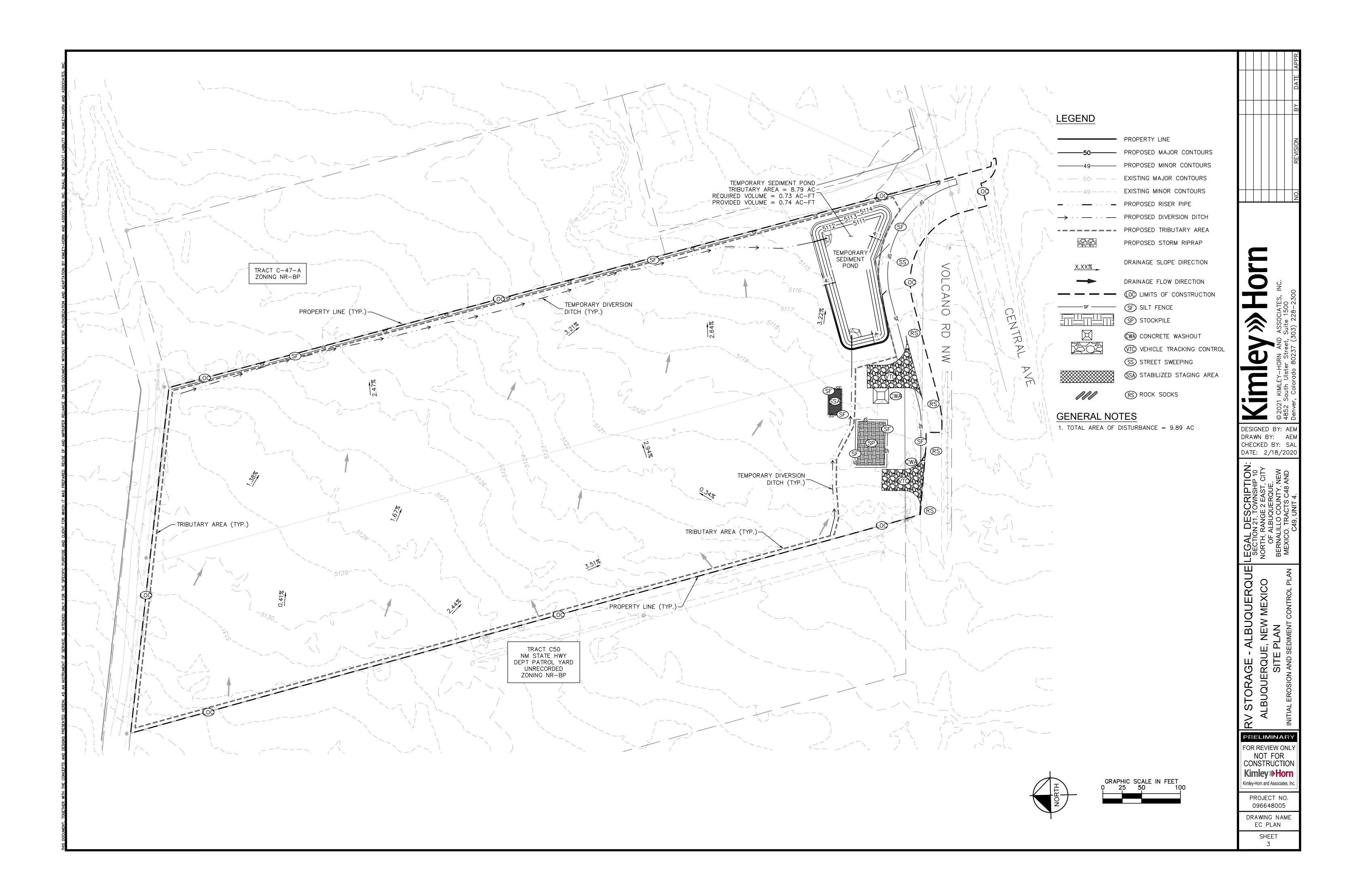
Figure A-14 Continued: Tierra Bayita Area - Existing Hydrologic Model Diagram

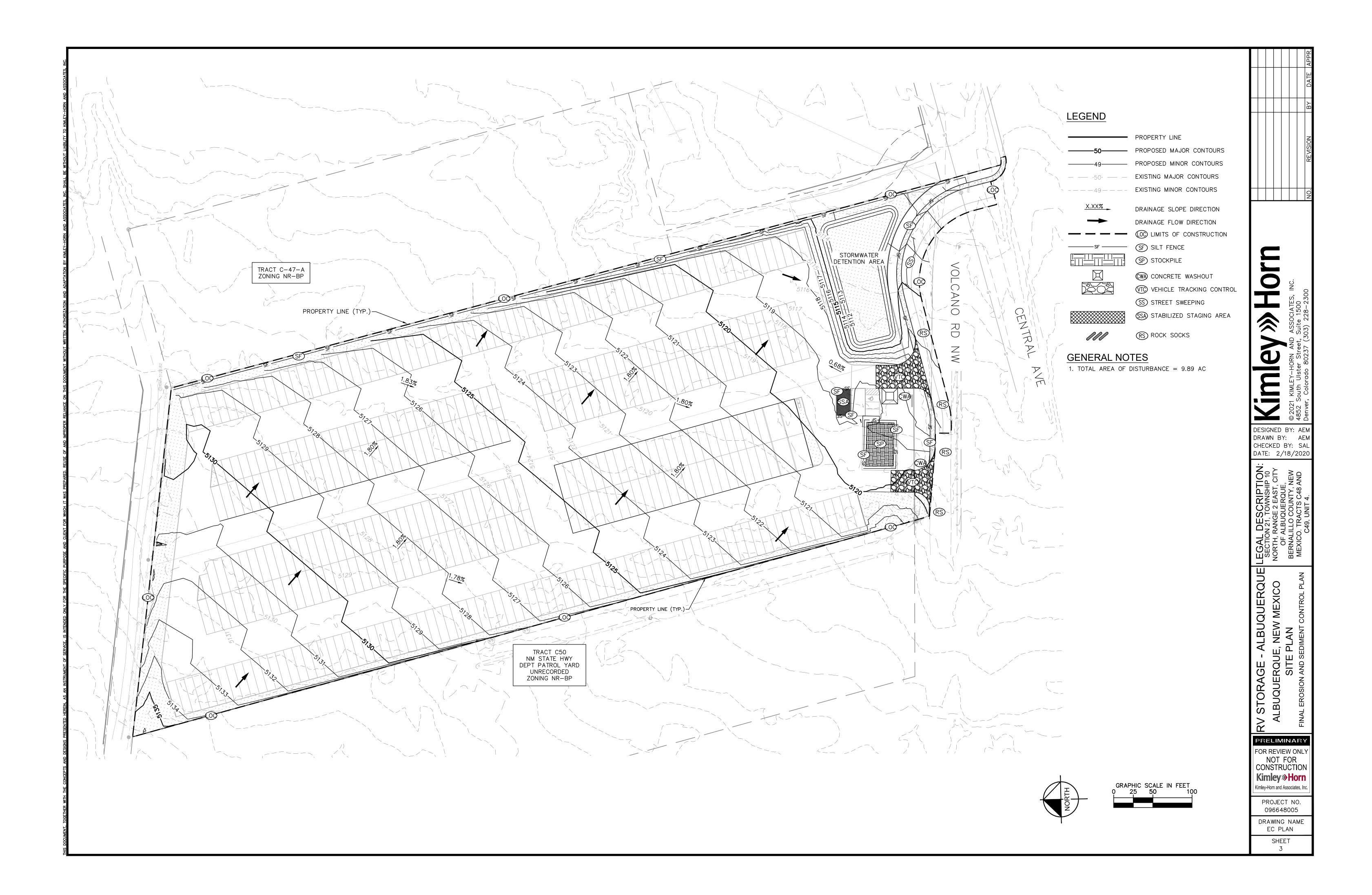
Table A-7: Tie	rra Bayita Area -	Existing Sub-Basin Peal	k Discharge and Volumes
Sub-Basin	Area (ac)	Q _{100yr-6hr} (cfs)	V _{100yr-24hr} (ac-ft)
TB101	38	72.00	2.541
TB102	127	262.15	9.045
TB103	32	95.47	3.466
TB104	25	65.34	2.276
TB105	29	114.69	4.547
TB106	16	63.21	2.493
TB107	44	167.57	6.744
TB108	32	125.04	5.303
TB109	20	64.51	2.501
TB110	47	151.15	6.595
TB111	15	59.32	2.489
TB112	44	129.57	6.200
TB113	30	81.29	2.917
TB114	17	68.45	2.708
TB115	72	161.37	8.077
TB116	21	72.69	2.883
TB117	12	36.81	1.381
TB118	23	73.05	2.350
TB119	15	58.42	2.347
TB120	24	96.96	3.996
TB121	37	126.91	5.266
TB122	45	155.20	7.233
TB123	46	129.72	6.937
TB124	102	229.28	14.742
TB125	84	193.74	6.855

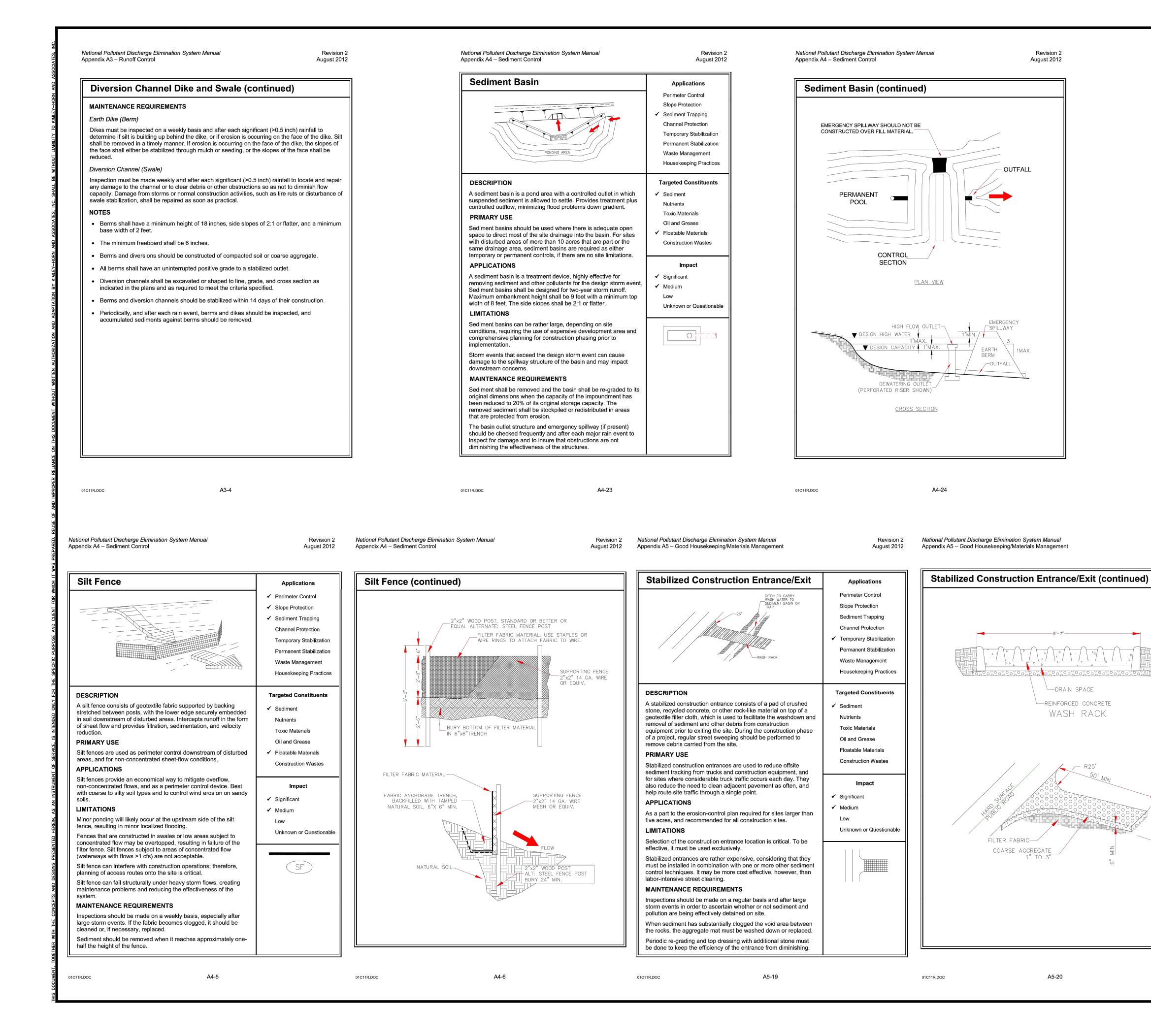
Appendix A-17

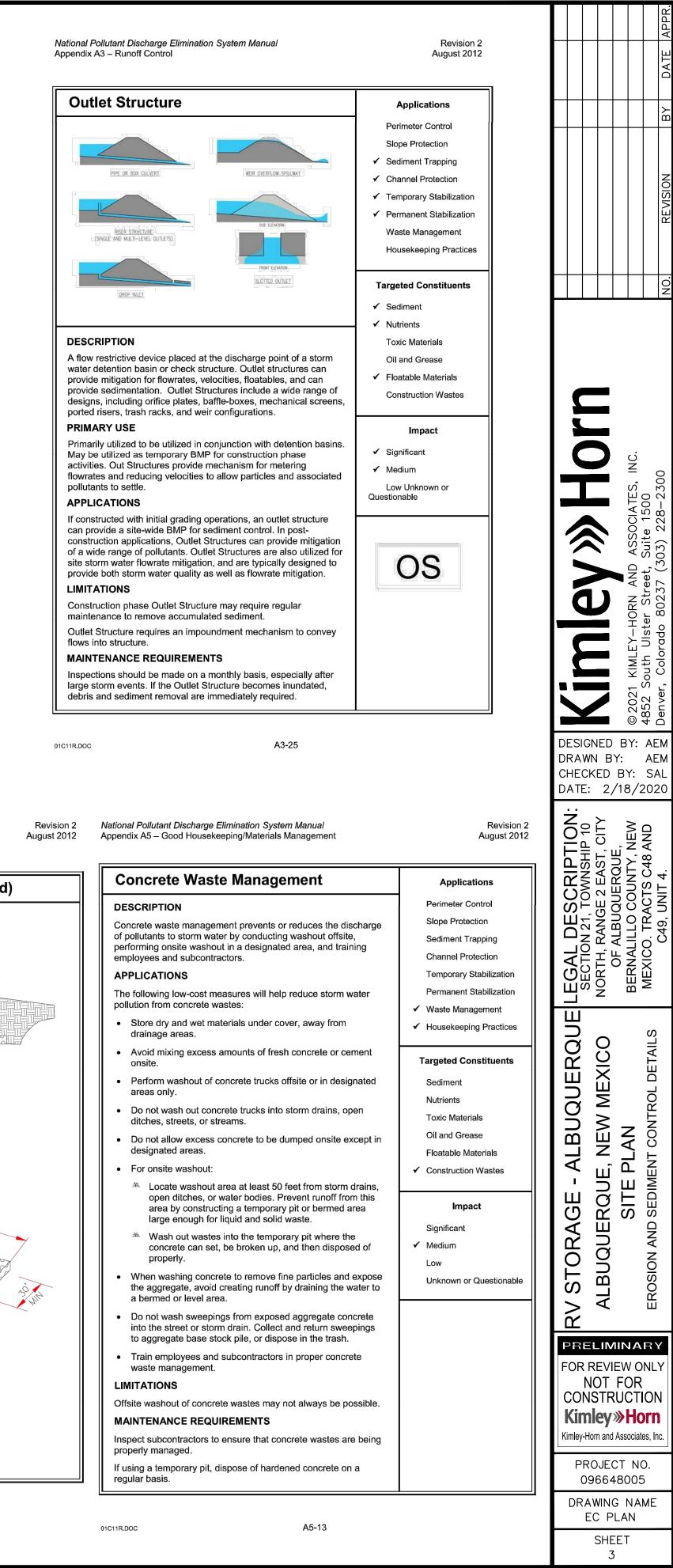
Appendix B

Amole-Hubbell Drainage Master 2013 Report

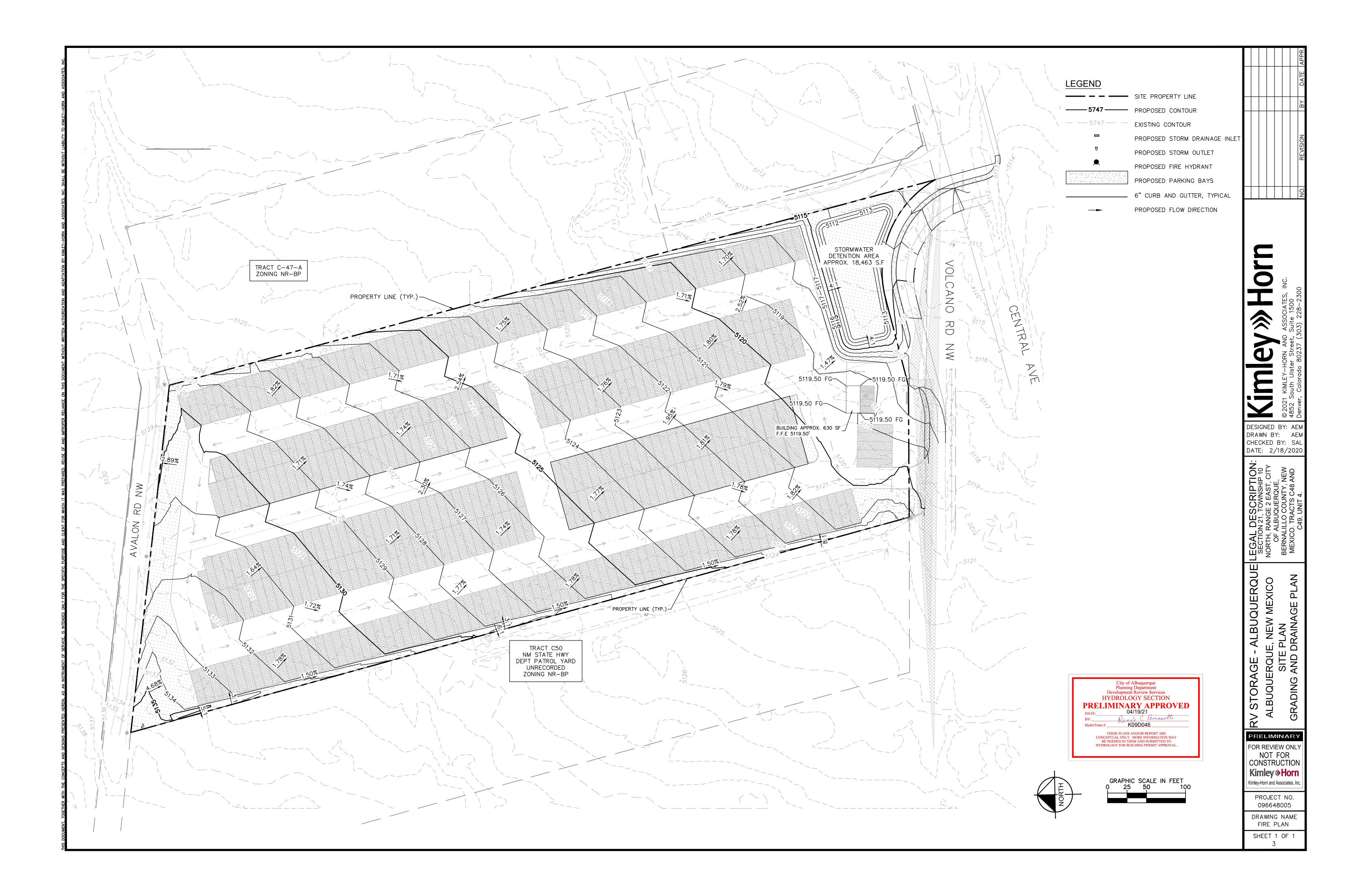



HYDROGRAPH ID ID COMMAND IDENTIFICATION NO. NO.	APEA DISCHARGE VOLUME (SQ MI) (CFS) (AC-FT)	RUNOFF P	CE TO PEAK DURS)	CFS PAGE = 3 PER ACRE NOTATION	COMMAND I	HYDROGRAPH DENTIFICATION	FROM ID NO.	ID	AREA (SQ MI)	PEAK DISCHARGE (CFS)	RUNOFF VOLUME (AC-FT)	RUNOFF (INCHES)	TIME TO PEAK (HOURS)	CFS PAGE = PER ACRE NOTATIO	
ROUTE MCONGE U206SUMRt 1 2	0.17626 344.43 18.512	1.96923 1	L.667	3.053 CCODE = 0.2	COMPUTE NM HYD	TB216	-	15	0.03257	89-82	3.817	2.19729	1.533	4.309 PER IMP=	82.40
COMPUTE NM HYD U208 - 1	0.03976 98.33 3.902	1.84009 1	L.533	3.864 PER IMP= 56.50	ROUTE MCUNGE	TB216RT	1	3	0.03257	89.27	3,809	2,19265	1.600	4.283 CCODE =	0.1
ADD HYD U208SUMB 26 1 1	0,21602 411.84 22.414	1,94546 1	L.633	2.979	ADD HYD	TB213SUMA		1	1.38507	809.90	120,192	1.62707	1,633	0.914	
COMPUTE NM HYD U209 - 2	0.03339 85.47 3.341	1.87591 1	L.533	4.000 PER IMP= 58.20	*S APTE3			-			2000.000 A	+ 10 + 10 10	1000000		
ADD HYD U209SUM 14 2 1	0,24941 480.60 25.754	1,93614 1	L.567	3.011	COMPUTE NM HYD	TB213		2	0.04712	133.59	5.771	2,29632	1,500	4.430 PER IMP=	89.10
ROUTE RESERVOIR PONDU214 1 30	0.24941 137.74 25.754	1.93614 2	000.5	0.863 AC-FT= 11.990	ADD HYD	TB213SUMB		1	1.43219	915.95	125.963	1,64909	1,600	0.999	122122200
ADD HYD U208SUMA 10430 42	0.54526 226.00 55.103	1,89483 1	L.600	0.648	ROUTE MCUNGE	TB213SUMBRT	1	2	1,43219	884-55	125.699	1.64563	1,633	0,965 CCODE =	0.2
*S APU3					COMPUTE NM HYD	TB214		1	0.02685	68.55	2.713	1,89453	1.533	3.989 PER IMP=	
*S************************************	************************************	*			ADD HYD	TB214SUM		1	1,45904	931.52	128.412	1,65021	1,633	0.998	
*S******** END OF UNSER-214 BASIN					*S APTB7										
*5********************************					ROUTE MCUNGE	TE214SUMRT	1	10	1,45904	887.60	127,822	1,64264	1,667	0,951 CCODE =	0.2
+2++++++++++++++++++++++++++++++++++++	************************************	*			ROUTE MCUNGE	UNBASINRT	4.2	11	0.54526	224.57	55.089	1,89435	1.633	0.644 CCODE =	0.1
*S*********** TIERRA BAYITA BASIN		10 m		$ \longrightarrow $	COMPUTE NM HYD	TB210	-	1	0.07272	175.08	7.917	2.04123	1.567	3.762 PER IMP=	71.83
*		신는 것 집 것 같이 있다.		100 March 100 Million 100 Million 100 Million	COMPUTE NM HYD	TB211	-	2	0.02330	66.05	2.870	2.30948	1.533	4.429 PER IMP=	90.00
COMPUTE NM HYD TB202,1 - 1	0.13801 286.10 13.441		L.567	3.239 PER IMP= 63.00	ADD HYD	TB211SUM	16 2	1	0.09602	238.63	10.787	2,10631	1,533	3.883	
ROUTE RESERVOIR PONDTBLA 1 30	0,13801 180.05 13,441		L.733	2.038 AC-ET= 2.194	*S APTB4										
ROUTE MCUNGE PONDTBIRT 30 1	0.13801 180.05 13.438		L.766	2.038 CCODE = 0.1	ROUTE MCUNGE	TB211SUMRT	1	2	0,09602	236.24	10,769	2,10288	1,600	3.844 CCODE =	0.1
COMPUTE NM HYD TB202.2 - 2	0,08784 234,77 10,586			4,176 PER IMP= 86,90	COMPUTE NM HYD	TB212	-	1	0.06855	159.66	7.680	2.10058	1.567	3.639 PER IMP=	75.20
ROUTE RESERVOIR PondTB1B 2 30	0.08784 114.06 10.586		1.733	2.029 AC-FT= 2.530	ADD HYD	TB212SUMA	16 2	1	0.16457	394.32	18.449	2,10191	1,600	3.744	
ADD HYD TB202.2SUM 1630 1	0,22585 294,11 24,024		L.733	2.035	*S APTB5										
ROUTE MCUNGE TB202.2SUMRT 1 2	0.22585 293.91 23.863		L.933	2.033 CCODE = 0.2	ADD HYD	TB212SUMB	116 1	1	0.70983	615.80	73,537	1,94247	1,600	1,356	
COMPUTE NM HYD TB103 - 1	0.04991 123.90 4.854		L.533	3.879 PER IMP= 57.00	*S APTB6										
ROUTE RESERVOIR PondTB2 1 30	0.04991 66.57 4.854	1.82355 1	1.667	2.084 AC-FT= 1.918	ROUTE MCUNGE	TB212SUMBRT		2	0.70983	612.49	73.532	1,94232	1.633	1.348 CCODE =	0.2
*S Outflow equals to 49.4 cfs From "DMP fo			Hab		ADD HYD	TB215SUMA		1	2.16887	1491-18	201.351	1,74069	1.633	1.074	
ADD HYD PONDTB2SUM 2430 1	0.27576 355.53 28.717		L.733	2.014	COMPUTE NM HYD	TB215		2	0.11272	195.06	9,623	1,60072	1,633	2.704 PER IMP=	36,70
ROUTE MCUNGE PONDTB2SUMRT 1 2	0.27576 344.83 28.170			1.954 CCODE = 0.2	ADD HYD	TB215SUMB	16 2	10	2,28159	1686.25	210,974	1.73378	1.633	1.155	
COMPUTE NM HYD TB204 - 1	0.03918 106.93 4.584			4.265 PER IMP= 83.50	COMPUTE NM HYD	TB217	-	1	0,01861	50.87	2,147	2,16346	1,533	4.271 PER IMP=	
ROUTE MCUNGE TB204RT 1 3	0.03918 106.92 4.583			4.264 CCODE = 0.2	ROUTE MCUNGE	TB217RT	1	2	0.01861	50-80	2.145	2,16146	1,567	4,266 CCODB =	0.1
COMPUTE NM HYD TB205 - 1	0.04575 115.37 4.583		L.533	3.940 PER IMP= 60.80	COMPUTE NM HYD	TB220	1	1	0.03690	96.97	3.995	2.03023	1.533	4,106 PER IMP=	71,00
ROUTE RESERVOIR PondTB3 1 30	0.04575 31.73 4.583	1.87842 1	L.800	1.084 AC-FT= 2.420	ADD HYD	TB220SUM		1	0.05551	143.04	6.141	2,07421	1,533	4.026	221222
*S Pond never graded per proposed G&D with					COMPUTE NM HYD	TB218	-	2	0.03573	73.14	2.353	1,23479	1.533	3.198 PER IMP=	
*S Fond likely will be modified per plan,					ROUTE MCUNGE	TB218RT	2	3	0.03573	71.94	2.347	1,23144	1.567	3.146 CCODE =	0.1
*S Assumed existing 30" RCP outlet with 0. ADD HYD PONDTB3SUM 3630 1	0.08493 129.96 9.166	2.02348 1	. 567	2.391	COMPUTE NM HYD	TB219	1.1	2	0.02285	58.43	2.347	1.92566	1,533	3,995 PER IMP=	64.00
ROUTE MCUNGE PONDEBSSON 3030 1 3	0.08493 129.92 9.166		L.567	2.390 CCODE = 0.2	ADD HYD	TB219SUM		-	0.05858	126-10	4,693	1,50222	1,567	3,363	
ADD HYD TB206SUMA 24 3 1	0.36069 407.53 37.335			1.765	ADD HYD	TB221SUMA	1.0 4	+	0.11409	267.16	10.834	1.78052	1,533	3.659	
ROUTE MCUNGE TB206SUMART 1 2	0.36069 400.53 36.930			1.735 CCODE = 0.2	*S APTB8	TROOP CHARTE	- W	- A2	0.01400	267.14	30.000	4 99.659	A FOR	3 (50 00007 -	6.1
COMPUTE NM HYD TB206 - 1	0.02559 64.63 2.570		.533	3.946 PER IMP= 61.10	ROUTE MCUNGE	TB221SUMART	1	÷	0.11409	137.45	10.823 5.770	1.77867	1.567	3.659 CCODE =	0.1
ADD HYD TB206SUMB 24 1 1	0,38628 417,80 39,500			1,690	COMPUTE NM HYD ADD HYD	TB221 TB221SUMB	26.1	÷.	0.05769	401.85	16.593	1.87544	1.567	3.723 PER IMP= 3.655	00.04
*S APTB1	0150020 421100 551000	1.51.51		11050	ROUTE MCUNGE	TB221SUMBRT	1 122	- 10 C	0.17178	395.95	16.569	1,80854	1,600	3.611 CCODE =	0.2
ROUTE MCUNGE TB206SUMBRT 1 10	0.38628 412.09 39.069	1.89639 1	.833	1.667 CCODE = 0.2	COMPUTE NM HYD	TB222	_	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	0.07064	155.17	7.233	1.91976	1.567	3.432 PER IMP=	63.60
ROUTE MCUNGE NEBASINRT 41 1	0.81688 21.80 61.037			0.042 CCODE = 0.2	ADD HYD	TB222SUMA			0.24242	550.22	23,802	1.84094	1,600	3.546	03100
COMPUTE NM HYD TB207 - 2	0.06805 180.99 7.480			4.156 PER IMP= 72.90	*S APTB9	102220004	28.1	-		0.001220	201002	1104034	21000	51.030	
COMPUTE NM HYD TB208 - 3	0.05040 125.02 5.303			3.876 PER IMP= 67.20	ADD HYD	TB222SUMB	104.1	1	2.52401	2210.89	234.776	1,74407	1,633	1.369	
ADD HYD TE208SUMA 26 3 2	0.11845 306.01 12.783			4.037	*S APTBIO	LDLLLOUTE		÷.;	A194394	4440102	#3.3111.18	+1113381	- 1 Y - 4	+1-202	
ADD HYD TB2085UMB 14 2 1	0.93533 315.55 73.820		L.533	0.527	ROUTE MCUNGE	TB222SUMBRT	1	2	2.52401	2205.93	234,732	1,74375	1.633	1.366 CCODE =	0.1
*S APTB2		120202020000000000000000000000000000000	MERICAL AN	CANED AN IN	COMPUTE NM BYD	TB223	1	1	0.07133	129.70	6.937	1.82355	1.633	2.841 PER IMP=	
ROUTE MCUNGE TB2085UMBRT 1 2	0.93533 314.41 73.819	1,47981 1	1.533	0.525 CCODE = 0.2	COMPUTE NM HYD	TB224	1	3	0.15974	236.51	15.234	1,78814	1.733	2.313 PER IMP=	
ADD HYD TB209SUMA 106 2 1	1.32161 677.91 112.888		. 567	0.801	ADD HYD	TB224SUMA		1	0.23107	355.12	22,171	1.79907	1.700	2.401	
COMPUTE NM HYD TB209 - 2	0.03089 85.75 3.659		L,500	4.338 PER IMP= 84.00	ADD HYD	TB224SUMB		43	2.75508	2549.14	256,903	1.74838	1.667	1,446	
ADD HYD TB209SUMB 14 2 1	1.35250 757.08 116.547		1.567	0.875	* 5***********							1.	17010580	05/01/060	
ROUTE MCUNGE TB209.SUMBRT 1 2	1.35250 723.70 116.383			0.836 CCODE = 0.2	+ S+++++++++++++++++++++++++++++++++++	+ END OF T	IERRA	BAYITA I	BASIN						
ROUTE MCUNGE TE20950MBRT 1 2 1.35250 723.70 116.383 1.61345 1.633 0.836 CCODE = 0.2 +5+++++++ END OF TIERPA BAYITA BASIN															




Amole-Hubbell Plan Update 2013 Report

APPENDIX E: EROSION AND SEDIMENT CONTROL PLANS



APPENDIX F: GRADING AND DRAINAGE PLAN

