CITY OF ALBUQUERQUE

August 6, 2015

Ronald R. Bohannan, P.E. Tierra West, LLC 5571 Midway Park Pl NE Albuquerque, NM 87109

Re: Freddy's, Tract D-1 Plat Of Hubbell Plaza Grading and Drainage Plan Engineer's Stamp Date 7-7-2015 (K10-D001B)

Dear Mr. Bohannan,

Based upon the information provided in your submittal July 27, 2015, the above referenced plan is approved for Building Permit.

This project requires a National Pollutant Discharge Elimination System (NPDES) permit for storm water discharge for disturbing one acre or more and a Topsoil
PO Box 1293
Disturbance Permit for disturbing ¾ of an acre or more. Since more than one acre will be disturbed an Erosion and Sediment Control plan will also have to be approved prior to building permit approval.

Albuquerque Prior to Certificate of Occupancy release, Engineer Certification per the DPM checklist will be required.

New Mexico 87103 If you have any questions, you can contact me at 924-3999.

www.cabq.gov

Sincerely,

Shahab Biazar, P.E. City Engineer, Planning Dept. Development Review Services

C: e-mail

Biazar, Shahab

From:	Vinny Perea <vperea@tierrawestllc.com></vperea@tierrawestllc.com>
Sent:	Thursday, August 06, 2015 8:20 AM
То:	Biazar, Shahab
Subject:	Freddy's Drainage

Good morning Shahab,

Per our phone conversation this morning regarding the status of the Proposed Freddy's on Coors and Central, we are looking into determining if the existing timed valve is functioning properly for the existing drainage pond on the site.

Curtis Cherne noticed out at the site that the pond did not look to be discharging the storm water as it should be. The pond does get released by a valve that is supposed to open up 2 hours after the storm begins so it could be that this valve is not working properly or that it just didn't open up yet. We have scheduled for an electrician to check if the valve is not working properly and will let you know what their feedback is as soon as we get that information. Please also note that we will be removing the timed valve when the storm drain improvements are constructed. Let me know if you have any questions or would like any additional information.

Thanks,

Vinny Perea

Engineer Intern, EIT

Tierra West, LLC

5571 Midway Park Pl. NE Albuquerque, NM 87109 Office: (505) 858-3100 Fax: (505) 858-1118 1-800-245-3102 www.tierrawestllc.com

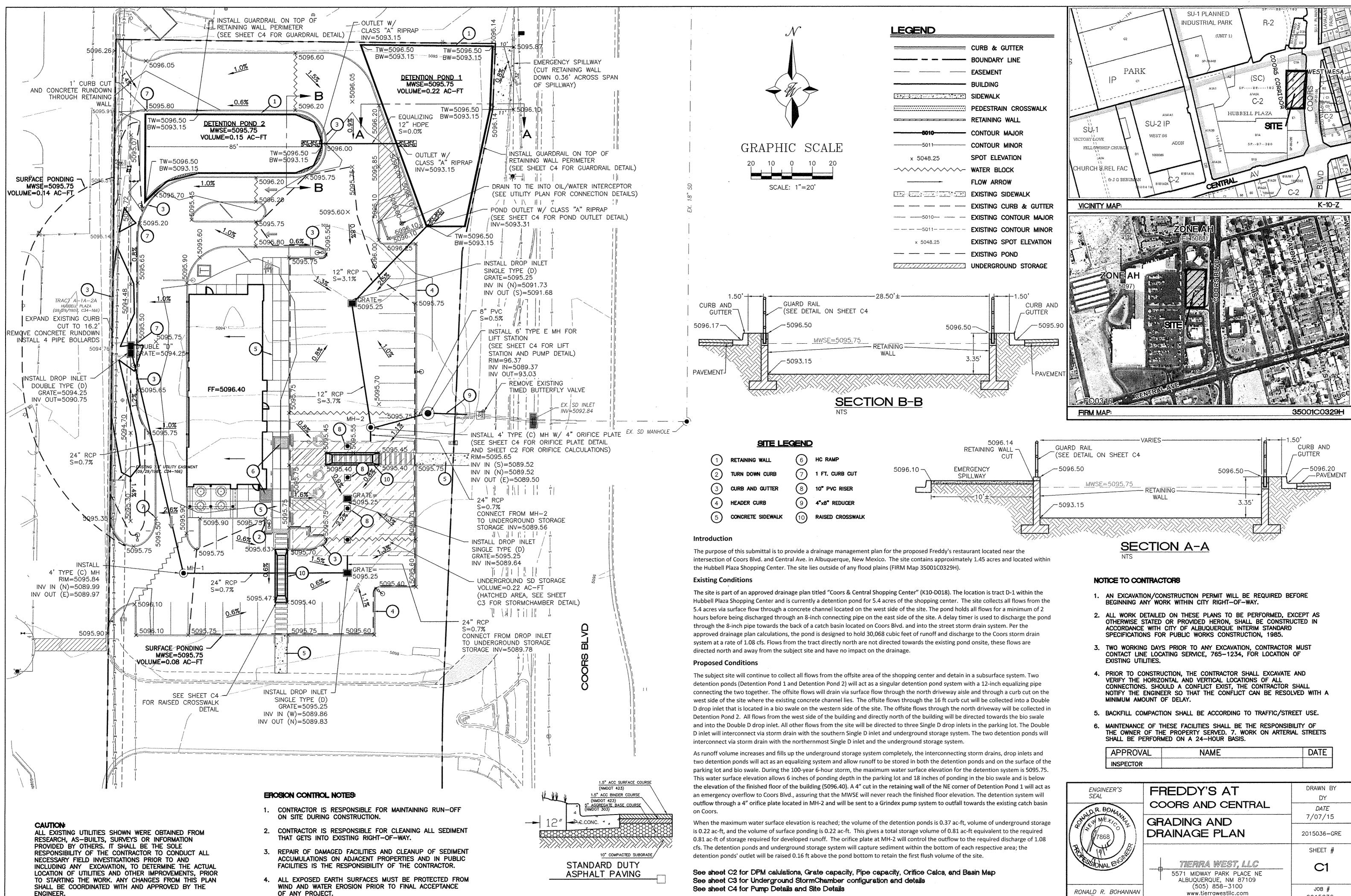
PRIVILEGED AND CONFIDENTIAL

The information contained in this electronic mail message is confidential, may be privileged, and is intended only for the use of the individual(s) named above or their designee. If you are not the intended recipient of this message, you are hereby notified that any dissemination, distribution, or copying of this communication is strictly prohibited. Any unauthorized interception of this message is illegal under the law. If you have received this message in error, please immediately notify me by return message or by telephone and delete the original message from your email system. Thank you.

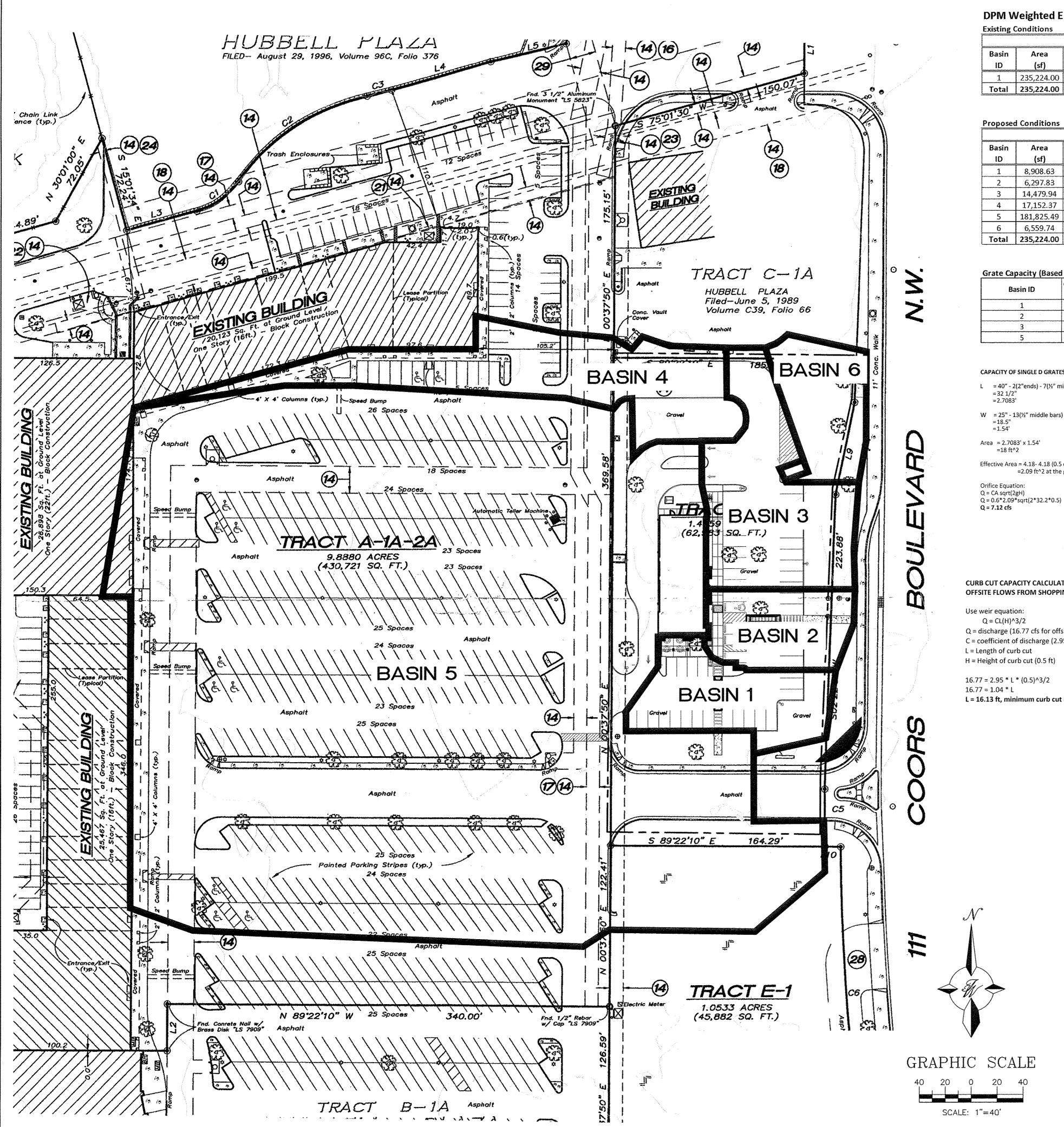
City of Albuquerque

Planning Department Development & Building Services Division RAINAGE AND TRANSPORTATION INFORMATION SHEET (REV 02/2013)

Project Title:		City Drainage #:
DRB#:EI	PC#:	Work Order#:
Legal Description:		
City Address:		
Engineering Firm:		Contact:
Address:		
Phone#: Fa	x#:	E-mail:
Owner:		Contact:
Address:		
Phone#: Fa	x#:	E-mail:
Architect:		Contact:
Address:		
Phone#: Fa	x#:	E-mail:
Surveyor:		Contact:
Address:		
Phone#: Fa	x#:	E-mail:
Contractor:		Contact:
Address:		
Phone#: Fa	x#:	E-mail:
TYPE OF SUBMITTAL:	CHECK TYPE OF APPR	ROVAL/ACCEPTANCE SOUGHT:
DRAINAGE REPORT	SIA/FINANCIAL GUAR	RANTEE RELEASE
DRAINAGE PLAN 1st SUBMITTAL	PRELIMINARY PLAT A	APPROVAL
V DRAINAGE PLAN RESUBMITTAL	S. DEV. PLAN FOR SU	B'D APPROVAL
_ CONCEPTUAL G & D PLAN	S. DEV. FOR BLDG. PE	RMIT APPROVAL
GRADING PLAN	SECTOR PLAN APPRO	VAL
EROSION & SEDIMENT CONTROL PLAN	(ESC) FINAL PLAT APPROVA	AL
ENGINEER'S CERT (HYDROLOGY)	CERTIFICATE OF OCC	UPANCY (PERM)
CLOMR/LOMR	CERTIFICATE OF OCC	UPANCY (TCL TEMP)
TRAFFIC CIRCULATION LAYOUT (TCL)	FOUNDATION PERMIT	
ENGINEER'S CERT (TCL)	W BUILDING PERMIT AP	PPROVAL
ENGINEER'S CERT (DRB SITE PLAN)	GRADING PERMIT AP	
ENGINEER'S CERT (ESC)	PAVING PERMIT APPR	ROVAL ESC PERMIT APPROVAL
SO-19	WORK ORDER APPRO	VAL ESC CERT. ACCEPTANCE
OTHER (SPECIFY)	GRADING CERTIFICA	
WAS A PRE-DESIGN CONFERENCE ATTENDE	D: Yes No	Copy Provided
DATE SUBMITTED:	By:	_


Requests for approvals of Site Development Plans and/or Subdivision Plats shall be accompanied by a drainage submittal. The particular nature, location, and scope to the proposed development defines the degree of drainage detail. One or more of the following levels of submittal may be required based on the followin

1. Conceptual Grading and Drainage Plan: Required for approval of Site Development Plans greater than five (5) acres and Sector Plans


2. Drainage Plans: Required for building permits, grading permits, paving permits and site plans less than five (5) acres

3. Drainage Report: Required for subdivision containing more than ten (10) lots or constituting five (5) acres or more

4. Erosion and Sediment Control Plan: Required for any new development and redevelopment site with 1-acre or more of land disturbing area, including project less than 1-acre than are part of a larger common plan of development

ENGINEER'S SEAL	FREDDY'S AT COORS AND CENTRAL	DRAWN BY DY DATE
AND R. BOMANNA ON WE AICO WW WE AICO WW 7868	GRADING AND DRAINAGE PLAN	7/07/15 2015036-GRE
HAR MALENGINA	5571 MIDWAY PARK PLACE NE ALBUQUERQUE, NM 87109	SHEET #
RONALD R. BOHANNAN P.E. #7868	(505) 858-3100 www.tierrawestllc.com	JOB # 2015036

DPM Weighted E Method (Zone 1)

Existing Conditions

				Ba	sin Descrip	tions						100-	Year, 6-Hr	•	10-	Year, 6-Hr	
Basin	Area	Area	Area	Treat	ment A	Treati	ment B	Treat	ment C	Treat	ment D	Weighted E	Volume	Flow	Weighted E	Volume	Flow
ID	(sf)	(acres)	(sq miles)	%	(acres)	%	(acres)	%	(acres)	%	(acres)	(ac-ft)	(ac-ft)	cfs	(ac-ft)	(ac-ft)	cfs
1	235,224.00	5.400	0.00844	0%	0.000	30%	1.620	0%	0.000	70%	3.780	1.580	0.711	19.81	0.934	0.420	12.16
Total	235,224.00	5.400	0.00844			-							0.711	19.81		0.420	12.16

Proposed Conditions

				Bas	in Descrip	tions						100-	Year, 6-Hı	•	10-	Year, 6-Hr	
Basin Area Area Area				Treat	Treatment A Treatment B		nent B	Treatment C		Treatment D		Weighted E	Volume	Flow	Weighted E	Volume	Flow
ID	(sf)	(acres)	(sq miles)	%	(acres)	%	(acres)	%	(acres)	%	(acres)	(ac-ft)	(ac-ft)	cfs	(ac-ft)	(ac-ft)	cfs
1	8,908.63	0.205	0.00032	0%	0.000	20%	0.041	0%	0.000	80%	0.164	1.710	0.029	0.80	1.036	0.018	0.50
2	6,297.83	0.145	0.00023	0%	0.000	15%	0.022	0%	0.000	85%	0.123	1.775	0.021	0.58	1.087	0.013	0.37
3	14,479.94	0.332	0.00052	0%	0.000	15%	0.050	0%	0.000	85%	0.283	1.775	0.049	1.34	1.087	0.030	0.85
4	17,152.37	0.394	0.00062	0%	0.000	40%	0.158	0%	0.000	60%	0.236	1.450	0.048	1.35	0.832	0.027	0.80
5	181,825.49	4.174	0.00652	0%	0.000	10%	0.417	0%	0.000	90%	3.757	1.840	0.640	17.26	1.138	0.396	11.17
6	6,559.74	0.151	0.00024	0%	0.000	0%	0.000	0%	0.000	100%	0.151	1.970	0.025	0.66	1.240	0.016	0.44
Total	235,224.00	5.400	0.00844										0.812	21.99		0.500	0.00

Custo Connective (Decest On Outfloo Equation)

Grate	e Capacity (Ba	ased On Orifice I	Equation)			Pipe Capacity (Based	on Manning	g's Equation)		
	Basin ID	Q Required (CFS)	Grate Type	Q Allow (CFS)	Result	Invert ID	Q Required (CFS)	Pipe Size	Q Allow (CFS)	Result
	1	0.8	Single D	7.12	Capacity OK	Basin 5 Double D Grate	17.26	24" RCP @ 0.7%	20.94	Capacity OI
	2	0.58	Single D	7.12	Capacity OK	MH-1	17.26	24" RCP @ 0.7%	20.94	Capacity OI
	3	1.34	Single D	7.12	Capacity OK	Basin 1 Single D Grate	18.06	24" RCP @ 0.7%	20.94	Capacity O
	5	17.26	Double D	19.45	Capacity OK	Basin 2 Undergound				
						Storage Outlet	18.64	24" RCP @ 0.7%	20.94	Capacity O
						Equalizing Pipe	1.35	12" HDPE @ 0%	5.48	Capacity O
CAPACI	TY OF SINGLE D G	RATES	CAPACITY OF DO	OUBLE D GRATE	:	Basin 6 Pond Inlet	2.01	12" RCP @ 3.1%	6.93	Capacity OI
L ≃4	0" - 2(2"ends) - 7(12" middle bars)	L = 80" - 2(2"	ends) - 14(½" n	niddle bars) - 6"	Basin 3 Single D Grate	4.7	12" RCP @ 3.7%	7.58	Capacity O

L = 40" - 2(2"ends) - 7(½" middle bars) = 32 1/2" (center piece) =2.7083' =63" =5.25' W = 25" - 13(1/2" middle bars) W = 25" - 13(½" middle bars) =18.5" =1.54' =18.5" =1.54' Area = 2.7083' x 1.54' Area = 5.25' x 1.54' =18 ft^2 =8.09 ft^2

Effective Area = 4.18- 4.18 (0.5 clogging factor) =2.09 ft^2 at the grate Orifice Equation:

=4.04 ft^2 at the grate Orifice Equation: Q = CA sqrt(2gH) Q = 0.6*4.04*sqrt(2*32.2*1.0)

Q = 19.45 cfs

CURB CUT CAPACITY CALCULATIONS OFFSITE FLOWS FROM SHOPPING CENTER TO DOUBLE D INLET

Use weir equation: $Q = CL(H)^{3/2}$

Q = discharge (16.77 cfs for offsite flows of Basin 5) C = coefficient of discharge (2.95) L = Length of curb cut H = Height of curb cut (0.5 ft)

16.77 = 2.95 * L * (0.5)^3/2 16.77 = 1.04 * L L = 16.13 ft, minimum curb cut length

FIRST FLUSH VOLUME RETENTION

Depth to be retained = 0.44" per city ordi Initial abstractions = 0.1" Total depth = 0.44" - 0.1" = 0.34" = 0.028 Total impervious area = 33156.97 ft^2

Total volume = 33156.97 * 0.02833 = 939

Retain first flush in north detention pond: Pond Area = 6179 ft^2 Depth to retain = 939.34/6179 = 0.1

ORIFICE PLATE IN MANHOLE 2 CALCULATIONS

Orifice Equation: Q = CA sqrt(2gH) C = 0.6

- A = Orifice Area (ft2)
- g = 32.2
- Q = Flow (cfs)

Q = CA sqrt(2gH) 1.08 = 0.6 * A * sqrt(2 * 32.2 * 6.25) 1.08 = 12.037 A A = 0.0897 ft^2

A = pi * r^2 0.0897 = pi *r^2 0.02855 = r^2 r = 0.169 ft r = 2″

Use 4" dia. orifice plate

MAXIMUM CAPACITY OF 24" RCP @ 0.7% Manning Equation:

Q = (1.49/n)AR^(²/₃)*sqrt(S) Q = Discharge

Effective Area = 8.09-8.09 (0.5 clogging factor)

n = Manning's roughness coefficient (0.013) A = Pipe area (3.14 ft2) R = Hydraulic Radius (0.58 ft)

S = Pipe slope (0.007 ft/ft)

Maximum Q = 20.94 cfs

MAXIMUM CAPACITY OF 12" RCP @ 3.1% Manning Equation:

 $Q = (1.49/n)AR^{\frac{2}{3}}sqrt(S)$ Q = Discharge

n = Manning's roughness coefficient (0.013)

A = Pipe area (0.785 ft2) R = Hydraulic Radius (0.29 ft)

S = Pipe slope (0.031 ft/ft)

 $Q = (1.49/0.013) * 3.14 * (0.58)^{2/3} sqrt(0.007)$ $Q = (1.49/0.013) * 0.785 * (0.29)^{2/3} sqrt(0.031)$ $Q = (1.49/0.013) * 0.785 * (0.29)^{2/3} sqrt(0.037)$ Maximum Q = 6.93 cfs

Use weir equation:

 $Q = CL(H)^{3/2}$

MAXIMUM CAPACITY OF EQUALIZING 12" HDPE

Orifice Equation: Q = CA sqrt(2gH) C = 0.6

A = Orifice Area (0.785 ft^2)

G = 32.2 ft^2/s H = Depth of water above center of orifice

(2.1 ft) Q = Flow (cfs)Q = 0.6 * 0.785 * sqrt(2 * 32.2 * 2.1) Maximum Q = 5.48 cfs

MAXIMUM CAPACITY OF 12" RCP @ 3.7% Manning Equation:

Q = (1.49/n)AR^({2})*sqrt(S) Q = Discharge n = Manning's roughness coefficient (0.013) A = Pipe area (0.785 ft2) R = Hydraulic Radius (0.29 ft) S = Pipe slope (0.037 ft/ft)

Maximum Q = 7.58 cfs

CURB CUT CAPACITY CALCULATIONS

- **ONSITE FLOWS FROM WEST SIDE OF SITE TO DOUBLE D INLET** Use weir equation: $Q = CL(H)^{3/2}$
- Q = discharge (0.85 cfs for onsite flows of Basin 5)

C = coefficient of discharge (2.95)

L = Length of curb cut

H = Height of curb cut (0.5 ft)

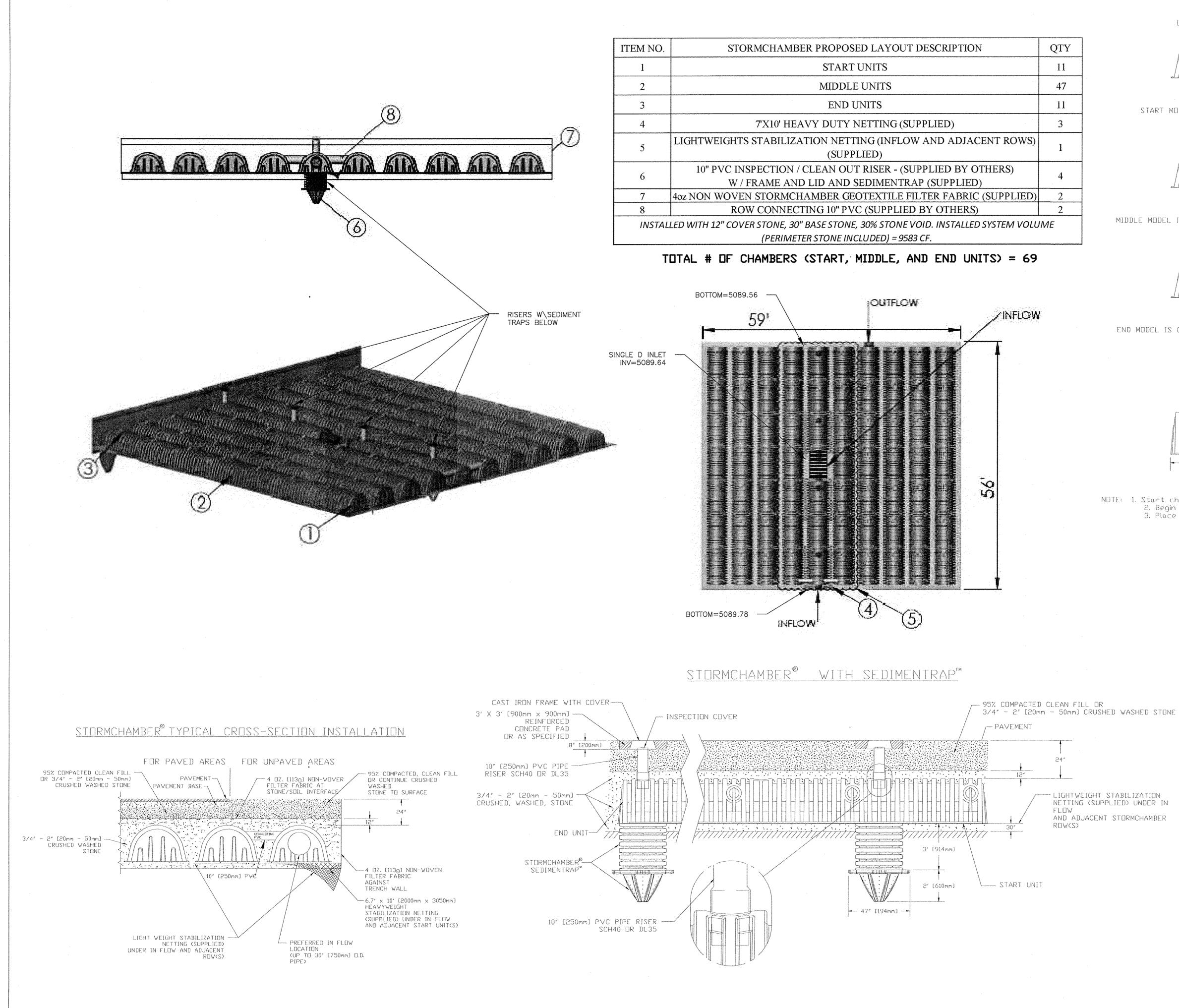
0.85 = 2.95 * L * (0.5)^3/2 0.85 = 1.04 * L

L = 0.82 ft, minimum curb cut length

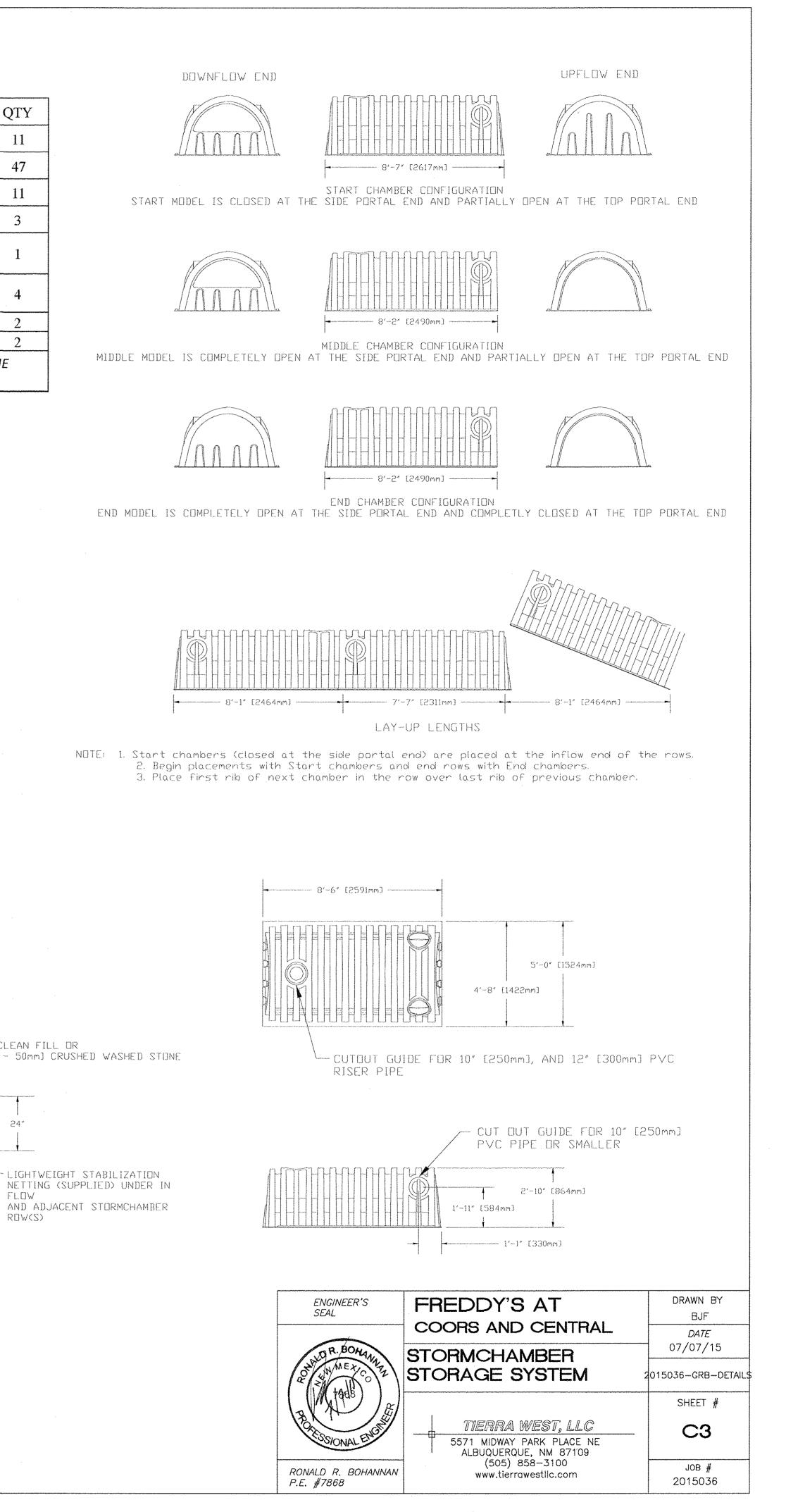
C = coefficient of discharge (2.95) L = Length of curb cut H = Height of curb cut (0.98 ft) 1.22 = 2.95 * L * (0.98)^3/2

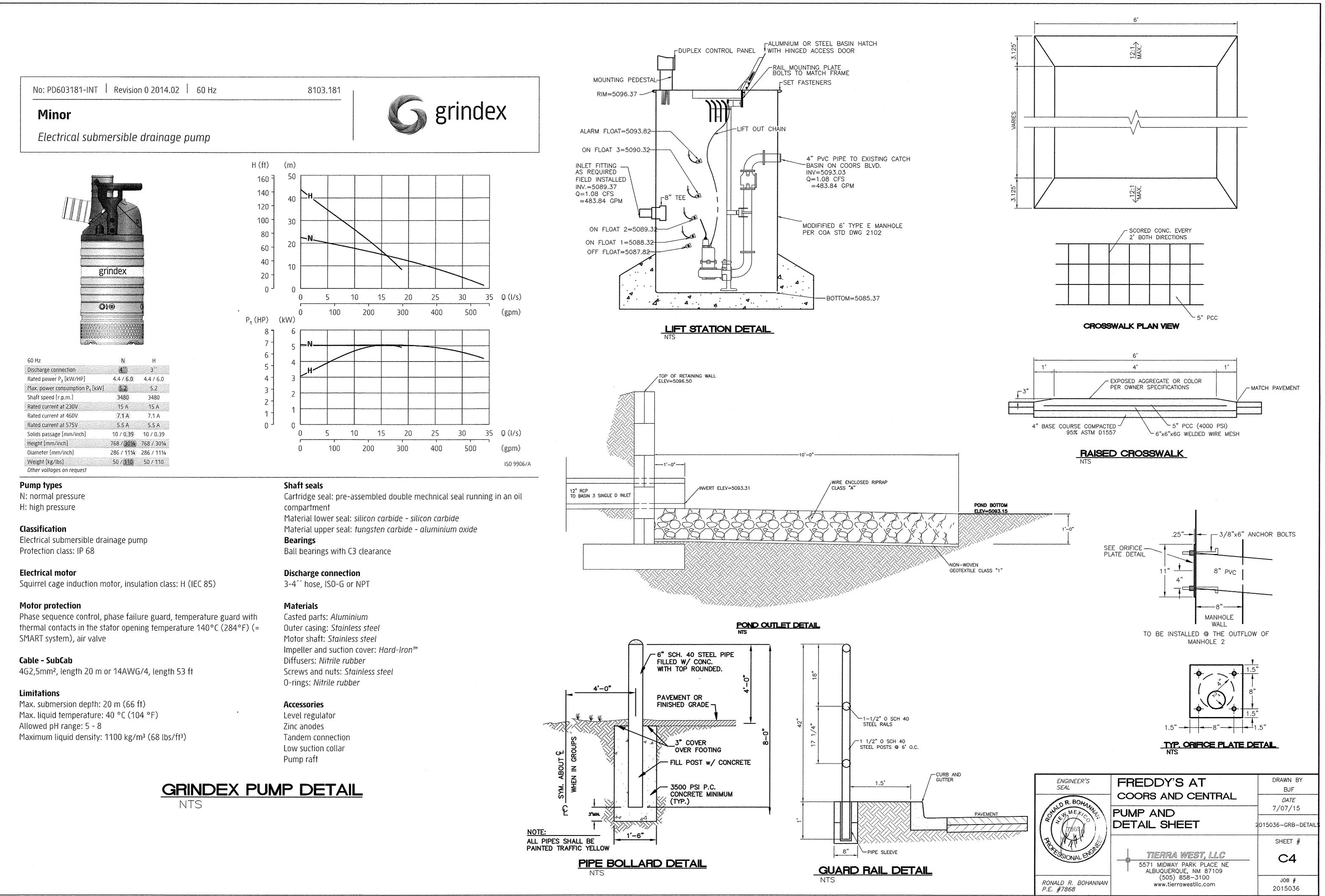
CURB CUT CAPACITY CALCULATIONS

ONSITE/OFFSITE FLOWS TO CURB CUT ENTERING DETENTION POND 2


Q = discharge (1.22 cfs for flows from Basin 4, not including pond area)

1.22 = 2.86 * L L = 0.43 ft, minimum curb cut length


	STORMCHAMBER VOLUME CALCULATION
linance	Total storage volume required = 0.22 ac-ft
	Total # of chambers = 69
333 ft	Volume per chamber = 0.00172 ac-ft
	Volume inside chambers = 0.00172 * 69 = 0.11 ac-ft
9.34 ft^3	Area of chambers and surrounding stone = 0.076 ac
	Volume of chambers and surrounding stone = 0.076*6.33 =0.48 ac-ft
1:	Volume of only surrounding stone = 0.48 - 0.11 = 0.37 ac-ft
16 ft	Volume of 30% voids in stone = 0.37*0.3 = 0.11 ac-ft
	Total storage of volume of Stormchamber system = 0.11 + 0.11 = 0.22 ac-ft


H = Depth of water above center of orifice (ft)

	······	
ENGINEER'S SEAL	FREDDY'S AT	DRAWN BY BJF
	COORS AND CENTRAL	DATE
ON METICO	BASIN MAP	07/07/15
MALD R. BOARSHIT	AND CALCULATIONS	2015036-GRB-DETA
A King		SHEET #
THE SONAL ENGINE	5571 MIDWAY PARK PLACE NE ALBUQUERQUE, NM 87109	C2
RONALD R. BOHANNAN P.E. #7868	(505) 858-3100 www.tierrawestllc.com	јов # 2015036

ITEM NO.	STORMCHAMBER PROPOSED LAYOUT DESCRIPTION	QTY
1	START UNITS	11
2	MIDDLE UNITS	47
3	END UNITS	11
4	7'X10' HEAVY DUTY NETTING (SUPPLIED)	3
5	LIGHTWEIGHTS STABILIZATION NETTING (INFLOW AND ADJACENT ROWS) (SUPPLIED)	1
6	10" PVC INSPECTION / CLEAN OUT RISER - (SUPPLIED BY OTHERS) W / FRAME AND LID AND SEDIMENTRAP (SUPPLIED)	4
7	4oz NON WOVEN STORMCHAMBER GEOTEXTILE FILTER FABRIC (SUPPLIED)	2
8	ROW CONNECTING 10" PVC (SUPPLIED BY OTHERS)	2

