
CITY OF ALBUQUERQUE

Planning Department Alan Varela, Director

January 31, 2023

Fred C. Arfman, P.E. Isaacson & Arfman, P.A. 128 Monroe St. N.E Albuquerque, NM 87108

RE: Nuevo Atrisco – Tract B Grading Plans & Drainage Report Engineer's Stamp Date: 01/09/23 Hydrology File: K10D058

Dear Mr. Arfman:

PO Box 1293

Based upon the information provided in your submittal received 01/10/2023, the Grading Plans & Drainage Report are approved for Building Permit. Please attach a copy of this approved plan in the construction sets for Building Permit processing along with a copy of this letter.

PRIOR TO CERTIFICATE OF OCCUPANCY:

Albuquerque

1. Engineer's Certification, per the DPM Part 6-14 (F): *Engineer's Certification Checklist For Non-Subdivision* is required.

NM 87103

2. Please provide the executed paper Drainage Covenant (latest revision) printed on one-side only with Exhibit A and a check for \$25.00 made out to "Bernalillo County" for the stormwater quality ponds per Article 6-15(C) of the DPM to Hydrology for review at Plaza de Sol.

www.cabq.gov

3. Please pay the Payment-in-Lieu of \$ 6,752.00 by emailing the attached approved Waiver Application from Stormwater Quality Volume Management On-site to PLNDRS@cabg.gov. Once this is received, a receipt will then produce and email back with instructions on how to pay online. Once paid, please email me proof of payment.

As a reminder, if the project total area of disturbance (including the staging area and any work within the adjacent Right-of-Way) is 1 acre or more, then an Erosion and Sediment Control (ESC) Plan and Owner's certified Notice of Intent (NOI) is required to be submitted to the Stormwater Quality Engineer (Dough Hughes, PE, jhughes@cabq.gov, 924-3420) 14 days prior to any earth disturbance.

CITY OF ALBUQUERQUE

Planning Department Alan Varela, Director

If you have any questions, please contact me at 924-3995 or <u>rbrissette@cabq.gov</u>.

Sincerely, Renée C. Brissette

Renée C. Brissette, P.E. CFM Senior Engineer, Hydrology Planning Department

PO Box 1293

Albuquerque

NM 87103

www.cabq.gov

DATE SUBMITTED: <u>January 9 2023</u>

City of Albuquerque

Planning Department

Development & Building Services Division

DRAINAGE AND TRANSPORTATION INFORMATION SHEET

Project Title: Nuevo Atrisco	Building Permit #	Hydrology File #K10D058
DRB#_ PR-2018-001405	EPC#	
Legal Description: Tract B, Nuevo Atrisco	City Address (OR Parcel 7901 Central Ave. NW
Applicant/Agent: Isaacson & Arfman, Inc.	Contact: Åsa	Nilsson-Weber or Bryan J. Bobri
Address: 128 Monroe Street NE	Phone: (50	05) 268-8828
Email: asaw@iacivil.com or bryanb@ia	acivil.com	
Applicant/Owner: City of Albuquerque	Contact:	
Address:		
Email:		
TYPE OF DEVELOPMENT:PLAT (#of le	ots)RESIDENCEDRI	S SITE X ADMIN SITE:
RE-SUBMITTAL: X YES NO		
DEPARTMENT:TRANSPORTATION	N X HYDROLOGY/I	DRAINAGE
Check all that apply:		
TYPE OF SUBMITTAL:	TYPE OF APPROVAL	L/ACCEPTANCE SOUGHT:
ENGINEER/ARCHITECT CERTIFICATION	_X BUILDING P	ERMIT APPROVAL
PAD CERTIFICATION	CERTIFICAT	E OF OCCUPANCY
CONCEPTUAL G&D PLAN		
X GRADING PLAN	CONCEPTUA	AL TCL DRB APPROVAL
A GRADING LAN		AL TCL DRB APPROVAL RY PLAT APPROVAL
X DRAINAGE REPORT	PRELIMINA	
	PRELIMINA SITE PLAN F	RY PLAT APPROVAL
X DRAINAGE REPORT	PRELIMINA SITE PLAN F SITE PLAN F	RY PLAT APPROVAL OR SUB'D APPROVAL OR BLDG PERMIT APPROVAL
X DRAINAGE REPORT DRAINAGE MASTER PLAN	PRELIMINAL SITE PLAN F SITE PLAN F PPFINAL PLAT	RY PLAT APPROVAL OR SUB'D APPROVAL OR BLDG PERMIT APPROVAL
X DRAINAGE REPORT DRAINAGE MASTER PLAN FLOOD PLAN DEVELOPMENT PERMIT A	PRELIMINAL SITE PLAN F SITE PLAN F FINAL PLAT SIA/RELEAS	RY PLAT APPROVAL OR SUB'D APPROVAL OR BLDG PERMIT APPROVAL APPROVAL
X DRAINAGE REPORT DRAINAGE MASTER PLAN FLOOD PLAN DEVELOPMENT PERMIT A ELEVATION CERTIFICATE	PRELIMINAL SITE PLAN F SITE PLAN F FINAL PLAT SIA/RELEAS FOUNDATIO	RY PLAT APPROVAL OR SUB'D APPROVAL OR BLDG PERMIT APPROVAL APPROVAL E OF FINANCIAL GUARANTEE
X DRAINAGE REPORT DRAINAGE MASTER PLAN FLOOD PLAN DEVELOPMENT PERMIT A ELEVATION CERTIFICATE CLOMR/LOMR	PRELIMINAL SITE PLAN F SITE PLAN F FINAL PLAT SIA/RELEAS FOUNDATIO	RY PLAT APPROVAL FOR SUB'D APPROVAL FOR BLDG PERMIT APPROVAL APPROVAL E OF FINANCIAL GUARANTEE ON PERMIT APPROVAL ERMIT APPROVAL
X DRAINAGE REPORT DRAINAGE MASTER PLAN FLOOD PLAN DEVELOPMENT PERMIT A ELEVATION CERTIFICATE CLOMR/LOMR TRAFFIC CIRCULATION LAYOUT (TCL)	PRELIMINAL SITE PLAN F SITE PLAN F SITE PLAN F SIA/RELEAS FOUNDATIO GRADING PI SO-19 APPRO	RY PLAT APPROVAL FOR SUB'D APPROVAL FOR BLDG PERMIT APPROVAL APPROVAL E OF FINANCIAL GUARANTEE ON PERMIT APPROVAL ERMIT APPROVAL
X DRAINAGE REPORT DRAINAGE MASTER PLAN FLOOD PLAN DEVELOPMENT PERMIT A ELEVATION CERTIFICATE CLOMR/LOMR TRAFFIC CIRCULATION LAYOUT (TCL) ADMINISTRATIVE	PRELIMINAL SITE PLAN F SITE PLAN F SITE PLAN F FINAL PLAT SIA/RELEAS FOUNDATIO GRADING PL SO-19 APPRORE	RY PLAT APPROVAL OR SUB'D APPROVAL OR BLDG PERMIT APPROVAL APPROVAL E OF FINANCIAL GUARANTEE ON PERMIT APPROVAL ERMIT APPROVAL OVAL
X DRAINAGE REPORT DRAINAGE MASTER PLAN FLOOD PLAN DEVELOPMENT PERMIT A ELEVATION CERTIFICATE CLOMR/LOMR TRAFFIC CIRCULATION LAYOUT (TCL) ADMINISTRATIVE TRAFFIC CIRCULATION LAYOUT FOR DEAPPROVAL	PRELIMINAL SITE PLAN F SITE PLAN F FINAL PLAT SIA/RELEAS FOUNDATIC GRADING PL SO-19 APPRORE PAVING PER GRADING PL GRADING PL GRADING PL GRADING PL	RY PLAT APPROVAL FOR SUB'D APPROVAL FOR BLDG PERMIT APPROVAL APPROVAL E OF FINANCIAL GUARANTEE FON PERMIT APPROVAL ERMIT APPROVAL EVAL EMIT APPROVAL AD CERTIFICATION
X DRAINAGE REPORT DRAINAGE MASTER PLAN FLOOD PLAN DEVELOPMENT PERMIT A ELEVATION CERTIFICATE CLOMR/LOMR TRAFFIC CIRCULATION LAYOUT (TCL) ADMINISTRATIVE TRAFFIC CIRCULATION LAYOUT FOR DE	PRELIMINAL SITE PLAN F SITE PLAN F FINAL PLAT SIA/RELEAS FOUNDATIO GRADING PL SO-19 APPRO PAVING PER GRADING P. WORK ORD	RY PLAT APPROVAL OR SUB'D APPROVAL OR BLDG PERMIT APPROVAL APPROVAL E OF FINANCIAL GUARANTEE ON PERMIT APPROVAL ERMIT APPROVAL OVAL AD CERTIFICATION ER APPROVAL
DRAINAGE REPORT DRAINAGE MASTER PLAN FLOOD PLAN DEVELOPMENT PERMIT A ELEVATION CERTIFICATE CLOMR/LOMR TRAFFIC CIRCULATION LAYOUT (TCL) ADMINISTRATIVE TRAFFIC CIRCULATION LAYOUT FOR DEAPPROVAL TRAFFIC IMPACT STUDY (TIS)	PRELIMINAL SITE PLAN F SITE PLAN F FINAL PLAT SIA/RELEAS FOUNDATIO GRADING PI SO-19 APPRO RB PAVING PEF GRADING P. WORK ORDI CLOMR/LOM	RY PLAT APPROVAL OR SUB'D APPROVAL OR BLDG PERMIT APPROVAL APPROVAL E OF FINANCIAL GUARANTEE ON PERMIT APPROVAL ERMIT APPROVAL OVAL AD CERTIFICATION ER APPROVAL

CITY OF ALBUQUERQUE PLANNING DEPARTMENT HYDROLOGY DEVELOPMENT SECTION

WAIVER APPLICATION FROM STORMWATER QUALITY VOLUME MANAGEMENT ON-SITE

GENERAL INFORMATION		
APPLICANT: Isaacson & Arfman, I	nc.	DATE: 01/09/2023
Nuevo Atrisco		
LOCATION: SW Corner of Central	Ave. and Uns	er Blvd. SW
STORMWATER QUALITY PON	ND VOLUME	
Per the DPM Article 6-12 - Stormwater Quality Posizing for required Stormwater Quality Posithe BMP multiplied by 0.42 inches for new redevelopment sites.	nd volume is equal	to the impervious area draining to
The required volume is 2,434	cubic feet	
The provided volume is 1,590	cubic feet	
The deficient volume is 844	cubic feet	
WAIVER JUSTIFICATION		

management on-site is waived in accordance with the following criteria and procedures.

Per the DPM Article 6-12(C), private off-site mitigation and payment-in-lieu may only be considered if

1. Management on-site shall be waived by the City Engineer if the following conditions are met:

- a. Stormwater quality can be effectively controlled through private off-site mitigation or through an arrangement (approved by the City) to use a cooperator's existing regional stormwater management infrastructure or facilities that are available to control stormwater quality.
- b. Any of the following conditions apply:
 - i. The lot is too small to accommodate management on site while also accommodating the full plan of development.
 - ii. The soil is not stable as demonstrated by a geotechnical report certified by a professional engineer licensed in the State of New Mexico.
 - iii. The site use is inconsistent with the capture and reuse of stormwater.
 - iv. Other physical conditions exist where compliance with on-site stormwater quality control leaves insufficient area.
 - v. Public or private off-site facilities provide an opportunity to effectively accomplish the mitigation requirements of the Drainage Ordinance (Part 14-5-2 ROA 1994) as demonstrated on as-built construction drawings and an approved drainage report.
 - vi. The developer constructs a project to replenish regional groundwater supplies at an off-site location.
 - vii. A waiver to State water law or acquisition of water rights would be required in order to implement management on site.
- 2. The basis for requesting payment-in-lieu or private off-site mitigation is to be clearly demonstrated on the drainage plan.

This project's justification:
Every reasonable effort has been made to provide stormwater
quality volume within landscaped areas throughout the site.

Åsa Nilsson-Weber, P.E.

Professional Engineer or Architect

PAY	MENT-IN-LIEU
	e DPM Article 6-12(C)(1), the amount of payment-in-lieu is deficient volume (cubic feet) times \$6 bic feet for detached single-family residential projects or \$8 per cubic feet for all other projects.
AMO	UNT OF PAYMENT-IN-LIEU = \$ 6,752.00
THIS	S SECTION IS FOR CITY USE ONLY
X	Waiver is approved. The amount of payment-in-lieu from above must be paid prior to Certificate of Occupancy.
	Waiver is DENIED.
	Renée C. Brissette City of Albuquerque Hydrology Section O1/31/23

JANUARY 9, 2023

Drainage Report

for

NUEVO ATRISCO

Tract B, Nuevo Atrisco Central Ave. NW & Unser Blvd. NW Albuquerque, NM

City of Albuquerque
Planning Department
Development Review Services
HYDROLOGY SECTION
APPROVED

DATE:

01/31/23

BY:

HydroTrans #

K10D058

THE APPROVAL OF THESE PLANS/REPORT SHALL NOT BE
CONSTRUED TO PERMIT VIOLATIONS OF ANY CITY
ORDINANCE OR STATE LAW, AND SHALL NOT PREVENT
THE CITY OF ALBUQUERQUE FROM REQUIRING
CORRECTION, OR ERROR OR DIMENSIONS IN PLANS
SPECIFICATIONS, OR CONSTRUCTIONS SUCH APPROVED PLANS
SHALL NOT BE CHANGED, MODIFIED OR ALTERED WITHOUT
AUTHORIZATION.

Isaacson & Arfman, Inc.
Arfman, Inc.
Civil Engineering Consultants

128 Monroe Street NE
Albuquerque, NM 87108
505-268-8828 | www.iacivil.com

PROJECT INFORMATION

<u>LEGAL DESCRIPTION</u>: TRACT B, NUEVO ATRISCO, CITY OF ALBUQUERQUE, BERNALILLO COUNTY, NEW MEXICO.

<u>BENCHMARK</u>: VERTICAL DATUM IS BASED UPON THE ALBUQUERQUE CONTROL SURVEY MONUMENT "9-K10", ELEVATION = 5117.72 FEET (NAVD 1988).

<u>OFF-SITE FLOW</u>: OFF-SITE FLOW FROM THE ADJACENT HOUSING PROJECT TO THE NORTH IS ROUTED THROUGH THIS PROPERTY WITHIN AN EXISTING STORM DRAIN SYSTEM WITH DRAINAGE EASEMENT. MINOR SURFACE FLOW IS ALSO ACCEPTED WITHIN A BLANKET DRAINAGE EASEMENT.

<u>FLOOD HAZARD</u>: PER BERNALILLO COUNTY FIRM MAP 35001C0328J, MAP (REVISION DATE NOVEMBER 4, 2016), THE SITE IS LOCATED WITHIN FLOODZONE 'X' DESIGNATED AS AREAS DETERMINED TO BE OUTSIDE 500-YEAR FLOODPLAIN. CENTRAL AVENUE ADJACENT TO THE PROPERTY IS ENCUMBERED BY ZONE AO (DEPTH 1').

TABLE OF CONTENTS

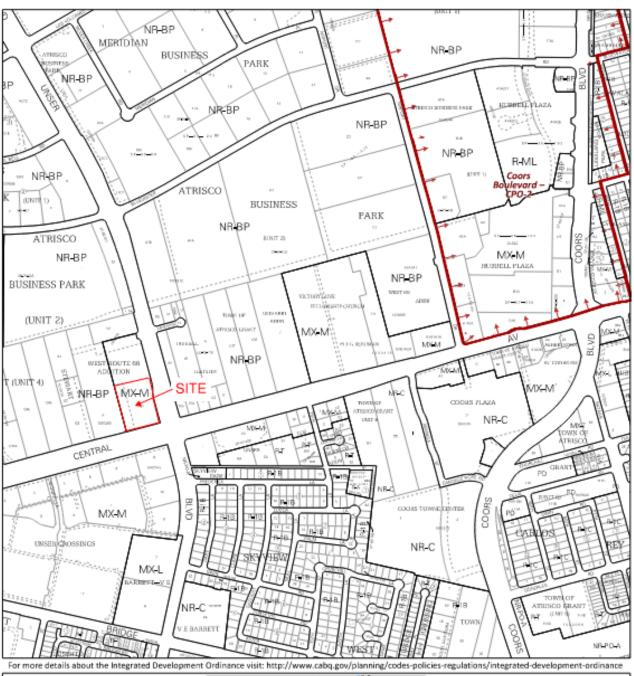
VICINITY MAP	
FIRM MAP	
EXISTING CONDITIONS	1
DRAINAGE CRITERIA	1
PROPOSED CONDITIONS	2
CONCLUSION	3

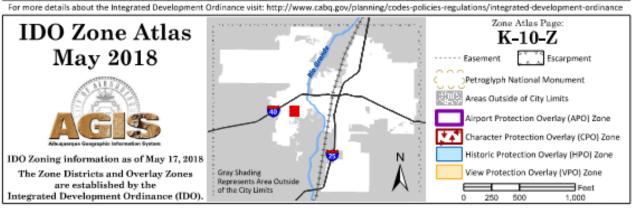
APPENDIX A

BASIN MAP

DRAINAGE CALCULATIONS

APPENDIX B


STORM DRAIN CALCULATIONS
INLET CAPACITY CHARTS
CURB OPENING CAPACITY CALCULATION


APPENDIX C

EXCERPTS FROM 'WEST CENTRAL AVE. FRONTAGE ROAD COMPLETE STREET IMPROVEMENTS' BY WSP

APPENDIX D

Grading Plans Storm Drain Plan

National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR OCTAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

Without Base Flood Elevation (BFE)

With BFE or Depth	regulationy ricolowey core at, AU, AH, Vt. AH		0.2% Annual Chance Flood Hazard, Area	of 1% annual chance flood with average	done here then one foot or with designed
CIAL FLOOD	ARD AREAS	_			
0	3				

Area with Reduced Flood Risk due to Levee, See Notes, Zave X depth less than one foot or with dra areas of less than one square mile Future Conditions 1% Annual Chance Flood Hazard Zone X

Area with Flood Risk due to Levee Zone

NO SCREEN Area of Minimal Flood Hazard Zone

Channel, Culvert, or Storm Sewer IIIIIIIIII Levee, Dike, or Floodwall

Area of Undetermined Flood Hazard Zone C

Effective LOMRs

B 20.2 Cross Sections with 1% Annual Chance Water Surface Elevation 17.5

. Base Flood Elevation Line (BFE) ① - - Coastal Transect Limit of Study

Jurisdiction Boundary

--- Coastal Transect Base Profile Baseline

Hydrographic Feature

Digital Data Available

No Digital Data Available This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The base map shown complies with FEMA's base map

authoritative NFHL web services provided by FEMA. This map was exported on 3.282/2018 at 43.20-0 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or The flood hazard information is derived directly from the

This map image is void if the one or more of the following map elements do not appear: base map imagery, flood zone labels, legend, scele but, map creation date, community identifiers, FIRM penel rumber, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for

1:6,000

1,000

20

250

EXISTING CONDITIONS:

The site is a 3.1360-acre commercial property and is bound to the east by Unser Blvd, to the north and west by developed commercial property and to the south by Central Ave.

This property has previously been developed with structure(s) vehicle storage (see 2004 Google Earth image). In 2005, the property was mass graded and a paved parking lot constructed on a portion of the property (see 2018 Google Earth image). A storm drain system has been installed on this property with the development on the tract to the north.

Google Earth Image 2018

DRAINAGE CRITERIA:

Per the 'West Central Ave. Frontage Road Complete Street Improvements' by WSP, with approval date 01/11/21 (COA HYDROLOGY FILE K09/D045), the property is located within sub-basin "TB212 LIBRARY". This report revises the land treatment percentages for allowable discharge from this site to 20% 'C', 80% 'D'. Per the AHYMO summary, 4.27 cfs per acre is the allowable discharge. See Appendix C for excerpts.

Storm drain improvements recently constructed (City Project No. 4383.91) includes a 48" storm drain provided for this site (passing flow under Central Avenue). The existing on-site storm drain system that was constructed with the commercial project to the north will be removed and relocated to accommodate the new site layout and will continue to drain to the system.

This property will be permitted a discharge rate of 13.4 cfs (4.27 cfs/ac. * 3.14 ac.)

PROPOSED CONDITIONS:

The proposed improvements include, commercial restaurant(s), retail/office, food park, parking, and landscaping.

A storm drain system has been installed on the site as part of the north commercial development (Tract A, Nuevo Atrisco) connecting to the Central Ave. storm drain. The storm drain shall be removed and relocated to fit the site layout.

Hydrology:

See Appendix A for a basin exhibit with basin summary table and calculations for the 100-year, 6-hour storm based on City of Albuquerque DPM, Article 6-2 Hydrology dated June 26, 2020.

The land treatments were calculated at 82% Type D and 18% Type B based on calculations performed in AutoCAD for the pervious areas as shown on the basin exhibit.

The developed discharge from this property is 11.9 cfs which is less than the 13.4 cfs allowable. Basins 1-4 and 7 will discharge 10.4 cfs to the new storm drain inlets and Basins 5 and 6 will discharge 1.5 cfs to Unser Blvd. and Central Ave.

Curb Openings:

See Appendix B for curb opening orifice and weir calculations and Appendix D for the grading plan.

Two-foot curb openings will be provided to accept water into the SWQ ponds in the medians throughout the site. Each curb opening has a capacity of accepting 2.3 cfs.

Storm Drain:

See Appendix B for storm drain calculations using Stormwater Studio 2021 software and Nyloplast inlet capacity charts and Appendix D sheet CG-502 for the storm drain layout.

Inlets with traffic rated grates in paved areas and domed grate in landscape areas will accept the flows into the new, re-routed storm drain system. This site will discharge 10.4 cfs and the north tract (Tract A, Nuevo Atrisco) will discharge 8.6 cfs to the storm drain system for a total of 19.0 cfs.

The onsite storm drain (8-in.-24-in.) will tie into a new manhole at an existing 48-inch rcp storm drain connecting to the Central Ave. storm drain system.

Storm Water Quality Volumes (SWQV):

See grading plan sheet CG-101 in Appendix D for SWQV pond calculations. For redevelopment sites, the City of Albuquerque SWQV is based on the 80th percentile storm event or 0.26".

A drainage covenant may be required for the SWQV ponds and other drainage improvements. If so, the original notarized form, Exhibit A and recording fee will be submitted.

CONCLUSIONS:

The following drainage-related improvements shall be constructed:

- Curb openings into SWQ ponds.
- SWQ ponds as shown on grading plan.
- Inlets with traffic rated grates in paved areas, domed grates in landscaped areas and pedestrian rated grates in the courtyard areas as shown on the storm drain plan.
- Storm drain system (8-in.-24-in. dia.) as shown on the storm drain plan.
- A 6-foot manhole at the connection to the existing 48-in. rcp storm drain.

APPENDIX A

BASIN MAP
DRAINAGE CALCULATIONS

NUEVO ATRISCO BASIN EXHIBIT 10/20/2022

PERVIOUS AREA=24,284 SF IMPERVIOUS AREA=112,317 SF

Allowable Discharge: 4.27 cfs/ac

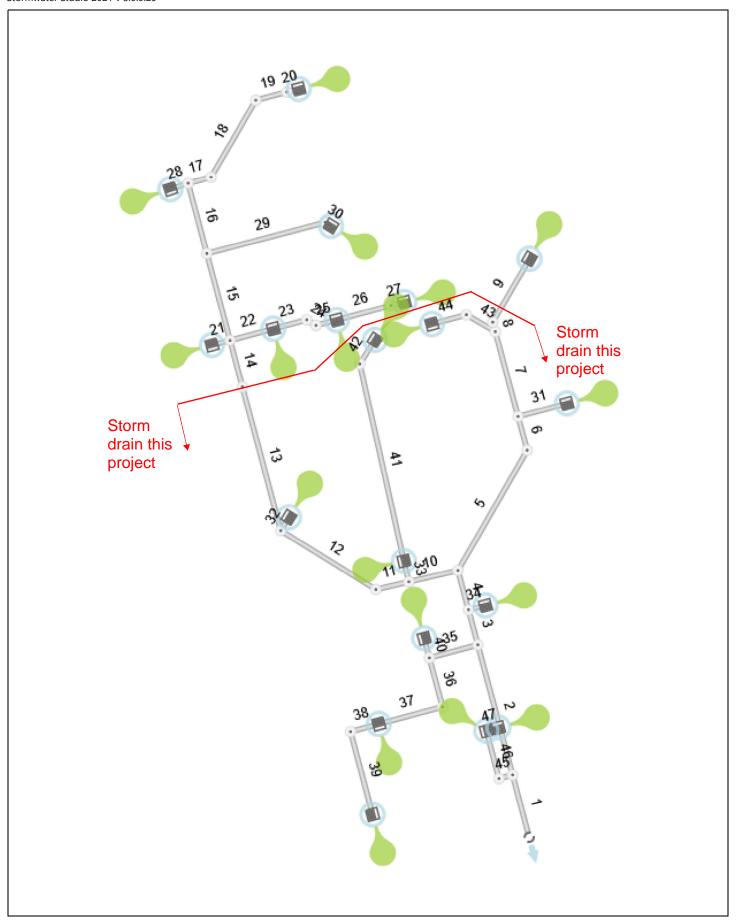
Total allowable from site: 3.14 ac*4.27 cf: 13.4 cfs

Proposed Land Treatment: 18%B; 82%D

DACINI	AREA	AREA	Q100	TO STORM	TO OFFSITE
BASIN	(SF)	(AC)	(CFS)	DRAIN (CFS)	(CFS)
1	37718	0.866	3.3	3.3	
2	15626	0.359	1.4	1.4	
3	36315	0.834	3.1	3.1	
4	26259	0.603	2.3	2.3	
5	3286	0.075	0.3		0.3
6	14046	0.322	1.2		1.2
7	3341	0.077	0.3	0.3	
TOTAL		3.136	11.9	10.4	1.50

ОК

Isaacson & Arfman, Inc. Civil Engineering Consultants


> 128 Monroe Street NE Albuquerque, NM 87108 505-268-8828 | www.iacivil.com

Job Name:	Nuevo Atrisco				
Client:	Maestas Develop	ment Group			
Date Prepared:	7/22/2022				Stormwater Quality Multip
Date Modified:	10/19/2022				0.26
Precipitation Zone:	1				ENTER MULTIPLIER HERE
	For Zone 1				
	EA =	0.55	QpA =	1.54	
	EB =	0.73	QpB =	2.16	
	EC =	0.95	QpC =	2.87	
	ED =	2.24	QpD =	4.12	
BASIN NO. 1		DESCRIPTION		TOS	SD
Area of basin flows =	37718	SF	=	0.87 Ac.	
The following calculation	ons are based on T	reatment %'s as shown in t	able to the right	LAND	TREATMENT
		ted Excess Precipitation:		A =	0%
	Weighted E		7 in.	B =	18%
	Sub-basin Volum	e of Runoff: = 618	6 CF	C =	0% 82%
	V ₃₆₀ Sub-basin Peak I		0 CF		vater Quality Volume
	Q _P	= 3.	3 cfs	Storing	670 CF
BASIN NO. 2		DESCRIPTION		TOS	
Area of basin flows =	15626	SF	=	0.36 Ac.	
The following calculation	ons are based on T	reatment %'s as shown in t	able to the right		TREATMENT
=		ted Excess Precipitation:		A =	0%
	Weighted E		7 in.	B =	18%
	Sub-basin Volum			C =	0%
	V ₃₆₀	= 256	3 CF	D =	82%
	Sub-basin Peak I		4 6	Stormw	vater Quality Volume
n i enviso	Q_P	= 1.		TO 6	278 CF
BASIN NO. 3		DESCRIPTION		TO S	SD
Area of basin flows =	36315	SF reatment %'s as shown in t	= able to the right	0.83 Ac.	TREATMENT
The following calculation		ted Excess Precipitation:	able to the right	A =	0%
	Weighted E		7 in.	B =	18%
	Sub-basin Volum			C =	0%
	V ₃₆₀	= 595	6 CF	D =	82%
	C 1 1 ' D 1 F				
	Sub-basin Peak L	ischarge Rate:		Stormw	rater Quality Volume
	Q _P	= 3.			645 CF
BASIN NO. 4	Q _P	= 3. DESCRIPTION		ТО S	645 CF
Area of basin flows =	Q _P 26259	= 3. DESCRIPTION SF	=	TO S	645 CF GD
Area of basin flows =	Q _P 26259 ons are based on T	DESCRIPTION SF reatment %'s as shown in t	=	TO S 0.60 Ac. LAND	645 CF SD TREATMENT
Area of basin flows =	Q _P 26259 ons are based on T Sub-basin Weigh	DESCRIPTION SF reatment %'s as shown in ted Excess Precipitation:	= able to the right	TO S 0.60 Ac. LAND A =	645 CF SD TREATMENT 0%
Area of basin flows =	Q _P 26259 ons are based on T Sub-basin Weigh Weighted E	DESCRIPTION SF reatment %'s as shown in ted Excess Precipitation: = 1.9	=	TO S 0.60 Ac. LAND	645 CF SD TREATMENT
Area of basin flows =	Q _P 26259 ons are based on T Sub-basin Weight Weighted E Sub-basin Volum	DESCRIPTION SF reatment %'s as shown in ted Excess Precipitation: = 1.9	= table to the right	TO S 0.60 Ac. LAND A = B =	645 CF SD TREATMENT 0% 18%
Area of basin flows =	Q _P 26259 ons are based on T Sub-basin Weigh Weighted E	= 3. DESCRIPTION SF reatment %'s as shown in ted Excess Precipitation: = 1.9 e of Runoff: = 430	= table to the right	TO S 0.60 Ac. LAND A = B = C = D =	645 CF SD TREATMENT 0% 18% 0%
Area of basin flows =	QP 26259 ons are based on T Sub-basin Weighted E Sub-basin Volum V ₃₆₀	= 3. DESCRIPTION SF reatment %'s as shown in ted Excess Precipitation: = 1.9 e of Runoff: = 430	= able to the right 17 in. 17 CF	TO S 0.60 Ac. LAND A = B = C = D =	645 CF SD TREATMENT 0% 18% 0% 82%
Area of basin flows =	Q _P 26259 ns are based on T Sub-basin Weighted E Sub-basin Volum V ₃₆₀ Sub-basin Peak I	= 3. DESCRIPTION SF reatment %'s as shown in ted Excess Precipitation: = 1.9 e of Runoff: = 430 bischarge Rate:	= able to the right 77 in. 17 CF 3 cfs	TO S 0.60 Ac. LAND A = B = C = D =	645 CF SD TREATMENT 0% 18% 0% 82% rater Quality Volume 467 CF
Area of basin flows = The following calculation BASIN NO. 5 Area of basin flows =	Q _P 26259 ons are based on T Sub-basin Weight Weighted E Sub-basin Volum V ₃₆₀ Sub-basin Peak I Q _P	= 3. DESCRIPTION SF reatment %'s as shown in ted Excess Precipitation: = 1.9 e of Runoff: = 430 bischarge Rate: = 2. DESCRIPTION SF	= table to the right 7 in. 17 CF 3 cfs =	TO S 0.60 Ac. LAND	645 CF EXAMPLE 1 645 CF TREATMENT 0% 18% 0% 82% sater Quality Volume 467 CF ESITE
Area of basin flows = The following calculation BASIN NO. 5 Area of basin flows =	Q _P 26259 ons are based on T Sub-basin Weigh Weighted E Sub-basin Volum V ₃₆₀ Sub-basin Peak I Q _P 3286 ons are based on T	= 3. DESCRIPTION SF reatment %'s as shown in ted Excess Precipitation: = 1.9 e of Runoff: = 430 vischarge Rate: = 2. DESCRIPTION SF reatment %'s as shown in telegratement %'s as shown in telegratement statement sta	= table to the right 7 in. 17 CF 3 cfs =	TO S 0.60 Ac. LAND A = B = C = D = Stormw TO OFF 0.08 Ac. LAND	645 CF SD TREATMENT 0% 18% 0% 82% vater Quality Volume 467 CF SITE TREATMENT
Area of basin flows = The following calculation BASIN NO. 5 Area of basin flows =	Q _P 26259 ms are based on T Sub-basin Weighted E Sub-basin Volum V ₃₆₀ Sub-basin Peak I Q _P 3286 ms are based on T Sub-basin Weigh	= 3. DESCRIPTION SF reatment %'s as shown in ted Excess Precipitation: = 1.9 e of Runoff: = 430 vischarge Rate: = 2. DESCRIPTION SF reatment %'s as shown in ted Excess Precipitation:	= able to the right 7 in. 17 CF 3 cfs = able to the right	TO S 0.60 Ac. LAND A = B = C = D = Stormw TO OFI 0.08 Ac. LAND A =	TREATMENT 0% 18% 0% 82% vater Quality Volume 467 CF TREATMENT 0%
Area of basin flows = The following calculation BASIN NO. 5 Area of basin flows =	Q _P 26259 ms are based on T Sub-basin Weighted E Sub-basin Volum V ₃₆₀ Sub-basin Peak I Q _P 3286 ms are based on T Sub-basin Weighted E	= 3. DESCRIPTION SF reatment %'s as shown in ted Excess Precipitation: = 1.9 e of Runoff: = 430 bischarge Rate: = 2. DESCRIPTION SF reatment %'s as shown in ted Excess Precipitation: = 1.9	= table to the right 7 in. 17 CF 3 cfs =	TO S 0.60 Ac. LAND A = B = C = D = Stormw TO OFF 0.08 Ac. LAND A = B = B = B = B = C = B = B = B	645 CF SD TREATMENT 0% 18% 0% 82% vater Quality Volume 467 CF ESITE TREATMENT 0% 18%
Area of basin flows = The following calculation BASIN NO. 5 Area of basin flows =	Q _P 26259 ns are based on T Sub-basin Weighted E Sub-basin Peak I Q _P 3286 ons are based on T Sub-basin Weighted E Sub-basin Weighted E Sub-basin Volum	= 3. DESCRIPTION SF reatment %'s as shown in ted Excess Precipitation: = 1.9 e of Runoff: = 430 bischarge Rate: = 2. DESCRIPTION SF reatment %'s as shown in ted Excess Precipitation: = 1.9 e of Runoff:	= able to the right 7 in. 7 CF 3 cfs = able to the right 7 in.	TO S 0.60 Ac. LAND	645 CF SD TREATMENT 0% 18% 0% 82% vater Quality Volume 467 CF TREATMENT 0% 18% 0%
Area of basin flows = The following calculation BASIN NO. 5 Area of basin flows =	Q _P 26259 ms are based on T Sub-basin Weighted E Sub-basin Volum V ₃₆₀ Sub-basin Peak I Q _P 3286 ms are based on T Sub-basin Weighted E	BESCRIPTION SF reatment %'s as shown in ted Excess Precipitation: = 1.9 e of Runoff: = 430 bischarge Rate: = 2. DESCRIPTION SF reatment %'s as shown in ted Excess Precipitation: = 1.9 e of Runoff: = 53	= able to the right 7 in. 7 CF 3 cfs = able to the right 7 in.	TO S 0.60 Ac. LAND A = B = C = D = Stormw TO OFI 0.08 Ac. LAND A = B = C = D =	645 CF SD TREATMENT 0% 18% 0% 82% rater Quality Volume 467 CF SITE TREATMENT 0% 18% 0% 82%
Area of basin flows = The following calculation BASIN NO. 5 Area of basin flows =	Q _P 26259 ns are based on T Sub-basin Weighted E Sub-basin Peak I Q _P 3286 ns are based on T Sub-basin Weighted E Sub-basin Volum V ₃₆₀ Sub-basin Weighted E Sub-basin Volum V ₃₆₀	BESCRIPTION SF reatment %'s as shown in ted Excess Precipitation: = 1.9 e of Runoff: = 430 bischarge Rate: = 2. DESCRIPTION SF reatment %'s as shown in ted Excess Precipitation: = 1.9 e of Runoff: = 53	= able to the right 7 in. 7 CF 3 cfs = able to the right 7 in. 9 CF	TO S 0.60 Ac. LAND A = B = C = D = Stormw TO OFI 0.08 Ac. LAND A = B = C = D =	645 CF SD TREATMENT 0% 18% 0% 82% vater Quality Volume 467 CF TREATMENT 0% 18% 0%
Area of basin flows = The following calculation BASIN NO. 5 Area of basin flows =	Q _P 26259 Ins are based on T Sub-basin Weigh Weighted E Sub-basin Volum V ₃₆₀ Sub-basin Peak I Q _P 3286 Ons are based on T Sub-basin Weigh Weighted E Sub-basin Volum V ₃₆₀ Sub-basin Peak I Q _P	BESCRIPTION SF reatment %'s as shown in ted Excess Precipitation: = 1.9 e of Runoff: = 430 bischarge Rate: = 2. DESCRIPTION SF reatment %'s as shown in ted Excess Precipitation: = 1.9 e of Runoff: = 53	= able to the right 7 in. 17 CF 3 cfs = able to the right 7 in. 9 CF 3 cfs	TO S 0.60 Ac. LAND A = B = C = D = Stormw TO OFI 0.08 Ac. LAND A = B = C = D =	645 CF SD TREATMENT 0% 18% 0% 82% vater Quality Volume 467 CF SITE TREATMENT 0% 18% 0% 82% vater Quality Volume 58 CF
Area of basin flows = The following calculation BASIN NO. 5 Area of basin flows = The following calculation	Q _P 26259 Ins are based on T Sub-basin Weigh Weighted E Sub-basin Volum V ₃₆₀ Sub-basin Peak I Q _P 3286 Ons are based on T Sub-basin Weigh Weighted E Sub-basin Volum V ₃₆₀ Sub-basin Peak I Q _P	BESCRIPTION SF reatment %'s as shown in ted Excess Precipitation: = 1.9 e of Runoff: = 430 vischarge Rate: = 2. DESCRIPTION SF reatment %'s as shown in ted Excess Precipitation: = 1.9 e of Runoff: = 53 vischarge Rate: = 0.	= able to the right 7 in. 17 CF 3 cfs = able to the right 7 in. 9 CF 3 cfs	TO S 0.60 Ac. LAND A = B = C = D = Stormw TO OFF 0.08 Ac. LAND A = B = C = D = Stormw	645 CF SD TREATMENT 0% 18% 0% 82% vater Quality Volume 467 CF SITE TREATMENT 0% 18% 0% 82% vater Quality Volume 58 CF
Area of basin flows = The following calculate BASIN NO. 5 Area of basin flows = The following calculate BASIN NO. 6 Area of basin flows =	Q _P 26259 ms are based on T Sub-basin Weighted E Sub-basin Volum V ₃₆₀ Sub-basin Peak I Q _P 3286 ms are based on T Sub-basin Weighted E Sub-basin Volum V ₃₆₀ Sub-basin Peak I Q _P 14046	= 3. DESCRIPTION SF reatment %'s as shown in ted Excess Precipitation: = 1.9 e of Runoff: = 430 vischarge Rate: = 2. DESCRIPTION SF reatment %'s as shown in ted Excess Precipitation: = 1.9 e of Runoff: = 53 vischarge Rate: = 0. DESCRIPTION	able to the right 7 in. 7 CF 3 cfs able to the right 7 in. 9 CF 3 cfs	TO SE 0.60 Ac. LAND A = B = C = D = Stormw TO OFI 0.08 Ac. LAND A = B = C = D = Stormw TO OFI 0.32 Ac.	645 CF SD TREATMENT 0% 18% 0% 82% rater Quality Volume 467 CF TREATMENT 0% 18% 0% 82% rater Quality Volume 58 CF FSITE TREATMENT
Area of basin flows = The following calculate BASIN NO. 5 Area of basin flows = The following calculate BASIN NO. 6 Area of basin flows =	Q _P 26259 Dens are based on T Sub-basin Weighted E Sub-basin Volum V ₃₆₀ Sub-basin Peak I Q _P 3286 Dens are based on T Sub-basin Weighted E Sub-basin Volum V ₃₆₀ Sub-basin Volum V ₃₆₀ Sub-basin Peak I Q _P 14046 Dens are based on T Sub-basin Volum V ₃₆₀ Sub-basin Volum V ₃₆₀ Sub-basin Volum V ₃₆₀ Sub-basin Velum V ₃₆₀ Sub-basin	DESCRIPTION SF reatment %'s as shown in ted Excess Precipitation: = 1.9 e of Runoff: = 430 DESCRIPTION SF DESCRIPTION SF = 1.9 e of Runoff: = 1.9 e of Runoff: = 53 DESCRIPTION SF DESCRIPTION: = 1.9 e of Runoff: = 53 DESCRIPTION SF Teatment %'s as shown in ted Excess Precipitation: = 53 DESCRIPTION SF reatment %'s as shown in ted Excess Precipitation:	= able to the right 7 in. 7 CF 3 cfs = able to the right 7 in. 9 CF 3 cfs = the right able to the right	TO S 0.60 Ac. LAND A = B = C = D = Stormw TO OFI 0.08 Ac. LAND A = B = C = D = Stormw TO OFI 0.08 Ac. LAND A = A = B = C = D = Stormw	645 CF SD TREATMENT 0% 18% 0% 82% rater Quality Volume 467 CF SITE TREATMENT 0% 18% 0% 82% rater Quality Volume 58 CF SITE TREATMENT 0% 18% 0% 82% TREATMENT 0% 18% 0% 82% TREATMENT 0% TREATMENT 0%
Area of basin flows = The following calculate BASIN NO. 5 Area of basin flows = The following calculate BASIN NO. 6 Area of basin flows =	Q _P 26259 Ins are based on T Sub-basin Weighted E Sub-basin Volum V ₃₆₀ Sub-basin Peak I Q _P 3286 Ons are based on T Sub-basin Weighted E Sub-basin Volum V ₃₆₀ Sub-basin Volum V ₃₆₀ Sub-basin Volum V ₃₆₀ Sub-basin Volum Sub-basin Volum V ₃₆₀ Sub-basin Volum Sub-basin Peak I O _P 14046 Ons are based on T Sub-basin Weighted E	BESCRIPTION SF reatment %'s as shown in ted Excess Precipitation: = 1.9 e of Runoff: = 430 bischarge Rate: = 2. DESCRIPTION SF reatment %'s as shown in ted Excess Precipitation: = 1.9 e of Runoff: = 53 bischarge Rate: = 0. DESCRIPTION SF reatment %'s as shown in ted Excess Precipitation: = 1.9 e of Runoff: = 1.9 e of Runoff: = 53 bischarge Rate: = 0. DESCRIPTION SF reatment %'s as shown in ted Excess Precipitation: = 1.9	able to the right 7 in. 7 CF 3 cfs able to the right 7 in. 9 CF 3 cfs	TO S 0.60 Ac. LAND A = B = C = D = Stormw TO OFI 0.08 Ac. LAND A = B = C = D = Stormw TO OFI 0.08 Ac. LAND A = B = C = D = Stormw	645 CF SD TREATMENT 0% 18% 0% 82% sater Quality Volume 467 CF SITE TREATMENT 0% 18% 0% 82% rater Quality Volume 58 CF TITE TREATMENT 0% 18% 18%
Area of basin flows = The following calculate BASIN NO. 5 Area of basin flows = The following calculate BASIN NO. 6 Area of basin flows =	Q _P 26259 Ins are based on T Sub-basin Weighted E Sub-basin Volum V ₃₆₀ Sub-basin Peak I Q _P 3286 Ons are based on T Sub-basin Weighted E Sub-basin Volum V ₃₆₀ Sub-basin Volum V ₃₆₀ Sub-basin Peak I Q _P 14046 Ins are based on T Sub-basin Weighted E	= 3. DESCRIPTION SF reatment %'s as shown in ted Excess Precipitation: = 1.9 e of Runoff: = 430 vischarge Rate: = 2. DESCRIPTION SF reatment %'s as shown in ted Excess Precipitation: = 1.9 e of Runoff: = 53 vischarge Rate: = 0. DESCRIPTION SF reatment %'s as shown in ted Excess Precipitation: = 1.9 e of Runoff: = 1.9 e of Runoff: = 1.9 e of Runoff:	= able to the right 7 in. 17 CF 3 cfs = able to the right 7 in. 9 CF 3 cfs = the right 7 in. 9 CF 3 cfs = the right 7 in.	TO S 0.60 Ac. LAND A = B = C = D = Stormw TO OFI 0.08 Ac. LAND A = B = C = Stormw TO OFI 0.32 Ac. LAND A = B = C = C = C = C = C = C = C = C = C = C	645 CF SD TREATMENT 0% 18% 0% 82% 467 CF SITE TREATMENT 0% 18% 0% 82% 467 CF TREATMENT 0% 18% 0% 82% TREATMENT 0% 18% 18% 18% 18% 0%
Area of basin flows = The following calculate BASIN NO. 5 Area of basin flows = The following calculate BASIN NO. 6 Area of basin flows =	Qp 26259 ms are based on T Sub-basin Weighted E Sub-basin Volum V360 Sub-basin Peak I Qp 3286 ms are based on T Sub-basin Weighted E Sub-basin Volum V360 Sub-basin Peak I Qp 14046 ms are based on T Sub-basin Weighted E Sub-basin Volum V360 Sub-basin Volum Sub-basin Volum Sub-basin Volum Sub-basin Volum Sub-basin Volum Sub-basin Volum V360	BESCRIPTION SF reatment %'s as shown in the det Excess Precipitation: = 1.9 e of Runoff: = 430 bischarge Rate: = 2. DESCRIPTION SF reatment %'s as shown in the det Excess Precipitation: = 1.9 e of Runoff: = 53 bischarge Rate: = 0. DESCRIPTION SF reatment %'s as shown in the det Excess Precipitation: = 1.9 e of Runoff: = 1.9 e of Runoff: = 1.9 e of Runoff: = 1.9	= able to the right 7 in. 17 CF 3 cfs = able to the right 7 in. 9 CF 3 cfs = the right 7 in. 9 CF 3 cfs = the right 7 in.	TO S 0.60 Ac. LAND A = B = C = D = Stormw TO OFI 0.08 Ac. LAND A = B = C = D = Stormw TO OFI 0.32 Ac. LAND A = B = C = D = C = D = D = D = D = D	645 CF SD TREATMENT 0% 18% 0% 82% 467 CF SITE TREATMENT 0% 18% 0% 82% rater Quality Volume 58 CF SITE TREATMENT 0% 18% 0% 82% TREATMENT 0% 18% 0% 82%
Area of basin flows = The following calculate BASIN NO. 5 Area of basin flows = The following calculate BASIN NO. 6 Area of basin flows =	Qp 26259 ms are based on T Sub-basin Weighted E Sub-basin Peak I Qp 3286 ms are based on T Sub-basin Weighted E Sub-basin Weighted E Sub-basin Weighted E Sub-basin Volum V360 Sub-basin Peak I Qp 14046 ms are based on T Sub-basin Weighted E Sub-basin Volum V360 Sub-basin Volum Sub-basin Peak I Sub-basin Peak I Sub-basin Volum V360 Sub-basin Peak I	BESCRIPTION SF etal Excess Precipitation: = 1.9 e of Runoff: = 430 bischarge Rate: = 2. DESCRIPTION SF reatment %'s as shown in the Excess Precipitation: = 1.9 e of Runoff: = 2. DESCRIPTION SF reatment %'s as shown in the Excess Precipitation: = 1.9 e of Runoff: = 0. DESCRIPTION SF reatment %'s as shown in the Excess Precipitation: = 1.9 e of Runoff: = 1.9 e of Runoff: = 230 bischarge Rate:	able to the right 7 in. 7 CF 3 cfs able to the right 7 in. 9 CF 3 cfs = able to the right 7 in. 9 CF 4 CF	TO S 0.60 Ac. LAND A = B = C = D = Stormw TO OFI 0.08 Ac. LAND A = B = C = D = Stormw TO OFI 0.32 Ac. LAND A = B = C = D = C = D = D = D = D = D	645 CF SD TREATMENT 0% 18% 0% 82% vater Quality Volume 467 CF SITE TREATMENT 0% 18% 0% 82% vater Quality Volume 58 CF SITE TREATMENT 0% 18% 0% 82% vater Quality Volume 58 CF SITE TREATMENT 0% 18% 0% 82% vater Quality Volume 58 CF
Area of basin flows = The following calculate BASIN NO. 5 Area of basin flows = The following calculate BASIN NO. 6 Area of basin flows = The following calculate	Q _P 26259 ns are based on T Sub-basin Weighted E Sub-basin Volum V ₃₆₀ Sub-basin Peak I Q _P 3286 ns are based on T Sub-basin Weighted E Sub-basin Volum V ₃₆₀ Sub-basin Volum V ₃₆₀ Sub-basin Weighted E Sub-basin Volum V ₃₆₀ Sub-basin Peak I Q _P	= 3. DESCRIPTION	= able to the right 7 in. 7 CF 3 cfs = able to the right 7 in. 9 CF 3 cfs = able to the right 7 in. 9 CF 4 CF 2 cfs	TO S 0.60 Ac. LAND A = B = C = D = Stormw TO OFI 0.32 Ac. LAND A = B = C = D = Stormw TO OFI 0.32 Ac. LAND A = B = C = D = Stormw	645 CF SD TREATMENT 0% 18% 0% 82% vater Quality Volume 467 CF TREATMENT 0% 18% 0% 258 CF SITE TREATMENT 0% 18% 0% 82% vater Quality Volume 58 CF TREATMENT 0% 18% 0% 82% vater Quality Volume 250 CF
Area of basin flows = The following calculate BASIN NO. 5 Area of basin flows = The following calculate BASIN NO. 6 Area of basin flows = The following calculate BASIN NO. 7	Qp 26259 Dens are based on T Sub-basin Weighted E Sub-basin Volum V360 Sub-basin Peak I 3286 Dens are based on T Sub-basin Weighted E Sub-basin Volum V360 Sub-basin Volum V360 Sub-basin Volum V360 Sub-basin Peak I 20p 14046 Dens are based on T Sub-basin Weighted E Sub-basin Weighted E Sub-basin Volum Sub-basin Weigh Weighted E Sub-basin Volum Sub-basin Peak I Op Op Sub-basin Peak I Sub-basin Peak I Sub-basin Peak I Sub-basin Peak I Op Op	= 3. DESCRIPTION SF reatment %'s as shown in ted Excess Precipitation: = 1.9 e of Runoff: = 430 bischarge Rate: = 2. DESCRIPTION SF reatment %'s as shown in ted Excess Precipitation: = 1.9 e of Runoff: = 53 bischarge Rate: = 0. DESCRIPTION SF reatment %'s as shown in ted Excess Precipitation: = 1.9 e of Runoff: = 1.9 e of Runoff: = 230 bischarge Rate: = 1.9 e of Runoff:	= able to the right 7 in. 7 CF 3 cfs = able to the right 7 in. 9 CF 3 cfs = able to the right 7 in. 9 CF 4 CF 2 cfs	TO S 0.60 Ac. LAND A = B = C = D = Stormw TO OFI 0.08 Ac. LAND A = B = C = D = Stormw TO OFI 0.32 Ac. LAND A = B = C = D = Stormw TO OFI 0.32 Ac. LAND A = B = C = C = D = Stormw	645 CF SD TREATMENT 0% 18% 0% 82% vater Quality Volume 467 CF TREATMENT 0% 18% 0% 258 CF SITE TREATMENT 0% 18% 0% 82% vater Quality Volume 58 CF TREATMENT 0% 18% 0% 82% vater Quality Volume 250 CF
Area of basin flows = The following calculation BASIN NO. 5 Area of basin flows = The following calculation BASIN NO. 6 Area of basin flows = The following calculation The following calculation BASIN NO. 7 Area of basin flows =	Q _P 26259 ms are based on T Sub-basin Weigh Weighted E Sub-basin Volum V ₃₆₀ Sub-basin Peak I Q _P 3286 ons are based on T Sub-basin Weigh Weighted E Sub-basin Peak I Q _P 14046 ons are based on T Sub-basin Weigh Weighted E Sub-basin Weigh Sub-basin Peak I Q _P 3486 Sub-basin Peak I Sub-basin Weigh Weighted E Sub-basin Peak I Age Nama	= 3. DESCRIPTION	able to the right 7 in. 17 CF 3 cfs = able to the right 7 in. 9 CF 3 cfs = able to the right 17 in. 19 CF 2 cfs = able to the right	TO S 0.60 Ac. LAND A = B = C = D = Stormw TO OFF 0.08 Ac. LAND A = B = C = D = Stormw TO OFF 0.32 Ac. LAND A = B = C = D = Stormw TO OFF 0.32 Ac. LAND A = B = C = D = Stormw	645 CF SD TREATMENT 0% 18% 0% 82% vater Quality Volume 467 CF TREATMENT 0% 18% 0% 258 CF SITE TREATMENT 0% 18% 0% 82% vater Quality Volume 58 CF TREATMENT 0% 18% 0% 82% vater Quality Volume 250 CF
Area of basin flows = The following calculation BASIN NO. 5 Area of basin flows = The following calculation BASIN NO. 6 Area of basin flows = The following calculation The following calculation BASIN NO. 7 Area of basin flows =	Qp 26259 Ins are based on T Sub-basin Weighted E Sub-basin Volum V360 Sub-basin Peak I Qp 3286 Ons are based on T Sub-basin Weighted E Sub-basin Volum V360 Sub-basin Volum V360 Sub-basin Peak I Qp 14046 Ons are based on T Sub-basin Weighted E Sub-basin Volum V360 Sub-basin Volum V360 Sub-basin Volum V360 Sub-basin Peak I Sub-basin Peak I Sub-basin Volum V360 Sub-basin Peak I	= 3. DESCRIPTION SF reatment %'s as shown in ted Excess Precipitation: = 1.9 e of Runoff: = 430 bischarge Rate: = 2. DESCRIPTION SF reatment %'s as shown in ted Excess Precipitation: = 1.9 e of Runoff: = 53 bischarge Rate: = 0. DESCRIPTION SF reatment %'s as shown in ted Excess Precipitation: = 1.9 e of Runoff: = 53 bischarge Rate: = 1.9 e of Runoff: = 230 bischarge Rate: = 230 bischarge Rate: = 1.9 e of Runoff: = 230 bischarge Rate: = 1.9 e of Runoff: = 230 bischarge Rate: = 1.9 ESCRIPTION SF	able to the right 7 in. 17 CF 3 cfs = able to the right 7 in. 9 CF 3 cfs = able to the right 17 in. 19 CF 2 cfs = able to the right	TO S 0.60 Ac. LAND A = B = C = D = Stormw TO OFF 0.08 Ac. LAND A = B = C = D = Stormw TO OFF 0.32 Ac. LAND A = B = C = D = Stormw TO OFF 0.32 Ac. LAND A = B = C = D = Stormw	645 CF SD TREATMENT 0% 18% 0% 82% 467 CF SITE TREATMENT 0% 18% 0% 82% rater Quality Volume 58 CF TREATMENT 0% 18% 0% 82% rater Quality Volume 250 CF SD
Area of basin flows = The following calculation BASIN NO. 5 Area of basin flows = The following calculation BASIN NO. 6 Area of basin flows = The following calculation The following calculation BASIN NO. 7 Area of basin flows =	Qp 26259 Ins are based on T Sub-basin Weighted E Sub-basin Volum V360 Sub-basin Peak I Qp 3286 Ons are based on T Sub-basin Weighted E Sub-basin Volum V360 Sub-basin Volum V360 Sub-basin Peak I Qp 14046 Ons are based on T Sub-basin Weighted E Sub-basin Volum V360 Sub-basin Volum V360 Sub-basin Volum V360 Sub-basin Peak I Sub-basin Peak I Sub-basin Volum V360 Sub-basin Peak I	BESCRIPTION SF reatment %'s as shown in ted Excess Precipitation: = 1.9 e of Runoff: = 430 vischarge Rate: = 2. DESCRIPTION SF reatment %'s as shown in ted Excess Precipitation: = 1.9 e of Runoff: = 53 vischarge Rate: = 0. DESCRIPTION SF reatment %'s as shown in ted Excess Precipitation: = 1.9 e of Runoff: = 230 vischarge Rate: = 1.9 e of Runoff: = 230 DESCRIPTION SF reatment %'s as shown in ted Excess Precipitation: = 1.9 e of Runoff: = 230 vischarge Rate: = 1. DESCRIPTION SF reatment %'s as shown in ted Excess Precipitation:	able to the right 7 in. 17 CF 3 cfs = able to the right 7 in. 9 CF 3 cfs = able to the right 17 in. 19 CF 2 cfs = able to the right	TO S 0.60 Ac. LAND A = B = C = D = Stormw TO OFI 0.08 Ac. LAND A = B = C = D = Stormw TO OFI 0.32 Ac. LAND A = B = C = D = Stormw	645 CF SD TREATMENT 0% 18% 0% 82% 467 CF SITE TREATMENT 0% 18% 0% 82% 18* 60% 82% TREATMENT 0% 18% 0% 82% TREATMENT 0% 18% 0% 18% 0% 82% TREATMENT 0% TREATMENT 0% TREATMENT 0% TREATMENT 0% TREATMENT
Area of basin flows = The following calculation BASIN NO. 5 Area of basin flows = The following calculation BASIN NO. 6 Area of basin flows = The following calculation The following calculation BASIN NO. 7 Area of basin flows =	Qp 26259 Dens are based on T Sub-basin Weighted E Sub-basin Volum V360 Sub-basin Peak I 3286 Dens are based on T Sub-basin Weighted E Sub-basin Volum V360 Sub-basin Volum V360 Sub-basin Volum V360 Sub-basin Volum 14046 Dens are based on T Sub-basin Weighted E Sub-basin Weigh Weighted E Sub-basin Volum V360 Sub-basin Peak I Qp 3341 Dens are based on T Sub-basin Weigh Weighted E Sub-basin Volum T Sub-basin Weigh Weighted E Sub-basin Volum Sub-basin Weigh Weighted E Sub-basin Volum Sub-basin Weigh Weighted E Sub-basin Weigh	= 3.	= able to the right 7 in. 7 CF 3 cfs = able to the right 7 in. 9 CF 3 cfs = able to the right 7 in. 4 CF 2 cfs = able to the right 7 in.	TO S 0.60 Ac. [LAND A = B = C = Stormw TO OFI 0.08 Ac. [LAND A = B = C = Stormw TO OFI 0.32 Ac. [LAND A = B = C = Stormw TO OFI 0.32 Ac. [LAND A = B = C = Stormw	645 CF SD TREATMENT 0% 18% 0% 82% rater Quality Volume 467 CF SITE TREATMENT 0% 18% 0% 82% rater Quality Volume 58 CF SITE TREATMENT 0% 18% 0% 82% rater Quality Volume 58 CF TREATMENT 0% 18% 0% 82% rater Quality Volume 250 CF SD TREATMENT 0% 18% 0% 82%
Area of basin flows = The following calculation BASIN NO. 5 Area of basin flows = The following calculation BASIN NO. 6 Area of basin flows = The following calculation The following calculation BASIN NO. 7 Area of basin flows =	Department of the control of the con	= 3.	= able to the right 7 in. 7 CF 3 cfs = able to the right 7 in. 9 CF 3 cfs = able to the right 7 in. 4 CF 2 cfs = able to the right 7 in.	TO S 0.60 Ac. [LAND A = B = C = D = Stormw TO OFI 0.08 Ac. [LAND A = B = C = D = Stormw TO OFI 0.32 Ac. [LAND A = B = C = D = Stormw TO OFI 0.32 Ac. [LAND A = B = C = D = Stormw	645 CF SD TREATMENT 0% 18% 0% 82% rater Quality Volume 467 CF SITE TREATMENT 0% 18% 0% 82% rater Quality Volume 58 CF SITE TREATMENT 0% 18% 0% 82% rater Quality Volume 250 CF SD TREATMENT 0% 18% 0% 82% rater Quality Volume 250 CF
Area of basin flows = The following calculation BASIN NO. 5 Area of basin flows = The following calculation BASIN NO. 6 Area of basin flows = The following calculation The following calculation BASIN NO. 7 Area of basin flows =	Qp 26259 Dens are based on T Sub-basin Weighted E Sub-basin Volum V360 Sub-basin Peak I 3286 Dens are based on T Sub-basin Weighted E Sub-basin Volum V360 Sub-basin Volum V360 Sub-basin Volum V360 Sub-basin Volum 14046 Dens are based on T Sub-basin Weighted E Sub-basin Weigh Weighted E Sub-basin Volum V360 Sub-basin Peak I Qp 3341 Dens are based on T Sub-basin Weigh Weighted E Sub-basin Volum T Sub-basin Weigh Weighted E Sub-basin Volum Sub-basin Weigh Weighted E Sub-basin Volum Sub-basin Weigh Weighted E Sub-basin Weigh	= 3.	able to the right 7 in. 17 CF 3 cfs = able to the right 77 in. 9 CF 3 cfs = able to the right 77 in. 9 CF 2 cfs = able to the right 77 in. 14 CF 2 cfs = able to the right 77 in. 8 CF	TO S 0.60 Ac. [LAND A = B = C = D = Stormw TO OFI 0.08 Ac. [LAND A = B = C = D = Stormw TO OFI 0.32 Ac. [LAND A = B = C = D = Stormw TO OFI 0.32 Ac. [LAND A = B = C = D = Stormw	645 CF SD TREATMENT 0% 18% 0% 82% rater Quality Volume 467 CF SITE TREATMENT 0% 18% 0% 82% rater Quality Volume 58 CF SITE TREATMENT 0% 18% 0% 82% rater Quality Volume 58 CF TREATMENT 0% 18% 0% 82% rater Quality Volume 250 CF SD TREATMENT 0% 18% 0% 82%

APPENDIX B

STORM DRAIN CALCULATIONS
INLET CAPACITY CHARTS
CURB OPENING CAPACITY CALCULATION

Stormwater Studio 2021 v 3.0.0.25

Project Name: NUEVO ATRISCO SD

10-21-2022

Energy Grade Line Calculations stormwater Studio 2021 v 3.0.0.25

i.	: :				°	Downstream	٦			дұр				Upstream				Pipe	ec o		Junction	
Š	Size	σ	Invert	Depth	Area	HGL	Vel	Vel Head	EGL	uə¬	Invert	Depth	Area	HGL	Vel	Vel	EGL Elev	n Value	Enrgy	HGLa Elev	EGLa Elev	Enrgy Loss
	(in)	(cfs)	(ft)	(ft)	(sqft)	(ft)	(ft/s)	(ft)	(ft)	(ft)	(ft)	(ft)	(sqft)	(#)	(ft/s)	(ft)	(ft)		(ft)	(ft)	(ft)	(ft)
~	48	19.00	5093.60	2.20	7.08	5095.80	2.68	0.11	5095.91	26.90	5094.00	1.75	5.30	5095.75	3.58	0.20	5095.95	0.012	0.042	5095.80	2096.00	0.04
7	24	18.70	5094.00	1.67	2.80	5095.67	69.9	0.70	5096.36	119.00	5094.83	1.53²	2.58	5096.36	7.24	0.82	5097.18	0.012	0.816	5096.36	5097.18	0.00
က	24	16.40	5094.83	2.00	3.14	5096.92	5.22	0.42	5097.35	15.91	5094.94	2.00	3.14	5097.00	5.22	0.42	5097.42	0.012	0.071	5097.14	5097.56	0.14
4	24	13.30	5095.05	2.00	3.14	5097.39	4.23	0.28	5097.67	51.99	5095.30	2.00	3.14	5097.55	4.23	0.28	5097.83	0.012	0.153	5097.75	5098.03	0.21
2	18	4.40	5095.30	1.50	1.77	5097.97	2.49	0.10	5098.07	122.50	5096.53	1.50	1.77	5098.16	2.49	0.10	5098.25	0.012	0.183	5098.21	5098.30	0.05
9	18	4.40	5096.53	1.50	1.77	5098.25	2.49	0.10	5098.34	31.10	5096.83	1.46	1.75	5098.29	2.51	0.10	5098.39	0.012	0.044	5098.32	5098.42	0.04
7	12	3.40	5096.83	1.00	0.79	5098.25	4.33	0.29	5098.54	77.59	5097.57	1.00	0.79	5098.85	4.33	0.29	5099.14	0.012	0.603	5098.92	5099.21	0.07
∞	12	3.00	5097.57	1.00	0.79	5099.08	3.82	0.23	5099.30	8.51	5097.65	1.00	0.79	5099.13	3.82	0.23	5099.35	0.012	0.052	5099.25	5099.48	0.12
6	12	3.00	5097.65	1.00	0.79	5099.34	3.82	0.23	5099.57	64.90	5099.00	0.732	0.62	5099.73	4.85	0.37	5100.10	0.012	0.531	5099.73	5100.10	0.00
10	24	8.90	5095.30	2.00	3.14	96.7603	2.83	0.12	5098.08	50.99	5095.61	2.00	3.14	5098.02	2.83	0.12	5098.15	0.012	0.067	5098.07	5098.19	0.05
7	18	6.70	5095.61	1.50	1.77	5098.06	3.79	0.22	5098.28	23.31	5095.75	1.50	1.77	5098.14	3.79	0.22	5098.37	0.012	0.081	5098.26	5098.49	0.12
12	18	6.70	5095.75	1.50	1.77	5098.35	3.79	0.22	5098.58	99.00	5096.34	1.50	1.77	5098.70	3.79	0.22	5098.92	0.012	0.344	5098.83	5089.05	0.13
13	18	5.60	5096.34	1.50	1.77	96.8609	3.17	0.16	5099.11	131.30	5097.10	1.50	1.77	5099.28	3.17	0.16	5099.43	0.012	0.318	5099.31	5099.46	0.03
14	18	5.60	5097.10	1.50	1.77	5099.37	3.17	0.16	5099.53	42.45	5097.70	1.50	1.77	5099.47	3.17	0.16	5099.63	0.012	0.103	5099.54	5099.69	90:0
15	12	3.90	5097.70	1.00³	0.79	5099.46	4.97	0.38	5099.85	79.48	5098.40	1.00	0.79	5100.28	4.97	0.38	5100.66	0.012	0.813	5100.41	5100.79	0.13
16	12	3.10	5098.40	1.00	0.79	5100.65	3.95	0.24	5100.89	64.00	5099.00	1.00	0.79	5101.06	3.95	0.24	5101.30	0.012	0.414	5101.27	5101.51	0.21
17	89	08.0	5099.00	0.67	0.35	5101.46	2.29	80.0	5101.54	20.92	5099.50	0.67	0.35	5101.54	2.29	0.08	5101.62	0.012	0.078	5101.58	5101.66	0.04
18	æ	08.0	5099.50	0.67	0.35	5101.61	2.29	80.0	5101.70	78.80	5101.20	99.0	0.35	5101.86	2.30	0.08	5101.94	0.012	0.247	5101.91	5101.99	0.05
19	89	08.0	5101.20	0.67	0.35	5101.94	2.29	80.0	5102.02	28.29	5101.80	0.42²	0.23	5102.22	3.44	0.18	5102.41	0.012	0.385	5102.22	5102.41	0.00
20	æ	08.0	5101.80	0.35	0.19	5102.15	4.29	0.29	5102.43	10.93	5102.00	0.42²	0.23	5102.42	3.44	0.18	5102.61	0.012	0.174	5102.42	5102.61	0.00
21	12	06.0	5097.70	1.00	0.79	2099.68	1.15	0.02	5099.70	16.52	5098.00	1.00	0.79	5099.69	1.15	0.02	5099.71	0.012	600.0	5099.71	5099.73	0.02
22	æ	08.0	5097.70	29.0	0.35	5039.65	2.29	80.0	5099.73	39.52	5098.00	0.67	0.35	5099.79	2.29	0.08	5099.88	0.012	0.148	5099.84	5099.92	0.04

Notes: Return Period = 100-yrs. ² Critical depth. ³ Normal depth. ‡ Supercritical.

Project File: 2470 SD.sws

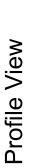
Project Name: NUEVO ATRISCO SD

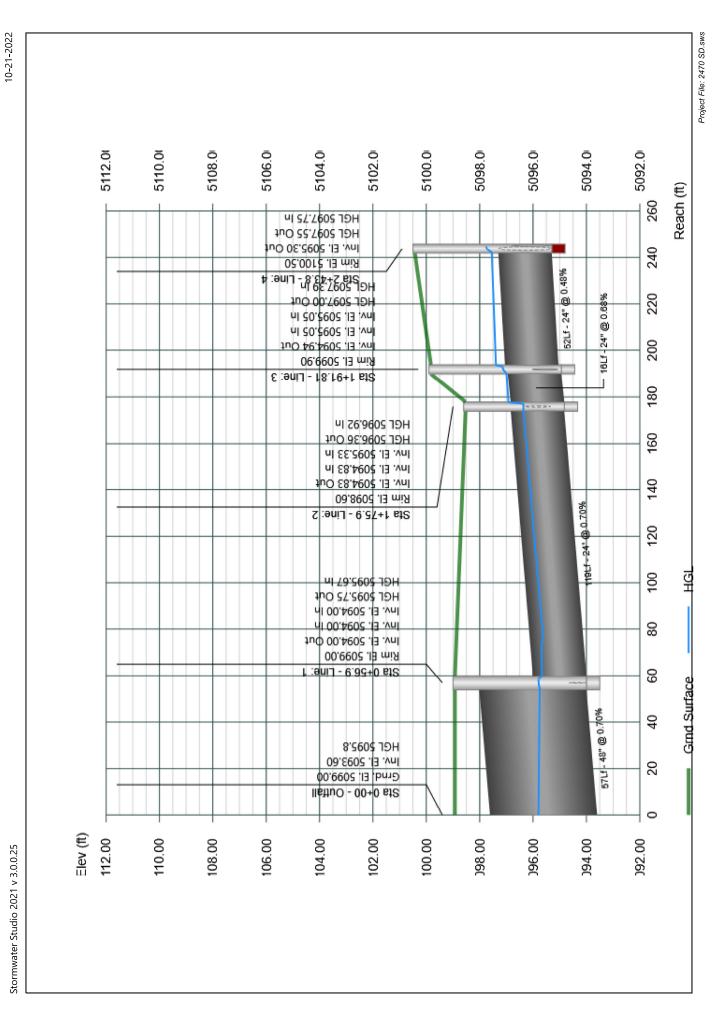
10-21-2022

Energy Grade Line Calculations Stormwater Studio 2021 v 3.0.0.25

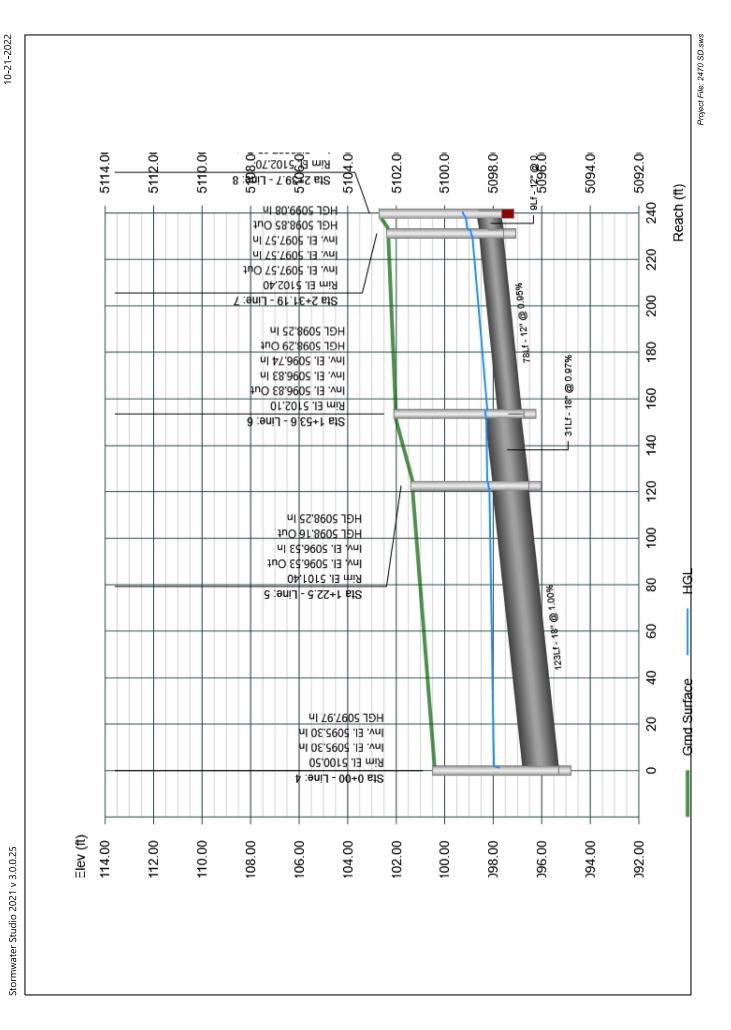
					ŏ 	Downstream	٤			ч				Upstream				Pipe) 90	,	Junction	
No No	Line Size	Ø	Invert	Depth	Area	HGL	Vel	Vel	EGL	Зuə¬	Invert	Depth	Area	HGL	Vel	Vel	EGL Elev	n Value	Enrgy	HGLa	EGLa	Enrgy
	(in)	(cfs)	(#)	(H)	(sqft)	(ft)	(ft/s)	(#)	(#)	(H)	(#)	(t t)	(sqft)	(#)	(ft/s)	(H)	(#)		(H)	(ft)	(#)	(ft)
23	8	09:0	2098.00	29.0	0.35	68'6609	1.72	90.0	5099.94	30.52	5098.30	29.0	0.35	96'6609	1.72	0.05	5100.00	0.012	0.064	5099.98	5100.03	0.03
24	80	09.0	5098.30	0.67	0.35	5100.00	1.72	0.05	5100.05	9.52	5098.40	0.67	0.35	5100.02	1.72	0.05	5100.07	0.012	0.020	5100.05	5100.09	0.03
25	8	09.0	5098.40	0.67	0.35	5100.06	1.72	0.05	5100.11	18.95	5098.60	0.67	0.35	5100.10	1.72	0.05	5100.15	0.012	0.040	5100.15	5100.19	0.04
56	80	0:30	5098.60	0.67	0.35	5100.19	98.0	0.01	5100.20	49.56	5099.10	0.67	0.35	5100.21	0.86	0.01	5100.22	0.012	0.026	5100.21	5100.23	0.00
27	8	0:30	5099.10	0.67	0.35	5100.22	98.0	0.01	5100.23	12.20	5099.20	0.67	0.35	5100.22	98.0	0.01	5100.24	0.012	900.0	5100.24	5100.25	0.02
28	12	2.30	5099.00	1.00	0.79	5101.43	2.93	0.13	5101.56	16.50	5099.50	1.00	0.79	5101.49	2.93	0.13	5101.62	0.012	0.059	5101.55	5101.68	90.0
29	8	08.0	5098.40	0.67	0.35	5100.74	2.29	0.08	5100.83	108.10	5100.00	0.67	0.35	5101.15	2.29	0.08	5101.23	0.012	0.404	5101.19	5101.27	0.04
30	80	08.0	5100.00	0.67	0.35	5101.23	2.29	0.08	5101.31	5.90	5100.20	0.67	0.35	5101.25	2.29	0.08	5101.33	0.012	0.022	5101.35	5101.44	0.11
31	8	1.00	5096.74	0.67	0.35	5098.35	2.87	0.13	5098.47	44.59	5097.50	0.67	0.35	5098.61	2.86	0.13	5098.73	0.012	0.261	5098.70	5098.83	60.0
32	80	1.10	5096.34	0.24	0.11	5096.58	9.94	1.54	5099.11	13.70	2099.00	0.492	0.28	5099.49	3.96	0.24	5099.74	0.012	0.625	5099.49	5099.74	0.00
33	8	2.20	5095.61	0.67	0.35	5097.82	6.30	0.62	5098.44	20.08	5097.44	0.67	0.35	5098.39	6.30	0.62	5099.01	0.012	0.568	5098.62	5099.24	0.23
34	12	3.10	5095.05	1.00	0.79	5097.42	3.95	0.24	5097.66	15.52	5095.60	1.00	0.79	5097.52	3.95	0.24	5097.76	0.012	0.100	5097.60	5097.84	60.0
35	12	2.30	5095.33	1.00	0.79	5097.10	2.93	0.13	5097.23	44.29	5095.72	1.00	0.79	5097.26	2.93	0.13	5097.39	0.012	0.158	5097.37	5097.50	0.11
36	12	1.60	5095.72	1.00	0.79	5097.46	2.04	90.0	5097.53	45.36	5096.11	1.00	0.79	5097.54	2.04	90.0	5097.61	0.012	0.078	5097.59	5097.66	0.05
37	12	1.60	5096.11	1.00	0.79	5097.62	2.04	90.0	5097.68	58.29	5096.62	1.00	0.79	5097.72	2.04	90.0	5097.78	0.012	0.100	5097.77	5097.83	0.04
38	8	0.10	5096.62	0.67	0.35	5097.83	0.29	0.00	5097.83	25.83	5096.84	0.67	0.35	5097.83	0.29	0.00	5097.83	0.012	0.001	5097.83	5097.83	0.00
39	8	0.10	5096.84	0.67	0.35	5097.83	0.29	0.00	5097.83	76.20	5097.50	0.34	0.18	5097.84	0.56	0.00	5097.84	0.012	600.0	5097.84	5097.85	0.00
40	8	0.70	5095.72	0.67	0.35	5097.46	2.01	90.0	5097.53	17.78	5095.87	0.67	0.35	5097.51	2.01	90.0	5097.58	0.012	0.051	5097.54	5097.61	0.03
14	8	1.20	5097.40	0.67	0.35	5099.13	3.44	0.18	5099.31	177.59	5099.90	29.0	0.35	5100.88	3.44	0.18	5101.07	0.013	1.754	5101.00	5101.18	0.11
42	8	1.20	5099.90	0.67	0.35	5101.07	3.44	0.18	5101.26	45.00	5100.48	0.67	0.35	5101.52	3.44	0.18	5101.70	0.013	0.444	5101.64	5101.82	0.12
43	8	0.40	5097.57	0.67	0.35	5099.20	1.15	0.02	5099.22	29.39	5100.00	0:30	0.15	5100.30	2.65	0.11	5100.41	0.012	1.186	5100.30	5100.41	0.00
44	8	0.40	5100.00	0.22	0.10	5100.22	4.05	0.26	5100.41	31.46	5100.70	0:30	0.15	5101.00	2.65	0.11	5101.11	0.012	0.694	5101.00	5101.11	0.00

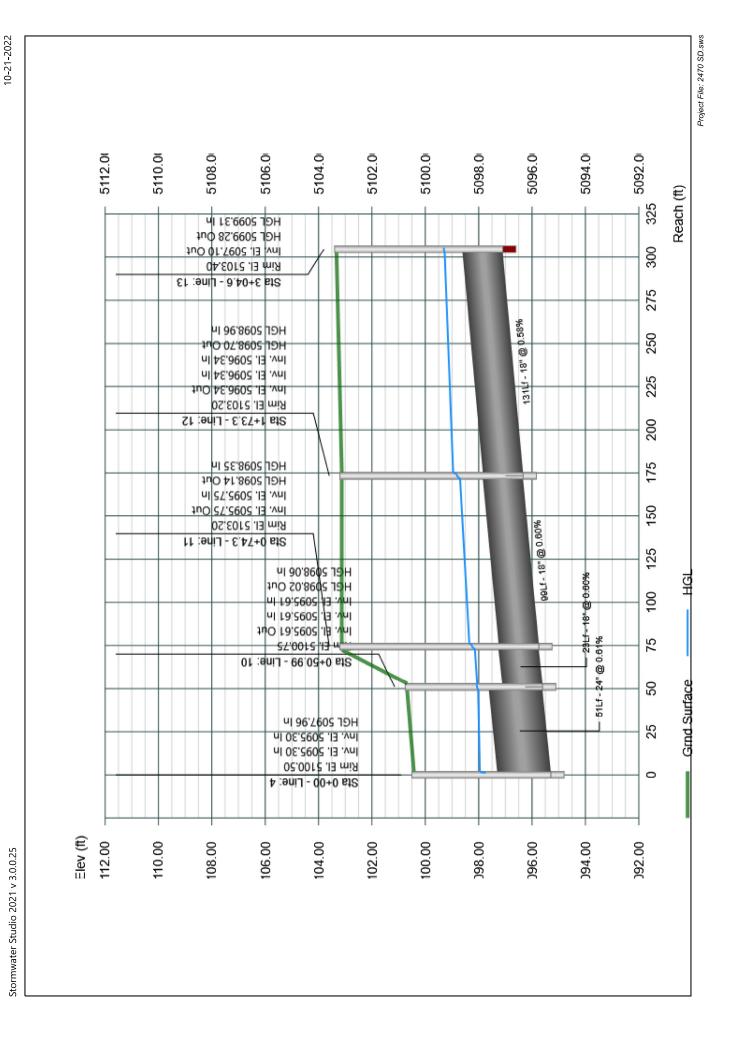
Notes: Return Period = 100-yrs. ² Critical depth. ‡ Supercritical.

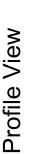

Project File: 2470 SD.sws

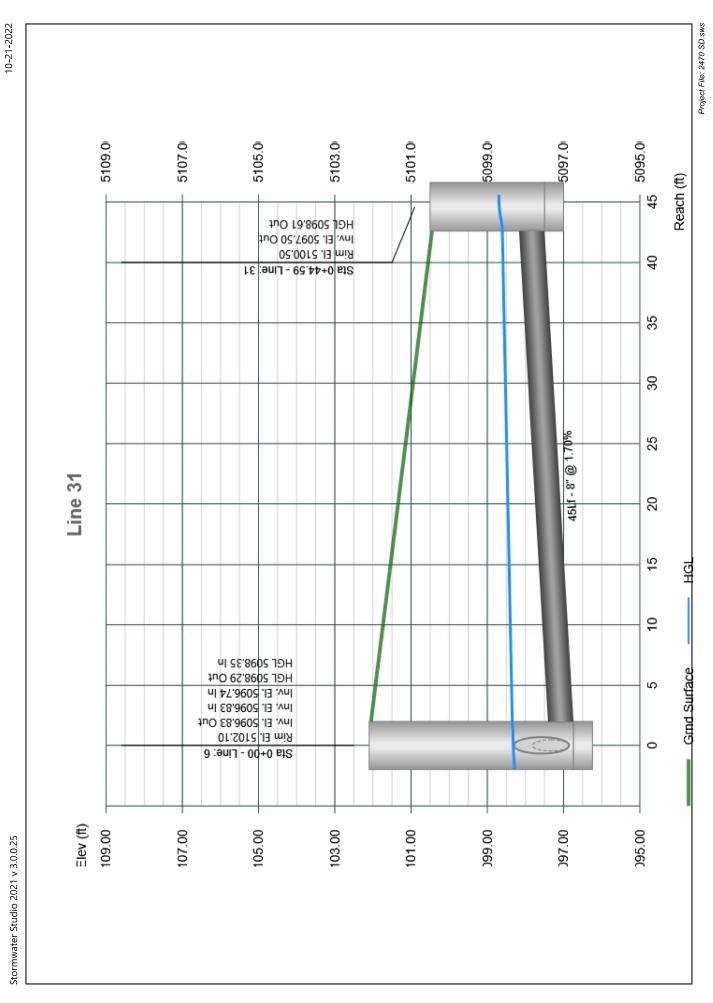

Project Name: NUEVO ATRISCO SD

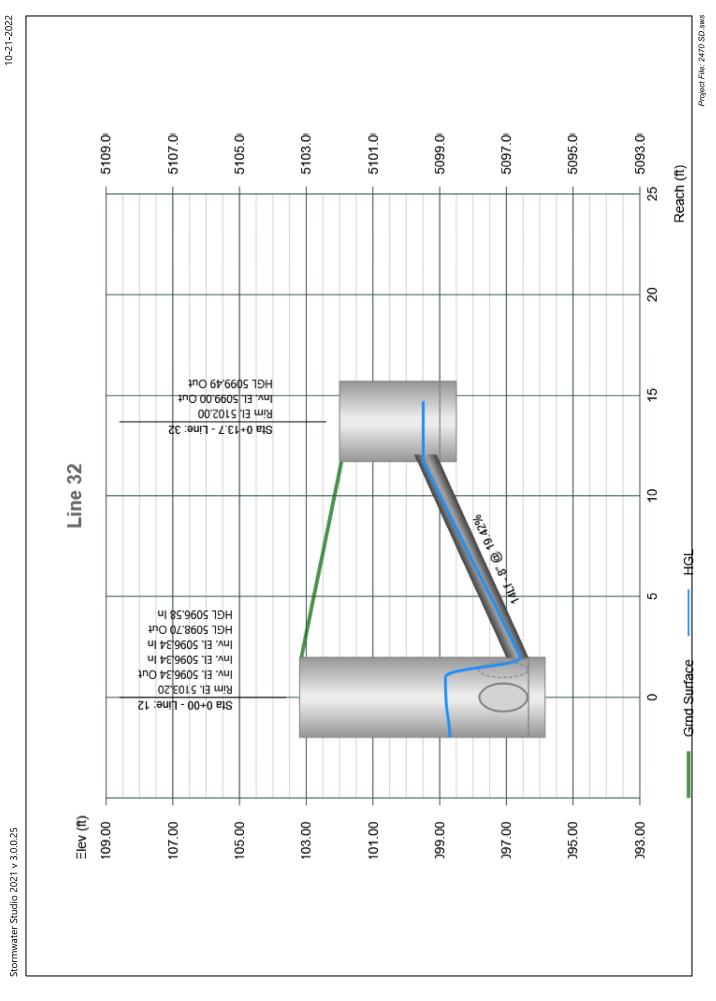
10-21-2022

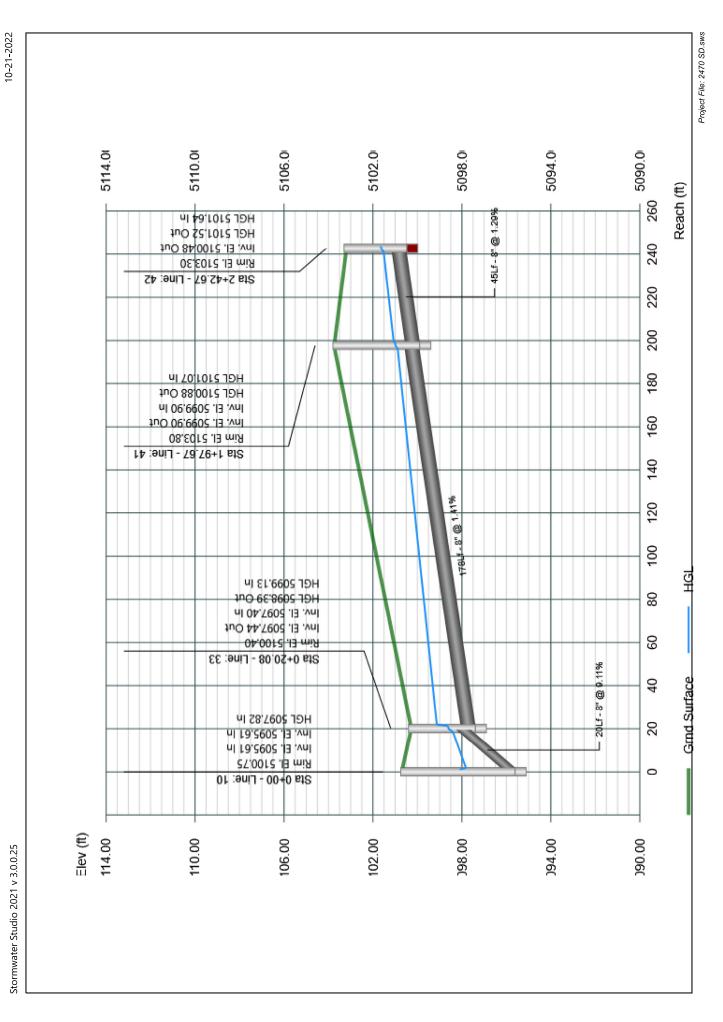

Energy Grade Line Calculations stormwater Studio 2021 v 3.0.0.25

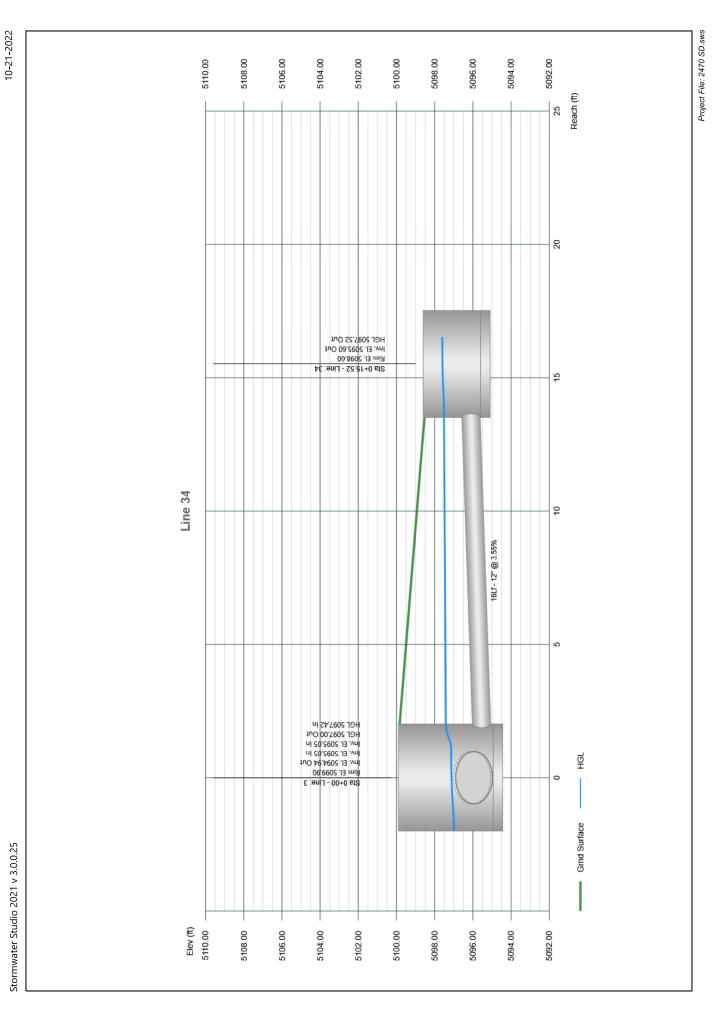

Line	Line	-			Õ	Downstream	E			цιβι			ر	Upstream	_			Pi	Pipe		Junction	
Š	Size	3	Invert Elev	Depth	Area	HGL Elev	Vel	Vel Head	EGL Elev	_ 	Invert Elev	Depth	Area	HGL Elev	le Ve	Vel Head	EGL Elev	n Value	Enrgy Loss	HGLa Elev	EGLa Elev	Enrgy Loss
	(in)	(cfs)	(ft)	(ft)	(sqft)	(t)	(ft/s)	(ft)	(ft)	(ft)	(ft)	(ft)	(sqft)	(ft)	(ft/s)	(ft)	(ft)		(ft)	(ft)	(ft)	(ft)
45	8	0:30	5094.00	29.0	0.35	5095.99	98.0	0.01	2096.00	10.40	5094.26	29.0	0.35	66'3609	98.0	0.01	5096.01	0.012	0.005	5096.00	5096.02	0.01
46	80	0:30	5094.26	0.67	0.35	5096.01	98.0	0.01	5096.02	60.51	5095.79	0.29	0.14	5096.08	2.10	0.07	5096.15	0.012	0.124	5096.11	5096.18	0.03
47	8	0.15	5095.78	0.14‡	0.05	5095.92	2.83	0.12	5096.18	8.14	5095.99	0.18	0.08	5096.17	1.91	90.0	5096.23	0.012	0.052	5096.23	5096.29	90.0
Notes:	Notes: Return Period = 100-yrs.	d = 100-		‡ Supercritical.	.je													1			Project File: 2470 SD.sws	170 SD.sws

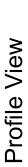


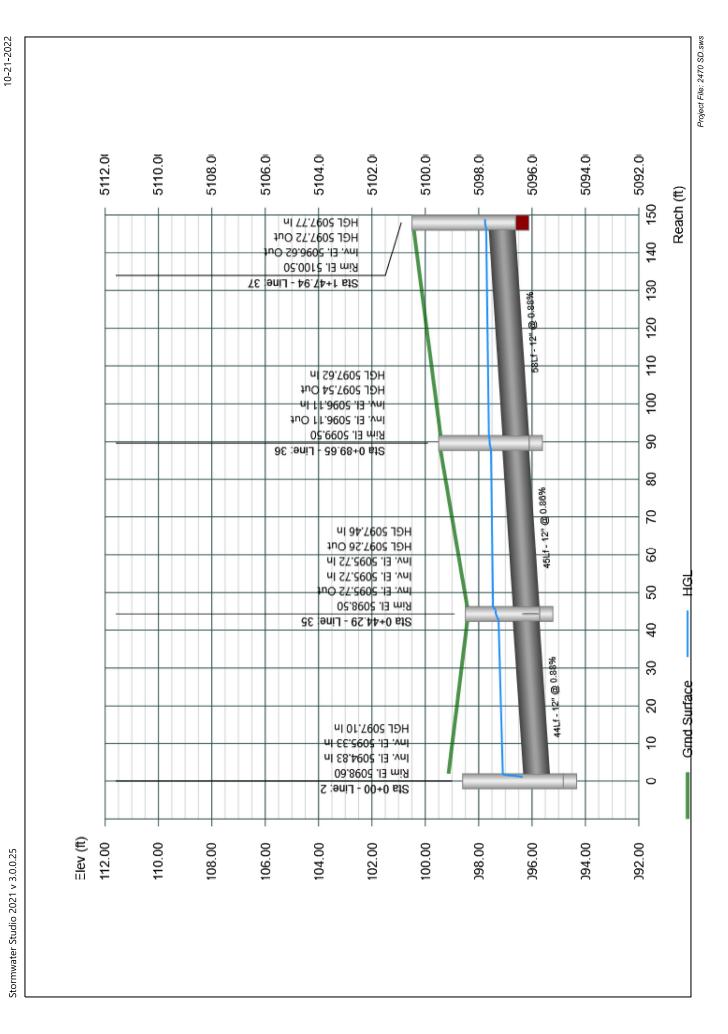


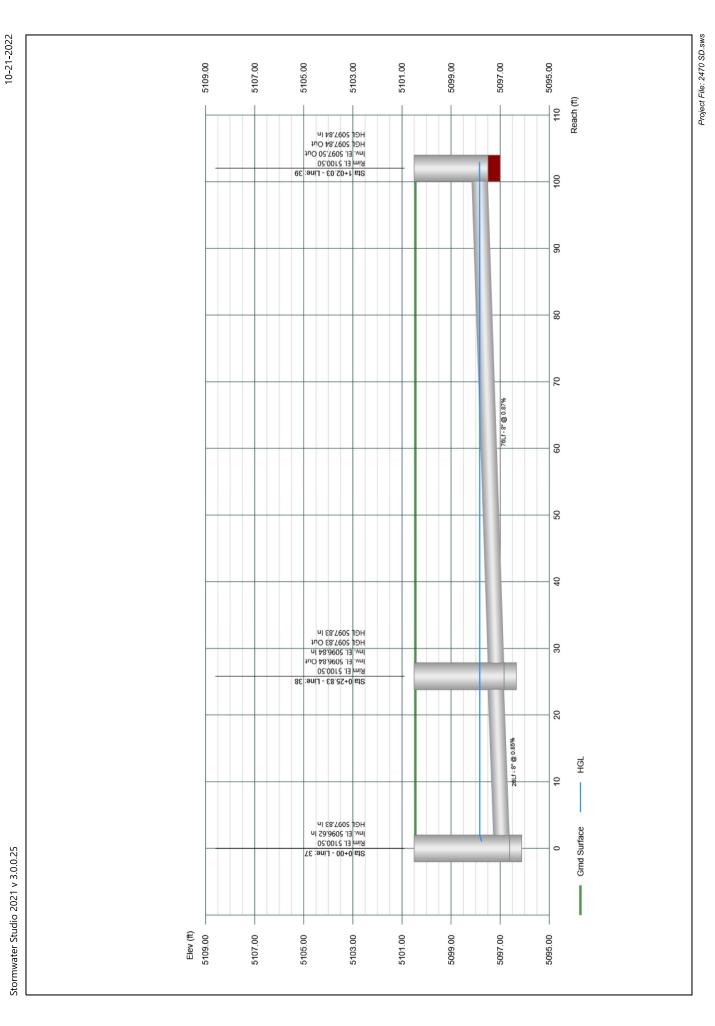


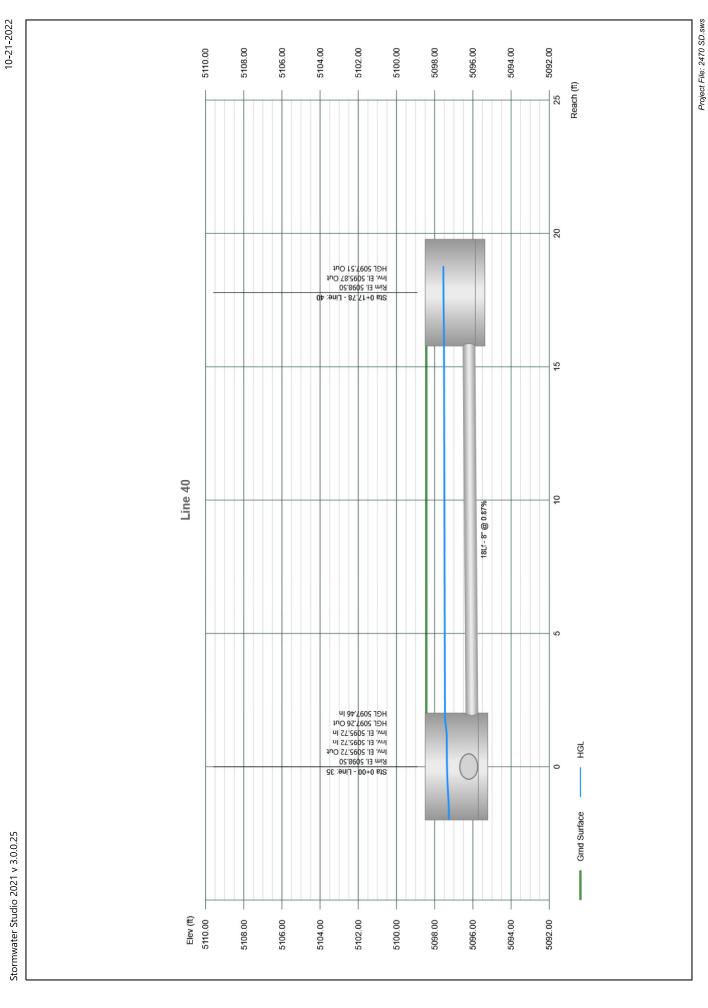


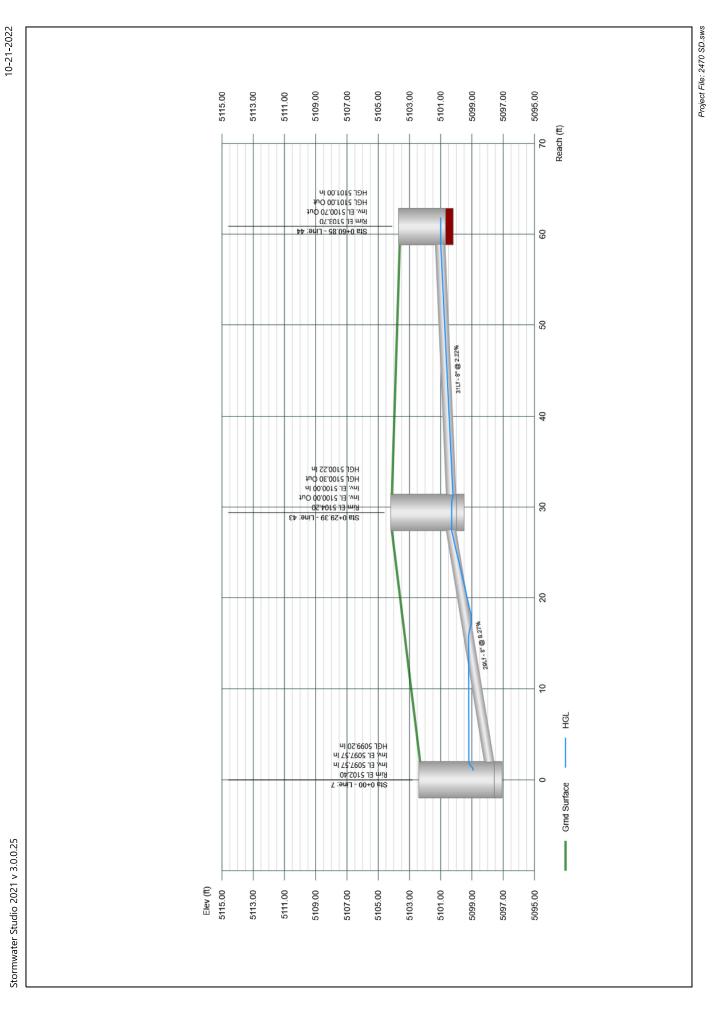


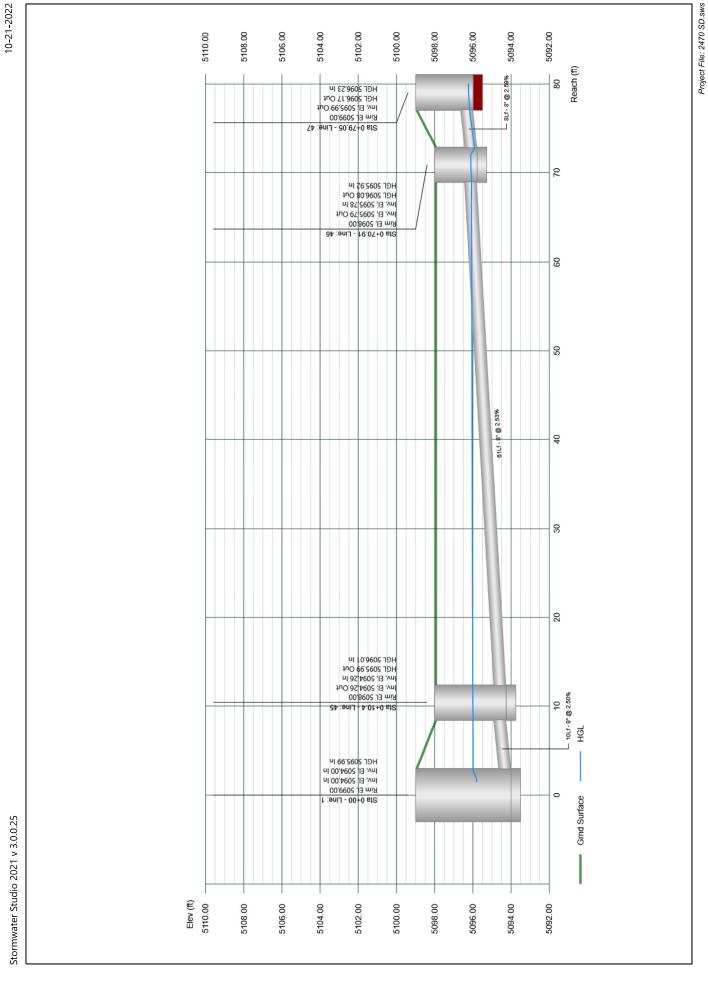


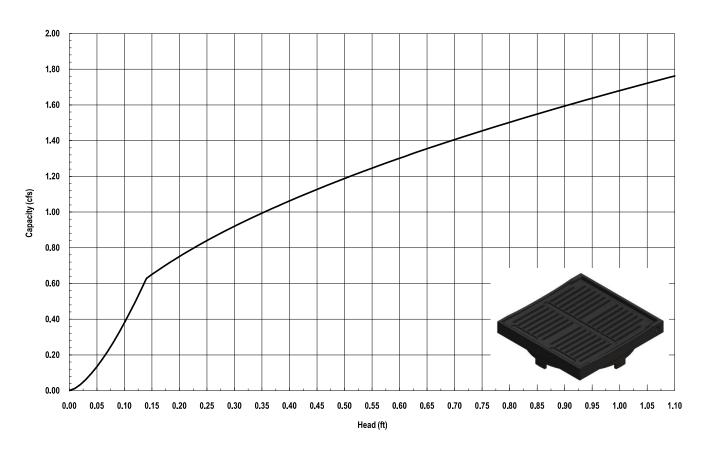


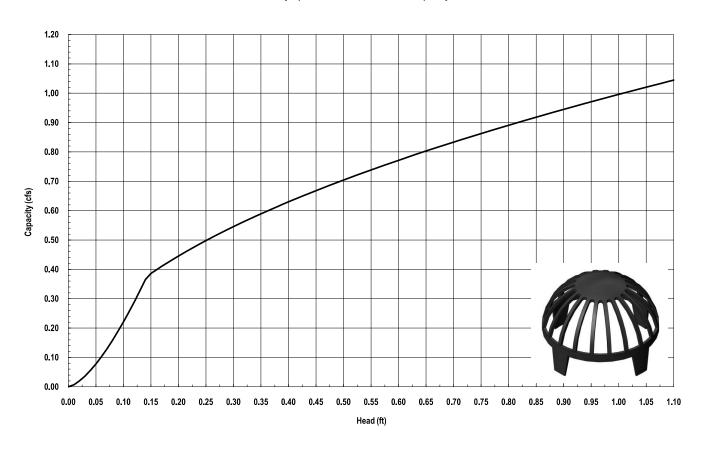




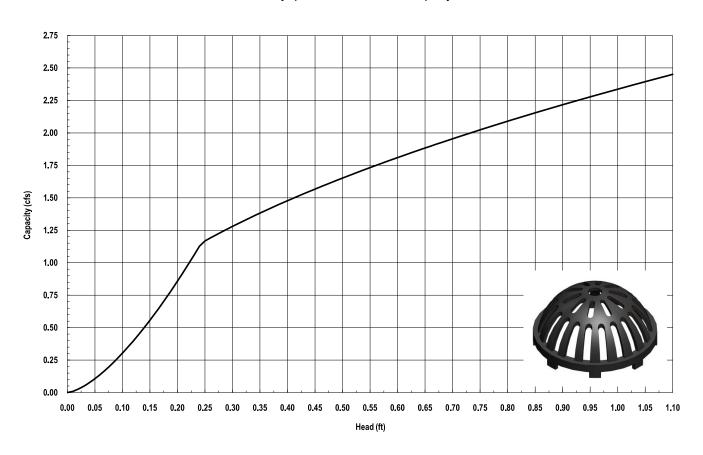




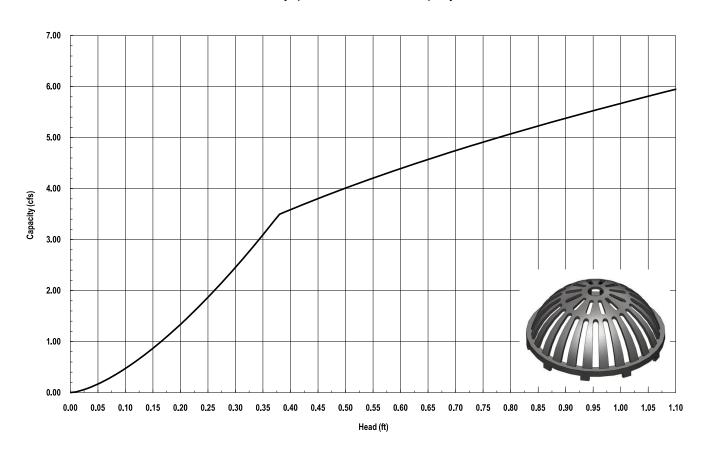




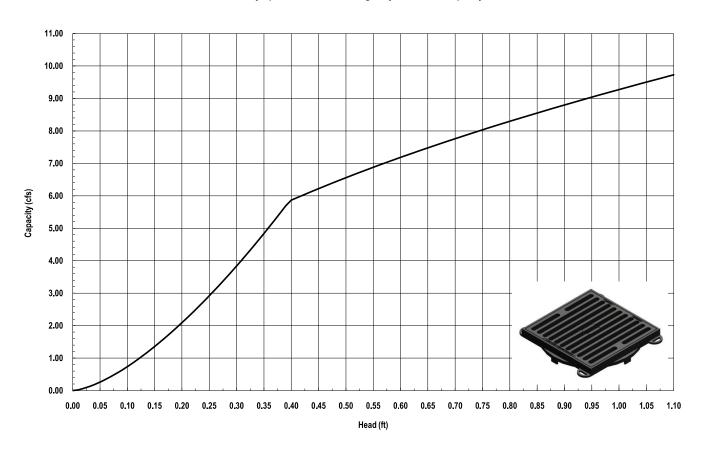
Nyloplast 12" Pedestrian Grate Inlet Capacity Chart



Nyloplast 8" Dome Grate Inlet Capacity Chart



Nyloplast 12" Dome Grate Inlet Capacity Chart



Nyloplast 18" Dome Grate Inlet Capacity Chart

Nyloplast 2' x 2' Road & Highway Grate Inlet Capacity Chart

Nuevo Atrisco (Tract B) 2' Curb Opening Calculations

CA * (2*g*h)^.5 Q Discharge in cfs Q = С Discharge coefficient from Handbook of Hydraulics, King and Brater, 5th Edition = Area of opening in square feet Α = 32.2 ft/sec g Depth of water measured from the center of the opening h

ORIFICE EQUATION - SOLVE FOR Q					
$Q = C*A*(2*g*h) ^0.5$					
Where	Q	=	2.41	cfs	
	C	=	0.6		
	A	=	1.00	sq.ft.	2'x0.5'
	g	=	32.2	ft/sec^2	
	h	=	0.25	ft	depth of flow at opening from the center of orifice

Weir Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

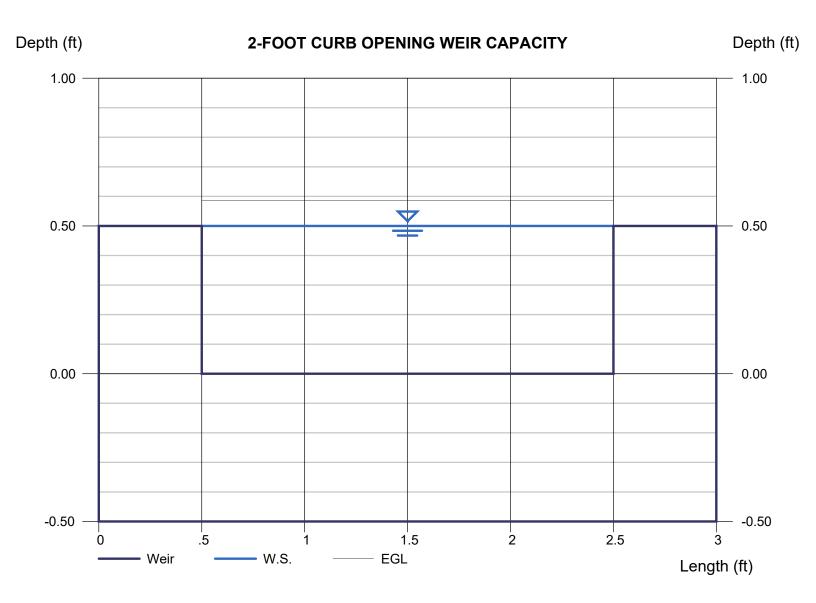
Friday, Jul 15 2022

2-FOOT CURB OPENING WEIR CAPACITY

Rectangular Weir

Crest = Sharp Bottom Length (ft) = 2.00 Total Depth (ft) = 0.50

Calculations


Weir Coeff. Cw = 3.33

Compute by: Known Depth

Known Depth (ft) = 0.50

Highlighted

Depth (ft) = 0.50 Q (cfs) = 2.355 Area (sqft) = 1.00 Velocity (ft/s) = 2.35 Top Width (ft) = 2.00

APPENDIX C

EXCERPTS FROM 'WEST CENTRAL AVE. FRONTAGE ROAD COMPLETE STREET IMPROVEMENTS' BY WSP

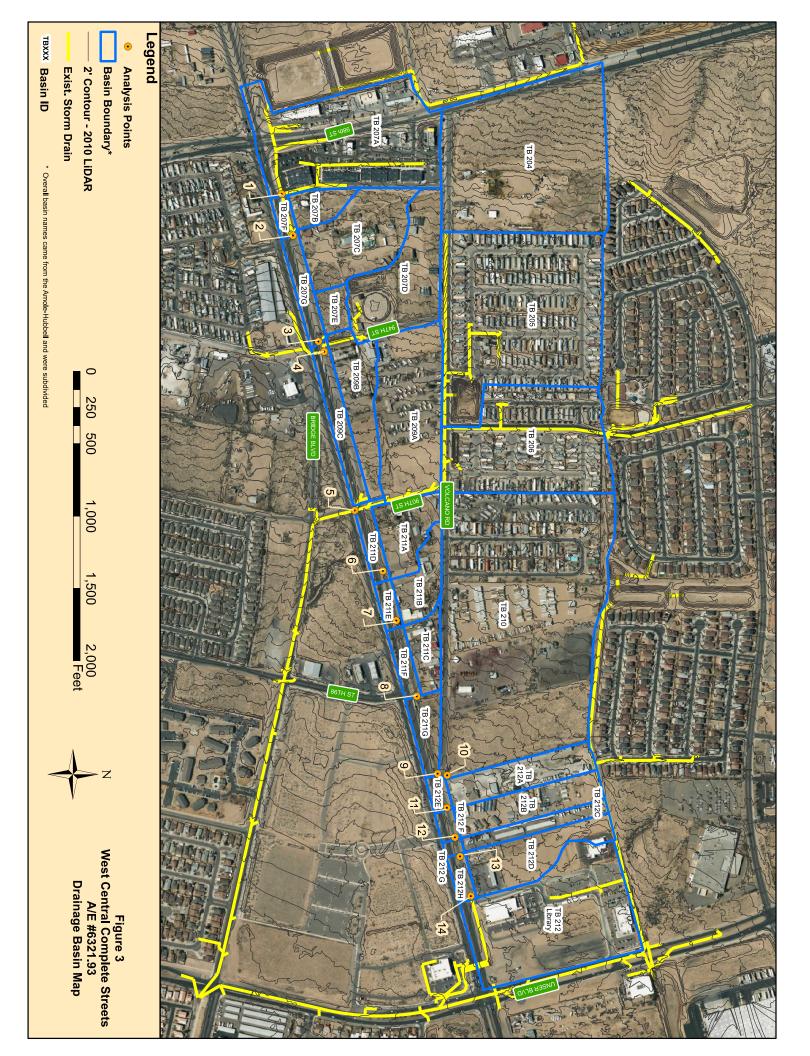
West Central Avenue Frontage Road Complete Street Improvements City of Albuquerque Project: A/E 6321.93 CN A300849

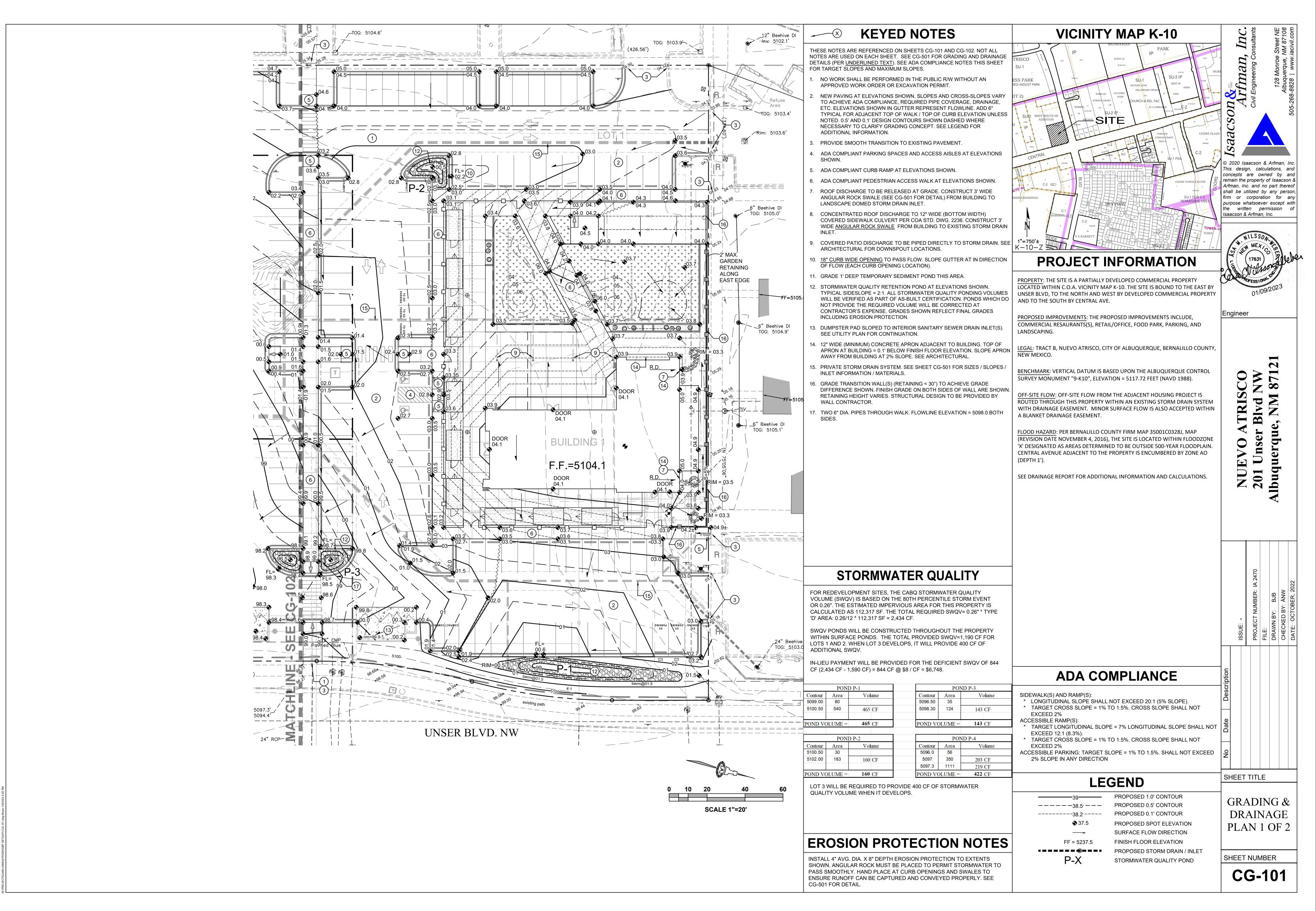
Drainage Report

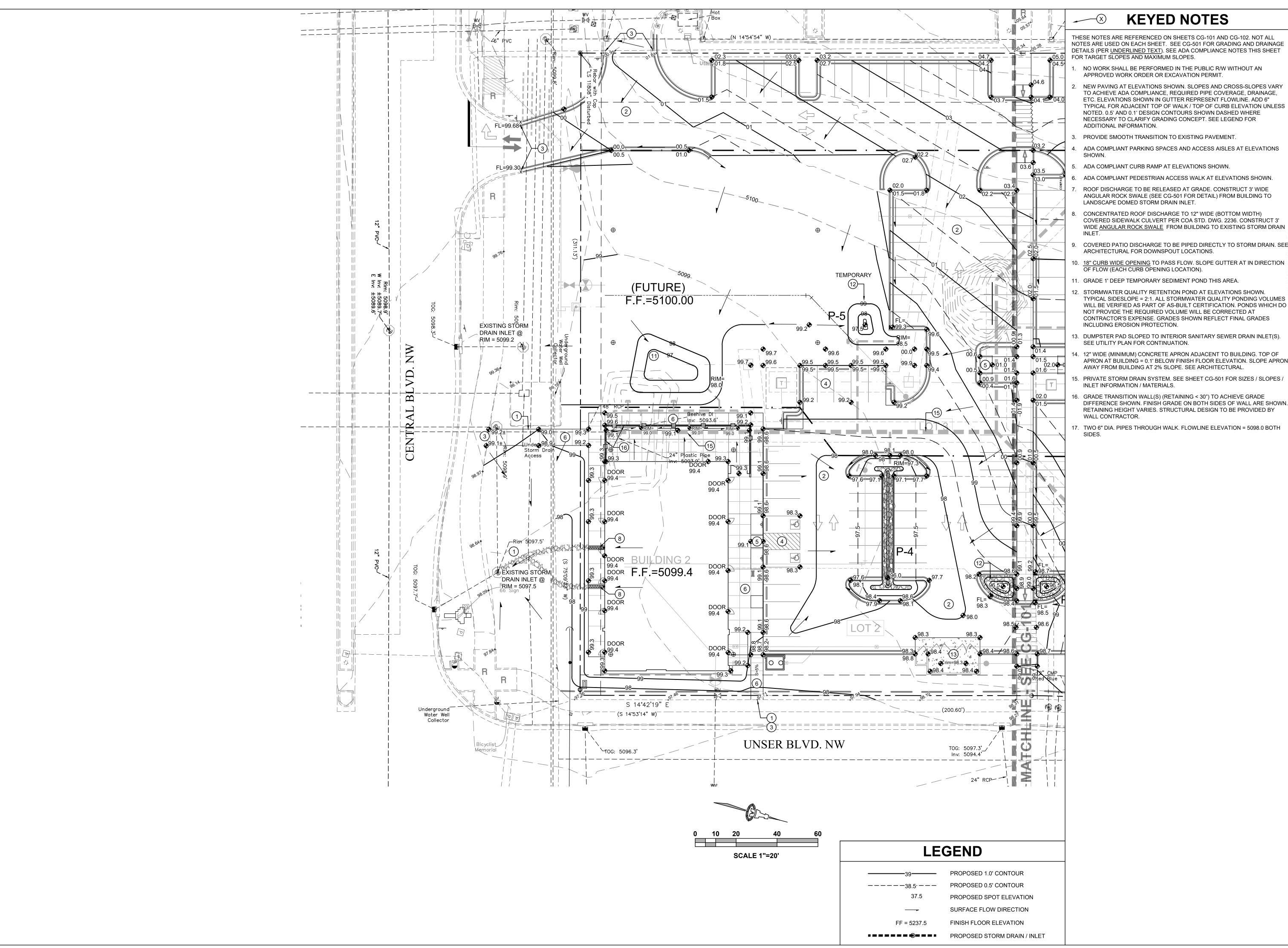
December 2020

Prepared for:

City of Albuquerque Department of Municipal Development **Engineering Division**


Prepared by:




```
AHYMO - RevisedAmole Update-CentralImprovements 6hr100yr
COMPUTE NM HYD
                        ID=1 HYD NO=TB212H DA=0.001502 SQ MI
                PER A=0 PER B=0 PER C=10 PER D=90
                TP=0.0 MASSRAIN=-1
PRINT HYD
                ID=1 CODE=1
* Total Flow from Basin (TB212D + TB212H)
ADD HYD
                ID=1 HYD NO=TB212ESUMB ID I=1 ID II=2
PRINT HYD
                ID=1 CODE=1
** Total Flow from Basins (TB210, TB211, TB212) at the Cul-de-sac
ADD HYD
                ID=1 HYD NO=TB212FSUMB ID I=1 ID II=3
PRINT HYD
                ID=1 CODE=1
*S AP 14
*S APTB4a at the Cul-de-Sac
*****Route HYD TB212SUM to Sub-Basin TB212Library Through a Pipe
COMPUTE RATING CURVE CID=1 VS NO=1 CODE=-1 SLP=0.018
                        DIA=60 IN N=0.013
ROUTE MCUNGE
                        ID=3 HYD NO=TB212GSUMBRT_INFLOW ID=1
                DT=0 HR LENGTH=500 FT
                NS=0 SLOPE=0.020
PRINT HYD
                ID=3 CODE=1
*** Sub-BASIN TB212Library ****
COMPUTE LT TP
                        LCODE=1 UPLAND/LAG TIME METHOD
                NK=1 ISLOPE=1
                LENGTH=1210 FT SLOPE=0.015 K=2.0
COMPUTE NM HYD
                        ID=2 HYD NO=TB212Library DA=0.02883 SQ MI
                PER A=0 PER B=0 PER C=20 PER D=80
                TP=0.0 MASSRAIN=-1
PRINT HYD ID=2 CODE=1
```

```
AHYMO - RevisedAmole Update-CentralImprovements 6hr100yr
COMPUTE NM HYD
                  TB212H - 1
                                0.00150
                                          4.25
                                                 0.159
                                                        1.98448 1.530 4.422 PER IMP= 90.00
ADD HYD
            TB212ESUMB 1& 2 1
                                0.01071
                                          27.91
                                                 1.014
                                                        1.77589 1.530 4.073
ADD HYD
            TB212FSUMB 1& 3 1
                                0.13031
                                         292.51 12.324 1.77338 1.580 3.508
*S AP 14
*S APTB4a at the Cul-de-Sac
ROUTE MCUNGE TB212GSUMBRT 1 3 0.13031 292.55 12.324 1.77329 1.590 3.508 CCODE = 0.2
COMPUTE NM HYD TB212Library - 2
                                 0.02883
                                           78.74
                                                  2.896
                                                         1.88314 1.530 4.267 PER IMP= 80.00
            TB212SUMA 2& 3 1 0.15914 364.15 15.219 1.79319 1.570 3.575
ADD HYD
*S APTB5
ADD HYD
            TB212SUMB 13& 1 1 0.70440 579.55 62.346 1.65955 1.590 1.286
*S APTB6
ROUTE MCUNGE TB212SUMBRT 1 2 0.70440
                                             579.00 62.339 1.65939 1.610 1.284 CCODE = 0.2
ADD HYD TB215SUMA 10& 2 1 2.16451 1405.84 173.548 1.50335 1.630 1.015
             FROM TO
                              PEAK
                                      RUNOFF
                                                    TIME TO CFS
                                                                  PAGE = 6
       HYDROGRAPH ID ID
                             AREA DISCHARGE
                                                VOLUME
                                                          RUNOFF PEAK PER
                                          (CFS)
           IDENTIFICATION NO. NO.
                                                   (AC-FT) (INCHES) (HOURS) ACRE NOTATION
COMMAND
                                   (SQ MI)
COMPUTE NM HYD
                   TB215 - 2
                                         189.09
                                                 8.644
                                                        0.11272
            TB215SUMB 1& 2 10
ADD HYD
                                2.27723
                                         1592.94
                                                 182.192
                                                          1.50011 1.640 1.093
                                         49.92
                                                 1.844
                                                       1.85781 1.530 4.191 PER IMP= 80.10
COMPUTE NM HYD
                   TB217 - 1
                                0.01861
ROUTE MCUNGE
                 TB217RT 1 2
                                 0.01861
                                          49.94
                                                 1.844
                                                        1.85774 1.550 4.193 CCODE = 0.2
COMPUTE NM HYD
                   TB220 - 1
                                0.03690
                                         94.82
                                                 3.453
                                                       1.75457 1.530 4.015 PER IMP= 71.00
ADD HYD
             TB220SUM 2& 1 1
                               0.05551
                                        144.13
                                                5.297
                                                       1.78915 1.540 4.057
                   TB218 - 2
                                                       1.13688
COMPUTE NM HYD
                                0.03573
                                         70.73
                                                2.166
                                                              1.530 3.093 PER IMP= 17.12
                 TB218RT 2 3
ROUTE MCUNGE
                                0.03573
                                          70.76
                                                 2.166
                                                        1.13683 1.550 3.094 CCODE = 0.2
COMPUTE NM HYD
                   TB219 - 2
                                0.02285
                                         57.17
                                                2.039
                                                       1.67313 1.530 3.909 PER IMP= 64.00
             TB219SUM 2& 3 2
                                        127.35
                                                4.205
ADD HYD
                               0.05858
                                                       1.34601 1.540 3.397
                                                 9.502
ADD HYD
            TB221SUMA 1& 2 1
                               0.11409
                                         271.48
                                                        1.56162 1.540 3.718
*S APTB8
ROUTE MCUNGE TB221SUMART 1 2
                                    0.11409
                                             270.92
                                                     9.500
                                                            1.56126 1.550 3.710 CCODE = 0.2
COMPUTE NM HYD
                   TB221 - 1
                                0.05769
                                         133.47
                                                 5.028
                                                        1.63429 1.550 3.615 PER IMP= 60.54
                                0.17178
                                         404.39
                                                14.528
                                                        1.58579 1.550 3.678
ADD HYD
            TB221SUMB 2& 1 1
ROUTE MCUNGE TB221SUMBRT 1 2
                                                    14.499
                                                            0.17178
                                             398.57
                                                 Page 9
```

APPENDIX D

GRADING PLANS STORM DRAIN PLAN

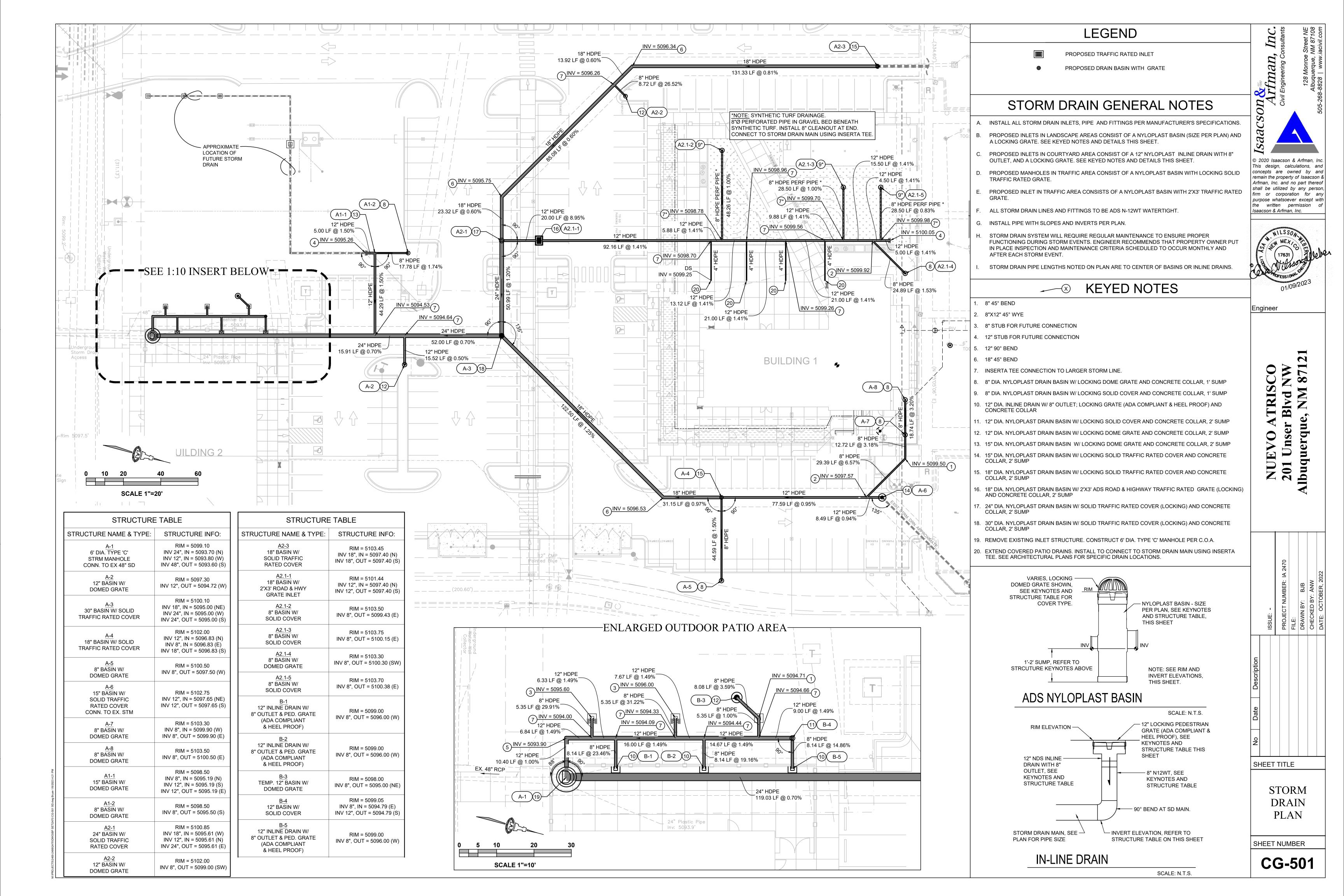
KEYED NOTES

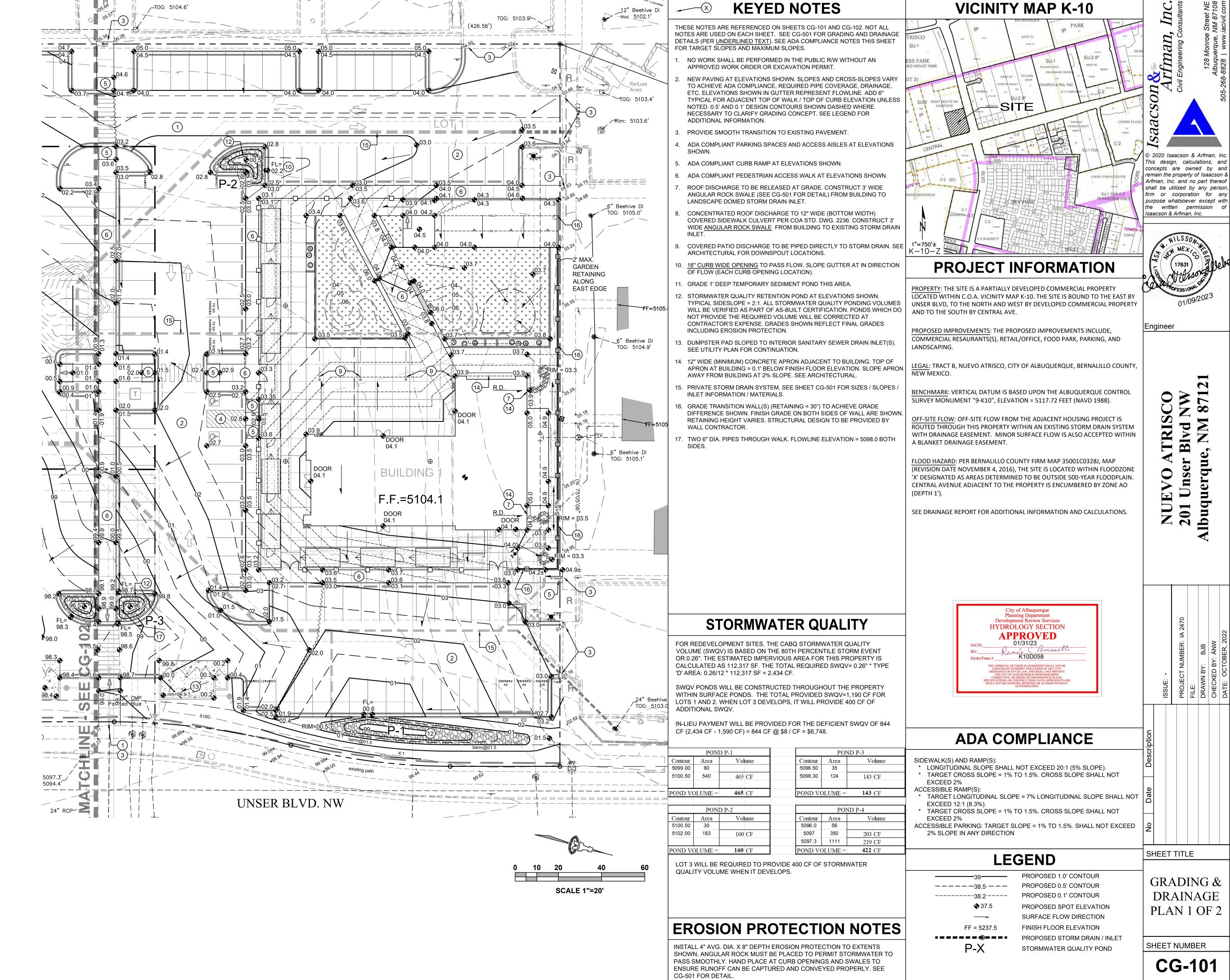
THESE NOTES ARE REFERENCED ON SHEETS CG-101 AND CG-102. NOT ALL NOTES ARE USED ON EACH SHEET. SEE CG-501 FOR GRADING AND DRAINAGE DETAILS (PER <u>UNDERLINED TEXT</u>). SEE ADA COMPLIANCE NOTES THIS SHEET FOR TARGET SLOPES AND MAXIMUM SLOPES.

- NO WORK SHALL BE PERFORMED IN THE PUBLIC R/W WITHOUT AN APPROVED WORK ORDER OR EXCAVATION PERMIT.
- NEW PAVING AT ELEVATIONS SHOWN. SLOPES AND CROSS-SLOPES VARY TO ACHIEVE ADA COMPLIANCE, REQUIRED PIPE COVERAGE, DRAINAGE, ETC. ELEVATIONS SHOWN IN GUTTER REPRESENT FLOWLINE. ADD 6" TYPICAL FOR ADJACENT TOP OF WALK / TOP OF CURB ELEVATION UNLESS NOTED, 0.5' AND 0.1' DESIGN CONTOURS SHOWN DASHED WHERE NECESSARY TO CLARIFY GRADING CONCEPT. SEE LEGEND FOR
- B. PROVIDE SMOOTH TRANSITION TO EXISTING PAVEMENT.
- 4. ADA COMPLIANT PARKING SPACES AND ACCESS AISLES AT ELEVATIONS
- 5. ADA COMPLIANT CURB RAMP AT ELEVATIONS SHOWN.
- ADA COMPLIANT PEDESTRIAN ACCESS WALK AT ELEVATIONS SHOWN.
- ANGULAR ROCK SWALE (SEE CG-501 FOR DETAIL) FROM BUILDING TO LANDSCAPE DOMED STORM DRAIN INLET. 8. CONCENTRATED ROOF DISCHARGE TO 12" WIDE (BOTTOM WIDTH)
- COVERED SIDEWALK CULVERT PER COA STD. DWG. 2236. CONSTRUCT 3' WIDE ANGULAR ROCK SWALE FROM BUILDING TO EXISTING STORM DRAIN
- ARCHITECTURAL FOR DOWNSPOUT LOCATIONS.
- 10. <u>18" CURB WIDE OPENING</u> TO PASS FLOW. SLOPE GUTTER AT IN DIRECTION OF FLOW (EACH CURB OPENING LOCATION).
- 11. GRADE 1' DEEP TEMPORARY SEDIMENT POND THIS AREA.
- 12. STORMWATER QUALITY RETENTION POND AT ELEVATIONS SHOWN. TYPICAL SIDESLOPE = 2:1. ALL STORMWATER QUALITY PONDING VOLUMES WILL BE VERIFIED AS PART OF AS-BUILT CERTIFICATION. PONDS WHICH DO NOT PROVIDE THE REQUIRED VOLUME WILL BE CORRECTED AT CONTRACTOR'S EXPENSE. GRADES SHOWN REFLECT FINAL GRADES INCLUDING EROSION PROTECTION.
- 13. DUMPSTER PAD SLOPED TO INTERIOR SANITARY SEWER DRAIN INLET(S). SEE UTILITY PLAN FOR CONTINUATION.
- 14. 12" WIDE (MINIMUM) CONCRETE APRON ADJACENT TO BUILDING. TOP OF APRON AT BUILDING = 0.1' BELOW FINISH FLOOR ELEVATION. SLOPE APRON AWAY FROM BUILDING AT 2% SLOPE. SEE ARCHITECTURAL.
- 15. PRIVATE STORM DRAIN SYSTEM. SEE SHEET CG-501 FOR SIZES / SLOPES / INLET INFORMATION / MATERIALS.
- 16. GRADE TRANSITION WALL(S) (RETAINING < 30") TO ACHIEVE GRADE DIFFERENCE SHOWN. FINISH GRADE ON BOTH SIDES OF WALL ARE SHOWN. RETAINING HEIGHT VARIES. STRUCTURAL DESIGN TO BE PROVIDED BY WALL CONTRACTOR.
- 17. TWO 6" DIA. PIPES THROUGH WALK. FLOWLINE ELEVATION = 5098.0 BOTH

© 2020 Isaacson & Arfman, Inc. This design, calculations, and concepts are owned by and remain the property of Isaacson & Arfman, Inc. and no part thereof shall be utilized by any person, firm or corporation for any purpose whatsoever except with the written permission of Isaacson & Arfman, Inc.

Engineer

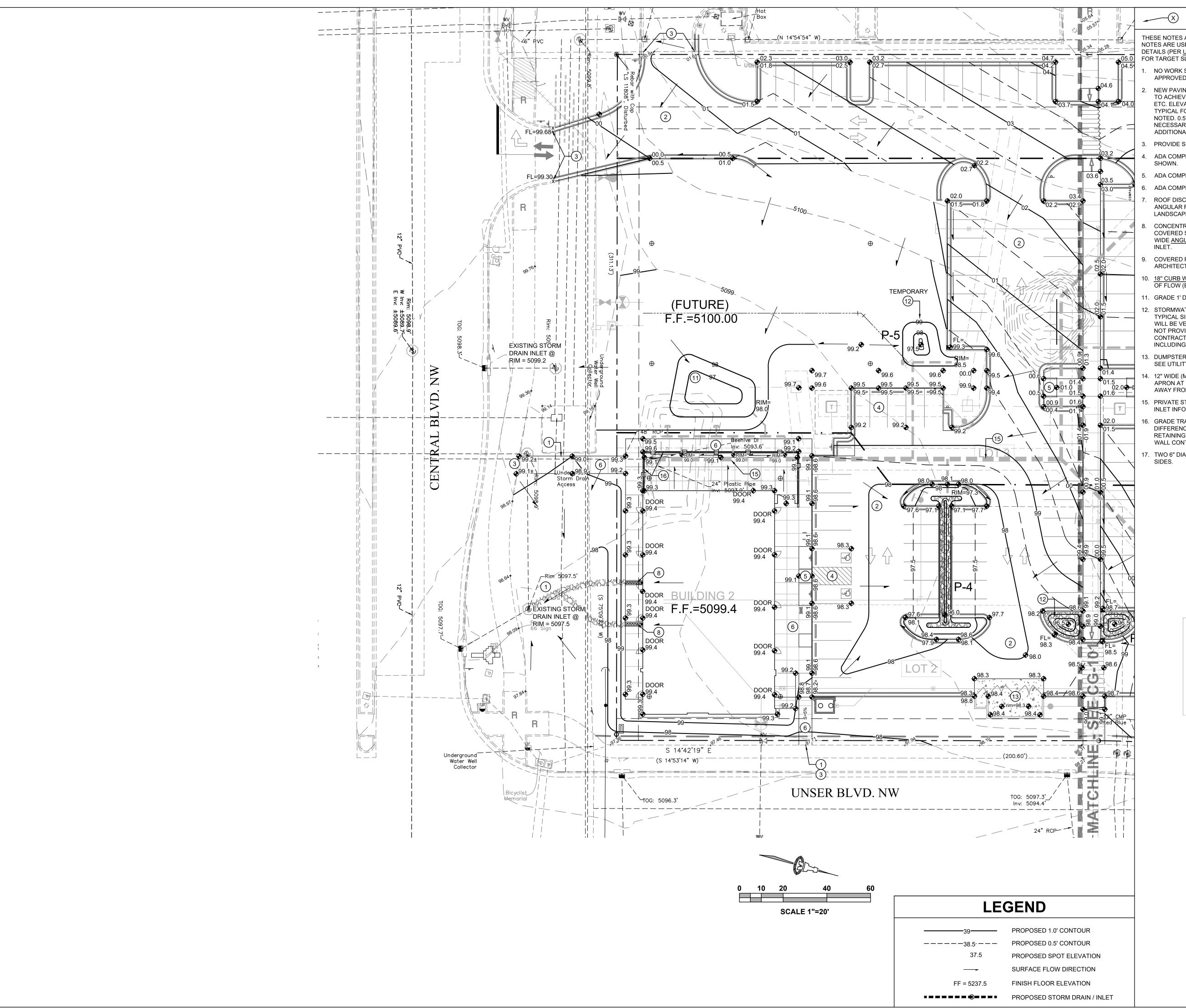

NU 201 Albu


SHEET TITLE

GRADING & DRAINAGE PLAN 2 OF 2

SHEET NUMBER

CG-102



This design, calculations, and concepts are owned by and remain the property of Isaacson & Arfman, Inc. and no part thereof shall be utilized by any person, purpose whatsoever except with

DRAINAGE PLAN 1 OF 2

KEYED NOTES

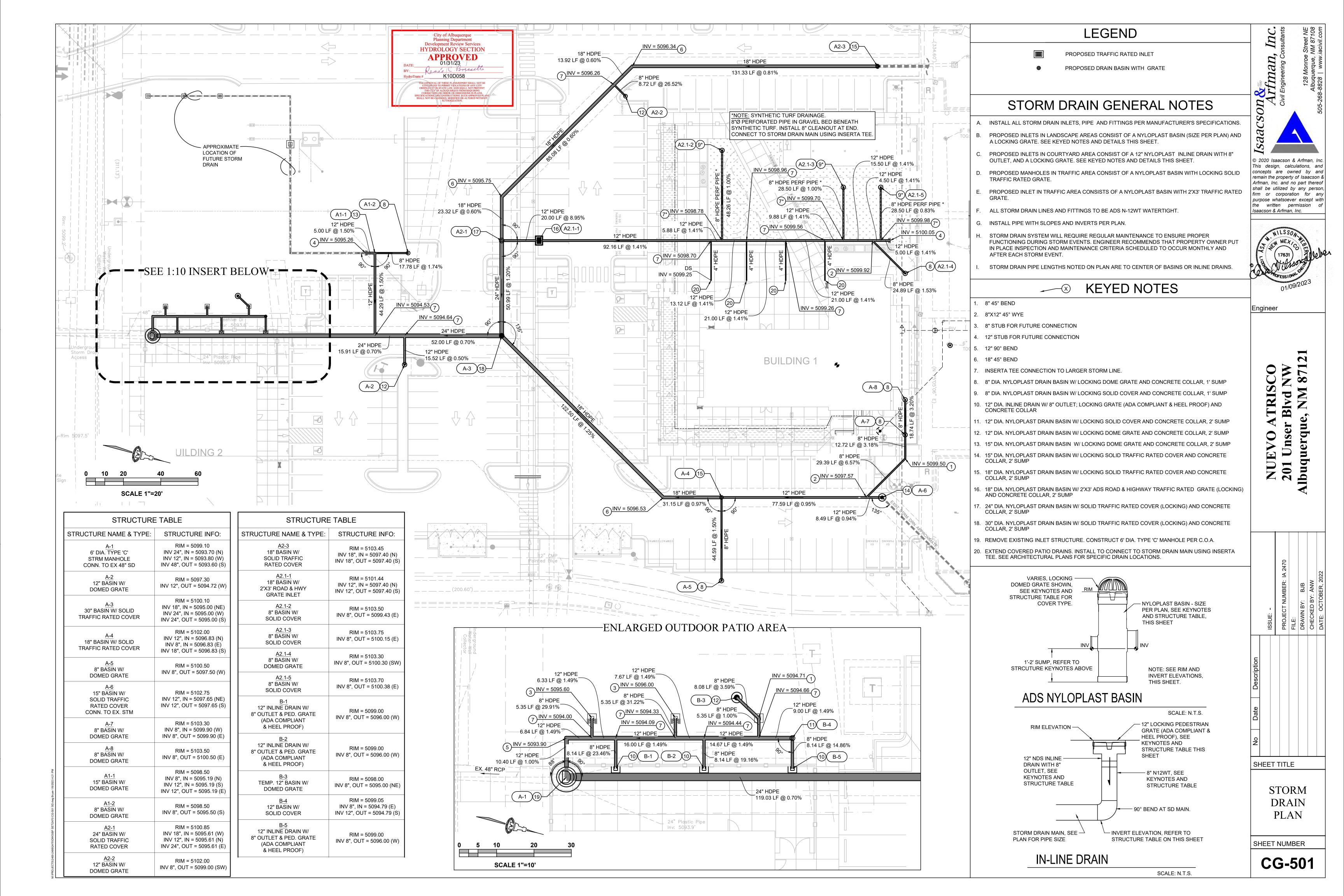
THESE NOTES ARE REFERENCED ON SHEETS CG-101 AND CG-102. NOT ALL NOTES ARE USED ON EACH SHEET. SEE CG-501 FOR GRADING AND DRAINAGE DETAILS (PER <u>UNDERLINED TEXT</u>). SEE ADA COMPLIANCE NOTES THIS SHEET FOR TARGET SLOPES AND MAXIMUM SLOPES.

- NO WORK SHALL BE PERFORMED IN THE PUBLIC R/W WITHOUT AN APPROVED WORK ORDER OR EXCAVATION PERMIT.
- NEW PAVING AT ELEVATIONS SHOWN. SLOPES AND CROSS-SLOPES VARY TO ACHIEVE ADA COMPLIANCE, REQUIRED PIPE COVERAGE, DRAINAGE, ETC. ELEVATIONS SHOWN IN GUTTER REPRESENT FLOWLINE. ADD 6" TYPICAL FOR ADJACENT TOP OF WALK / TOP OF CURB ELEVATION UNLESS NOTED, 0.5' AND 0.1' DESIGN CONTOURS SHOWN DASHED WHERE NECESSARY TO CLARIFY GRADING CONCEPT. SEE LEGEND FOR ADDITIONAL INFORMATION.
- B. PROVIDE SMOOTH TRANSITION TO EXISTING PAVEMENT.
- ADA COMPLIANT PARKING SPACES AND ACCESS AISLES AT ELEVATIONS
- 5. ADA COMPLIANT CURB RAMP AT ELEVATIONS SHOWN.
- ADA COMPLIANT PEDESTRIAN ACCESS WALK AT ELEVATIONS SHOWN. 7. ROOF DISCHARGE TO BE RELEASED AT GRADE. CONSTRUCT 3' WIDE
- ANGULAR ROCK SWALE (SEE CG-501 FOR DETAIL) FROM BUILDING TO LANDSCAPE DOMED STORM DRAIN INLET. 8. CONCENTRATED ROOF DISCHARGE TO 12" WIDE (BOTTOM WIDTH)
- COVERED SIDEWALK CULVERT PER COA STD. DWG. 2236. CONSTRUCT 3' WIDE ANGULAR ROCK SWALE FROM BUILDING TO EXISTING STORM DRAIN
- 9. COVERED PATIO DISCHARGE TO BE PIPED DIRECTLY TO STORM DRAIN. SEE ARCHITECTURAL FOR DOWNSPOUT LOCATIONS.
- 10. <u>18" CURB WIDE OPENING</u> TO PASS FLOW. SLOPE GUTTER AT IN DIRECTION OF FLOW (EACH CURB OPENING LOCATION).
- 11. GRADE 1' DEEP TEMPORARY SEDIMENT POND THIS AREA.
- 12. STORMWATER QUALITY RETENTION POND AT ELEVATIONS SHOWN. TYPICAL SIDESLOPE = 2:1. ALL STORMWATER QUALITY PONDING VOLUMES WILL BE VERIFIED AS PART OF AS-BUILT CERTIFICATION. PONDS WHICH DO NOT PROVIDE THE REQUIRED VOLUME WILL BE CORRECTED AT CONTRACTOR'S EXPENSE. GRADES SHOWN REFLECT FINAL GRADES INCLUDING EROSION PROTECTION.
- 13. DUMPSTER PAD SLOPED TO INTERIOR SANITARY SEWER DRAIN INLET(S). SEE UTILITY PLAN FOR CONTINUATION.
- 14. 12" WIDE (MINIMUM) CONCRETE APRON ADJACENT TO BUILDING. TOP OF APRON AT BUILDING = 0.1' BELOW FINISH FLOOR ELEVATION. SLOPE APRON AWAY FROM BUILDING AT 2% SLOPE. SEE ARCHITECTURAL.
- 15. PRIVATE STORM DRAIN SYSTEM. SEE SHEET CG-501 FOR SIZES / SLOPES / INLET INFORMATION / MATERIALS.
- 16. GRADE TRANSITION WALL(S) (RETAINING < 30") TO ACHIEVE GRADE DIFFERENCE SHOWN. FINISH GRADE ON BOTH SIDES OF WALL ARE SHOWN. RETAINING HEIGHT VARIES. STRUCTURAL DESIGN TO BE PROVIDED BY WALL CONTRACTOR.
- 17. TWO 6" DIA. PIPES THROUGH WALK. FLOWLINE ELEVATION = 5098.0 BOTH

City of Albuquerque Planning Department Development Review Services HYDROLOGY SECTION APPROVED
01/31/23
Renée Brissette
K10D058

© 2020 Isaacson & Arfman, Inc This design, calculations, and concepts are owned by and remain the property of Isaacson & Arfman, Inc. and no part thereof shall be utilized by any person, firm or corporation for any purpose whatsoever except with the written permission of Isaacson & Arfman, Inc.

Engineer


NU 201 Albu

SHEET TITLE

GRADING & DRAINAGE PLAN 2 OF 2

SHEET NUMBER

CG-102

