DRAINAGE INFORMATION SHEET

PROJECT TITLE: TOLEDS APARTMENT	SZONE ATLAS/DRNG. FILE #: K-(1/1/2)
LEGAL DESCRIPTION: LOTS STG, B	OLK 20, HESAVEDDE ADDITION
CITY ADDRESS: 306 TEXAS	N.E.
ENGINEERING FIRM: TSAACSON ARFMA	W.P.J. CONTACT: FRED C. ARFMAND
ADDRESS: 128 MONESE ST.	N.E. PHONE: 202-2352
OWNER: YOUR ROBINSON	CONTACT: SAME
ADDRESS: 302 TEXAS N.E.	PHONE: 344-0169
ARCHITECT: DAKMOUN	CONTACT:
ADDRESS:	PHONE:
SURVEYOR: P. CUBINESSO	CONTACT:
ADDRESS:	PHONE:
CONTRACTOR: 1/A	CONTACT:
ADDRESS:	PHONE:
YES NO COPY OF CONFERENCE RECAR MAR 0 8 1989 SHEET PROVIDED HYDROLOGY SECTI	DRB NO. PROJ. NO.
TYPE OF SUBMITTAL: DRAINAGE REPORT DRAINAGE PLAN CONCEPTUAL GRADING & DRAINAGE PLAN GRADING PLAN EROSION CONTROL PLAN	CHECK TYPE OF APPROVAL SOUGHT: SKETCH PLAT APPROVAL PRELIMINARY PLAT APPROVAL SITE DEVELOPMENT PLAN APPROVAL FINAL PLAT APPROVAL BUILDING PERMIT APPROVAL
ENGINEER'S CERTIFICATION S-8-89	FOUNDATION PERMIT APPROVAL CERTIFICATE OF OCCUPANCY APPROVAL ROUGH GRADING PERMIT APPROVAL GRADING/PAVING PERMIT APPROVAL OTHER (SPECIFY)
DATE SUBMITTED: 2-27- 87 BY: FRED AZFMAN	

City of Albuquerque

P.O. BOX 1293 ALBUQUERQUE, NEW MEXICO 87103

March 21, 1989

Fred Arfman, P.e.
Isaacson & Arfman, P.A.
128 Monroe Street, NE
Albuquerque, New Mexico 87108

RE: REVISED DRAINAGE PLAN FOR TOLEDO APARTMENTS (K-19/D94) REVISION DATE OF MARCH 8, 1989

Dear Mr. Arfman:

Based on the information provided on your resubmittal of March 8, 1989, the above referenced plan is approved for Building Permit.

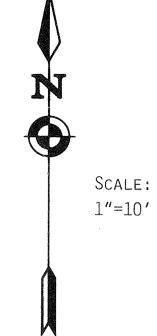
Please attach a copy of this plan to the construction sets prior to sign-off by Hydrology.

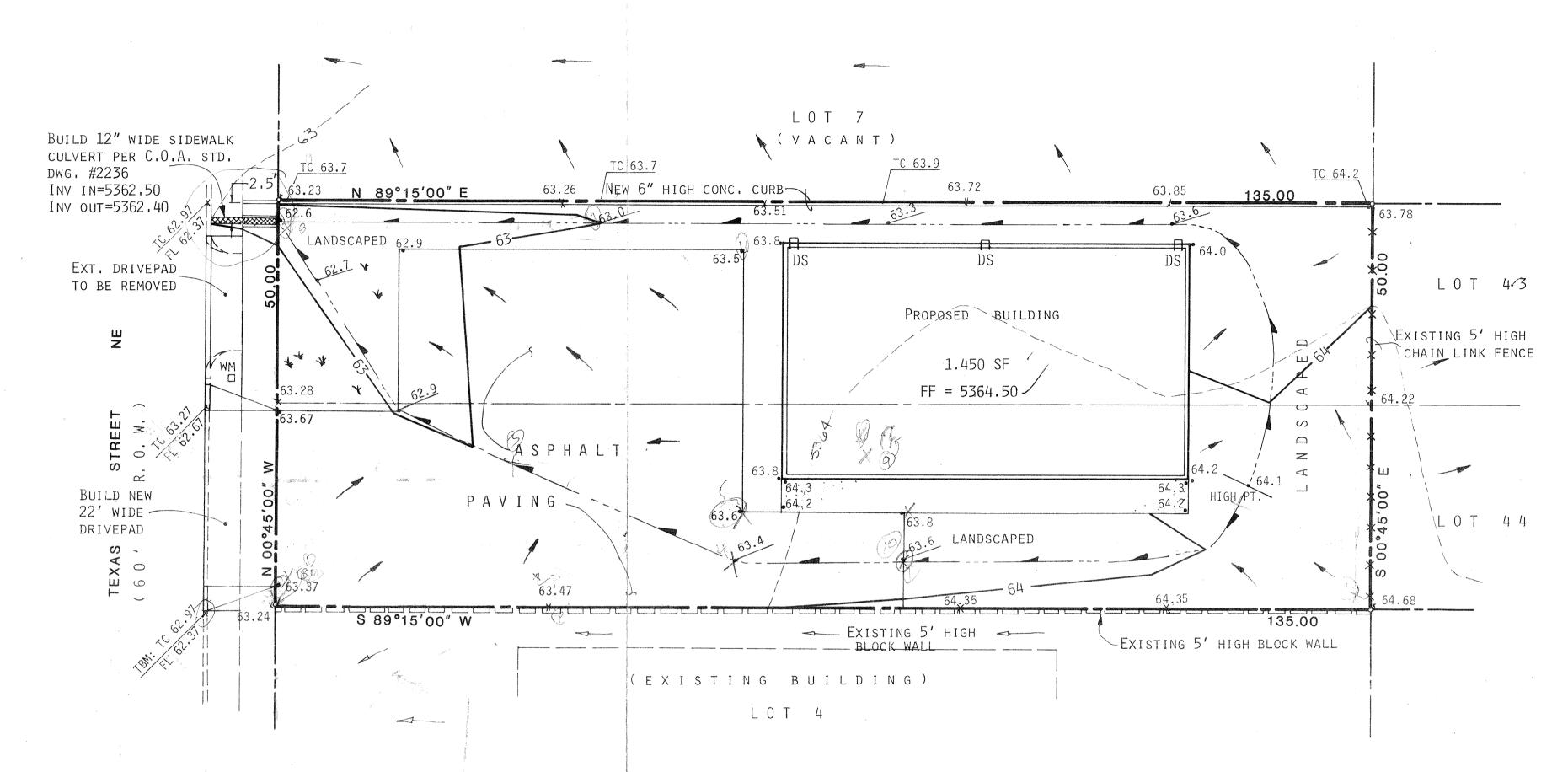
Also, please be advised that a separate permit is required for construction within City right-of-way. A copy of this approval letter will be needed when applying for the excavation permit.

If I can be of further assistance, please feel free to call me at 768-2650.

Cordially,

Bernie J. Montoya, C.E. Engineering Assistant


xc: Becky Sandoval


BJM/bsj (WP+1039)

APARTMEN 306 TEXAS BUQUERQUE,

LANDSCAPING NOTE

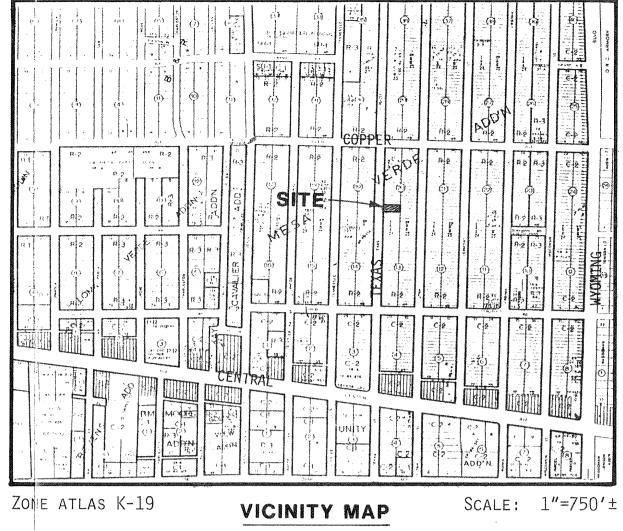
LANDSCAPED AREA IN THE NORTHWEST QUADRANT OF THE SITE MUST HAVE GRASS GROUND COVER TO PREVENT ANY SEDIMENT TRANSFER FROM THE PARKING AREA TO THE SIDEWALK CULVERT.

DRAINAGE CALCULATIONS

 $V_{100} = (0.2")(6750/12) = 113 \text{ CF} \quad V_{100} = (1.1)(6750/12) = 619 \text{ CF}$

 $V_{10} = (113)(0.657) = 74 \text{ CF}$ $V_{10} = (619)(0.657) = 407 \text{ CF}$

EXISTI'NG TO THE TOTAL TO THE TOTAL	PROPOSED	COMPOSITE 'C' FACTOR	
Q = CIA	C = 0.67	(1450/6750)(.9) = 0.19	
C = 0.40	I = 5.18"/HR	(2670/6750)(.95) = 0.38 (2630/6750)(.25) = 0.10	
I = (2.4)(2.16) = 5.18"/HR	A = 6.750 SF = 0.1550 Ac.		
A = 6.750 SF = 0.1550 Ac.		'C' = 0.67	
$Q_{100} = (0.40)(5.18)(0.1550)$ = 0.3 cfs	$Q_{100} = (0.67)(5.18)(0.1550)$ = 0.5 cfs		
$Q_{10} = (0.3)(0.657) = 0.2 \text{ cfs}$	$Q_{10} = (0.5)(0.657) = 0.3 \text{ cfs}$		
VOLUMES BY SCS METHOD: V =	QA		
CN = 61 0% IMPERVIOUS	CN = 85 (AVG65% IMPERVIOUS)		
P = 2.4'', Q = 0.2''	P = 2.4", $Q = 1.1$ "		


LEGEND

the control of the co	EXISTING CONTOUR
dissilistration of the section of th	FINISH CONTOUR
× 63.72	EXT. SPOT ELEVATION
•63.8	Proposed grade
TC 62.97	Top of curb grade
	DRAINAGE SWALE
	FLOW DIRECTIONAL ARRO
	SIDEWALK CULVERT
DS	DOWNSPOUT
wm 🗆	WATER METER

DRAINAGE CONDITIONS

- EXISTING: THESE TWO LOTS ARE UNDEVELOPED, AND A LARGE PART OF THE RUNOFF FROM THIS SITE FLOWS NORTH ONTO THE ADJACENT VACANT LOT 7 BEFORE TURNING AND ENTERING THE PUBLIC R.O.W. OF TEXAS ST. NE. THE ADJACENT LAND TO THE SOUTH (LOT 4) HAS BEEN DEVELOPED AND ITS RUNOFF, CONTAINED BY THE BLOCK WALL SHOWN, DISCHARGES WEST TO TEXAS ST. NE. THE ADJACENT LAND TO THE EAST IS A DEVELOPED RESIDENTIAL LOT THAT HAS AN APPARENT SHALLOW PONDING AREA AND DOES NOT DRAIN TOWARD THE SITE.
- PROPOSED: THE PLANNED IMPROVEMENTS INCLUDE AN APARTMENT BUILDING, ASSOCIATED ASPHALT PARKING, AND LANDSCAPED AREAS. HISTORIC FLOW PATTERNS WILL NOT BE CHANGED EXCEPT WHERE THE NEW CURB PREVENTS RUNOFF FROM ENTERING THE ADJACENT LOT. RUNOFF SHALL BE ROUTED TO A NEW SIDEWALK CULVERT NEAR THE NORTHWEST CORNER OF THE SITE. ALL DEVELOPED RUNOFF WILL DISCHARGE FROM THE SITE VIA THIS SIDEWALK CULVERT.

SURUC

NOTES

LEGAL DESCRIPTION: Lots 5 and 6, Block 20 of the Mesa Verde ADDITION TO THE CITY OF ALBUQUERQUE.

SURVEYOR: P.W. ROBINSON

BENCHMARK(S): ACS BM "10-K19", A SQUARE CHISELED IN THE ESE CURB RETURN AT THE INTERSECTION OF COPPER AVE. NE AND PENNSYLVANIA ST. NE. ELEVATION: 5347.50

TEMPORARY BENCHMARK: TOP OF CURB AT THE WESTERLY PROJECTION OF THE SOUTH PROPERTY LINE. ELEVATION: 5362.97

- FLOOD HAZARD STATEMENT: FROM PANEL 30 OF THE FEMA FLOOD HAZARD MAPS, THIS SITE IS NOT LOCATED WITHIN A FLOOD HAZARD AREA.
- SOILS: AS SHOWN ON THE SCS SOIL SURVEY FOR BERNALILLO COUNTY, THIS SITE IS COMPOSED OF EMBUDO TIJERAS IN HYDROLOGIC GROUP 'B'.
- OFFSITE FLOWS: THIS SITE DOES NOT ACCEPT ANY OFFSITE FLOWS.

GENERAL NOTES

- 1. ALL WORK DETAILED ON THESE PLANS TO BE PERFORMED UNDER THIS CONTRACT SHALL, EXCEPT AS OTHERWISE STATED OR PROVIDED FOR HEREIN, BE CONSTRUCTED IN ACCORDANCE WITH "CITY OF ALBUQUERQUE STANDARD SPECIFICATIONS PUBLIC Works Construction, 1986."
- 2. Two (2) working days prior to any excavation, Contractor SHALL CONTACT LINE LOCATING SERVICE, 765-1234, FOR LOCATION OF EXISTING LINES.
- 3. References made to Standard Drawings refer to City of ALBUQUERQUE STANDARD DETAIL DRAWINGS.
- PRIOR TO CONSTRUCTION, THE CONTRACTOR SHALL EXCAVATE AND VERIFY THE HORIZONTAL AND VERTICAL LOCATIONS OF ALL OBSTRUCTIONS. SHOULD A CONFLICT EXIST, THE CONTRACTOR SHALL NOTIFY THE ENGINEER OR SURVEYOR SO THAT THE CONFLICT CAN BE RESOLVED WITH A MINIMUM OF DELAY.
- 5. BACKFILLL COMPACTION SHALL BE ACCORDING TO SPECIFIED STREET USE (RESIDENTIAL)
- 6. Maintenance of these facilities shall be the responsibility OF THE OWNER OF THE PROPERTY SERVED.
- 7. AN EXCAVATION/CONSTRUCTION PERMIT WILL BE REQUIRED BEFORE BEGINNING ANY WORK WITHIN CITY RIGHT-OF-WAY. AN APPROVED COPY OF THESE PLANS MUST BE SUBMITTED AT THE TIME OF APPLICATION FOR THIS PERMIT.

APPROVALS	NAME		DATE
A.C.E./DESIGN	Bouris Monteya		3/21/88
INSPECTOR			
A.C.E./FIELD			
PERMIT No.		MAP NO	
		K-19	