HT#K19D108 Received 9/9/2021

FIESTA SUBARU TRAFFIC IMPACT STUDY

REVISED SUBMITTAL | SEPTEMBER 2021

Bohannan A Huston

FIESTA SUBARU TRAFFIC IMPACT ANALYSIS

REVISED SUBMITTAL

Date: SEPTEMBER 9, 2021 Prepared by: Bohannan Huston, Inc. 7500 Jefferson St NE Courtyard Two Albuquerque, NM 87109 Prepared for: **SMPC Architects** 219 Central Ave NW Suite 800 Albuquerque, NM 87102 Prepared By: Reviewed, and Approved By: Unde

TABLE OF CONTENTS

I.	INT	RODL	JCTION AND SUMMARY	1
	A.	Stud	y Purpose	1
	В.	Exec	cutive Summary	1
		1.	Site Location and Study Area	1
		2.	Principal Findings	1
		3.	Recommendations	3
II.	PRO	OPOS	ED DEVELOPMENT	<i>6</i>
	A.	Lanc	d Use and Intensity	<i>6</i>
	В.	Deve	elopment Phasing and Timing	<i>6</i>
III.	STU	IDY AI	rea conditions	<i>6</i>
	A.	Stud	y Area	6
	В.	Site	Accessibility	6
	C.	Data	a Sources	6
IV.	EXI	STING	CONDITIONS ANALYSIS	7
	A.	Back	kground	7
		1.	Adjacent Roadways	7
		2.	Multi-Modal Conditions	7
	B.	Existi	ng Traffic Conditions	7
	C.	Leve	el of Service Definitions	8
	D.	Existi	ing Intersection Capacity Analysis	9
		1.	Additional Analysis of Chama	10
	E.	Cras	sh History	13
V.	PRO	OJEC ¹	TED TRAFFIC	17
	A.	Site	Traffic Forecasting	17
		1.	Trip Generation	17
		2.	Trip Distribution and Assignment	18
		3.	Future Projections	18
VI.	TRA	AFFIC	AND IMPROVEMENT ANALYSIS	21
		1.	No Build Intersection Capacity Analysis	21
		2.	Build Intersection Capacity Analysis	24

VII. CONCLUSIONS AND RECOMMENDATIONS	27
A. Conclusions	27
B. Recommendations	28
FIGURES	
Figure 1 Vicinity Map	4
Figure 2 Site Plan	5
Figure 3 Existing Traffic Volumes	12
Figure 4 Crash History	16
Figure 5 Trip Distribution Percentages	19
Figure 6 Trip Assignment Volumes	20
Figure 7 No Build Traffic Volumes	23
Figure 8 Build Traffic Volumes	26
TABLES	
Table 1 LOS Definitions	8
Table 2 Existing Signalized Intersection Results	9
Table 3 Existing Unsignalized Intersection Results	11
Table 4 Crash Severity (2017-2019)	13
Table 4 Crash Rate (2019)	13
Table 5 Crash Top Contributing Factors (2017-2019)	14
Table 6 Crash Analysis (2017-2019)	15
Table 7 Trip Generation	17
Table 8 No Build Signalized Intersection Results	21
Table 9 No Build Unsignalized Intersection Results	22
Table 10 Build Signalized Intersection Results	24
Table 11 Build Unsignalized Intersection Results	25

APPENDICES

Appendix A Existing Data

Appendix B 2021 Existing Intersection Capacity Analysis

Appendix C Turning Movement Development

Appendix D 2024 No Build Intersection Capacity Analysis

Appendix E 2024 Build Intersection Capacity Analysis

I. INTRODUCTION AND SUMMARY

The proposed Fiesta Subaru development will be 47,000 square feet and located at the southeast corner of Lomas Boulevard and Louisiana Boulevard, between Louisiana Boulevard and Chama Street, in Albuquerque, New Mexico.

A. STUDY PURPOSE

The purpose of the traffic study is to determine the impacts of the proposed development on the surrounding roadway network, evaluate the operation of the proposed site entrances, and to recommend any mitigation measures that may be necessary to support additional traffic generated by the new development.

B. EXECUTIVE SUMMARY

1. SITE LOCATION AND STUDY AREA

The site is located at the southeast corner of Lomas Boulevard and Louisiana Boulevard, between Louisiana Boulevard and Chama Street, in Albuquerque, New Mexico. A vicinity map and site plan are shown in Figure 1, and the proposed site plan of the future development is shown in Figure 2.

The study area consists of the following intersections:

- Lomas and Louisiana (existing signalized intersection)
- Lomas and Alcazar/site driveway 1 (existing unsignalized full access intersection)
- Lomas and Chama (existing unsignalized full access intersection)
- Louisiana and site driveway 2 (existing unsignalized partial access intersection

The intersection evaluations include analysis for the AM and PM peak hours for the following traffic conditions:

- Existing traffic (2021)
- 2024 Completion Year without proposed development (2024 No Build)
- 2024 Completion Year with buildout of the site (2024 Build)

2. PRINCIPAL FINDINGS

The traffic analysis found that the unsignalized intersections do not operate at acceptable levels of services under existing 2021, No Build 2024, and Build 2024, particularly for the northbound and southbound approaches. The conclusions report

results for both single-stage and two-stage gap acceptance analyses. The results indicate that delays associated with single-stage movements are higher than those performing two-stage movements.

In the existing condition, Lomas and Alcazar has failing movements which include the southbound approach in the AM and PM for both single-stage and two-stage analyses. Due the proximity of this local street intersection to Louisiana, as well as access to the signalized intersection at Pennsylvania via Marble Avenue, this delay is considered acceptable. The eastbound left turn is expected to have queues of 50 feet, which may not fit entirely within the available storage, unless the lead driver sneaks out a bit. Extending this turn lane is not possible due to the westbound left turn lane serving Lomas and Louisiana. Closure of the median is not considered desirable due to the access to the public street to the north, and the likelihood the high delay is only present during the peak hours.

The northbound approach at Lomas and Chama fails in the PM for both single-stage and two-stage analyses. Due to the proximity of this intersection to Louisiana, and the availability of alternate routes to Louisiana, these delays ae considered acceptable. Closure of the median is not considered desirable due to the access to the public street to the north, and the likelihood the high delay is only present during the peak hours

In the No Build condition, at Lomas and Alcazar the eastbound left degrades from LOS D to LOS E in the AM. The southbound approach degrades from LOS E to LOS F in the PM and continues to operate at LOS F in the AM. In the single-stage analysis, the northbound approach additionally degrades from LOS D to LOS E in the PM. The eastbound left continues to have queueing of 50 feet. For the Lomas and Chama intersection, the southbound approach degrades from LOS D to LOS E in the AM. The westbound left degrades from LOS D to LOS E in the PM. The northbound approach continues to operate at LOS F in the PM. In the single-stage analysis, the northbound approach additionally degrades from LOS D to LOS E in the AM.

In the Build condition, at Lomas and Alcazar the northbound approach degrades from LOS D to LOS F in the PM. The eastbound left continues to operate at LOS E in the AM. The southbound approach continues to operate at LOS F in the AM and PM. In the single-stage analysis, the northbound approach additionally degrades from LOS C to LOS E in the AM. The eastbound left continues to have queueing of 50 feet. Lomas and Chama does not have any movements that are expected to degrade to failing level of service in the two-stage analysis. The southbound approach continues to operate at LOS E in the AM. The westbound left continues to operate at LOS E in the PM. In the single-stage analysis, the southbound approach degrades from LOS D to LOS E in the AM.

The Lomas and Louisiana signalized intersection operates acceptably: however, the eastbound, westbound and southbound left turn queues exceed available storage in all analysis years in the PM peak hour. Extension of the turn bay lengths are limited due to medians serving adjacent public streets. It is not considered desirable to close the medians to the adjacent public streets to extend the turn bays. However, 12% of the crashes at the intersection were rear-end crashes.

The right-in-right-out driveway on Louisiana operates acceptably.

Impacts from new trips associated with the proposed development are limited to the unacceptable operation of the northbound approach at Lomas and Alcazar in the PM. While minor street movements operate poorly, the Comprehensive Plan allows the minimum peak hour auto level of service on Lomas to be LOS E. Motorists may also seek alternate routes if high delays are present.

3. RECOMMENDATIONS

- All designs shall satisfy the Manual on Uniform Traffic Control Devices (MUTCD) and City of Albuquerque requirements.
- Stripe the northbound and southbound approaches at Lomas and Alcazar and the northbound approach at Lomas and Chama to have separate left/thru and right lanes.

II. PROPOSED DEVELOPMENT

A. LAND USE AND INTENSITY

The proposed development is a 47,000 square foot new automobile sales dealership.

The development is located at the southeast corner of Lomas Boulevard and Louisiana Boulevard, between Louisiana Boulevard and Chama Street, in Albuquerque, New Mexico. The proposed development will replace the Fiesta Mitsubishi and the former Cooperage restaurant.

B. DEVELOPMENT PHASING AND TIMING

The project is expected to be developed by 2024 and phasing is not anticipated.

III. STUDY AREA CONDITIONS

A. STUDY AREA

The study area consists of the following intersections:

- Lomas and Louisiana (existing signalized intersection)
- Lomas and Alcazar/site driveway 1 (existing unsignalized full access intersection)
- Lomas and Chama (existing unsignalized full access intersection)
- Louisiana and site driveway 2 (existing unsignalized partial access intersection

B. SITE ACCESSIBILITY

The development will have access via two main driveways. The primary driveway will be located on Lomas and the secondary driveway is to be located on Louisiana. Both Lomas and Louisiana driveways are existing driveways. The driveway on Lomas previously serving the Cooperage restaurant and the driveway located on Chama are both for emergency access only.

C. DATA SOURCES

The data used in this report consist of the traffic volumes described below, aerial photography and mapping from Google Earth®, and information provided by SMPC Architects.

IV. EXISTING CONDITIONS ANALYSIS

A. BACKGROUND

Roadway federal classification is updated approximately every four years. The classification process involves local governments, the Mid Region Council of Governments (MRCOG), New Mexico Department of Transportation (NMDOT), and the Federal Highway Administration (FHWA). The 2016 MRCOG Roadway Functional Classification Map classifies roadways based on their function. Roadways are subject to design guidance based on their functional classification, design speed, or based on Comprehensive Plan corridor designations.

1. ADJACENT ROADWAYS

Lomas and Louisiana are both classified as principal arterials under the MRCOG Functional Classification in the Albuquerque Metropolitan Planning Area. Lomas and Louisiana are both a six-lane section with a posted speed of 40 miles per hour (mph). The Albuquerque/Bernalillo County Comprehensive Plan has designated Lomas and Louisiana as major transit corridors. A major transit corridor is defined as a corridor that's "anticipated to be served by high frequency and local transit. These corridors prioritize transit above other modes to ensure a convenient and efficient transit system." Lomas and Louisiana in this vicinity are key corridors for new growth and the immediate area is designated as an activity center, which is a mix of residential and convenient services at a neighborhood scale, serving neighborhoods within a 20-minute walk or short bike ride.

Alcazar and Chama are local roads that serve neighborhoods in the vicinity and provide access to Lomas.

2. MULTI-MODAL CONDITIONS

Bicycle lanes are not present on Lomas or Louisiana or within the vicinity of the site. As major transit corridors within an activity center, the area is intended to be bicycle and pedestrian friendly. Transit use in this area is high with Lomas and Louisiana being high ridership corridors. ABQ Ride routes serving the area include Route 11 on Lomas, route 157 on Louisiana, and the Red Line Rapid Ride. Transit stops are located on Lomas and Louisiana directly adjacent to the proposed development.

B. EXISTING TRAFFIC CONDITIONS

The NMDOT has developed guidelines for Alternative Means to Develop Base Turning Movements Volumes for Traffic Impact Studies During COVID-19 Times, released

October 5, 2020. These guidelines provide three (3) methods to develop traffic counts for use in traffic studies. This analysis utilized Method 2 and Method 3.

Method 2 utilizes tube counts collected prior to COVID, with adjustments using Big Data sources, such as the StreetLight Data platform. Streetlight Data collects traffic data from location-based services, such as smartphones, and has data available preand post-COVID. The ratio between the tube counts and the data in StreetLight is applied to the StreetLight data to estimate the turning movements. Method 2 was used at the Lomas and Louisiana signalized intersection.

Method 3 utilizes traffic counts collected during COVID, with adjustments using the StreetLight Data platform. StreetLight Data is a big data source that collects traffic data from location-based services, such as smartphones, and has data available prior to COVID. The ratio between the pre-COVID to COVID data in StreetLight is applied to the traffic counts collected on June 3, 2021, to estimate the turning movements. Method 3 was used at the Lomas/Alcazar and Lomas/Chama unsignalized intersections. Streetlight Data did not have complete coverage of turning movements for the minor streets, the traffic counts collected in 2021 were used.

The StreetLight source data is included in Appendix A.

C. LEVEL OF SERVICE DEFINITIONS

The Highway Capacity Manual Sixth Edition (HCM) defines Level of Service (LOS) for un-signalized intersections in Table 1 as follows:

	Table 1 LOS Definitions									
Level of Service	Definition	Signalized (sec/veh)	Unsignalized (sec/veh)							
Α	Most vehicles do not stop	<10	<10							
В	Some vehicles stop	>10 and <20	>10 and <15							
С	Significant numbers of vehicles stop	>20 and <35	>15 and <25							
D	Many vehicles stop	>35 and <55	>25 and <35							
Е	Limit of acceptable delay	>55 and <80	>35 and <50							
F	Unacceptable delay	>80	>50							

The City of Albuquerque has established LOS D as the generally acceptable level of service in urban areas and when intersections operate below this level, improvements are considered, where feasible. Other critical movements are also desired to have LOS D or better if possible.

The Comprehensive Plan allows the minimum peak hour auto level of service on a major transit corridor within an activity center to be LOS E (Policy 6.1.6).

D. EXISTING INTERSECTION CAPACITY ANALYSIS

The existing intersections traffic volume were analyzed using Highway Capacity Software version 7 (HCS7), which uses the intersection methodology from the Sixth Edition of the Highway Capacity Manual (HCM). Individual intersection output for the existing conditions analysis is included in Appendix B. The results are summarized in Table 2 and Table 3.

The Lomas and Louisiana signalized intersection operates acceptably with an overall LOS C in AM and PM, and no movement worse than LOS D.

Queueing exceeds the available storage for eastbound, westbound, and southbound lefts in the PM with queue storage ratios (QSRs) of 1.09, 1.15, and 1.07 respectively. The westbound left queue is 126.7 feet, which exceeds available storage by about 17 feet. However, the queue does not spill into the Alcazar intersection to the east, which is approximately 230 feet from the stop bar.

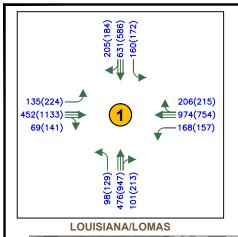
Table 2 Existing Signalized Intersection Results									
Intercodien	20	021 AM Pe	ak	2021 PM Peak					
Intersection	Delay	LOS	Max V/C	Delay	LOS	Max V/C			
Lomas & Louisiana 28.2 C 0.80 34.4 C 34.4									

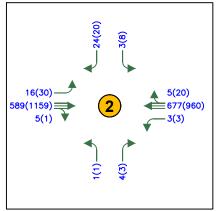
The unsignalized intersections were evaluated with single-stage and two-stage gap acceptance. Two-stage gap acceptance allows the minor street driver to cross the major street and pause in the median between traffic flows before completing the movement. Results for both single-stage and two-stage are reported in Table 3 below. The results below indicate that delays associated with single-stage movements are higher than those performing two-stage movements.

At the Lomas and Alcazar intersection, the southbound approach operates unacceptably in both single-stage and two-stage analyses. Results indicate the single-stage intersection performance is worse than the two-stage intersection performance at this intersection. As a single stage, the southbound left is LOS F in AM and PM peak hours. As a two-stage, the southbound left is LOS F in the AM and LOS E in the PM. The eastbound left turn is expected to have queues of 50 feet, which may not fit entirely within the available storage. Extending this turn lane is not possible due to the westbound left turn lane serving Lomas and Louisiana.

The northbound approach at Lomas and Chama has an unacceptable LOS F in the PM in both single-stage and two-stage analyses.

As mentioned above, the Comprehensive Plan allows the minimum peak hour auto level of service on Lomas to be LOS E.

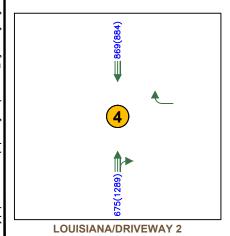

Motorists who regularly perform these movements have alternative routes via Marble Avenue to the Pennsylvania signalized intersection, or the Albuquerque Public Schools Food Distribution driveway onto Louisiana, if these delays are actually present. The locations of these minor public streets are not amenable to signalization or closure.


1. ADDITIONAL ANALYSIS OF CHAMA

The closure of the median opening east of Chama was evaluated due to concerns with insufficient storage lengths of the westbound left turn lane at Chama. The analysis found that under existing conditions the westbound left experiences queueing of one (1) vehicle in the AM and two (2) vehicles in the PM. Storage lengths are of an acceptable length.

As described in the following chapter, trips to the site will not enter from Chama and were not assigned to the westbound left turn lane at Lomas and Chama. Additional analysis of the westbound left was not conducted in the No Build and Build conditions.

Table 3 Existing Unsignalized Intersection Results									
		2021 AM Peak				2021 PM Peak			
Intersection/Movement	Delay (sec)	V/C	Queue* (ft)	LOS	Delay (sec)	V/C	Queue* (ft)	LOS	
Lomas and Alcazar (1-stage) Eastbound Left Westbound Left Northbound Approach Southbound Approach	33.0 12.1 19.9 148.3	0.34 0.01 0.02 0.80	50 0 25 100	D B C F	19.8 21.7 34.7 100.3	0.12 0.01 0.03 0.65	25 0 25 75	CCDF	
Lomas and Alcazar (2-stage) Eastbound Left Westbound Left Northbound Approach Southbound Approach	33.0 12.1 16.5 79.3	0.34 0.01 0.02 0.58	50 0 25 75	D B C F	19.8 21.7 29.5 47.1	0.12 0.01 0.03 0.41	25 0 25 50		
Lomas and Chama (1-stage) Eastbound Left Westbound Left Northbound Approach Southbound Approach	17.6 11.5 30.1 30.3	0.04 0.10 0.34 0.06	25 25 50 25	C B D	17.1 30.9 205.3 27.4	0.04 0.33 0.93 0.12	25 50 125 25	C D F D	
Lomas and Chama (2-stage) Eastbound Left Westbound Left Northbound Approach Southbound Approach * – HCM 95 th percentile queue	17.6 11.5 21.5 31.7	0.04 0.10 0.25 0.06	25 25 50 25	C B C D	17.0 30.5 72.0 22.4	0.04 0.33 0.54 0.10	25 50 75 25	C D F C	



10(11) 560(1120) 29(28) 3 8(9) 670(951) 18(35) 18(35)

DRIVEWAY 1/ALCAZAR/LOMAS

1 COUISIANA BLVD

Thru Lanes (# as indicated)

Turning Lanes (# as indicated)

1234(1234) AM(PM) Traffic Counts

X(X) AM(PM) Level of Service (LOS)

Bohannan A Huston
www.bhinc.com 800.877.5332

FIESTA SUBARU TIA
ALBUQUERQUE NEW MEXICO
SITE TRAFFIC ANALYSIS

FIGURE 3
EXISTING TRAFFIC VOLUMES

P:\20220043\TRANS\Study\Report-Production\Report Figures\20220043_Figures.dwg Aug 05, 2021 - 10:14am

E. CRASH HISTORY

The 3-year crash history evaluated crashes occurring at the Lomas and Louisiana intersection from 2017-2019. Results are displayed in summarized in Table 4 through Table 7 below. The full crash history is located in Appendix A.

Crashes totaled 149, with 55 injury crashes and 94 property damage crashes. No fatal crashes were reported.

Table 4 Crash Severity (2017-2019)							
Severity	Frequency						
Property Damage	94						
Injury	55						
Fatal	0						
Total	149						

The Lomas and Louisiana intersection has a crash rate in 2019 of 264 per 100 million VMT, which is lower than the Bernalillo County crash rate (344 per 100M VMT) and higher than the New Mexico crash rate (173 per 100M VMT) according to the 2019 New Mexico Traffic Crash Annual Report.

Table 5 Cra	sh Rate (2019)
National	207
New Mexico	173
Bernalillo County	344
Lomas/Louisiana Intersection	264

The top contributing factors include driver inattention (30), failed to yield right of way (30), disregarded traffic signal (18), and alcohol/drug involved (10).

Table 6 Crash Top Co	ntributing Factors (2017-2019)
Top Contributing Factors	Frequency
Alcohol/Drug Involved	10
Avoid No Contact - Vehicle	4
Defective Steering	1
Disregarded Traffic Signal	18
Driver Inattention	30
Drove Left Of Center	1
Excessive Speed	3
Failed to Yield Right of Way	30
Following Too Closely	8
Improper Lane Change	4
Improper Overtaking	3
Inadequate Brakes	1
Made Improper Turn	3
Missing Data	10
None	5
Other - No Driver Error	3
Other Improper Driving	4
Other Mechanical Defect	3
Pedestrian Error	4
Speed Too Fast for Conditions	4
Total	149

The types of crashes highest frequency include those with other vehicles while one turns left or right/entering at angle (31), other angle crash (23), and rear end collision (19). A total of 5 fixed object crashes were reported.

Table 7 Crash Analysis (2017-201	19)
Analysis	Frequency
Fixed Object - Light Standard (Light Pole)	2
Fixed Object - Sign or Sign Post (Traffic)	1
Fixed Object - Traffic Signal Standard	2
Left Blank	26
Other Vehicle - All Others/Entering At Angle	2
Other Vehicle - Both Going Straight/Entering At Angle	19
Other Vehicle - Both Turn Left/Entering At Angle	1
Other Vehicle - Both Turn Right/Entering At Angle	1
Other Vehicle - From Opposite Direction	7
Other Vehicle - From Opposite Direction/All Others	1
Other Vehicle - From Opposite Direction/Both Going Straight	2
Other Vehicle - From Opposite Direction/One Left Turn	4
Other Vehicle - From Opposite Direction/One Vehicle Spun On Roadway Before Being Hit	1
Other Vehicle - From Same Direction/All Others	2
Other Vehicle - From Same Direction/Both Going Straight	14
Other Vehicle - From Same Direction/One Stopped	2
Other Vehicle - From Same Direction/Rear End Collision	19
Other Vehicle - From Same Direction/Sideswipe Collision	7
Other Vehicle - One Left Turn/Entering At Angle	25
Other Vehicle - One Right Turn/Entering At Angle	6
Pedestrian Collision - Vehicle Going Straight	4
Vehicle Struck Pedalcyclist At Angle	1
Total	149

V. PROJECTED TRAFFIC

A. SITE TRAFFIC FORECASTING

1. TRIP GENERATION

Generated trips are broken down into three types; 1) primary, 2) pass-by trips, and 3) diverted link. The Trip Generation report defines these trips as follows:

- Primary Trips These trips are made for the specific purpose of visiting the generator. The stop at that generator is the primary reason for the trip. For example, a home to shopping to home combination of trips is a primary trip set.
- Pass-by Trips These trips are made as intermediate stops on the way
 from an origin to a primary trip generation. Pass-by trips are attracted
 from the traffic passing the site on an adjacent street that contains direct
 access to the generator site. These trips do not require a diversion from
 another roadway. For example, stopping at the store on the way home
 from work is an example of a pass-by trip. No pass-by trips we used in this
 analysis.
- Diverted Linked Trips These trips are attracted from the traffic volume on the roadway within the vicinity of the generator, but which require a diversion from that roadway to another roadway to gain access to the site. The roadways could include streets or freeways adjacent to the generator, but without access to the generator. For this study, the diverted link trips have been included in with the primary trips.

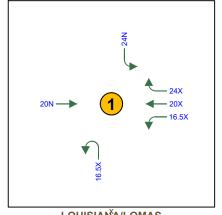
This study evaluates primary trips only.

The trip generation based on the 10th Edition of the Institute of Transportation engineer's (ITE) Trip Generation Manual is shown in Table 8 below with the following considerations. The trip generation is based on the peak hour of the adjacent street traffic.

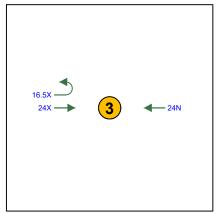
Table 8 Trip Generation									
Land Use	ITE Code			AM Enter	AM Exit	PM Enter	PM Exit		
Automobile Sales	840	47,000	1,318	64	24	42	64		

2. TRIP DISTRIBUTION AND ASSIGNMENT

The trip distribution was determined using a modified gravity model that considered retail trips within a 2-mile radius of the site based on population.

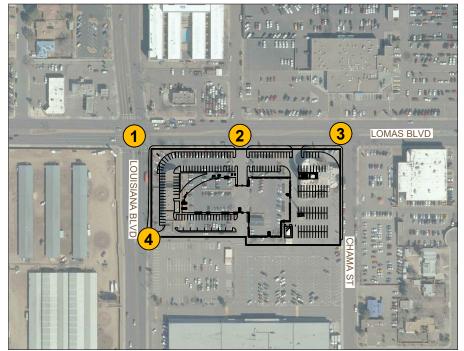

The gravity model utilized socioeconomic data obtained from the Mid Region Council of Governments (MRCOG), which included population and employment estimates for each subarea within the Albuquerque Metropolitan Planning Area to develop the trip distribution.

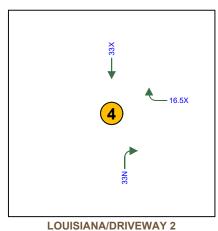
The socioeconomic data for the year 2021 was estimated by interpolating between the 2015 and 2040 socioeconomic data available for MRCOG.

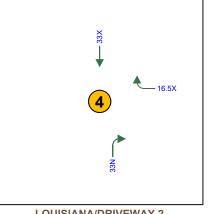

Spreadsheets showing the development of the trip distribution are included in Appendix C. The trip distribution percentages and assigned traffic volumes is shown in Figure 5 and Figure 6.

3. FUTURE PROJECTIONS

A background growth rate of 2% was applied to provide an estimate of potential future growth of traffic at all intersections evaluated. The growth rate determination and data are summarized in the spreadsheets included in Appendix C. Figure 7 on page 23 shows the 2024 No Build traffic volumes.



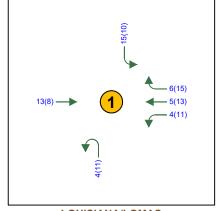


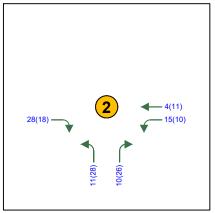

LOUISIAN A/LOMAS

DRIVEWAY 1/ALCAZAR/LOMAS

CHAMA/LOMAS

LEGEND Thru Lanes (# as indicated) Turning Lanes (# as indicated) 1234(1234) **Trip Assignment** Percentages Entering


Exiting



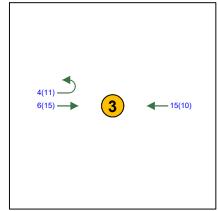
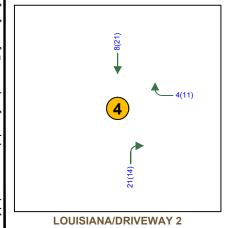

FIESTA SUBARU TIA ALBUQUERQUE NEW MEXICO SITE TRAFFIC ANALYSIS

FIGURE 5 TRIP DISTRIBUTION PERCENTAGES

P:\20220043\TRANS\Study\Report-Production\Report Figures\20220043_Figures.dwg Aug 05, 2021 - 10:14am



LOUISIANA/LOMAS

DRIVEWAY 1/ALCAZAR/LOMAS

CHAMA/LOMAS

Thru Lanes (# as indicated)

Turning Lanes (# as indicated)

1234(1234)

AM(PM) Traffic Counts

FIESTA SUBARU TIA
ALBUQUERQUE NEW MEXICO
SITE TRAFFIC ANALYSIS

FIGURE 6
TRIP ASSIGNMENT VOLUMES

VI. TRAFFIC AND IMPROVEMENT ANALYSIS

The following section will discuss the results of the future year traffic analysis. The intersection capacity analysis was completed using HCS7 which implements the Highway Capacity Manual procedures.

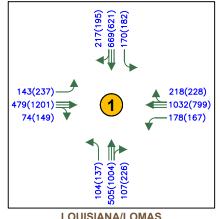
1. NO BUILD INTERSECTION CAPACITY ANALYSIS

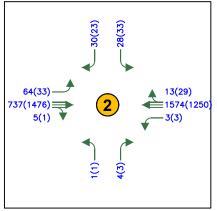
The 2024 No Build scenario assumed that the proposed development project is not completed. The extension of Woodmont to Paseo del Norte was not included in the No Build scenario. Table 9 and Table 10 shows the 2024 No Build results. The HCS output is included in Appendix D.

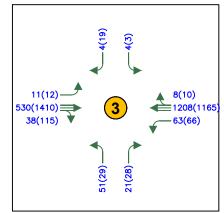
The Lomas and Louisiana signalized intersection operates acceptably in the No Build condition with an overall LOS C in AM, and no movement worse than LOS D. The overall LOS in the PM degrades from C to D.

Queueing continues to exceed the available storage for eastbound, westbound, and southbound lefts in the PM with queue storage ratios (QSRs) increasing to 1.20, 1.29, and 1.12 respectively. The westbound left queue is 141.5 feet, which exceeds available storage by about 32 feet. However, the queue does not spill into the Alcazar intersection to the east, which is approximately 230 feet from the stop bar.

Table 9 No Build Signalized Intersection Results									
Intersection	20	024 AM Pe	ak	2024 PM Peak					
Intersection	Delay LOS Max V/C		Delay	LOS	Max V/C				
Lomas & Louisiana	28.8	C	0.81	36.2	D	0.86			

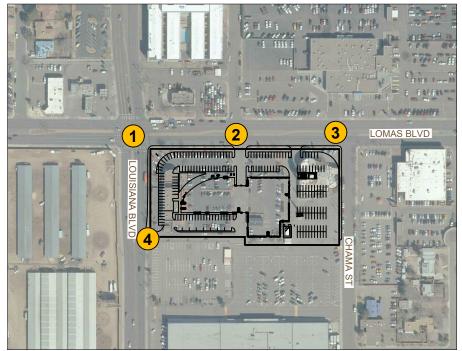

The northbound and southbound approaches at both unsignalized intersections continue to operate poorly due to high cross traffic in the No Build condition. This is considered acceptable as they are public streets and have alternate routes to avoid this delay for those who drive this frequently.

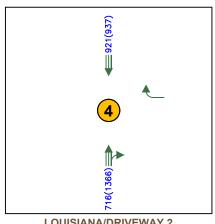

At the Lomas and Alcazar intersection in the single-stage analysis, the eastbound left degrades from LOS D to LOS E in the AM, and the northbound approach degrades from LOS D to LOS E in the PM. The southbound approach continues to operate at LOS F in the AM and PM. In the two-stage analysis, the eastbound left degrades from LOS D to LOS E in the AM. The southbound approach degrades from LOS E to LOS F in the PM, and continues to operate at LOS F in the AM. The eastbound left turn is expected to have queues of 50 feet, which may not fit entirely within the available storage. Extending this turn lane is not possible due to the westbound left turn lane serving Lomas and Louisiana.


For the Lomas and Chama intersection in the single-stage analysis, the northbound approach degrades from LOS D to LOS E in the AM, and the westbound left degrades from LOS D to LOS E in the PM. The northbound approach continues to operate at LOS F in the PM. In the two-stage analysis, the southbound approach degrades from LOS D to LOS E in the AM. The westbound left degrades from LOS D to LOS E in the PM. The northbound approach continues to operate at LOS F in the PM.

As mentioned above, the Comprehensive Plan allows the minimum peak hour auto level of service on Lomas to be LOS E. Motorists may also seek alternate routes if high delays are present.

Table 10 No Build Unsignalized Intersection Results									
		2024 A	AM Peak			2024	PM Peak		
Intersection/Movement	Delay (sec)	V/C	Queue* (ft)	LOS	Delay (sec)	V/C	Queue* (ft)	LOS	
Lomas and Alcazar (1-stage)									
Eastbound Left	39.4	0.40	50	Е	21.6	0.14	25	С	
Westbound Left	12.5	0.01	0	В	23.5	0.02	25	С	
Northbound Approach	22.4	0.03	25	С	40.2	0.04	25	Е	
Southbound Approach	246.0	1.05	125	F	152.7	0.82	100	F	
Lomas and Alcazar (2-stage) Eastbound Left Westbound Left Northbound Approach Southbound Approach	39.4 12.5 17.9 109.2	0.40 0.01 0.02 0.70	50 0 25 100	E B C F	21.6 23.5 33.3 59.1	0.14 0.02 0.03 0.49	25 25 25 25 75	C C D F	
Lomas and Chama (1-stage) Eastbound Left Westbound Left Northbound Approach Southbound Approach	18.8 11.8 35.8 34.2	0.04 0.11 0.41 0.07	25 25 50 25	C B E D	18.1 36.0 350.6 31.5	0.05 0.39 1.26 0.15	25 50 150 25	C E F D	
Lomas and Chama (2-stage) Eastbound Left Westbound Left Northbound Approach Southbound Approach	18.8 11.8 23.7 35.7	0.04 0.11 0.29 0.07	25 25 50 25	C B C E	18.1 36.0 102.6 25.0	0.05 0.39 0.68 0.12	25 50 100 25	C E F D	
* – HCM 95 th percentile queue	rounde	d to ne	ext 25-foot	increi	ment				





LOUISIANA/LOMAS


DRIVEWAY 1/ALCAZAR/LOMAS

CHAMA/LOMAS

LOUISIANA/DRIVEWAY 2

FIESTA SUBARU TIA ALBUQUERQUE NEW MEXICO SITE TRAFFIC ANALYSIS

FIGURE 7 **NO BUILD TRAFFIC VOLUMES**

2. Build Intersection Capacity Analysis

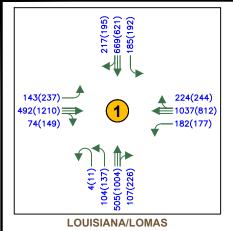
The trips generated by the site (Table 8) were assigned to the intersections using the trip percentages and associated volumes shown in Figure 5 and Figure 6. These trips were added to the 2024 No Build traffic projections shown in Appendix C. The 2024 Build capacity analysis is shown in Table 11 and Table 12. The individual intersection output is included in Appendix E.

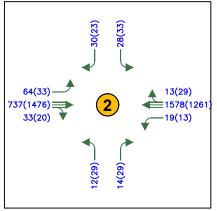
The Lomas and Louisiana signalized intersection operates acceptably with an overall LOS C in AM and LOS D in the PM, and no movement worse than LOS D.

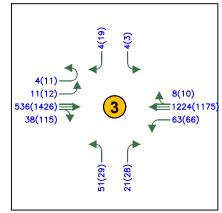
Queueing continues to exceed the available storage for eastbound, westbound, and southbound lefts in the PM with queue storage ratios (QSRs) increasing to 1.21, 1.38, and 1.20 respectively. The westbound left queue is 151.4 feet, which exceeds available storage by about 41 feet. However, the queue does not spill into the Alcazar intersection to the east, which is approximately 230 feet from the stop bar.

Table 11 Build Signalized Intersection Results													
Intersection	20	024 AM Pe	ak	2024 PM Peak									
mersection	Delay	LOS	Max V/C	Delay	LOS	Max V/C							
Lomas & Louisiana	29.1	C	0.81	36.9	D	0.86							

The northbound and southbound approaches at both unsignalized intersections continue to operate poorly due to high cross traffic in the No Build condition.

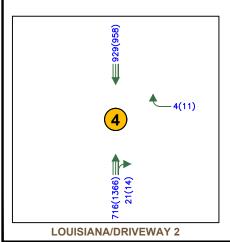

At Lomas and Alcazar in the single-stage analysis, the northbound approach degrades from LOS C to LOS E in the AM and from LOS E to LOS F in the PM. The southbound approach continues to operate at LOS F in the AM and PM. In the two-stage analysis, the northbound approach degrades from LOS D to LOS F in the PM. The eastbound left continues to operate at LOS E in the AM. The southbound approach continues to operate at LOS F in the AM and PM. The eastbound left turn is expected to have queues of 50 feet, which may not fit entirely within the available storage. Extending this turn lane is not possible due to the westbound left turn lane serving Lomas and Louisiana.


At the Lomas and Chama intersection in the single-stage analysis, the northbound approach degrades from LOS C to LOS E in the AM and from LOS E to LOS F in the PM. The southbound approach continues to operate at LOS F in the AM and PM. In the two-does not have any movements that are expected to degrade to failing level of service. The southbound approach continues to operate at LOS E in the AM. The westbound left continues to operate at LOS E in the PM. The northbound approach continues to operate at LOS F in the PM.


As mentioned above, the Comprehensive Plan allows the minimum peak hour auto level of service on Lomas to be LOS E. Motorists may also seek alternate routes if high delays are present.

Mitigation of the minor approaches was evaluated with separate lanes for the left/thru and right movements, which helps those turning right to experience less delay.

Table 12	Build l	Jnsign	alized Inte	rsectio	on Result	S						
		2024 A	M Peak		2024 PM Peak							
Intersection/Movement	Delay (sec)	V/C	Queue* (ft)	LOS	Delay (sec)	V/C	Queue* (ft)	LOS				
Lomas and Alcazar (1-stage)												
Eastbound Left	39.7	0.41	50	Е	21.9	0.14	25	С				
Westbound Left	13.0	0.04	25	В	25.1	0.07	25	D				
Northbound Approach	49.0	0.26	25	Е	244.7	1.05	125	F				
Southbound Approach	295.9	1.16	150	F	222.2	0.99	125	F				
Lomas and Alcazar (2-stage)	20.7	0.41	FO.	_	01.0	0.14	٥٢	_				
Eastbound Left	39.7	0.41	50	E	21.9	0.14	25	С				
Westbound Left	13.0	0.04	25	В	25.1 125.1	0.07	25	D				
Northbound Approach	30.2 129.5	0.17	25 100	D F	71.5	0.75 0.55	100 75	F F				
Southbound Approach Lomas and Alcazar (2-stage)	127.3	0.77	100	Г	/1.5	0.55	/3	Г				
*with mitigation												
Eastbound Left	39.7	0.41	50	Е	21.9	0.14	25	С				
Westbound Left	13.0	0.04	25	В	25.1	0.07	25	D				
Northbound Left/Thru	48.0	0.14	25	Е	162.5	0.64	75	F				
Northbound Right	12.4	0.03	25	В	19.7	0.11	25	С				
Southbound Left/Thru	167.1	0.64	75	F	89.4	0.47	50	F				
Southbound Right	21.2	0.13	25	С	16.9	0.08	25	С				
Lomas and Chama (1-stage)												
Eastbound Left	17.7	0.05	25	С	16.3	0.07	25	С				
Westbound Left	11.9	0.12	25	В	37.0	0.39	50	Е				
Northbound Approach	37.6	0.42	50	Е	410.4	1.38	150	F				
Southbound Approach	35.6	0.07	25	Е	33.5	0.16	25	D				
Lomas and Chama (2-stage)												
Eastbound Left	17.7	0.05	25	С	16.3	0.07	25	С				
Westbound Left	11.9	0.12	25	В	37.0	0.39	50	Е				
Northbound Approach	24.5	0.30	50	С	120.4	0.73	100	F				
Southbound Approach	36.6	0.07	25	Е	25.6	0.12	25	D				
Lomas and Alcazar (2-stage)												
*with mitigation	177	0.05	0.5		1.4.0	0.07	0.5					
Eastbound Left	17.7	0.05	25	С	16.3	0.07	25	С				
Westbound Left	11.9	0.12	25	В	37.0	0.39	50 75	E				
Northbound Left/Thru	27.6	0.26	25	D	154.3	0.62	75 25	F				
Northbound Right	11.4	0.04	25	В	20.3	0.11	25	СС				
Southbound Approach	36.6	0.07	25	Е	25.6	0.12	25	D				
Louisiana & Driveway 2 Westbound Right	12.1	0.01	0	В	17.4	0.04	25	С				
* – HCM 95 th percentile queue	•				•	•						



DRIVEWAY 1/ALCAZAR/LOMAS

CHAMA/LOMAS

Thru Lanes (# as indicated)

Turning Lanes (# as indicated)

1234(1234) AM(PM) Traffic Counts

X(X) AM(PM) Level of Service (LOS)

Bohannan & Huston
www.bhinc.com 800.877.5332

FIESTA SUBARU TIA
ALBUQUERQUE NEW MEXICO
SITE TRAFFIC ANALYSIS

FIGURE 8
BUILD TRAFFIC VOLUMES

VII. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The traffic analysis found that the unsignalized intersections do not operate at acceptable levels of services under existing 2021, No Build 2024, and Build 2024, particularly for the northbound and southbound approaches. The conclusions report results for both single-stage and two-stage gap acceptance analyses. The results indicate that delays associated with single-stage movements are higher than those performing two-stage movements.

In the existing condition, Lomas and Alcazar has failing movements which include the southbound approach in the AM and PM for both single-stage and two-stage analyses. The eastbound left turn is expected to have queues of 50 feet, which may not fit entirely within the available storage. Extending this turn lane is not possible due to the westbound left turn lane serving Lomas and Louisiana. The northbound approach at Lomas and Chama fails in the PM for both single-stage and two-stage analyses.

In the No Build condition, at Lomas and Alcazar the eastbound left degrades from LOS D to LOS E in the AM. The southbound approach degrades from LOS E to LOS F in the PM and continues to operate at LOS F in the AM. In the single-stage analysis, the northbound approach additionally degrades from LOS D to LOS E in the PM. The eastbound left continues to have queueing of 50 feet. For the Lomas and Chama intersection, the southbound approach degrades from LOS D to LOS E in the AM. The westbound left degrades from LOS D to LOS E in the PM. The northbound approach continues to operate at LOS F in the PM. In the single-stage analysis, the northbound approach additionally degrades from LOS D to LOS E in the AM.

In the Build condition, at Lomas and Alcazar the northbound approach degrades from LOS D to LOS F in the PM. The eastbound left continues to operate at LOS E in the AM. The southbound approach continues to operate at LOS F in the AM and PM. In the single-stage analysis, the northbound approach additionally degrades from LOS C to LOS E in the AM. The eastbound left continues to have queueing of 50 feet. Lomas and Chama does not have any movements that are expected to degrade to failing level of service in the two-stage analysis. The southbound approach continues to operate at LOS E in the AM. The westbound left continues to operate at LOS E in the PM. In the single-stage analysis, the southbound approach degrades from LOS D to LOS E in the AM.

The Lomas and Louisiana signalized intersection operates acceptably: however, the westbound left queue exceeds available storage in all analysis years. The queue does not extend into the Alcazar intersection to the east.

The right-in-right-out driveway on Louisiana operates acceptably.

Impacts from new trips associated with the proposed development are limited to the unacceptable operation of the northbound approach at Lomas and Alcazar in the PM. While minor street movements operate poorly, the Comprehensive Plan allows the minimum peak hour auto level of service on Lomas to be LOS E. Motorists may also seek alternate routes if high delays are present.

B. RECOMMENDATIONS

- All designs shall satisfy the Manual on Uniform Traffic Control Devices (MUTCD) and City of Albuquerque requirements.
- Stripe the northbound and southbound approaches at Lomas and Alcazar and the northbound approach at Lomas and Chama to have separate left/thru and right lanes.

APPENDIX A **EXISTING DATA**

Cleland Counts

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

Counter R.C.

File Name: Lomas Blvd and Alcazar St. 1

Site Code : 06032021 Start Date : 6/3/2021

Page No : 1

										Grou	ıps Print	ted- Cars	- Truck	s - Buse	es										
	Lomas Blvd Eastbound									as Blvd tbound					Auto G	roup D	riveway								
Start Time	Left	Thru	Right		Peds	App. Total	Left	Thru	Right		Peds	App. Total	Left	Thru			Peds	App. Total	Left	Thru	South! Right	Bikes	Peds	App. Total	Int. Total
06:00 AM	2	36	0	0	0	38	0	71	1	0	2	74	0	0	0	0	0	0	2	0	3	0	0	5	117
06:15 AM	3	54	Ö	Ö	Ö	57	Ö	114	1	Ö	0	115	Ö	Ö	Ö	Ö	Ö	ő	1	Ö	3	Ö	Ö	4	176
06:30 AM	0	58	0	0	0	58	0	138	0	0	1	139	0	0	0	0	0	0	1	0	2	0	0	3	200
06:45 AM	3	58	0	0	0	61	1	131	0	0	0	132	0	0	0	0	0	0	2	0	6	0	0	8	201
Total	8	206	0	0	0	214	1	454	2	0	3	460	0	0	0	0	0	0	6	0	14	0	0	20	694
07:00 AM	2	108	0	0	0	110	0	125	0	0	0	125	0	0	0	0	0	0	2	0	7	0	0	9	244
07:15 AM	4	110	0	0	1	115	1	187	1	0	0	189	0	0	0	0	0	0	1	0	13	1	1	16	320
07:30 AM	2	122	0	1	0	125	0	202	2	0	0	204	0	0	0	0	0	0	0	0	6	1	0	7	336
07:45 AM	4	127	1_	0	0	132	1_	208	3	0	0	212	0	0	0	0	0	0	0	0	7	0	0	7	351
Total	12	467	1	1	1	482	2	722	6	0	0	730	0	0	0	0	0	0	3	0	33	2	1	39	1251
08:00 AM	4	129	0	0	0	133	2	153	0	0	0	155	0	0	0	0	0	0	1	0	9	0	0	10	298
08:15 AM	5	144	0	1	3	153	0	162	0	1	0	163	1	0	0	0	0	1	1	0	8	0	1	10	327
08:30 AM	4	142	2	0	0	148	0	171	3	0	0	174	0	0	2	0	0	2	1	0	3	0	0	4	328
08:45 AM	3	174	3	0	1_	181	1	191	2	0	1_	195	0	0	2	0	0	2	0	0	4	0	0	4	382
Total	16	589	5	1	4	615	3	677	5	1	1	687	1	0	4	0	0	5	3	0	24	0	1	28	1335
*** BREAK ***																									
04:00 PM	17	261	0	0	0	278	2	221	5	0	0	228	0	1	0	0	0	1	2	0	7	0	0	9	516
04:15 PM	10	303	0	0	0	313	2	212	0	0	2	216	0	0	2	0	0	2	2	0	6	0	0	8	539
04:30 PM	6	273	0	0	0	279	2	221	4	0	0	227	0	0	1	0	0	1	1	0	4	0	1	6	513
04:45 PM	10	293	0	0	0	303	0	239	5	1	0	245	0	0	1_	0	0	1	1_	0	3	0	0	4	553
Total	43	1130	0	0	0	1173	6	893	14	1	2	916	0	1	4	0	0	5	6	0	20	0	1	27	2121
05:00 PM	9	277	1	0	0	287	0	245	8	0	0	253	0	0	0	0	0	0	4	0	6	0	0	10	550
05:15 PM	5	316	0	0	0	321	1	255	3	0	0	259	1	0	1	0	0	2	2	0	7	0	0	9	591
05:30 PM	3	241	0	0	0	244	1	220	4	0	0	225	0	0	0	0	0	0	5	0	7	0	0	12	481
05:45 PM Total	<u>7</u> 24	<u>244</u> 1078	1 2	0	0	252 1104	1 3	230 950	2 17	0	1 1	234 971	1_ 2	1_ 1	0 1	0	0	2	3_ 14	0	4 24	<u>0</u> 0	0	<u>7</u> 38	495 2117
'																•	-	- 1		•			•		
06:00 PM	6	197	0	0	0	203	1	209	5	0	0	215	0	0	2	0	0	2	1	0	4	0	0	5	425
06:15 PM	7	211	0	0	0	218	0	194	5	0	0	199	0	0	0	0	0	0	1	0	4	0	0	5	422
06:30 PM 06:45 PM	9	150	0	0	0	159 140	0 0	173 136	5	0	0	178	0 1	1	1	0	1 0	3 1	2 1	0	5	0	0	7	347
Total	<u>5</u> 27	135 693	0	0	0	720	1	712	2 17	0	0	138 730	1	<u> </u>	3	0	1	6	5	0	<u>5</u> 18	0	0	23	285 1479
Grand Total	130	4163	8	2	5	4308	16	4408	61	2	7	4494	4	3	12	0	1	20	37	0	133	2	3	175	8997
Apprch %	3	96.6	0.2	0	0.1	+300	0.4	98.1	1.4	0	0.2	7734	20	15	60	0	5	20	21.1	0	76	1.1	1.7	173	0331
Total %	1.4	46.3	0.2	0	0.1	47.9	0.4	49	0.7	0	0.2	49.9	0	0	0.1	0	0	0.2	0.4	0	1.5	0	0	1.9	
Cars	130	4143	8	2	5	4288	16	4390	61	2	7	4476	3	3	12	0	1	19	36	0	132	2	3	173	8956
% Cars	100	99.5	100	100	100	99.5	100	99.6	100	100	100	99.6	75	100	100	Ö	100	95	97.3	0	99.2	100	100	98.9	99.5
	_	-	_	_		- 1		-	_	_		- 1				-		- 1		-				_	

Cleland Counts

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: Lomas Blvd and Alcazar St. 1

Site Code : 06032021 Start Date : 6/3/2021

Page No : 2

Groups Printed- Cars - Trucks - Buses

	Crouder timou Gare Tracke Budge														-										
	Lomas Blvd						Lomas Blvd						Fiesta Auto Group Driveway												
			Westbound						Northbound																
	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
Trucks	0	7	0	0	0	7	0	2	0	0	0	2	1	0	0	0	0	1	1	0	0	0	0	1	11
% Trucks	0	0.2	0	0	0	0.2	0	0	0	0	0	0	25	0	0	0	0	5	2.7	0	0	0	0	0.6	0.1
Buses	0	13	0	0	0	13	0	16	0	0	0	16	0	0	0	0	0	0	0	0	1	0	0	1	30
% Buses	0	0.3	0	0	0	0.3	0	0.4	0	0	0	0.4	0	0	0	0	0	0	0	0	0.8	0	0	0.6	0.3

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: Lomas Blvd and Alcazar St. 1

Site Code : 06032021 Start Date : 6/3/2021

Page No : 3

		Lomas	s Blvd			Loma	s Blvd		Fies	ta Auto G	roup Drive	way		Alcaz	ar St.		
		Eastb				Westk				North	bound			Southl	oound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right /	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis																	
Peak Hour for Entire	Intersection	n Begins a	at 08:00 A	M.													
08:00 AM	4	129	0	133	2	153	0	155	0	0	0	0	1	0	9	10	298
08:15 AM	5	144	0	149	0	162	0	162	1	0	0	1	1	0	8	9	321
08:30 AM	4	142	2	148	0	171	3	174	0	0	2	2	1	0	3	4	328
08:45 AM	3	174	3	180	1	191	2	194	0	0	2	2	0	0	4	4	380
Total Volume	16	589	5	610	3	677	5	685	1	0	4	5	3	0	24	27	1327
% App. Total	2.6	96.6	0.8		0.4	98.8	0.7		20	0	80		11.1	0	88.9		
PHF	.800	.846	.417	.847	.375	.886	.417	.883	.250	.000	.500	.625	.750	.000	.667	.675	.873
Cars	16	583	5	604	3	674	5	682	0	0	4	4	3	0	24	27	1317
% Cars	100	99.0	100	99.0	100	99.6	100	99.6	0	0	100	80.0	100	0	100	100	99.2
Trucks	0	4	0	4	0	1	0	1	1	0	0	1	0	0	0	0	6
% Trucks	0	0.7	0	0.7	0	0.1	0	0.1	100	0	0	20.0	0	0	0	0	0.5
Buses	0	2	0	2	0	2	0	2	0	0	0	0	0	0	0	0	4
% Buses	0	0.3	0	0.3	0	0.3	0	0.3	0	0	0	0	0	0	0	0	0.3
Peak Hour Analysis																	
Peak Hour for Entire								1				. 1				_ 1	
04:30 PM	6	273	0	279	2	221	4	227	0	0	1	1	1	0	4	5	512
04:45 PM	10	293	0	303	0	239	5	244	0	0	1	1	1	0	3	4	552
05:00 PM	9	277	1	287	0	245	8	253	0	0	0	0	4	0	6	10	550
05:15 PM	5	316	0	321	1	255	3	259	1	0	1	2	2	0	7	9	591
Total Volume	30	1159	1	1190	3	960	20	983	1	0	3	4	8	0	20	28	2205
% App. Total	2.5	97.4	0.1		0.3	97.7	2		25	0	75		28.6	0	71.4		
PHF	.750	.917	.250	.927	.375	.941	.625	.949	.250	.000	.750	.500	.500	.000	.714	.700	.933
Cars	30	1157	1	1188	3	956	20	979	1	0	3	4	8	0	20	28	2199
% Cars	100	99.8	100	99.8	100	99.6	100	99.6	100	0	100	100	100	0	100	100	99.7
Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Buses	0	2	0	2	0	4	0	4	0	0	0	0	0	0	0	0	6
% Buses	0	0.2	0	0.2	0	0.4	0	0.4	0	0	0	0	0	0	0	0	0.3

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

Counter R.C.

File Name: Lomas Blvd and Chama St.

Site Code : 06032021 Start Date : 6/3/2021

Page No : 1

										Grou	ıps Prin	ted- Cars	- Trucl	ks - Bus	ses										
				s Blvd bound						as Blvd tbound					Chai	ma St. nbound					Casa Chev Southboo				
Start Time	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right Bik	es Pe	eds	App. Total	Int. Total
06:00 AM	0	26	12	0	1	39	6	69	0	0	1	76	3	0	1	0	1	5	0	0	0	0	0	0	120
06:15 AM	5	38	6	0	0	49	4	110	1	0	0	115	2	0	0	0	0	2	0	0	0	0	0	0	166
06:30 AM	1	54	3	0	1	59	1	132	1	0	0	134	2	0	2	0	0	4	0	0	1	0	0	1	198
06:45 AM	1	56	2	0	0	59	2	128	2	0	0	132	5	0	5	0	0	10	0	0	0	0	0	0	201
Total	7	174	23	0	2	206	13	439	4	0	1	457	12	0	8	0	1	21	0	0	1	0	0	1	685
07:00 AM	1	94	7	0	1	103	3	127	1	0	0	131	3	0	3	0	0	6	0	0	0	0	0	0	240
07:15 AM	0	109	3	0	1	113	3	186	0	0	0	189	2	0	6	0	0	8	0	0	1	0	0	1	311
07:30 AM	0	128	3	0	1	132	1	199	0	0	0	200	1	0	7	0	0	8	0	0	0	0	0	0	340
07:45 AM	3	116	1_	0	1_	121	4	215	1	0	0	220	3	0	4	0	0	7	0	0	2	0	0	2	350
Total	4	447	14	0	4	469	11	727	2	0	0	740	9	0	20	0	0	29	0	0	3	0	0	3	1241
08:00 AM	2	126	5	0	0	133	2	154	3	1	1	161	1	0	1	0	0	2	1	0	0	0	0	1	297
08:15 AM	2	138	8	1	3	152	3	155	2	0	0	160	5	0	4	0	0	9	0	0	2	0	0	2	323
08:30 AM	1	126	8	0	0	135	4	170	2	0	0	176	2	0	1	0	0	3	0	0	0	0	0	0	314
08:45 AM	5	170	8	0	1	184	9	191	1	0	1	202	3	0	5	0	0	8	3	0	2	0	0	5	399
Total	10	560	29	1	4	604	18	670	8	1	2	699	11	0	11	0	0	22	4	0	4	0	0	8	1333
*** BREAK ***																									
04:00 PM	2	258	11	0	0	271	9	221	1	0	1	232	5	0	6	0	0	11	2	0	4	0	0	6	520
04:15 PM	1	295	5	0	2	303	13	204	2	0	1	220	5	0	13	0	0	18	2	0	3	0	0	5	546
04:30 PM	1	282	5	0	0	288	10	218	3	0	0	231	8	0	17	0	1	26	0	0	2	0	0	2	547
04:45 PM	4	264	7	0	0	275	10	238	4	1_	1_	254	4	0	11_	0	0	15	0	0	4	0	0	4	548
Total	8	1099	28	0	2	1137	42	881	10	1	3	937	22	0	47	0	1	70	4	0	13	0	0	17	2161
05:00 PM	4	281	10	0	0	295	8	237	1	0	1	247	8	0	14	0	0	22	1	0	7	0	0	8	572
05:15 PM	2	293	6	0	0	301	7	258	1	0	1	267	3	0	4	0	0	7	2	0	5	0	0	7	582
05:30 PM	1	260	6	0	0	267	8	212	2	0	1	223	7	0	8	0	0	15	0	0	2	0	0	2	507
05:45 PM	3	230	5_	0_	0_	238	7_	228	3	0	1_	239	4_	0	2	0	0	6	2	0	2	0	0	4	487
Total	10	1064	27	0	0	1101	30	935	7	0	4	976	22	0	28	0	0	50	5	0	16	0	0	21	2148
06:00 PM	0	192	10	0	0	202	3	210	2	0	0	215	8	0	7	0	0	15	2	0	3	0	0	5	437
06:15 PM	1	192	5	0	0	198	4	189	1	0	0	194	3	0	6	0	0	9	1	0	2	0	0	3	404
06:30 PM	1	162	6	0	0	169	4	177	0	0	0	181	2	0	7	0	0	9	1	0	3	0	0	4	363
06:45 PM	0	124	6	0	0	130	5	130	0	0	0	135	5_	0	5	0	0	10	0	0	2	0	0_	2	277
Total	2	670	27	0	0	699	16	706	3	0	0	725	18	0	25	0	0	43	4	0	10	0	0	14	1481
Grand Total	41	4014	148	1	12	4216	130	4358	34	2	10	4534	94	0	139	0	2	235	17	0	47	0	0	64	9049
Apprch %	1	95.2	3.5	0	0.3		2.9	96.1	0.7	0	0.2		40	0	59.1	0	0.9		26.6	0	73.4	0	0		
Total %	0.5	44.4	1.6	0	0.1	46.6	1.4	48.2	0.4	0	0.1	50.1	1	0	1.5	0	0	2.6	0.2	0	0.5	0	0	0.7	
Cars	41	4000	146	1	11	4199	130	4341	34	2	8	4515	94	0	139	0	2	235	17	0	47	0	0	64	9013
% Cars	100	99.7	98.6	100	91.7	99.6	100	99.6	100	100	80	99.6	100	0	100	0	100	100	100	0	100	0	0	100	99.6

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: Lomas Blvd and Chama St.

Site Code : 06032021 Start Date : 6/3/2021

Page No : 2

Groups Printed- Cars - Trucks - Buses

										Olo	иро г пп	iteu- Cars	<u> </u>	<u> </u>	<u> </u>										_
			Loma	as Blvd					Loma	as Blvd	-				Cha	ma St.					Casa (Chevrole	et		
			East	tbound					West	tbound					North	nbound					Soutl	nbound			
	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Left	Thru	Right	Bikes	Peds	App. Total	Int. Total
Trucks	0	2	2	0	1	5	0	2	0	0	2	4	0	0	0	0	0	0	0	0	0	0	0	0	9
% Trucks	0	0	1.4	0	8.3	0.1	0	0	0	0	20	0.1	0	0	0	0	0	0	0	0	0	0	0	0	0.1
Buses	0	12	0	0	0	12	0	15	0	0	0	15	0	0	0	0	0	0	0	0	0	0	0	0	27
% Buses	0	0.3	0	0	0	0.3	0	0.3	0	0	0	0.3	0	0	0	0	0	0	0	0	0	0	0	0	0.3

1441 Camino Cerritos S.E. Albuquerque, New Mexico 87123 (505) 414-0465

File Name: Lomas Blvd and Chama St.

Site Code : 06032021 Start Date : 6/3/2021

Page No : 3

		Lomas Eastb				Lomas				Cham Northb				Casa Cl South			
Start Time	Left	Thru	Right A	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right A	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis	From 06:00	AM to 11:	:45 AM - Pe	eak 1 of 1													
Peak Hour for Entire	Intersection	n Begins a	t 08:00 AM	1 .													
08:00 AM	2	126	5	133	2	154	3	159	1	0	1	2	1	0	0	1	295
08:15 AM	2	138	8	148	3	155	2	160	5	0	4	9	0	0	2	2	319
08:30 AM	1	126	8	135	4	170	2	176	2	0	1	3	0	0	0	0	314
08:45 AM	5	170	8	183	9	191	1	201	3	0	5	8	3	0	2	5	397
Total Volume	10	560	29	599	18	670	8	696	11	0	11	22	4	0	4	8	1325
% App. Total	1.7	93.5	4.8		2.6	96.3	1.1		50	0	50		50	0	50		
PHF	.500	.824	.906	.818	.500	.877	.667	.866	.550	.000	.550	.611	.333	.000	.500	.400	.834
Cars	10	556	28	594	18	667	8	693	11	0	11	22	4	0	4	8	1317
% Cars	100	99.3	96.6	99.2	100	99.6	100	99.6	100	0	100	100	100	0	100	100	99.4
Trucks	0	2	1	3	0	1	0	1	0	0	0	0	0	0	0	0	4
% Trucks	0	0.4	3.4	0.5	0	0.1	0	0.1	0	0	0	0	0	0	0	0	0.3
Buses	0	2	0	2	0	2	0	2	0	0	0	0	0	0	0	0	4
% Buses	0	0.4	0	0.3	0	0.3	0	0.3	0	0	0	0	0	0	0	0	0.3
Peak Hour Analysis Peak Hour for Entire		n Begins a		1 .													
04:30 PM	1	282	5	288	10	218	3	231	8	0	17	25	0	0	2	2	546
04:45 PM	4	264	7	275	10	238	4	252	4	0	11	15	0	0	4	4	546
05:00 PM	4	281	10	295	8	237	1	246	8	0	14	22	1	0	7	8	571
05:15 PM	2	293	6	301	7	258	1	266	3	0	4	7	2	0	5	7	581
Total Volume	11	1120	28	1159	35	951	9	995	23	0	46	69	3	0	18	21	2244
% App. Total	0.9	96.6	2.4		3.5	95.6	0.9		33.3	0	66.7		14.3	0	85.7		
PHF	.688	.956	.700	.963	.875	.922	.563	.935	.719	.000	.676	.690	.375	.000	.643	.656	.966
Cars	11	1118	28	1157	35	948	9	992	23	0	46	69	3	0	18	21	2239
% Cars	100	99.8	100	99.8	100	99.7	100	99.7	100	0	100	100	100	0	100	100	99.8
Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Buses	0	2	0	2	0	3	0	3	0	0	0	0	0	0	0	0	5
% Buses	0	0.2	0	0.2	0	0.3	0	0.3	0	0	0	0	0	0	0	0	0.2

1: Weekday (Tu-Th)

	W -	Leg - Lomas	- In	E -	Leg - Lomas	- In				N - I	Leg - Alcazar	- In	
	EB Left	EB Thru	EB Right	WB Left	WB Thru	WB Right	NB Left	NB Thru	NB Right	SB Left	SB Thru	SB Right	
<u>Day Part</u>													<u>Total</u>
00: All Day (12am-12am)	903	13,588	-	-	12,881	465	-	-	-	448	-	852	29,137
01: 12am (12am-1am)	12	67	-	-	56	3	-	-	-	-	-	-	138
02: 1am (1am-2am)	-	71	-	-	36	5	-	-	-	-	-	5	117
03: 2am (2am-3am)	-	24	-	-	19	2	-	-	-	-	-	2	47
04: 3am (3am-4am)	4	15	-	-	29	1	-	-	-	5	-	-	54
05: 4am (4am-5am)	2	31	-	-	25	-	-	-	-	-	-	5	63
06: 5am (5am-6am)	3	76	-	-	121	4	-	-	-	6	-	20	230
07: 6am (6am-7am)	8	167	-	-	390	4	-	-	-	12	-	36	617
08: 7am (7am-8am)	68	557	-	-	1,215	31	-	-	-	62	-	71	2,004
09: 8am (8am-9am)	36	664	-	-	969	11	-	-	-	21	-	25	1,726
10: 9am (9am-10am)	34	580	-	-	714	19	-	-	-	25	-	45	1,417
11: 10am (10am-11am)	35	673	-	-	699	19	-	-	-	15	-	46	1,487
12: 11am (11am-12noon)	71	787	-	-	794	29	-	-	-	15	-	62	1,758
13: 12pm (12noon-1pm)	55	941	-	-	906	23	-	-	-	29	-	48	2,002
14: 1pm (1pm-2pm)	47	897	-	-	931	54	-	-	-	29	-	89	2,047
15: 2pm (2pm-3pm)	50	954	-	-	903	30	-	-	-	20	-	48	2,005
16: 3pm (3pm-4pm)	82	1,214	-	-	947	29	-	-	-	21	-	41	2,334
17: 4pm (4pm-5pm)	98	1,513	-	-	951	42	-	-	-	24	-	61	2,689
18: 5pm (5pm-6pm)	89	1,502	-	-	973	49	-	-	-	51	-	73	2,737
19: 6pm (6pm-7pm)	62	872	-	-	721	27	-	-	-	29	-	53	1,764
20: 7pm (7pm-8pm)	40	634	-	-	495	25	-	-	-	21	-	49	1,264
21: 8pm (8pm-9pm)	53	522	-	-	398	21	-	-	-	17	-	36	1,047
22: 9pm (9pm-10pm)	34	441	-	-	282	3	-	-	-	18	-	31	809
23: 10pm (10pm-11pm)	22	246	-	-	186	7	-	_	-	5	-	10	476
24: 11pm (11pm-12am)	14	158	-	-	106	10	-	-	-	-	-	17	305

1: Weekday (Tu-Th)

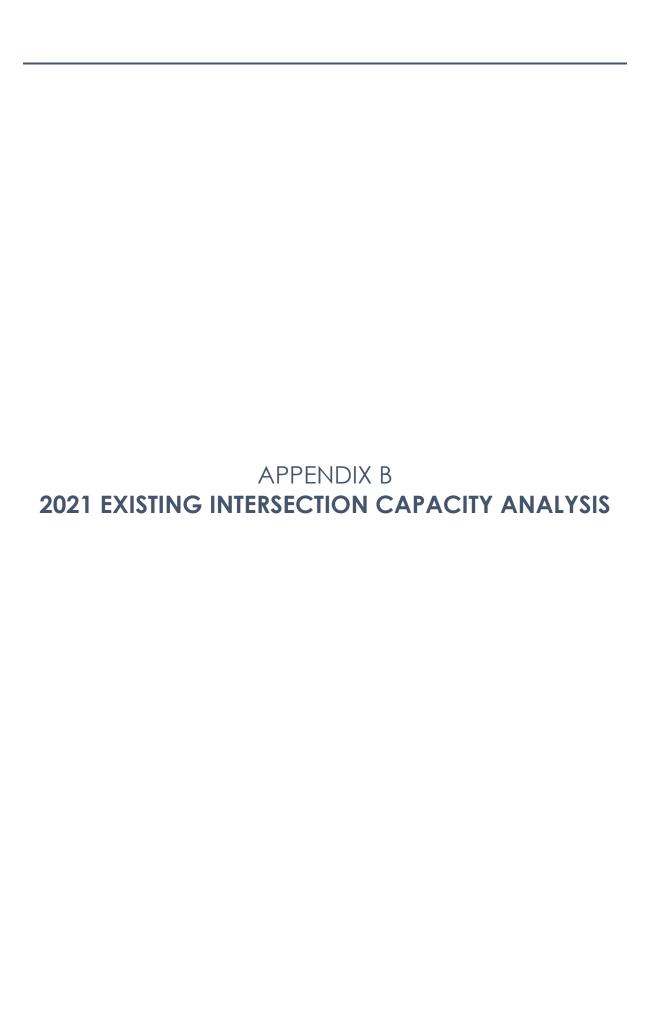
	W-	Leg - Lomas	- In	F-	Leg - Lomas	- In				N - I	Leg - Alcazar	- In	1
	EB Left	EB Thru	EB Right	WB Left	WB Thru	WB Right	NB Left	NB Thru	NB Right	SB Left	SB Thru	SB Right	1
Day Part													Total
00: All Day (12am-12am)	652	11,787	-	-	10,384	349	-	-	-	282	-	914	24,368
	•												
01: 12am (12am-1am)	6	57	-	-	45	-	-	-	-	-	-	-	108
08: 7am (7am-8am)	18	472	-	-	554	13	-	-	-	7	-	61	1,125
09: 8am (8am-9am)	15	634	-	-	696	8	-	-	-	13	-	74	1,440
10: 9am (9am-10am)	32	543	-	-	558	39	-	-	-	-	-	73	1,245
11: 10am (10am-11am)	29	599	-	-	593	6	-	-	-	12	-	45	1,284
12: 11am (11am-12noon)	70	725	-	-	616	16	-	-	-	43	-	40	1,510
13: 12pm (12noon-1pm)	43	774	-	-	813	39	-	-	-	29	-	50	1,748
14: 1pm (1pm-2pm)	45	964	-	-	761	23	-	-	-	37	-	90	1,920
15: 2pm (2pm-3pm)	49	1,009	-	-	810	37	-	-	-	13	-	106	2,024
16: 3pm (3pm-4pm)	67	1,004	-	-	861	34	-	-	-	25	-	39	2,030
17: 4pm (4pm-5pm)	87	1,250	-	-	792	36	-	-	-	13	-	67	2,245
18: 5pm (5pm-6pm)	61	1,180	-	-	847	23	-	-	-	8	-	75	2,194
19: 6pm (6pm-7pm)	37	676	-	-	693	15	-	-	-	18	-	26	1,465
20: 7pm (7pm-8pm)	26	524	-	-	424	14	-	-	-	10	-	21	1,019
21: 8pm (8pm-9pm)	27	483	-	-	333	21	-	-	-	9	-	48	921
22: 9pm (9pm-10pm)	27	293	-	-	199	-	-	-	-	7	-	10	536
23: 10pm (10pm-11pm)	11	173	-	-	125	9	-	-	-	2	-	8	328
24: 11pm (11pm-12am)	16	99	-	-	53	-	-	-	-	11	-	-	179
02: 1am (1am-2am)	-	43	-	-	8	-	-	-	-	-	-	26	77
03: 2am (2am-3am)	-	25	-	-	13	-	-	-	-	-	-	9	47
04: 3am (3am-4am)	-	39	-	-	26	-	-	-	-	6	-	8	79
05: 4am (4am-5am)	-	5	-	-	24	-	-	-	-	-	-	9	38
06: 5am (5am-6am)	-	66	-	-	234	-	-	-	-	1	-	10	311
07: 6am (6am-7am)	-	161	-	-	313	-	-	-	-	2	-	15	491

1: Weekday (Tu-Th)

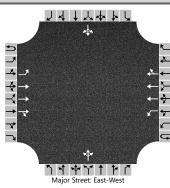
	W-	Leg - Lomas	- In	E -	Leg - Lomas	- In	S -	Leg - Chama	- In				
	EB Left	EB Thru	EB Right	WB Left	WB Thru	WB Right	NB Left	NB Thru	NB Right	SB Left	SB Thru	SB Right	
<u>Day Part</u>													<u>Total</u>
00: All Day (12am-12am)	-	13,098	1,059	766	12,464	-	607	-	592	-	-	-	28,586
	ı											1	
01: 12am (12am-1am)	-	66	4	-	55	-	2	-	-	-	-	-	127
05: 4am (4am-5am)	-	29	5	-	25	-	2	-	-	-	-	-	61
06: 5am (5am-6am)	-	35	56	76	95	-	17	-	-	-	-	-	279
07: 6am (6am-7am)	-	125	52	15	368	-	27	-	28	-	-	-	615
08: 7am (7am-8am)	-	552	36	43	1,157	-	105	-	48	-	-	-	1,941
09: 8am (8am-9am)	-	627	55	39	946	-	7	-	19	-	-	-	1,693
10: 9am (9am-10am)	-	569	37	32	708	-	23	-	25	-	-	-	1,394
11: 10am (10am-11am)	-	618	73	57	672	-	35	-	19	-	-	-	1,474
12: 11am (11am-12noon)	-	736	77	68	764	-	47	-	47	-	-	-	1,739
13: 12pm (12noon-1pm)	-	915	66	51	874	-	24	-	25	-	-	-	1,955
14: 1pm (1pm-2pm)	-	870	64	56	936	-	31	-	41	-	-	-	1,998
15: 2pm (2pm-3pm)	-	935	57	27	868	-	41	-	75	-	-	-	2,003
16: 3pm (3pm-4pm)	-	1,213	41	34	934	-	31	-	25	-	-	-	2,278
17: 4pm (4pm-5pm)	-	1,435	112	62	923	-	52	-	63	-	-	-	2,647
18: 5pm (5pm-6pm)	-	1,512	60	39	960	-	26	-	29	-	-	-	2,626
19: 6pm (6pm-7pm)	-	842	69	50	690	-	34	-	45	-	-	-	1,730
20: 7pm (7pm-8pm)	-	616	48	34	487	-	24	-	29	-	-	-	1,238
21: 8pm (8pm-9pm)	-	511	37	35	387	-	32	-	29	-	-	-	1,031
22: 9pm (9pm-10pm)	-	425	30	16	263	-	21	-	20	-	-	-	775
23: 10pm (10pm-11pm)	-	241	17	11	170	-	14	-	10	-	-	-	463
24: 11pm (11pm-12am)	_	155	28	-	104	-	14	-	-	-	-	-	301
02: 1am (1am-2am)	-	49	33	_	38	-	2	-	-	-	-	-	122
03: 2am (2am-3am)	-	26	-	-	18	-	2	_	-	_	_	-	46
04: 3am (3am-4am)	_	17	2	-	25	-	2	-	-	-	-	-	46

1: Weekday (Tu-Th)

	W -	Leg - Lomas	- In	E -	Leg - Lomas	- In	S -	Leg - Chama	ı - In				
	EB Left	EB Thru	EB Right	WB Left	WB Thru	WB Right	NB Left	NB Thru	NB Right	SB Left	SB Thru	SB Right	
<u>Day Part</u>													<u>Total</u>
00: All Day (12am-12am)	-	11,347	790	509	10,120	-	601	-	553	-	-	-	23,920
01: 12am (12am-1am)	-	60	-	-	45	-	-	-	-	-	-	-	105
03: 2am (2am-3am)	-	24	5	-	15	-	-	-	-	-	-	-	44
04: 3am (3am-4am)	-	40	-	-	26	-	-	-	-	-	-	-	66
06: 5am (5am-6am)	-	44	23	35	217	-	9	-	-	-	-	-	328
07: 6am (6am-7am)	-	109	64	-	308	-	-	-	33	-	-	-	514
08: 7am (7am-8am)	-	448	23	41	568	-	-	-	5	-	-	-	1,085
09: 8am (8am-9am)	-	618	29	59	680	-	24	-	27	-	-	-	1,437
10: 9am (9am-10am)	-	521	27	26	566	-	20	-	2	-	-	-	1,162
11: 10am (10am-11am)	-	555	54	31	583	-	12	-	51	-	-	-	1,286
12: 11am (11am-12noon)	-	712	51	39	591	-	48	-	34	-	-	-	1,475
13: 12pm (12noon-1pm)	-	741	82	48	804	-	41	-	29	-	-	-	1,745
14: 1pm (1pm-2pm)	-	916	64	38	737	-	48	-	33	-	-	-	1,836
15: 2pm (2pm-3pm)	-	972	65	34	791	-	48	-	20	-	-	-	1,930
16: 3pm (3pm-4pm)	-	983	53	19	830	-	48	-	57	-	-	-	1,990
17: 4pm (4pm-5pm)	-	1,208	29	6	799	-	44	-	111	-	-	-	2,197
18: 5pm (5pm-6pm)	-	1,137	45	55	780	-	112	-	46	-	-	-	2,175
19: 6pm (6pm-7pm)	-	675	41	45	668	-	36	-	29	-	-	-	1,494
20: 7pm (7pm-8pm)	-	507	33	44	395	-	29	-	28	-	-	-	1,036
21: 8pm (8pm-9pm)	-	481	13	16	324	-	41	-	21	-	-	-	896
22: 9pm (9pm-10pm)	_	289	25	-	193	-	9	-	20	-	-	-	536
23: 10pm (10pm-11pm)	-	168	12	8	123	-	3	-	10	-	-	-	324
24: 11pm (11pm-12am)	-	107	-	10	44	-	10	-	9	-	-	-	180
02: 1am (1am-2am)	-	36	-	-	11	-	-	-	-	-	-	-	47
05: 4am (4am-5am)	-	5	-	-	26	-	-	-	-	-	-	-	31

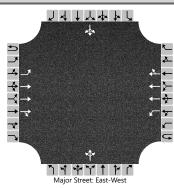

1: Weekday (Tu-Th)

Day Part Day Part		W -	Leg - Lomas	- In	E -	Leg - Lomas -	· In	S - Le	eg - Louisiana	- In	N - Le	eg - Louisiana	a - In	
Oi: All Day (12am-12am) 2,132 10,680 1,507 2,125 9,798 1,986 1,483 9,363 2,323 1,873 8,377 2,087 53,734		EB Left	EB Thru	EB Right	WB Left	WB Thru	WB Right	NB Left	NB Thru	NB Right	SB Left	SB Thru	SB Right	
11:00am	<u>Day Part</u>													<u>Total</u>
11:15am 39 130 20 25 149 30 24 116 29 24 110 35 731 11:30am 39 126 18 30 160 37 28 133 28 36 116 33 784 11:45am 46 151 19 28 172 39 29 141 24 30 104 43 826 Total 161 540 83 107 619 131 106 515 109 114 449 146 3,080 4:30pm 51 209 33 33 174 46 25 218 52 35 137 42 1,055 4:45pm 51 232 29 33 155 42 26 225 37 38 132 36 1,036 5:00pm 45 255 32 42 188 56 30 193 44 41 128 45 1,099 5:15pm 50 <t< td=""><td>00: All Day (12am-12am)</td><td>2,132</td><td>10,680</td><td>1,507</td><td>2,125</td><td>9,798</td><td>1,986</td><td>1,483</td><td>9,363</td><td>2,323</td><td>1,873</td><td>8,377</td><td>2,087</td><td>53,734</td></t<>	00: All Day (12am-12am)	2,132	10,680	1,507	2,125	9,798	1,986	1,483	9,363	2,323	1,873	8,377	2,087	53,734
11:15am 39 130 20 25 149 30 24 116 29 24 110 35 731 11:30am 39 126 18 30 160 37 28 133 28 36 116 33 784 11:45am 46 151 19 28 172 39 29 141 24 30 104 43 826 Total 161 540 83 107 619 131 106 515 109 114 449 146 3,080 4:30pm 51 209 33 33 174 46 25 218 52 35 137 42 1,055 4:45pm 51 232 29 33 155 42 26 225 37 38 132 36 1,036 5:00pm 45 255 32 42 188 56 30 193 44 41 128 45 1,099 5:15pm 50 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
11:30am	11:00am	37	133	26	24	138	25	25	125	28	24	119	35	739
11:45am	11:15am	39	130	20	25	149	30	24	116	29	24	110	35	731
Total 161 540 83 107 619 131 106 515 109 114 449 146 3,080 4:30pm	11:30am	39	126	18	30	160	37	28	133	28	36	116	33	
4:30pm	11:45am	46	151	19	28	172	39	29	141	24	30	104	43	826
4:30pm 51 209 33 33 174 46 25 218 52 35 137 42 1,055 4:45pm 51 232 29 33 155 42 26 225 37 38 132 36 1,036 5:00pm 45 255 32 42 188 56 30 193 44 41 128 45 1,099 5:15pm 50 302 30 38 183 56 29 172 49 40 127 42 1,118 Total 197 998 124 146 700 200 110 808 182 154 524 165 4,308	Total	161	540	83	107	619	131	106	515	109	114	449	146	3,080
4:45pm 51 232 29 33 155 42 26 225 37 38 132 36 1,036 5:00pm 45 255 32 42 188 56 30 193 44 41 128 45 1,099 5:15pm 50 302 30 38 183 56 29 172 49 40 127 42 1,118 Total 197 998 124 146 700 200 110 808 182 154 524 165 4,308		_		_			_			_				-
5:00pm 45 255 32 42 188 56 30 193 44 41 128 45 1,099 5:15pm 50 302 30 38 183 56 29 172 49 40 127 42 1,118 Total 197 998 124 146 700 200 110 808 182 154 524 165 4,308	4:30pm	51	209	33	33	174	46	25	218	52	35	137	42	1,055
5:15pm 50 302 30 38 183 56 29 172 49 40 127 42 1,118 Total 197 998 124 146 700 200 110 808 182 154 524 165 4,308	4:45pm	51	232	29	33	155	42	26	225	37	38	132	36	1,036
Total 197 998 124 146 700 200 110 808 182 154 524 165 4,308	5:00pm	45	255	32	42	188	56	30	193	44	41	128	45	1,099
	5:15pm	50	302	30	38	183	56	29	172	49	40	127	42	1,118
	Total	197	998	124	146	700	200	110	808	182	154	524	165	4,308
														-
														-
														-
														-
														-
														-
														-
														-
														-
														-
														-
														-
														-

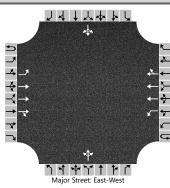

Year AStreet	BStreet	Dir Killed F	ClassA	ClassB	ClassC	Injured	Unhurt	Total	nVeh	Severity	Class	Analysis	TopCFacc
2017 LOMAS BLVD NE 2017 LOUISIANA / GROVE	LOUISIANA BLVD NE LOMAS	-	0	0	0	-	-	2	2	1 Property Damage Only Crash	Other Vehicle	Other Vehicle - From Same Direction/Both Going Straight Left Blank	Other - No Driver Error
2017 LOUISIANA / GROVE 2017 LOMAS	LOUISIANA	99 W	0	0	0			3	2	2 Property Damage Only Crash 2 Property Damage Only Crash	Other Vehicle Other Vehicle	Left Blank	Missing Data Missing Data
2017 LOMAS 2017 LOMAS BLVD NE	LOUISIANA BLVD NE	W	0	0	0	-	-	2	2	2 Property Damage Only Crash	Other Vehicle	Left Blank	Missing Data
2017 LOMAS BLVD NE	LOUISIANA BLVD NE	F	0	0	0			3	3	2 Property Damage Only Crash	Other Vehicle	Left Blank	Other Improper Driving
2017 LOMAS	LOUISIANA	w	0	0	0			3	3	2 Property Damage Only Crash	Other Vehicle	Left Blank	Driver Inattention
2017 LOUISIANA BLVD NE	LOMAS BLVD NE	N	0	0	0	0		2	2	2 Property Damage Only Crash	Other Vehicle	Left Blank	Failed to Yield Right of Way
2017 LOMAS - NEAR SAN MATEO	LOUISIANA	w	0	0	0	0	0	2	2	2 Property Damage Only Crash	Other Vehicle	Left Blank	Excessive Speed
2017 LOMAS	LOUISIANA	E	0	0	0	0	0	2	2	2 Property Damage Only Crash	Other Vehicle	Left Blank	Following Too Closely
2017 LOMAS	LOUISIANA NE	S	0	0	0	0	0	3	3	2 Property Damage Only Crash	Other Vehicle	Left Blank	Disregarded Traffic Signal
2017 LOUISIANA	LOMAS	S	0	0	0	0	0	2	2	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - From Opposite Direction	Improper Overtaking
2017 LOUISIANA BLVD NE		N	0	0	0	0	0	3	3	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - From Same Direction/Rear End Collision	Following Too Closely
2017 LOMAS BLVD NE	LOUISIANA BLVD NE	E	0	0	0	4	4	0	4	3 Injury Crash	Other Vehicle	Other Vehicle - One Left Turn/Entering At Angle	Failed to Yield Right of Way
2017 LOUISIANA BLVD NE	LOMAS BLVD NE	S	0	0	0		2	0	2	2 Injury Crash	Other Vehicle	Other Vehicle - From Same Direction/Both Going Straight	Made Improper Turn
2017 LOMAS BLVD NE	LOUISIANA BLVD NE	E	0	0	1		2	0	2	2 Injury Crash	Other Vehicle	Other Vehicle - Both Going Straight/Entering At Angle	None
2017 LOMAS BLVD NE	LOUISIANA BLVD NE	W	0	0	0		0	5	5	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - Both Going Straight/Entering At Angle	Disregarded Traffic Signal
2017 LOMAS BLVD NE	LOUISIANA AVE	S	0	0	1		1	1	2	2 Injury Crash	Other Vehicle	Other Vehicle - Both Going Straight/Entering At Angle	Failed to Yield Right of Way
2017 LOMAS BLVD NE	LOUISIANA BLVD NE	W	0	0	2			0	4	3 Injury Crash	Other Vehicle	Other Vehicle - From Same Direction/All Others	Alcohol/Drug Involved
2017 LOMAS BLVD NE 2017 LOMAS BLVD NE	LOUISIANA BLVD NE LOUISIANA BLVD NE	W F	0	0	0	-		2	3	2 Injury Crash	Other Vehicle Other Vehicle	Other Vehicle - One Left Turn/Entering At Angle	Failed to Yield Right of Way
2017 LOWAS BLVD NE 2017 LOUISIANA BLVD NE	LOUISIANA BLVD NE	E C	0	0	0	-	-	3	3	2 Property Damage Only Crash 2 Property Damage Only Crash	Other Vehicle	Other Vehicle - From Same Direction/Sideswipe Collision Other Vehicle - From Same Direction/Sideswipe Collision	Disregarded Traffic Signal Improper Lane Change
2017 LOUISIANA BLVD NE 2017 LOUISIANA BLVD NE	LOMAS BLVD NE	N N	0	0	0			2	2	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - From Opposite Direction/One Left Turn	Failed to Yield Right of Way
2017 LOMAS BLVD NE	LOUISIANA BLVD SE	E	0	0	0			3	3	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - One Right Turn/Entering At Angle	Failed to Yield Right of Way
2017 LOUISIANA BLVD NE	LOMAS BLVD NE	S	0	0	1			2	3	2 Injury Crash	Other Vehicle	Other Vehicle - One Right Turn/Entering At Angle	Disregarded Traffic Signal
2017 LOUISIANA BLVD NE	LOMAS BLVD NE	N	0	0	0			3	3	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - From Same Direction/Both Going Straight	Driver Inattention
2017 LOMAS BLVD NE	LOUISIANA BLVD NE	W	0	0	0			2	2	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - One Left Turn/Entering At Angle	Disregarded Traffic Signal
2017 LOUISIANA BLVD NE	LOMAS BLVD NE	N	0	0	0	0	0	3	3	3 Property Damage Only Crash	Other Vehicle	Other Vehicle - From Same Direction/Sideswipe Collision	Improper Lane Change
2017 LOUISIANA BLVD NE	LOMAS BLVD NE	S	0	0	0	0	0	2	2	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - One Left Turn/Entering At Angle	Failed to Yield Right of Way
2017 LOUISIANA BLVD NE	LOMAS BLVD NE	S	0	0	0	0	0	2	2	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - Both Going Straight/Entering At Angle	Failed to Yield Right of Way
2017 LOUISIANA BLVD NE	LOMAS BLVD NE	N	0	0	0	0	0	2	2	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - One Left Turn/Entering At Angle	Failed to Yield Right of Way
2017 LOMAS BLVD NE	LOUISIANA BLVD NE	W	0	0	0	0	0	3	3	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - From Same Direction/Rear End Collision	Driver Inattention
2017 LOUISIANA BLVD NE	LOMAS BLVD NE	E	0	0	1	0	1	2	3	2 Injury Crash	Pedestrian	Pedestrian Collision - Vehicle Going Straight	Pedestrian Error
2017 LOMAS BLVD NE	LOUISIANA BLVD NE	E	0	0	0		1	1	2	2 Injury Crash	Other Vehicle	Other Vehicle - One Left Turn/Entering At Angle	Disregarded Traffic Signal
2017 LOMAS BLVD NE	LOUISIANA BLVD NE	S	0	0	1			2	3	3 Injury Crash	Other Vehicle	Other Vehicle - One Left Turn/Entering At Angle	Failed to Yield Right of Way
2017 LOUISIANA BLVD NE	LOMAS BLVD NE	N	0	0	0			2	2	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - From Same Direction/Rear End Collision	None
2017 LOUISIANA BLVD NE	LOMAS BLVD NE	N	0	0	0			2	2	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - From Same Direction/Both Going Straight	Driver Inattention
2017 LOMAS BLVD NE	LOUISIANA BLVD NE	E	0	0	0			2	2	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - From Same Direction/Both Going Straight	Avoid No Contact - Vehicle
2017 LOMAS BLVD NE 2017 LOUISIANA BL NE	LOUISIANA BLVD NE LOMAS BLVD NE	W W	0	0	0	-		2	2	2 Property Damage Only Crash 2 Property Damage Only Crash	Other Vehicle Other Vehicle	Other Vehicle - One Left Turn/Entering At Angle Other Vehicle - Both Turn Left/Entering At Angle	Made Improper Turn Other Improper Driving
2017 EUUISIANA BENE 2017 902 LOUISIANA BLVD SE	LOIVIAS BLVD INE	W	0	0	0			3	3	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - One Left Turn/Entering At Angle	Failed to Yield Right of Way
2017 JOZ EGOISIANA BEVD 3E 2017 LOMAS BLVD NE	LOUISIANA BLVD NE	E	0	0	0			4	4	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - From Opposite Direction/One Left Turn	Driver Inattention
2017 LOMAS BLVD NE	LOUISIANA BLVD NE	w	0	0	0			2	2	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - From Same Direction/Rear End Collision	Failed to Yield Right of Way
2017 LOUISIANA BLVD NE	LOMAS BLVD NE	N	0	0	0			4	6	4 Injury Crash	Other Vehicle	Other Vehicle - Both Going Straight/Entering At Angle	Driver Inattention
2018 LOMAS BLVD NE	LOUISIANA BLVD NE	w	0	0	0			3	3	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - From Same Direction/Rear End Collision	Driver Inattention
2018 LOUSIANA	LOMAS BLVD NE	N	0	0	0	0	0	2	2	2 Property Damage Only Crash	Other Vehicle	Left Blank	Disregarded Traffic Signal
2018 LOUISIANA BLVD NE	LOMAS BLVD NE	S	0	0	0	0	0	2	2	2 Property Damage Only Crash	Other Vehicle	Left Blank	Driver Inattention
2018 LOUISIANA NE	LOMAS NE	S	0	0	0	0	0	2	2	2 Property Damage Only Crash	Other Vehicle	Left Blank	Other Mechanical Defect
2018 LOUSIANA AND LOMAS	LOMAS BLVD NE	E	0	0	0	1	1	3	4	2 Injury Crash	Other Vehicle	Left Blank	Alcohol/Drug Involved
2018 LOMAS	LOUISIANA	NE	0	0	0	0	0	5	5	2 Property Damage Only Crash	Other Vehicle	Left Blank	Missing Data
2018 LOUSIANA	LOMAS BLVD NE	W	0	0	0		0	2	2	2 Property Damage Only Crash	Other Vehicle	Left Blank	Following Too Closely
2018 LOUISIANA	LOMAS	S	0	0	0			2	2	2 Property Damage Only Crash	Vehicle on Other Ro		Improper Overtaking
2018 LOMAS BLVD NE	LOUISIANA BLVD NE	E	0	0	0			2	3	2 Injury Crash	Other Vehicle	Other Vehicle - One Right Turn/Entering At Angle	Driver Inattention
2018 LOMAS BLVD NE	LOUISIANA BLVD SE	E	0	0	0			2	2	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - Both Going Straight/Entering At Angle	Avoid No Contact - Vehicle
2018 LOUISIANA BLVD NE 2018 LOMAS NE	LOUISIANA NE	N E	0	0	0		2	2	4 4	2 Injury Crash	Other Vehicle Other Vehicle	Other Vehicle - From Same Direction/Both Going Straight	Driver Inattention Driver Inattention
2018 LOWIAS NE 2018 LOUISIANA BLVD NE	LOMAS BLVD NE	S	0	0	0			2	2	2 Injury Crash 1 Property Damage Only Crash	Fixed Object	Other Vehicle - Both Going Straight/Entering At Angle Fixed Object - Sign or Sign Post (Traffic)	Speed Too Fast for Conditions
2018 LOUISIANA BLVD NE	LOMAS BLVD NE	N N	0	0	0			3	5	2 Injury Crash	Other Vehicle	Other Vehicle - From Opposite Direction/All Others	Failed to Yield Right of Way
2018 LOMAS BLVD NE	LOUISIANA BLVD NE	F	0	0	0			1	2	2 Injury Crash	Other Vehicle	Other Vehicle - One Left Turn/Entering At Angle	Failed to Yield Right of Way
2018 LOMAS BLVD NE	LOUISIANA BLVD NE	N	0	0	0			2	8	3 Injury Crash	Other Vehicle	Other Vehicle - From Same Direction/Both Going Straight	Alcohol/Drug Involved
2018 LOMAS BLVD NE	LOUISIANA BLVD NE	w	0	0	0			4	4	3 Property Damage Only Crash	Other Vehicle	Other Vehicle - From Same Direction/Both Going Straight	Inadequate Brakes
2018 LOMAS BLVD NE	LOUISIANA NE	w	0	0	0	0	0	3	3	3 Property Damage Only Crash	Other Vehicle	Other Vehicle - One Left Turn/Entering At Angle	Failed to Yield Right of Way
2018 LOMAS BLVD NE	LOUISIANA BLVD NE	E	0	0	0	0	0	4	4	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - One Left Turn/Entering At Angle	Disregarded Traffic Signal
2018 LOMAS ST	LOUISIANA AVE	W	0	0	0	0	0	3	3	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - One Left Turn/Entering At Angle	Failed to Yield Right of Way
2018 LOUISIANA BLVD NE	LOMAS BLVD NE	N	0	0	0	0	0	1	1	1 Property Damage Only Crash	Fixed Object	Fixed Object - Traffic Signal Standard	Alcohol/Drug Involved
2018 LOUISIANA BLVD NE		N	0	0	0	0	0	3	3	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - From Same Direction/Both Going Straight	Alcohol/Drug Involved
2018 LOUISIANA BLVD NE	LOMAS BLVD NE	N	0	0	0	-	-	3	3	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - One Left Turn/Entering At Angle	Failed to Yield Right of Way
2018 LOUISIANA BLVD NE	LOMAS BLVD NE	N	0	0	0		1	1	2	2 Injury Crash	Other Vehicle	Other Vehicle - From Same Direction/All Others	None
2018 LOMAS BLVD NE	LOUISIANA BLVD NE	E	0	0	0		2	0	2	2 Injury Crash	Other Vehicle	Other Vehicle - One Left Turn/Entering At Angle	Failed to Yield Right of Way
2018 LOMAS BLVD NE	LOUISIANA BLVD NE	E	0	0	0		0	4	4	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - From Opposite Direction	Avoid No Contact - Vehicle
2018 LOMAS BLVD NE	LOUISIANA BLVD NE	N	0	0	0			3	4	3 Injury Crash	Other Vehicle	Other Vehicle - Both Going Straight/Entering At Angle	Excessive Speed
2018 LOUISIANA BLVD NE	LOMAS BLVD NE	S	0	0	0		0	2	2	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - From Same Direction/Both Going Straight	Driver Inattention
2018 LOMAS BLVD NE	LOUISIANA BLVD NE	E	U	1	3	U	4	O	10	5 Injury Crash	Other Vehicle	Other Vehicle - From Opposite Direction/One Vehicle Spun On Roads	w Alconol/Drug Involved

	S BLVD NE		0		0	-	-		5	3 Injury Crash	Other Vehicle	Other Vehicle - One Left Turn/Entering At Angle	Failed to Yield Right of Way
	IANA BLVD NE				0	•			3	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - Both Going Straight/Entering At Angle	Disregarded Traffic Signal
			0		0	-			1	1 Property Damage Only Crash	Fixed Object	Fixed Object - Traffic Signal Standard	Other Mechanical Defect
2018 LOUISIANA BLVD NE LOMAS	S BLVD NE	NW	0	0	1	0	1	2	3	2 Injury Crash	Other Vehicle	Other Vehicle - One Left Turn/Entering At Angle	Failed to Yield Right of Way
2018 LOUISIANA BLVD NE LOMAS	S BLVD NE	N	0	0	1	0	1	0	1	1 Injury Crash	Fixed Object	Fixed Object - Light Standard (Light Pole)	Alcohol/Drug Involved
	IANA BLVD NE	E	0	0	0	0	0	4	4	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - From Same Direction/One Stopped	Alcohol/Drug Involved
2018 LOUISIANA BLVD NE LOMAS	S BLVD NE	S	0	0	0	2	2	1	3	3 Injury Crash	Other Vehicle	Other Vehicle - One Left Turn/Entering At Angle	Failed to Yield Right of Way
2018 LOMAS BLVD NE LOUISIA	IANA BLVD NE	W	0	0	0	0	0	2	2	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - One Left Turn/Entering At Angle	Driver Inattention
2018 LOUISIANA BLVD NE LOMAS	S BLVD NE	S	0	0	0	0	0	3	3	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - From Same Direction/Rear End Collision	Driver Inattention
2018 LOMAS BLVD NE LOUISIA	IANA BLVD NE	w	0	0	0	1	1	4	5	5 Injury Crash	Other Vehicle	Other Vehicle - From Same Direction/Rear End Collision	Disregarded Traffic Signal
2018 LOUISIANA BLVD NE LOMAS	S BLVD NE	N	0	0	0	0	0	4	4	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - From Same Direction/Rear End Collision	Driver Inattention
2018 LOUISIANA BLVD NE LOMAS	S BLVD NE	N	0	0	0	0	0	2	2	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - From Same Direction/Rear End Collision	Following Too Closely
2018 LOMAS BLVD NE LOUISIA	IANA BLVD NE	E	0	1	0	0	1	1	2	2 Injury Crash	Other Vehicle	Other Vehicle - From Opposite Direction/One Left Turn	Disregarded Traffic Signal
			-	-	0				2	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - All Others/Entering At Angle	Driver Inattention
			-	-	1		-	-	2	2 Injury Crash	Pedalcyclist	Vehicle Struck Pedalcyclist At Angle	Pedestrian Error
		_	-	-	0	-	-		2	2 Injury Crash	Other Vehicle	Other Vehicle - From Same Direction/Rear End Collision	Driver Inattention
		-	-	-	0	_	-		4	2 Injury Crash	Other Vehicle	Other Vehicle - One Left Turn/Entering At Angle	Failed to Yield Right of Way
			-	-	0				4	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - One Left Turn/Entering At Angle	Failed to Yield Right of Way
			-	-	0	-	-		3		Other Vehicle		Driver Inattention
			-	-	0		-	-	4	2 Property Damage Only Crash		Other Vehicle - From Same Direction/Sideswipe Collision	
					-		-			4 Property Damage Only Crash	Other Vehicle	Other Vehicle - From Same Direction/Rear End Collision	Speed Too Fast for Conditions
2018 LOMAS BLVD NE			0		0	-	-		5	3 Injury Crash	Other Vehicle	Other Vehicle - From Same Direction/Rear End Collision	Following Too Closely
		-	-	-	0	-	-		2	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - One Left Turn/Entering At Angle	Failed to Yield Right of Way
					0	-			2	2 Injury Crash	Other Vehicle	Other Vehicle - One Left Turn/Entering At Angle	Speed Too Fast for Conditions
				-	1	-			2	2 Injury Crash	Other Vehicle	Other Vehicle - From Same Direction/Rear End Collision	Driver Inattention
2019 LOUISIANNA/LOMAS LOMAS			0		0	-			2	2 Property Damage Only Crash	Other Vehicle	Left Blank	Drove Left Of Center
			-	-	0	0	-		2	2 Property Damage Only Crash	Other Vehicle	Left Blank	Driver Inattention
2019 LOMAS BLVD NE LOUISIA	IANA		0	0	0	0	0		4	2 Property Damage Only Crash	Other Vehicle	Left Blank	Missing Data
2019 LOUISIANA BLVD NE LOMAS	S BLVD NE	w	0	0	0	0	0	2	2	2 Property Damage Only Crash	Other Vehicle	Left Blank	Speed Too Fast for Conditions
2019 LOMAS BLVD NE		E	0	0	0	0	0	2	2	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - From Opposite Direction	Driver Inattention
2019 LOUISIANA LOMAS	S BLVD NE	S	0	0	0	0	0	3	3	2 Property Damage Only Crash	Other Vehicle	Left Blank	Missing Data
2019 LOUISIANA BLVD NE LOMAS	S BLVD NE	N	0	0	0	0	0	2	2	2 Property Damage Only Crash	Other Vehicle	Left Blank	Improper Overtaking
2019 LOUISIANA AVE LOMAS	S BLVD I	N	0	0	0	0	0	3	3	3 Property Damage Only Crash	Other Vehicle	Other Vehicle - From Same Direction/Rear End Collision	Missing Data
2019 LOMAS BLVD NE LOUISIA	IANA BLVD NE		0	0	0	0	0	4	4	2 Property Damage Only Crash	Other Vehicle	Left Blank	Excessive Speed
2019 LOMAS AND LOUISIANA LOUISIA		w	0	0	0	0	0	3	3	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - One Right Turn/Entering At Angle	Missing Data
2019 LOUISIANA LOMAS			0		0				2	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - One Right Turn/Entering At Angle	Missing Data
			0		0				3	2 Property Damage Only Crash	Other Vehicle	Left Blank	Missing Data
		-	0	-	0				6	2 Injury Crash	Vehicle on Other Ro		Other Improper Driving
			0		0				2	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - From Same Direction/One Stopped	Failed to Yield Right of Way
	S BLVD NE		0		0				1	Property Damage Only Crash Property Damage Only Crash	Fixed Object	Fixed Object - Light Standard (Light Pole)	Driver Inattention
			0		0				3	2 Injury Crash	Other Vehicle	Other Vehicle - One Right Turn/Entering At Angle	Made Improper Turn
		-	0	-	1	1	-		6	2 Injury Crash	Other Vehicle	Other Vehicle - One Right Turn/Entering At Angle Other Vehicle - From Opposite Direction	Disregarded Traffic Signal
					0								
			0		-	-			2	2 Injury Crash	Other Vehicle	Other Vehicle - Both Going Straight/Entering At Angle	Following Too Closely
		_	-	-	0	_	-		4	3 Injury Crash	Other Vehicle	Other Vehicle - From Same Direction/Both Going Straight	Driver Inattention
		E			0				2	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - From Opposite Direction	Other - No Driver Error
		N			0				2	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - Both Going Straight/Entering At Angle	Driver Inattention
			0		0	-			3	2 Injury Crash	Other Vehicle	Other Vehicle - From Opposite Direction/Both Going Straight	Driver Inattention
		-	0	-	1	-	_		2	2 Injury Crash	Pedestrian	Pedestrian Collision - Vehicle Going Straight	Other - No Driver Error
			0		0				2	2 Injury Crash	Other Vehicle	Other Vehicle - One Left Turn/Entering At Angle	Driver Inattention
2019 LOMAS BLVD NE LOUISIA	IANA BLVD NE	W	0	0	0	1	1	1	2	2 Injury Crash	Other Vehicle	Other Vehicle - Both Going Straight/Entering At Angle	None
2019 LOMAS BLVD NE LOUISIA	IANA BLVD NE	S	0	0	0	1	1	2	3	2 Injury Crash	Other Vehicle	Other Vehicle - From Same Direction/Both Going Straight	Failed to Yield Right of Way
2019 LOMAS BLVD NE LOUISIA	IANA BLVD NE	W	0	0	0	2	2	3	5	3 Injury Crash	Other Vehicle	Other Vehicle - One Left Turn/Entering At Angle	Failed to Yield Right of Way
2019 LOMAS BLVD NE LOUISIA	IANA BLVD NE	W	0	0	0	1	1	1	2	2 Injury Crash	Other Vehicle	Other Vehicle - From Same Direction/Rear End Collision	Driver Inattention
2019 LOMAS BLVD NE LOUISIA	IANA BLVD NE	W	0	0	0	1	1	5	6	3 Injury Crash	Other Vehicle	Other Vehicle - All Others/Entering At Angle	Disregarded Traffic Signal
2019 LOUISIANA BLVD NE LOMAS	S BLVD NE	N	0	0	0	0	0	2	2	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - From Same Direction/Rear End Collision	Driver Inattention
	IANA BLVD NE	E	0	0	0	1	1		2	2 Injury Crash	Other Vehicle	Other Vehicle - From Same Direction/Rear End Collision	Following Too Closely
	IANA BLVD NE		0		0				2	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - Both Going Straight/Entering At Angle	Driver Inattention
			0	0	0				2	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - From Same Direction/Sideswipe Collision	Improper Lane Change
			0	-	0				5	3 Injury Crash	Other Vehicle	Other Vehicle - From Same Direction/Rear End Collision	Other Mechanical Defect
		S	0		0				2	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - Both Going Straight/Entering At Angle	Disregarded Traffic Signal
2019 LOUISIANA BLVD NE		s N			0				9		Other Vehicle	Other Vehicle - From Same Direction/Both Going Straight	
			-	-	0				4	4 Injury Crash			Alcohol/Drug Involved
	IANA BLVD NE		-	=	0	-		-	4	2 Injury Crash	Pedestrian	Pedestrian Collision - Vehicle Going Straight	Pedestrian Error
					-		-			2 Injury Crash	Other Vehicle	Other Vehicle - From Same Direction/Rear End Collision	Alcohol/Drug Involved
	IANA BLVD NE		0	-	0	-			3	3 Property Damage Only Crash	Other Vehicle	Other Vehicle - From Opposite Direction	Other Improper Driving
2019 LOMAS BL NE			0	-	0	-			3	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - Both Going Straight/Entering At Angle	Following Too Closely
	IANA BLVD NE		0		0	•	•		4	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - From Same Direction/Sideswipe Collision	None
	IANA BLVD NE		0	-	0	-			3	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - From Same Direction/Sideswipe Collision	Improper Lane Change
			0	-	0	-			2	2 Injury Crash	Pedestrian	Pedestrian Collision - Vehicle Going Straight	Pedestrian Error
			-	•	0	•			2	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - Both Going Straight/Entering At Angle	Driver Inattention
2019 LOMAS BLVD NE LOUISIA	IANA BLVD NE	W	0	0	0	0	0	3	3	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - From Same Direction/Both Going Straight	Avoid No Contact - Vehicle
2019 LOMAS BLVD NE LOUISIA	IANA BLVD NE	E	0	0	1	1	2		4	3 Injury Crash	Other Vehicle	Other Vehicle - Both Going Straight/Entering At Angle	Disregarded Traffic Signal
2019 LOUISIANA BLVD NE LOMAS	S BLVD NE	S	0	0	0	0	0		3	3 Property Damage Only Crash	Other Vehicle	Other Vehicle - Both Going Straight/Entering At Angle	Failed to Yield Right of Way
		E	0	0	0	0	0	2	2	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - From Opposite Direction/One Left Turn	Disregarded Traffic Signal
	S BLVD NE	S	0	1	0	0	1	3	4	3 Injury Crash	Other Vehicle	Other Vehicle - From Opposite Direction	Failed to Yield Right of Way

2019 LOUISIANA BLVD NE	LOMAS BLVD NE	S	0	0	0	0	0	2	2	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - Both Going Straight/Entering At Angle	Defective Steering
2019 LOMAS BLVD NE	LOUISIANA BLVD NE	S	0	0	0	0	0	2	2	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - From Opposite Direction/Both Going Straight	Disregarded Traffic Signal
2019 LOUISIANA	LOMAS BLVD NE	W	0	0	0	0	0	3	3	2 Property Damage Only Crash	Other Vehicle	Other Vehicle - Both Turn Right/Entering At Angle	Failed to Yield Right of Way
2019 LOMAS BLVD NE	LOUISIANA AVE	E	0	0	0	0	0	2	2	2 Property Damage Only Crash	Other Vehicle	Left Blank	Disregarded Traffic Signal

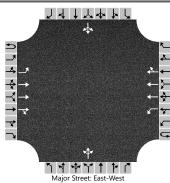

HCS7 Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	МВ	Intersection	Lomas and Alcazar								
Agency/Co.	вн	Jurisdiction	CABQ								
Date Performed	7/20/2021	East/West Street	Lomas								
Analysis Year	2021	North/South Street	Alcazar								
Time Analyzed	Existing AM	Peak Hour Factor	0.92								
Intersection Orientation	tersection Orientation East-West Analysis Time Period (hrs) 0.25										
Project Description Fiesta Subaru											

					iviaj	or street. La	31-VVC31									
Vehicle Volumes and Adj	ustme	nts														
Approach	T	Eastk	ound			Westl	oound			North	bound		Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	3	0	0	1	3	0		0	1	0		0	1	0
Configuration		L	Т	TR		L	Т	TR			LTR				LTR	
Volume (veh/h)	0	60	695	5	0	3	1485	12		1	0	4		27	0	28
Percent Heavy Vehicles (%)	2	2			2	2				2	2	2		2	2	2
Proportion Time Blocked																
Percent Grade (%)											0			()	
Right Turn Channelized																
Median Type Storage		Undivided														
ritical and Follow-up Headways																
Base Critical Headway (sec)	Τ	5.3				5.3				6.4	6.5	7.1		6.4	6.5	7.1
Critical Headway (sec)		5.34				5.34				6.44	6.54	7.14		6.44	6.54	7.14
Base Follow-Up Headway (sec)		3.1				3.1				3.8	4.0	3.9		3.8	4.0	3.9
Follow-Up Headway (sec)		3.12				3.12				3.82	4.02	3.92		3.82	4.02	3.92
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	Т	65				3					5				60	
Capacity, c (veh/h)		193				510					248				74	
v/c Ratio		0.34				0.01					0.02				0.80	
95% Queue Length, Q ₉₅ (veh)		1.4				0.0					0.1				3.9	
Control Delay (s/veh)		33.0				12.1					19.9				148.3	
Level of Service (LOS)		D				В			С						F	
Approach Delay (s/veh)		2.6				0.0				19.9				148.3		
Approach LOS										С				F		


Generated: 8/9/2021 8:19:06 AM

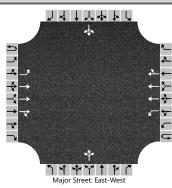
HCS7 Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	МВ	Intersection	Lomas and Alcazar								
Agency/Co.	ВН	Jurisdiction	CABQ								
Date Performed	7/20/2021	East/West Street	Lomas								
Analysis Year	2021	North/South Street	Alcazar								
Time Analyzed	Existing AM	Peak Hour Factor	0.92								
Intersection Orientation	East-West Analysis Time Period (hrs) 0.25										
Project Description Fiesta Subaru											

				iviaj	or Street. Lu	st west										
ustme	nts															
	Eastb	ound			Westl	oound			North	bound		Southbound				
U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
0	1	3	0	0	1	3	0		0	1	0		0	1	0	
	L	Т	TR		L	Т	TR			LTR				LTR		
0	60	695	5	0	3	1485	12		1	0	4		27	0	28	
2	2			2	2				2	2	2		2	2	2	
)		0				
	Left Only 1															
Follow-up Headways																
	5.3				5.3				6.4	6.5	7.1		6.4	6.5	7.1	
	5.34				5.34				6.44	6.54	7.14		6.44	6.54	7.14	
	3.1				3.1				3.8	4.0	3.9		3.8	4.0	3.9	
	3.12				3.12				3.82	4.02	3.92		3.82	4.02	3.92	
Leve	l of Se	ervice														
	65				3					5				60		
	193				510					319				103		
	0.34				0.01					0.02				0.58		
	1.4				0.0					0.1				2.7		
	33.0				12.1					16.5				79.3		
	D				В			С						F		
2.6				0.0				16.5				79.3				
									С				F			
	0 0 2 2 Padwa	U L 1U 1 0 1 0 60 2 2 2 2 2 3 5.3 5.34 3.1 3.12 4 Level of Second 193 0.34 1.4 33.0 D	Eastbound U L T 1U 1 2 0 1 3 L T 0 60 695 2 2 2 2 2 2 3 5.3 4 3.1 3.12 4 Level of Service 65 193 0.34 1.4 33.0 D	Eastbound U L T R 1U 1 2 3 0 1 3 0 L T TR 0 60 695 5 2 2 2	Eastbound U L T R U 1U 1 2 3 4U 0 1 3 0 0 L T TR 0 60 695 5 0 2 2 2 2 2 2 Left Only eadways 5.3	Eastbound Westle U L T R U L 1U 1 2 3 4U 4 0 1 3 0 0 1 L T TR L 0 60 695 5 0 3 2 2 2 2 2 2 Left Only Padways 5.3 5.34 5.34 3.1 3.12 3.12 1 Level of Service 65 3 193 510 0.34 0.01 1.4 0.00 33.0 12.1	Eastbound U L T R U L T 1U 1 2 3 4U 4 5 0 1 3 0 0 1 3 L T TR L T 0 60 695 5 0 3 1485 2 2 2 2 2 2 Left Only eadways 1 5.3	Eastbound U L T R U L T R 1U 1 2 3 4U 4 5 6 0 1 3 0 0 1 3 0 L T TR 0 60 695 5 0 3 1485 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Eastbound Westbound	Eastbound Westbound North	Northbound Northbound Northbound U	Color Colo	Company	Eastbound Westbound Northbound South	Eastbound Westbound Northbound Southbound	


HCS7 Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	МВ	Intersection	Lomas and Chama								
Agency/Co.	ВН	Jurisdiction	CABQ								
Date Performed	7/21/2021	East/West Street	Lomas								
Analysis Year	2021	North/South Street	Chama								
Time Analyzed	Existing AM	Peak Hour Factor	0.92								
Intersection Orientation	0.25										
Project Description Fiesta Subaru											

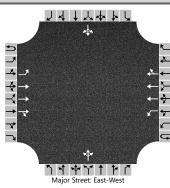
					Мај	or Street: Ea	st-West										
Vehicle Volumes and Adjustments																	
Approach		Eastk	oound			Westl	bound			North	bound			Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	1	3	0	0	1	3	0		0	1	0		0	1	0	
Configuration		L	Т	TR		L	Т	TR			LTR				LTR		
Volume (veh/h)	0	10	500	36	0	59	1140	8		48	0	20		4	0	4	
Percent Heavy Vehicles (%)	2	2			2	2				2	2	2		2	2	2	
Proportion Time Blocked																	
Percent Grade (%)										()			()		
Right Turn Channelized																	
Median Type Storage		Undivided															
Critical and Follow-up H	cal and Follow-up Headways																
Base Critical Headway (sec)		5.3				5.3				6.4	6.5	7.1		6.4	6.5	7.1	
Critical Headway (sec)		5.34				5.34				6.44	6.54	7.14		6.44	6.54	7.14	
Base Follow-Up Headway (sec)		3.1				3.1				3.8	4.0	3.9		3.8	4.0	3.9	
Follow-Up Headway (sec)		3.12			3.12				3.82	4.02	3.92		3.82	4.02	3.92		
Delay, Queue Length, an	d Leve	l of S	ervice														
Flow Rate, v (veh/h)		11				64					74				9		
Capacity, c (veh/h)		297				619					216				151		
v/c Ratio		0.04				0.10					0.34				0.06		
95% Queue Length, Q ₉₅ (veh)		0.1				0.3					1.4				0.2		
Control Delay (s/veh)		17.6				11.5					30.1				30.3		
Level of Service (LOS)		С				В			D						D		
Approach Delay (s/veh)		0.3				0.6			30.1				30.3				
Approach LOS										D				D			

Generated: 8/9/2021 8:29:00 AM

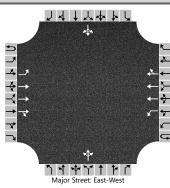

HCS7 Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	МВ	Intersection	Lomas and Chama								
Agency/Co.	ВН	Jurisdiction	CABQ								
Date Performed	7/21/2021	East/West Street	Lomas								
Analysis Year	2021	North/South Street	Chama								
Time Analyzed	Existing AM	Peak Hour Factor	0.92								
Intersection Orientation	on East-West Analysis Time Period (hrs) 0.25										
Project Description Fiesta Subaru											

					Maj	or Street: Ea	st-West									
Vehicle Volumes and Adj	justme	nts														
Approach	Τ	Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	3	0	0	1	3	0		0	1	0		0	1	0
Configuration		L	Т	TR		L	Т	TR			LTR				LTR	
Volume (veh/h)	0	10	500	36	0	59	1140	8		48	0	20		4	0	4
Percent Heavy Vehicles (%)	2	2			2	2				2	2	2		2	2	2
Proportion Time Blocked																
Percent Grade (%)										()		0			
Right Turn Channelized																
Median Type Storage		Left Only 1														
Critical and Follow-up H	eadways															
Base Critical Headway (sec)	T	5.3				5.3				6.4	6.5	7.1		6.4	6.5	7.1
Critical Headway (sec)		5.34				5.34				6.44	6.54	7.14		6.44	6.54	7.14
Base Follow-Up Headway (sec)		3.1				3.1				3.8	4.0	3.9		3.8	4.0	3.9
Follow-Up Headway (sec)		3.12				3.12				3.82	4.02	3.92		3.82	4.02	3.92
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)		11				64					74				9	
Capacity, c (veh/h)		297				619					292				144	
v/c Ratio		0.04				0.10					0.25				0.06	
95% Queue Length, Q ₉₅ (veh)		0.1				0.3					1.0				0.2	
Control Delay (s/veh)		17.6				11.5					21.5				31.7	
Level of Service (LOS)		С				В			С						D	
Approach Delay (s/veh)		0	.3		0.6				21.5				31.7			
Approach LOS									С				D			

		HCS	7 Sig	nalize	d Int	ersec	tion F	Resu	lts Sur	nmar	У							
General Information Intersection Information													T D		Ja lu			
	alion	ВН							Duration,		0.250		- 1	4111				
Agency		МВ		Analye	sia Data	e Jul 19	2024						_4		K.			
Analyst Jurisdiction				Time F	sis Date	AM	, 2021	_	Area Typ PHF	Е	Other 0.92			w 1 E	→			
		CABQ								Dariad		20			←			
Urban Street		Lomas			sis Year				Analysis		1> 7:0	JU	7		F			
Intersection		Lomas and Louisiar	na ———	File Na	ame	EXAIV	i_Loma	s-Loui	siana_v2	.xus								
Project Descript	ion	Existing AM																
Demand Inforn	nation				EB			WE	3		NB		SB					
Approach Move	ment			L	Т	R	L	Т	R	L	Т	R		Т	R			
Demand (v), ve				135	452	69	168		_	98	476		160	631	205			
Signal Informa	tion					5	∃ _ !		<u>. 21</u>		a							
Cycle, s	Cycle, s 110.0 Reference Phase 2					7 2	74			- 1			$\Leftrightarrow \bot$	7	Ψ			
Offset, s	0 Reference Point End				6.6	1.2	53.7	7.0	3.4	19.7		1	2	3	4			
Uncoordinated	No	Simult. Gap E/W	On	Yellow		0.0	4.5	3.0		4.5		<i>></i>	\rightarrow	~	小			
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.5	0.0	1.0	0.5		1.5		5	6	7	8			
Timer Results				EBI	_	EBT	WB	L	WBT	NBI	-	NBT	SBI		SBT			
Assigned Phase)			5		2	1		6	7		4	3		8			
Case Number				1.1		4.0	1.1		4.0	1.1		4.0	1.1		4.0			
Phase Duration	, S			10.1	1	59.2	11.2	2	60.3	10.5	5	25.7	13.9	9	29.1			
Change Period,	(Y+R	c), S		3.5		5.5	3.5		5.5	3.5		6.0	3.5		6.0			
Max Allow Head	lway(<i>N</i>	<i>MAH</i>), s		3.1		0.0	3.1		0.0	3.1		3.0	3.1		3.0			
Queue Clearand	ce Time	e (g s), s		6.4			7.5			7.2		13.8	10.3	3	19.6			
Green Extension	n Time	(g e), s		0.2		0.0	0.3		0.0	0.1	3.6		0.2		3.5			
Phase Call Prob	ability			0.99)		1.00)		0.96		1.00	1.00)	1.00			
Max Out Probab	oility			0.00)		0.00)		0.12		0.01	0.00)	0.02			
								14/5										
Movement Gro		sults			EB		<u> </u>	WB			NB		<u> </u>	SB				
Approach Move				L	T	R	L	T	R	L	T	R	L	T	R			
Assigned Move				5	2	12	1	6	16	7	4	14	3	8	18			
Adjusted Flow F		,·		147	383	183	183	882	401	107	427	200	174	629	280			
		ow Rate (s), veh/h/l	n	1810	1900	1770	1810	1900		1810	1900	1729	1810	1900	1662			
Queue Service		- ,		4.4	6.3	6.5	5.5	16.7	_	5.2	11.4	11.8	8.3	17.2	17.6			
Cycle Queue Cl		e Time (<i>g ε</i>), s		4.4	6.3	6.5	5.5	16.7		5.2	11.4	11.8	8.3	17.2	17.6			
Green Ratio (g/				0.55	0.49	0.49	0.56	0.50		0.24	0.18	0.18	0.29	0.21	0.21			
Capacity (c), v				317	1854	863	560	1894		200	680	310	295	799	349			
Volume-to-Capa				0.463	0.207	0.212	0.326	0.465		0.532	0.628	0.647	0.590	0.787	0.802			
	, , ,	/In (95 th percentile)		76.8	120.8		93.3	286.7		102.8	225.7	216.7	160.6	313	288.7			
	` ,	eh/In (95 th percenti		3.1	4.8	4.8	3.7	11.5	_	4.1	9.0	8.7	6.4	12.5	11.5			
		RQ) (95 th percent	ile)	0.48	0.00	0.00	0.85	0.00	_	0.59	0.00	0.00	1.00	0.00	0.00			
Uniform Delay (14.4	16.0	16.1	12.2	18.0	_	35.0	41.8	41.9	31.7	41.1	41.3			
Incremental Del		,		0.4	0.3	0.6	0.1	0.8	1.8	0.8	0.4	0.8	0.7	0.7	1.6			
	Initial Queue Delay (d 3), s/veh					0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
	Control Delay (d), s/veh					16.7	12.3	18.8	_	35.8	42.1	42.8	32.4	41.8	42.9			
	Level of Service (LOS)				В	В	B	В	В	D 44.4	D	D	C	D	D			
	Approach Delay, s/veh / LOS				<u> </u>	В	18.3	3	В	41.4		D	40.6)	D			
Intersection Del	ntersection Delay, s/veh / LOS					28	3.2											
Multimodal Par	fultimodal Results				ED			\\/D			NIP			SB				
					EB C		2.56		С	2.60 C		2.59		С				
	destrian LOS Score / LOS				3	A	1.29		A	0.89	_	A	1.08		A			
Dicycle LOS 30	cycle LOS Score / LOS				,	-	1.23		Α	0.08		А	1.00	,	А			

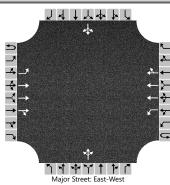

HCS7 Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	МВ	Intersection	Lomas and Alcazar								
Agency/Co.	ВН	Jurisdiction	CABQ								
Date Performed	7/20/2021	East/West Street	Lomas								
Analysis Year	2021	North/South Street	Alcazar								
Time Analyzed	Existing PM	Peak Hour Factor	0.92								
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25								
Project Description Fiesta Subaru											

				iviaj	or Street. Lu	st west										
ustme	nts															
Π	Eastb	ound			Westl	oound			North	bound		Southbound				
U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R	
1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
0	1	3	0	0	1	3	0		0	1	0		0	1	0	
	L	Т	TR		L	Т	TR			LTR				LTR		
0	31	1393	1	0	3	1179	27		1	0	3		31	0	22	
2	2			2	2				2	2	2		2	2	2	
)			()		
Undivided																
l and Follow-up Headways																
Π	5.3				5.3				6.4	6.5	7.1		6.4	6.5	7.1	
	5.34				5.34				6.44	6.54	7.14		6.44	6.54	7.14	
	3.1				3.1				3.8	4.0	3.9		3.8	4.0	3.9	
	3.12				3.12				3.82	4.02	3.92		3.82	4.02	3.92	
Leve	l of Se	ervice														
П	34				3					4				58		
	276				219					126				89		
	0.12				0.01					0.03				0.65		
	0.4				0.0					0.1				3.1		
	19.8				21.7					34.7				100.3		
Ì	С				С			D						F		
0.4				0.1				34.7				100.3				
									D				F			
	0 0 2 2 Padwa	U L 1U 1 0 1 0 31 2 2 2 2 2 3 5.3 5.34 3.1 3.12 4 Level of Second 19.8 0.4 19.8 C	Eastbound U L T 1U 1 2 0 1 3 L T 0 31 1393 2 2 2 2 2 2 2 3 3 1 3 .1 2 3 Level of Service 3 4 2 76 0 .12 0 .4 1 9.8 C	Eastbound U L T R 1U 1 2 3 0 1 3 0 L T TR 0 31 1393 1 2 2	Eastbound U L T R U 1U 1 2 3 4U 0 1 3 0 0 L T TR 0 31 1393 1 0 2 2 2 2 2 Undivided Padways 5.3	Eastbound Westle U L T R U L L V V V V V V V V V V V V V V V V V	Eastbound U L T R U L T 1U 1 2 3 4U 4 5 0 1 3 0 0 1 3 L T TR L T 0 31 1393 1 0 3 1179 2 2 2 2 2 2 Undivided Cadways S.3 5.34 5.34 5.34 3.1 3.12 3.12 3.12 S Level of Service 1 9.4	Eastbound Westbound U L T R U L T R 1U 1 2 3 4U 4 5 6 0 1 3 0 0 1 3 0 L T TR L T TR 0 31 1393 1 0 3 1179 27 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Eastbound Westbound	Eastbound Westbound North	North-burst	Color Colo	Column	Eastbound Westbound Northbound South	Eastbound Westbound Northbound Southbound	


Generated: 8/9/2021 8:50:12 AM

HCS7 Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	МВ	Intersection	Lomas and Alcazar								
Agency/Co.	ВН	Jurisdiction	CABQ								
Date Performed	7/20/2021	East/West Street	Lomas								
Analysis Year	2021	North/South Street	Alcazar								
Time Analyzed	Existing PM	Peak Hour Factor	0.92								
Intersection Orientation	East-West Analysis Time Period (hrs) 0.25										
Project Description Fiesta Subaru											

					iviaj	or Street. Lu	st west										
Vehicle Volumes and Adju	ıstme	nts															
Approach		Eastb	ound			Westbound				Northbound				Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	1	3	0	0	1	3	0		0	1	0		0	1	0	
Configuration		L	Т	TR		L	Т	TR			LTR				LTR		
Volume (veh/h)	0	31	1393	1	0	3	1179	27		1	0	3		31	0	22	
Percent Heavy Vehicles (%)	2	2			2	2				2	2	2		2	2	2	
Proportion Time Blocked																	
Percent Grade (%)										()		0				
Right Turn Channelized																	
Median Type Storage				Left	Only				1								
Critical and Follow-up He	r-up Headways																
Base Critical Headway (sec)		5.3				5.3				6.4	6.5	7.1		6.4	6.5	7.1	
Critical Headway (sec)		5.34				5.34				6.44	6.54	7.14		6.44	6.54	7.14	
Base Follow-Up Headway (sec)		3.1				3.1				3.8	4.0	3.9		3.8	4.0	3.9	
Follow-Up Headway (sec)		3.12				3.12				3.82	4.02	3.92		3.82	4.02	3.92	
Delay, Queue Length, and	Leve	l of Se	ervice														
Flow Rate, v (veh/h)		34				3					4				58		
Capacity, c (veh/h)		276				219					151				141		
v/c Ratio		0.12				0.01					0.03				0.41		
95% Queue Length, Q ₉₅ (veh)		0.4				0.0					0.1	Ì			1.8		
Control Delay (s/veh)		19.8				21.7					29.5				47.1		
Level of Service (LOS)		С				С					D	Ì			Е		
Approach Delay (s/veh)		0.4				0.1			29.5			47.1					
Approach LOS								D				E					


HCS7 Two-Way Stop-Control Report							
General Information		Site Information					
Analyst	МВ	Intersection	Lomas and Chama				
Agency/Co.	ВН	Jurisdiction	CABQ				
Date Performed	7/21/2021	East/West Street	Lomas				
Analysis Year	2021	North/South Street	Chama				
Time Analyzed	Existing PM	Peak Hour Factor	0.92				
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25				
Project Description	Fiesta Subaru						

				iviaj	or ourcet. Lu	or west									
ıstme	nts														
	Eastb	ound			Westbound				North	bound		Southbound			
U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
0	1	3	0	0	1	3	0		0	1	0		0	1	0
	L	Т	TR		L	Т	TR			LTR				LTR	
0	11	1330	108	0	62	1099	9		27	0	26		3	0	18
3	3			3	3				3	3	3		3	3	3
)		0			
			Undi	vided											
adwa	ys														
	5.3				5.3				6.4	6.5	7.1		6.4	6.5	7.1
	5.36				5.36				6.46	6.56	7.16		6.46	6.56	7.16
	3.1				3.1				3.8	4.0	3.9		3.8	4.0	3.9
	3.13				3.13				3.83	4.03	3.93		3.83	4.03	3.93
Leve	of Se	ervice													
	12				67					58				23	
	309				205					62				183	
	0.04				0.33					0.93				0.12	
	0.1				1.4					4.4				0.4	
	17.1				30.9					205.3				27.4	
	С				D					F				D	
0.1				1.6			205.3			27.4					
								F			D				
	0 10 0 3 3 adway	U L 1U 1 0 1 0 1 L 0 11 3 3 Adways 5.3 5.36 3.1 3.13 Level of Second 12 309 0.04 0.1 17.1 C	Eastbound U L T 1U 1 2 0 1 3 L T 0 11 1330 3 3 3 3 Adways 5.3 5.36 3.1 3.13 Level of Service 12 309 0.04 0.1 17.1 C	Eastbound U L T R 1U 1 2 3 0 1 3 0 L T TR 0 11 1330 108 3 3 3 Undi adways 5.3 5.36 3.1 3.13 Level of Service 12 309 0.04 0.1 17.1 C	Eastbound U L T R U 1U 1 2 3 4U 0 1 3 0 0 L T TR 0 11 1330 108 0 3 3 3 3 3 3 Undivided adways 5.3 Undivided atways 1 Level of Service 12	Eastbound Westle U L T R U L L V V V V V V V V V V V V V V V V V	Eastbound Westbound	Eastbound Westbound	Eastbound Westbound	Eastbound Westbound North	Variable Variable	Column	Eastbound Westbound Northbound U	Eastbound Westbound Northbound South	Eastburd Westburd Northbound Southbound

Generated: 8/9/2021 8:52:00 AM

HCS7 Two-Way Stop-Control Report								
General Information		Site Information						
Analyst	МВ	Intersection	Lomas and Chama					
Agency/Co.	ВН	Jurisdiction	CABQ					
Date Performed	7/21/2021	East/West Street	Lomas					
Analysis Year	2021	North/South Street	Chama					
Time Analyzed	Existing PM	Peak Hour Factor	0.92					
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25					
Project Description	Fiesta Subaru							

Major Street: East-West																
Vehicle Volumes and Adj	ustme	nts														
Approach	Τ	Eastk	ound			Westl	bound			North	bound		Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	3	0	0	1	3	0		0	1	0		0	1	0
Configuration		L	Т	TR		L	Т	TR			LTR				LTR	
Volume (veh/h)	0	11	1330	108	0	62	1099	9		27	0	26		3	0	18
Percent Heavy Vehicles (%)	2	2			2	2				2	2	2		2	2	2
Proportion Time Blocked																
Percent Grade (%)										()		0			
Right Turn Channelized																
Median Type Storage				Left	Only				1							
Critical and Follow-up H	Headways															
Base Critical Headway (sec)		5.3				5.3				6.4	6.5	7.1		6.4	6.5	7.1
Critical Headway (sec)		5.34				5.34				6.44	6.54	7.14		6.44	6.54	7.14
Base Follow-Up Headway (sec)		3.1				3.1				3.8	4.0	3.9		3.8	4.0	3.9
Follow-Up Headway (sec)		3.12				3.12				3.82	4.02	3.92		3.82	4.02	3.92
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)		12				67					58				23	
Capacity, c (veh/h)		311				207					107				229	
v/c Ratio		0.04				0.33					0.54				0.10	
95% Queue Length, Q ₉₅ (veh)		0.1				1.3					2.5				0.3	
Control Delay (s/veh)		17.0				30.5					72.0				22.4	
Level of Service (LOS)		С				D					F				С	
Approach Delay (s/veh)		0.1				1.6			72.0			22.4				
Approach LOS									F				С			

HCS7 Signalized Intersection Results Summary																
General Inform	ation								Intersec	tion Inf	ormatic	\n			Ju ly	
	iation	ВН							Duration,		0.250		- 1	4111		
Agency		MB		Analys	io Doto	Jul 19	2021						_A		K.	
Analyst Jurisdiction				_	sis Date	PM	, 2021	_	Area Typ	Е	Other			w‡€	→	
		CABQ							PHF Analysis Period		0.92 1> 7:00				←	
Urban Street		Lomas	_	-			1 1		-		1> 7:0	JU			F	
Intersection	L:	Lomas and Louisiar	ıa ———	File Name EXPM_Lomas-Louis					siana_vz	.xus			-	` ` † † †	1- 7	
Project Descript	lion	Existing PM											_	וידורו	r	
Demand Inforn	nation				EB			WE	′B		NB		SB			
Approach Move					Т	R		Т	R	L	Т	R		Т	R	
Demand (v), veh/h			224	1133	141	157	754	_	129	947	213	172	586	184		
Signal Informa	tion						1 _ 2									
Cycle, s	Cycle, s 120.0 Reference Phase 2				L 6	\blacksquare				- 1			$\Leftrightarrow \bot$	7	Ψ	
Offset, s	0	Reference Point	End	Green	9.0	2.8	46.4	8.6	2.3	32.4		1	2	3	4	
Uncoordinated	No	Simult. Gap E/W	On	Yellow		0.0	4.5	3.0	0.0	4.5		>	\rightarrow	~	▲	
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.5	0.0	1.0	0.5	0.0	1.5		5	6	7	8	
Timer Results				EBI	-	EBT	WB	L	WBT	NBI	-	NBT	SBI		SBT	
Assigned Phase	9			5		2	1		6	7		4	3		8	
Case Number				1.1		4.0	1.1	_	4.0	1.1		4.0	1.1		4.0	
Phase Duration	, s			15.3	3	54.7	12.5	5	51.9	12.1		38.4	14.4	1	40.7	
Change Period, (Y+Rc), s						5.5	3.5		5.5 3.5			6.0	3.5		6.0	
Max Allow Headway (MAH), s						0.0	3.1		0.0 3.1			3.0	3.1		3.0	
Queue Clearance Time (g s), s				11.4			8.7			8.6		28.0	10.7	7	17.7	
Green Extension Time (g e), s				0.4		0.0	0.3		0.0	0.1		4.4	0.2		5.5	
Phase Call Probability				1.00)		1.00)		0.99)	1.00	1.00)	1.00	
Max Out Probal	bility			0.00)		0.00			0.15	5	0.28	0.00)	0.04	
		14						\A/D			ND			0.0		
Movement Gro		suits			EB			WB			NB		.	SB		
Approach Move				L	T	R	L	T	R	L	T	R	L	T	R	
Assigned Move		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		5	2	12	1	6	16	7	4	14	3	8	18	
Adjusted Flow F		,		243	942	443	171	728	325	140	868	393	187	578	259	
-		ow Rate (s), veh/h/li	1	1810	1900	1789	1810	1900		1810	1900	1718	1810	1900	1668	
Queue Service		· ·		9.4	23.3	23.3	6.7	17.5	_	6.6	25.9	26.0	8.7	15.3	15.7	
Cycle Queue Cl		e Time (g c), s		9.4	23.3	23.3	6.7	17.5	17.6	6.6	25.9	26.0	8.7	15.3	15.7	
Green Ratio (g				0.50	0.41	0.41	0.46	0.39	_	0.34	0.27	0.27	0.37	0.29	0.29	
Capacity (c), v		tio (V)		368	1558	733	274	1468		285	1026	464	249	1099	483	
Volume-to-Capa				0.662	0.604	0.605	0.623	0.496		0.492	0.846	0.847	0.751	0.525	0.537	
		In (95 th percentile)		173.9	398.6	_	126.7	314.7		128.6	452.9	435.1	171.3	282	260.2	
	• •	eh/ln (95 th percenti		7.0	15.9	15.7	5.1	12.6	_	5.1	18.1	17.4	6.9	11.3	10.4	
		RQ) (95 th percent	iie)	1.09	0.00	0.00	1.15	0.00		0.74	0.00	0.00	1.07	0.00	0.00	
Uniform Delay (20.4	27.8	27.8	22.9	27.9	_	29.4	41.4	41.4	30.9	35.7	35.9	
Incremental Del		0.8	1.7	3.7	0.9	1.2	2.7	0.5	3.9	8.4	1.7	0.1	0.3			
Initial Queue Delay (d 3), s/veh					0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh Level of Service (LOS)					29.5	31.5	23.8	29.1	30.7	29.9	45.4	49.8	32.6	35.9	36.2	
	С	С	С	C	С	С	C 45.4	D	D	C	D	D				
Approach Delay		28.8		С	28.8	5	С	45.1		D	35.4	+	D			
Intersection Del	ay, s/ve	en / LOS				34	1.4						С			
Multimodal Results					FR			WB	MR NI			NB		SB		
	Pedestrian LOS Score / LOS				2.57		2.58				.59 C		2.59		С	
Bicycle LOS Sc				1.38		C A	1.16		A	1.26		A	1.05	_	A	
Dioyole LOG GC	1.00	_	7 (1.10		71	1.20		7 (1.00		/ \				

APPENDIX C TURNING MOVEMENT DEVELOPMENT

Fiesta Subaru Trip Distribution - Retail Trips - 2 mile radius DASZ's within a 2-mile radius of site

	% of DASZ	2016	2040	2021		Lo	omas to/from W	est	L	omas to/from East
DASZ	in Study Area	Population In DASZ	Population In		2021 Pop%	% Utililizing	% Population/ Dist. Utilizing	Population	% I Itililizina	% Population/ Dist. Utilizing Population
7043	6%	1426	Study Area 1773	1,498	1.79%	50%	0.89%	0	76 Utililizing	Dist. Utilizing Population
7044	71%	0	343	71	0.09%	50%	0.04%	Ü		
7401	99%	729	766	737	0.88%		0.00%		50%	0.44%
7402	91%	1137	1877	1,291	1.54%		0.00%		50%	0.77%
7403	19%	1064	1356	1,125	1.34%		0.00%		50%	0.67%
7411 7501	15% 100%	1340 1367	1388 1549	1,350 1,405	1.61% 1.68%		0.00% 0.00%		50% 100%	0.81% 1.68%
7503	98%	1099	1323	1,146	1.37%		0.00%		100%	1.37%
7511	100%	1221	1246	1,226	1.46%		0.00%		50%	0.73%
7512	74%	1323	1387	1,336	1.60%		0.00%		50%	0.80%
7571	2%	1176	1241	1,190	1.42%		0.00%		100%	1.42%
7601	100%	919	1194	976	1.17%	50%	0.58%			0.00%
7602 7603	56% 86%	1051 1226	1325 1400	1,108 1,262	1.32% 1.51%	50%	0.66% 0.00%			0.00% 0.00%
7641	89%	1258	1267	1,260	1.50%		0.00%			0.00%
7642	66%	826	1137	891	1.06%		0.00%		50%	0.53%
7652	100%	1000	1064	1,013	1.21%		0.00%		50%	0.61%
7661	100%	403	635	451	0.54%		0.00%		100%	0.54%
7662	100%	1714	1870	1,747	2.09%		0.00%		50%	1.04%
7681	100%	0	121	25 51	0.03%		0.00%			0.00%
7682 7683	100% 100%	0 123	245 293	51 158	0.06% 0.19%		0.00% 0.00%			0.00% 0.00%
7684	100%	899	293 1171	956	1.14%		0.00%			0.00%
7685	100%	0	26	5	0.01%		0.00%			0.00%
7691	100%	268	700	358	0.43%		0.00%			0.00%
7692	100%	475	521	485	0.58%		0.00%			0.00%
7693	100%	180	341	214	0.26%		0.00%			0.00%
7694	100%	0	128	27	0.03%		0.00%			0.00%
7695 7696	100% 100%	0 760	355 1042	74 819	0.09% 0.98%		0.00% 0.00%			0.00% 0.00%
8121	79%	1216	1387	1,252	1.49%	70%	1.05%			0.00%
8122	51%	1195	1439	1,246	1.49%	50%	0.74%			0.00%
8123	14%	494	731	543	0.65%	50%	0.32%			0.00%
8131	100%	1173	1754	1,294	1.55%	70%	1.08%			0.00%
8132	100%	1153	1195	1,162	1.39%	50%	0.69%			0.00%
8133 8141	100% 100%	0 1015	63 1394	13 1,094	0.02% 1.31%	50% 70%	0.01% 0.91%			0.00% 0.00%
8142	100%	1551	1745	1,591	1.90%	50%	0.95%			0.00%
8151	100%	1742	2816	1,966	2.35%	70%	1.64%			0.00%
8161	100%	1862	3261	2,153	2.57%	70%	1.80%			0.00%
8172	81%	1591	2557	1,792	2.14%	70%	1.50%			0.00%
8201	100%	1108	1432	1,176	1.40%		0.00%			0.00%
8202 8211	100% 100%	839 1552	878 1987	847 1,643	1.01% 1.96%		0.00% 0.00%			0.00% 0.00%
8212	100%	274	622	347	0.41%		0.00%		100%	0.41%
8221	100%	10	90	27	0.03%	70%	0.02%		.0070	0.00%
8231	100%	1371	1824	1,465	1.75%		0.00%			0.00%
8233	100%	2618	2766	2,649	3.16%		0.00%		100%	3.16%
8234	100%	2114	2590	2,213	2.64%		0.00%		50%	1.32%
8241 8242	100% 100%	1398 3678	1468 3894	1,413 3,723	1.69% 4.45%		0.00% 0.00%			0.00% 0.00%
8243	100%	949	1211	1,004	1.20%		0.00%			0.00%
8244	100%	2678	2596	2,661	3.18%		0.00%		50%	1.59%
8251	99%	360	593	409	0.49%		0.00%		100%	0.49%
8261	68%	2061	1901	2,028	2.42%		0.00%		50%	1.21%
8262	100%	2000	2447	2,093	2.50%		0.00%		50%	1.25%
8263 8423	72% 3%	1743 363	1951 470	1,786 385	2.13% 0.46%		0.00% 0.00%		50%	1.07% 0.00%
8423 8433	3% 2%	534	769	583	0.46%		0.00%		50%	0.00%
8442	100%	705	705	705	0.84%		0.00%		50%	0.42%
8444	18%	2272	2272	2,272	2.71%		0.00%		50%	1.36%
8512	14%	372	619	423	0.51%	50%	0.25%			0.00%
8521	98%	968	1705	1,122	1.34%	50%	0.67%			0.00%
8531	100%	2161	2338	2,198	2.63%	50%	1.31%			0.00%
8532 8533	100% 100%	817 695	1541 1242	968 809	1.16% 0.97%	50%	0.58% 0.00%			0.00% 0.00%
8533 8534	100%	2055	2322	2,111	0.97% 2.52%		0.00%			0.00%
8541	70%	3349	5253	3,746	4.47%	50%	2.24%			0.00%
8542	98%	1637	2114	1,736	2.07%		0.00%			0.00%
8561	52%	2625	3573	2,823	3.37%	50%	1.69%			0.00%
		79,282	100,599	83,723	100.00%		20%			24%

^{* -} DASZ Population from MRCOG Website data

Fiesta Subaru Trip Distribution - Retail Trips - 2 mile radius DASZ's within a 2-mile radius of site

	% of DASZ	2016	2040	2021		Lou	uisiana to/from N	orth	Lou	uisiana to/from S	outh
DASZ	in Study Area				2021 Pop%	% Utililizing	% Population/	Donulation	0/	% Population/	Donulation
7043	6%	DASZ 1426	Study Area 1773	1,498	1.79%	50%	Dist. Utilizing 0.89%	0	% Utililizing	Dist. Utilizing 0.00%	Population
7044	71%	0	343	71	0.09%	50%	0.04%	-		0.00%	
7401	99%	729	766	737	0.88%	50%	0.44%			0.00%	
7402	91%	1137	1877	1,291	1.54%	50%	0.77%			0.00%	
7403	19%	1064	1356	1,125	1.34%	50%	0.67%			0.00%	
7411 7501	15% 100%	1340 1367	1388 1549	1,350 1,405	1.61% 1.68%	50%	0.81% 0.00%			0.00% 0.00%	
7503	98%	1099	1323	1,146	1.37%		0.00%			0.00%	
7511	100%	1221	1246	1,226	1.46%	50%	0.73%			0.00%	
7512	74%	1323	1387	1,336	1.60%	50%	0.80%			0.00%	
7571	2%	1176	1241	1,190	1.42%		0.00%			0.00%	
7601	100%	919	1194	976	1.17%	50%	0.58%			0.00%	
7602 7603	56% 86%	1051 1226	1325 1400	1,108 1,262	1.32% 1.51%	50% 100%	0.66% 1.51%			0.00% 0.00%	
7641	89%	1258	1267	1,262	1.50%	100%	1.50%			0.00%	
7642	66%	826	1137	891	1.06%	50%	0.53%			0.00%	
7652	100%	1000	1064	1,013	1.21%	50%	0.61%			0.00%	
7661	100%	403	635	451	0.54%		0.00%			0.00%	
7662	100%	1714	1870	1,747	2.09%	50%	1.04%			0.00%	
7681	100%	0	121	25 51	0.03%	100%	0.03%			0.00%	
7682 7683	100% 100%	0 123	245 293	51 158	0.06% 0.19%	100% 100%	0.06% 0.19%			0.00% 0.00%	
7684	100%	899	293 1171	956	1.14%	100%	1.14%			0.00%	
7685	100%	0	26	5	0.01%	100%	0.01%			0.00%	
7691	100%	268	700	358	0.43%	100%	0.43%			0.00%	
7692	100%	475	521	485	0.58%	100%	0.58%			0.00%	
7693	100%	180	341	214	0.26%	100%	0.26%			0.00%	
7694 7695	100% 100%	0 0	128 355	27 74	0.03% 0.09%	100% 100%	0.03% 0.09%			0.00% 0.00%	
7696	100%	760	1042	819	0.98%	100%	0.98%			0.00%	
8121	79%	1216	1387	1,252	1.49%	30%	0.45%			0.00%	
8122	51%	1195	1439	1,246	1.49%	50%	0.74%			0.00%	
8123	14%	494	731	543	0.65%	50%	0.32%			0.00%	
8131	100%	1173	1754	1,294	1.55%	30%	0.46%			0.00%	
8132	100%	1153	1195	1,162	1.39%	50%	0.69%			0.00%	
8133 8141	100% 100%	0 1015	63 1394	13 1,094	0.02% 1.31%	50% 30%	0.01% 0.39%			0.00% 0.00%	
8142	100%	1551	1745	1,591	1.90%	50%	0.95%			0.00%	
8151	100%	1742	2816	1,966	2.35%		0.00%		30%	0.70%	
8161	100%	1862	3261	2,153	2.57%		0.00%		30%	0.77%	
8172	81%	1591	2557	1,792	2.14%		0.00%		30%	0.64%	
8201 8202	100% 100%	1108 839	1432 878	1,176 847	1.40% 1.01%	100% 100%	1.40% 1.01%			0.00% 0.00%	
8211	100%	1552	1987	1,643	1.96%	100%	1.96%			0.00%	
8212	100%	274	622	347	0.41%	10070	0.00%			0.00%	
8221	100%	10	90	27	0.03%		0.00%		30%	0.01%	
8231	100%	1371	1824	1,465	1.75%		0.00%		100%	1.75%	
8233	100%	2618	2766	2,649	3.16%		0.00%		500/	0.00%	
8234 8241	100% 100%	2114 1398	2590 1468	2,213 1,413	2.64% 1.69%		0.00% 0.00%		50% 100%	1.32% 1.69%	
8242	100%	3678	3894	3,723	4.45%		0.00%		100%	4.45%	
8243	100%	949	1211	1,004	1.20%		0.00%		100%	1.20%	
8244	100%	2678	2596	2,661	3.18%		0.00%		50%	1.59%	
8251	99%	360	593	409	0.49%		0.00%			0.00%	
8261	68%	2061	1901	2,028	2.42%		0.00%		50%	1.21%	
8262 8263	100% 72%	2000	2447 1951	2,093	2.50%		0.00%		50% 50%	1.25% 1.07%	
8423	72% 3%	1743 363	470	1,786 385	2.13% 0.46%		0.00% 0.00%		100%	0.46%	
8433	2%	534	769	583	0.70%		0.00%		50%	0.35%	
8442	100%	705	705	705	0.84%		0.00%		50%	0.42%	
8444	18%	2272	2272	2,272	2.71%		0.00%		50%	1.36%	
8512	14%	372	619	423	0.51%		0.00%		50%	0.25%	
8521	98%	968	1705	1,122	1.34%		0.00%		50%	0.67%	
8531 8532	100% 100%	2161 817	2338 1541	2,198 968	2.63% 1.16%		0.00% 0.00%		50% 50%	1.31% 0.58%	
8532 8533	100%	695	1242	809	0.97%		0.00%		100%	0.58%	
8534	100%	2055	2322	2,111	2.52%		0.00%		100%	2.52%	
8541	70%	3349	5253	3,746	4.47%		0.00%		50%	2.24%	
8542	98%	1637	2114	1,736	2.07%		0.00%		100%	2.07%	
8561	52%	2625	3573	2,823	3.37%	L	0.00%		50%	1.69%	
		79,282	100,599	83,723	100.00%		24%			33%	

^{* -} DASZ Population from MRCOG Website data

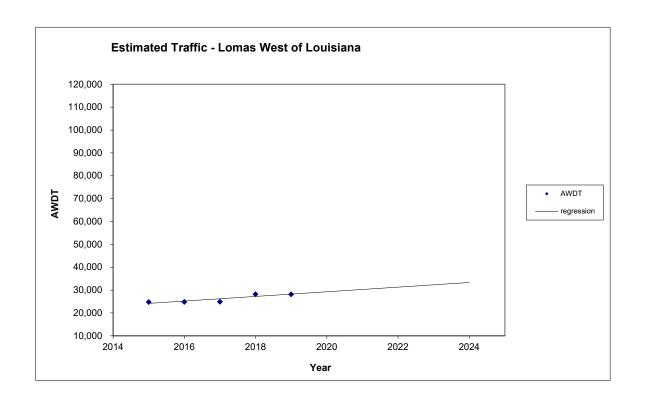
AWDT on Lomas

(West of Louisiana)

Year	AWDT
2015	24,809
2016	24,883
2017	24,957
2018	28,264
2019	28 194

Linear Growth Rate = $\{[(28,194 - 24,809)/4]/28,194\}x100 = 3.00\%$

Regression Output							
R Square	0.77						
Standard Error	1.02E+03						
Observations	5						
Intercept	-2,021,235						
Std Err of Intercept	652,958						
Coefficient	1,015						
Std Err of Coefficient	324						


Projected AWDT 2015 24,19

2015	24,191
2016	25,206
2017	26,221
2018	27,237
2019	28,252
2020	29,267
2021	30,282
2022	31,297
2023	32,312
2024	33,327

Regression Equation

AWDT = 324 x Year - 2,021,235 Coefficient Growth Rate 3.60%

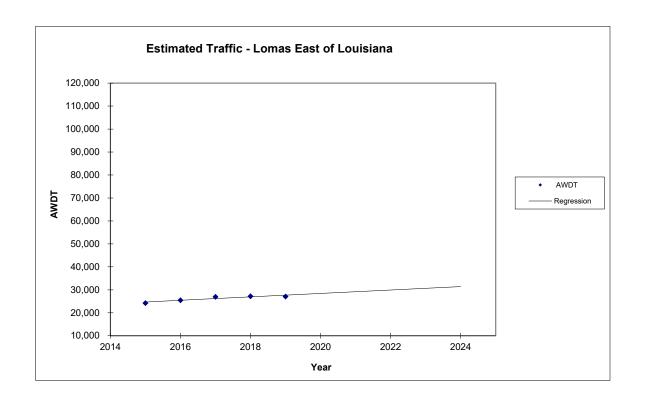
Estimated Annual Growth Rate [(33,327 - 28,194)/28,194) x 100% = 18.21% 18.21%/4= 4.55%

AWDT on Lomas (East of Louisiana)

Year	AWDT
2015	24,207
2016	25,477
2017	26,969
2018	27,166
2019	27,098

Linear Growth Rate = $\{[(27,098 - 24,207)/4]/27,098\}x100 = 2.67\%$

Regression Output									
R Square	0.82								
Standard Error	6.44E+02								
Observations	5								
Intercept	-1,480,717								
Std Err of Intercept	410,521								
Coefficient	747								
Std Err of Coefficient	204								


<u>Projected AWDT</u> 2015 24,68

2015	24,689
2016	25,436
2017	26,183
2018	26,931
2019	27,678
2020	28,425
2021	29,172
2022	29,919
2023	30,666
2024	31,413

Regression Equation AWDT = 204 x Year - 1,480,717

Coefficient Growth Rate 2.76%

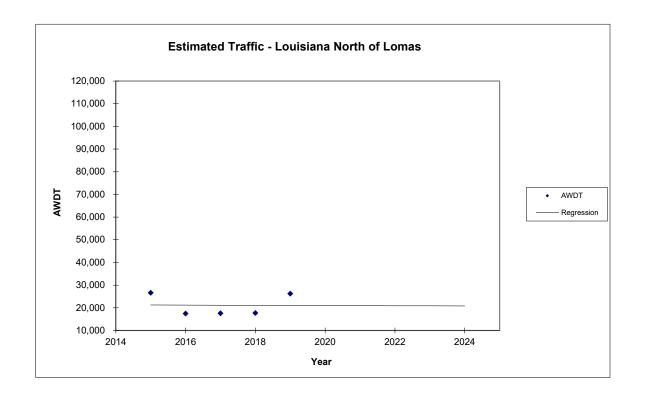
Estimated Annual Growth Rate ((31,413 - 27,098))/27,098) x 100% = 15.92% 15.92%/4 = 3.98%

AWDT on Louisiana (North of Lomas)

Year AWDT 2015 26,669 2016 17,483 2017 17,606 2018 17,735 2019 26,296

Linear Growth Rate = $\{[(26,296 - 26,669)/4]/26,296\} \times 100 = -0.35\%$

Regression Output									
R Square	0.00								
Standard Error	5.62E+03								
Observations	5								
Intercept	120,798								
Std Err of Intercept	3,581,431								
Coefficient	-49								
Std Err of Coefficient	1,776								


Projected AWDT 2015 21,25

21,257 2016 21,207 2017 21,158 2018 21,108 2019 21,059 2020 21,010 2021 20,960 2022 20,911 2023 20,861 2024 20,812

Regression Equation AWDT = -49 x Year + 120,798

Coefficient Growth Rate -0.19%

Estimated Annual Growth Rate [(20,812 - 26,296)/26,296) x 100% = -20.85% -20.85%/4 = -5.21%

AWDT on Louisiana (South of Lomas)

Year	AWDT
2015	23,278
2016	21,051
2017	21,199
2018	21,354
2019	25,264

Linear Growth Rate = $\{[(25,264 - 23,278)/4]/25,264\}x100 = 1.97\%$

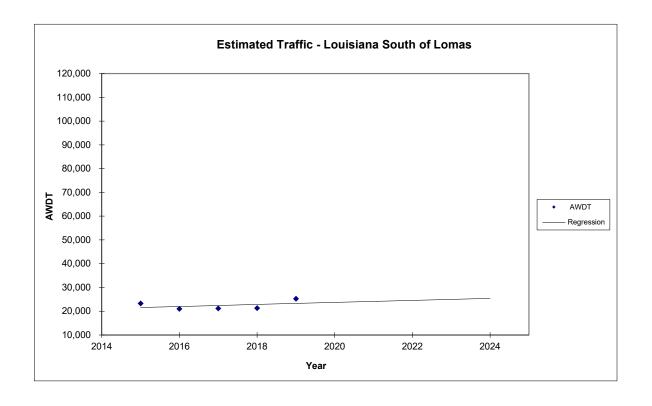
Regression Output									
R Square	0.14								
Standard Error	1.96E+03								
Observations	5								
Intercept	-839,838								
Std Err of Intercept	1,248,689								
Coefficient	428								
Std Err of Coefficient	619								

Projected AWDT
2015 21,574
2016 22,002
2017 22,429
2018 22,857
2019 23,284
2020 23,712
2021 24,139

24,567

24,994

25,422


2022

2023

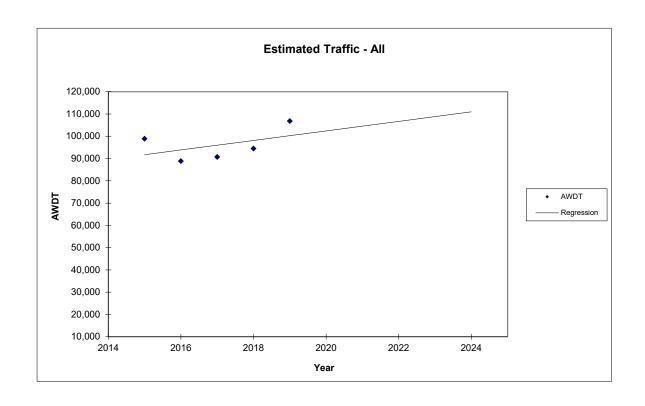
2024

Regression Equation
AWDT = 619 x Year - 839,838 Coefficient Growth Rate 1.69%

Estimated Annual Growth Rate $[(25,422 - 25,264)/25,264) \times 100\% = 0.62\% \\ 0.62\%/4 = 0.16\%$

AWDT	
ALL	
Year	AWDT
2015	98,963
2016	88,894
2017	90,731
2018	94,519
2019	106,852

Linear Growth Rate = $\{[106,852 - 98,963)/4]/106,852\}x100 = 1.48\%$


Regression Output									
R Square	0.22								
Standard Error	7.33E+03								
Observations	5								
Intercept	-4,220,993								
Std Err of Intercept	4,675,310								
Coefficient	2,140								
Std Err of Coefficient	2,318								

<u>Projected</u>	TDWA b
2015	91,711
2016	93,852
2017	95,992
2018	98,132
2019	100,272
2020	102,413
2021	104,553
2022	106,693
2023	108,834
2024	110,974

Regression Equation AWDT = 2,318 x Year - 4,220,993 Co

Coefficient Growth Rate 2.00%

Estimated Annual Growth Rate [(108,834 - 106,852)/106,852) x 100% = 3.86% 1.85%/4 = 0.77%

INTERSECTION: LOMAS AND LOUISIANA

AM Peak Hour	Eastbound LOMAS				Westbound LOMAS			Northboun LOUISIAN		Southbound LOUISIANA		
ŀ	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
StreetLight Pre Covid (2019)	161	540	Rigiit 83	107	619	131	106	515	109	114	449	146
TAQA	101	656	00	107	1348	101	100	675	100	1117	996	170
StreetLight Adjusted Traffic Counts	135	452	69	168	974	206	98	476	101	160	631	205
Background Growth	8	27	4	10	58	12	6	29	6	10	38	12
No Build (2024)	143	479	74	178	1,032	218	104	505	107	170	669	217
Entering		13			-					15		
Exiting	0	0	0	4	5	6	4	0	0	0	0	0
Build (2024)	143	492	74	182	1,037	224	108	505	107	185	669	217
											·	
-				l-	II.							l
PHF	0.94			0.94			0.94			0.94		
HV %		2			2			2			2	
PM Peak Hour		Eastbound		,	Westbound			Northboun	d	S	outhboun	ıd
		LOMAS		LOMAS			LOUISIANA			LOUISIANA		
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
StreetLight Pre Covid (2019)	197	998	124	146	700	200	110	808	182	154	524	165
TAQA		1498	ı		1127	ı		1289	I	<u> </u>	942	
StreetLight Adjusted Traffic Counts	224	1133	141	157	754	215	129	947	213	172	586	184
Background Growth	13	68	8	9	45	13	8	57	13	10	35	11
No Build (2024)	237	1,201	149	167	799	228	137	1,004	226	182	621	195
Entering		8								10	ı	
Exiting	0	0	0	11	13	15	11	0	0	0	0	0
Build (2024)	237	1,210	149	177	812	244	147	1,004	226	192	621	195
											ı	
-			•			•	•	•	•			
PHF	0.94			0.94			0.94			0.94		
		2			2			2			2	
HV %		_										
HV %		-										
HV %		-										
HV % growth rates	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%
	2.0%		2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%

Trip Distribution % Exit 0.0%

0.0%

0.0%

16.5%

20.0%

24.0%

16.5%

0.0%

0.0%

0.0%

0.0%

Westbound

Northbound

Southbound

Eastbound

INTERSECTION: LOMAS AND ALCAZAR

AM Peak Hour

AW Feak Flour		LOMAS			LOMAS	ı		RIVEWAY			ALCAZAR		
:	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	
Traffic Counts (2021)	16	589	5	3	677	5	1	0	4	3	0	24	
StreetLight Pre Covid (2019)	68	557	0	0	1,215	31	0	0	0	62	0	71	
StreetLight Covid (2011)	18	472	0	0	554	13	0	0	0	7	0	61	
Pre Covid to Covid Ratio	3.8	1.2			2.2	2.4				8.9		1.2	
StreetLight Adjusted Traffic Counts	60	695	5	3	1,485	12	1		4	27		28	
Background Growth	4	42	0	0	89	1	0	0	0	2	0	2	
No Build (2024)	64	737	5	3	1,574	13	1	0	4	28	0	30	
Entering	<u> </u>		28	15	1,011		•	_ •	•		_		
Exiting	0	0	0	0	4	0	11	0	10	0	0	0	
Build (2024)	64	737	33	19	1,578	13	12	0	14	28	0	30	
24114 (202 i)	<u> </u>				1,0.0			_ •			_		
L					1								
PHF	0.87			0.87			0.87			0.87			
HV %	0.07	2		0.07	2		0.07	2		0.07	2		
∏V 76		2			2			2			2		
PM Peak Hour		Eastbound	<u> </u>		Westbound			Northboun	d		Southboun	ıd	
- III - Galk Flour		LOMAS		LOMAS				RIVEWAY		ALCAZAR			
	Left	Thru	Right	Left Thru Right			Left	Thru	Right	Left Thru Right			
Traffic Counts (2021)	30	1,159	1	3	960	20	1	0	3	8	0	20	
StreetLight Pre Covid (2019)	89	1,502	0	0	973	49	0	0	0	51	0	73	
StreetLight Covid (2021)	87	1,250	0	0	792	36	0	0	0	13	0	67	
Pre Covid to Covid Ratio	1.0	1.2			1.2	1.4				3.9		1.1	
StreetLight Adjusted Traffic Counts	31	1,393	1	3	1,179	27	1		3	31		22	
Background Growth	2	84	0	0	71	2	0	0	0	2	0	1	
No Build (2024)	33	1,476	1	3	1,250	29	1	0	3	33	0	23	
Entering			18	10									
Exiting	0	0	0	0	11	0	28	0	26	0	0	0	
Build (2024)	33	1,476	20	13	1,261	29	29	0	29	33	0	23	
•		•		•			•	•	•			•	
PHF	0.93			0.93			0.93			0.93			
HV %					2			2			2		
11V /0		2			2			2			_		
11V 70		2			2			2					
110 70													
growth rates	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	
	2.0%		2.0%	2.0%		2.0%	2.0%		2.0%	2.0%		2.0%	

Trip Distribution % Exit

0.0%

0.0%

0.0%

0.0%

16.5%

0.0%

44.0%

0.0%

40.5%

0.0%

0.0%

Westbound

Northbound

Southbound

Eastbound

INTERSECTION: LOMAS AND CHAMA

AM Peak Hour

AWITERKTIOUI		LOMAS	ı		LOMAS	4	'	CHAMA	u	CHAMA		
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Traffic Counts (2021)	10	560	29	18	670	8	11	0	11	4	0	4
StreetLight Pre Covid (2019)	0	552	36	43	1,157	0	105	0	48	0	0	0
StreetLight Covid (2021)	0	618	29	59	680	0	24	0	27	0	0	0
Pre Covid to Covid Ratio		0.9	1.2	0.7	1.7		4.4		1.8			
StreetLight Adjusted Traffic Counts	10	500	36	59	1,140	8	48		20	4		4
Background Growth	1	30	2	4	68	0	3	0	1	0	0	0
No Build (2024)	11	530	38	63	1,208	8	51	0	21	4	0	4
Entering					15							
Exiting	4	6	0	0	0	0	0	0	0	0	0	0
Build (2024)	15	536	38	63	1,224	8	51	0	21	4	0	4
•		•	•					•	•	•		•
PHF	0.83			0.83			0.83			0.83		
HV %		2			2			2			2	
PM Peak Hour		Eastbound		1	Westbound	ł	Northbound			5	outhboun	ıd
		LOMAS		LOMAS				CHAMA		CHAMA		
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Traffic Counts (2021)	11	1,120	28	35	951	9	23	0	46	3	0	18
StreetLight Pre Covid (2019)	0	1,435	112	62	923	0	52	0	63	0	0	0
StreetLight Covid (2021)	0	1,208	29	6	799	0	44	0	111	0	0	0
Pre Covid to Covid Ratio		1.2	3.9	10.3	1.2		1.2		0.6			
StreetLight Adjusted Traffic Counts	11	1,330	108	62	1,099	9	27		26	3		18
Background Growth	1	80	6	4	66	1	2	0	2	0	0	1
No Build (2024)	12	1,410	115	66	1,165	10	29	0	28	3	0	19
Entering					10							
Exiting	11	15	0	0	0	0	0	0	0	0	0	0
Build (2024)	22	1,426	115	66	1,175	10	29	0	28	3	0	19
		ļ										
PHF	0.97			0.97	_		0.97			0.97		
HV %		2			2			2			2	
0	2.00/	2.00/	2.00/	2.00/	2 00/	2.00/	2.00/	2.00/	2 00/	2.00/	2.00/	0.00/
growth rates Trip Distribution % Enter	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%

Trip Distribution % Exit 16.5%

24.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

INTERSECTION: DRIVEWAY 2 AND LOUISIANA

AM Peak Hour	[Eastbound			Westbound			Northboun		Southbound			
		-				DRIVEWAY 2			LOUISIANA			LOUISIANA		
	5 : 6: V I 0/54B)	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	
	Existing Volumes (YEAR)					-		0	675	_	-	869		
	Background Growth	0	0	0	0	0	0	0	41	0	0	52	0	
	YEAR No Build	0	0	0	0	0	0	0	716	0	0	921	0	
	Entering									21				
	Exiting	0	0	0	0	0	4	0	0	0		8	0	
	YEAR Build	0	0	0	0	0	4	0	716	21	0	929	0	
	PHF	0.94			0.94			0.94			0.94			
	HV %	0.34	2		0.34	2		0.37	2		0.37	2		
	,0		_			_			-			_		
PM Peak Hour			Eastbound			Westbound			Northboun			Southboun		
			-			DRIVEWAY 2			LOUISIANA			LOUISIANA		
		Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	
	Existing Volumes (YEAR)								1,289			884		
	Background Growth	0	0	0	0	0	0	0	77	0	0	53	0	
	YEAR No Build	0	0	0	0	0	0	0	1,366	0	0	937	0	
	Entering									14				
	Exiting	0	0	0	0	0	11	0	0	0		21	0	
	YEAR Build	0	0	0	0	0	11	0	1,366	14	0	958	0	
	L		ļ							!		!	,	
	PHF	0.94			0.94			0.94			0.94			
	HV %		2			2			2			2		
	growth rates	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	
	Trip Distribution % Enter									33.0%				

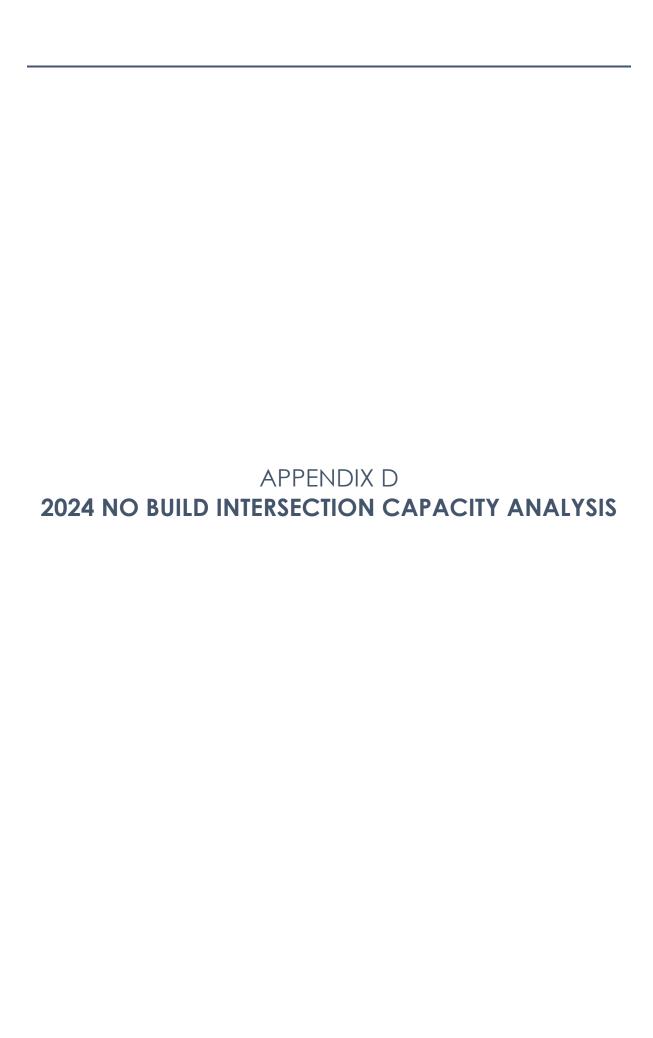
Trip Distribution % Exit 0.0%

0.0%

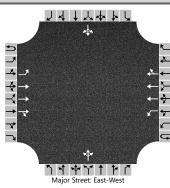
0.0%

0.0%

0.0%

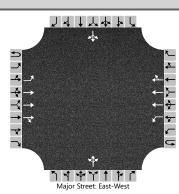

16.5%

0.0%


0.0%

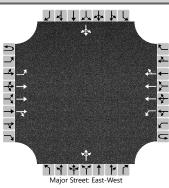
0.0%

33.0%


HCS7 Two-Way Stop-Control Report											
General Information											
Analyst	МВ	Intersection	Lomas and Alcazar								
Agency/Co.	ВН	Jurisdiction	CABQ								
Date Performed	7/20/2021	East/West Street	Lomas								
Analysis Year	2024	North/South Street	Alcazar								
Time Analyzed	No Build AM	Peak Hour Factor	0.92								
Intersection Orientation East-West Analysis Time Period (hrs) 0.25											
Project Description Fiesta Subaru											

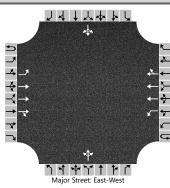
					iviaj	or street. La	31-VVC31									
Vehicle Volumes and Adj	ustme	nts														
Approach		Eastb	ound			Westl	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	3	0	0	1	3	0		0	1	0		0	1	0
Configuration		L	Т	TR		L	Т	TR			LTR				LTR	
Volume (veh/h)	0	64	737	5	0	3	1574	13		1	0	4		28	0	30
Percent Heavy Vehicles (%)	2	2			2	2				2	2	2		2	2	2
Proportion Time Blocked																
Percent Grade (%)											0				0	
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	itical and Follow-up Headways															
Base Critical Headway (sec)		5.3				5.3				6.4	6.5	7.1		6.4	6.5	7.1
Critical Headway (sec)		5.34				5.34				6.44	6.54	7.14		6.44	6.54	7.14
Base Follow-Up Headway (sec)		3.1				3.1				3.8	4.0	3.9		3.8	4.0	3.9
Follow-Up Headway (sec)		3.12				3.12				3.82	4.02	3.92		3.82	4.02	3.92
Delay, Queue Length, and	d Leve	l of S	ervice													
Flow Rate, v (veh/h)		70				3					5				63	
Capacity, c (veh/h)		172				485					212				60	
v/c Ratio		0.40				0.01					0.03				1.05	
95% Queue Length, Q ₉₅ (veh)		1.8				0.0					0.1				5.1	
Control Delay (s/veh)		39.4				12.5					22.4				246.0	
Level of Service (LOS)		E				В			С						F	
Approach Delay (s/veh)		3.1				0.0				22.4				246.0		
Approach LOS									С				F			

Generated: 8/9/2021 8:54:33 AM


HCS7 Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	МВ	Intersection	Lomas and Alcazar								
Agency/Co.	ВН	Jurisdiction	CABQ								
Date Performed	7/20/2021	East/West Street	Lomas								
Analysis Year	2024	North/South Street	Alcazar								
Time Analyzed	No Build AM	Peak Hour Factor	0.92								
Intersection Orientation East-West Analysis Time Period (hrs) 0.25											
Project Description Fiesta Subaru											

					,												
Vehicle Volumes and Ad	justme	nts															
Approach		Eastb	ound			Westl	oound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	1	3	0	0	1	3	0		0	1	0		0	1	0	
Configuration		L	Т	TR		L	Т	TR			LTR				LTR		
Volume (veh/h)	0	64	737	5	0	3	1574	13		1	0	4		28	0	30	
Percent Heavy Vehicles (%)	2	2			2	2				2	2	2		2	2	2	
Proportion Time Blocked																	
Percent Grade (%)											0		0				
Right Turn Channelized																	
Median Type Storage		Left Only 1															
Critical and Follow-up H	leadways																
Base Critical Headway (sec)		5.3				5.3				6.4	6.5	7.1		6.4	6.5	7.1	
Critical Headway (sec)		5.34				5.34				6.44	6.54	7.14		6.44	6.54	7.14	
Base Follow-Up Headway (sec)		3.1				3.1				3.8	4.0	3.9		3.8	4.0	3.9	
Follow-Up Headway (sec)		3.12			3.12					3.82	4.02	3.92	3.82 4.02 3.92				
Delay, Queue Length, an	d Leve	l of S	ervice														
Flow Rate, v (veh/h)	Т	70				3					5				63		
Capacity, c (veh/h)		172				485					284				90		
v/c Ratio		0.40				0.01					0.02				0.70		
95% Queue Length, Q ₉₅ (veh)	Ì	1.8				0.0					0.1				3.5		
Control Delay (s/veh)		39.4				12.5					17.9				109.2		
Level of Service (LOS)		E				В					С				F		
Approach Delay (s/veh)		3.1				0.0				17.9				109.2			
Approach LOS									C F								

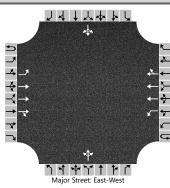
Generated: 8/3/2021 9:12:25 AM


HCS7 Two-Way Stop-Control Report										
General Information		Site Information								
Analyst	МВ	Intersection	Lomas and Chama							
Agency/Co.	ВН	Jurisdiction	CABQ							
Date Performed	7/21/2021	East/West Street	Lomas							
Analysis Year	2024	North/South Street	Chama							
Time Analyzed	No Build AM	Peak Hour Factor	0.92							
Intersection Orientation East-West Analysis Time Period (hrs) 0.25										
Project Description Fiesta Subaru										

				iviaj	or ourcet. Lu	or west										
Vehicle Volumes and Adjustments																
	Eastb	ound			Westl	oound			North	bound			South	bound		
U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
0	1	3	0	0	1	3	0		0	1	0		0	1	0	
	L	Т	TR		L	Т	TR			LTR				LTR		
0	11	530	38	0	63	1208	8		51	0	21		4	0	4	
2	2			2	2				2	2	2		2	2	2	
									()			()		
	Undivided															
and Follow-up Headways																
Π	5.3				5.3				6.4	6.5	7.1		6.4	6.5	7.1	
	5.34				5.34				6.44	6.54	7.14		6.44	6.54	7.14	
	3.1				3.1				3.8	4.0	3.9		3.8	4.0	3.9	
	3.12				3.12				3.82	4.02	3.92		3.82	4.02	3.92	
l Leve	l of Se	ervice														
П	12				68					78				9		
	273				596					193				132		
	0.04				0.11					0.41				0.07		
	0.1				0.4					1.8				0.2		
	18.8				11.8					35.8				34.2		
	С				В			E						D		
0.4				0.6				35.8				34.2				
								E				D				
	0 0 2 2 Padwa	Eastle U L 1U 1 0 1 0 1 L 0 11 2 2 Padways 5.3 5.34 3.1 3.12 Level of Se 12 273 0.04 0.1 18.8 C	Eastbound U L T 1U 1 2 0 1 3 L T 0 11 530 2 2 2 2 2 2 2 3 3 1 3 12 3 12 4 Level of Service 12 273 0 0.04 0 0.1 18.8 C	Eastbound U L T R 1U 1 2 3 0 1 3 0 L T TR 0 11 530 38 2 2 1 Undi eadways 5.3 5.34 3.1 3.12 SLevel of Service 12 273 0.04 0.1 18.8 C	Eastbound U L T R U 1U 1 2 3 4U 0 1 3 0 0 L T TR 0 11 530 38 0 2 2 2 2 2 Undivided Padways 5.3	Eastbound Westle U L T R U L L T R U L L T T TR L L L T T TR L L L T T TR L L L L	Eastbound U L T R U L T 1U 1 2 3 4U 4 5 0 1 3 0 0 1 3 L T TR L T 0 11 530 38 0 63 1208 2 2 1 2 2 2 Undivided Cadways S.3 5.34 5.34 5.34 3.12 3.12 3.12 3.12 SLevel of Service 12 68 596 0.04 0.11 0.1 0.4 18.8 11.8 C B B	Eastbound Westbound U L T R U L T R 1U 1 2 3 4U 4 5 6 0 1 3 0 0 1 3 0 L T TR L T TR 0 11 530 38 0 63 1208 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Eastbound Westbound	Columbia	Column	Eastbound Westbound Northbound	Eastbound Westbound Northbound U	Eastbound Westbound Northbound South	Eastbound Northbound Southbound U	

Generated: 8/9/2021 8:55:42 AM

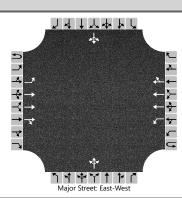
HCS7 Two-Way Stop-Control Report										
General Information		Site Information								
Analyst	МВ	Intersection	Lomas and Chama							
Agency/Co.	ВН	Jurisdiction	CABQ							
Date Performed	7/21/2021	East/West Street	Lomas							
Analysis Year	2024	North/South Street	Chama							
Time Analyzed	No Build AM	Peak Hour Factor	0.92							
Intersection Orientation East-West Analysis Time Period (hrs) 0.25										
Project Description Fiesta Subaru										



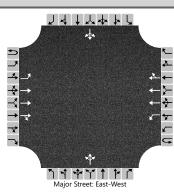
					iviaj	or street. La	31-VVC31										
Vehicle Volumes and Adjustments																	
Approach		Eastb	ound			Westl	oound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	1	3	0	0	1	3	0		0	1	0		0	1	0	
Configuration		L	Т	TR		L	Т	TR			LTR				LTR		
Volume (veh/h)	0	11	530	38	0	63	1208	8		51	0	21		4	0	4	
Percent Heavy Vehicles (%)	2	2			2	2				2	2	2		2	2	2	
Proportion Time Blocked																	
Percent Grade (%)											0		0				
Right Turn Channelized																	
Median Type Storage		Left Only 1															
Critical and Follow-up Ho	p Headways																
Base Critical Headway (sec)		5.3				5.3				6.4	6.5	7.1		6.4	6.5	7.1	
Critical Headway (sec)		5.34				5.34				6.44	6.54	7.14		6.44	6.54	7.14	
Base Follow-Up Headway (sec)		3.1				3.1				3.8	4.0	3.9		3.8	4.0	3.9	
Follow-Up Headway (sec)		3.12			3.12				3.82	4.02	3.92	3.82 4.02 3.92					
Delay, Queue Length, an	d Leve	l of S	ervice														
Flow Rate, v (veh/h)		12				68					78				9		
Capacity, c (veh/h)		273				596					270				126		
v/c Ratio		0.04				0.11					0.29				0.07		
95% Queue Length, Q ₉₅ (veh)		0.1				0.4					1.2				0.2		
Control Delay (s/veh)		18.8				11.8					23.7				35.7		
Level of Service (LOS)		С				В			С						Е		
Approach Delay (s/veh)		0.4			0.6			23.7				35.7					
Approach LOS									С				E				

Generated: 8/3/2021 9:17:30 AM

	HCS7 Sig	nalize	d Inte	ersec	tion F	Resul	lts Sur	nmar	У							
General Information Intersection Information													Į≤ l <u>i</u>			
							Duration,		0.250		- 1	4111				
<u> </u>	<u>п</u> 1В	Analys	sia Data	Jul 19	2021						_4		K.			
		Time F	sis Date	AM	, 2021	_	Area Typ PHF	Е	Other 0.92			, w 1 ∈	÷ }			
	ABQ							Dariad		20			←			
	omas		sis Year		4 1		Analysis		1> 7:0	JU	7		_			
	omas and Louisiana	File Na	ame	INBAIN	i_Loma	s-Louis	siana_v2	.xus								
Project Description N	o Build AM											1.3.1,1.1,1.1				
Demand Information			EB			WE	3		NB			SB				
Approach Movement		L	Т	R	L	Т	R	L	Т	R	L	Т	R			
Demand (v), veh/h		143	479	74	178 103		2 218	104	505	107	170	669	217			
		li-										_				
Signal Information		1	2	2	╡. :	וַ בּ	<u>اللا</u>				_	l				
- ·	Reference Phase 2		L.	7 2	TĦ ¹	5		100	7		↔ ,	7	Y			
	Reference Point End	Green	7.0	1.3	51.6	7.3	0.1	20.8			<u> </u>		1			
	Simult. Gap E/W On	Yellow		0.0	4.5	3.0	3.0	4.5		↗ │	7	\	4			
Force Mode Fixed S	Simult. Gap N/S On	Red	0.5	0.0	1.0	0.5	0.5	1.5		5	6	7	8			
					14/5		WDT	NIDI		NDT	0.01		ODT			
Timer Results		EBI	-	EBT	WB	L	WBT	NBI	-	NBT	SBI	-	SBT			
Assigned Phase		5	_	2	1	_	6	7	_	4	3	_	8			
Case Number		1.1	-	4.0	1.1		4.0	1.1		4.0	1.1		4.0			
Phase Duration, s		10.5		57.1	11.8	_	58.4	10.8	3	26.8	14.3		30.3			
Change Period, (Y+Rc)		3.5	_	5.5 0.0	3.5	-	5.5	3.5	_	6.0	3.5		6.0			
Max Allow Headway (MA		3.1			3.1	_	0.0	3.1		3.0	3.1		3.0			
Queue Clearance Time (6.8			8.0			7.5		14.5	10.7		20.6				
Green Extension Time (g	0.3		0.0	0.3	_	0.0	0.1	3.8		0.2		3.7				
Phase Call Probability		0.99			1.00	_		0.97		1.00	1.00		1.00			
Max Out Probability		0.00)		0.00)		0.17		0.02	0.01		0.04			
Movement Group Resul	lts		EB			WB			NB			SB				
Approach Movement	ito	L	T	R		T	R	L	T	R		T	R			
Assigned Movement		5	2	12	1	6	16	7	4	14	3	8	18			
Adjusted Flow Rate (v),	veh/h	155	407	194	193	934	425	113	453	212	185	667	296			
Adjusted Saturation Flow		1810	1900	1768	1810	1900		1810	1900	1729	1810	1900	1662			
Queue Service Time (g s	· ,,	4.8	7.0	7.2	6.0	18.6		5.5	12.1	12.5	8.7	18.2	18.6			
Cycle Queue Clearance	•	4.8	7.0	7.2	6.0	18.6	_	5.5	12.1	12.5	8.7	18.2	18.6			
Green Ratio (g/C)	····· (y v), 3	0.53	0.47	0.47	0.54	0.48	_	0.25	0.19	0.19	0.7	0.22	0.22			
Capacity (c), veh/h		300	1783	830	537	1827		205	717	326	303	840	367			
Volume-to-Capacity Ratio) (X)	0.518	0.228		0.360	0.511		0.550	0.632	0.650	0.610	0.794	0.806			
Back of Queue (Q), ft/ln		85.1	135.1	133.2	103.8	316.6		107.5	235.3	225.3	168.2	327.5	302.3			
Back of Queue (Q), veh	• • •	3.4	5.4	5.3	4.2	12.7	12.1	4.3	9.4	9.0	6.7	13.1	12.1			
Queue Storage Ratio (R		0.53	0.00	0.00	0.94	0.00	0.00	0.61	0.00	0.00	1.05	0.00	0.00			
Uniform Delay (d 1), s/ve	, , , ,	15.9	17.4	17.4	13.1	19.7	19.7	34.2	41.1	41.3	30.8	40.5	40.6			
Incremental Delay (d 2),		0.5	0.3	0.7	0.2	1.0	2.2	0.9	0.3	0.8	0.7	0.7	2.1			
Initial Queue Delay (d 3)		0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
Control Delay (d), s/veh	16.4	17.7	18.1	13.2	20.7	21.9	35.1	41.5	42.1	31.5	41.2	42.7				
Level of Service (LOS)	B	В	В	B	C	C C	D	D D	D 42.1	C	D 41.2	D D				
Approach Delay, s/veh / L	17.5		В	20.1		C	40.7		D	40.0		D				
Intersection Delay, s/veh	17.0			3.8			70.7			C 40.0						
	interessed in Bellay, 6, ven / 200															
Multimodal Results	Multimodal Results					WB			NB			SB				
Pedestrian LOS Score / L	Pedestrian LOS Score / LOS			EB C		3	С	2.60 C		С	2.59	9	С			
Bicycle LOS Score / LOS		0.90		Α	1.34	1	Α	0.92	2	Α	1.12	2	Α			

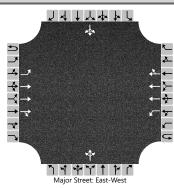

HCS7 Two-Way Stop-Control Report											
General Information Site Information											
Analyst	МВ	Intersection	Lomas and Alcazar								
Agency/Co.	вн	Jurisdiction	CABQ								
Date Performed	7/20/2021	East/West Street	Lomas								
Analysis Year	2024	North/South Street	Alcazar								
Time Analyzed	No Build PM	Peak Hour Factor	0.92								
Intersection Orientation East-West Analysis Time Period (hrs) 0.25											
Project Description Fiesta Subaru											

					Мај	or Street: Ea	st-West									
Vehicle Volumes and Ad	Vehicle Volumes and Adjustments															
Approach	T	Eastk	oound			Westl	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	3	0	0	1	3	0		0	1	0		0	1	0
Configuration		L	Т	TR		L	Т	TR			LTR				LTR	
Volume (veh/h)	0	33	1476	1	0	3	1250	29		1	0	3		33	0	23
Percent Heavy Vehicles (%)	2	2			2	2				2	2	2		2	2	2
Proportion Time Blocked																
Percent Grade (%)										()			()	
Right Turn Channelized																
Median Type Storage		Undivided														
Critical and Follow-up H	itical and Follow-up Headways															
Base Critical Headway (sec)		5.3				5.3				6.4	6.5	7.1		6.4	6.5	7.1
Critical Headway (sec)		5.34				5.34				6.44	6.54	7.14		6.44	6.54	7.14
Base Follow-Up Headway (sec)		3.1				3.1				3.8	4.0	3.9		3.8	4.0	3.9
Follow-Up Headway (sec)		3.12			3.12			3.82 4.02 3.92				3.82 4.02 3.92				
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)		36				3					4				61	
Capacity, c (veh/h)		252				198					107				74	
v/c Ratio		0.14				0.02					0.04				0.82	
95% Queue Length, Q ₉₅ (veh)		0.5				0.1					0.1				4.0	
Control Delay (s/veh)		21.6				23.5					40.2				152.7	
Level of Service (LOS)		С				С			E						F	
Approach Delay (s/veh)		0.5				0.1			40.2				152.7			
Approach LOS								E				F				


Generated: 8/9/2021 8:58:12 AM

HCS7 Two-Way Stop-Control Report										
General Information		Site Information								
Analyst	МВ	Intersection	Lomas and Alcazar							
Agency/Co.	вн	Jurisdiction	CABQ							
Date Performed	7/20/2021	East/West Street	Lomas							
Analysis Year	2024	North/South Street	Alcazar							
Time Analyzed	No Build PM	Peak Hour Factor	0.92							
Intersection Orientation East-West Analysis Time Period (hrs) 0.25										
Project Description Fiesta Subaru										

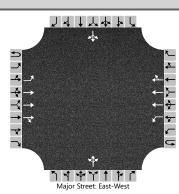
Vehicle Volumes and Ad	justme	nts														
Approach	Τ	Eastk	oound			Westl	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	3	0	0	1	3	0		0	1	0		0	1	0
Configuration		L	Т	TR		L	Т	TR			LTR				LTR	
Volume (veh/h)	0	33	1476	1	0	3	1250	29		1	0	3		33	0	23
Percent Heavy Vehicles (%)	2	2			2	2				2	2	2		2	2	2
Proportion Time Blocked																
Percent Grade (%)											0				0	
Right Turn Channelized																
Median Type Storage		Left Only											1			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		5.3				5.3				6.4	6.5	7.1		6.4	6.5	7.1
Critical Headway (sec)		5.34				5.34				6.44	6.54	7.14		6.44	6.54	7.14
Base Follow-Up Headway (sec)		3.1				3.1				3.8	4.0	3.9		3.8	4.0	3.9
Follow-Up Headway (sec)		3.12				3.12				3.82	4.02	3.92		3.82	4.02	3.92
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	T	36				3					4				61	
Capacity, c (veh/h)		252				198					132				124	
v/c Ratio		0.14				0.02					0.03				0.49	
95% Queue Length, Q ₉₅ (veh)	Ì	0.5				0.1					0.1				2.2	
Control Delay (s/veh)		21.6				23.5					33.3				59.1	
Level of Service (LOS)		С			С				D						F	
Approach Delay (s/veh)		0.5 0.1									33.3 59.1					
Approach LOS									D F							


	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	МВ	Intersection	Lomas and Chama
Agency/Co.	вн	Jurisdiction	CABQ
Date Performed	7/21/2021	East/West Street	Lomas
Analysis Year	2024	North/South Street	Chama
Time Analyzed	No Build PM	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Fiesta Subaru		

	major sueet. Last-west															
Vehicle Volumes and Adj	ustme	nts														
Approach		Eastb	oound			Westl	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	3	0	0	1	3	0		0	1	0		0	1	0
Configuration		L	Т	TR		L	Т	TR			LTR				LTR	
Volume (veh/h)	0	12	1410	115	0	66	1165	10		29	0	28		3	0	19
Percent Heavy Vehicles (%)	2	2			2	2				2	2	2		2	2	2
Proportion Time Blocked																
Percent Grade (%)											0			()	
Right Turn Channelized																
Median Type Storage	Undivided															
Critical and Follow-up He	eadwa	adways														
Base Critical Headway (sec)	Π	5.3				5.3				6.4	6.5	7.1		6.4	6.5	7.1
Critical Headway (sec)		5.34				5.34				6.44	6.54	7.14		6.44	6.54	7.14
Base Follow-Up Headway (sec)		3.1				3.1				3.8	4.0	3.9		3.8	4.0	3.9
Follow-Up Headway (sec)		3.12				3.12				3.82	4.02	3.92		3.82	4.02	3.92
Delay, Queue Length, and	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)	Т	13				72					62				24	
Capacity, c (veh/h)		287				186					49				159	
v/c Ratio		0.05				0.39					1.26				0.15	
95% Queue Length, Q ₉₅ (veh)		0.1				1.7					5.7				0.5	
Control Delay (s/veh)		18.1				36.0					350.6				31.5	
Level of Service (LOS)	C E					Е		F							D	
Approach Delay (s/veh)	0.1 1.9								35	0.6		31.5				
Approach LOS									F D							

Generated: 8/9/2021 8:59:31 AM

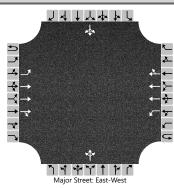
	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	МВ	Intersection	Lomas and Chama
Agency/Co.	ВН	Jurisdiction	CABQ
Date Performed	7/21/2021	East/West Street	Lomas
Analysis Year	2024	North/South Street	Chama
Time Analyzed	No Build PM	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Fiesta Subaru		


	major sueet, cast-west															
Vehicle Volumes and Adj	ustme	nts														
Approach	Π	Eastk	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	3	0	0	1	3	0		0	1	0		0	1	0
Configuration		L	Т	TR		L	Т	TR			LTR				LTR	
Volume (veh/h)	0	12	1410	115	0	66	1165	10		29	0	28		3	0	19
Percent Heavy Vehicles (%)	2	2			2	2				2	2	2		2	2	2
Proportion Time Blocked																
Percent Grade (%))			()	
Right Turn Channelized																
Median Type Storage		Left Only											1			
Critical and Follow-up He	eadwa	·														
Base Critical Headway (sec)	Π	5.3				5.3				6.4	6.5	7.1		6.4	6.5	7.1
Critical Headway (sec)		5.34				5.34				6.44	6.54	7.14		6.44	6.54	7.14
Base Follow-Up Headway (sec)		3.1				3.1				3.8	4.0	3.9		3.8	4.0	3.9
Follow-Up Headway (sec)		3.12				3.12				3.82	4.02	3.92		3.82	4.02	3.92
Delay, Queue Length, and	d Leve	l of S	ervice													
Flow Rate, v (veh/h)		13				72					62				24	
Capacity, c (veh/h)		287				186					92				203	
v/c Ratio		0.05				0.39					0.68				0.12	
95% Queue Length, Q ₉₅ (veh)		0.1				1.7					3.3				0.4	
Control Delay (s/veh)		18.1				36.0					102.6				25.0	
Level of Service (LOS)		С					E			F					D	
Approach Delay (s/veh)	0.1 1.9								10	2.6		25.0				
Approach LOS									F D							

Generated: 8/3/2021 9:29:31 AM

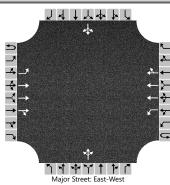
		HCS	7 Sig	nalize	d Int	ersec	tion F	Resul	ts Sur	nmar	У				
General Inform	ation								ntersec	tion Inf	ormatic	\n		المجاء الما الما	Ju ly
	iation	ВН							Duration,		0.250		- 1	4111	
Agency		MB		Analye	sia Data	Jul 19	2021								K.
Analyst Jurisdiction				Time F	sis Date	PM	, 2021		Area Typ PHF	Е	Other 0.92			w E	→
Urban Street		CABQ								Dariad	1> 7:0	20			←
		Lomas		File Na	sis Year		4 1		Analysis		1> 7:0	JU	7		_
Intersection		Lomas and Louisiar No Build PM	ıa	File IN	ame	INBPI	ı_Loma	S-Louis	siana_v2	.xus					to o
Project Descript	lion	INO BUIIG PIVI													r. II.
Demand Inforn	nation				EB			WB	}		NB			SB	
Approach Move	ment			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), ve				237	1201	149	167	799	228	137	1004	226	182	621	195
Signal Informa	tion				2	2						_	_	l	
Cycle, s	120.0	Reference Phase	2			K	# ·	7		100			♦ ,	\	Y
Offset, s	0	Reference Point	End	Green	9.7	3.0	43.6	8.9	2.3	33.9			<u>, </u>		
Uncoordinated	No	Simult. Gap E/W	On	Yellow		0.0	4.5	3.0	0.0	4.5		↗ │	7	~	4
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.5	0.0	1.0	0.5	0.0	1.5		5	6	7	8
							14/5		M/DT	NIDI		NET	0.01		0.0.7
Timer Results				EBI	_	EBT	WB	L	WBT	NBI	-	NBT	SBI	_	SBT
Assigned Phase)			5 1.1	_	2	1		6	7	_	4	3	_	8
Case Number					_	4.0	1.1	_	4.0	1.1		4.0	1.1	_	4.0
	Phase Duration, s					52.1	13.2	_	49.1	12.4		39.9	14.8	_	42.2
	Change Period, (Y+R c), s					5.5	3.5	_	5.5	3.5	_	6.0	3.5	_	6.0
Max Allow Head				3.1		0.0	3.1	_	0.0	3.1	_	3.0	3.1		3.0
Queue Clearand		, - ,		12.3	_		9.4	_		8.9		29.6	11.1		18.5
Green Extension		(g e), s		0.4		0.0	0.3		0.0	0.1		4.3	0.2		5.9
Phase Call Prob				1.00	_		1.00	_		0.99	_	1.00	1.00		1.00
Max Out Probat	oility			0.00)		0.00)		0.22	2	0.41	0.00)	0.07
Movement Gro	un Pos	eulte			EB			WB			NB			SB	
Approach Move		ouito		L	T	R	L	T	R	L	T	R	L	T	R
Assigned Move				5	2	12	1	6	16	7	4	14	3	8	18
Adjusted Flow F) voh/h		258	998	470	182	772	344	149	921	416	198	613	274
		ow Rate (s), veh/h/li	n	1810	1900	1789	1810	1900	1682	1810	1900	1718	1810	1900	1668
Queue Service		· ,·	11	10.3	26.1	26.1	7.4	19.5	19.6	6.9	27.5	27.6	9.1	16.1	16.5
Cycle Queue Cl				10.3	26.1	26.1	7.4	19.5	19.6	6.9	27.5	27.6	9.1	16.1	16.5
Green Ratio (g/		e fille (g c), s		0.48	0.39	0.39	0.44	0.36	0.36	0.36	0.28	0.28	0.38	0.30	0.30
Capacity (c), v				354	1477	695	263	1382	611	289	1073	485	252	1147	504
Volume-to-Capa		atio (X)		0.728	0.675	0.675	_	0.559	_	0.515	0.858	0.859	0.784	0.534	0.544
		/In(95 th percentile)		192	442.8	-	141.5	347.4		133.9	480.6	463.6	178.9	293.3	270
	· /·	eh/In (95 th percenti		7.7	17.7	17.5	5.7	13.9	13.1	5.4	19.2	18.5	7.2	11.7	10.8
	• •	RQ) (95 th percent		1.20	0.00	0.00	1.29	0.00	0.00	0.77	0.00	0.00	1.12	0.00	0.00
Uniform Delay ()	22.5	30.4	30.4	25.6	30.5	30.6	28.5	40.8	40.8	30.3	34.9	35.0
Incremental Del				1.1	2.5	5.2	1.2	1.6	3.7	0.5	4.9	10.2	2.3	0.1	0.3
		,		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Initial Queue Delay (d 3), s/veh Control Delay (d), s/veh				23.6	32.9	35.6	26.9	32.1	34.3	29.0	45.7	51.0	32.6	35.0	35.3
Level of Service (LOS)				C C	C C	D	C 20.9	32.1 C	C C	29.0 C	45.7 D	D D	C	D D	D D
Approach Delay, s/veh / LOS				32.2		С	32.0		C	45.5		D	34.6		С
Intersection Delay, s/veh / LOS				02.2			5.2 5.2		0	70.0			D 34.0		
Intersection Delay, siven / LOS						30	٠.٤						<u>ں</u>		
Multimodal Res			EB			WB			NB			SB			
	Pedestrian LOS Score / LOS				3	С	2.58		С	2.59	-	С	2.59		С
Bicycle LOS Sc	ore / LC)S		1.44	1	Α	1.20		Α	1.30		Α	1.08		Α

APPENDIX E 2024 BUILD INTERSECTION CAPACITY ANALYSIS

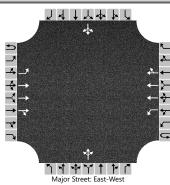

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	МВ	Intersection	Lomas and Alcazar
Agency/Co.	ВН	Jurisdiction	CABQ
Date Performed	7/20/2021	East/West Street	Lomas
Analysis Year	2024	North/South Street	Alcazar
Time Analyzed	Build AM	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Fiesta Subaru		

Vehicle Volumes and Ad	1				1											
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	3	0	0	1	3	0		0	1	0		0	1	0
Configuration		L	T	TR		L	Т	TR			LTR				LTR	
Volume (veh/h)	0	64	737	33	0	19	1578	13		12	0	14		28	0	30
Percent Heavy Vehicles (%)	2	2			2	2				2	2	2		2	2	2
Proportion Time Blocked																
Percent Grade (%)										()			()	
Right Turn Channelized																
Median Type Storage		Undivided														
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)	T	5.3				5.3				6.4	6.5	7.1		6.4	6.5	7.1
Critical Headway (sec)		5.34				5.34				6.44	6.54	7.14		6.44	6.54	7.14
Base Follow-Up Headway (sec)		3.1				3.1				3.8	4.0	3.9		3.8	4.0	3.9
Follow-Up Headway (sec)		3.12				3.12				3.82	4.02	3.92		3.82	4.02	3.92
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)		70				21					28				63	
Capacity, c (veh/h)		171				469					109				54	
v/c Ratio		0.41				0.04					0.26				1.16	
95% Queue Length, Q ₉₅ (veh)		1.8				0.1					1.0				5.4	
Control Delay (s/veh)		39.7				13.0					49.0				295.9	
Level of Service (LOS)		Е				В					Е				F	
Approach Delay (s/veh)		3.0 0.2							49.0 295.9							
Approach LOS									E F							

Generated: 8/9/2021 9:44:00 AM

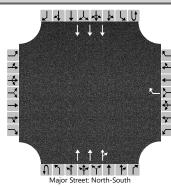

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	МВ	Intersection	Lomas and Alcazar
Agency/Co.	ВН	Jurisdiction	CABQ
Date Performed	7/20/2021	East/West Street	Lomas
Analysis Year	2024	North/South Street	Alcazar
Time Analyzed	Build AM	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Fiesta Subaru		

iviajor sucet, cast-vvest															
ustme	nts														
	Eastb	ound			Westl	oound			North	bound			South	bound	
U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R
1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
0	1	3	0	0	1	3	0		0	1	0		0	1	0
	L	Т	TR		L	Т	TR			LTR				LTR	
0	64	737	33	0	19	1578	13		12	0	14		28	0	30
2	2			2	2				2	2	2		2	2	2
)			()	
	Left Only											1			
adwa	adways														
	5.3				5.3				6.4	6.5	7.1		6.4	6.5	7.1
	5.34				5.34				6.44	6.54	7.14		6.44	6.54	7.14
	3.1				3.1				3.8	4.0	3.9		3.8	4.0	3.9
	3.12				3.12				3.82	4.02	3.92		3.82	4.02	3.92
d Leve	l of S	ervice													
Π	70				21					28				63	
	171				469					171				82	
	0.41				0.04					0.17				0.77	
	1.8				0.1					0.6				3.8	
	39.7				13.0					30.2				129.5	
	E			В			D						F		
3.0 0.2								30.2 129.5					9.5		
								D F							
	0 0 2 2 Part of the control of the c	U L 1U 1 0 1 0 64 2 2 2 2 2 2 3 5.3 5.34 3.1 3.12 4 Level of Second 171 0.41 1.8 39.7 E	Eastbound U L T 1U 1 2 0 1 3 L T 0 64 737 2 2 2 2 2 2 2 3 3.1 3.12 3.12 4 Level of Service 70 171 0.41 1.8 39.7 E	Eastbound U L T R 1U 1 2 3 0 1 3 0 L T TR 0 64 737 33 2 2 1 Left Padways 5.3	Eastbound U L T R U 1U 1 2 3 4U 0 1 3 0 0 L T TR 0 64 737 33 0 2 2 2 2 2 Left Only Padways 5.3 5.34 5.34 5.34 5.34 5.34 5.34 5.34 5	Eastbound Westle U L T R U L L T R U L L T T TR L L L T T TR L L L T T TR L L L L	Eastbound U	Eastbound U L T R U L T R 1U 1 2 3 4U 4 5 6 0 1 3 0 0 1 3 0 L T TR 0 64 737 33 0 19 1578 13 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Eastbound Westbound	Eastbound Westbound North	Eastbound Westbound Northbound	Eastbound Westbound Northbound U	Company	Eastbound Westbound Northbound South	Eastbound Westbound Northbound Southbound

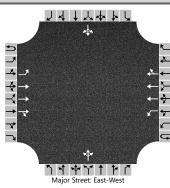

Generated: 8/3/2021 9:37:08 AM

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	МВ	Intersection	Lomas and Chama
Agency/Co.	ВН	Jurisdiction	CABQ
Date Performed	7/21/2021	East/West Street	Lomas
Analysis Year	2024	North/South Street	Chama
Time Analyzed	Build AM	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Fiesta Subaru		

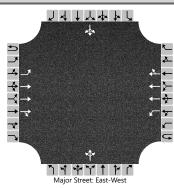
					Majo	or Street: Ea										
Vehicle Volumes and Adj	ustme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	3	0	0	1	3	0		0	1	0		0	1	0
Configuration		L	T	TR		L	T	TR			LTR				LTR	
Volume (veh/h)	4	11	536	38	0	63	1224	8		51	0	21		4	0	4
Percent Heavy Vehicles (%)	2	2			2	2				2	2	2		2	2	2
Proportion Time Blocked																
Percent Grade (%)										()			(0	
Right Turn Channelized																
Median Type Storage		Undivided														
Critical and Follow-up Ho	eadwa	ys														
Base Critical Headway (sec)	5.6	5.3				5.3				6.4	6.5	7.1		6.4	6.5	7.1
Critical Headway (sec)	5.64	5.34				5.34				6.44	6.54	7.14		6.44	6.54	7.14
Base Follow-Up Headway (sec)	2.3	3.1				3.1				3.8	4.0	3.9		3.8	4.0	3.9
Follow-Up Headway (sec)	2.32	3.12			3.12					3.82	4.02	3.92		3.82	4.02	3.92
Delay, Queue Length, and	d Leve	l of S	ervice													
Flow Rate, v (veh/h)		16				68					78				9	
Capacity, c (veh/h)		300				592					186				126	
v/c Ratio		0.05				0.12					0.42				0.07	
95% Queue Length, Q ₉₅ (veh)		0.2				0.4					1.9				0.2	
Control Delay (s/veh)		17.7				11.9					37.6				35.6	
Level of Service (LOS)		С			В			E						E		
Approach Delay (s/veh)	0.5 0.6								37.6				35.6			
Approach LOS									E				E			


HCS7 Two-Way Stop-Control Report									
General Information Site Information									
Analyst	МВ	Intersection	Lomas and Chama						
Agency/Co.	ВН	Jurisdiction	CABQ						
Date Performed	7/21/2021	East/West Street	Lomas						
Analysis Year	2024	North/South Street	Chama						
Time Analyzed	Build AM	Peak Hour Factor	0.92						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description	Fiesta Subaru								

Major Street: East-West																
Vehicle Volumes and Adjustments																
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	U L T R			U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	3	0	0	1	3	0		0	1	0		0	1	0
Configuration		L	Т	TR		L	Т	TR			LTR				LTR	
Volume (veh/h)	4	11	536	38	0	63	1224	8		51	0	21		4	0	4
Percent Heavy Vehicles (%)	2	2			2	2				2	2	2		2	2	2
Proportion Time Blocked																
Percent Grade (%)										()			(0	
Right Turn Channelized																
Median Type Storage				Left	Only								1			
Critical and Follow-up Ho	eadwa	ys														
Base Critical Headway (sec)	5.6	5.3				5.3				6.4	6.5	7.1		6.4	6.5	7.1
Critical Headway (sec)	5.64	5.34				5.34				6.44	6.54	7.14		6.44	6.54	7.14
Base Follow-Up Headway (sec)	2.3	3.1				3.1				3.8	4.0	3.9		3.8	4.0	3.9
Follow-Up Headway (sec)	2.32	3.12				3.12				3.82	4.02	3.92		3.82	4.02	3.92
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)		16				68					78				9	
Capacity, c (veh/h)		300				592					262				123	
v/c Ratio		0.05				0.12					0.30				0.07	
95% Queue Length, Q ₉₅ (veh)		0.2				0.4					1.2				0.2	
Control Delay (s/veh)		17.7				11.9					24.5				36.6	
Level of Service (LOS)		С				В			С						Е	
Approach Delay (s/veh)		0.5 0.6							24.5				36.6			
Approach LOS		C E														

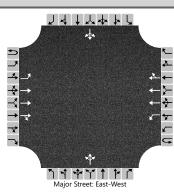

Common C		HCS7 Signalized Intersection Results Summary																	
Agency	Gonoral Informat	tion								Intorcoc	tion Infe	ormatic	\n	T D		þ. l.			
Analysis			DU											- 1					
District Card Car					Analye	sia Data	Lul 10	2021				_		_4		K.			
					-		_), ZUZ I	_		Е	-			wÎ.	<u></u>			
Intersection		_	-								Dariad		20			←			
Demand (n/ormation Line Section Line Line		_			-			1				1> 7:0	JU	7					
Demand Information				na 	File N	ame	BAIM_	Lomas-	Louisi	ana_vz.x	cus			-	<u>ነተተት</u>				
Approach Movement	Project Descriptio	n	Bulla AM												niri	r			
Demand (Demand Informa	ation			EB WB							SB							
Demand (Approach Movem	ent			L	Т	R	L	Т	R	L	Т	R	L	Т	R			
Signal Information					143	492	74	182	103	7 224	108	505	107	185	669	217			
Cycle, s 110.0 Reference Phase 2 Offset, s 0 Ne Reference Phase 2 Offset, s 0 Ne Reference Phase 2 Cycle																			
Order No Reference Point End Green 7.1 1.4 51.2 7.6 0.6 20.2	Signal Information	on				2	5	ש ב	باظ	. W				_	l				
Olfset, s		10.0	Reference Phase	2		L, 6	7 2	7₩ •	~ ~		50	12		♦ ,)	Y			
Discriminated No Simult Gap E/M On Red 0.5 0.0 4.5 3.0 3.0 4.5 3.0 3.0 4.5 3.0 3.0 4.5 3.0 3.0 4.5 3.0 3.0 4.5 3.0 3.0 4.5 3.0 3.0 4.5 3.0 3.0 4.5 3.0 3.0 4.5 3.0 3.0 4.5 3.0 3.0 4.5 3.0 3.0 4.5 3.0 3.0 4.5 3.0 3.0 3.0 3.0 4.5 3.0 3.0 3.0 4.5 3.0 3.0 3.0 3.0 4.5 3.0 3.	Offset, s	0	Reference Point	End	Green	7.1	1.4	51.2	7.6	0.6				<u> </u>	3	1 "			
Timer Results	Uncoordinated	No	Simult. Gap E/W	On							4.5		↗ │	₹	\	Д			
Assigned Phase	Force Mode F	ixed	Simult. Gap N/S	On	Red	0.5	0.0	1.0	0.5	0.5	1.5		5	6	7	8			
Assigned Phase																			
Case Number 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 2.0 5.1 11.1 2.6.2 15.2 30.3 30.3 5.5 3.5 5.5 3.5 5.5 3.5 6.0 3.5 6.0 3.5 5.5 3.5 5.5 3.5 6.0 3.1 3.0 3.0 3.1 3.0 3.1 3.0 3.0 3.1 3.0 3.0 3.1						-			L			-			-				
Phase Duration, s 10.6 56.7 12.0 58.1 11.1 26.2 15.2 30.3 Change Period, (Y+R c), s 3.5 5.5 3.5 5.5 3.5 6.0 3.5 6.0 Max Allow Headway (MAH), s 3.1 0.0 3.1 3.0 3.1 3.0 Queue Clearance Time (g s), s 6.9 8.2 7.7 14.5 11.5 20.6 Green Extension Time (g s), s 0.2 0.0 0.3 0.0 0.1 3.8 0.2 3.7 Phase Call Probability 0.99 1.00 0.00 0.97 1.00 1						_			_			_							
Change Period, (Y+R c), s 3.5 5.5 3.5 5.5 3.5 6.0 3.5 6.0 Max Allow Headway (MAH), s 3.1 0.0 3.1 0.0 3.1 3.0 3.1 3.0 3.1 3.0 3.1 3.0 3.1 3.0 3.1 3.0 3.0 3.1 3.0 3.1 3.0 3.0 3.1 3.8 0.2 3.7 Phase Call Probability 0.99 1.00 0.0 0.097 1.00 0.00 0.00 0.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td>_</td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td></t<>						_			_			_							
Max Allow Headway (MAH), s 3.1 0.0 3.1 0.0 3.1 3.0 3.1 3.0 Queue Clearance Time (g ≠), s 6.9 0.0 8.2 7.7 14.5 11.5 20.6 Green Extension Time (g ≠), s 0.2 0.0 0.3 0.0 0.1 3.8 0.2 3.7 Phase Call Probability 0.09 0.00 0.00 0.0 0.24 0.03 0.02 0.04 Movement Group Results Approach Movement L T R						_						_			2				
Queue Clearance Time ($g s$), s 6.9 R.2 T.7 14.5 11.5 20.6 Green Extension Time ($g e$), s 0.2 0.0 0.3 0.0 0.1 3.8 0.2 3.7 Phase Call Probability 0.99 1.00 1.00 0.97 1.00 1.00 1.00 Max Out Probability 0.00 B. 0.00 B. 0.02 0.97 1.00 1.00 0.04 0.04 0.00 0																			
Second Extension Time (g ∞), s 0.2 0.0 0.3 0.0 0.1 3.8 0.2 3.7						_	0.0		_	0.0		_			_				
Phase Call Probability			, - ,												_				
Movement Group Results			(g e), s			_	0.0			0.0									
Movement Group Results EB WB UB NB SB SB Approach Movement L T R L L T R L L T R L L L L </td <td></td> <td>•</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td>		•				_			_			_							
Approach Movement L T R L T R L T R L T R L T R L T R L T R Assigned Movement 5 2 12 1 6 16 7 4 14 3 8 18 Adjusted Flow Rate (v), veh/h 155 417 199 198 943 428 117 453 212 201 667 296 Adjusted Saturation Flow Rate (s), veh/h(n) 1810 1900 1771 1810 1900 1723 1810 1900 1729 1810 1900 1662 Queue Service Time (gs), s 4.9 7.2 7.4 6.2 18.9 19.0 5.7 12.2 12.5 9.5 18.2 18.6 Cycle Queue Clearance Time (gs), s 4.9 7.2 7.4 6.2 18.9 19.0 5.7 12.2 12.5 9.5 18.2 18.6	Max Out Probabil	ity			0.00)		0.00)		0.24		0.03	0.02	2	0.04			
Approach Movement L T R L T R L T R L T R L T R L T R L T R Assigned Movement 5 2 12 1 6 16 7 4 14 3 8 18 Adjusted Flow Rate (v), veh/h 155 417 199 198 943 428 117 453 212 201 667 296 Adjusted Saturation Flow Rate (s), veh/h(n) 1810 1900 1771 1810 1900 1723 1810 1900 1729 1810 1900 1662 Queue Service Time (gs), s 4.9 7.2 7.4 6.2 18.9 19.0 5.7 12.2 12.5 9.5 18.2 18.6 Cycle Queue Clearance Time (gs), s 4.9 7.2 7.4 6.2 18.9 19.0 5.7 12.2 12.5 9.5 18.2 18.6	Movement Group	n Pos	ulte			ER			\/\/R			NR			SB				
Assigned Movement 5 2 12 1 6 16 7 4 14 3 8 18 Adjusted Flow Rate (v), veh/h 155 417 199 198 943 428 117 453 212 201 667 296 Adjusted Saturation Flow Rate (s), veh/h/ln 1810 1900 1771 1810 1900 1723 1810 1900 1729 1810 1900 162 Queue Service Time (g s), s 4.9 7.2 7.4 6.2 18.9 19.0 5.7 12.2 12.5 9.5 18.2 18.6 Cycle Queue Clearance Time (g c), s 4.9 7.2 7.4 6.2 18.9 19.0 5.7 12.2 12.5 9.5 18.2 18.6 Green Ratio (g/C) 0.53 0.47 0.47 0.47 0.54 0.48 0.84 0.25 0.18 0.18 0.11 0.25 18.2 18.6 Green Ratio (g/C) 0.9 0.23 0.236 0.236 0.236 0.231 0.236 0.231 0.3		-	uits			ı	Гр		ir .	Гр			D	-	r	В			
Adjusted Flow Rate (v), veh/h 155 417 199 198 943 428 117 453 212 201 667 296 Adjusted Saturation Flow Rate (s), veh/h/ln 1810 1900 1771 1810 1900 1723 1810 1900 1729 1810 1900 1662 Queue Service Time (g s), s 4.9 7.2 7.4 6.2 18.9 19.0 5.7 12.2 12.5 9.5 18.2 18.6 Cycle Queue Clearance Time (g s), s 4.9 7.2 7.4 6.2 18.9 19.0 5.7 12.2 12.5 9.5 18.2 18.6 Green Ratio (g/C) 0.53 0.47 0.47 0.54 0.48 0.48 0.25 0.18 0.18 0.31 0.22 0.22 0.22 0.23 0.241 0.373 0.519 0.56 0.65 0.669 0.645 0.795 0.806 Volume-to-Capacity Ratio (X) 0.02 0.23 0.241 0.373 0.519 0.519 0.551 0.669 0.645 0.795 0.806							-		_	_									
Adjusted Saturation Flow Rate ($\mathfrak s$), veh/h/ln 1810 1900 1771 1810 1900 1723 1810 1900 1729 1810 1900 1662 Queue Service Time ($\mathfrak g$ $\mathfrak s$), $\mathfrak s$ 4.9 7.2 7.4 6.2 18.9 19.0 5.7 12.2 12.5 9.5 18.2 18.6 Cycle Queue Clearance Time ($\mathfrak g$ $\mathfrak s$), $\mathfrak s$ 4.9 7.2 7.4 6.2 18.9 19.0 5.7 12.2 12.5 9.5 18.2 18.6 Green Ratio ($\mathfrak g$ /C) 0.53 0.47 0.47 0.54 0.48 0.48 0.25 0.18 0.18 0.31 0.22 0.22 Capacity ($\mathfrak c$), veh/h 297 1767 824 531 1817 824 210 696 317 312 839 367 Volume-to-Capacity Ratio (X) 0.523 0.236 0.241 0.373 0.519 0.560 0.651 0.669 0.645 0.795 0.806 Back of Queue ($\mathcal Q$), filln (95 th percentile) 3.5 5.6 5.5 4.3 12.9 12.3) voh/h				_			-					-	-			
Queue Service Time (g_s), s 4.9 7.2 7.4 6.2 18.9 19.0 5.7 12.2 12.5 9.5 18.2 18.6 Cycle Queue Clearance Time (g_c), s 4.9 7.2 7.4 6.2 18.9 19.0 5.7 12.2 12.5 9.5 18.2 18.6 Green Ratio (g/C) 0.53 0.47 0.47 0.54 0.48 0.48 0.25 0.18 0.18 0.31 0.22 0.22 Capacity (c), veh/h 297 1767 824 531 1817 824 210 696 317 312 839 367 Volume-to-Capacity Ratio (X) 0.523 0.236 0.241 0.373 0.519 0.560 0.651 0.669 0.645 0.795 0.806 Back of Queue (Q), ft/ln (95 th percentile) 86.3 140.4 138.2 107.4 322.1 307 112.3 236.9 227 184.5 328.3 303 Back of Queue (Q), gr/ln (95 th percentile) 3.5 5.6 5.5 4.3 12.9 12.3 4.5 9.5			,.	2	_		_				_								
Cycle Queue Clearance Time (g c), s 4.9 7.2 7.4 6.2 18.9 19.0 5.7 12.2 12.5 9.5 18.2 18.6 Green Ratio (g/C) 0.53 0.47 0.47 0.54 0.48 0.48 0.25 0.18 0.18 0.31 0.22 0.22 Capacity (c), veh/h 297 1767 824 531 1817 824 210 696 317 312 839 367 Volume-to-Capacity Ratio (X) 0.523 0.236 0.241 0.373 0.519 0.509 0.651 0.669 0.645 0.795 0.806 Back of Queue (Q), ft/ln (95 th percentile) 86.3 140.4 138.2 107.4 322.1 307 112.3 236.9 227 184.5 328.3 303 Back of Queue (Q), veh/ln (95 th percentile) 3.5 5.6 5.5 4.3 12.9 12.3 4.5 9.5 9.1 7.4 13.1 12.1 Queue Storage Ratio (RQ) (95 th percentile) 0.54 0.00 0.00 0.98 0.00 0.00 0.64			· , , ,	1															
Green Ratio (g/C) 0.53 0.47 0.47 0.54 0.48 0.48 0.25 0.18 0.31 0.22 0.22 Capacity (c), veh/h 297 1767 824 531 1817 824 210 696 317 312 839 367 Volume-to-Capacity Ratio (X) 0.523 0.236 0.241 0.373 0.519 0.519 0.560 0.551 0.669 0.645 0.795 0.806 Back of Queue (Q), ft/ln (95 th percentile) 86.3 140.4 138.2 107.4 322.1 307 112.3 23.69 227 184.5 328.3 303 Back of Queue (Q), veh/ln (95 th percentile) 3.5 5.6 5.5 4.3 12.9 12.3 4.5 9.5 9.1 7.4 13.1 12.1 Queue Storage Ratio (RQ) (95 th percentile) 0.54 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00							_			_									
Capacity (c), veh/h 297 1767 824 531 1817 824 210 696 317 312 839 367 Volume-to-Capacity Ratio (X) 0.523 0.236 0.241 0.373 0.519 0.560 0.651 0.669 0.645 0.795 0.806 Back of Queue (Q), ft/ln (95 th percentile) 86.3 140.4 138.2 107.4 322.1 307 112.3 236.9 227 184.5 328.3 303 Back of Queue (Q), veh/ln (95 th percentile) 3.5 5.6 5.5 4.3 12.9 12.3 4.5 9.5 9.1 7.4 13.1 12.1 Queue Storage Ratio (RQ) (95 th percentile) 0.54 0.00 0.00 0.98 0.00 0.00 0.64 0.00 0.00 1.15 0.00 0.00 Uniform Delay (d 1), s/veh 16.2 17.7 17.7 17.7 13.3 19.9 19.9 34.4 41.7 41.8 30.9 40.5 40.6 Incremental Delay (d 2), s/veh 0.5 0.3 0.7 0.2 1.1 2.3 <td></td> <td></td> <td>: Time (g c), s</td> <td></td> <td></td> <td></td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			: Time (g c), s				+												
Volume-to-Capacity Ratio (X) 0.523 0.236 0.241 0.373 0.519 0.519 0.560 0.651 0.669 0.645 0.795 0.806 Back of Queue (Q), ft/ln (95 th percentile) 86.3 140.4 138.2 107.4 322.1 307 112.3 236.9 227 184.5 328.3 303 Back of Queue (Q), veh/ln (95 th percentile) 3.5 5.6 5.5 4.3 12.9 12.3 4.5 9.5 9.1 7.4 13.1 12.1 Queue Storage Ratio (RQ) (95 th percentile) 0.54 0.00 0.00 0.98 0.00 0.00 0.64 0.00 0.00 1.15 0.00 0.00 Uniform Delay (d 1), s/veh 16.2 17.7 17.7 17.7 13.3 19.9 19.9 34.4 41.7 41.8 30.9 40.5 40.6 Incremental Delay (d 2), s/veh 0.5 0.3 0.7 0.2 1.1 2.3 0.9 0.4 0.9 0.8 0.8 2.2 Initial Queue Delay (d 2), s/veh 16.7 18.0 18.4 13.4	, ,						_												
Back of Queue (Q), ft/ln (95 th percentile) 86.3 14.0.4 138.2 107.4 322.1 307 112.3 236.9 227 184.5 328.3 303 Back of Queue (Q), veh/ln (95 th percentile) 3.5 5.6 5.5 4.3 12.9 12.3 4.5 9.5 9.1 7.4 13.1 12.1 Queue Storage Ratio (RQ) (95 th percentile) 0.54 0.00 0.00 0.98 0.00 0.00 0.64 0.00 0.00 1.15 0.00 0.00 Uniform Delay (d1), s/veh 16.2 17.7 17.7 13.3 19.9 19.9 34.4 41.7 41.8 30.9 40.5 40.6 Incremental Delay (d2), s/veh 0.5 0.3 0.7 0.2 1.1 2.3 0.9 0.4 0.9 0.8 0.8 2.2 Initial Queue Delay (d3), s/veh 16.7 18.0 18.4 13.4 21.0 22.3 35.3 42.0 42.7 31.8 41.3 42.8 Level of Service (LOS) B B B B C C D D			tio (X)				+		-							_			
Back of Queue (Q), veh/ln (95 th percentile) 3.5 5.6 5.5 4.3 12.9 12.3 4.5 9.5 9.1 7.4 13.1 12.1 Queue Storage Ratio (RQ) (95 th percentile) 0.54 0.00 0.00 0.98 0.00 0.00 0.64 0.00 0.00 1.15 0.00 0.00 Uniform Delay (d ₁), s/veh 16.2 17.7 17.7 13.3 19.9 19.9 34.4 41.7 41.8 30.9 40.5 40.6 Incremental Delay (d ₂), s/veh 0.5 0.3 0.7 0.2 1.1 2.3 0.9 0.4 0.9 0.8 0.8 2.2 Initial Queue Delay (d ₃), s/veh 0.0							_												
Queue Storage Ratio (RQ) (95 th percentile) 0.54 0.00 0.00 0.98 0.00 0.00 0.64 0.00 0.00 1.15 0.00 0.00 0.00 Uniform Delay (d 1), s/veh 16.2 17.7 17.7 13.3 19.9 19.9 34.4 41.7 41.8 30.9 40.5 40.6 Incremental Delay (d 2), s/veh 0.5 0.3 0.7 0.2 1.1 2.3 0.9 0.4 0.9 0.8 0.8 2.2 Initial Queue Delay (d 3), s/veh 0.0 0.	·		· · · /																
Uniform Delay (d 1), s/veh 16.2 17.7 17.7 13.3 19.9 19.9 34.4 41.7 41.8 30.9 40.5 40.6 Incremental Delay (d 2), s/veh 0.5 0.3 0.7 0.2 1.1 2.3 0.9 0.4 0.9 0.8 0.8 2.2 Initial Queue Delay (d 3), s/veh 0.0 <t< td=""><td></td><td></td><td><u> </u></td><td></td><td></td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td></td><td></td><td>_</td><td></td><td></td><td></td></t<>			<u> </u>			_	_	_	_	_			_						
Incremental Delay (d ₂), s/veh 0.5 0.3 0.7 0.2 1.1 2.3 0.9 0.4 0.9 0.8 0.8 2.2 Initial Queue Delay (d ₃), s/veh 0.0			· · · · · · · · · · · · · · · · · · ·			_	_	-		_									
Initial Queue Delay (d ₃), s/veh 0.0							_	_	_	_	-		_						
Control Delay (d), s/veh 16.7 18.0 18.4 13.4 21.0 22.3 35.3 42.0 42.7 31.8 41.3 42.8 Level of Service (LOS) B B B B C C D D D C D D Approach Delay, s/veh / LOS 17.8 B 20.4 C 41.2 D 40.0 D Intersection Delay, s/veh / LOS 29.1 C The control Delay of the control			,				_								_				
Level of Service (LOS) B B B B B C C D		• , ,				_	_												
Approach Delay, s/veh / LOS 17.8 B 20.4 C 41.2 D 40.0 D Intersection Delay, s/veh / LOS 29.1 C C C SB NB SB Pedestrian LOS Score / LOS 2.56 C 2.56 C 2.60 C 2.59 C							_			_						_			
Nultimodal Results EB WB NB SB	, ,																		
Multimodal Results EB WB NB SB Pedestrian LOS Score / LOS 2.56 C 2.56 C 2.60 C 2.59 C				17.0				·	J	71.2									
Pedestrian LOS Score / LOS 2.56 C 2.56 C 2.60 C 2.59 C		Intersection Delay, s/ven / LOS					23	9.1											
Pedestrian LOS Score / LOS 2.56 C 2.56 C 2.60 C 2.59 C	Multimodal Resu	Multimodal Results				EB			WB			NB			SB				
					2.56		С	2.56					С	2.59)	С			
	Bicycle LOS Scor				0.91		Α	1.35	5	Α	0.92		Α	1.13	3	Α			

HCS7 Two-Way Stop-Control Report									
General Information									
Analyst	МВ	Intersection	Louisiana and Driveway 2						
Agency/Co.	ВН	Jurisdiction	CABQ						
Date Performed	7/28/2021	East/West Street	Driveway 2						
Analysis Year	2024	North/South Street	Louisiana						
Time Analyzed	Build AM	Peak Hour Factor	0.92						
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25						
Project Description	Fiesta Subaru								

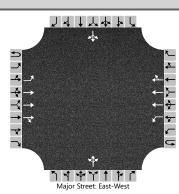

					iviajoi	Street. INOI	tii-30utii									
Vehicle Volumes and Adjustments																
Approach	Т	Eastb	ound			Westl	oound			North	bound		Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	0	1	0	0	3	0	0	0	3	0
Configuration								R			Т	TR			Т	
Volume (veh/h)								4			716	21			929	
Percent Heavy Vehicles (%)								2								
Proportion Time Blocked																
Percent Grade (%)						. ()									
Right Turn Channelized						N	lo									
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	adways														
Base Critical Headway (sec)	Т							7.1								
Critical Headway (sec)								7.14								
Base Follow-Up Headway (sec)								3.9								
Follow-Up Headway (sec)								3.92								
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	\top							4								
Capacity, c (veh/h)								512								
v/c Ratio								0.01								
95% Queue Length, Q ₉₅ (veh)								0.0								
Control Delay (s/veh)								12.1								
Level of Service (LOS)								В								
Approach Delay (s/veh)					12.1											
Approach LOS					В											

HCS7 Two-Way Stop-Control Report									
General Information Site Information									
Analyst	МВ	Intersection	Lomas and Alcazar						
Agency/Co.	вн	Jurisdiction	CABQ						
Date Performed	7/20/2021	East/West Street	Lomas						
Analysis Year	2024	North/South Street	Alcazar						
Time Analyzed	Build PM	Peak Hour Factor	0.92						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description Fiesta Subaru									

					iviaj	or street. La	31-VVC31										
Vehicle Volumes and Adjustments																	
Approach	T	Eastb	ound			Westbound				Northbound				Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	1	3	0	0	1	3	0		0	1	0		0	1	0	
Configuration		L	Т	TR		L	Т	TR			LTR				LTR		
Volume (veh/h)	0	33	1476	20	0	13	1261	29		29	0	29		33	0	23	
Percent Heavy Vehicles (%)	2	2			2	2				2	2	2		2	2	2	
Proportion Time Blocked																	
Percent Grade (%)											0				0		
Right Turn Channelized																	
Median Type Storage				Undi	vided												
Critical and Follow-up H	eadwa	adways															
Base Critical Headway (sec)	Τ	5.3				5.3				6.4	6.5	7.1		6.4	6.5	7.1	
Critical Headway (sec)		5.34				5.34				6.44	6.54	7.14		6.44	6.54	7.14	
Base Follow-Up Headway (sec)		3.1				3.1				3.8	4.0	3.9		3.8	4.0	3.9	
Follow-Up Headway (sec)		3.12				3.12				3.82	4.02	3.92		3.82	4.02	3.92	
Delay, Queue Length, an	d Leve	l of S	ervice														
Flow Rate, v (veh/h)	Т	36				14					63				61		
Capacity, c (veh/h)		249				193					60				62		
v/c Ratio		0.14				0.07					1.05				0.99		
95% Queue Length, Q ₉₅ (veh)		0.5				0.2					5.1				4.7		
Control Delay (s/veh)		21.9				25.1					244.7				222.2		
Level of Service (LOS)		С				D			F						F		
Approach Delay (s/veh)		0.5			0.3			244.7				222.2					
Approach LOS									F				F				

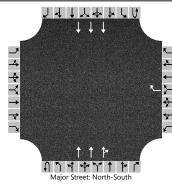

HCS7 Two-Way Stop-Control Report									
General Information Site Information									
Analyst	МВ	Intersection	Lomas and Alcazar						
Agency/Co.	вн	Jurisdiction	CABQ						
Date Performed	7/20/2021	East/West Street	Lomas						
Analysis Year	2024	North/South Street	Alcazar						
Time Analyzed	Build PM	Peak Hour Factor	0.92						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description Fiesta Subaru									

					iviaj	or street. La	31-VVC31									
Vehicle Volumes and Adjustments																
Approach	T	Eastk	ound			Westl	bound		Northbound				Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	3	0	0	1	3	0		0	1	0		0	1	0
Configuration		L	Т	TR		L	Т	TR			LTR				LTR	
Volume (veh/h)	0	33	1476	20	0	13	1261	29		29	0	29		33	0	23
Percent Heavy Vehicles (%)	2	2			2	2				2	2	2		2	2	2
Proportion Time Blocked																
Percent Grade (%)											0			()	
Right Turn Channelized																
Median Type Storage				Left	Only				1							
Critical and Follow-up Ho	eadwa	adways														
Base Critical Headway (sec)		5.3				5.3				6.4	6.5	7.1		6.4	6.5	7.1
Critical Headway (sec)		5.34				5.34				6.44	6.54	7.14		6.44	6.54	7.14
Base Follow-Up Headway (sec)		3.1				3.1				3.8	4.0	3.9		3.8	4.0	3.9
Follow-Up Headway (sec)		3.12				3.12				3.82	4.02	3.92		3.82	4.02	3.92
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)		36				14					63				61	
Capacity, c (veh/h)		249				193					84				111	
v/c Ratio		0.14				0.07					0.75				0.55	
95% Queue Length, Q ₉₅ (veh)		0.5				0.2					3.7				2.6	
Control Delay (s/veh)		21.9				25.1					125.1				71.5	
Level of Service (LOS)		С				D			F						F	
Approach Delay (s/veh)		0.5			0.3			125.1				71.5				
Approach LOS									F				F			


Generated: 8/3/2021 9:39:26 AM

HCS7 Two-Way Stop-Control Report									
General Information Site Information									
Analyst	МВ	Intersection	Lomas and Chama						
Agency/Co.	вн	Jurisdiction	CABQ						
Date Performed	7/21/2021	East/West Street	Lomas						
Analysis Year	2024	North/South Street	Chama						
Time Analyzed	Build PM	Peak Hour Factor	0.92						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description Fiesta Subaru									

				iviaj	or Street. La	31-VVC31										
Vehicle Volumes and Adjustments																
Π	Eastb	ound			Westl	oound		Northbound				Southbound				
U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
0	1	3	0	0	1	3	0		0	1	0		0	1	0	
	L	Т	TR		L	Т	TR			LTR				LTR		
11	12	1426	115	0	66	1175	10		29	0	28		3	0	19	
2	2			2	2				2	2	2		2	2	2	
)			()		
			Undi	vided												
adwa	adways															
5.6	5.3				5.3				6.4	6.5	7.1		6.4	6.5	7.1	
5.64	5.34				5.34				6.44	6.54	7.14		6.44	6.54	7.14	
2.3	3.1				3.1				3.8	4.0	3.9		3.8	4.0	3.9	
2.32	3.12				3.12				3.82	4.02	3.92		3.82	4.02	3.92	
l Leve	l of Se	ervice														
	25				72					62				24		
	343				182					45				150		
	0.07				0.39					1.38				0.16		
	0.2				1.7					6.0				0.5		
	16.3				37.0					410.4				33.5		
	С				E			F						D		
	0.2				2.0			410.4				33.5				
								F				D				
	U 1U 0 111 2 2 2 2 3 2 3 2 3 2 3 2 3 2 3 2	Easth U L 1U 1 0 1 1 11 12 2 2 2 2 2 2 3 3.1 5.64 5.34 2.3 3.1 2.32 3.12 3 Level of So 3 43 0.07 0.2 16.3 C	Eastbound U L T 1U 1 2 0 1 3 L T 11 12 1426 2 2 2 2 2 2 2 3 5.6 5.3 5.64 5.34 2.3 3.1 2 2.32 3.12 C Level of Service 25 343 0.07 0.2 16.3 C C	Eastbound U L T R 1U 1 2 3 0 1 3 0 L T TR 11 12 1426 115 2 2	Eastbound U L T R U 1U 1 2 3 4U 0 1 3 0 0 L T TR 11 12 1426 115 0 2 2 2 2 2 Undivided Padways 5.6 5.3	Eastbound Westle U L T R U L L T R U L L T T TR L L T T TR L L L T T TR L L L T T TR L T TR L T TR T T TR T T T TR T T T TR T TR T TR T TR T TR T	Eastbound U	Eastbound Westbound U	Eastbound Westbound	Columbia	Eastbound Westbound Northbound	Eastbound Westbound Northbound U	Columbia Columbia	Eastbound Westbound Northbound South	Eastbound Northbound Southbound U	


HCS7 Two-Way Stop-Control Report										
General Information		Site Information								
Analyst	МВ	Intersection	Lomas and Chama							
Agency/Co.	вн	Jurisdiction	CABQ							
Date Performed	7/21/2021	East/West Street	Lomas							
Analysis Year	2024	North/South Street	Chama							
Time Analyzed	Build PM	Peak Hour Factor	0.92							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							
Project Description	Fiesta Subaru									

Vehicle Volumes and Ad	1				1												
Approach		Eastbound				Westbound			Northbound				Southbound				
Movement	U	L	T	R	U	L	Т	R	U	L	T	R	U	L	T	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	1	3	0	0	1	3	0		0	1	0		0	1	0	
Configuration		L	Т	TR		L	Т	TR			LTR				LTR		
Volume (veh/h)	11	12	1426	115	0	66	1175	10		29	0	28		3	0	19	
Percent Heavy Vehicles (%)	2	2			2	2				2	2	2		2	2	2	
Proportion Time Blocked																	
Percent Grade (%)										(0			0			
Right Turn Channelized																	
Median Type Storage				Left	Only								1				
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)	5.6	5.3				5.3				6.4	6.5	7.1		6.4	6.5	7.1	
Critical Headway (sec)	5.64	5.34				5.34				6.44	6.54	7.14		6.44	6.54	7.14	
Base Follow-Up Headway (sec)	2.3	3.1				3.1				3.8	4.0	3.9		3.8	4.0	3.9	
Follow-Up Headway (sec)	2.32	3.12				3.12				3.82	4.02	3.92		3.82	4.02	3.92	
Delay, Queue Length, an	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)		25				72					62				24		
Capacity, c (veh/h)		343				182					85				198		
v/c Ratio		0.07				0.39					0.73				0.12		
95% Queue Length, Q ₉₅ (veh)		0.2				1.7					3.6				0.4		
Control Delay (s/veh)		16.3				37.0					120.4				25.6		
Level of Service (LOS)		С				Е					F				D		
Approach Delay (s/veh)		0	.2		2.0					12	0.4		25.6				
Approach LOS	1										F	D					

		HCS	7 Sig	nalize	d Int	ersec	tion F	Resul	ts Sur	nmary	У						
General Inform	ation							Т	ntersec	tion Infe	T D	ا با جاء الما الما	þ. l.				
	iation	ВН						_	Duration,		4 1 1 7						
Agency		МВ		Analys	io Doto	Jul 19	2021				0.250		_4		K.		
Analyst Jurisdiction				-	is Date	PM	, 2021)21 Area Type PHF			Other			w ↑ E	<u></u>		
Urban Street		CABQ		Time Period PM Analysis Year 2024							0.92 Period 1> 7:00				←		
			File Name BPM_Lomas-Louisi					Analysis		1> 7:0	JU	7					
Intersection Lomas and Louisiana			File Na	ame	BPIM_	Lomas-	Louisia	ana_vz.x	tus			-	` `	t= 2			
Project Descrip	tion	Build PM													rı		
Demand Information			EB W					3	1	SB							
Approach Movement			L	Т	R		R		Т	R		R					
Demand (v), v				237	1210		177	812	_	147	1004		192	621	195		
					1 1 1									<u></u>	100		
Signal Informa	ition						T _ 2	<u>. </u>									
Cycle, s	120.0	Reference Phase	2		L, A	Ħ				- 1			$\Leftrightarrow \bot$	7	Ψ		
Offset, s	0	Reference Point	End	Green	10.2	2.6	43.1	9.5	2.3	33.8		1	2	3	4		
Uncoordinated	No	Simult. Gap E/W	On	Yellow		0.0	4.5	3.0	0.0	4.5		>	\rightarrow	~	◮		
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.5	0.0	1.0	0.5	0.0	1.5		5	6	7	8		
Timer Results				EBI	-	EBT	WB	L	WBT	NBI 7	-	NBT	SBI		SBT		
	Assigned Phase			5		2	1		6			4 3		8			
Case Number				1.1		4.0	1.1		4.0	1.1		4.0 1.1					
Phase Duration, s			16.3	3	51.2	13.7		48.6 13.0)	39.8		3	42.1			
	Change Period, (Y+R c), s			3.5		5.5	3.5		5.5 3.5			6.0			6.0		
Max Allow Headway (MAH), s			3.1		0.0	3.1		0.0 3.1			3.0			3.0			
Queue Clearance Time (g $_{\rm s}$), $_{\rm s}$			12.5	5		9.9					29.6	11.6	5	18.5			
Green Extensio	Green Extension Time (g e), s					0.0	0.3		0.0 0.1			4.2			5.9		
Phase Call Probability			1.00)		1.00					1.00	1.00					
Max Out Probal	bility			0.00)		0.00			0.40		0.44	0.00	0.07			
Mayamant Cra	Daa				- ED			WD			ND			CD			
Movement Gro		SuitS			EB		.	WB			NB		-	SB			
Approach Move				L	T	R	L	Т	R	L	T	R	L	T	R		
Assigned Move		·		5	2	12	1	6	16	7	4	14	3	8	18		
Adjusted Flow F), ven/n ow Rate (s), veh/h/l	_	258	1004	473	192	796	352	160	921	416	209	613	274		
		, ,,	11	1810	1900	1790	1810	1900		1810	1900	1718	1810	1900	1668		
Queue Service		- ,		10.5	26.7	26.7	7.9	20.4	20.5	7.4	27.6	27.6	9.6	16.1	16.5		
Cycle Queue C		e rime (g c), s		10.5	26.7	26.7	7.9	20.4	20.5	7.4	27.6	27.6	9.6	16.1	16.5		
Green Ratio (g				0.48	0.38	0.38	0.44	0.36	0.36	0.36	0.28	0.28	0.39	0.30	0.30		
Capacity (c), v		atio (V)		347	1447	682	265	1364	_	296	1070	483	260	1144	502		
Volume-to-Capa		ntio(X) /In(95 th percentile)		0.742	0.694		0.725	0.583 361.3		0.539	0.861 482.2	0.861	0.804	0.536	0.546 270.2		
	, ,	· · · · · ·		194.3	453	448.3	151.4					465.9	192.7	293.6			
	· · ·	eh/ln (95 th percenti RQ) (95 th percent	-	7.8	18.1	17.9	6.1	14.5	13.6	5.7	19.3	18.6	7.7	11.7	10.8		
		, · · · ·	iie)	1.21	0.00	0.00	1.38	0.00	0.00	0.82	0.00	0.00	1.20	0.00	0.00		
Uniform Delay (23.3	31.3	31.3	26.2	31.2	31.2	28.4	40.9	40.9	30.2	35.0	35.1		
Incremental De	- '	,		1.2	2.8	5.7	1.4	1.8	4.2	0.6	5.2	10.7	3.9	0.1	0.3		
Initial Queue Delay (d 3), s/veh Control Delay (d), s/veh			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
				24.5 C	34.0 C	37.0	27.6	33.0	35.4	28.9	46.1	51.6	34.1	35.1	35.4		
Level of Service						D	C 32 (С					C D D				
Approach Delay				33.4		C	32.9	1	C 45.8 D					35.0 C			
Intersection Del	ıay, s/ve	#II / LUS				36	5.9						D				
Multimodal Re	sults				EB			WB	B NB					SB			
Pedestrian LOS		/LOS		2.58		С	2.58	2.58 C		2.59 C			2.59	-	С		
Bicycle LOS Sc				1.44		A	1.22	_	A	1.31		A	1.09		A		
bicycle 200 deole / 200						·											

HCS7 Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	МВ	Intersection	Louisiana and Driveway 2								
Agency/Co.	ВН	Jurisdiction	CABQ								
Date Performed	7/28/2021	East/West Street	Driveway 2								
Analysis Year	2024	North/South Street	Louisiana								
Time Analyzed	Build PM	Peak Hour Factor	0.92								
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25								
Project Description	Fiesta Subaru										

Vehicle Volumes and Ad	justille	1113															
Approach		Eastbound				Westbound			Northbound				Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		0	0	0		0	0	1	0	0	3	0	0	0	3	0	
Configuration								R			Т	TR			Т		
Volume (veh/h)								11			1366	14			958		
Percent Heavy Vehicles (%)								3									
Proportion Time Blocked																	
Percent Grade (%)						()										
Right Turn Channelized						N	lo										
Median Type Storage				Undi	vided												
Critical and Follow-up H	leadwa	ys															
Base Critical Headway (sec)								7.1									
Critical Headway (sec)								7.16									
Base Follow-Up Headway (sec)								3.9									
Follow-Up Headway (sec)								3.93									
Delay, Queue Length, ar	nd Leve	l of Se	ervice														
Flow Rate, v (veh/h)	Т							12									
Capacity, c (veh/h)								302									
v/c Ratio								0.04									
95% Queue Length, Q ₉₅ (veh)								0.1									
Control Delay (s/veh)								17.4									
Level of Service (LOS)								С									
Approach Delay (s/veh)					17.4												
Approach LOS	1				С												