DRAINAGE REPORT

FOR

LAND OF PETE DASKALOS

AND

LAND OF ELMER SPROUL

ZONE ATLAS SHEET K-23

FEBRUARY, 1978

PREPARED FOR

PETE DASKALOS 5321 Menaul Blvd., N.E. Albuquerque, New Mexico 87110

AND

ELMER SPROUL 5115 Menaul Blvd., N.E. Albuquerque, New Mexico 87110

PREPARED BY

BOHANNAN-HUSTON, INC. 4125 Carlisle Blvd., N.E. Albuquerque, New Mexico 87107

Michial M. Energy MICHIAL M. EMERY, P.E.

N.M.P.E. NO. 5194

DRAINAGE REPORT
FOR
LAND OF PETE DASKALOS
AND
LAND OF ELMER SPROUL

PURPOSE

The purpose of this report is to examine the existing drainage conditions affecting the study parcels and to make recommendations for the development of the parcels so that the provisions of the 1972 AMAFCA Drainage Resolution shall be met for 100-year-frequency storm conditions.

PROJECT LOCATION AND DESCRIPTION

The Daskalos property consists of approximately 25 acres in Northeast Albuquerque, bounded by Ciudad Vista Subdivision on the west, City View Estates on the south, the Sproul property on the north, and the proposed Scenic Drive on the east. The proposed development consists of 78 R-1 lots. Typical lot size is 75'x110', and single-family dwellings averaging 2,400 sf are expected.

The Sproul property is approximately 12 acres bordered by the Daskalos property on the south, by the proposed Upper Lomas Channel on the north, and by Ciudad Vista Subdivision on the west. A development consisting of 9 custom lots is proposed for the parcel.

UNDEVELOPED HYDROLOGY

The soil is primarily decomposed granite with several large outcroppings of rock. The Sproul property is largely such outcroppings. Rocky areas are shaded on Plate 2. A runoff

factor of C=0.90 was used for rocky areas in undeveloped condition. Calculations are provided in the Appendix.

Construction of the Upper Lomas Channel will be under way before commencement of construction on the study parcels. This will eliminate all but the immediate upland runoff contributions for the parcels.

Drainage for the Daskalos property is defined in four basins as shown on Plate 1. Basin 3C is actually on Sproul property but contributes 10.7 cfs as upland runoff to the Daskalos property. A 100-year storm releases approximately 65.5 cfs from the Daskalos property and its upland basins in undeveloped condition. The existing outlets are at Oro Real Drive and the south property line, proposed Marquette Drive at the west property line, and a 40-foot drainage and utility easement connecting the parcel to Ciudad Vista Subdivision. These three points will be retained as release points for developed drainage.

The Sproul property, in addition to its contribution to Daskalos runoff, contains two basins, Basin 5 and Basin 6, shown on Plate 1. Due to the rocky and steep nature of the property, the 9.5 acres release approximately 41 cfs to the north and west.

DEVELOPED RUNOFF

Development on the study parcels will be single-family residential. Lots that occur on rock outcroppings will not be ponded since "C" development on already hardened surfaces does not increase the runoff. These lots are shaded on Plate 2.

All other lots will pond runoff from the center of the roof to the back yard. Runoff for ponded lots was computed using an

accepted method of assuming that landscaped areas do not contribute to the storm peak and assigning a runoff factor C=1.0 to all hardened surfaces. This applies to 71 of 78 lots on the Daskalos property.

Upland runoff will be intercepted by a temporary swale and desilting basin in the Scenic Drive right-of-way. The desilting basin will be constructed with an outflow weir located to release desilted upland flows into a 10-foot drainage easement and onto Daskalos Drive. Details regarding the swale and basin are provided in the Appendix and on Plate 2. As Scenic Drive is completed, a dip section will be constructed to release flows into the 10-foot drainage easement.

Construction of the swale along Scenic Drive and development of the Daskalos property will redefine the natural basins 1, 2, and 3. The majority of the development will drain as Basin 3, whose release point is a 40-foot drainage and utility easement at the west property line. This easement coincides with a 40-foot easement between Lots 5 and 6 of Block 2 in the Ciudad Vista Subdivision. The easement will release flows onto Turner Drive with turning vanes to direct the flow. This basin definition and release point serve the advantage of reducing the amount of runoff released at the Turner Drive-Marquette Drive intersection and at Oro Real and the south property line where street capacities are less. To insure this flow pattern, waterblocks will be constructed on Marquette Drive and Oro Real Drive as shown on Plate 2.

Drainage on the Sproul property will remain natural with the exception of a bar-ditch type swale along the proposed private drive to direct half of Basin 3C flows onto Daskalos Drive. The remaining 5.4 cfs from Basin 3C will travel west along a 2-foot high retaining wall at the Daskalos north property line to a 10-foot drainage easement at the Daskalos west property line, which will conduct it to the release point for Basin 3.

Ten-foot drainage easements along the Daskalos west property line will conduct flows from Basin 4 to Basin 2 and Basin 3 release points as shown on Plate 2.

Total developed runoff for the Daskalos property is approximately 62.1 cfs for a 100-year storm as compared to 65.5 cfs in the undeveloped condition.

Developed runoff for the Sproul property, Basins 5 and 6, remains at approximately 41 cfs, its undeveloped rate for a 100-year storm.

CONCLUSION

The development proposed for the Sproul property will not increase runoff for the 100-year-frequency storm. No ponding is required for this development.

Development of the Daskalos property with the recommended drainage improvements will not increase the 100-year storm runoff. Due to the computed decrease in runoff, eight additional lots may be developed without ponding. Developed runoff would then equal undeveloped runoff for the 100-year storm.

RECOMMENDATIONS

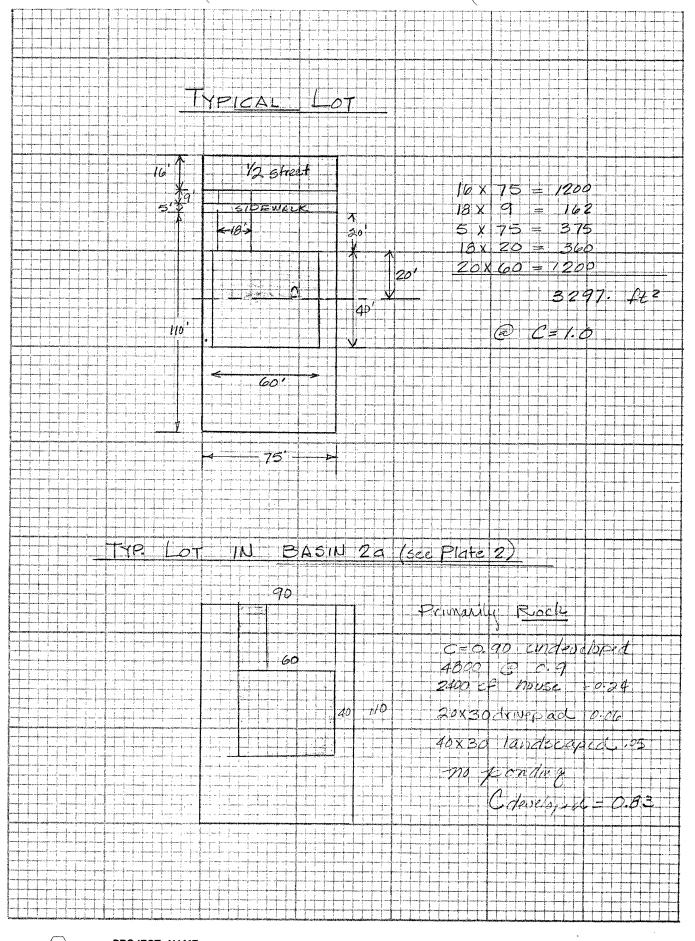
1. Construct a temporary swale and desilting basin with weir in the Scenic Drive right-of-way as shown on Plate 2 and described in the Appendix.

- 2. When Scenic Drive is completed, a dip section should replace the desilting basin and weir.
- 3. Construct 10-foot drainage easements on the Daskalos property in the locations shown on Plate 2.
- 4. Construct waterblocks on Marquette Drive and Oro Real Drive as shown on Plate 2.
- 5. Provide back yard ponding from the centerline of roofs on at least 63 lots of the Daskalos development.
- 6. Construct a curb opening in the Oro Real Drive cul-de-sac and a drainage easement in the 40-foot drainage and utility easement as shown on Plate 2.
- 7. Construct a bar-ditch type swale along the south edge of the private drive on the Sproul property to release flows into the Daskalos Drive cul-de-sac.
- 8. Construct 2-foot high retaining wall along the Sproul-Daskalos property line from Daskalos Drive to the Daskalos west property line as shown on Plate 2.

()		
ELSIN	UPLAND	INTERIOR
AREA LENGTH	2.02 acre 400 f6	4.53 1300'
ΔH	36 4€	86
S= SLOPE B= GROUND FACTOR	1.8	6.62
Log [†] [.364]	12.85 mm	21.5 min
3+.3854lof) 197(cg(5) 3613]		
T = 169 25+12	4.99	4.06
C factor Q = GIA	0, \$ 5	0.35
		5.8cfs
AREA	1.89 ac	(2) (4) 6.6ac 1.9
ΔΗ	34'	78' 55'
S B	11.3%	7.36% 21.5%
Та	11.0 min	19.47 min 10 min
	5.25 in/hr.	2.35 0.90(rock)
	3.5 3	12.5cfs 6.8cfs

PROJECT NAME DACKALOS		SHEET	OF
PROJECT NO. 78-017		BY JP	DATE 2/6/78
SUBJECT UNDEVELOPED	RINDER	CH'D	DATE

		· · · · · · · · · · · · · · · · · · ·	· ····································		
BASIN		UPLAK		HATERIO	R
	Ayea	4.60 400	2.48	7/1-7-2	
3		4.60			
		400	650'	920	
	ДН	28	82	70	
	15	7%	3%	8%	
		1.8	1-8-1-1-1-1	1.8	
	172111	13.5	4.4/	18.13	
					
			1.80	4,35	
		35	.90 (ack)	1111135	
		7.90			
		1.70	0-7	19.4	€ TOTAL 65.3
5				4.72	
				050	
	ΔH				
				16.510	
				128	
	172 - 1			/3. 75	
				4.49	
				0.90 (rock	
				0.90 (rock	
10	A			4.47ac	
				4.41ac	
	ΔH			87	
	15 11			1/3%	
	В			7.8	
				14.41 mm	
				4.80 0.90 (rock	
				19.4 6/3	
					1



PROJECT NAME DACKALOC SHEET Z OF

PROJECT NO. 78-017

BY LIP DATE 2/6/78

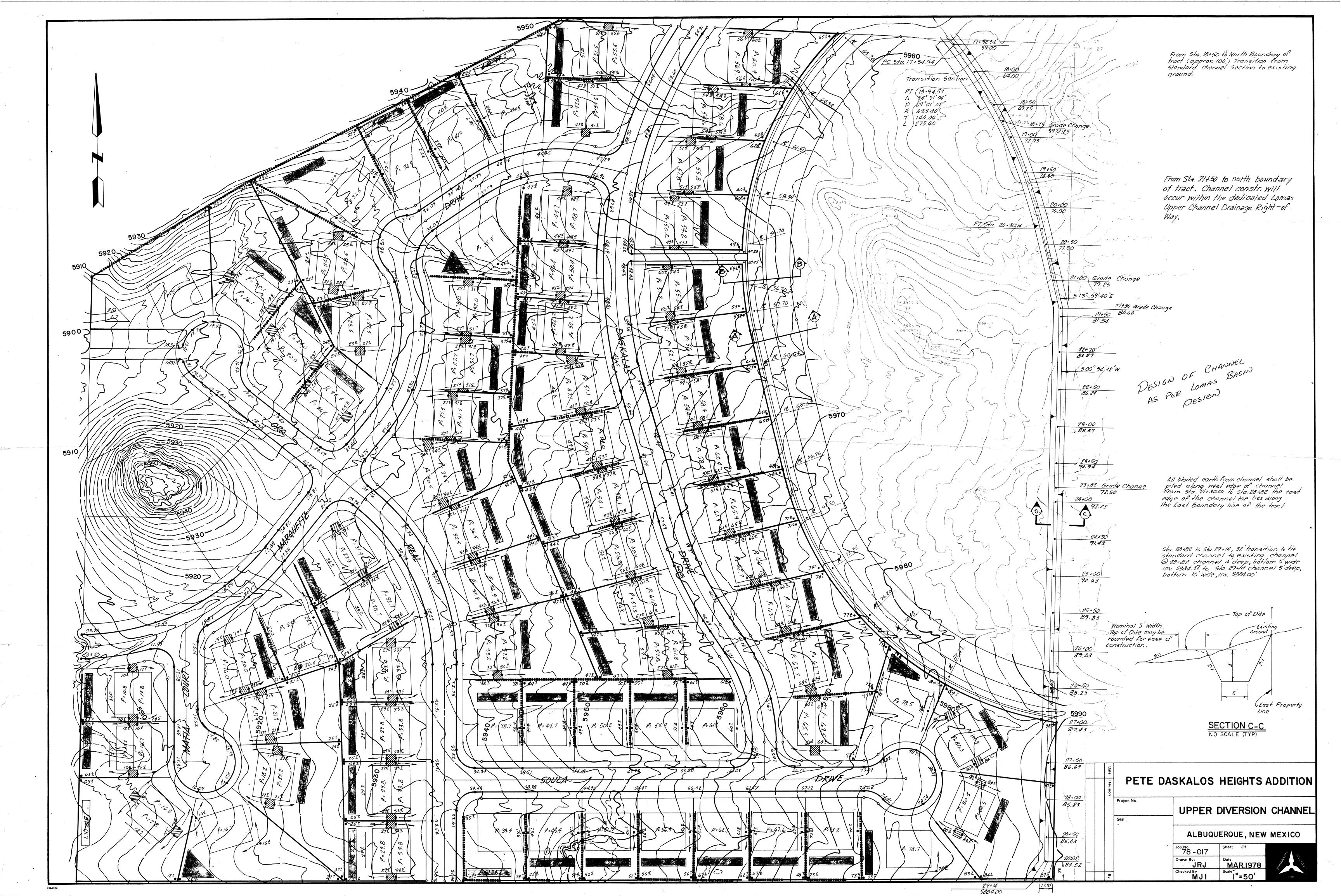
SUBJECT UNDEVELOPED PUNDEFF CH'D DATE

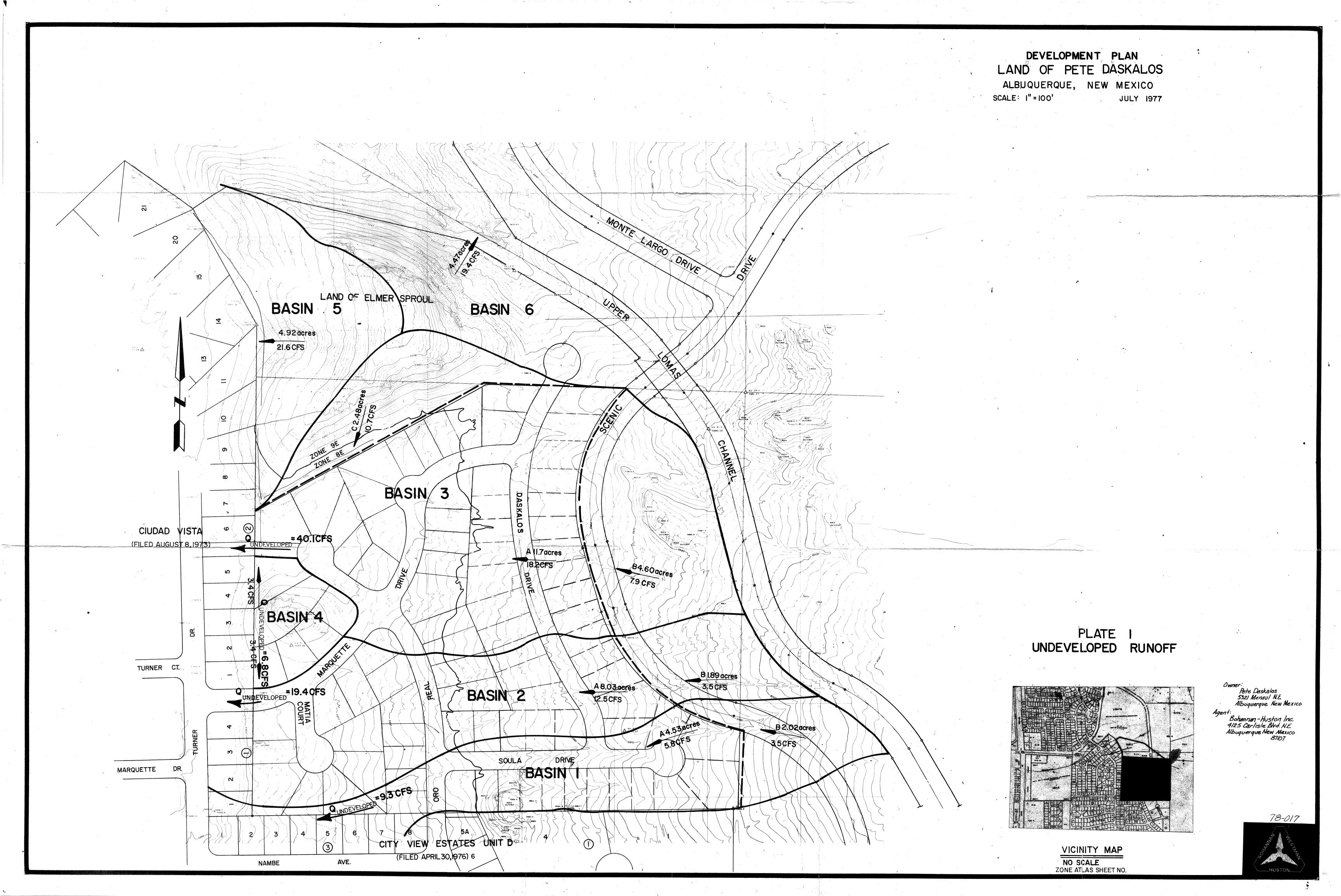
F A ?	P
THE STOWN	P
ANIC	S

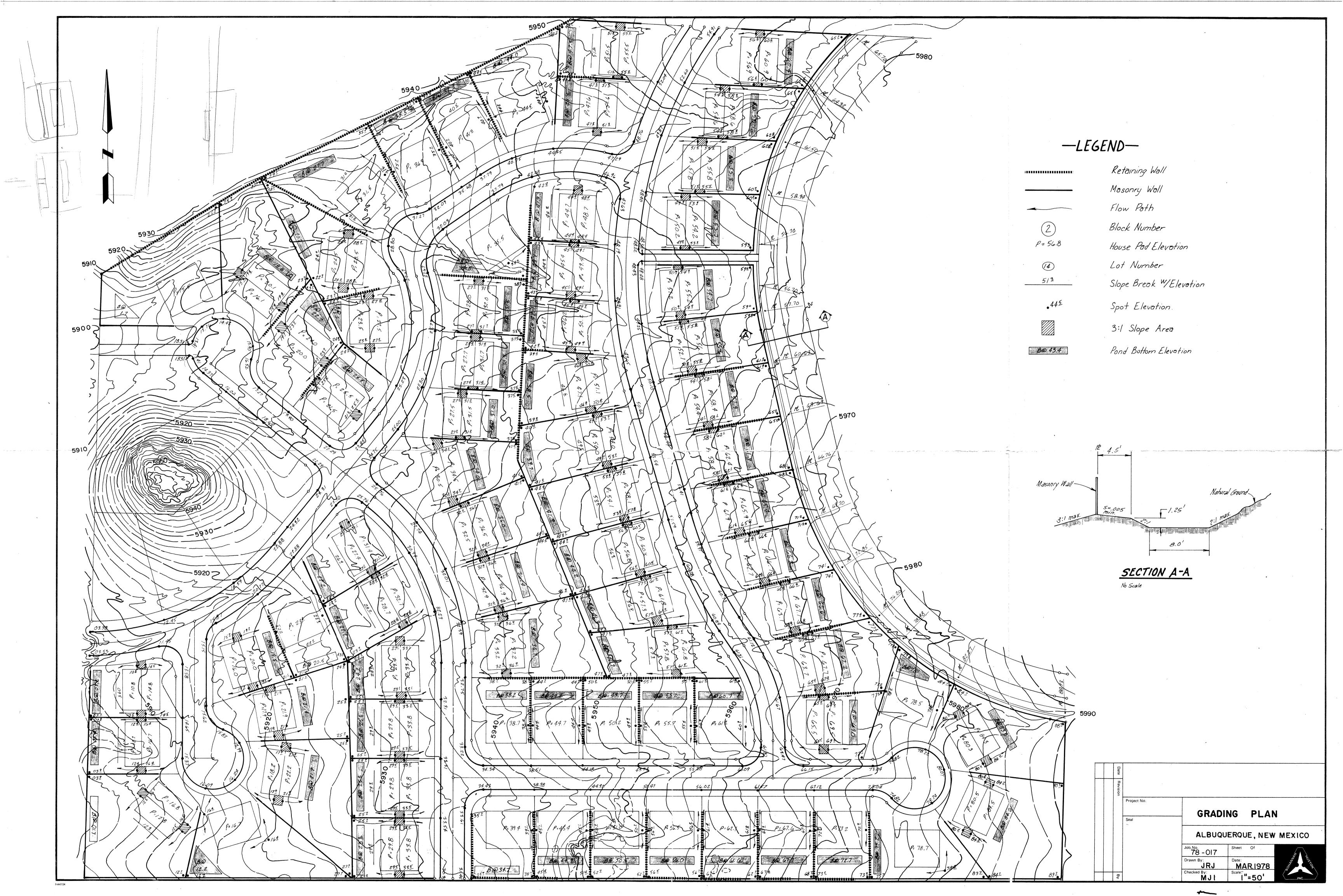
PROJECT	NAME	SHEET	OF
PROJECT	NO.	BY	DATE
SUBJECT		CH'D	DATE

HELDEN V.	3297.Ft?	
	Te-10 (minimum	
	T=5.4	
DASIN 2	namento com la compania de la compa	1) 1:1.4 22
	Te=10	1 7 = 10 hm/3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	7-3.4	T = 5.40
		a=0.83
	Q=2.9cA	Q = G.3GR
Basin 3	A - (63 x 3277 5F) = 5.	15 acres
	1 1 2 1 3 3 5 1 1 1 1 1 1 1	
	5-4.4%	
	and the state of t	3/0/3
	12 - 11 - 14	
	7:5,23	
	10-11-0	
	Q= 26.92 cf=	
		+29.7+11.0 + 0.41 +
		3.5 + 3.5 + 7.9 + 10.7 = 62.1

PROJECT NAME DASKALOS PROPERTY SHEET OF


PROJECT NO. 10-0/1 BY DATE 2/6/18


SUBJECT DEVELOPED RUNOFF CH'D DATE


SWALE ALONG SCENIC DRIVE	
To carry 15 of s	
Min. 8' battorn 2:1 Sidestopes	
Solve for depth by Mannings Formula	
Channel Slope 4.5% d= .38 V=4.5 fps = R=1.34 126 d= .73' V=22 Fr= .42	
depth 1.25' Ho allow .5' Free board	T:5' (XP)
DESILTING BASINI-SCENIC DEL TO' wide weir discharging 15 23 > H = 0.7' Silt Settling velocity 4"/min	
$Q_{a} = 10cPs Settling time 0.70' \times 12' \times = 2.1mm \text{ Setfling time } 33' \text{ in } Flow depth 1.5' Area SF/L=34.5 \text{ L=\frac{34.55F}{5}} \text{ \frac{5cF}{5}} \text{ \left(1265cc)}$	2.1 min -10.2
1 = 1 = 1 = 10 cf) (126 = 12) = 36.5 1	
DIE F	
10 CS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
2:1(Fyp)	
3 = 500 5 (TYP)	

PROJECT NO. 78-017 BY DATE

