

ZONE ATLAS

ZONE ATLAS

DRAINAGE 2006 1						•)RA	JN	IA(GF	B	451	N MA	P															
DRAINAGE ZONE 1 PRECIPITATION 380 2.20	DRAINAGE AREA	12 AF	REA =	1.77	ac.		I					T						IAREA	= 1	38 80			T 1		T		·	—т			т	<u> </u>
PRECIPITATION 390 = 2.20 in											_	 	+-+-		-			1		-00 00			\vdash	**************************************	\vdash						 	+
PRECIPITATION. 300 = 2.20 in	DRAINAGE ZONE	1				***************************************						1	1		1	DRAINAGE ZON	JE 1			_					 		_					
1440 = 2.86 in 1409 = 2.86 in 1409 = 2.86 in 1409 = 3.87 in 1409	PRECIPITATION:	3	360 =	2.20	in.							<u> </u>	11					360	= 2	.20 in			$\vdash \vdash$		1						 	-
1009/= 3.67 in															7			1440						·····	 		_		-		 	+
TREATMENT B		110	day =	3.67	in.													10day	= 3	.67 in					1				_		-	_
TREATMENT B	<u> </u>			NO.			<u> </u>									:															T	1
TREATMENT B 0.097 in.		UE33	PREC	IPHAII	ON:	PEAK	DISCH	ARGE	:				4-4-	-	_		EXCE	SS PRE	CIPIT	1OITA	V:	PEAK	DIS	CHAP	₹GE							
TREATMENT B 0.097 in.	TREATMENT A	+	44 in			1 20	cfe/		-		-		+-		-			0.11														
TREATMENT D 1.99 in.						~~~					-		+-+	•						_												
REATMENT D											+		++	_	more to																	
EXSTING EXCESS PRECIPITATION. Weighted E = 1 (0.44 xt 1.12 xt 0.05 xt 0.00 xt	TREATMENT D										+	<u> </u>	++																			
AGEA AREA 1121ec. 0.54 de											+		+++		1 }	TREATHERT D		1.97	11.		-	4.31		CISTAC	:. 						ļ	
TREATMENT A 1.1.2 e. 0.64 e. 0.00 e.	EXISTING CONDITI				PROPO:	SED CO	NOTTON	1 S:					++		7	EMSTING CONF	AOITK	IS.	_		PROPO	SEDICO	NICIT	TIONS								-
TREATMENT B	TOFATMENT																						14011	IONS	-						 	
TREATMENT D 0.6c.								\Box								TREATMENT A			3C.			c.	\vdash								 	-
TREATMENT D				I												TREATMENT B										 	_			\dashv	 	+
EXSTING EXCESS PRECIPITATION. Weighted E = (1 0.44 xt 1.12)+(0.67 xt 0.00)+(0.99 xt 0.00)+(1.97 xt 0.65 y 1.77 ac. EXSTING PEAK DISCHARGE. Q100 = (1.29 xt 1.12)+(2.03 xt 0.00)+(2.87 xt 0.00)+(1.97 xt 0.85 z 1.77 ac. EXSTING PEAK DISCHARGE. Q100 = (1.29 xt 1.12)+(2.03 xt 0.00)+(2.87 xt 0.00)+(1.97 xt 1.13 z 1.77 ac. PROPOSED EXCESS PRECIPITATION. Weighted E = (1 0.44 xt 0.84 xt 0.84 xt 0.80 xt 0.87 xt 0.87 xt 0.87 xt 0.87 xt 0.80		++						+					$\sqcup \sqcup$		4 [TREATMENT C		0	3C.				_						-	+	 	+
Weighted E = (0.44 xt 1.12 +t 0.67 xt 0.00 +t 0.99 xt 0.00 +t 1.97 xt 0.85 x 1.77 ac. 1.00 xt 1.77 xt 1.2 =t 0.44 xt 0.21 +t 0.87 xt 0.80 +t 0.99 xt 0.00 +t 1.97 xt 0.85 x 1.77 ac. EXSTING PEAK DISCHARGE: O100 = (1.29 xt 0.12 +t 0.87 xt 0.00 +t 0.99 xt 0.00 +t 4.37 xt 0.85 = 4.29 cfs PROPOSED EXCESS PRECIPITATION: Weighted E = (0.44 xt 0.21 +t 0.87 xt 0.00 +t 4.37 xt 0.85 = 4.29 cfs PROPOSED EXCESS PRECIPITATION: Weighted E = (0.44 xt 0.21 +t 0.87 xt 0.00 +t 4.37 xt 0.87 xt 0.37 = 3.51 cfs PROPOSED EXCESS PRECIPITATION: Weighted E = (0.44 xt 0.21 +t 0.87 xt 0.00 +t 4.37 xt 0.37 = 3.51 cfs PROPOSED EXCESS PRECIPITATION: Weighted E = (0.44 xt 0.21 +t 0.87 xt 0.00 +t 4.37 xt 0.37 = 3.51 cfs PROPOSED EXCESS PRECIPITATION: Weighted E = (0.44 xt 0.21 +t 0.87 xt 0.00 +t 4.37 xt 0.37 = 3.51 cfs PROPOSED EXCESS PRECIPITATION: Weighted E = (0.44 xt 0.21 +t 0.87 xt 0.00 +t 4.37 xt 0.37 = 3.51 cfs PROPOSED EXCESS PRECIPITATION: Weighted E = (0.44 xt 0.21 +t 0.87 xt 0.00 +t 4.37 xt 0.37 = 3.51 cfs PROPOSED EXCESS PRECIPITATION: Weighted E = (0.44 xt 0.21 +t 0.87 xt 0.00 +t 4.37 xt 0.37 = 3.51 cfs PROPOSED EXCESS PRECIPITATION: Weighted E = (0.44 xt 0.21 +t 0.89 xt 0.80 +t 2.87 xt 0.00 +t 4.37 xt 0.89 xt 0.80 +t 0.89 xt	TICE THE PARTY OF	- "	.03 ac	i - 1	1.13 2			-			+		++		- [TREATMENT D		0.37	3C.				$\neg \uparrow$	·····			_			\dashv	 	+
Weighted E = (0.44 xt 1.12 +t 0.67 xt 0.00 +t 0.99 xt 0.00 +t 1.97 xt 0.85 x 1.77 ac. 1.00 xt 1.77 xt 1.2 =t 0.44 xt 0.21 +t 0.87 xt 0.80 +t 0.99 xt 0.00 +t 1.97 xt 0.85 x 1.77 ac. EXSTING PEAK DISCHARGE: O100 = (1.29 xt 0.12 +t 0.87 xt 0.00 +t 0.99 xt 0.00 +t 4.37 xt 0.85 = 4.29 cfs PROPOSED EXCESS PRECIPITATION: Weighted E = (0.44 xt 0.21 +t 0.87 xt 0.00 +t 4.37 xt 0.85 = 4.29 cfs PROPOSED EXCESS PRECIPITATION: Weighted E = (0.44 xt 0.21 +t 0.87 xt 0.00 +t 4.37 xt 0.87 xt 0.37 = 3.51 cfs PROPOSED EXCESS PRECIPITATION: Weighted E = (0.44 xt 0.21 +t 0.87 xt 0.00 +t 4.37 xt 0.37 = 3.51 cfs PROPOSED EXCESS PRECIPITATION: Weighted E = (0.44 xt 0.21 +t 0.87 xt 0.00 +t 4.37 xt 0.37 = 3.51 cfs PROPOSED EXCESS PRECIPITATION: Weighted E = (0.44 xt 0.21 +t 0.87 xt 0.00 +t 4.37 xt 0.37 = 3.51 cfs PROPOSED EXCESS PRECIPITATION: Weighted E = (0.44 xt 0.21 +t 0.87 xt 0.00 +t 4.37 xt 0.37 = 3.51 cfs PROPOSED EXCESS PRECIPITATION: Weighted E = (0.44 xt 0.21 +t 0.87 xt 0.00 +t 4.37 xt 0.37 = 3.51 cfs PROPOSED EXCESS PRECIPITATION: Weighted E = (0.44 xt 0.21 +t 0.87 xt 0.00 +t 4.37 xt 0.37 = 3.51 cfs PROPOSED EXCESS PRECIPITATION: Weighted E = (0.44 xt 0.21 +t 0.89 xt 0.80 +t 2.87 xt 0.00 +t 4.37 xt 0.89 xt 0.80 +t 0.89 xt	EXISTING EXCESS	PREC	PITA	TION:				+			+		++		- [104 P														_		1
## STING PEAK DISCHARGE: O100 = (1.29) x(1.12) + (2.03) x(0.00) + (2.87) x(0.00) + (1.97) x(0.00)								+++			+		++		-	EXISTING EXCE	SS P	REAPIT	<u>10ITA</u>	<u>1:</u>												1
## Weighted E = (1.0.44 xt 0.21)+(1.03 xt 0.00)+(1.97 xt 0.37 xt 0.39 xt 0.00)+(1.97 xt 0.37 xt 0.37 xt 0.39 xt 0.00 xt 0.39	Weighted E =	(0.	44)x(1.12)+(0.67)x	(0.00)+(0.9	9 x(0.00	+(1.9	7 000	0.65	V	177 ac	┨╶├																	I
EXISTING PEAK DISCHARGE. Q100 = (1.29 x(1.12) + (2.03 x(0.00) + (2.87 x(0.00) + (4.37 x(0.65) = 4.29 cfs PROPOSED EXCESS PRECIPITATION. Weighted E = (1.044 x(0.64) + (0.64) + (0.67 x(0.00) + (0.99 x(0.00) + (1.39 x(0.00) + (1.39 x(0.21) + (0.87 x(0.00) + (1.37 x(0.89 x(0.89 x(0.80) + (2.87 x(0.00) + (1.38 x(0.89 x(0 in.						1	/		1		+	1177 000.	- -				x(0.	21)+	(0.67)x	(0.80)+(0.99)×(0.00)	+(1.97 þ	x(0 .	37 y	1.3	8 ac
EXISTING PEAK DISCHARGE: Q100 = (1.29)x(1.12)+(2.03)x(0.00)+(2.87)x(0.00)+(4.37)x(0.65)=4.29 cfs PROPOSED EXCESS PRECPITATION: Weighted E = (1.044)x(0.04)+(0.07)x(0.00)+(0.09)x(0.00)+(1.97)x(1.13)y 1.77 ac. = 1.42 in. V100.360 = (1.42)x(1.77)y 12.0 = 0.208975 ac.ft = 9103 cf V100.1440 = (1.021)+(1.13)x(2.66 - 2.20)y 12 = 0.25292 ac.ft = 10990 cf V100.10day = (1.021)+(1.13)x(3.67 - 2.20)y 12 = 0.347400 ac.ft = 15133 cf PROPOSED PEAK DISCHARGE: Q100 = (1.129)x(0.01)+(0.067)x(0.028)+(0.09)x(0.00)+(1.97)x(0.08)y 1.38 ac. V100.1440 = (1.021)+(0.07)x(0.08)x(0.00)+(0.08)x(0.00)+(0.08)x(0.08)y 1.38 ac. V100.1440 = (1.021)+(0.07)x(0.08)x(0.08)x(0.08)y 1.38 ac. V100.1440 = (1.021)+(0.07)x(0.08)x(0.08)x(0.08)y 1.38 ac. V100.1440 = (1.01)+(0.08)x(0.08)x(0.08)x(0.08)y 1.38 ac. V100.1440 = (1.01)+(0.08)x(0.08)x(0.08)x(0.08)y 1.38 ac. V100.1440 = (1.01)+(0.08)x(0.08)x(0.08)x(0.08)x 1.38 ac. V100.1440 = (1.01)+(0.08)x(0.08)x(0.08)x(0.08)x 1.38 ac. V100.1440 = (1.01)+(0.08)x(0.08)x(0.08)x 1.38 ac. V100.1440 = (1.01)+(0.08)x(0.08)x(0.08)x 1.38 ac. V100.1440 = (1.01)+(0.08)x(0.08)x(0.08)x 1.38 ac. V100.1440 = (1.01)+(0.08)x(0.08)x 1.38 ac. V100.1	V100-360 =	(1.	00)x(1.77)/ 12 =	0.1477	75 ac-ft]=	64	37 cf					1		0.98			2011	1.5	2 4 4 2										
Q100 =		Щ													┪ ┝	V 100-300 =		0.98	X(1.	38 V	12 =	0.1131	08 8	ac-ft	=	<u>49</u>	27 cf					
Q100 = (1.29 xt 1.12 xt 2.03 xt 0.00 xt 2.87 xt 0.00 xt 4.37 xt 0.65 xt 2.90 xt 0.90 xt 0.65 xt 2.90 xt 0.65 xt 2.90 xt 0.90 xt 0.9	EXISTING PEAK DE	SCHAF	RGE:											·	1	EXISTING DEAK	DISC	HADGE			-		_								ļ	
PROPOSED EXCESS PRECIPITATION: Weighted E = (1 0.44 x(0.64 x(0.64 x(0.64 x(0.69 x(0.00 x	0400		20 2.	4 40											<u>د</u> ا	-NOTING FLAK	DISC	TARGE	•			-			\vdash						ļ	
PROPOSED EXCESS PRECIPITATION: Weighted E = (0.44 x(0.64)+(0.67 x(0.00)+(0.99 x(0.00)+(1.97 x(1.13 x(0.369)+(0.21)+(0.17 x(0.21)+(0.18 x(0.21)+(0.69 x(0.28)+(0.99 x(0.00)+(1.97 x(0.89 x(0.369)+(0.99 x(0.00)+(0.99 x(0.	Q100 =		29)X(1.12)+(2.03)x	0.00)+(2.8	7)x(0.00)	+(4.37	7)x(0.65)=	4,29 cfs		Q100 =		1 29 1	r(0	21 1+0	203 %	/ 0.80	14/	2 07	W/	0.00	.,	1 27 %	-/ 0		2 5	1 -4-
Weighted E = (PROPOSED EXCES	30 DD	ECIDI	TATION		-		+							4 -		 `	1.20/	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	21//	2.00 /	(0.00	74	2.07	<u> </u>	0.001)	+11 -	4.31 p	(1 0.3	2//=	3.5	IICIS
Weighted E = (0.44 x(0.64 +(0.67 x(0.00 +(0.99 x(0.00 +(1.97 x(1.13 y 1.77 ac. 1.42 in.	TOPOLOGICA			AIION	-	1		+-+			+				F	PROPOSED EXC	ESS	PRECI	TATI	ON:		1			\vdash				-	\dashv		+-
Second	Weighted E =	10.	44)x(0.64	+(0.67 \x	0.00	1+/ 0.9	alw/	0.003	+/ 107	7 20/	112	V	1 77 00						Ť		1	_						-	-		+
V100-360 = ((1.42)x(1.77)/ 12.0 = 0.208975 ac-ft = 9103 cf				1	0.01	0.00	0.00	7~+	0.00	1.37	M(1.15	75	1,11 ac.	1	Weighted E =	(0.44)	((0.)	21)+(0.67 x	0.28)+(0.99)x(0.001	+('	.97 b	(1 01	39 V	1.38	3 80
V100-10day = ((0.21)+(1.13)x(2.66 - 2.20)/ 12 = 0.252292 ac-ft = 10990 cf V100-10day = ((0.21)+(1.13)x(3.67 - 2.20)/ 12 = 0.347400 ac-ft = 15133 cf V100-10day = ((0.17)+(0.89)x(2.66 - 2.20)/ 12 = 0.203558 ac-ft = 8867 cf V100-10day = ((0.17)+(0.89)x(3.67 - 2.20)/ 12 = 0.278467 ac-ft = 12130 cf V100-10day = ((0.17)+(0.89)x(3.67 - 2.20)/ 12 = 0.278467 ac-ft = 12130 cf V100-10day = ((0.17)+(0.89)x(3.67 - 2.20)/ 12 = 0.278467 ac-ft = 12130 cf V100-10day = ((0.17)+(0.89)x(3.67 - 2.20)/ 12 = 0.278467 ac-ft = 12130 cf			42)x(1.77)	/ 12.0 =	0.2089	75 ac-ft	士士	910	33 cf	+					= '	1.47 ii	n.							-	,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	7		1
V100-1440 = ((0.21)+(1.13)x(2.66 - 2.20)y 12 = 0.252292 ac-ft = 10990 cf V100-10day = ((0.21)+(1.13)x(3.67 - 2.20)y 12 = 0.347400 ac-ft = 15133 cf PROPOSED PEAK DISCHARGE: Q100 = ((1.29)x(0.64)+(2.03)x(0.00)+(2.87)x(0.00)+(4.37)x(1.13)= 5.76 cfs								1			+++				1 _	V100-360 =	(1.47)	((1.)	38)/	12.0 =	0.1694	42 a	ic-ft	=	73	31 cf		1	1		1
V100-10day = (0.21)+(1.13)x(3.67 - 2.20) 12 = 0.347400 ac-ft = 15133 cf V100-10day = (0.17)+(0.89)x(2.66 - 2.20) 12 = 0.203558 ac-ft = 8867 cf V100-10day = (0.17)+(0.89)x(3.67 - 2.20) 12 = 0.278467 ac-ft = 12130 cf V100-10day = (0.17)+(0.89)x(3.67 - 2.20) 12 = 0.278467 ac-ft = 12130 cf V100-10day = (0.17)+(0.89)x(3.67 - 2.20) 12 = 0.278467 ac-ft = 12130 cf V100-10day = (0.17)+(0.89)x(3.67 - 2.20) 12 = 0.278467 ac-ft = 12130 cf V100-10day = (0.17)+(0.89)x(3.67 - 2.20) 12 = 0.278467 ac-ft = 12130 cf V100-10day = (0.17)+(0.89)x(3.67 - 2.20) 12 = 0.278467 ac-ft = 12130 cf V100-10day = (0.17)+(0.89)x(3.67 - 2.20) 12 = 0.278467 ac-ft = 12130 cf V100-10day = (0.17)+(0.89)x(3.67 - 2.20) 12 = 0.278467 ac-ft = 12130 cf V100-10day = (0.17)+(0.89)x(3.67 - 2.20) 12 = 0.278467 ac-ft = 12130 cf V100-10day = (0.17)+(0.89)x(3.67 - 2.20) 12 = 0.278467 ac-ft = 12130 cf V100-10day = (0.17)+(0.89)x(3.67 - 2.20) 12 = 0.278467 ac-ft = 12130 cf V100-10day = (0.17)+(0.89)x(3.67 - 2.20) 12 = 0.278467 ac-ft = 12130 cf V100-10day = (0.17)+(0.89)x(3.67 - 2.20) 12 = 0.278467 ac-ft = 12130 cf V100-10day = (0.17)+(0.89)x(3.67 - 2.20) 12 = 0.278467 ac-ft = 12130 cf V100-10day = (0.17)+(0.89)x(0.64)+(0.89)x(0.64)+(0.89)x(V100-1440 =	(0.:	21)+(1.13)	x(2.66 -	2.20	y 12	1= 1	0.25229	32 ac-ft	 =	1099	90 cf		1															1		1
V100-10day = ((0.17)+(0.89)x(3.67 - 2.20)/ 12 = 0.278467 ac-ft = 12130 cf PROPOSED PEAK DISCHARGE: Q100 = ((1.29)x(0.64)+(2.03)x(0.00)+(2.87)x(0.00)+(4.37)x(1.13)= 5.76 cfs											11				1	V100-1440 =	(0.17 }	F(0.8	39)x(2.66 -	2.20)/ 1	2	=	0.2035	58 ac	-ft =		8867	cf	1
PROPOSED PEAK DISCHARGE: Q100 = ((1.29)x(0.64)+(2.03)x(0.00)+(2.87)x(0.00)+(4.37)x(1.13)= 5.76 cfs	V100-10day =	(O.:	21)+(1.13)	x(3.67 -	2.20	# 12	= /	0.34740)0 ac-ft	=	1513	33 cf		1 -	1400 40																
Q100 = (1.29)x(0.64)+(2.03)x(0.00)+(2.87)x(0.00)+(4.37)x(1.13)= 5.76 cfs	DDODOOED DE H	<u> </u>													1 -	V100-10day =	(0.17)	F(0.8	39)x(3.67 -	2.20)/ 1	2	=	0.27840	37 ac	-ft =	1	2130	cf	
Q100 = $ (1.29)x(0.64)+(2.03)x(0.00)+(2.87)x(0.00)+(4.37)x(1.13)=5.76$ cfs	PRUPUSED PEAK	<u> </u>	IARGE	=		 		4-4			$\perp I$,] -	פרט			<u>,</u>	_												
	0100 -	1/ 1/	20 344	0.64	./ 000	I		1	0.55							RUPUSED PE	K UN	SCHAR(<u> </u>	_												
$\frac{1}{1} \frac{1}{1} \frac{1}$	<u> </u>		ZA IX(0.04])	+(2.03)X(U.W)	+(2.87	1)x(U.00)+	·{ 4.37)x(1.13)=	5.76 cfs	-	0100 -	,	1 20 1	1 01	34 3. 6	2 02 1	1 0 00		7 7 7	h . f	0.00	٠,	07				4
																G100 -		1.29))	ι υ. Ζ	z 1 J+ ()	2.03)X	J U.28	+(2.8/)X(U.UU)·	+(4	.3/ X	3.0	9)=	4.73	cis

DRAINAGE AR	EA 15	AREA	\ <u>=</u>	1.24	ac	-	<u> </u>										I		I
DRAINAGE ZO	NIE 1		╂		ऻ		┼			ļ	 	ļ	-	ļ	-	ļ	1		1
PRECIPITATIO		360	-	2.20	lin-	 		+	┼	 	-	 	-		┼	 	+	-	+
TREOR HATTO		1440		2.66		-	+	-	╀	 	-	 	┼	-	┼	 	+-		+
		10day		3.67		 	+	 	╂	 	 	ļ	-	 	┼	 	-		+
	 	Troday	+	3.07	111.	-	 		┢	 	┼	 	┼		┼	ļ	+	-	+
	EXCE	SS PR	FC	DITAT	ON	<u> </u>	 	DEAL	尸	SCHA	205	<u></u>		 	-	ļ	+-		+
	- W.	T		1 1171		.	-	FLAN		I	106	i i	 	 	┼	 	+		+
TREATMENT A		0.44	in		1	 	-	1.29	┼	cfs/ac		 	┼	 	┼	 	╁		+
TREATMENT B		0.67			┼─		┼	2.03		cfs/ac		 	├-		├	 	+-		+
TREATMENT C		0.99			 	<u> </u>	-	2.87		cfs/ac		 	├	-	-		-		+
TREATMENT D	L	1.97	.1		╂─		+	4.37	╁	cfs/ac		 	-		├	 	+		+
			1		-		-	+.57	╂─	C1376C	i —	 	 	 	├─		1-	ļ	+
EXISTING CON	DITION	S	 		 	PROP	205	FD CO	ND	ITIONS	<u> </u>	 	╂	-	-	 	-		+
		AREA			 	AREA			ï	1	<u>, </u>	 	\vdash	 	┼─		+-		+
TREATMENT A		1.24		<u> </u>	 	l	ac.		\vdash		 	 	 		+		+-		+
TREATMENT B			ac			0.00			-		-	 	-	 	-	 	H		十
TREATMENT C			ac.		_	0.00			├-		-	 		 	┼─	 	+		+
TREATMENT D	I I		ac.			1.24		 	<u> </u>		 		-	 	-		H		+
		-			 -	1.2.	<u>uc.</u>	 	-		-	 	 	 	 		H		+
EXISTING EXCE	SS PF	RECIPI	TAT	ION:	-		-	 	-		 	 		 	 	 	H		+
		i i			-		 		 		-	 	 	 	-	 	H		╁
Weighted E =	1	0.44	ìx/	1.24	1+1	0.67	lx(0.00	1+1	0.99	hel	0.00	1+1	1.97	741	0.00	7/	1.24	ıta
=	0.44		7.1		<u>, , , , , , , , , , , , , , , , , , , </u>	0.01	1	0.00	 	0.00	MI	0.00	// \	1.01	<i>/</i> /\	0.00	1"	1.27	۲
V100-360 =	(0.44)x(1.24	y	12	=	0.0454	ነ <u>ሰ</u>	ac-ft	=	1	981	cf			H	-	+
			7-1		,		 	0.0.0	r i		 		-		-		H		十
EXISTING PEAR	(DISC	HARG	E:				-		 		-		 -	 		·	\vdash		+
									-		-			 			H		十
Q100 =	(1.29)x(1.24)+ (2.03	bcf	0.00	1+6	2.87)x(0.00	1+1	4 37	he!	0.00	h=	1.60	tc
			,,,,		,		יית	4.44	7.		L.	0.00	1, 1	1	W.	0.00	1/-	1.00	f
PROPOSEDE	CESS	PREC	PIT	ATION	<u> </u>				-		 								+
									-								H		十
Weighted E =	(0.44)x(0.00)+(0.67)x(0.00	1+(0.99	bel	0.00	1+(1.97	bef	1.24	W	1.24	ta
	1.97 ir		J [, ,	<u> </u>	14.5	0.00	2.1	0.00	m	0.00	11.	1.01	100	1.4-1	1	1 . 4-	干
V100-360 =	()x(1.24)/	12.0	=	0.2035	67	ac-ft	=	8	867	cf			H		+
					<i>y</i> .			2.200	-	IL							H		+
V100-1440 =	1	0.20)+(1.24)x(2.66	_	2.20)/	12	=	0.251	100	ac-fr	=	109	38	cf	t
		- : - 3	- 1		,,,,				,-	· 		0.201					~		t
V100-10day =	1	0.20)+(1.24	ìχί	3.67		2.20	V	12	=	0.355	467	ac-ft	=	154	84	cf	+
			- \	v . am 1	1	4.41			<i>/•</i>			0.000	, , ,	WO IL		107	$\check{\sqcap}$	~!	+
ROPOSED PE	AK DIS	SCHAF	₹GF	:													H		+
	Ť		Ī	-	 												\vdash		+
Q100 =	- (1.29	71.0	0.00	1.0	2.03	1 6	0.00		2.87	-	0.00		4.37		1.24	 	5.42	+

SITE

F.E.M.A.

STUDIO SOUTHWEST ARCHITECTS, INC.
2101 Mountain Rd. NW, Albuquerque, NM 87104
505.843.9639 fax 505.843.9683
Web Site: www.studioswarch.com
E-Mail: mail@studioswarch.com
2006, Studio Southwest Architects, Inc.
Splication or reproduction by any means without the express written

E-Mail: mail@studioswarch.com
2006, Studio Southwest Architects, Inc.

Suplication or reproduction by any means without the express written consent of Studio Southwest Architects, Inc. is a violation of Federal and international law. The information contained on this document is the intellectual property of Studio Southwest, Inc. and all rights thereto are Reserved. For exceptions, refer to the Owner-Architect Agreement.

CONSULTANTS

rchitect Enginee

CITY OF
ALBUQUERQUE
FIRE TRAINING
ACADEMY

ALBUQUERQUE FIRE DEPARTMENT
ALBUQUERQUE, NM

EXISTING CONDITIONS

THE EXISING SITE IS THE CITY OF ALBUQUERQUE FIRE TRAINING ACADEMY. SCANLON AND ASSOCIATES PREPARED THE DRAINAGE REPORT FOR THE INITIAL CONSTRUCTION OF THE COMPLEX. SITE DEVELOPMENT HAS VARIED SLIGHTLY FROM THIS REPORT, BUT DRIANGAGE BASINS AND LAND TREATMENT REMAIN IN COMPLIANCE WITH THE REPORT. THE REPORT DIVIDED THE SITE INTO FOUR BASINS: AREA 1, AREA 2, AREA 3 AND AREA 4. THE SITE DRAINS INTO TWO STORM WATER PONDS: POND 1 AND POND 2. POND 1 RECEIVES STORMWATER FROM AREA 1 AND AREA 2. POND 2 RECEIVES STORMWATER FROM BASIN 3, BASIN 4, AND POND 1.

C.L. WEISS ENGINEERING, INC. PREPARED THE DRAINAGE REPORT FOR THE WESTSIDE SATELLITE CENTER. THIS REPORT DIVIDES THE COMPLEX INTO 16 BASINS. THIS PROJECT DEVELOPS WITHIN BASINS 12, 13 AND 15 (SEE IMAGE BELOW). THE WESTSIDE SATELLITE CENTER IS DIVIDED INTO TWO BASINS. BASIN 12 IS 77,109 SF WITH THE FOLLOWING LAND TREATMENTS (A=48,858sf, B=0sf, C=0cf, D=28,251sf) BASIN 13 IS 60,130 SF WITH THE FOLLOWING LAND TREATMENTS (A=9,040sf, B=34,790sf, C=0sf, D=16,300sf). BASIN 15 53,910 SF WITH THE FOLLOWING LAND TREATMENTS (A=53,910sf, B=0sf, C=0sf, D=0sf).

BOTH BASINS 13 AND 15 DISCHARGE INTO POND 2 VIA CONCRETE RUNDOWNS.

PROPOSED CONDITIONS

THE PROPOSED IMPROVEMENTS, WHICH ARE PART OF THIS PROJECT AND ANALYZED BY THIS DRAINAGE REPORT, CONSIST OF THE FOLLOWING ADDITIONAL IMPERVIOUS IMPROVEMENTS:

BASIN 12 — INCREASE LAND TREATMENT D BY 20,920sf

BASIN 13 — INCREASE LAND TREATMENT D BY 22,600sf

BASIN 15 — INCREASE LAND TREATMENT D BY 53,910sf

THE NEW LAND TREATEMENTS ARE AS FOLLOWS:
BASIN 12 IS 77,109 SF

A=27,938sf B=0sf C=0sf D=49,171sf BASIN 13 IS 60,130 SF A=9,040sf B=12,190sf C=0sf D=38,900sf) BASIN 15 53,910 SF

C=0sf D=38,900sf) BASIN 15 53,910 SF A=0sf B=0sf C=0sf D=53,910sf

HYDROLOGY SUMMARY: BASIN 12 HAS AN INCREASE RUNOFF OF 1.47 CFS AND AN INCREASE RUNOFF VOLUME OF 0.06 AC-FT

BASIN 13 HAS AN INCREASE RUNOFF OF 1.22 CFS AND AN INCREASE RUNOFF VOLUME OF 0.06 AC-FT

BASIN 15 HAS AN INCREASE RUNOFF OF 4.18 CFS AND AN INCREASE RUNOFF VOLUME OF 0.16 AC-FT

THIS PROJECT GENERATES 0.28 AC-FT OF ADDED VOLUME REQUIRED IN POND 2. FROM THE PREVIOUS DRAINAGE REPORTS POND 2 CAN ACCOMODATE THIS ADDED STORAGE REQUIREMENT WITHOUT ADDITIONAL IMPROVEMENTS.

MARK DATE DESCRIPTION

ISSUE: CONSTRUCTION DOCUMENTS

PROJECT NO: 0512

CAD DWG FILE:

DRAWN BY: FSM

CHECKED BY: SAE

DATE: 12/19/06

DRAINAGE BASIN MAP

C-001

- 1. RETAINING WALLS ARE REQUIRED WHENEVER THE DIFFERENCE IN SURFACE ELEVATIONS EXCEED 1.50 FEET (2 EXPOSED CMU COURSES)
- 2. ALL MASONRY UNITS SHALL BE TYPE 1, GRADE N WITH A COMPRESSIVE STRENGTH OF 1900 PSI (NET AREA). F'M=1500 PSI
- 3. MORTAR SHALL BE TYPE S.
- 4. $GROUT F'_C = 2000 PSI$
- 5. CELLS CONTAINING REBAR SHALL BE GROUTED SOLID FROM THE BOTTOM TO THE TOP OF THE WALL IN ACCORDANCE WITH THE UNIFORM BUILDING CODE.
- 6. PROVIDE PILASTERS AT 12' O.C. MAXIMUM, OR IF NO PILASTERS ARE USED, PROVIDE EXPANSION JOINTS AT 20' O.C.
- 7. THE BACK OF WALLS BELOW GRADE SHALL BE WATERPROOFED PRIOR TO BACKFILLING.
- 8. ALL CELLS BELOW GRADE SHALL BE GROUTED SOLID.
- 9. LAP ALL REBAR 40 BAR DIAMETERS, UNLESS OTHERWISE NOTED.
- 10. ALL HORIZONTAL REINFORCING IN BOND BEAMS SHALL BE CONTINUOUS AROUND CORNERS OR HAVE CORNER BARS OF THE SAME SIZE AND A LAP OF 48 BAR DIAMETERS OR 24" MINIMUM. VERTICAL STEEL SHALL CONTINUE THROUGH BOND BEAMS.
- 11. PROVIDE STANDARD TRUSS TYPE JOINT REINFORCING AT 16" O.C. (ALTERNATE COURSES).
 USE PREFABRICATED CORNERS AND TEES AT ALL WALL CORNERS AND INTERSECTIONS
- 12. MIN. CONCRETE COMPRESSIVE STRENGTH SHALL BE 3000 PSI.
- 13. WHERE C.M.U. RETAINING WALLS ARE INSTALLED, WEEP HOLES SHALL
 BE PROVIDED IN THE PORTION OF THE WALL BELOW GRADE, TO RELIEVE POTENTIAL
 HYDROSTATIC PRESSURE. WEEP HOLES SHALL BE 1" DIA. PIPES @ 32" O.C.
 WITH 1 CU. FT. OF AGGREGATE WITH FILTER FABRIC BEHIND WALL.
 WEEPHOLES MAY BE PROVIDED BY ELIMINATING THE MORTAR BETWEEN EVERY OTHER JOINT
 OF THE SECOND COURSE OF BLOCK.
- 14. SUBGRADE UNDER FOOTING SHALL BE COMPACTED TO 95% ASTM D-1557, AND ALL BACKFILL SHALL BE COMPACTED TO 90% ASTM D-1557 IN NON-PAVED AREAS, AND 95% ASTM D-1557 IN PAVED AREAS.
- 15. REINFORCING STEEL SHALL COMFORM TO ASTM A-615, GRADE 60.
- 16. ALL RETAINING WALLS REPRESENTED ON THIS SHEET HAVE BEEN DESIGNED TO ACCEPT A 5' TO 6' PRIVACY WALL.
- 17. THE TOP COURSE OF RETAINING WALL SHOULD BE A 2" THICK SOLID MASONRY CAP UNLESS A PRIVACY WALL IS TO BE CONSTRUCTED ON TOP.

24" SIDEWALK CULVERT

N.T.S.

B

505.843.9639 fax 505.843.9683

Web Site: www.studioswarch.com

E-Mail: mail@studioswarch.com

2006, Studio Southwest Architects, Inc.

Splication or reproduction by any means without the express written consent of Studio Southwest Architects, Inc. is a violation of Federal and international law. The information contained on this document is the intellectual property of Studio Southwest, Inc. and all rights thereto are Reserved. For exceptions, refer to the Owner-Architect Agreement.

CONSULTANTS

Architect

CITY OF ALBUQUERQUE FIRE TRAINING ACADEMY

ALBUQUERQUE FIRE DEPARTMENT

C ALBUQUERQUE, NM

MARK DATE DESCRIPTION

ISSUE: DESIGN DEVELOPMENT

PROJECT NO: 0512

CAD DWG FILE:
DRAWN BY: FSM
CHECKED BY: SAE
DATE: 12/19/06

SHEET TITLE

RETAINING WALL
AND PAVING
DETAILS

C-004

GRADING & DRAINAGE PLAN

THE TRUCK GARAGE PROJECT IS TO BE CONSTRUCTED WITHIN THE ALBUQUERQUE FIRE ACADEMY GOUNDS. THE PROJECT IS LOCATED IN THE WEST-CENTRAL PORTION OF BERNALILLO COUNTY IMMEDIATELY SOUTH OF INTERSTATE 40 AND CENTRAL AVE. THE GRADING AND DRAINAGE SCHEME HEREON IS IN COMPLIANCE WITH THE BERNALILLO COUNTY FLOOD HAZARD ORDINANCE, NO.88-46, AND THE CITY STORM DRAINAGE ORDINANCE. THE PLAN IS REQUIRED IN ORDER TO FACILITATE THE OWNER'S REQUEST FOR BUILDING PERMIT. THE PLAN SHOWS:

1. EXISTING CONTOURS, AND SPOT ELEVATIONS AND EXISTING DRAINAGE PATTERNS AND IMPROVEMENTS (EXISTING PAVED STREETS AND BUILDINGS). 2. PROPOSED IMPROVEMENTS: 2500 S.F. PRE-ENGINEERED GARAGE BUILDING, CONCRETE FLATWORK AND DRIVEWAY, REROUTED DRAINAGE CONVEYANCE USING UNDER GROUND STORM SEWER PIPE, NEW GRADE ELEVATIONS,

3. CONTINUITY BETWEEN EXISTING AND PROPOSED ELEVATIONS. 4. QUANTIFICATION OF DEVELOPED FLOWS GENERATED BY THE IMPROVEMENTS WHICH CONTRIBUTE TO THE EXISTING

PRESENTLY THE SITE IS A VACANT HARD PAN GRAVEL/DIRT SURFACE. THE PROPERTY IS BOUNDED BY DEVELOPED PROPERTY. THE SITE TERRAIN SLOPES GENERALLY TO THE SOUTHEAST AT APPROXIMATELY 2%.

AN EXISTING 8" DEEP CONCRETE RUNDOWN TRAVERSES THE SITE AND WILL BE PARTIALLY REMOVED FOR CONSTRUCTION OF THE BUILDING GARAGE. 11 CFS IMPACTS THE SOUTHEASTERN CORNER ACCORDING TO THE MASTER DRAINAGE PLAN FOR THE FIRE ACADEMY, DATED JUNE 1990, PREPARED BY DENNIS BRAND. THE SITE IS NOT ENCUMBERED BY A FEDERAL DESIGNATED FLOOD PLAIN.

THE RUNDOWN FLOWS WILL BE RE-ROUTED VIA AN UNDERGROUND INLET/PIPE SYSTEM TO THE EXISTING RETENTION POND. HISTORICAL OUTFALL LOCATIONS WILL REMAIN UNCHANGED WITH DEVELOPMENT.

<u>CALCULATIONS</u>

DESIGN CRITERIA

HYDROLOGIC METHODS PER SECTION 22.2, HYDROLOGY OF THE DEVELOPMENT PROCESS MANUAL (DPM) REVISED JANUARY 1993 FOR CITY OF ALBUQUERQUE, ADOPTED BY THE COUNTY OF BERNALILLO DISCHARGE RATE: Q=QPEAK x AREA.."Peak Discharge Rates For Small Watersheds VOLUMETRIC DISCHARGE: VOLUME = EWeighted x AREA

P100 = 2.20 Inches, Zone 1 Time of Concentration, TC = 10 Minutes

DESIGN STORM: 100-YEAR/6-HOUR, 10-YEAR/6-HOUR [] = 10 YEAR VALUES

EXISTING CONDITIONS -STUDY AREA

AREA = 0.16 ACRES, WHERE EXCESS PRECIP. 'C' =0.99 In. [0.44] PEAK DISCHARGE, Q100 = 0.5 CFS [0.2], WHERE UNIT PEAK DISCHARGE 'C' = 2.87 CFS/AC. [1.49]
THEREFORE: VOLUME 100 = 575 CF [256]

DEVELOPED CONDITIONS

DETERMINE LAND TREATMENTS, PEAK DISCHARGE AND VOLUMETRIC DISCHARGE FOR STUDY AREA

	AREA	LAND TREATM'T	Q _{Peak}	E
UNDEVELOPED		A	1.29[0.24]	0.49[0.08]
LANDSCAPING/POND		В	2.03[0.76]	0.67[0.22]
GRAVEL & COMPACTED SOIL	0.08 Ac.(50%)	C	2.87[1.49]	0.99[0.44]
ROOF - PAVEMENT	<u>0.08 Ac.(5</u> 0%)	D	4.40[2.90]	1.97[1.24]
	0.16 Ac.			
THEREFORE: Eug = 1 40 In	[0.8]			

HEREFURE: EWeighted = 1.49 In.[0.8] &

Q100 = 0.58 CFS **VOLUME 100 = 865 CF** Q10 = 0.33 CFS**VOLUME 10 = 465 CF**

DEVELOPED UNIT DISCHARGE = 3.6 CFS/ACRE

UP / DOWNSTREAM ANALYSIS

MINIMAL IMPACT DOWNSTREAM DUE TO MINIMAL INCREASE DUE TO DEVELOPMENT (0.08 CFS) AND RETENTION POND IMMEDIATELY EAST OF SITE UPSTREAM FLOWS WILL BE COLLECTED IN STORM SEWER/INLET SYSTEM (10 CFS) AND CONVEYED TO RETENTION POND. A PORTION OF THE EXISTING 8" DEEP X 5' CONCRETE RUNDOWN CHANNEL WILL BE REMOVED TO ACCOMODATE BUILDING CONSTRUCTION.

Manning Pipe Calculator

COMPLEXAL GO

3 4 1 1 P 1 701

DETERMINED.

Given Input D	ata:	
	•••••	Circular
Solving	for	Flowrate
Diamete	r	18.0000 in
	•••••	17.0000 in
	••••••	0.0100 ft/ft
	's n	
Computed Res	sults:	
		11.2962 cfs
	•••••	
	Area	
Wetted i	Perimeter	47.9828
Perimete	er	56.5487 in

Hydraulie	c Radius	5.1874 in
Percent	Full	. 94.4444 %
Full flow	Flowrate	10.5043 ci

Full flow velocity 5.9442 fps

NOTES

- 1. AN EXCAVATION/ACCESS PERMIT IS REQUIRED BEFORE BEGINNING ANY WORK WITHIN CITY R.O.W. AN APPROVED COPY OF THIS PLAN MUST BE SUBMITTED AT THE TIME OF APPLICATION.
- 2. ALL WORK ON THIS PROJECT SHALL BE PERFORMED IN ACCORDANCE WITH APPLICABLE FEDERAL, STATE AND LOCAL LAWS, RULES, AND REGULATIONS CONCERNING CONSTRUCTION SAFETY AND HEALTH.
- 3. CONTRACTOR SHALL ENSURE THAT NO SITE SOILS/SEDIMENT OR SILT ENTER THE RIGHT-OF-WAYS DURING CONSTRUCTION.
- 4. REVEGETATE ALL AREAS DISTURBED DUE TO CONSTRUCTION PER CITY OF ALBUQ. SPEC. 1011, NATIVE SEED MIX.
- 5. MAXIMUM SITE GRADING WITHOUT EROSION PROTECTION: 3 HORIZONTAL TO 1 VERTICAL, 3:1.

VICINITY MAP

A DELINIAR DESCRIPTION AND RESIDENCE OF THE PROPERTY OF THE PR

I, PHILIP W. CLARK, A PROFESSIONAL ENGINEER LICENSED IN ACCORDANCE WITH THE LAWS OF THE STATE OF NEW MEXICO, DO HEREBY CERTIFY THAT I HAVE VISITED THE SITE SHOWN HEREON, AND THAT THE CONTOURS

SHOWN REPRESENT THE EXISTING GROUND CONDITIONS, AND DO FURTHER CERTIFY THAT NO EARTHWORK OF ANY

KIND, NOR ANY DISTURBANCE OF THE EXISTING GROUND HAS OCCURRED ON THIS SITE SINCE THE CONTOURS WERE

LEGEND

EXIST. SPOT ELEVATION EXIST. CONTOUR NEW SPOT ELEVATION AS. BUILT NEW CONTOUR NEW SWALE DRAINAGE DIRECTION, EXISTING EDGE OF ASPHALT TOP OF WALL (RETAINING PORTION)

NEW STRUCTURE

NEW CONCRETE PAVING

FLOWLINE

REBAR AND CAP, EXISTING

EROSION CONTROL PAD, 8" BURY 6" AVG. DIA. ROCK

RUNDOWN SECTION

N.T.S. CLASSIFICATION AND ODADATION

<u>CLASSIFIC</u>	<u>ATION AND GRA</u>	ADATION OF	RIPRAF
RIPRAP DESIGNATION	% SMALLER THAN GIVEN SIZE BY WEIGHT	INTERMEDIATE ROCK DIMENSION(IN.)	PARTICA
TYPE L	70–100 50–70 35–50 2–10	12 9 6 2	9

PROJECT DATA

LEGAL DESCRIPTION

TR A, PLAT OF WESTSIDE SATELLITE CENTER 28.8182 ACRES. CITY OF ALBUQUERQUE BERNALILLO COUNTY, NEW MEXICO

PROJECT BENCHMARK

ONLY TO VERIFY SUBSTANTIAL COMPLIANCE OF THE GRADING AND DRAINAGE ASPECTS OF THIS

PROJECT. THOSE RELYING ON THIS RECORD DOCUMENT ARE ADVISED TO OBTAIN INDEPENDENT

VERIFICATION OF ITS ACCURACY BEFORE USING IT FOR ANY OTHER PURPOSE.

Philip W. Clark, NMPE 10265

TOP OF CURB AT THE PROPERTY NE RETURN, SEE PLAN MEAN SEA LEVEL ELEVATION = 5330.00, 1929 DATUM.

TOPOGRAPHIC DESIGN SURVEY

COMPILED BY CLARK CONSULTING ENGINEERS FROM AS-BUILT INFORMATION PREPARED BY CHAMBER, CAMPBELL & PARTNERS, DATED NOVEMBER 1990, NGVD 29 (FIELD CONFIRMED 5/08)

