Neighborhood Impact Assessment (NIA) Mark Armijo Academy

Draft Report

October 2024

Prepared for: Archis Architects

Prepared By:

EXECUTIVE SUMMARY

This report documents a Neighborhood Impact Assessment (NIA) for a Mark Armijo Academy on Gonzales Road near Coors Boulevard in southwest Albuquerque, New Mexico. Lee Engineering has completed this report for Archis Architects. All analyses and items contained herein conform to scoping requirements outlined in a scoping meeting held on April 15th, 2024, with Archis Architects, the City of Albuquerque (CABQ), and the New Mexico Department of Transportation (NMDOT).

BACKGROUND

The proposed development is an expansion of a currently existing charter school, Mark Armijo Academy, adding another building to accommodate an additional 180 students. The development expects to generate 74 ingress and 45 egress trips during the AM peak hour and 43 ingress and 68 egress trips during the PM peak hour. The number of vehicle trips generated by the proposed development was based on the trip generation rates and equations from the Trip Generation Manual, 11th Edition, by the Institute of Transportation Engineers using (ITE) 534 – Private High School.

The proposed development includes an additional site access driveway on Gonzales Road, west of the existing access driveways for Mark Armijo Academy. The development team anticipates completing construction in one phase in 2026. **Figure 1** shows a vicinity map of the proposed development.

Turning movement counts were collected on May 2nd, 2024, for the following study intersections:

- Central Avenue & Coors Boulevard
- Gonzales Road & Coors Boulevard
- Bataan Drive & Gonzales Road
- Bridge Boulevard & Coors Boulevard

Study intersections include:

- 1) Central Avenue & Coors Boulevard
- 2) Gonzales Road & Coors Boulevard
- 3) Site Access & Gonzales Road
- 4) Bataan Drive & Gonzales Road
- 5) Bridge Boulevard & Coors Boulevard

The Existing 2024 scenario uses these volumes unaltered for the Level of Service (LOS) and Queueing analysis. Site trips for the development are from ITE 534 – Private High School, Peak Hour Generator. Scenarios for Build-Out 2026 Total, Horizon Year 2026 Total, and Horizon Year 2036 Mitigated use the proposed development-generated trip volumes.

Analysis scenarios are:

- Existing 2024 Analyzes current traffic volumes and intersections.
- Build-Out Year 2026 Background Analyzes Existing 2024 traffic volumes grown by applying a growth factor developed by the Mid-Region Council of Governments (MRCOG) Metropolitan Transportation Plan (MTP) CUBE/2 Regional Model to estimate 2026 traffic volumes at existing intersections.
- Build-Out Year 2026 Total Analyzes the sum of site-generated trips and Build-Out Year 2026 Background volumes at existing intersections and the proposed development access driveway.
- Horizon Year 2036 Total Analyzes the sum of site-generated trips and Horizon Year 2036 Background volumes at existing intersections and the proposed development access driveway.

SUMMARY OF TRAFFIC ANALYSIS AND RECOMMENDATIONS

Traffic operations for Gonzales Road and Coors Boulevard are summarized as follows:

- WBL and WBR operate at LOS F during the AM peak hour under the Horizon Year 2036 Total scenario.
- All other movements operate at acceptable LOS levels and have adequate storage to accommodate the 95th percentile queue lengths under all scenarios.

Traffic operations for Central Avenue and Coors Boulevard are summarized as follows:

- NBL, SBL, EBL, and WBL operate at LOS E and LOS F during the AM and PM peak hours for the Existing 2024, Build-Out Year 2026 Background, Build-Out Year 2026 Total, and Horizon Year 2036 Total scenarios.
 - Queue storage is anticipated to be exceeded for the EBL movement during the AM and PM peak hours for the Existing 2024, Build-Out Year 2026 Background, Build-Out Year 2036 Total, and Horizon Year 2036 Total scenarios.
 - Queue storage is anticipated to be exceeded for the WBL movement during the AM and PM peak hours for the Existing 2024, Build-Out Year 2026 Background, Build-Out Year 2026 Total, and Horizon Year 2036 Total scenarios.
- NBT operates at LOS E during the AM peak hour for the Existing 2024, Build-Out Year 2026 Background, and Build-Out Year 2026 Total scenarios and LOS F for the AM peak hour in the Horizon Year 2036 Total scenarios.
- SBT and SBR operate at LOS E during the PM peak hour in the Build-Out Year 2026 Total scenario and LOS F during the PM peak hour in the Horizon Year 2036 Total scenario.
- All other movements operate at acceptable levels of service (LOS) and have adequate storage to accommodate the 95th percentile queue lengths under the analyzed scenarios.

All other intersections operate at acceptable LOS and accommodate 95th percentile queue lengths during the AM and PM peak hours for all scenarios except:

• At Bridge Boulevard and Coors Boulevard, WBR 95th percentile queue lengths are anticipated to exceed storage lengths for the Existing 2024, Build-Out Year 2026 Background, Build-Out Year 2026 Total, and Horizon Year 2036 Total scenarios.

SITE RECOMMENDATIONS

Recommendations for study intersections directly serving and primarily impacted by the proposed development are as follows:

- Proposed Access Driveway and Gonzales Road:
 - The proposed access driveway on Gonzales Road meets CABQ DPM requirements.
 - Right-in operations should are recommended for the proposed access driveway.
 - The access driveway should provide adequate site distance, circulation for ingress and egress trips, and sufficient storage to accommodate school drop-off/pick-up operations.
- Multimodal Facilities
 - A marked pedestrian crossing across Gonzales Road can provide a safe location for student pedestrians to use when accessing the school's campus.
 - The Mark Armijo Academy development should ensure that pedestrian facilities comply with American Disabilities Act (ADA) standards and adhere to the guidelines outlined in the COA DPM.
 - At each entrance, secure and convenient bicycle storage facilities on the school campus should be provided.

- Queuing
 - The drop-off/pick-up loop is anticipated to accommodate the maximum queue length of drop-off/pick-up operations.
- Air Quality
 - Establish a policy to minimize vehicle idling during drop-off/pick-up operations.
 - Encourage students to walk or bicycle to school.

OFF-SITE INTERSECTION RECOMMENDATIONS

Recommendations for intersections within the study area that do not directly serve the proposed development are as follows:

- Gonzales Road & Coors Boulevard
 - For the Horizon Year 2036 scenario, the westbound movements are anticipated to experience unacceptable delays and queuing. Traffic control via a traffic signal is warranted at this intersection under the existing traffic conditions per the findings of a signal warrant documented in this analysis. Am HCS analysis of this intersection with a traffic signal does mitigate the Horizon Year 2036 queuing and delay challenges.
 - Using a roundabout for traffic control is another option to mitigate this intersection's delay and queuing challenges per an HCS analysis of Horizon Year 2036 volumes.
 - The proposed development contributes 3.0% of the total Build-Out Year Full-Build intersection traffic volumes in the AM peak hour and 2.9% in the PM peak hour.

CONTENTS

Executive Summary	i
Background	i
Summary of Traffic Analysis and Recommendations	ii
Site Recommendations	
Off-site Intersection Recommendations	iii
List of Figures	v
List of Tables	v
List of Appendices	v
Introduction	
Background Information	
Project Location & Site Plan	1
Study Area	
Area Land Use	
Streets	4
Intersections	
Pedestrian Facilities	
Bicycle Facilities	
Transit Facilities	
Adjacent Developments	
Data Collection	
Traffic Scenario Development	
Turning Movement Counts	
Traffic Growth	
Site Trip Generation	
Trip Distribution and Assignment	
Traffic Volume Calculations	
Site Conditions and Site Analysis	
Site Access Justification	
Site Access Analysis	
Auxiliary Lane Analysis	
Site Driveways Sight Distance	
Traffic Analysis	
LOS, Capacity, and Queuing Analysis	
Existing 2024 Conditions	
Build-Out Year 2026 Background Conditions	
Build-Out Year 2026 Total Conditions	
Horizon Year 2036 Conditions	
Off-Site Capacity Mitigations	
Traffic Signal Warrant	
Signal Warrant Analysis	
Signal Warrant Results	
Mitigation Summary	
Pedestrian and Bicycle Circulation	
Drop-off/Pick-up Routing and Circulation	
Queuing Methodology Applicability and Variances	
Noise and Air Quality Impacts	
Summary of Off-Site Mitigations	
Crash Summary	. 38

Conclusions and Recommendations	41
Site Recommendations	41
Off-site Intersection Recommendations	42

LIST OF FIGURES

Figure 1: Site Plan	2
Figure 2: Vicinity Map	
Figure 3: Existing Peak Hour Turning Movement Counts	
Figure 4: Site-Generated Direct Trip Routing Percentages	10
Figure 5: Site Generated Direct Trips	11
Figure 6: Build-Out Year 2026 Background Volumes	12
Figure 7: Build-Out Year 2026 Total Volumes	13
Figure 8: Horizon Year 2036 Volumes	14
Figure 9: Four-Hour Vehicular Volume Warrant (Warrant 2) – Gonzales Road and Coors Boulevard	29
Figure 10: Warrant 4 Minimum Pedestrian Volume Gonzales Road Approaches at Coors Boulevard	31

LIST OF TABLES

Table 1: Intersection and Network Peak Hours	
Table 2: Yearly Growth Rates - Source: MRCOG 2016 and 2040 Models	
Table 3: Proposed Development Trip Generation	
Table 4: Access Spacing Requirements from CABQ DPM	15
Table 5: Site Driveway Auxiliary Lane Warrants	15
Table 6: Required Sight Distance Values	16
Table 7: LOS Criteria and Descriptions for Signalized Intersections	17
Table 8: LOS Criteria for Unsignalized Intersections	17
Table 9: HCM Results for Existing 2024 Conditions	18
Table 10: HCM Results for Build-Out Year 2026 Background Conditions	20
Table 11: HCM Results for Build-Out Year 2026 Total Conditions	22
Table 12: HCM Results for Horizon Year (2036) Conditions	24
Table 13: Volume Summary	27
Table 14: Volume for Analysis and Warrant Summary	28
Table 15: Sight Distance Evaluation	34
Table 16: Signal Warrant Summary – Gonzales Road and Coors Boulevard	34
Table 17: Gonzales Rd and Coors Blvd Summary with Traffic Signal	35
Table 18: Gonzales Rd and Coors Blvd Summary with Roundabout	35
Table 19: Queuing Analysis	
Table 20: Crash Summary	38

LIST OF APPENDICES

- Appendix A: Scoping Meeting Notes
- Appendix B: Turning Movement Counts
- Appendix C: ITE Trip Generation
- Appendix D: HCM Analysis Output Sheets
- Appendix E: Signal Timing Sheets
- Appendix F: Signal Warrant Sheets
- Appendix G: AASHTO Green Book Intersection Sight Distance Calculations

INTRODUCTION

This report details the procedures and findings of a Neighborhood Impact Assessment (NIA) performed by Lee Engineering for Archis Architects. This report and the analyses herein were performed for an existing charter school, Mark Armijo Academy, to be expanded with a new building to accommodate 180 additional students on Gonzales Road near Coors Boulevard in Albuquerque, NM. This study examines the proposed development's impacts on surrounding traffic conditions. It discusses the potential effects of trips generated by the development on the study intersections.

The scope of this report and the analyses performed were completed in agreement with the scoping requirements set forth by the City of Albuquerque. Scoping meeting notes from the scoping meeting held on April 15th, 2024, are included in Appendix A. Analysis procedures, conclusions, and recommendations for this study were developed according to the *Highway Capacity Manual (HCM)* 6th *Edition* and the *Manual on Uniform Traffic Control Devices (MUTCD) 2009 Edition*.

The development is planned to be completed in one phase and to reach full construction by 2026. The site plan displayed in **Figure 1** shows the proposed development. Traffic generated by the site is anticipated to be 74 ingress and 45 egress trips during the AM peak hour and 43 ingress trips and 68 egress trips during the PM peak hour.

Figure 2 shows the site plan for the development. Lee Engineering conducted a Level of Service (LOS) and Queuing Analysis for the following AM and PM peak hour scenarios:

- Existing 2024 Analyzes current traffic volumes and intersections.
- Build-Out Year 2026 Background Analyzes Existing 2024 traffic volumes grown by applying a growth factor developed by the Mid-Region Council of Governments (MRCOG) Metropolitan Transportation Plan (MTP) CUBE/2 Regional Model to estimate 2026 traffic volumes at existing intersections.
- Build-Out Year 2026 Total Analyzes the sum of site-generated trips and Build-Out Year 2026 Background volumes at existing intersections and the proposed development access driveway.
- Horizon Year 2036 Total Analyzes the sum of site-generated trips and Horizon Year 2036 Background volumes at existing intersections and the proposed development access driveway.

The Level of Service and Queuing Analysis Reports are in Appendix D.

BACKGROUND INFORMATION PROJECT LOCATION & SITE PLAN

The proposed development will be on the existing campus of Mark Armijo Academy on Gonzales Road,

east of Coors Boulevard. **Figure 1** shows the proposed site plan, and **Figure 2** shows the site location, study intersections, and the surrounding area. Study intersections include:

- 1. Central Ave & Coors Blvd
- 2. Gonzales Rd & Coors Blvd
- 3. Proposed Access Driveway & Gonzales Rd
- 4. Bataan Dr & Gonzales Rd
- 5. Bridge Blvd & Coors Blvd

The proposed project will develop new buildings and a parking lot on approximately 3.3 acres of Mark Armijo Academy's 6-acre campus. The proposed access driveway is on Gonzales Road, west of the existing access driveways.

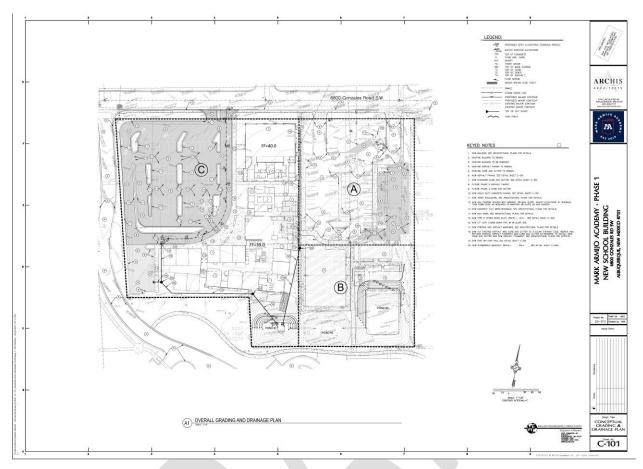


Figure 1: Site Plan

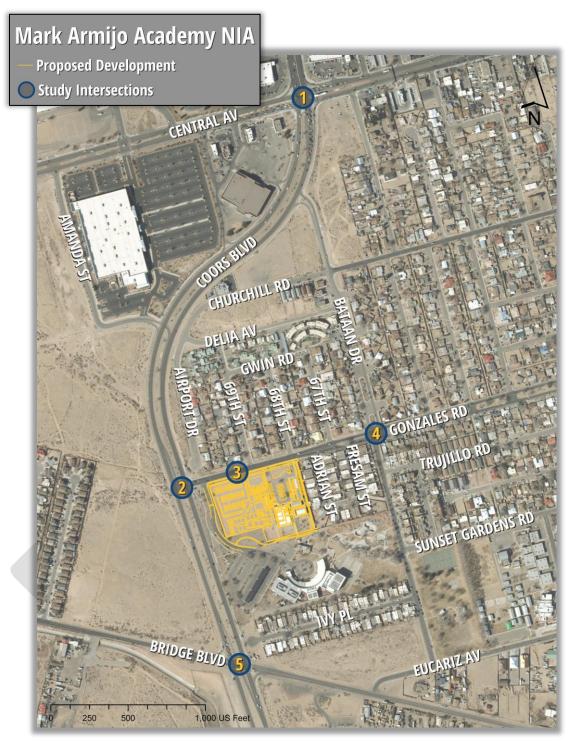


Figure 2: Vicinity Map

Study Area

Central Avenue and Bridge Boulevard bind the study area on the north and south, and Coors Boulevard and Bataan Drive on the west and east. This study analyzes the following intersections per discussions during the scoping meeting:

- 1. Central Ave & Coors Blvd
- 2. Gonzales Rd & Coors Blvd
- 3. Proposed Access Driveway & Gonzales Rd
- 4. Bataan Dr & Gonzales Rd
- 5. Bridge Blvd & Coors Blvd

AREA LAND USE

The development will be on the south side of Gonzales Road and east of Coors Boulevard. Adjacent to and surrounding the project site are land uses consisting of the following:

- Residential: The land immediately north and east of the proposed development is primarily single-family detached housing with some multi-family residences.
- Vacant: A large land area is immediately west of the study area.
- Educational: Alamosa Elementary School is adjacent to the study area, east of Bataan Drive.
- Community: The Ted M. Gallegos Community Center is southwest of the development with an access drive on Gonzales Road, west of the proposed access driveway.

The boundary between Albuquerque and Bernalillo County runs along Bridge Boulevard, south of the study area.

STREETS

The following details the characteristics and features of streets included in the study area:

Gonzales Road is a two-lane local road that runs east and west. Its posted speed limit is 30 miles per hour (MPH). The road comprises one 12-foot travel lane, with parking lanes marked in each direction and 3.5-foot sidewalks on both sides. Speed cushions are present at two locations between Coors Boulevard and Bataan Drive. Standard curb and gutter are present.

Coors Boulevard is a four-lane, divided road that runs north and south. MRCOG classifies the road as a principal arterial, and the posted speed limit is 45 MPH within the study area. There are two 12-foot-wide travel lanes in each direction. Sidewalks are on the west side of the road from Central Avenue to Gonzales Road and on the east side from Bridge Boulevard to Gonzales Road. Six-foot-wide bicycle lanes are striped in both directions. Standard curb and gutter are present.

INTERSECTIONS

The following details the traffic control and characteristics of the existing intersections in the study area:

Central Avenue & Coors Boulevard is a four-legged, signalized intersection. The east and west legs comprise a left-turn lane, two through lanes, and a right-turn lane. The north and south legs comprise two left-turn lanes, two through lanes, and a right-turn lane. Sidewalks, marked crosswalks, and pedestrian signals are present on every leg of the intersection.

Gonzales Road & Coors Boulevard is a three-legged, minor street stop-controlled intersection with a stop sign for westbound travelers on Gonzales Road. The east leg comprises a shared through, left, and right-turn lane. The north leg comprises an exclusive left turn lane, two through lanes, and a bicycle lane. The south leg comprises two through lanes and a bicycle lane. Marked crosswalks and cub ramps are available on the west leg of the intersection.

Bataan Drive & Gonzales Road is a four-legged, all-way stop-controlled intersection with a traffic circle. All legs comprise a shared through, left, and right turn lane. There are curb ramps at all approaches, with detectable warning surfaces only at the northeast and northwest ramps. There are no marked crosswalks or pedestrian signals present. Sidewalks are present at all legs of the intersection.

Coors & Bridge Boulevards is a four-legged, signalized intersection. The east and west legs of the intersection comprise a left-turn lane, a through lane, and a right-turn lane. The north and south legs comprise a left-turn lane, two through lanes, and a right-turn lane. Sidewalks, marked crosswalks, and pedestrian signals are present on every leg of the intersection.

PEDESTRIAN FACILITIES

Standard 3.5-foot sidewalks are present along either side of Gonzales Road for the length of the study area. The only crosswalk found in the study area is located at the east approach of the Gonzales Road & Coors Boulevard intersection. Curb ramps with detectable warning surfaces are on either side of the crosswalk. Curb ramps are present at all other cross streets along the corridor, the majority of which have detectable warning surfaces.

BICYCLE FACILITIES

The City of Albuquerque designates Gonzales Road as a bicycle route. This designation means the travel lanes are marked for bicycle use via sharrows and shared by motor vehicles and bicycles. Six-foot bicycle lanes are along Coors Boulevard, and five-foot bicycle lanes are along Central Avenue. According to the Mid-Region Metropolitan Planning Organization (MRMPO) Long Range Bikeway System, there are proposed bicycle lanes on Bridge Boulevard and protected bicycle lanes on Central Avenue.

TRANSIT FACILITIES

An ABQ RIDE bus stop is along Coors Boulevard just north of Gonzales Road. This stop serves bus route 155 northbound.

ADJACENT DEVELOPMENTS

Two new adjacent developments are near the study area: Chuze Fitness on the southwest corner of Central Avenue and Coors Boulevard and a housing development, Villa de San Marcos, east of Coors Boulevard Road. Per the scoping meeting, traffic studies were not required for these developments. Therefore, no specific considerations were made in this report for this development. Rather, MRCOG growth projections were used to analyze background growth for future scenarios.

DATA COLLECTION

The following section details the data collection methods used in the analyses documented in this report. The data was collected via field observations and video recordings.

Field Data Collection

On-Street Parking

Dedicated on-street parking is marked along Gonzales Road.

Pedestrians and Bicycles

Pedestrian and bicycle volumes were collected at all study intersections via turning movement counts (see Turning Movement Counts section). Pedestrian and bicycle hourly volumes are in Appendix B.

Transit

Motor Vehicle volumes were collected at all study intersections with turning movement counts (see Turning Movement Counts section). Hourly bus volumes are in Appendix B.

Signal Timings

The City of Albuquerque Traffic Engineering Division provided signal timing for the signalized intersections of Central Avenue & Coors Boulevard and Coors & Bridge Boulevards. Signal timing sheets used in the capacity analyses are in Appendix E.

TRAFFIC SCENARIO DEVELOPMENT

The following sections detail the methods and calculations used to obtain traffic volumes for the Existing 2024, Build-Out Year 2026 Background, Build-Out Year 2026 Total, and Horizon Year 2036 Total analysis scenarios. This process used Traffic Projections, Site Trip Generation, and Trip Distribution and Assignment.

TURNING MOVEMENT COUNTS

Turning Movement Counts (TMC) were collected for seven and a half hours in three periods: 6:00 AM-9:00 AM, 11:00 AM-2:00 PM, and 2:00 PM-3:30 PM on Thursday, May 2nd, 2024, for the existing study intersections. Turning movement volumes collected at the study intersections show a typical commuter directionally biased distribution with observable AM and PM peak hour periods. This analysis considers AM and PM peak hours relative to the bell schedule of Mark Armijo Academy; zero-hour begins at 7:30 AM and dismissal is at 2:30 PM. **Table 1** shows the observed peak hours for each existing study intersection and the calculated peak hours for the entire study area (network peak). Balanced AM and PM peak-hour traffic volumes are in **Figure 3**, and complete turning movement counts are in Appendix B.

Table 1: Intersection and Network Peak Hours

Intersection	AM Peak Hour	PM Peak Hour
Central Ave & Coors Blvd	7:30 AM	2:30 PM
Gonzales Rd & Coors Blvd	7:15 AM	2:30 PM
Bataan Dr & Gonzales Rd	7:15 AM	2:15 PM
Bridge Blvd & Coors Blvd	7:15 AM	2:30 PM
Network Peak Hours:	7:15 AM	2:30 PM

Figure 3: Existing Peak Hour Turning Movement Counts

TRAFFIC GROWTH

The future year scenario volumes are forecasted from the existing traffic volumes using values from 2016 and 2040 (updated) travel demand models by MRCOG. These models contain AM and PM peak hour directional volumes (AMPH LOAD and PMPH LOAD) that are used to calculate traffic growth rates in the study area. Roads with an annual growth rate of less than 1% are analyzed assuming a 1% annual growth rate to facilitate a conservative analysis. Growth rates are then converted to growth factors for specific analysis scenarios. Values from the MRCOG models and the calculated growth rates used in the analyses are in **Table 2**. Existing 2024 traffic volume growth rates are applied to forecast future-year scenario volumes. Projected turning movement volumes are used with adjacent developments' site-generated trips for the Build-Out Year 2026 Background scenario. Build-Out Year 2026 Total scenario volumes.

				Annual		Growth Rate	
Approach	Period	2016	2040			for Analysis	
	<u> </u>	F 4	64		Growth		
East							
			_				
North							
South	AM			0.3%			
Journ	PM	789	941	0.7%			
North	AM	641	794	0.9%			
North	PM	833	1014	0.8%			
South	AM	863	958	0.4%			
South	PM	921	1003	0.4%		1.0%	
West	AM	466	519	0.4%	0.4%		
	PM	380	508	1.2%			
East	AM	169	236	1.4%			
	PM	225	336	1.7%			
Nauth	AM	1017	1051	0.1%			
North	PM	1454	1566	0.3%			
	AM	888	965	0.3%			
South	PM	849	903	0.3%			
14/	AM	903	823	-0.4%			
west	PM	551	537	-0.1%			
	AM	658	605	-0.3%			
East	PM	907	907	0.0%			
	AM	0	0	0.0%			
North	PM	5	99	13.2%			
	AM	131	127	-0.1%			
West	PM	164	76	-3.2%			
	East North South North South West	EastAM PMNorthAM PMSouthAM PMSouthAM PMNorthAM PMSouthAM PMBastAM PMWestAM PMSouthAM PMWestAM PMBastAM PMNorthAM PMSouthAM PMNorthAM PMSouthAM PMNorthAM 	AM 54 PM 59 North AM 672 PM 878 South AM 835 PM 789 North AM 641 PM 833 South AM 641 PM 833 South AM 641 PM 833 South AM 641 PM 833 33 South AM 863 PM 921 380 Base AM 169 PM 225 36 North AM 1017 PM 1454 380 South AM 888 PM 849 34 West AM 903 PM 551 AM 658 PM 907 AM 0 North AM 0 7	AM 54 64 PM 59 64 PM 59 64 North AM 672 807 PM 878 954 South AM 835 905 PM 789 941 North AM 641 794 North AM 641 794 North AM 641 794 South AM 641 794 PM 833 1014 383 South AM 641 794 PM 833 1014 383 South AM 863 958 PM 921 1003 508 Bast PM 380 508 Bast AM 169 236 PM 1454 1566 504 North PM 849 903 West AM 658 605 <td>Approach Period 2016 2040 Growth Rate East AM 54 64 0.7% PM 59 64 0.3% North AM 672 807 0.8% PM 878 954 0.3% South AM 835 905 0.3% PM 789 941 0.7% North AM 641 794 0.9% North AM 641 794 0.9% North AM 863 958 0.4% PM 921 1003 0.4% PM 921 1003 0.4% PM 921 1003 0.4% PM 380 508 1.2% East AM 169 236 1.4% PM 225 336 1.7% North AM 1017 1051 0.1% PM 1017 1051<td>Approach Period 2016 2040 Growth Rate Growth East AM 54 64 0.7% 64 0.3% North PM 59 64 0.3% 64 0.3% North AM 672 807 0.8% 64 0.3% South AM 878 954 0.3% 64 0.7% Morth PM 878 954 0.3% 64 0.3% South PM 789 941 0.7% 64 0.3% North AM 641 794 0.9% 64 0.3% North AM 664 519 0.4% 64 0.4% West AM 466 519 0.4% 0.4% 0.4% West AM 1017 1051 0.1% 0.4% 0.4% North AM 1017 1051 0.1% 0.4% 0.4% South<</td></td>	Approach Period 2016 2040 Growth Rate East AM 54 64 0.7% PM 59 64 0.3% North AM 672 807 0.8% PM 878 954 0.3% South AM 835 905 0.3% PM 789 941 0.7% North AM 641 794 0.9% North AM 641 794 0.9% North AM 863 958 0.4% PM 921 1003 0.4% PM 921 1003 0.4% PM 921 1003 0.4% PM 380 508 1.2% East AM 169 236 1.4% PM 225 336 1.7% North AM 1017 1051 0.1% PM 1017 1051 <td>Approach Period 2016 2040 Growth Rate Growth East AM 54 64 0.7% 64 0.3% North PM 59 64 0.3% 64 0.3% North AM 672 807 0.8% 64 0.3% South AM 878 954 0.3% 64 0.7% Morth PM 878 954 0.3% 64 0.3% South PM 789 941 0.7% 64 0.3% North AM 641 794 0.9% 64 0.3% North AM 664 519 0.4% 64 0.4% West AM 466 519 0.4% 0.4% 0.4% West AM 1017 1051 0.1% 0.4% 0.4% North AM 1017 1051 0.1% 0.4% 0.4% South<</td>	Approach Period 2016 2040 Growth Rate Growth East AM 54 64 0.7% 64 0.3% North PM 59 64 0.3% 64 0.3% North AM 672 807 0.8% 64 0.3% South AM 878 954 0.3% 64 0.7% Morth PM 878 954 0.3% 64 0.3% South PM 789 941 0.7% 64 0.3% North AM 641 794 0.9% 64 0.3% North AM 664 519 0.4% 64 0.4% West AM 466 519 0.4% 0.4% 0.4% West AM 1017 1051 0.1% 0.4% 0.4% North AM 1017 1051 0.1% 0.4% 0.4% South<	

Table 2: Yearly Growth Rates - Source: MRCOG 2016 and 2040 Models

SITE TRIP GENERATION

Trip generation for the Proposed Development was performed using the procedures and methodologies in the ITE Trip Generation Manual, 11th Edition. The land use category Private High School (ITE 534) determined the number of anticipated trips for Weekday AM and PM Peak Hour Traffic. Trips generated by the proposed development are summarized in **Table 3**. Site-generated trips are added to the Build-Out Year 2026 Background traffic volumes to create the Build-Out Year 2026 Total and Horizon Year 2036 Total traffic volumes. **Table 3** shows the trip generation volumes and percentages.

Use	Units		Weekday AM Peak Hour					Weekday PM Peak Hour				
Use			Total	Enter	Exit	In	Out	Total	Enter	Exit	In	Out
ITE 534: Private High School	180	Students	119	62%	38%	74	45	111	39%	61%	43	68

Table 3: Proposed Development Trip Generation

TRIP DISTRIBUTION AND ASSIGNMENT

The proposed site-generated trip distribution was determined by analyzing existing intersection demand characteristics within the study area. These direct trips are routed within the roadway network to and from the development based on the proportions of existing turning movement counts during the AM and PM peak hours. This study evaluates the impacts of site-generated trips resulting from an additional 180 students. The school's current traffic is captured in the TMC data and only the anticipated peak hour trips shown in **Table 3** are assigned to the site access driveway in Build-Out Year 2026 Total and Horizon Year 2036 Total. **Figure 1** and **Figure 5** show the distribution percentages and trips generated by the development.

TRAFFIC VOLUME CALCULATIONS

Traffic volumes used in the Build-Out Year and Horizon Year analyses were calculated as follows:

- Build-Out Year 2026 Background Analyzes Existing 2024 traffic volumes grown by applying a growth factor developed by the Mid-Region Council of Governments (MRCOG) Metropolitan Transportation Plan (MTP) CUBE/2 Regional Model to estimate 2026 traffic volumes at existing intersections.
- Build-Out Year 2026 Total Analyzes the sum of site-generated trips and Build-Out Year 2026 Background volumes at existing intersections and the proposed development access driveway.
- Horizon Year 2036 Total Analyzes the sum of site-generated trips and Horizon Year 2036 Background volumes at existing intersections and the proposed development access driveway.

Figure 4 through **Figure 8** show the site-generated trip proportions, site-generated trips, and volumes for Build-Out and Horizon Year scenarios.

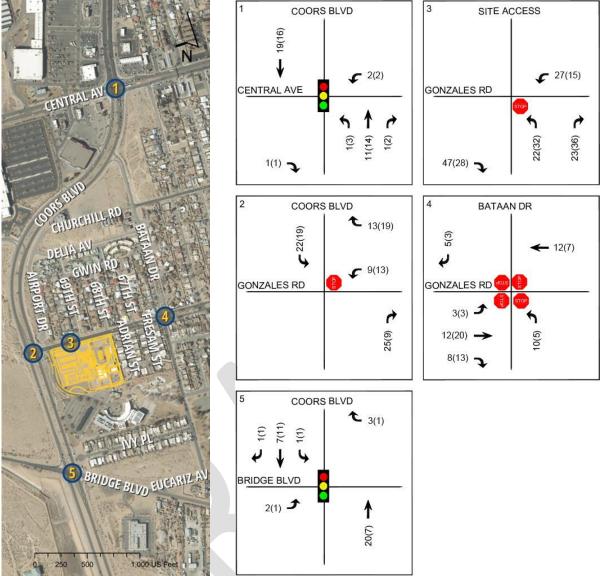


Figure 4: Site-Generated Direct Trip Routing Percentages

Figure 5: Site Generated Direct Trips



Figure 6: Build-Out Year 2026 Background Volumes

Figure 7: Build-Out Year 2026 Total Volumes

Figure 8: Horizon Year 2036 Volumes

SITE CONDITIONS AND SITE ANALYSIS

SITE ACCESS JUSTIFICATION

The proposed site driveway provides direct access to student parking and student drop-off/pick-up queue storage. The access configuration shown in the site plan will accommodate anticipated ingress and egress movements. The proposed site driveway will accommodate ingress and egress operations during peak drop-off/pickup hours; these movements are physically separated, as shown in **Figure 1**.

SITE ACCESS ANALYSIS

The development proposes a new access driveway on Gonzales Road, west of the existing access driveways. CABQ DPM Table 7.4.45 provides a minimum distance between commercial site access points and intersections. DPM Table 7.4.46 provides the maximum number of commercial site access points per site. The results of this analysis are in **Table 4**.

Tuble 4. Access Spucing Requirements from CABQ DPW								
City of Albuquerque Development Process Manual Recommended Access Spacing								
Major Street	Cross Street	Cross Speed Minimum Distance Design Site Access and		Maximum number of commercial Site Access Points per	Distance Between Site Access Point and			
			Approach Distance	Departure Distance	Site	Intersection (ft)		
Gonzales Rd	Coors Blvd	30	75 ft	75 ft	None	320		

Table 4: Access Spacing Requirements from CABQ DPM

The proposed access driveway on Gonzales Road meets CABQ DPM requirements.

AUXILIARY LANE ANALYSIS

Auxiliary lane analysis warrants are performed using guidance in the NMDOT State Access Management Manual (SAMM) for Gonzales Road at Coors Boulevard and CABQ DPM for the proposed access driveway on Gonzales Road. Road and traffic data are compared to criteria in SAMM Table 17B-2 to determine whether right or left-turn auxiliary lanes are required on Coors Boulevard at Gonzales Road. Similarly, road and traffic data are compared against criteria in DPM Table 7.4.67 to determine if right or left-turn auxiliary lanes are required site access on Gonzales Road. Furthermore, SAMM Table 18K-1 and DPM Tables 7.4.68 and 7.4.70 are used to assess deceleration and taper length where applicable. 2026 Build-Out traffic volumes are used in the analyses. The results of these analyses are in **Table 5**.

Tab	le 5:	Site	Driveway	Auxiliary	Lane	Warrants	

Location	Access/ Turn Type	Speed (MPH)	Minimum Required Turning Volume per Hour	Turning Volume per Hour (Build-Out Year 2026 Total)	Warrant Result	Minimum Storage Length	Lane Transition	Total Deceleration Length
Access Driveway	Right In	30	50	94 (56)	Required	240 ft	150-150 Reverse Curve	

SITE DRIVEWAYS SIGHT DISTANCE

The following presents a narrative detailing the development's recommended intersection sight distance requirements. Intersection sight distance requirements are based on the CABQ DPM Section 7-4(I)(5)(iii) and the 2018 AASHTO "Green Book" chapter 9.5. Two sight distance cases are used for this analysis:

- Case B1 A stopped vehicle turning left from a minor street approach onto a major road.
- Case B2 A stopped vehicle turning right from a minor street approach onto a major road.

The intersection sight distance for Case B2 at all access driveways is based on the assumption that the design vehicle turns into the nearest traffic lane. A combination truck is used as the design vehicle. The required sight distance values in **Table 6** are rounded up to the nearest 5-foot increment. CABQ roadway characteristic cases are right turns (RT), left turns (LT), two-lane (2L), four-lane (4L), divided (D), and undivided (U). Formulas, values, and calculations used in the sight distance analysis are in Appendix F.

Intersection Location	Posted Speed Limit (MPH)	AASHTO Case	AASHTO Sight Distance (ft)	CABQ Case	CABQ DPM Sight Distance (ft)
Site Access & Contales Dead	20	B1	335	LT 2L-D	340
Site Access & Gonzales Road	30	B2	290	RT 2L-D	290

Table 6: Required Sight Distance Values

All development driveways should adhere to the sight distance provisions detailed in the AASHTO "Green Book" and CABQ DPM Section 7-4(I)(5)(iii). An area bounded by the sight distances in **Table 6** from a decision point placed 14.5 feet from the edge of the nearest traffic lane and midway between the outbound driving lane should remain clear of any obstructions.

TRAFFIC ANALYSIS

Highway Capacity Software (HCS) analyzes all study intersections for Level of Service (LOS) and 95th percentile queueing conditions. HCS implements methods and procedures detailed by the Highway Capacity Manual (HCM). The HCS output sheets showing all individual movements are in Appendix D.

LOS, CAPACITY, AND QUEUING ANALYSIS

The HCM indicates LOS as a letter grade (A through F) based on the calculated average delay for an intersection or movement. Delay is a function of several variables, including signal phasing operations, cycle length, traffic volumes, and opposing traffic volumes. However, it measures the average wait time a driver can expect when moving through an intersection. Factors such as total cycle time (for all movements), queueing restrictions, and vehicle volumes can affect delay measurements, especially for lower-volume movements and side streets. Generally, these factors are only realized when delays reach or exceed LOS E thresholds. In such cases, subsequent sections offer a narrative specific to the individual movement in question.

Table 7 and **Table 8**, reproduced from the HCM, show delay thresholds and the associated LOS assigned to delay ranges for signalized intersections and stop-controlled intersections, respectively. Generally, a LOS of D or better is considered an acceptable level of service.

Level of Service	Average Control Delay (sec/vehicle)	General Description (Signalized Intersections)
A	≤10	Free flow
В	>10-20	Stable flow (slight delays)
С	>20 – 35	Stable flow (acceptable delays)
D	>35 - 55	Approaching unstable flow (tolerable delay, occasionally
D	>35 - 55	wait through more than one signal cycle before proceeding)
E	>55 – 80	Unstable flow (intolerable delay)
F	>80	Forced flow (jammed)

Table 7: LOS Criteria and Descriptions for Signalized Intersections

|--|

Level of	Average Control
Service	Delay (sec/vehicle)
А	≤10
В	>10-15
С	>15 – 25
D	>25 – 35
E	>35 – 50
F	>50

Queueing is reported in feet for all intersections when queue lengths are longer than one vehicle. The assumption is that 20 feet queue length is the equivalent of one vehicle. Queues are reported for queue measurements falling within the 95th percentile. The 95th percentile queues are statistically anticipated to occur during only 5% of the peak hour's signal cycles. Additionally, unreported average queueing at an intersection would statistically be much shorter than 95th-percentile queueing.

The volume-to-capacity (V/C) ratio is a performance measure that shows the ratio of traffic volume to the lane group capacity. A V/C ratio greater than 1.00 indicates that demand creates a residual queue for the analysis period.

For this analysis, acceptable LOSs are LOS D or better. Based on procedures outlined in the HCM, intersection delay and level of service for stop-controlled intersections are reported as the delay and level of service for the worst-case movement at each intersection. For signalized intersections, these metrics are reported for the whole intersection. HCS output sheets are in Appendix D.

EXISTING 2024 CONDITIONS

Table 9 summarizes the intersection delay, level of service, and queueing under Existing 2024conditions.

	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	SOJ	Intersection Delay (s/veh)	Intersection LOS		Wovement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	SOI	Intersection Delay (s/veh)	Intersection LOS
					Cen	tral Ave	& Cooi	rs Blvo	l (Signalize	d)					
	NBL	52.2	0.55	76.3	E				NBL	83.6	0.66	59.9	E		
	NBT	668.4	0.94	72.9	E				NBT	329.0	0.69	42.9	D		
	NBR	122.2	0.22	42.1	D				NBR	74.7	0.18	35.5	D		
	SBL	144.0	0.53	66.2	E				SBL	223.5	0.82	59.0	E		
¥	SBT	389.6	0.54	41.0	D			¥	SBT	551.9	0.86	51.0	D		
Pea	SBR	371.6	0.54	41.1	D	51.9	D	Реа	SBR	521.0	0.86	51.9	D	43.7	D
AM Peak	EBL	327.6	0.88	75.4	E	51.5	U	PM Peak	EBL	206.4	0.83	68.1	E	45.7	U
◄	EBT	303.0	0.36	28.2	С			a	EBT	212.2	0.32	27.1	С		
	EBR	300.6	0.36	28.2	С				EBR	208.7	0.32	27.2	С		
	WBL	131.2	0.79	88.2	F				WBL	180.7	0.81	65.1	E		
	WBT	129.7	0.17	32.1	С				WBT	251.3	0.41	28.7	С		
	WBR	267.6	0.40	37.0	D				WBR	252.9	0.46	31.0	С		
	-				Gonzal	es Rd &	Coors	Blvd (Stop-Contro	olled)					
	NBT		ł						NBT	-					
eak	NBR					26.6		eak	NBR						
AM Peak	SBL	15.0	0.17	13.0	В		D	PM Peak	SBL	12.5	0.14	9.8	A	17.9	С
AN	SBT							Р	SBT						
	WBL/R	60.0	0.45	26.6	D				WBL/R	40.0	0.35	17.9	С		
						Dr & G	onzales	s Rd (S	top-Contro						
ak	NBL/T/R	10.0		8.0	Α			PM Peak	NBL/T/R	10.0		8.1	A	8.0	А
Pe	SBL/T/R	2.5		7.4	Α	7.9	A		SBL/T/R	5.0		7.6	Α		
AM Peak	EBL/T/R	15.0		8.0	A				EBL/T/R	17.5		8.1	A		
	WBL/T/R	10.0		7.8	A				WBL/T/R	10.0		8.0	А		
	NDI	20.5	0.15	6.4		ige Blvd	& COO	rs Blvo	d (Signalized		0.15	C 1			
	NBL	29.5	0.15	6.4	A				NBL	19.6	0.15	6.1	A		
	NBT	272.9	0.45	10.9	B				NBT	120.1	0.25	7.7	A		
	NBR	266.8	0.45	10.9	B				NBR	117.4	0.25	7.8	A		
	SBL	22.9	0.19	8.0	A				SBL	25.5	0.16	5.5	A		
eak	SBT	141.7	0.25	8.9	A			eak	SBT	181.9	0.35	8.4	A		
ã	SBR	138.3	0.25	8.9	A	18.1	В	Pe	SBR	176.8	0.35	8.4	A	16.6	В
AM	EBL	127.4	0.48	53.1	D			PM P€	EBL	45.6	0.24	49.4	D		
	EBT	211.2	0.54	46.8	D				EBT	134.6	0.43	43.6	D		
	EBR	30.2	0.09	38.8	D				EBR	65.8	0.22	39.3	D		
	WBL	61.3	0.28	52.8	D				WBL	56.5	0.26	48.0	D		
	WBT	159.5	0.41	45.1	D				WBT	174.6	0.54	45.0	D		
	WBR	68.9	0.19	40.4	D				WBR	128.6	0.41	40.7	D		

Table 9: HCM Results for Existing 2024 Conditions

The Existing Conditions analysis indicates:

Delay and LOS Results

At all other intersections where LOS results are present, all movements operate at acceptable LOS during the AM and PM peaks except:

- At the signalized intersection of Central Avenue & Coors Boulevard
 - NBL operates at LOS E during the AM and PM peak hours.
 - NBT operates at LOS E during the AM peak hour.
 - SBL operates at LOS E during the AM and PM peak hours.
 - EBL operates at LOS E during the AM and PM peak hours.
 - WBL operates at LOS F and LOS E during the AM and PM peak hours, respectively.

Queuing Results

At all intersections where queue length results are present, existing storage lengths are sufficient to accommodate 95th percentile queue lengths except:

- At the signalized intersection of Central Avenue & Coors Boulevard
 - EBL does not accommodate the 95th percentile queue lengths during the AM and PM peak hours.
 - WBL does not accommodate the 95th percentile queue lengths during the PM peak hour.
- At the signalized intersection of Bridge Boulevard & Coors Boulevard
 - WBR does not accommodate the 95th percentile queue lengths during the PM peak hour.

BUILD-OUT YEAR 2026 BACKGROUND CONDITIONS

For the 2026 background volumes, existing TMCs are used with an applied annual growth rate developed from the MRCOG MTP CUBE/2 Regional Model. **Table 10** summarizes the intersection delay, level of service, and queueing under Build-Out Year 2026 Background conditions.

	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	SOI	Intersection Delay (s/veh)	Intersection LOS		2026 Backgr Wovement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	SOI	Intersection Delay (s/veh)	Intersection LOS
						ntral Ave	e & Coor	's Blvd	(Signalized				-		
	NBL	55.1	0.57	76.6	E				NBL	86.3	0.66	59.8	E		
	NBT	695.9	0.95	76.7	E				NBT	335.6	0.70	43.1	D		
	NBR	124.5	0.22	41.9	D				NBR	76.7	0.19	35.4	D		
	SBL	147.5	0.54	66.4	E				SBL	229.7	0.83	60.0	E		
ak	SBT	396.8	0.55	41.0	D			ak	SBT	573.0	0.87	53.3	D		
Pe	SBR	378.6	0.55	41.2	D	53.3	D	Pe	SBR	541.6	0.87	54.2	D	44.8	D
AM Peak	EBL	333.9	0.88	75.2	E			PM Peak	EBL	214.2	0.83	70.1	E		
	EBT	311.2	0.37	28.7	С				EBT	217.9	0.33	27.7	C		
	EBR	308.5	0.37	28.8	С				EBR	214.2	0.33	27.8	С		
	WBL	141.5	0.79	92.1	F				WBL	186.2	0.82	65.6	E		
	WBT	134.1	0.18	32.7	С				WBT	258.5	0.43	29.3	C		
	WBR	275.4	0.41	37.9	D				WBR	260.8	0.48	31.8	С		
				r	Gonza	les Rd &	Coors I	Blvd (S	top-Control	led)					
	NBT							3	NBT						
eal	NBR							eak	NBR						
AM Peak	SBL	17.5	0.20	14.2	В	28.5	D	PM Peak	SBL	12.5	0.15	10.0	В	18.6	С
A	SBT							Ы	SBT						
	WBL/R	67.5	0.48	28.5	D		_		WBL/R	42.5	0.37	18.6	С		
						n Dr & G	ionzales	∶Rd (S	top-Controll				-		
ak	NBL/T/R	10.0		8.1	A			ak	NBL/T/R	10.0		8.1	A		
AM Peak	SBL/T/R	5.0		7.5	A	8.0	А	PM Peak	SBL/T/R	5.0		7.7	A	8.1	А
AM	EBL/T/R	15.0		8.1	A			ΡM	EBL/T/R	17.5		8.2	A		
	WBL/T/R	10.0		7.9	A	dae Dhu		e Dhud	WBL/T/R (Signalized)	10.0		8.0	A		
	ND	20.7	0.16	6.6	D	age bive	1 & COO	S DIVU			0.15	6.2	۸		
	NBL NBT	30.7 282.8	0.16	11.3	A B				NBL NBT	20.4 125.2	0.15 0.25	6.3 8.0	A		
	NBR	282.8	0.47	11.3	В				NBR	125.2	0.25	8.0	A		
	SBL	277.0	0.47	8.3	A				SBL	26.6	0.25	5.6	A		
	SBL	24.0 147.3	0.20	8.3 9.1	A					189.6					
sak	SBR	147.3	0.26	9.1				ak	SBT SBR	189.6	0.35 0.35	8.7 8.7	A		
AM Peak	EBL	144.5	0.26	9.2 53.0	A D	18.3	В	PM Peak	EBL	46.6	0.35	8.7 49.3	A D	16.8	В
AN	EBL		0.48	46.5	D			PZ	EBT	40.0	-	49.3	D		
	EBT	214.4 31.1	0.54	46.5 38.5	D				EBR	67.5	0.43	43.4 39.0	D		
	WBL	62.6	0.28	52.7	D				WBL	57.7	0.26	47.8	D		
	WBT	162.7	0.41	44.8	D				WBT	178.4	0.54	44.8	D		
	WBR	69.8	0.19	10.0	D				WBR	131.3	0.41	40.4	D		

Table 10: HCM Results for Build-Out Year 2026 Background Conditions

The Build-Out Year 2026 Background analysis indicates:

Delay and LOS Results

At all other intersections where LOS results are present, all movements operate at acceptable LOS during the AM and PM peaks except:

- At the signalized intersection of Central Avenue & Coors Boulevard
 - NBL operates at LOS E during the AM and PM peak hours.
 - NBT operates at LOS E during the AM peak hour.
 - SBL operates at LOS E during the AM and PM peak hours.
 - EBL operates at LOS E during the AM and PM peak hours.
 - WBL operates at LOS F and LOS E during the AM and PM peak hours, respectively.

Queuing Results

At all intersections where queue length results are present, existing storage lengths are sufficient to accommodate 95th percentile queue lengths except:

- At the signalized intersection of Central Avenue & Coors Boulevard
 - EBL is anticipated to not accommodate the 95th percentile queue lengths during the AM and PM peak hours.
 - WBL is anticipated not to accommodate the 95th percentile queue lengths during the PM peak hour.
- At the signalized intersection of Bridge Boulevard & Coors Boulevard
 - WBR is anticipated not to accommodate the 95th percentile queue lengths during the PM peak hour.

BUILD-OUT YEAR 2026 TOTAL CONDITIONS

Trips generated by the proposed development are added to the Build-Out Year 2026 Background volumes for analysis. Trip generation was performed using the ITE Trip Generation Manual, 11th Edition. **Table 11** summarizes the intersection delay, level of service, and queueing under Build-Out Year 2026 Total conditions.

	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	SOI	Intersection Delay (s/veh)	Intersection LOS		War 2026 Tot	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	SOI	Intersection Delay (s/veh)	Intersection LOS
				r		tral Ave	& Coor	s Blvd	(Signalized)					1	
	NBL	56.0	0.58	76.8	E				NBL	88.5	0.66	59.7	E	-	
	NBT	672.2	0.94	73.4	E				NBT	342.9	0.71	43.3	D		
	NBR	126.3	0.22	42.1	D				NBR	78.6	0.19	35.3	D		
	SBL	147.5	0.54	66.4	E				SBL	229.7	0.83	60.0	E		
¥	SBT	410.1	0.56	41.7	D			¥	SBT	591.4	0.88	55.2	E	-	
AM Peak	SBR	391.2	0.57	41.8	D	52.3	D	PM Peak	SBR	559.5	0.88	56.3	E	45.5	D
Σ	EBL	333.9	0.88	75.2	E	52.5	D	Σ	EBL	215.2	0.83	70.7	E	45.5	U
A	EBT	311.6	0.37	28.7	С			-	EBT	219.6	0.33	28.0	С		
	EBR	308.8	0.37	28.7	С				EBR	215.7	0.34	28.0	С		
	WBL	145.4	0.79	91.9	F				WBL	190.8	0.82	66.7	E		
	WBT	133.6	0.18	32.5	С				WBT	259.3	0.43	29.5	С		
	WBR	274.7	0.41	37.7	D				WBR	261.5	0.48	32.0	С		
					Gonza	les Rd &	Coors I	Blvd (S	top-Controll	ed)					
	NBT				-				NBT						
ak	NBR							ak	NBR						
AM Peak	SBL	25.0	0.24	14.9	В	34.5	D	PM Peak	SBL	12.5	0.14	10.1	В	18.6	С
AN	SBT							Ę	SBT						
	WBL/R	95.0	0.57	34.5	D				WBL/R	52.5	0.41	18.6	С		
					Site Ac	cess & 0	Gonzale	s Rd (S	top-Control	led)					
¥	NBL/R	5.0	0.06	10.3	В			k	NBL/R	7.5	0.09	10.3	В		
AM Peak	EBT/R					10.3	в	PM Peak	EBT/R					10.3	В
Σ	WBL	2.5	0.02	7.8	А	10.5	Б	Σ	WBL	0.0	0.01	7.7	А	10.5	Б
A	WBT			0.2	А				WBT			0.1	А		
					Bataa	n Dr & G	ionzales	Rd (S	top-Controll	ed)					
¥	NBL/T/R	12.5		8.3	А			¥	NBL/T/R	12.5		8.3	А		
Pea	SBL/T/R	5.0		7.6	А	8.2	А	Реа	SBL/T/R	5.0		7.8	Α	8.3	А
AM Peak	EBL/T/R	17.5		8.3	Α	0.2	~	PM Peak	EBL/T/R	25.0		8.6	Α	0.5	~
4	WBL/T/R	10.0		8.1	А				WBL/T/R	12.5		8.2	А		
						dge Blvo	& Cooi	's Blvd	(Signalized)						
	NBL	30.9	0.16	6.6	A				NBL	20.5	0.16	6.4	А		
	NBT	290.8	0.47	11.5	В				NBT	127.4	0.26	8.0	А		
	NBR	284.9	0.48	11.5	В				NBR	124.5	0.26	8.0	Α		
	SBL	24.6	0.21	8.5	А				SBL	26.8	0.16	5.7	А		
¥	SBT	151.3	0.26	9.2	Α			¥	SBT	193.2	0.37	8.8	Α		
AM Peak	SBR	147.5	0.27	9.3	А	18.4	В	PM Peak	SBR	189.0	0.37	8.8	А	16.8	В
Σ	EBL	132.5	0.49	52.9	D	10.4	5	Σ	EBL	47.8	0.25	49.3	D	10.0	5
٩	EBT	213.8	0.54	46.3	D			4	EBT	137.4	0.43	43.3	D		
	EBR	31.0	0.09	38.3	D				EBR	67.4	0.22	38.9	D		
	WBL	62.5	0.28	52.4	D				WBL	57.6	0.26	47.7	D		
	WBT	162.1	0.41	44.7	D				WBT	178.3	0.54	44.7	D		
	WBR	73.0	0.20	39.9	D				WBR	132.4	0.41	40.3	D		

Table 11: HCM Results for Build-Out Year 2026 Total Conditions

The analysis of Build-Out Year 2026 Total indicates:

Delay and LOS Results

At all other intersections where LOS results are present, all movements operate at acceptable LOS during the AM and PM peaks except:

- At the signalized intersection of Central Avenue & Coors Boulevard
 - \circ $\;$ NBL operates at LOS E during the AM and PM peak hours.
 - NBT operates at LOS E during the AM peak hour.
 - SBL operates at LOS E during the AM and PM peak hours.
 - SBT operates at LOS E during the PM peak hour.
 - SBR operates at LOS E during the PM peak hour.
 - EBL operates at LOS E during the AM and PM peak hours.
 - WBL operates at LOS F and LOS E during the AM and PM peak hours, respectively.

Queuing Results

At all intersections where queue length results are present, existing storage lengths are sufficient to accommodate 95th percentile queue lengths except:

- At the signalized intersection of Central Avenue & Coors Boulevard
 - EBL is anticipated to not accommodate the 95th percentile queue lengths during the AM and PM peak hours.
 - WBL is anticipated not to accommodate the 95th percentile queue lengths during the PM peak hour.
- At the signalized intersection of Bridge Boulevard & Coors Boulevard
 - WBR is anticipated not to accommodate the 95th percentile queue lengths during the PM peak hour.

HORIZON YEAR 2036 CONDITIONS

Trips generated by the proposed development are added to Build-Out Year 2026 Background volumes for analysis. **Table 12** summarizes the intersection delay, level of service, and queueing under Horizon Year 2036 Total conditions. Horizon Year 2036 Total Conditions are analyzed with existing signal timing.

		6		Tuble	12: HCI	1	s jor no	ΠΖΟΠ Υ	'ear (2036) C		5				
	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	SOT	Intersection Delay (s/veh)	Intersection LOS		Movement	95% Queue Length (ft/lane)	o/v	Delay (s/veh)	SOT	Intersection Delay (s/veh)	Intersection LOS
					Cen	tral Ave	& Coors	s Blvd	(Signalized)						
	NBL	60.9	0.61	77.3	E				NBL	96.6	0.68	59.4	E		
	NBT	1158.6	1.05	171.6	F				NBT	390.6	0.80	47.7	D		
	NBR	140.7	0.24	42.0	D				NBR	87.9	0.21	36.0	D		
	SBL	164.1	0.60	67.1	E				SBL	253.5	0.85	61.9	E		
<u>×</u>	SBT	455.8	0.62	42.9	D			¥	SBT	806.9	0.97	87.9	F		
AM Peak	SBR	433.9	0.62	43.1	D	81.5	F	PM Peak	SBR	771.4	0.97	91.2	F	56.7	Е
Ξ	EBL	360.4	0.89	74.2	E	81.5	F	Σ	EBL	242.0	0.85	76.5	E	50.7	E
A	EBT	349.1	0.42	30.4	С			4	EBT	246.2	0.38	29.8	С		
	EBR	345.8	0.42	30.4	С				EBR	241.5	0.39	29.9	С		
	WBL	167.1	0.80	99.6	F				WBL	216.3	0.83	72.2	E		
	WBT	153.3	0.21	34.5	С				WBT	291.2	0.49	31.5	С		
	WBR	310.4	0.47	40.9	D				WBR	296.3	0.55	34.9	С	ĺ	
					Gonzal	es Rd &	Coors B	lvd (St	op-Controlle	ed)					
	NBT								NBT						
ak	NBR							ak	NBR					26.6	
AM Peak	SBL	32.5	0.30	17.2	С	54.5	F	PM Peak	SBL	20.0	0.21	10.8	В		D
AN	SBT							РМ	SBT						
	WBL/R	162.5	0.72	54.5	F				WBL/R	87.5	0.55	26.6	D		
					Site Ac	cess & G	ionzales	Rd (St	op-Controll	ed)					
¥	NBL/R	7.5	0.09	10.6	В			¥	NBL/R	7.5	0.09	10.5	В		
AM Peak	EBT/R					10.6	В	Pea	EBT/R					10.5	В
Σ	WBL	2.5	0.02	7.8	А		Mq	Σ	WBL	0.0	0.01	7.7	Α	10.5	U
4	WBT			0.2	А				WBT			0.1	А		
					Bataar	Dr & G	onzales	Rd (St	op-Controlle			r		1	
a k	NBL/T/R	15.0		8.5	A			ak	NBL/T/R	12.5		8.5	A		
Pe	SBL/T/R	5.0		7.7	A	8.4	А	PM Peak	SBL/T/R	5.0		7.9	A	8.6	А
AM Peak	EBL/T/R	22.5		8.5	A			Σ	EBL/T/R	27.5		8.8	A	-	
	WBL/T/R	12.5		8.2	A		0.0	- Dhud	WBL/T/R	12.5		8.3	A		
	NP	27.2	0.10	7 -	7	ige Bivd	& COOr	s BIVd	(Signalized)	24.4	0.20	7.2			
	NBL	37.2	0.19	7.5	A				NBL	24.4	0.20	7.3	A	-	
	NBT	348.7	0.54	13.6	B				NBT	154.5	0.29	9.0	A		
	NBR	341.9	0.54	13.7	В				NBR	150.3	0.29	9.1	A		
	SBL	29.2	0.26	10.3	B				SBL	31.9	0.20	6.3	A		
ak	SBT	183.7	0.30	10.6	В			ak	SBT	225.7	0.41	1.0	B		
AM Peak	SBR	179.4	0.30	10.6	B	19.5	В	PM Peak	SBR	220.6	0.41	10.0	B	17.4	в
AM	EBL	146.8	0.51	52.3	D			PM	EBL	52.6	0.27	49.0	D		
	EBT	229.4	0.54	45.0	D				EBT	150.0	0.44	42.4	D		
	EBR	33.3	0.09	36.5	D				EBR	72.4	0.27	37.6	D		
	WBL	68.6	0.30	51.8	D				WBL	64.4	0.29	47.3	D		
	WBT	176.3	0.41	43.2	D				WBT	193.7	0.55	43.8	D		
	WBR	77.9	0.20	38.2	D				WBR	144.2	0.42	39.1	D		

Table 12: HCM Results for Horizon Year (2036) Conditions

The Horizon Year 2036 Total analysis indicates:

Delay and LOS Results

At all intersections where LOS results are present, all movements operate at acceptable LOS during the AM and PM peaks except:

- At the signalized intersection of Central Avenue & Coors Boulevard
 - NBL operates at LOS E during the AM and PM peak hours.
 - NBT operates at LOS F during the AM peak hour.
 - SBL operates at LOS E during the AM and PM peak hours.
 - SBT operates at LOS F during the PM peak hour.
 - SBR operates at LOS F during the PM peak hour.
 - EBL operates at LOS E during the AM and PM peak hours.
 - WBL operates at LOS F and LOS E during the AM and PM peak hours, respectively.
- At the stop-controlled intersection of Gonzales Road and Coors Boulevard
 - WBL and WBR operate at LOS F at the AM peak hour

Queuing Results

At all intersections where queue length results are present, existing storage lengths are sufficient to accommodate 95th percentile queue lengths except:

- At the signalized intersection of Central Avenue & Coors Boulevard
 - EBL is anticipated to not accommodate the 95th percentile queue lengths during the AM and PM peak hours.
 - WBL is anticipated to not accommodate the 95th percentile queue lengths during the AM and PM peak hours.
- At the signalized intersection of Bridge Boulevard & Coors Boulevard
 - EBL is anticipated to not accommodate the 95th percentile queue lengths during the AM peak hour.
 - WBR is anticipated to not accommodate the 95th percentile queue lengths during the PM peak hour.

OFF-SITE CAPACITY MITIGATIONS

Under Existing 2024 traffic conditions, the left-turn and northbound through movements at Central Avenue and Coors Boulevard experience long queues and excessive delays. These movements continue to experience queuing and LOS challenges in all scenarios. The additional school-generated traffic does not appear to contribute to the queuing and LOS challenges compared to overall traffic growth.

However, per the Horizon Year 2036 Total analysis, the westbound movements at Gonzales Road and Coors Boulevard are anticipated to experience considerable delay and queuing. The following sections analyze and discuss several mitigation strategies.

TRAFFIC SIGNAL WARRANT

Implementing a traffic signal at the intersection of Gonzales Road and Coors Boulevard may mitigate the delay and queuing challenges for westbound in Horizon Year 2036. The following sections document a signal warrant analysis under the existing conditions to determine if a traffic signal is feasible for this intersection.

SIGNAL WARRANT ANALYSIS

This traffic signal warrant analysis is based on the traffic signal warrants in Chapter 4C, Traffic Control Signal Needs Studies, of the 2009 Manual on Uniform Traffic Control Devices (MUTCD). Nine warrants are included in the manual for warranting a traffic signal installation. These warrants are:

- Warrant 1 Eight-Hour Vehicular Volume;
- Warrant 2 Four-Hour Vehicular Volume;
- Warrant 3 Peak Hour;
- Warrant 4 Pedestrian Volume;
- Warrant 5 School Crossing;
- Warrant 6 Coordinated Signal System;
- Warrant 7 Crash Experience;
- Warrant 8 Roadway Network;
- Warrant 9 Intersection Near a Grade Crossing

This analysis was performed using existing turning movement volumes collected over 13 hours at Gonzales Road and Coors Boulevard, summarized in **Table 13**. TMC data is in Appendix B.

	Co	ors Bouleva	rd		Gonzal		Pedestrians		
Hour	NB	SB	Total	EB Vo	lume	WB Vo	olume	Total Minor	Crossing
Begin	Volume	Volume	Volume	LT	RT	LT	RT	Volume	Major Roadway
0:00									
1:00									
2:00									
3:00									
4:00									
5:00									
6:00	707	366	1,073	0	0	24	53	77	0
7:00	1,210	667	1,877	0	0	47	77	124	0
8:00	1,057	696	1,753	0	0	76	84	160	0
9:00	802	588	1,390	0	0	57	49	106	0
10:00	678	659	1,337	0	0	31	60	91	0
11:00	641	680	1,321	0	0	35	60	95	0
12:00	674	810	1,484	0	0	53	51	104	0
13:00	696	877	1,573	0	0	48	67	115	0
14:00	731	952	1,683	0	0	63	79	142	0
15:00	833	1,153	1,986	0	0	60	100	160	1
16:00	826	1,218	2,044	0	0	86	75	161	0
17:00	825	1,158	1,983	0	0	69	65	134	0
18:00	688	1,033	1,721	0	0	46	42	88	0
19:00									
20:00									
21:00									
22:00									
23:00									
TOTAL	10,368	10,857	21,225	0	0	695	862	1,557	1

Table 13: Volume Summary

The MUTCD recommends considering the effects of right-turn volumes on the minor street approach if the movement enters the major street with minimal conflict, primarily with a right-turn lane. Based on the traffic volumes at this intersection, Coors Boulevard is considered the Major Roadway for this analysis, with multi-lane approaches. Gonzales Road is evaluated as a Minor Roadway with a single-lane approach. **Table 14** summarizes the volume warrant results, as discussed in the next section.

	Co	ors Bouleva			es Road	warrant Su		N	leets V	/arrant	s?	
Hour	NB	SB	Total	EB	WB	Max		4.5	1-Co	mbo		•
Begin	Volume	Volume	Volume	Volume	Volume	Volume	1A	1B	Α	В	2	3
0:00							-	-	-	-	-	-
1:00							-	-	-	-	-	-
2:00							-	-	-	-	-	-
3:00							-	-	-	-	-	-
4:00							-	-	-	-	-	-
5:00							-	-	-	-	-	-
6:00	707	366	1,073	0	77	77	-	Y	-	Y	Y	-
7:00	1,210	667	1,877	0	124	124	Y	Υ	Y	Y	Υ	-
8:00	1,057	696	1,753	0	160	160	Y	Υ	Y	Y	Υ	-
9:00	802	588	1,390	0	106	106	Y	Υ	Y	Υ	Υ	-
10:00	678	659	1,337	0	91	91	-	Y	Y	Y	Υ	-
11:00	641	680	1,321	0	95	95	-	Y	Y	Y	Υ	-
12:00	674	810	1,484	0	104	104	T.	Y	Y	Y	Υ	-
13:00	696	877	1,573	0	115	115	Y	Υ	Y	Y	Υ	-
14:00	731	952	1,683	0	142	142	Y	Y	Y	Y	Υ	-
15:00	833	1,153	1,986	0	160	160	Y	Y	Y	Y	Υ	-
16:00	826	1,218	2,044	0	161	161	Y	Υ	Y	Y	Υ	-
17:00	825	1,158	1,983	0	134	134	Ý	Υ	Y	Y	Υ	-
18:00	688	1,033	1,721	0	88	88	-	Y	Y	Y	Y	-
19:00							-	-	-	-	-	-
20:00							-	-	-	-	-	-
21:00							1	-	-	-	-	-
22:00								- (-	-	-	-
23:00							-	-	-	-	-	-
TOTAL	10,368	10,857	21,225	0	1,557	1,557	8	13	12 1	13 2	13	0

Table 14: Volume for Analysis and Warrant Summary

Warrant 1 – Eight-Hour Vehicular Volume

Warrant 1 is based on the volumes from both approaches on the major street and the higher approach volume on the minor street. It also uses the number of lanes for moving traffic on each approach. <u>Either</u> <u>Condition A or Condition B of this warrant must be met for Warrant 1 to be satisfied.</u>

The MUTCD allows for a reduced warranting threshold (70%) for intersections where the posted or 85thpercentile speed exceeds 40 MPH or if the intersection is located in a community with a population under 10,000. Since the posted speed limit on the Coors Boulevard is greater than 40 MPH (45 MPH), the reduced warranting threshold is used for this warrant.

Condition A of Warrant 1 is met when, for each of any eight hours of an average day, the warranting volumes exist on the major street and the higher-volume minor street approach to the intersection during the same eight hours. The warranting threshold for an approach with two or more lanes on the major street and an approach with one lane on the minor street:

Major Street:	420 vph (total for both directions)
Minor Street:	105 vph (higher volume approach)

Warrant 1A threshold volumes are exceeded for eight (8) hours of the day. Eight (8) hours are required for this warrant condition. <u>Warrant 1A is satisfied at this location</u>.

Condition B of Warrant 1 applies to operating conditions where the major street traffic is so heavy that it creates excessive delay or hazardous conditions for minor street traffic when entering or crossing the

major street. The warrant condition is met when, for each of any eight hours of an average day, the warranting volumes exist on the major street and on the higher-volume minor street approach to an intersection. The warranting threshold for an approach with two or more lanes on the major street and an approach with one lane on the minor street is:

Major Street:	630 vph (total for both directions)
Minor Street:	53 vph (higher volume approach)

Warrant 1B threshold volumes are exceeded for 13 hours of the day. Eight (8) hours are required for this warrant condition. <u>Warrant 1B is satisfied at this location</u>.

A combination of Conditions A and B may be applied at locations where Conditions A and B are not satisfied. The same eight hours of the day are not required to be used for meeting both conditions. Under the combination warrant, the warranting thresholds are:

Major Street: 336 vph and 504 vph for Conditions A and B, respectively (total for both directions)
Minor Street: 84 vph and 42 vph for Conditions A and B, respectively (higher volume approach)

Combination threshold volumes are exceeded for 12 hours of the day. Eight (8) hours are required for this warrant condition. The combination warrant is satisfied at this location.

Based on these results and as shown in Table 14, Warrant 1 is MET for this intersection.

Warrant 2 – Four-Hour Volumes

Warrant 2 is satisfied when the volumes for any four (4) hours of an average day, when plotted in Figure 4C-1 (or 4C-2 when applicable) of the MUTCD, fall above the curve for the appropriate number of lanes. The minor street approach is evaluated as two lanes because approximately half of the traffic on the approach turns left, and the left-turn lane accommodates all left-turning vehicles. Since the posted speed limit on the major street is over 40 mph (45 mph), the reduced warranting threshold is used for this warrant, and Figure 4C-1 is used for this analysis. **Figure 9** shows the results of this analysis.

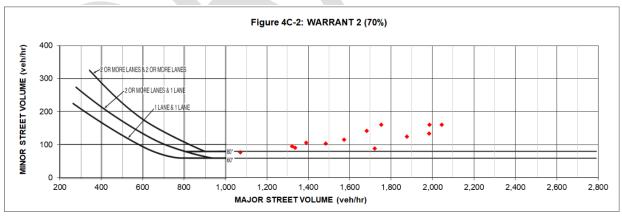


Figure 9: Four-Hour Vehicular Volume Warrant (Warrant 2) – Gonzales Road and Coors Boulevard

Based on the traffic volumes presented in **Table 14** and plotted in **Figure 9**, 13 hours of the day fall above the curve for the appropriate number of lanes when plotted in Figure 4C-2 of the MUTCD. Four (4) hours are required for this warrant condition. Under these circumstances, <u>Warrant 2 is MET for this intersection</u>.

Warrant 3 – Peak Hour Volume

Warrant 3 is intended for application when traffic conditions are such that for at least one (1) hour of the day, the minor street traffic experiences undue delays entering or crossing the major street. Warrant 3 is satisfied when either of the following conditions is met:

- 1. If all three of the following conditions exist for the same 1 hour (any four consecutive 15-minute periods) of an average day:
 - a. The delay experienced by the traffic on the minor-street approach controlled by a STOP sign equals or exceeds 4 vehicle-hours for a one-lane approach or 5 vehicle-hours for a two-lane approach, and
 - b. The volume on the same minor-street approach equals or exceeds 100 vehicles per hour for one moving lane of traffic or 150 vehicles per hour for two moving lanes, and
 - c. The total entering volume serviced during the hour equals or exceeds 650 vehicles per hour for intersections with three approaches or 800 vehicles per hour for intersections with four or more approaches.
- 2. The plotted point representing the vehicles per hour on the major street (total of both approaches) and the corresponding vehicles per hour on the higher-volume minor-street approach (one direction only) for 1 hour (any four consecutive 15-minute periods) of an average day falls above the applicable curve in Figure 4C-3 (or Figure 4C-4) for the existing combination of approach lanes.

As further specified in the MUTCD:

"This signal warrant shall be applied only in unusual cases such as office complexes, manufacturing plants, industrial complexes, or high-occupancy vehicle facilities that attract or discharge large numbers of vehicles over a short time."

Traffic characteristics at this intersection do not fall under the unusual cases identified above. Therefore, Warrant 3 was NOT evaluated for this intersection and is not APPLICABLE.

Warrant 4 – Minimum Pedestrian Volume

Warrant 4 applies to conditions where the major street traffic is so heavy that pedestrians experience excessive delay in crossing the major street. It is intended for application at an intersection or midblock location and requires that one (1) of the following conditions be met:

- A. For each of any 4 hours of an average day, the plotted points representing the vehicles per hour on the major street (total of both approaches) and the corresponding pedestrians per hour crossing the major street (total of all crossings) fall above the curve in Figure 4C-5 (or Figure 4C-6 for speeds greater than 35 MPH); or
- B. For one (1) hour (any four consecutive 15-minute periods) of an average day, the plotted point representing the vehicles per hour on the major street (total of both approaches) and the corresponding pedestrians per hour crossing the major street (total of all crossings) fall above the curve in Figure 4C-7 (or Figure 4C-8 for speeds greater than 35 MPH).

This warrant applies only to those locations where the nearest traffic signal along the major street is greater than 300 feet away. A traffic signal at the study intersection would not unduly restrict platooned traffic flow.

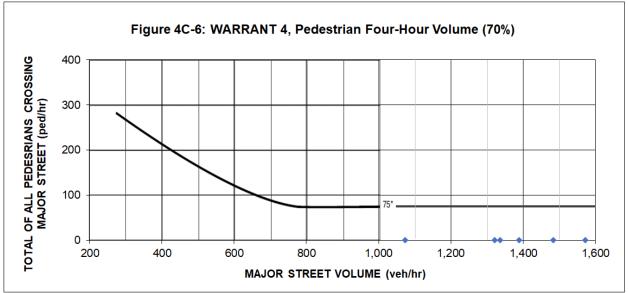


Figure 10: Warrant 4 Minimum Pedestrian Volume Gonzales Road Approaches at Coors Boulevard

Based on the pedestrian volumes crossing Coors Boulevard, as shown in **Table 13** and plotted in **Figure 10**, pedestrians crossing Coors Boulevard do not experience excessive delay, and the threshold volumes are not met. <u>Warrant 4 is NOT MET at this intersection.</u>

Warrant 5 – School Crossing

This warrant applies at an established school crossing where a traffic engineering study of the frequency and adequacy of gaps in the vehicular traffic stream as related to the number and size of groups of school children at the school crossing shows that the number of adequate gaps in the traffic during the period when the children are using the crossing is less than the number of minutes in the same period.

Since this intersection is not an established school crossing, Warrant 5 is NOT APPLICABLE.

Warrant 6 – Coordinated Signal System

Progressive movement control sometimes requires traffic signal installations at intersections where they would not otherwise be warranted to maintain proper vehicle platooning and regulate group speed effectively. This warrant is met when one (1) of the following requirements are met:

- 1. On a one-way street or a street which has predominantly unidirectional traffic, the adjacent signals are so far apart that they do not provide the required degree of platooning.
- 2. On a two-way street, adjacent signals do not provide the necessary degree of platooning and the proposed and adjacent signals could constitute a progressive signal system.

This warrant should not be applied where the ultimate signal spacing would be less than 1,000 feet. The nearest signalized intersections along Coors Boulevard are located approximately 2,800 feet to the north and approximately 1,200 feet to the south. As a traffic signal at Gonzales Road and Coors Boulevard intersection is not necessary for a progressive signal system, **Warrant 6 is NOT MET at this intersection**.

Warrant 7 – Crash Experience

The warrant is satisfied when:

- Adequate trial of less restrictive remedies with satisfactory observance and enforcement has failed to reduce the crash frequency; and
- Five or more reported crashes, of types susceptible to correction by traffic signal control, have occurred within a 12-month period, each crash involving personal injury or property damage apparently exceeding the applicable requirements for a reportable crash; and
- 3. For each of any 8 hours of an average day, the vehicles per hour (vph) given in both of the 80 percent columns of Condition A in Table 4C-1, or the vph in both of the 80 percent columns of Condition B in Table 4C-1 exists on the major-street and the higher-volume minor-street approach, respectively, to the intersection, or the volume of pedestrian traffic is not less than 80 percent of the requirements specified in the Pedestrian Volume warrant. These major-street and minor-street volumes shall be for the same 8 hours. On the minor street, the higher volume shall not be required to be on the same approach during each of the 8 hours. If the posted or statutory speed limit or the 85th-percentile speed on the major street exceeds 40 MPH, or if the intersection lies within the built-up area of an isolated community having a population of less than 10,000, the traffic volumes in the 56 percent columns in Table 4C-1 may be used in place of the 80 percent columns.

Crash data between 2018 and 2022 did not include a 12-month period with five or more crashes susceptible to correction by a traffic signal. <u>Warrant 7 is NOT MET for this intersection</u>.

Warrant 8 – Roadway Network

The systems warrant is intended to encourage concentration and organization of traffic flow networks. This warrant is applicable when the common intersection of two major routes:

- The intersection has a total existing, or immediately projected, entering volume of at least 1,000 vehicles during the peak hour of a typical weekday and has five-year projected traffic volumes, based on an engineering study, which meet one or more of Warrants 1, 2, and 3 during an average weekday; or
- 2. Has a total existing or immediately projected entering volume of at least 1,000 vehicles for each of any five hours of a Saturday and/or Sunday.

A major route as used in this signal warrant shall have one or more of the following characteristics:

- 1. It is part of the street or highway system that serves as the principal roadway network for through traffic flow; or
- 2. It includes rural or suburban highways outside, entering or traversing a City; or
- 3. It appears as a major route on an official plan, such as a major street plan in an urban area traffic and transportation study; or
- 4. It connects areas of principal traffic generation; or
- 5. It has street freeway or expressway ramp terminals.

In the Mid-Region Metropolitan Planning Organization Long Range Rodway System, Coors Boulevard is classified as a principal arterial. Gonzales Road is considered a local street. In addition, Warrant 3 is not met. Therefore, <u>Warrant 8 is NOT MET at this intersection</u>.

Warrant 9 – Intersection Near a Grade Crossing

This signal warrant is intended for use at a location where none of the conditions described in the other eight traffic signal warrants are met, but the proximity to the intersection of a grade crossing on an intersection approach controlled by a STOP or YIELD sign is the principal reason to consider installing a traffic control signal.

The need for a traffic control signal shall be considered if an engineering study finds that both of the following criteria are met:

- 1. A grade crossing exists on an approach controlled by a STOP or YIELD sign and the center of the track nearest to the intersection is within 140 feet of the stop line or yield line on the approach; and
- 2. During the highest traffic volume hour during which rail traffic uses the crossing, the plotted point representing the vehicles per hour on the major street (total of both approaches) and the corresponding vehicles per hour on the minor-street approach that crosses the track (one direction only, approaching the intersection) falls above the applicable curve in Figure 4C-9 or 4C-10 for the existing combination of approach lanes over the track and the distance D, which is the clear storage distance as defined in Section 1A.13 of the MUTCD.

A railroad grade crossing is not located within 140 feet of this intersection. <u>Warrant 9 is NOT</u> <u>APPLICABLE for this intersection</u>.

Intersection Sight Distance

As part of this study, sight distance on the minor street (Gonzales Road) approach to the intersection was assessed. On stop-controlled approaches, the motorist should be able to see if and when adequate gaps exist to perform their desired maneuver.

The sight distance required for the stop-controlled approaches was estimated using the procedures developed by the American Association of State Highway and Transportation Officials (AASHTO) and published in the 2018 edition of A Policy on Geometric Design of Highways and Streets. **Table 15** presents the required and available sight distance for vehicles turning onto Coors Boulevard from Gonzales Road.

Tuble 19. Sight Distance Evaluat	
Major Roadway	Coors Boulevard
Posted Speed Limit	45 MPH
Minor Roadway	Gonzales Road
Approach	Westbound
Required Intersection Sight Distance to the Left	430 feet
Required Intersection Sight Distance to the Right	695 feet
Available Sight Distance to the Left	475 feet
Available Sight Distance to the Right	550 feet
Sight Distance Available > Require	ed
To the Left	Yes
To the Right	No

Table 15: Sight Distance Evaluation	1
-------------------------------------	---

As shown in **Table 15** Based on a comparison of the field investigation results of the available sight distance to the required sight distance, the available sight distance is insufficient for motorists on the west approach who are making left turns.

SIGNAL WARRANT RESULTS

Based on the existing traffic volumes and this traffic signal warrant analysis, traffic signal Warrants 1 and 2 are met for the Gonzales Road and Coors Boulevard intersection. **Table 16** is a summary of the traffic signal warrants.

Table 16. Cianal M	Varrant Cumana	and Conzelo	. Dood and	Coors Doulouard
Table 16: Signal V	varrant Summe	ary – Gonzale.	's Road and	Coors Boulevara

Warrant	Warrant Met?	Notes
		Condition A – 8 hours met (8 required)
1 – Eight-Hour Vehicular Volume	Yes	Condition B – 13 hours met (8 required)
		Combination – 12 hours met (8 required)
2 – Four-Hour Vehicular Volume	Yes	13 hours met (4 required)
3 – Peak Hour	No	0 hours met (1 required)
4 – Pedestrian Volume	No	0 hours met for 4-hour and peak hour
5 – School Crossing	N/A	Not an established school crossing
6 – Coordinated Signal System	No	Not needed for progressive signal system
7 – Crash Experience	No	Not Evaluated
8 – Roadway Network	No	Intersection of two major routes
9 – Near a Grade Crossing	N/A	Not adjacent to a grade crossing

Based on this traffic signal warrant analysis, a traffic signal is recommended at this intersection.

In the Horizon Year 2036 Total conditions, the westbound approach of Gonzales Road at Coors Boulevard is anticipated to experience delay and queueing issues. Installing a traffic signal or converting the intersection to a roundabout are options that are anticipated to resolve these issues. **Table 17** and **Table 18** show the delay and queueing results for Gonzales Road at Coors Boulevard for a traffic signal and a roundabout under Horizon Year 2036 Total conditions.

	Gonzales Rd & Coors Blvd (Signalized)																										
Peak	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	SOJ	Intersection Delay (s/veh)	Intersection LOS	Peak	Movement	95% Queue Length (ft/lane)	0//C	Delay (s/veh)	SOJ	Intersection Delay (s/veh)	Intersection LOS												
AM	NBT	359.4	0.72	18.1	В				NBT	155.2	0.39	9.8	Α														
	NBR	356.3	0.73	18.5	В	15.6 B	15.6 B		15.6 B	.6 B	15.6 B									PM	NBR	151.2	0.39	9.9	Α		
	SBL	54.8	0.55	17.7	В			15.6 B					SBL	31.0	0.35	7.4	Α	9.8	А								
	SBT	86.3	0.30	6.1	Α						SBT	102.8	0.40	5.3	Α												
	WBL/R	137.9	0.52	30.0	С				WBL/R	169.0	0.77	34.6	С														

Table 17: Gonzales Rd and Coors Blvd Summary with Traffic Signal

Delay and LOS Results

All movements operate at acceptable LOS during the AM and PM peak hours.

Queuing Results

The existing storage lengths are sufficient to accommodate 95th-percentile queue lengths.

	Table 10. Concerns the Ind Coords Bird Summary With Koundabout																		
	Gonzales Rd & Coors Blvd (Roundabout)																		
Peak	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	ros	Intersection Delay (s/veh)	Intersection LOS	Peak Movement		95% Queue Length (ft/lane)	v/c	Delay (s/veh)	ros	Intersection Delay (s/veh)	Intersection LOS				
AM	NBT	102.5	0.58	10.0	В			Ρ	NBT	40.0	0.34	6.4	А						
	NBT/R	117.5	0.62	10.4	В		9.0 A	9.0 A	А	А		NBT/R	42.5	0.36	6.4	А			
	SBL/T	35.0	0.32	5.8	в	9.0 A					А	А	А	А	А		SBL/T	62.5	0.46
	SBT	37.5	0.34	5.8	А				SBT	70.0	0.49	7.8	А						
	WBL/R	42.5	0.36 14.1 B				WBL/R	27.5	0.27	8.1	А								

Table 18: Gonzales Rd and Coors Blvd Summary with Roundabout

Delay and LOS Results

All movements operate at acceptable LOS during the AM and PM peak hours.

Queuing Results

The existing storage lengths are sufficient to accommodate 95th-percentile queue lengths.

MITIGATION SUMMARY

Per the Horizon Year 2036 Total analysis, the westbound movements at Gonzales Road and Coors Boulevard are anticipated to experience considerable delay and queuing; additional traffic control at this intersection is recommended.

A traffic signal is warranted under existing 2024 conditions. As such, a traffic signal is analyzed as a potential strategy to mitigate westbound delay on Gonzales Road at Coors Boulevard under Horizon Year 2036 conditions. Signalizing this intersection will improve LOS for the intersection and the westbound approach under Horizon Year 2036 conditions.

Similarly, converting the intersection to a two-lane roundabout will improve delay and LOS while also minimizing 95th-percentile queue lengths and proactively addressing safety.

PEDESTRIAN AND BICYCLE CIRCULATION

Mark Armijo Academy estimates that 40 to 60 percent of students arrive by walking or riding bicycles. There are adequate sidewalks in the vicinity of the development site. However, there are no marked crossing facilities for student pedestrians walking from north of Gonzales Road. A marked pedestrian crossing across Gonzales Road can provide a safe location for student pedestrians to use when accessing the school's campus. Additionally, the Mark Armijo Academy development should ensure that pedestrian facilities throughout the property comply with American Disabilities Act (ADA) standards and adhere to the guidelines outlined in Chapter 23, Section 3.5, of the COA DPM, which describes standards for pedestrian facilities for sidewalks and curb ramps.

At each entrance, secure and convenient bicycle storage facilities on the school campus should be provided.

By providing safe pedestrian and bicycle facilities, the school can communicate its investment in its students and community by encouraging physical activity, sustainability, and equitable transportation.

DROP-OFF/PICK-UP ROUTING AND CIRCULATION

Right-in operations are recommended for the proposed access driveway to minimize congestion and delays associated with traffic circulation during student drop-off/pick-up. Right-in operations will also direct school trips to use the principal arterial rather than the adjacent local streets.

Additionally, the maximum queue length is estimated for the anticipated student enrollment of 380 students. The available storage space is approximately 960 feet. Using methodology developed by observing drop-off/pick-up operations of 55 elementary schools in Texas, the maximum queue length during drop-off and pick-up was determined for each drop-off area¹. The maximum queue length and available storage are shown in **Table 19**.

Table 19: Queuing Analysis	
Enrollment (n)	380
Max. Queue Length (ft)	525
Available Vehicle Storage (ft)	960

The queuing analysis indicates that the drop-off/pick-up loop is anticipated to accommodate the maximum queue length resulting from drop-off/pick-up operations.

QUEUING METHODOLOGY APPLICABILITY AND VARIANCES

While these analyses provide the best estimate of maximum queue lengths during drop-off/pick-up operations, they are based on some assumptions. The linear model used to determine maximum queue lengths is derived from the busiest time of day at sample Texas elementary schools. Presumably, all elementary school students are driven to school rather than driving their own vehicle as a high schooler might. MAA estimates that 30 percent of students drive themselves to MAA, making this a conservative estimate of the maximum queue length.

NOISE AND AIR QUALITY IMPACTS

School drop-off and pick-up operations are accompanied by vehicle idling, which generates noise and excessive carbon dioxide (CO₂) emissions, degrading air quality. The Environmental Protection Agency (EPA) published the Idle-Free Schools Toolkit. Inspired by idling reduction programs such as the American Lung Association in Colorado's Clean Air at Schools (CASEO) Program, the EPA Clean School Bus Program Idle Reduction Campaign, and The Idle Free Utah Program, the Idle-Free Schools Toolkit,

¹ Qualls, "Strategies for the Greening of Student Pick-Ups at School Dismissal."

"includes all of the information needed to run an effective idling reduction campaign at a school to reduce student exposure to toxic vehicle exhaust." This program aims to reduce noise and CO2 emissions and contributes to safety since noise from idling vehicles can adversely impact a student's hearing ability. It also promotes public health by reducing unnecessary pollutants. Mark Armijo Academy should review the EPA Idle-Free Schools Toolkit and implement an idling reduction campaign. The EPA has several recommendations for implementing this campaign, including conducting observations, publishing idling policies for the school, talking to drivers when they are in the parent loop, and making it a student project. Additionally, encouraging students to walk or bicycle to school can help reduce motor vehicle trips, effectively reducing negative air quality, noise, and traffic impacts.

SUMMARY OF OFF-SITE MITIGATIONS

In the Horizon Year 2026 Total scenario, Gonzales Road's westbound movement at Coors Boulevard is anticipated to experience capacity and queueing issues.

Signalization of the intersection would resolve these issues. Likewise, using a roundabout foro traffic control at this intersection will improve delay and queueing while proactively enhancing safety.

CRASH SUMMARY

Crash data for the intersection of Gonzales Road and Coors Boulevard area was reviewed to highlight crash trends and safety challenges that may be present. Crash data provided by the City of Albuquerque for 2018 to 2022 is summarized in **Table 20**.

	Table 20: Crash Summary				
	Crash Summary	Coors &	Coors &	Bataan &	Coors &
	Total Crashes	Central	Gonzales	Gonzales	Bridge 97
	Total Crashes 2018	304 78	<u>40</u> 4	5	29
<u>ب</u>	2018	62	8	0	23
By Year	2020	55	11	0	20
Βy	2021	57	8	1	15
	2022	52	9	3	12
	Avoid No Contact Other	4	0	0	0
	Avoid No Contact Vehicle	6	3	1	4
	Cell Phone	3	0	0	0
	Defective Tires	0	1	0	0
	Disregarded Traffic Signal	26	0	0	15
	Driver Inattention	147	18	1	57
	Driverless Moving Vehicle	2	0	0	0
	Drove Left Of Center	2	1	0	1
	Excessive Speed	17	3	1	11
	Failed To Yield For Emergency Vehicle	1	0	0	0
	Failed To Yield For Police Vehicle	1	0	0	0
	Failed To Yield Right Of Way	43	7	1	18
	Following Too Closely	39	5	0	11
	Improper Backing	1	0	1	1
	Improper Lane Change	20	1	0	4
	Improper Overtaking	7	0	1	1
	Inadeguate Brakes	4	1	0	0
ORS	Made Improper Turn	11	3	1	1
E E	None	96	10	0	48
CONTRIBUTING FACTORS	Other Improper Driving	29	6	0	8
NI	Other Mechanical Defect	3	1	0	0
.ng	Other, No Driver Error	134	17	3	29
UTRI	Passed Stop Sign	0	1	1	0
Ō	Pedestrian Error	10	0	0	0
	Speed Too Fast For Conditions	6	1	0	3
	Under The Influence Of Drugs	0	3	0	0
	Under The Influence Of Alcohol	11	3	0	2
	Backup - Prior Incident	1	0	0	0
	Lights (Head, Signal, Tail)	1	0	0	0
	Driver Distracted By Other Activity	5	0	0	2
	Driver Distracted By Passenger	1	0	0	0
	Obstruction In Road	1	0	1	0
	Driver Distracted By Talking On Cell Phone	0	1	0	0
	Other Visual Obstruction(S)	2	0	0	4
	Weather Conditions	0	2	0	0
	Wheels	1	0	0	0
	Wipers	0	0	0	2
	%Driver Inattention	23%	20%	8%	26%
	%Failure To Yield Right Of Way	7%	8%	8%	8%
	%Disregarded Traffic Signal	4%	0%	0%	7%
	%Following Too Closely	6%	6%	0%	5%

	Fatal Injury (Killed) (K)	1	1	0	2
	Suspected Serious Injury (A)	5	0	0	3
	Visible Injury (B)	20	1	0	6
SEVERITY	Complaint of Injury (C)	53	13	0	27
VEF	Property Damage Only (O)	225	25	5	59
SE	%Property Damage Only (0)	74%	63%	100%	61%
	%Complaint of Injury (C)	17%	33%	0%	28%
	%Visible Injury (B)	7%	3%	0%	6%
	Daylight	156	24	2	49
z	Dayingin	4	1	0	43 2
LIGHTING CONDITION	Dusk	8	3	0	6
	Dark-Lighted	66	7	0	22
ő				_	
9	Dark-Not Lighted	7 62	1 4	1	4
Z E	Left Blank			1	14
Ъ	%Daylight	51%	60%	40%	51%
5	%Dark-Lighted	22%	18%	20%	23%
	%Dark-Not Lighted	2%	3%	20%	4%
PED	Pedestrian Involved	14	1	0	2
/ P	Bicyclist Involved	0	0	0	0
BIKE/	%Pedestrian Involved	5%	3%	0%	2%
B	%Bicyclist Involved	0%	0%	0%	0%
	Fixed Object	0	0	1	0
	Left Blank	146	18	3	33
	Invalid Code	16	2	0	3
	Other Vehicle - From Same Direction/One Stopped	4	0	0	2
	Other Vehicle - From Same Direction/Rear End Collision	23	0	0	11
	Other Vehicle - From Same Direction/Sideswipe Collision	4	0	0	1
	Other Vehicle - From Same Direction/Both Going Straight	17	1	0	9
ų.	Other Vehicle – From Same Direction/All Others	0	0	0	1
CRASH TYPE	Other Vehicle - One Left Turn/Entering At Angle	9	2	0	7
н	Other Vehicle - One Right Turn/Entering At Angle	6	1	0	2
RA	Other Vehicle - Both Going Straight/Entering At Angle	22	5	0	9
0	Other Vehicle – From Opposite Direction/All Others	0	0	0	1
	Other Vehicle - From Opposite Direction/Both Going Straight	3	1	0	1
	Other Vehicle - From Opposite Direction/One Left Turn	6	0	0	4
	Other Vehicle - From Opposite Direction/Sideswipe Collision	1	0	0	1
	Other Vehicle - From Opposite Direction	28	3	1	8
	%Other Vehicle - From Same Direction/Both Going Straight	6%	3%	0%	9%
	%Other Vehicle - One Left Turn/Entering At Angle	3%	5%	0%	7%
	Other Vehicle - Both Going Straight/Entering At Angle	7%	13%	0%	9%

The crash summary indicates:

- Central Avenue & Coors Boulevard
 - 304 crashes were reported.
 - The most common crash type was Other Vehicle From Opposite Direction
 - 51% of reported crashes occurred during daylight hours, and 24% occurred under *Dark-Lighted* or *Dark-Not Lighted* conditions.
 - One fatal crash occurred.
 - Five serious injury crashes occurred.
 - There were 14 pedestrian-involved crashes.
 - The most common contributing factors were *Driver Inattention* and *Failed to Yield Right* of Way.
- Gonzales Road & Coors Boulevard
 - 40 crashes were reported.
 - The most common crash type was Other Vehicle Both Going Straight/Entering at Angle
 - 60% of reported crashes occurred during daylight hours, and 21% occurred under *Dark-Lighted* or *Dark-Not Lighted* conditions.

- One fatal crash occurred.
- There was one pedestrian-involved crash.
- The most common contributing factors were *Driver Inattention* and *Failed to Yield Right* of Way.
- Bataan Drive and Gonzales Road
 - 5 crashes were reported.
 - 40% of reported crashes occurred during daylight hours, and 40% occurred under *Dark-Lighted* or *Dark-Not Lighted* conditions.
 - No fatal or injury crashes occurred.
 - All crashes were classified as Property Damage Only.
- Bridge Boulevard and Coors Boulevard
 - 97 crashes were reported.
 - The most common crash type was Other Vehicle From Same Direction/Rear End Collision
 - 51% of reported crashes occurred during daylight hours, and 27% occurred under *Dark-Lighted* or *Dark-Not Lighted* conditions.
 - Two fatal crashes occurred.
 - Three serious injury crashes occurred.
 - There were two pedestrian-involved crashes.
 - The most common contributing factors were *Driver Inattention* and *Failed to Yield Right of Way*.

CONCLUSIONS AND RECOMMENDATIONS

This section summarizes this report's traffic analysis, mitigations, and recommendations.

Traffic operations for Gonzales Road and Coors Boulevard are summarized as follows:

- WBL and WBR operate at LOS F during the AM peak hour under the Horizon Year 2036 Total scenario.
- All other movements operate at acceptable LOS levels and have adequate storage to accommodate the 95th percentile queue lengths under all scenarios.

Traffic operations for Central Avenue and Coors Boulevard are summarized as follows:

- NBL, SBL, EBL, and WBL operate at LOS E and LOS F during the AM and PM peak hours for the Existing 2024, Build-Out Year 2026 Background, Build-Out Year 2026 Total, and Horizon Year 2036 Total scenarios.
 - Queue storage is anticipated to be exceeded for the EBL movement during the AM and PM peak hours for the Existing 2024, Build-Out Year 2026 Background, Build-Out Year 2036 Total, and Horizon Year 2036 Total scenarios.
 - Queue storage is anticipated to be exceeded for the WBL movement during the AM and PM peak hours for the Existing 2024, Build-Out Year 2026 Background, Build-Out Year 2026 Total, and Horizon Year 2036 Total scenarios.
- NBT operates at LOS E during the AM peak hour for the Existing 2024, Build-Out Year 2026 Background, and Build-Out Year 2026 Total scenarios and LOS F for the AM peak hour in the Horizon Year 2036 Total scenarios.
- SBT and SBR operate at LOS E during the PM peak hour in the Build-Out Year 2026 Total scenario and LOS F during the PM peak hour in the Horizon Year 2036 Total scenario.
- All other movements operate at an acceptable LOS and have adequate storage to accommodate the 95th percentile queue lengths under the analyzed scenarios.

All other intersections operate at acceptable LOS and accommodate 95th percentile queue lengths during the AM and PM peak hours for all scenarios except:

• At Bridge Boulevard and Coors Boulevard, WBR 95th percentile queue lengths are anticipated to exceed storage lengths for the Existing 2024, Build-Out Year 2026 Background, Build-Out Year 2026 Total, and Horizon Year 2036 Total scenarios.

SITE RECOMMENDATIONS

Recommendations for study intersections directly serving and primarily impacted by the proposed development are as follows:

- Proposed Access Driveway and Gonzales Road:
 - The proposed access driveway on Gonzales Road meets CABQ DPM requirements.
 - Right-in operations should are recommended for the proposed access driveway.
 - The access driveway should provide adequate site distance, circulation for ingress and egress trips, and sufficient storage to accommodate school drop-off/pick-up operations.
- Multimodal Facilities
 - A marked pedestrian crossing across Gonzales Road can provide a safe location for student pedestrians to use when accessing the school's campus.
 - The Mark Armijo Academy development should ensure that pedestrian facilities comply with American Disabilities Act (ADA) standards and adhere to the guidelines outlined in the COA DPM.
 - At each entrance, secure and convenient bicycle storage facilities on the school campus should be provided.

- Queuing
 - The drop-off/pick-up loop is anticipated to accommodate the maximum queue length of drop-off/pick-up operations.
- Air Quality
 - Establish a policy to minimize vehicle idling during drop-off/pick-up operations.
 - Encourage students to walk or bicycle to school.

OFF-SITE INTERSECTION RECOMMENDATIONS

Recommendations for intersections within the study area that do not directly serve the proposed development are as follows:

- Gonzales Road & Coors Boulevard
 - For the Horizon Year 2036 scenario, the westbound movements are anticipated to experience unacceptable delays and queuing. Traffic control via a traffic signal is warranted at this intersection under the existing traffic conditions per the findings of a signal warrant documented in this analysis. Am HCS analysis of this intersection with a traffic signal does mitigate the Horizon Year 2036 queuing and delay challenges.
 - Using a roundabout for traffic control is another option to mitigate this intersection's delay and queuing challenges per an HCS analysis of Horizon Year 2036 volumes.
 - The proposed development contributes 3.0% of the total Build-Out Year Full-Build intersection traffic volumes in the AM peak hour and 2.9% in the PM peak hour.

Appendix A: Scoping Meeting Notes

ARIZONA NEW MEXICO OKLAHOMA TEXAS

Agenda for Mark Armijo Academy Scoping Meeting Gonzales Road & Coors Boulevard April 15, 2024 <u>Meeting Notes in Red</u>

Attendees: Nancy Perea – NMDOT Margaret Haynes – NMDOT Matt Grush – CABQ Curtis Churne - CABQ Julie Luna – Bernalillo County

Jeremy Ortiz – Archis Architects Ashly Hartshorn – Archis Architects Stephen Montaño – Lee Engineering Jonathon Kruse – Lee Engineering

- 1. Introductions
- 2. Review of Site Plan
 - a. Site Plan
- 3. Discussion of Scope for NIA
 - a. Study Intersections
 - i. Coors Blvd & Gonzales Rd
 - ii. Gonzales Rd & Bataan Dr
 - iii. Proposed Access Driveway & Gonzales Rd
 - iv. Coors Blvd & Bridge Blvd
 - v. Coors Blvd & Central Ave
 - 1. NMDOT SAMM for Coors Blvd & Central Ave governance.
 - b. Data Collection
 - i. Existing Study Intersections
 - 1. Collect for "school hours"
 - 2. Count bikes on road.
 - c. Trip Generation, Pass By, & Internal Capture
 - i. Trip Generation Manual (11th Edition) Land Use
 - ii. No buses
 - iii. Jeremy to ask school for neighborhood information and demographics.
 - a. Here are the general breakdowns for site circulation for Mark
 - Armijo from the school:
 - Percentage of students who come from the neighborhood 40 to 60%
 - ii. Percentage of students who come from offsite 40 to 50%
 - iii. Percentage of students who drive themselves 30%
 - iv. Percentage of students who are picked up and dropped off 40%
 - v. Is there a specific place where neighborhood students cross Gonzales to access the site? They usually

cross somewhere in front of our property, but most usually cross Gonzales east of the school.

b.

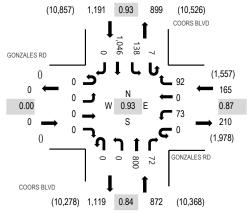
2. ITE 534 – Private High School

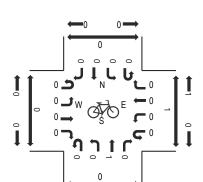
Trip Generation Tables

					Peak Hour Trips								
Use							PM Peak						
													Out
ITE 534 Private High School	380	Students	825	251	62%	38%	152	39%	61%	156	95	59	93

Notes:	
	ITE Trip Generation Manual Rates
Daily Rate: Weekday	
Average Rate: 2.17(x)	
AM Peak: Peak Hour of Generator	
Average Rate: 0.66(x)	
PM Peak: Peak Hour of Generator	
Average Rate: 0.40(x)	

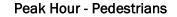
- iv. No Pass-by/Diverted trips
- v. No Internal Capture
- vi. Trips distributed based on existing traffic patterns
- d. Known Developments or Pending Improvements in Area
 - i. Chuze Fitness (Margaret to provide study)
 - ii. Via De San Marcos (Julie to provide study)
- e. Build-out Year and Growth Rate
 - i. Build-Out Year (2026)
 - 1. Will look at historic traffic volumes and calculate the growth rate; if it is less than 1%, we will assume 1% growth per year.
- f. Analysis scenarios
 - i. Existing Conditions
 - ii. Opening Year Background (No Build)
 - iii. Opening Year Buildout (Full Build)
 - iv. Opening Year Buildout Optimized (if needed)
 - 1. All scenarios with existing signal timings except opening year buildout optimized.
 - v. Horizon year 10 Years from opening
- g. Required Analysis & Methodology
 - i. LOS Capacity analysis based on HCM 6th Edition
 - 1. HCS Software
 - ii. 95th Percentile Queue demands
 - 1. Capacity & Queueing for network peaks rather than individual intersection peaks
 - iii. Auxiliary Lane Analysis
 - 1. SAMM for Coors. DPM for Gonzales driveway.
 - iv. Signal warrant for Coors Blvd & Gonzales Rd
 - 1. If warranted, access at Coors and Gonzales would be restricted.
 - v. Sight Distance Analysis at Driveways
 - vi. NIA Specific Analyses/Data Review

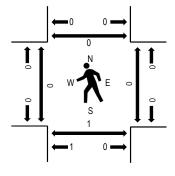

- 1. Impacts on pedestrian and bike circulation
- 2. Pickup/Drop-off routing and circulation
- 3. Noise and air quality impacts from idling vehicles
- vii. Safety Crash Summary 5-years
- 4. Agency Input (Comments & Issues)
- 5. Meeting Notes (distributed by Lee Engineering)


Appendix B: Turning Movement Counts

Location: 1 COORS BLVD & GONZALES RD AM Date: Thursday, May 2, 2024 Peak Hour: 03:30 PM - 04:30 PM Peak 15-Minutes: 03:45 PM - 04:00 PM

Peak Hour - Motorized Vehicles



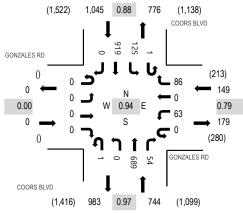


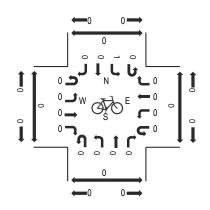
0 -

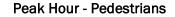
0

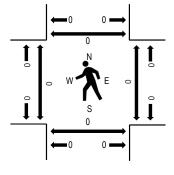
Peak Hour - Bicycles

Note: Total study counts contained in parentheses.

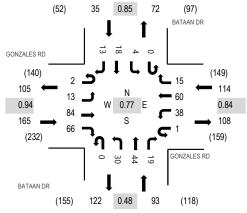

	GONZALES RD					GONZALES RD				OORS	BLVD		COORS BLVD									
Interval	0	Eastb				Westb				Northb				South				Rolling	Ped	lestriar	Crossin	igs
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru F	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South N	Vorth
6:00 AM	0	0	0	0	0	5	0	3	0	0	132	3	0	3	56	0	202	1,150	0	0	0	0
6:15 AM	0	0	0	0	0	5	0	10	0	0	147	2	0	4	62	0	230	1,316	0	0	0	0
6:30 AM	0	0	0	0	0	7	0	17	1	0	203	4	0	3	105	0	340	1,601	0	0	0	0
6:45 AM	0	0	0	0	0	7	0	23	0	0	211	4	0	10	123	0	378	1,869	0	0	0	0
7:00 AM	0	0	0	0	0	9	0	13	0	0	218	13	0	11	104	0	368	2,001	1	0	0	0
7:15 AM	0	0	0	0	0	10	0	12	0	0	314	21	2	25	131	0	515	2,157	0	0	0	0
7:30 AM	0	0	0	0	0	19	0	26	1	0	349	34	0	20	159	0	608	2,154	0	0	0	0
7:45 AM	0	0	0	0	0	9	0	26	0	0	237	23	1	25	189	0	510	2,009	0	0	0	0
8:00 AM	0	0	0	0	0	15	0	20	0	0	284	25	0	20	160	0	524	1,913	0	0	0	0
8:15 AM	0	0	0	0	0	19	0	26	0	0	242	28	0	28	169	0	512	1,801	0	0	0	0
8:30 AM	0	0	0	0	0	23	0	19	1	0	221	25	0	33	141	0	463	1,658	0	1	0	0
8:45 AM	0	0	0	0	0	19	0	19	1	0	204	26	1	19	125	0	414	1,536	0	2	0	0
9:00 AM	0	0	0	0	0	13	0	7	0	0	216	21	0	18	137	0	412	1,496	0	0	0	0
9:15 AM	0	0	0	0	0	11	0	16	0	0	187	13	0	19	123	0	369	1,460	0	1	0	0
9:30 AM	0	0	0	0	0	8	0	12	0	0	171	11	0	15	124	0	341	1,438	2	0	0	0
9:45 AM	0	0	0	0	0	25	0	14	1	0	167	15	1	23	128	0	374	1,452	0	0	0	0
10:00 AM	0	0	0	0	0	7	0	15	0	0	161	12	0	24	157	0	376	1,428	0	0	0	0
10:15 AM	0	0	0	0	0	12	0	12	0	0	163	7	0	18	135	0	347	1,440	0	1	0	0
10:30 AM	0	0	0	0	0	4	0	22	0	0	166	5	0	20	138	0	355	1,405	0	0	0	0
10:45 AM	0	0	0	0	0	8	0	11	0	0	157	7	2	15	150	0	350	1,436	0	0	0	0
11:00 AM	0	0	0	0	0	7	0	16	1	0	155	13	0	18	178	0	388	1,416	0	0	0	0
11:15 AM	0	0	0	0	0	6	0	13	0	0	137	7	2	15	132	0	312	1,434	0	0	0	0
11:30 AM	0	0	0	0	0	7	0	18	1	0	157	7	1	13	182	0	386	1,502	0	0	0	0
11:45 AM	0	0	0	0	0	15	0	13	1	0	157	5	0	8	131	0	330	1,530	0	1	0	0
12:00 PM	0	0	0	0	0	18	0	16	0	0	168	7	0	26	171	0	406	1,588	0	0	0	0
12:15 PM	0	0	0	0	0	11	0	15	0	0	148	10	1	22	173	0	380	1,603	0	1	0	0
12:30 PM	0	0	0	0	0	11	0	5	1	0	155	17	0	25	200	0	414	1,630	0	0	0	0
12:45 PM	0	0	0	0	0	13	0	15	0	0	154	14	0	25	167	0	388	1,628	0	0	0	0
1:00 PM	0	0	0	0	0	10	0	19	0	0	154	17	0	28	193	0	421	1,688	0	1	0	0
1:15 PM	0	0	0	0	0	15	0	17	1	0	161	14	0	21	178	0	407	1,698	1	0	0	0
1:30 PM	0	0	0	0	0	11	0	16	0	0	155	10	1	24	195	0	412	1,756	0	0	0	0
1:45 PM	0	0	0	0	0	12	0	15	0	0	173	11	0	33	204	0	448	1,806	0	0	0	0
2:00 PM	0	0	0	0	0	13	0	16	0	0	162	16	0	32	192	0	431	1,825	0	0	0	0
2:15 PM	0	0	0	0	0	15	0	20	0	0	162	15	2	38	213	0	465	1,888	0	0	0	0

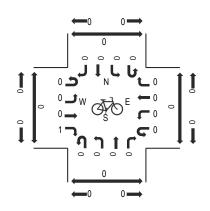

	2:30 PM	0	0	0	0	0	25	0	25	0	0	170	19	0	24	199	0	462	1,938	0	0	0	0
	2:45 PM	0	0	0	0	0	10	0	18	1	0	167	19	0	26	226	0	467	2,016	0	0	0	0
	3:00 PM	0	0	0	0	0	18	0	26	0	0	169	7	1	40	233	0	494	2,010	0	0	0	0
		-	-					-			Ŭ		1	1					,			-	
	3:15 PM	0	0	0	0	0	10	0	17	0	0	183	9	0	35	261	0	515	2,203	0	0	0	0
	3:30 PM	0	0	0	0	0	16	0	24	0	0	207	22	1	35	235	0	540	2,228	0	0	0	0
	3:45 PM	0	0	0	0	0	16	0	33	0	0	217	19	2	40	270	0	597	2,215	0	0	1	0
	4:00 PM	0	0	0	0	0	23	0	18	0	0	204	17	2	27	260	0	551	2,205	0	0	0	0
	4:15 PM	0	0	0	0	0	18	0	17	0	0	172	14	2	36	281	0	540	2,201	0	0	0	0
	4:30 PM	0	0	0	0	0	24	0	22	0	0	185	17	0	34	245	0	527	2,201	0	0	0	0
	4:45 PM	0	0	0	0	0	21	0	18	0	0	206	11	1	34	296	0	587	2,173	0	0	0	0
	5:00 PM	0	0	0	0	0	18	0	18	0	0	192	15	2	34	268	0	547	2,117	0	2	0	0
	5:15 PM	0	0	0	0	0	24	0	15	1	0	203	16	0	28	253	0	540	2,094	0	0	0	0
	5:30 PM	0	0	0	0	0	14	0	13	1	0	178	11	0	40	242	0	499	1,996	0	0	0	0
	5:45 PM	0	0	0	0	0	13	0	19	0	0	193	15	0	34	257	0	531	1,946	0	0	0	0
	6:00 PM	0	0	0	0	0	16	0	10	0	0	192	18	0	38	250	0	524	1,809	0	0	0	0
	6:15 PM	0	0	0	0	0	15	0	11	0	0	149	11	2	24	230	0	442		0	0	0	0
	6:30 PM	0	0	0	0	0	8	0	10	0	0	153	11	3	21	243	0	449		0	0	0	0
	6:45 PM	0	0	0	0	0	7	0	11	1	0	144	9	2	25	195	0	394		0	0	0	0
	Count Total	0	0	0	0	0	695	0	862	14	0	9,632	722	32	1,256	9,569	0 2	22,782		4	10	1	0
_	Peak Hour	0	0	0	0	0	73	0	92	0	0	800	72	7	138	1,046	0	2,22	8	0	0	1	0

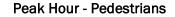

Location: 1 COORS BLVD & GONZALES RD PM Date: Thursday, May 2, 2024 Peak Hour: 02:30 PM - 03:30 PM Peak 15-Minutes: 03:15 PM - 03:30 PM

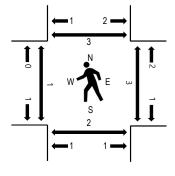

Peak Hour - Motorized Vehicles

Peak Hour - Bicycles

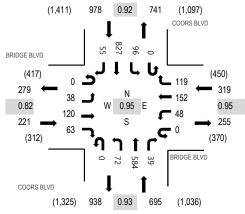

Note: Total study counts contained in parentheses.

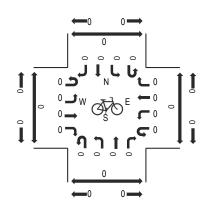

		G	ONZA	LES RI	C	G	ONZAL	ES RD		(COORS	BLVD		(COORS	BLVD							
	Interval		Eastbound					ound			Northb	ound			South	bound			Rolling	Ped	lestriar	n Crossir	ngs
	Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru F	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South	North
_	2:00 PM	0	0	0	0	0	13	0	16	0	0	162	16	0	32	192	0	431	1,825	0	0	0	0
	2:15 PM	0	0	0	0	0	15	0	20	0	0	162	15	2	38	213	0	465	1,888	0	0	0	0
	2:30 PM	0	0	0	0	0	25	0	25	0	0	170	19	0	24	199	0	462	1,938	0	0	0	0
	2:45 PM	0	0	0	0	0	10	0	18	1	0	167	19	0	26	226	0	467		0	0	0	0
	3:00 PM	0	0	0	0	0	18	0	26	0	0	169	7	1	40	233	0	494		0	0	0	0
	3:15 PM	0	0	0	0	0	10	0	17	0	0	183	9	0	35	261	0	515		0	0	0	0
	Count Total	0	0	0	0	0	91	0	122	1	0	1,013	85	3	195	1,324	0	2,834		0	0	0	0
	Peak Hour	0	0	0	0	0	63	0	86	1	0	689	54	- 1	125	5 919) (0 1,93	88	0	0	0	0


Location: 2 BATAAN DR & GONZALES RD PM Date: Thursday, May 2, 2024 Peak Hour: 02:15 PM - 03:15 PM Peak 15-Minutes: 03:00 PM - 03:15 PM


Peak Hour - Motorized Vehicles

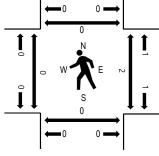
Peak Hour - Bicycles


Note: Total study counts contained in parentheses.


	G	ONZA	LES RI	C	G	ONZAL	ES RD			BATAA	N DR			BATAA	N DR							
Interval		Eastb	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	lestriar	n Crossi	ngs
Start Time	U-Turn					Left	Thru I	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South	North
2:00 PM	1	0	21	9	1	4	12	4	0	1	5	2	0	0	4	3	67	341	0	0	0	0
2:15 PM	1	4	16	15	0	6	20	2	0	6	5	1	0	0	3	1	80	407	0	2	0	1
2:30 PM	1	2	28	12	1	11	17	5	0	5	5	4	0	1	4	2	98	404	0	0	1	2
2:45 PM	0	4	15	23	0	13	10	3	0	3	12	1	0	2	6	4	96		1	1	0	0
3:00 PM	0	3	25	16	0	8	13	5	0	16	22	13	0	1	5	6	133		0	0	1	0
3:15 PM	0	2	23	11	0	0	9	5	0	5	9	3	0	1	5	4	77		1	1	0	5
Count Total	3	15	128	86	2	42	81	24	0	36	58	24	0	5	27	20	551		2	4	2	8
Peak Hour	2	13	84	66	1	38	60	15	0	30	44	19	0	4	18	3 13	3 40	7	1	3	2	3

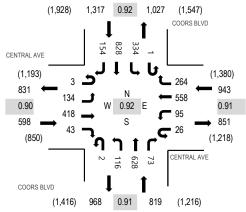
Location: 3 COORS BLVD & BRIDGE BLVD PM Date: Thursday, May 2, 2024 Peak Hour: 02:30 PM - 03:30 PM Peak 15-Minutes: 03:15 PM - 03:30 PM

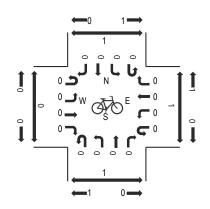
Peak Hour - Motorized Vehicles

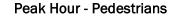


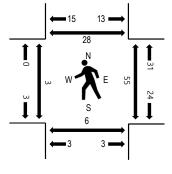
Peak Hour - Bicycles

Peak Hour - Pedestrians

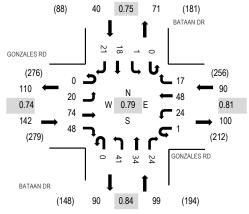

Note: Total study counts contained in parentheses.

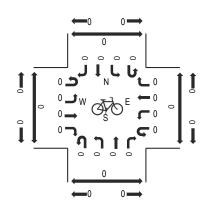

		В	RIDGE	E BLVD)	В	RIDGE	BLVD		(COORS	BLVD		(COORS	BLVD							
	Interval		Eastbound					ound			Northb	ound			South	bound			Rolling	Ped	lestriar	n Crossi	ngs
	Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru F	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South	North
	2:00 PM	0	9	30	14	0	15	40	22	0	16	145	4	0	19	151	14	479	2,060	0	0	0	0
	2:15 PM	0	7	24	7	0	3	29	22	0	20	150	6	1	32	197	19	517	2,148	0	1	0	0
	2:30 PM	0	5	27	14	0	9	31	37	0	12	144	11	0	26	185	8	509	2,213	0	0	0	0
	2:45 PM	0	11	32	14	0	11	34	36	0	21	141	13	0	23	205	14	555		0	1	0	0
	3:00 PM	0	12	30	25	0	15	49	20	0	18	145	3	0	22	207	21	567		0	1	0	0
	3:15 PM	0	10	31	10	0	13	38	26	0	21	154	12	0	25	230	12	582		0	0	0	0
	Count Total	0	54	174	84	0	66	221	163	0	108	879	49	1	147	1,175	88	3,209		0	3	0	0
_	Peak Hour	0	38	120	63	0	48	152	119	0	72	584	39	0	96	827	55	5 2,21	3	0	2	0	0

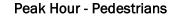

Location: 4 COORS BLVD & CENTRAL AVE PM Date: Thursday, May 2, 2024 Peak Hour: 02:30 PM - 03:30 PM Peak 15-Minutes: 03:15 PM - 03:30 PM

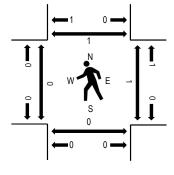

Peak Hour - Motorized Vehicles

Peak Hour - Bicycles

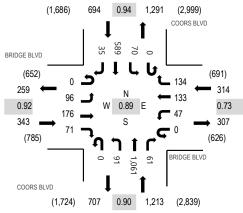

Note: Total study counts contained in parentheses.

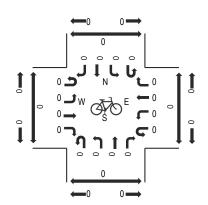

	С	ENTR	al ave	-	CI	ENTRA	L AVE		(COORS	BLVD		C	COORS	BLVD							
Interval		Eastbound				Westb	ound			Northb	ound			South	bound			Rolling	Ped	lestriar	n Crossii	ngs
Start Time	U-Turn					Left	Thru F	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South	North
 2:00 PM	1	28	92	13	4	14	126	72	0	26	143	12	0	72	174	28	805	3,435	2	17	6	8
2:15 PM	0	34	71	13	10	28	115	68	1	24	175	16	0	90	205	42	892	3,569	0	15	0	6
2:30 PM	0	32	87	13	8	18	152	69	1	36	131	18	0	99	166	34	864	3,677	0	9	2	3
2:45 PM	1	23	102	11	4	25	120	60	1	28	174	12	1	76	198	38	874		0	14	0	5
3:00 PM	2	33	117	10	6	28	121	73	0	22	145	25	0	86	222	49	939		0	13	2	11
3:15 PM	0	46	112	9	8	24	165	62	0	30	178	18	0	73	242	33	1,000		3	19	2	9
Count Total	4	196	581	69	40	137	799	404	3	166	946	101	1	496	1,207	224	5,374		5	87	12	42
 Peak Hour	3	134	418	43	26	95	558	264	2	116	628	73	1	334	828	3 154	3,67	7	3	55	6	28


Location: 2 BATAAN DR & GONZALES RD AM Date: Thursday, May 2, 2024 Peak Hour: 07:15 AM - 08:15 AM Peak 15-Minutes: 07:30 AM - 07:45 AM

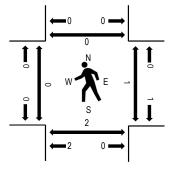

Peak Hour - Motorized Vehicles

Peak Hour - Bicycles


Note: Total study counts contained in parentheses.

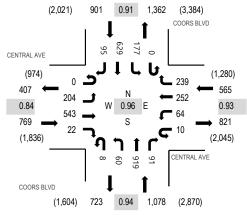

		G	ONZAI	LES RI	C	G	ONZAL	ES RD			BATAA	N DR			BATAA	AN DR							
	Interval		Eastb	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	estrian	Crossin	igs
	Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru R	light	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South I	North
	6:00 AM	0	0	7	0	0	0	5	6	0	0	6	2	0	0	0	1	27	147	0	0	0	1
	6:15 AM	0	0	2	1	0	1	9	4	0	2	7	1	0	2	0	3	32	180	0	0	0	0
	6:30 AM	0	2	6	0	0	0	11	6	0	3	6	2	0	0	1	4	41	250	0	0	0	0
	6:45 AM	0	2	8	6	0	0	15	6	0	3	5	1	0	0	0	1	47	327	0	1	0	0
	7:00 AM	1	2	9	5	0	6	10	4	0	4	13	1	0	0	3	2	60	363	0	0	0	0
	7:15 AM	0	4	14	19	1	11	5	2	0	15	9	7	0	0	10	5	102	371	0	0	0	0
	7:30 AM	0	8	26	14	0	5	20	4	0	12	9	10	0	0	4	6	118	354	0	0	0	0
	7:45 AM	0	4	16	5	0	3	14	7	0	9	11	4	0	1	4	5	83	324	0	1	0	1
	8:00 AM	0	4	18	10	0	5	9	4	0	5	5	3	0	0	0	5	68	307	0	0	0	0
	8:15 AM	0	4	19	6	1	4	19	3	0	6	9	1	0	2	2	9	85		0	0	0	0
	8:30 AM	0	1	22	8	0	1	24	6	0	4	7	1	0	2	6	6	88		1	2	0	0
	8:45 AM	0	2	20	4	0	4	17	4	0	4	5	2	0	1	0	3	66		0	0	0	0
C	Count Total	1	33	167	78	2	40	158	56	0	67	92	35	0	8	30	50	817		1	4	0	2
	Peak Hour	0	20	74	48	1	24	48	17	0	41	34	24	0	1	18	3 2	1 37	71	0	1	0	1

Location: 3 COORS BLVD & BRIDGE BLVD AM Date: Thursday, May 2, 2024 Peak Hour: 07:15 AM - 08:15 AM Peak 15-Minutes: 07:30 AM - 07:45 AM

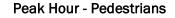

Peak Hour - Motorized Vehicles

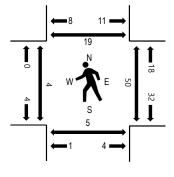
Peak Hour - Bicycles

Peak Hour - Pedestrians


Note: Total study counts contained in parentheses.

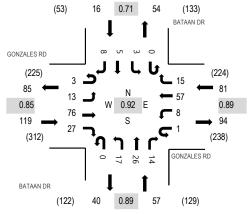
		В	RIDGE	BLVD)	В	RIDGE	BLVD		C	OORS	BLVD		C	COORS	BLVD							
	Interval		Eastbo	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	estrian	Crossin	igs
5	Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru F	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South N	North
	6:00 AM	0	7	13	12	0	1	13	11	0	13	113	2	1	1	54	7	248	1,386	0	0	0	0
	6:15 AM	0	6	22	12	0	2	18	12	0	11	130	5	0	0	65	2	285	1,594	0	0	0	0
	6:30 AM	0	9	23	19	0	1	20	20	0	16	176	2	0	10	100	2	398	1,938	0	0	0	0
	6:45 AM	0	12	27	22	0	1	22	16	0	26	189	7	0	11	115	7	455	2,257	0	0	2	0
	7:00 AM	0	23	38	17	0	5	26	26	0	20	180	9	0	7	93	12	456	2,428	0	2	0	1
	7:15 AM	0	20	49	12	0	14	30	27	0	22	293	20	0	11	124	7	629	2,564	0	0	0	0
	7:30 AM	0	33	40	19	0	17	51	40	0	17	309	12	0	19	152	8	717	2,522	0	1	2	0
	7:45 AM	0	24	49	21	0	10	31	36	0	25	211	20	0	25	161	13	626	2,334	0	0	0	0
	8:00 AM	0	19	38	19	0	6	21	31	0	27	248	9	0	15	152	7	592	2,187	0	0	0	0
	8:15 AM	0	19	31	25	0	8	25	29	0	20	226	9	0	10	169	16	587		0	0	1	0
	8:30 AM	0	19	33	14	0	5	31	24	0	18	216	6	1	14	133	15	529		0	1	0	0
	8:45 AM	0	11	17	11	0	11	31	19	0	12	213	7	0	15	122	10	479		0	2	0	0
Cou	unt Total	0	202	380	203	0	81	319	291	0	227	2,504	108	2	138	1,440	106	6,001		0	6	5	1
Pe	ak Hour	0	96	176	71	0	47	133	134	0	91	1,061	61	0	70	589	35	2,56	4	0	1	2	0

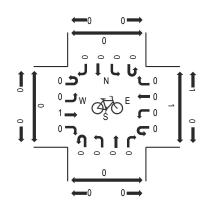

Location: 4 COORS BLVD & CENTRAL AVE AM Date: Thursday, May 2, 2024 Peak Hour: 07:30 AM - 08:30 AM Peak 15-Minutes: 07:45 AM - 08:00 AM

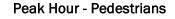

Peak Hour - Motorized Vehicles

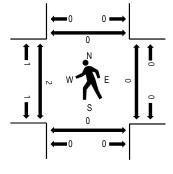
0 ı٨ 0 0 0 0 0 L Ŀ ļ Ì 0 5 0 0 Λ c 0 0 0 0 0 l I Î ſ 0 C 0 0 2 1--1

Peak Hour - Bicycles

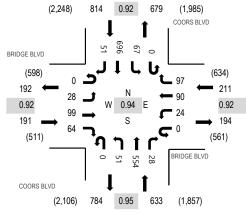

Note: Total study counts contained in parentheses.

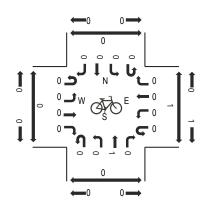

		С	ENTR	al ave	-	CI	ENTRA	L AVE		C	OORS	BLVD		(COORS	BLVD							
In	terval		Eastb	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	estrian	Crossin	igs
Star	rt Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru F	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South 1	North
6:0	00 AM	0	15	51	2	2	10	23	22	1	15	119	7	0	8	34	9	318	1,836	0	2	1	1
6:1	15 AM	0	15	66	4	0	3	34	22	0	5	152	11	0	16	58	9	395	2,131	0	7	0	0
6:3	30 AM	0	16	107	4	2	6	25	16	1	4	219	16	0	24	92	9	541	2,513	0	1	0	0
6:4	45 AM	0	20	93	3	4	7	41	35	0	12	197	16	0	23	115	16	582	2,830	0	6	1	2
7:0	00 AM	0	27	136	5	0	10	40	45	0	19	170	25	0	24	100	12	613	3,108	1	2	1	1
7:1	15 AM	0	46	160	8	1	13	46	45	1	14	250	24	0	34	122	13	777	3,274	0	5	1	1
7:3	30 AM	0	61	177	6	3	14	51	61	1	12	241	30	0	34	149	18	858	3,313	1	16	1	7
7:4	45 AM	0	57	123	4	2	25	68	57	2	9	241	23	0	58	165	26	860	3,193	1	11	2	3
8:0	00 AM	0	40	135	7	0	8	64	65	1	17	201	18	0	47	146	30	779	3,063	2	11	1	4
8:1	15 AM	0	46	108	5	5	17	69	56	4	22	236	20	0	38	169	21	816		0	12	1	5
8:3	30 AM	0	32	107	9	2	14	57	58	0	19	209	22	0	55	129	25	738		1	6	2	11
8:4	45 AM	0	31	101	9	3	13	63	53	2	32	208	22	0	62	106	25	730		2	14	2	6
Count	Total	0	406	1,364	66	24	140	581	535	13	180	2,443	234	0	423	1,385	213	8,007		8	93	13	41
Peak	Hour	0	204	543	22	10	64	252	239	8	60	919	91	0	177	629	95	5 3,31	3	4	50	5	19


Location: 2 BATAAN DR & GONZALES RD Noon Date: Thursday, May 2, 2024 Peak Hour: 12:45 PM - 01:45 PM Peak 15-Minutes: 01:15 PM - 01:30 PM

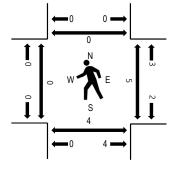

Peak Hour - Motorized Vehicles

Peak Hour - Bicycles

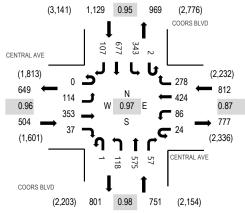

Note: Total study counts contained in parentheses.


		G	ONZAI	ES RE	C	G	ONZAL	ES RD			BATAA	N DR			BATAA	N DR							
	Interval		Eastb	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	estrian	Crossin	igs
	Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru R	light	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South N	North
	11:00 AM	1	2	14	5	0	2	9	3	0	4	2	1	0	1	4	2	50	201	0	1	2	0
	11:15 AM	0	0	20	6	0	2	7	6	0	2	6	2	0	0	2	1	54	216	1	0	0	0
	11:30 AM	0	1	10	8	1	0	12	5	1	4	7	0	0	0	0	4	53	220	0	1	0	0
	11:45 AM	0	1	11	1	1	2	15	4	0	3	2	1	0	1	0	2	44	225	0	0	0	0
	12:00 PM	0	3	17	8	0	1	15	4	1	4	6	1	0	0	2	3	65	247	1	1	1	0
	12:15 PM	1	2	19	6	0	4	10	2	0	1	5	1	0	0	1	6	58	255	0	0	0	0
	12:30 PM	0	3	16	9	2	1	13	2	0	3	3	2	0	2	1	1	58	271	0	0	0	0
	12:45 PM	0	4	18	7	1	2	15	2	0	5	5	3	0	2	0	2	66	273	0	0	0	0
	1:00 PM	2	3	27	4	0	2	16	3	0	1	9	3	0	1	1	1	73	270	0	0	0	0
	1:15 PM	0	5	18	7	0	3	14	6	0	6	5	5	0	0	1	4	74		2	0	0	0
	1:30 PM	1	1	13	9	0	1	12	4	0	5	7	3	0	0	3	1	60		0	0	0	0
	1:45 PM	0	0	18	11	1	2	14	3	1	0	7	2	0	0	1	3	63		0	0	0	0
Со	unt Total	5	25	201	81	6	22	152	44	3	38	64	24	0	7	16	30	718		4	3	3	0
Pe	eak Hour	3	13	76	27	1	8	57	15	0	17	26	14	0	3	3 5	5 8	3 27	73	2	0	0	0

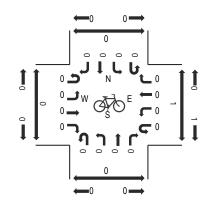
Location: 3 COORS BLVD & BRIDGE BLVD Noon Date: Thursday, May 2, 2024 Peak Hour: 01:00 PM - 02:00 PM Peak 15-Minutes: 01:45 PM - 02:00 PM

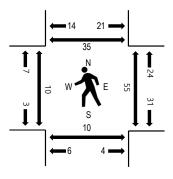

Peak Hour - Motorized Vehicles

Peak Hour - Bicycles


Note: Total study counts contained in parentheses.

		В	RIDGE	BLVD)	В	RIDGE	BLVD		C	OORS	BLVD		C	COORS	BLVD							
	Interval		Eastb	ound			Westbo	ound			Northb	ound			Southb	bound			Rolling	Ped	estrian	Crossir	igs
	Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru F	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South I	North
	11:00 AM	0	10	20	9	0	8	25	23	0	10	136	12	0	22	152	10	437	1,604	0	0	0	0
	11:15 AM	0	8	11	16	0	4	15	19	0	12	113	2	0	18	122	8	348	1,603	0	0	0	0
	11:30 AM	0	9	19	6	0	4	31	18	0	10	135	7	0	16	161	14	430	1,705	0	2	1	0
	11:45 AM	0	5	25	8	0	6	23	26	0	8	131	6	0	12	125	14	389	1,746	0	1	0	1
	12:00 PM	0	8	22	12	0	6	24	31	0	17	130	7	1	14	152	12	436	1,797	0	2	0	0
	12:15 PM	0	8	23	14	0	7	27	22	0	21	129	7	1	18	167	6	450	1,809	0	0	0	0
	12:30 PM	0	16	21	15	0	3	27	22	0	21	133	5	0	25	166	17	471	1,827	0	1	0	0
	12:45 PM	0	5	20	10	0	3	25	24	0	12	143	17	0	18	146	17	440	1,795	0	0	0	0
	1:00 PM	0	8	16	24	0	10	26	21	0	19	133	5	0	15	156	15	448	1,849	0	4	0	0
	1:15 PM	0	5	27	20	0	5	16	23	0	15	141	8	0	17	179	12	468		0	0	0	0
	1:30 PM	0	9	26	8	0	2	24	23	0	7	132	9	0	16	170	13	439		0	1	4	0
	1:45 PM	0	6	30	12	0	7	24	30	0	10	148	6	0	19	191	11	494		0	0	0	0
	Count Total	0	97	260	154	0	65	287	282	0	162	1,604	91	2	210	1,887	149	5,250		0	11	5	1
_	Peak Hour	0	28	99	64	0	24	90	97	0	51	554	28	0	67	696	51	1,84	.9	0	5	4	0


Location: 4 COORS BLVD & CENTRAL AVE Noon Date: Thursday, May 2, 2024 Peak Hour: 01:00 PM - 02:00 PM Peak 15-Minutes: 01:30 PM - 01:45 PM

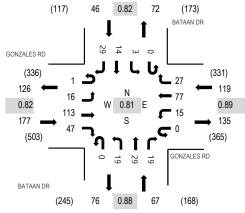

Peak Hour - Motorized Vehicles

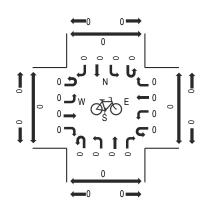
Peak Hour - Bicycles

Peak Hour - Pedestrians

Note: Total study counts contained in parentheses.

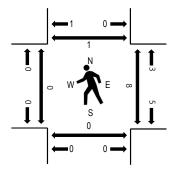
	С	ENTR	al ave	-	С	ENTRA	L AVE		C	OORS	BLVD		(COORS	BLVD							
Interval		Eastb	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	lestrian	Crossi	ngs
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru F	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South	North
11:00 AM	0	27	85	10	5	18	66	61	0	30	136	18	0	72	156	24	708	2,835	6	11	0	7
11:15 AM	0	35	84	10	6	16	92	53	0	19	119	20	1	75	117	32	679	2,922	1	14	2	9
11:30 AM	0	34	86	8	6	21	72	67	0	21	152	21	1	87	151	34	761	3,005	0	19	1	9
11:45 AM	0	35	99	15	4	16	100	56	0	27	129	9	0	66	107	24	687	3,005	2	14	3	6
12:00 PM	1	25	110	15	1	8	78	76	1	36	140	22	0	96	159	27	795	3,097	1	20	11	13
12:15 PM	0	34	101	14	3	24	112	63	0	15	138	17	1	73	147	20	762	3,097	2	13	1	9
12:30 PM	0	27	85	12	4	32	95	62	0	25	121	19	0	78	164	37	761	3,101	4	12	1	8
12:45 PM	1	35	100	9	5	22	113	63	2	31	114	21	2	81	148	32	779	3,163	3	22	7	15
1:00 PM	0	22	93	6	3	16	104	72	0	35	135	11	0	94	178	26	795	3,196	1	25	4	6
1:15 PM	0	32	77	10	6	33	84	63	0	24	150	17	1	88	158	23	766		1	8	3	9
1:30 PM	0	29	93	7	9	23	141	63	1	34	136	17	1	83	156	30	823		6	10	1	10
1:45 PM	0	31	90	14	6	14	95	80	0	25	154	12	0	78	185	28	812		2	12	2	10
Count Total	2	366	1,103	130	58	243	1,152	779	4	322	1,624	204	7	971	1,826	337	9,128		29	180	36	111
 Peak Hour	0	114	353	37	24	86	424	278	1	118	575	57	2	343	677	/ 107	7 3,19	6	10	55	10	35


 Location:
 2
 BATAAN DR & GONZALES RD PM


 Date:
 Thursday, May 2, 2024

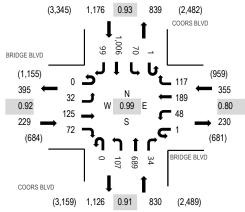
 Peak Hour:
 03:45 PM - 04:45 PM

 Peak 15-Minutes:
 03:45 PM - 04:00 PM

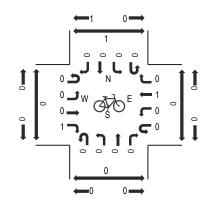

Peak Hour - Motorized Vehicles

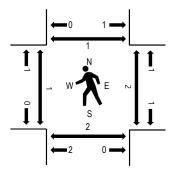
Peak Hour - Bicycles

Peak Hour - Pedestrians


Note: Total study counts contained in parentheses.

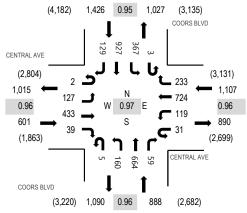
	Interval	G	ONZA Eastb	LES RI ound	C	G	ONZAL Westb	ES RD ound			BATAA Northb					AN DR bound			Rolling	Ped	estrian	Crossin	nas
	Start Time	U-Turn	Left		Right	U-Turn		Thru R	Right	U-Turn			Right	U-Turn	Left	Thru	Right	Total	Hour	West		South I	0
	3:30 PM	0	3	29	13	1	4	21	6	0	4	9	3	0	1	0	0	94	394	1	4	0	0
	3:45 PM	1	5	33	15	0	2	28	9	0	6	8	5	0	2	6	6	126	409	0	3	0	1
	4:00 PM	0	4	19	10	0	4	14	7	0	4	8	4	0	0	3	11	88	380	0	2	0	0
	4:15 PM	0	2	33	10	0	2	13	5	0	3	4	7	0	0	1	6	86	387	0	0	0	0
	4:30 PM	0	5	28	12	0	7	22	6	0	6	9	3	0	1	4	6	109	400	0	3	0	0
	4:45 PM	1	2	18	22	1	4	20	4	0	5	6	3	0	1	3	7	97	384	0	1	0	0
	5:00 PM	0	3	28	12	0	5	17	7	0	3	7	6	0	0	0	7	95	371	1	0	2	2
	5:15 PM	0	1	31	12	0	3	21	7	0	4	6	3	0	1	5	5	99	362	0	0	0	0
	5:30 PM	0	2	26	17	0	5	20	3	0	5	2	0	0	1	7	5	93	325	0	0	0	0
	5:45 PM	1	1	20	12	0	6	17	3	0	6	7	3	0	1	4	3	84		0	0	0	0
	6:00 PM	1	3	25	11	0	4	9	4	0	1	11	4	0	3	4	6	86		0	0	0	0
	6:15 PM	1	3	17	11	0	2	17	1	0	0	0	3	0	1	3	3	62		1	0	0	1
(Count Total	5	34	307	157	2	48	219	62	0	47	77	44	0	12	40	65	1,119		3	13	2	4
	Peak Hour	1	16	113	47	0	15	77	27	0	19	29	19	0	3	3 14	29	9 40)9	0	8	0	1


Location: 3 COORS BLVD & BRIDGE BLVD PM Date: Thursday, May 2, 2024 Peak Hour: 04:30 PM - 05:30 PM Peak 15-Minutes: 05:15 PM - 05:30 PM

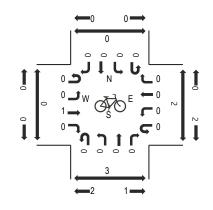

Peak Hour - Motorized Vehicles

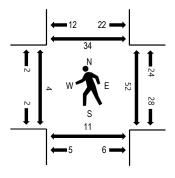
Peak Hour - Bicycles

Peak Hour - Pedestrians


Note: Total study counts contained in parentheses.

		В	RIDGE	BLVD)	BI	RIDGE	BLVD		C	OORS	BLVD		C	COORS	BLVD							
	Interval		Eastbo	ound			Westbo	ound			Northb	ound			South	bound			Rolling	Ped	estrian	Crossir	ıgs
	Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru F	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South	North
	3:30 PM	0	11	27	18	0	5	38	28	0	32	200	8	0	12	230	19	628	2,553	0	1	1	0
	3:45 PM	0	13	25	12	0	16	33	34	0	27	183	12	0	22	231	30	638	2,564	0	0	0	0
	4:00 PM	0	17	28	15	0	11	68	33	0	23	168	19	0	18	236	23	659	2,575	1	1	1	0
	4:15 PM	0	9	36	20	0	4	42	14	0	30	163	8	0	16	260	26	628	2,566	0	1	0	0
	4:30 PM	0	9	36	19	0	12	53	27	0	32	162	11	1	17	237	23	639	2,590	0	0	0	1
	4:45 PM	0	8	24	15	0	11	39	27	0	22	180	7	0	20	268	28	649	2,527	0	0	2	0
	5:00 PM	0	9	35	20	0	20	55	36	0	23	161	7	0	19	243	22	650	2,483	1	2	0	0
	5:15 PM	0	6	30	18	1	5	42	27	0	30	186	9	0	14	258	26	652	2,455	0	0	0	0
	5:30 PM	0	4	30	20	0	8	30	24	0	35	160	10	0	11	215	29	576	2,334	0	0	0	0
	5:45 PM	0	11	22	22	0	9	35	25	0	22	173	12	0	27	225	22	605		0	2	0	0
	6:00 PM	0	18	35	9	0	10	46	26	0	37	168	10	0	11	226	26	622		0	0	0	0
	6:15 PM	0	12	30	11	0	4	40	21	1	25	128	5	0	17	215	22	531		1	0	1	0
Со	ount Total	0	127	358	199	1	115	521	322	1	338	2,032	118	1	204	2,844	296	7,477		3	7	5	1
P	eak Hour	0	32	125	72	1	48	189	117	0	107	689	34	1	70	1,006	99	2,59	0	1	2	2	1


Location: 4 COORS BLVD & CENTRAL AVE PM Date: Thursday, May 2, 2024 Peak Hour: 04:45 PM - 05:45 PM Peak 15-Minutes: 04:45 PM - 05:00 PM

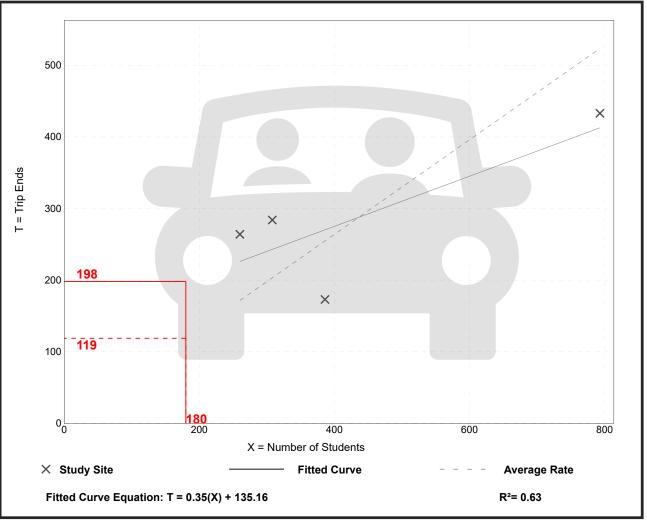

Peak Hour - Motorized Vehicles

Peak Hour - Bicycles

Peak Hour - Pedestrians

Note: Total study counts contained in parentheses.

		С	ENTR	al ave	-	CI	ENTRA	L AVE		C	OORS	BLVD		(COORS	BLVD							
Interv	ral		Eastb	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	lestrian	Crossir	ngs
Start T	ime	U-Turn	Left	Thru	Right	U-Turn	Left	Thru F	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South	North
3:30 F	M	0	38	113	14	12	31	147	60	0	37	193	19	0	92	217	19	992	4,003	1	26	7	3
3:45 F	M	2	30	126	13	12	18	139	50	1	32	195	13	0	99	247	24	1,001	3,979	0	15	2	5
4:00 F	PM	1	34	101	20	10	35	174	66	2	41	187	19	0	87	212	29	1,018	4,011	2	13	1	5
4:15 F	PM	2	37	117	6	7	38	148	61	1	27	166	19	0	87	244	32	992	4,010	1	15	6	3
4:30 F	PM	0	26	116	15	5	30	141	62	2	37	168	17	1	100	214	34	968	4,021	3	24	2	11
4:45 F	M	1	24	112	9	5	38	164	59	2	43	177	16	1	107	254	21	1,033	4,022	0	14	1	14
5:00 F	PM	1	35	106	7	10	32	192	54	0	37	167	17	0	84	234	41	1,017	3,967	0	9	2	3
5:15 F	PM	0	32	105	10	8	20	180	66	2	45	173	18	0	93	219	32	1,003	3,922	0	8	0	5
5:30 F	PM	0	36	110	13	8	29	188	54	1	35	147	8	2	83	220	35	969	3,834	4	21	8	12
5:45 F	PM	0	38	104	12	11	36	158	62	1	42	165	18	0	82	217	32	978		3	9	5	7
6:00 F	M	0	21	106	9	6	31	163	64	1	37	168	11	0	86	218	51	972		1	9	5	3
6:15 F	PM	1	33	116	11	3	27	160	57	1	31	126	17	0	78	206	48	915		3	8	2	10
Count Tot	al	8	384	1,332	139	97	365	1,954	715	14	444	2,032	192	4	1,078	2,702	398	11,858		18	171	41	81
Peak Ho	ur	2	127	433	39	31	119	724	233	5	160	664	59	3	367	927	7 12 <u>9</u>	9 4,02	22	4	52	11	34


Appendix C: ITE Trip Generation

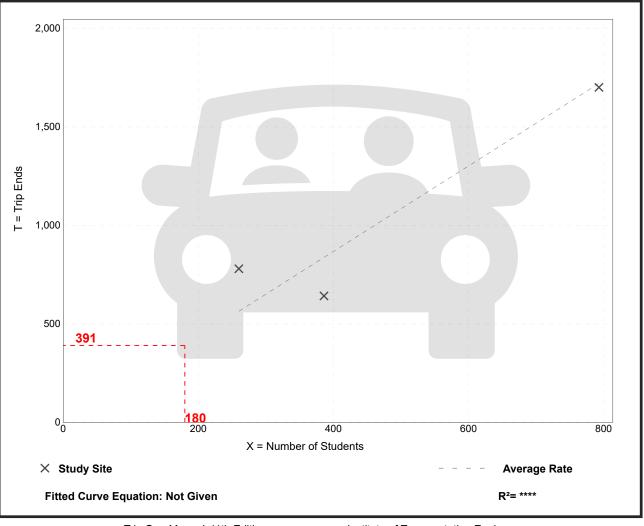
	igh School 34)
Vehicle Trip Ends vs: On a:	Students Weekday, AM Peak Hour of Generator
Setting/Location:	General Urban/Suburban
Number of Studies:	4
Avg. Num. of Students:	437
Directional Distribution:	62% entering, 38% exiting

Average Rate	Range of Rates	Standard Deviation
0.66	0.45 - 1.02	0.25

Data Plot and Equation

Caution – Small Sample Size

Trip Gen Manual, 11th Edition


• Institute of Transportation Engineers

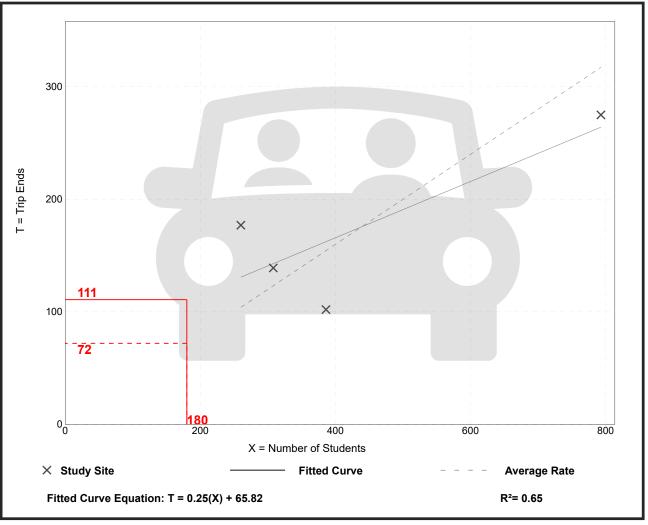
Vehicle Trip Ends vs:	
Off a.	Weekday
Setting/Location:	General Urban/Suburban
Number of Studies:	3
Avg. Num. of Students:	480
	50% entering, 50% exiting

Average Rate	Range of Rates	Standard Deviation
2.17	1.66 - 3.00	0.54

Data Plot and Equation

Caution – Small Sample Size

Trip Gen Manual, 11th Edition


• Institute of Transportation Engineers

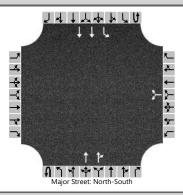
	igh School 34)
Vehicle Trip Ends vs: On a:	Students Weekday, PM Peak Hour of Generator
5	General Urban/Suburban
Number of Studies: Avg. Num. of Students:	
	39% entering, 61% exiting

Average Rate	Range of Rates	Standard Deviation
0.40	0.26 - 0.68	0.15

Data Plot and Equation

Caution – Small Sample Size

Trip Gen Manual, 11th Edition

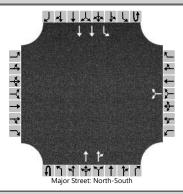

• Institute of Transportation Engineers

Appendix D: HCM Analysis Output Sheets

		HCS	S Sigr	nalize	d Int	ersect	ion R	esu	lts Sun	nmary	/				
General Inform	nation								Intersec		1				
Agency		Lee Engineering		1					Duration		1.000				
Analyst		BW				e Jun 2			Area Typ)e	Other	-			
Jurisdiction		CABQ		Time F	Period	Existir AM)	ng AM (T	7:15	PHF		1.00		N 14 1/1 18	w‡e U	
Urban Street		Central Avenue		Analys	sis Yea	ır 2024			Analysis	Period	1> 7:	15		55 + +	e 🗖
Intersection		Coors Boulevard		File Na	ame	01 Co	ors Cer	ntral E	xisting Al	1.xus				4144	14
Project Descrip	tion	Existing AM (7:15 A	M)												
Demand Inform	nation				EB			W	′B		NB			SB	
Approach Move	ement			L	Т	R	L		r R	L	Т	R	L	Т	R
Demand (v), v	eh/h			204	595	25	66	22	29 228	57	933	95	173	582	87
				<u> -</u>											
Signal Informa					La .			9	r Fri	· 14					t a
Cycle, s	150.0	Reference Phase	2			B.			s ľ		178 - "	1	▼ 2	3	4
Offset, s	0	Reference Point	End	Green		7.3	55.4	4.		41.3	3		5		
Uncoordinated	No	Simult. Gap E/W	On	Yellow		4.0	4.0	3.5		3.5				\mathbf{h}	4
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	1.0	1.	5 1.5	1.5		5	6	7	8
Timer Results				EBI	-	EBT	WB	L	WBT	NBI	_	NBT	SBI	-	SBT
Assigned Phase	e			5		2	1		6	7		4	3		8
Case Number				2.0		4.0	2.0		3.0	2.0		3.0	2.0		4.0
Phase Duration	, S			24.3	3	72.7	12.0)	60.4	9.5		46.3	19.0)	55.8
Change Period	nge Period, (Y+R c), s					5.0	5.0		5.0	5.0		5.0	5.0		5.0
Max Allow Head	Allow Headway (<i>MAH</i>), s					0.0	4.1		0.0	4.0		4.0	4.0		4.0
Queue Clearan		, = ,		18.6	3		7.4	_		4.5		39.8	9.1		24.2
Green Extensio		(ge),s		0.7		0.0	0.0		0.0	0.2		1.5	0.4		7.9
Phase Call Pro				1.00			0.94	_		0.91		1.00	1.00		1.00
Max Out Proba	bility			0.00)		1.00)		0.00)	1.00	0.01		0.09
Movement Gro	oup Res	sults			EB			WE	3		NB			SB	
Approach Move				L	T	R	L	Т	R	L	Т	R	L	T	R
Assigned Move				5	2	12	1	6	16	7	4	14	3	8	18
Adjusted Flow I	Rate (<i>v</i>), veh/h		204	310	307	66	229	228	57	933	95	173	343	326
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n	1810	1900	1875	1810	180	9 1554	1716	1809	1600	1743	1885	1785
Queue Service	Time (g s), s		16.6	16.1	16.1	5.4	6.4	16.3	2.5	37.8	6.9	7.1	22.1	22.2
Cycle Queue C	learanc	e Time (<i>g c</i>), s		16.6	16.1	16.1	5.4	6.4	16.3	2.5	37.8	6.9	7.1	22.1	22.2
Green Ratio (g				0.13	0.45	0.45	0.05	0.3	7 0.37	0.03	0.28	0.28	0.09	0.34	0.34
Capacity (c), v				233	858	847	84	133		104	996	441	325	638	604
Volume-to-Capa		<u> </u>		0.876	0.362	_	0.785	0.17		0.549	0.937	0.216	0.532	0.537	0.540
	<u> </u>	t/In (95 th percentile	,	327.6	303	300.6	131.2	129.	_	52.2	668.4	122.2	144	389.6	371.6
	. ,	eh/In (95 th percenti	,	13.1	12.1	12.0	5.2	5.2		2.0	26.7	4.9	5.7	15.5	14.9
Uniform Delay (RQ) (95 th percent	uie)	2.34 64.2	0.00	_	0.87 70.8	0.0	_	0.15 71.7	0.00	0.00	0.40	0.00	0.00
	· ,			11.3	1.2	1.2	17.4	0.3		4.5	19.9	0.2	1.4	0.9	0.9
	cremental Delay (<i>d</i> ₂), s/veh itial Queue Delay (<i>d</i> ȝ), s/veh					0.0	0.0	0.0	_	0.0	0.0	0.2	0.0	0.0	0.0
	ontrol Delay (<i>d</i> 3), s/veh					28.2	88.2	32.	_	76.3	72.9	42.1	66.2	41.0	41.1
<u>,</u>	evel of Service (LOS)					C	F	C	D	E	E	D	E	D	D
	pproach Delay, s/veh / LOS					D	41.3	<u> </u>	D	70.4		E	46.2		D
	tersection Delay, s/veh / LOS					51	1.9						D		
Multimeria	Itimodal Posults							14/5	,					05	
	Itimodal Results lestrian LOS Score / LOS					С	2.48	WE		2.48	NB	В	2.33	SB	В
Bicycle LOS Sc				2.62 3.80		D	2.48	_	B C	3.22		C	3.91		D
				3.00	,	U	2.94	T	0	3.22	-	0	3.9		U

		HCS	S Sigr	alize	d Int	ersect	ion R	esu	lts Sur	nmary	7				
0										··	c.		1.1	4244	
General Inform	nation	· - · · ·							Intersec				- É	411	
Agency		Lee Engineering							Duration		1.000				
Analyst		BW				e Jun 2			Area Ty	be	Other		A _ A		
Jurisdiction		CABQ		Time F	Period	Existir PM)	ng PM (2:30	PHF		1.00			w∔e U	- + ²
Urban Street		Central Avenue		Analys	sis Yea	r 2024			Analysis	Period	1> 14	:30		55 + +	c 🗖
Intersection		Coors Boulevard		File Na	ame	01 Co	ors Cer	ntral E	Existing P	M.xus			N	14144	11
Project Descrip	tion	Existing PM (2:30 F	PM)												
Demand Inform	nation				EB			W	/B		NB			SB	
Approach Move	ement			L	Т	R	L	T	Г R	L	Т	R	L	Т	R
Demand (v), v	eh/h			137	418	43	121	55	58 264	118	628	73	335	828	154
Signal Informa	tion							m.				_			
Signal Informa	120.0	Reference Phase	2		، ما	_ ہےلہ		Ħ		• • ••	E				tz.
Cycle, s	_		_		'				ኘ [- F -	n i T	1	S 2	3	4
Offset, s	0	Reference Point	End	Green		1.1	44.9	6.3		30.1		_	Ā	_	
Uncoordinated	No	Simult. Gap E/W	On	Yellow		0.0	4.0	3.		3.5					4
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	0.0	1.0	1.	5 1.5	1.5		5	6	7	8
Timer Results				EBI	-	EBT	WB	L	WBT	NBI	-	NBT	SBI	-	SBT
Assigned Phase	e			5		2	1		6	7		4	3		8
Case Number				2.0		4.0	2.0		3.0	2.0		3.0	2.0		4.0
Phase Duration	I, S			16.0)	51.0	14.9	9	49.9	11.3	3	35.1	19.0)	42.8
Change Period	ge Period, (Y+R c), s					5.0	5.0		5.0	5.0		5.0	5.0		5.0
Max Allow Head	Allow Headway (<i>MAH</i>), s					0.0	4.1		0.0	4.0		4.0	4.0		4.0
Queue Clearan	ce Time	e (g s), s		10.9)		9.9			6.0		20.9	13.2	2	32.3
Green Extensio		(ge), s		0.2		0.0	0.2		0.0	0.4		5.0	0.7		3.7
Phase Call Pro				0.99			0.98	_		0.98		1.00	1.00		1.00
Max Out Proba	bility			0.29)		0.11	1		0.00)	0.52	0.34	1	0.76
Movement Gro	oup Res	sults			EB			WE	3		NB			SB	
Approach Move	-			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			5	2	12	1	6	16	7	4	14	3	8	18
Adjusted Flow I	Rate (v), veh/h		137	233	228	121	558	3 264	118	628	73	335	507	475
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n	1810	1900	1837	1810	180	9 1538	1716	1809	1597	1757	1885	1763
Queue Service	Time (g	g s), S		8.9	10.4	10.5	7.9	13.	7 15.6	4.0	18.9	4.3	11.2	30.3	30.3
Cycle Queue C	learanc	e Time (<i>g c</i>), s		8.9	10.4	10.5	7.9	13.	7 15.6	4.0	18.9	4.3	11.2	30.3	30.3
Green Ratio (g	/C)			0.09	0.38	0.38	0.08	0.3	7 0.37	0.05	0.25	0.25	0.12	0.31	0.31
Capacity (c), v				166	729	705	149	135	_	180	907	400	410	594	555
Volume-to-Capa		. ,		0.827	0.320		0.812	0.41		0.656	0.693		0.817	0.855	
		t/In (95 th percentile	,	206.4	212.2	-	180.7	251	_	83.6	329	74.7	223.5	551.9	521
	. ,	eh/In (95 th percenti	,	8.3	8.5	8.3	7.2	10.		3.3	13.2	3.0	8.9	21.9	20.8
		RQ) (95 th percent	lile)	1.47	0.00	0.00	1.20	0.0		0.23	0.00	0.00	0.62	0.00	0.00
Uniform Delay (, ,			53.6	26.0 1.2	26.0	54.1	27.		55.8	40.8	35.3	51.7	38.5	38.5
Incremental De	• •			14.6 0.0	0.0	1.2 0.0	10.9 0.0	0.9		4.1 0.0	2.1 0.0	0.2	7.2 0.0	12.5 0.0	13.3 0.0
	tial Queue Delay (<i>d</i> ₃), s/veh ontrol Delay (<i>d</i>), s/veh				27.1	27.2	65.1	28.	_	59.9	42.9	35.5	59.0	51.0	51.9
	evel of Service (LOS)					C	E	20. C	C	E	-+2.3	D	E	D	D
	pproach Delay, s/veh / LOS				C	D	34.0		C	44.7		D	53.4		D
	tersection Delay, s/veh / LOS						3.7					_	D		
	Itimodal Results					6		WE			NB	D		SB	
Pedestrian LOS				2.61		C	2.47	_	B	2.47		B	2.31		B
Bicycle LOS So	ore / LC	15		3.61		D	3.29	1	С	3.00)	С	4.30)	D

	HCS Two-Way	Stop-Control Report	
General Information		Site Information	
Analyst	BW	Intersection	Coors Blvd & Gonzales Rd
Agency/Co.	Lee Engingeering	Jurisdiction	CABQ
Date Performed	6/11/2024	East/West Street	Gonzales Road
Analysis Year	2024	North/South Street	Coors Boulevard
Time Analyzed	Existing AM (7:15 AM)	Peak Hour Factor	1.00
Intersection Orientation	North-South	Analysis Time Period (hrs)	1.00
Project Description	Mark Armijo Academy NIA		
Lanes			



Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	2	0	0	1	2	0
Configuration							LR				Т	TR		L	Т	
Volume (veh/h)						53		84			1185	103	0	93	639	
Percent Heavy Vehicles (%)	1					0		0					0	0		
Proportion Time Blocked																
Percent Grade (%)			1	•			0									
Right Turn Channelized																
Median Type Storage				Left +	- Thru							2	2			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)						7.5		6.9						4.1		
Critical Headway (sec)						6.80		6.90						4.10		
Base Follow-Up Headway (sec)						3.5		3.3						2.2		
Follow-Up Headway (sec)						3.50		3.30						2.20		
Delay, Queue Length, an	d Leve	l of Se	ervice			<u>.</u>										
Flow Rate, v (veh/h)							137							93		
Capacity, c (veh/h)							303							545		
v/c Ratio							0.45							0.17		
95% Queue Length, Q ₉₅ (veh)							2.4							0.6		
Control Delay (s/veh)							26.6							13.0		
Level of Service (LOS)							D							В		
Approach Delay (s/veh)			-			20	5.6			-				1	.6	-
Approach LOS						I)								Ą	

	HCS Two-Wa	y Stop-Control Report	
General Information		Site Information	
Analyst	BW	Intersection	Coors Blvd & Gonzales Rd
Agency/Co.	Lee Engingeering	Jurisdiction	CABQ
Date Performed	6/11/2024	East/West Street	Gonzales Road
Analysis Year	2024	North/South Street	Coors Boulevard
Time Analyzed	Existing PM (2:30 PM)	Peak Hour Factor	1.00
Intersection Orientation	North-South	Analysis Time Period (hrs)	1.00
Project Description	Mark Armijo Academy		·
lanos			

Lanes

Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	2	0	0	1	2	0
Configuration							LR				Т	TR		L	Т	
Volume (veh/h)						63		86			690	54	0	126	919	
Percent Heavy Vehicles (%)						0		0					0	0		
Proportion Time Blocked																
Percent Grade (%)						(0									
Right Turn Channelized																
Median Type Storage				Left +	- Thru							2	2			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)						7.5		6.9						4.1		
Critical Headway (sec)						6.80		6.90						4.10		
Base Follow-Up Headway (sec)						3.5		3.3						2.2		
Follow-Up Headway (sec)						3.50		3.30						2.20		
Delay, Queue Length, an	d Leve	l of Se	ervice								<u>.</u>					
Flow Rate, v (veh/h)	Γ						149							126		
Capacity, c (veh/h)							428							873		
v/c Ratio							0.35							0.14		
95% Queue Length, Q ₉₅ (veh)							1.6							0.5		
Control Delay (s/veh)							17.9							9.8		
Level of Service (LOS)							С							A		
Approach Delay (s/veh)						17	7.9							. 1	.2	
Approach LOS						(С								4	

						_		_				
General and Site Informat	ion				Lanes							
Analyst	BW											
Agency/Co.	Lee Eng	ineering					لي 1	4 1 1		La La		
Date Performed	6/11/20	24						-				
Analysis Year	2024										R	
Analysis Time Period (hrs)	1.00					_ <u>*</u>					▲ <u>∽</u>	
Time Analyzed	Existing	AM (7:15 /	AM)			*	1.			*	€	
Project Description	Mark Ar	mijo Acade	emy									
Intersection	Bataan	Dr & Gonza	ales Rd								*	
Jurisdiction	CABQ					× 						
East/West Street	Gonzale	es Road							-			
North/South Street	Bataan	Drive					ኻ	۱ ۴	/ † t	· /*		
Peak Hour Factor	1.00											
Turning Movement Dema	nd Volum	nes										
Approach		Eastbound	1	· ·	Westbound	d	1	Northbound	d	S	outhboun	d
Movement	L	Т	R	L	Т	R	L	Т	R	L	Т	R
Volume (veh/h)	20	74	48	25	48	17	41	34	24	1	18	21
% Thrus in Shared Lane												
Lane Flow Rate and Adjus	tments											
Approach	T	Eastbound	1	· ·	Westbound	d	1	Northbound	d	S	outhboun	d
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	142			90			99			40		
Percent Heavy Vehicles	2			0			0			0		
Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20		
Initial Degree of Utilization, x	0.126			0.080			0.088			0.036		
Final Departure Headway, hd (s)	4.18			4.31			4.39			4.21		
Final Degree of Utilization, x	0.165			0.108			0.121			0.047		
Move-Up Time, m (s)	2.0			2.0			2.0			2.0		
Service Time, ts (s)	2.18			2.31			2.39			2.21		
Capacity, Delay and Level	of Servic	e										
Approach		Eastbound	1	· ·	Westbound	ł	1	Northbound	d	S	outhboun	d
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	142			90			99			40		
Capacity (veh/h)	862			836			820			855		
95% Queue Length, Q ₉₅ (veh)	0.6			0.4			0.4			0.1		
Control Delay (s/veh)	8.0			7.8			8.0			7.4		
Level of Service, LOS	A			А			A			A		
Approach Delay (s/veh) LOS	8.0		A	7.8		A	8.0		A	7.4		A
Intersection Delay (s/veh) LOS			-7	.9						Δ		

Copyright $\ensuremath{\mathbb{C}}$ 2024 University of Florida. All Rights Reserved.

HCS[™] AWSC Version 2023 04 Bataan Gonzales Existing AM.xaw

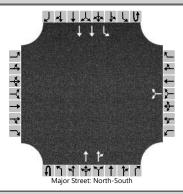
General and Site Informati	on				Lanes							
					Lanes							
Analyst	BW						J	4 4 4		L.		
Agency/Co.	Lee Eng	-										
Date Performed	6/11/20	24									IK.	
Analysis Year	2024										*	
Analysis Time Period (hrs)	1.00										` 	
Time Analyzed		PM (2:30 F				ľ	4			\$	<u>></u>	
Project Description	Mark Ar	mijo Acado	emy								÷.	
Intersection	Bataan I	Dr & Gonz	ales Rd									
Jurisdiction	CABQ										¥	
East/West Street	Gonzale	es Road						~	*			
North/South Street	Bataan I	Drive					ግ	**	* 1 1	· /*		
Peak Hour Factor	1.00											
Turning Movement Demai	nd Volum	nes										
Approach		Eastbound	ł		Westbound	d	1	Northboun	d	S	outhboun	d
Movement	L	Т	R	L	Т	R	L	Т	R	L	Т	R
Volume (veh/h)	12	91	62	33	49	18	29	48	21	5	20	16
% Thrus in Shared Lane												
Lane Flow Rate and Adjust	ments											
Approach		Eastbound	1		Westbound	d	1	Northboun	d	5	outhboun	d
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	165			100			98			41		
Percent Heavy Vehicles	2			0			0			0		
Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20		
Initial Degree of Utilization, x	0.147			0.089			0.087			0.036		
Final Departure Headway, hd (s)	4.16			4.36			4.47			4.40		
Final Degree of Utilization, x	0.191			0.121			0.122			0.050		
Move-Up Time, m (s)	2.0			2.0			2.0			2.0		
Service Time, t _s (s)	2.16			2.36			2.47			2.40		
Capacity, Delay and Level	of Servic	e	<u> </u>	1	1	<u> </u>	<u> </u>	<u> </u>	<u> </u>			
Approach		Eastbound	1		Westbound	d	1	Northboun	d	5	outhboun	d
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	165			100			98			41		
Capacity (veh/h)	866			826			806			819		
· ·	0.7			0.4			0.4			0.2		
95% Queue Length, Q ₉₅ (veh)												<u> </u>
-	8.1			8.0			8.1			7.6		
95% Queue Length, Q ₉₅ (veh) Control Delay (s/veh) Level of Service, LOS	8.1 A			8.0 A			8.1 A			7.6 A		

Copyright $\ensuremath{\mathbb{C}}$ 2024 University of Florida. All Rights Reserved.

HCS[™] AWSC Version 2023 04 Gonzales Bataan Existing PM.xaw

Generated: 9/24/2024 1:17:16 PM

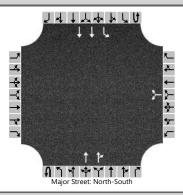
		HCS	S Sigr	nalize	d Inte	ersect	ion R	esu	Its Su	nmary	/					
General Inform	nation									ction Inf	1		- É	411	2× 14	
Agency		Lee Engineering							Duratio		1.000				N.	
Analyst		BW				e Jun 2			Area Ty	ре	Other	-	Å>		≈_	
Jurisdiction		CABQ		Time F	Period	Existir AM)	ng AM (7:15	PHF		1.00		4 M 6	₩ŢE	↓ ↓ •	
Urban Street		Coors Boulevard		Analys	sis Yea	r 2024			Analysi	s Period	1> 7:	15		5 + 6		
Intersection		Bridge Boulevard		File Na	ame	05 Co	ors Brid	lge E	kisting Al	∕l.xus				14149	14	
Project Descrip	tion	Existing AM (7:15 A	M)													
Demand Inform	nation				EB			W	′B		NB			SB		
Approach Move	ement			L	Т	R	L		Г R	L	Т	R	L	Т	R	
Demand (<i>v</i>), v	eh/h			96	176	71	47	13	33 134	4 91	1061	61	70	589	35	
Signal Informa	tion			<u> </u>	T T	_	a. I II.	_				† I			ĸ	
Cycle, s	120.0	Reference Phase	2		L _ M	٩		2	Ç.			`	NT .			
Offset, s	0	Reference Point	End		<u> </u>	<u>`````</u>						1	2	3	4	
Uncoordinated	No	Simult. Gap E/W	On	Green		0.6	79.1	20			_				_	
Force Mode	Fixed	Simult. Gap N/S	On	Yellow Red	1.5	0.0	4.5	4.0			-1	ך ≀	6	7	- € .	
T OFCE MODE	TIXCU	oindit. Cap N/C	OII	Tited	1.0	0.0	1.0	2.	0.0	0.0					-	
Timer Results				EBI	-	EBT	WB	L	WBT	NB	L	NBT	SBI	L	SBT	
Assigned Phase	e					8			4	5		2	1		6	
Case Number						5.0			5.0	1.1		4.0	1.1		4.0	
Phase Duration	, S					26.5			26.5	8.9)	85.3	8.2		84.6	
Change Period	e Period, (Y+R c), s low Headway (MAH) s					6.0			6.0	5.0)	5.5	5.0		5.5	
Max Allow Head	Allow Headway (<i>MAH</i>), s					4.1			4.1	2.5	5	0.0	2.5		0.0	
Queue Clearan	ce Time	e (g s), s				18.0			16.4	4.0)		3.5			
Green Extensio	n Time	(ge),s				1.9			2.0	0.1		0.0	0.1		0.0	
Phase Call Pro	bability					1.00			1.00	0.9	5		0.90)		
Max Out Proba	bility					0.00			0.00	0.0	0		0.00)		
Movement Gro	oup Res	sults			EB			WE	3		NB			SB		
Approach Move	-			L	Т	R	L	Т	R	L	Т	R	L	Т	R	
Assigned Move				3	8	18	7	4	14	5	2	12	1	6	16	
Adjusted Flow I), veh/h		96	176	28	47	133	_	91	566	556	70	315	309	
	· · ·	w Rate (<i>s</i>), veh/h/l	n	1275	1900	-	1228	190		1795	1885	1848	1810	1885	1848	
Queue Service				8.7	10.1	1.7	4.4	7.5		2.0	17.3	17.3	1.5	8.2	8.2	
Cycle Queue C				16.0	10.1	1.7	14.4	7.5		2.0	17.3	17.3	1.5	8.2	8.2	
Green Ratio (g				0.17	0.17	0.20	0.17	0.1		0.69	0.66	0.66	0.69	0.66	0.66	
Capacity (c), v				201	326	328	168	326		593	1252	1227	364	1242	1217	
Volume-to-Cap		tio(X)		0.478		_	0.279	0.40			0.453		0.192	0.254	0.254	
· ·		/In (95 th percentile)	127.4	211.2	_	61.3	159		29.5	272.9		22.9	141.7	138.3	
	. ,	eh/In (95 th percenti	,	5.1	8.4	1.2	2.5	6.4		1.2	10.8	10.7	0.9	5.6	5.5	
	. ,	RQ) (95 th percent		0.91	0.00	0.15	0.47	0.0	0.57	0.11	0.00	0.00	0.10	0.00	0.00	
Uniform Delay (51.3	45.4	38.7	51.9	44.3	_	6.4	9.7	9.7	7.9	8.4	8.4	
Incremental De	, ,			1.8	1.4	0.1	0.9	0.8	_	0.0	1.2	1.2	0.1	0.5	0.5	
Initial Queue De				0.0	0.0	0.0	0.0	0.0	_	0.0	0.0	0.0				
Control Delay (•		53.1	46.8	38.8	52.8	45.	1 40.4	6.4	10.9	10.9				
Level of Service	evel of Service (LOS)					D	D	D	D	Α	В	В	Α	Α	Α	
Approach Delay	pproach Delay, s/veh / LOS					D	45.4	1	D	10.	6	В	8.8		A	
	tersection Delay, s/veh / LOS					18	3.1						В			
Multimodal Po	Iltimodal Results							WE	3		NB			SB		
Pedestrian LOS		/105		2.31	EB	В	2.3		B	2.2		В	2.21		В	
Bicycle LOS Sc				3.03		C	2.94	_	C	2.7		C	2.2		C	
				0.00		0	2.94	r I	0	2.13	5	0	2.31		0	


		HCS	S Sigr	nalize	d Inte	ersect	ion R	esu	lts Sun	nmary	/				
O	- 41								1	41 a 1				4244	
General Inform	ation	. <u> </u>							Intersec					446	2* **
Agency		Lee Engineering							Duration		1.000				N.
Analyst		BW				e Jun 2			Area Typ	e	Other	•			R
Jurisdiction		CABQ		Time F	Period	Existii PM)	ng PM (2:30	PHF		1.00		14 M 4	w+e s	1 1 1
Urban Street		Coors Boulevard		Analys	sis Yea				Analysis		1> 14	:30		5.4.6	<u> </u>
Intersection		Bridge Boulevard		File Na	ame	05 Co	ors Brid	lge Ex	kisting PM	1.xus				14149	14
Project Descripti	ion	Existing PM (2:30 F	PM)												
Demand Inform	ation				EB			W	'B		NB			SB	
Approach Mover	ment			L	Т	R	L	1	R	L	Т	R	L	Т	R
Demand (v), ve	eh/h			38	120	63	48	15	52 119	72	584	39	96	827	55
Signal Informat	lion			1	- T	6 111	6 11	-		_		+			F
	110.0	Reference Phase	2	-	N	- Park		62			ų		sta		✐
Offset, s	0	Reference Point	End		7						1	1	2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Green		0.7	73.6	16		0.0	_				
	-	-	On	Yellow Red	3.5 1.5	0.0	4.5	4.0		0.0	— — Î	<u>۲</u>		-	- € .
Force Mode	Fixed	Simult. Gap N/S	On	Rea	1.5	0.0	1.0	2.0	0.0	0.0	+	5	6	1	3 8
Timer Results				EBL	-	EBT	WB	L	WBT	NB	L	NBT	SBI	L	SBT
Assigned Phase	;					8			4	5		2	1		6
Case Number						5.0			5.0	1.1		4.0	1.1		4.0
Phase Duration,	s					22.2			22.2	8.1		79.1	8.7		79.7
Change Period,	ge Period, (Y+R c), s					6.0			6.0	5.0		5.5	5.0		5.5
Max Allow Head	Allow Headway (<i>MAH</i>), s					4.1			4.1	2.5		0.0	2.5		0.0
Queue Clearanc	e Time	e (g s), s				13.3			12.1	3.4			3.8		
Green Extensior	n Time	(g _e), s				1.9			1.9	0.1		0.0	0.1		0.0
Phase Call Prob	ability					1.00			1.00	0.89)		0.95	5	
Max Out Probab	oility					0.00			0.00	0.00)		0.00)	
Movement Grou		ulte			EB			WE	2		NB			SB	
Approach Mover	-				Т	R	L	T	R		T	R		Т	R
Assigned Mover				3	8	18	7	4	14	5	2	12	1	6	16
Adjusted Flow R) veh/h		38	120	63	48	152	_	72	315	308	96	446	436
-	· ·	ow Rate (<i>s</i>), veh/h/l	n	1252	1900		1292	190		1810	1885	1843	1810	1885	1843
Queue Service 1		, ,		3.2	6.3	3.7	3.9	8.1	_	1.4	7.3	7.3	1.8	11.1	11.1
Cycle Queue Cle				11.3	6.3	3.7	10.1	8.1		1.4	7.3	7.3	1.8	11.1	11.1
Green Ratio (g/		· ······ (y •), •		0.15	0.15	0.18	0.15	0.1	_	0.70	0.67	0.67	0.70	0.67	0.67
Capacity (c), ve	,			158	281	283	183	281		470	1260	1232	616	1271	1243
Volume-to-Capa		itio (X)		0.240	0.427		0.262	0.54	_	0.153	0.250		0.156	0.351	0.351
		t/In (95 th percentile	e)	45.6	134.6		56.5	174.		19.6	120.1	117.4	25.5	181.9	176.8
		eh/In (95 th percenti		1.8	5.4	2.6	2.3	7.0	_	0.8	4.8	4.7	1.0	7.2	7.1
		RQ) (95 th percent		0.33	0.00	0.33	0.43	0.00		0.07	0.00	0.00	0.11	0.00	0.00
Uniform Delay (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	48.6	42.6	38.9	47.2	43.4		6.1	7.3	7.3	5.4	7.7	7.7
Incremental Dela				0.8	1.0	0.4	0.8	1.6		0.1	0.5	0.5	0.0	0.8	0.8
	l Queue Delay (d 3), s/veh				0.0	0.0	0.0	0.0	_	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (·		0.0 49.4	43.6	39.3	48.0	45.0	_	6.1	7.7	7.8	5.5	8.4	8.4
Level of Service	,			D	D	D	D	D	D	A	Α	A	A	A	A
	pproach Delay, s/veh / LOS					D	43.8		D	7.6		A	8.1		A
	ntersection Delay, s/veh / LOS					16	5.6						B		
	Itimodal Results							WE			NB			SB	
Pedestrian LOS				2.31		В	2.3	_	В	2.14		В	2.14		В
Bicycle LOS Sco	ore / LC	DS		2.90)	С	3.07	7	С	2.36	6	В	2.81	1	С

		HCS	6 Sigr	nalize	d Int	ersect	ion R	esul	ts Sun	nmary	/				
_														ti na tina ti natizar tin	
General Inforn	nation								Intersec				- i		
Agency		Lee Engineering							Duration		1.000				
Analyst		BW				e Jun 2			Area Typ	e	Other		××		
Jurisdiction		CABQ		Time F	Period	Buildo Backo (7:15	ground A	M	PHF		1.00			W HE	***
Urban Street		Central Avenue		Analys	sis Yea	r 2024		Ĩ	Analysis	Period	1> 7:	15			r Prot
Intersection		Coors Boulevard		File Na	ame	01 Cc	ors Cer	ntral B	uildout B	G AM.xu	JS				
Project Descrip	tion	Buildout Backgroun	d AM (7	7:15 AM)										
									_	_			-		
Demand Inform					EB		<u> </u>	W	1	<u> </u>	NB		<u> </u>	SB	
Approach Move				L	T	R	L	T		L	T	R	L (77	T	R
Demand (v), v	'eh/h			209	607	26	69	23	4 233	60	952	97	177	594	89
Signal Informa	ation		_				-	ب	ւլս	L.					
Cycle, s	150.0	Reference Phase	2	1	- * ,	⋳ॾ	'	٦.		╵┣┈				5	レ
Offset, s	0	Reference Point	End	Green	70					44 (<u></u>	1	Y 2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Yellow		7.5 4.0	54.6 4.0	4.6		41.6	<u> </u>	7	4	ĸ	4
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	1.0	1.5		1.5		5	6	7	8
Timer Results				EBI		EBT	WB	L	WBT	NB	L	NBT	SBI	-	SBT
Assigned Phas	е			5		2	1		6	7		4	3		8
Case Number				2.0 24.7		4.0	2.0	_	3.0	2.0		3.0	2.0	_	4.0
Phase Duration						72.1	12.3	-	59.6	9.6		46.6	19.0		56.0
-	ange Period, (Y+R c), s					5.0	5.0		5.0	5.0		5.0	5.0		5.0
Max Allow Hea	- ,	·		4.1		0.0	4.1		0.0	4.0		4.0	4.0		4.0
Queue Clearan		, = ,		19.0			7.7			4.6		40.7	9.3		24.7
Green Extensio		(ge), s		0.7		0.0	0.0		0.0	0.2		0.9	0.4		8.0
Phase Call Pro	•			1.00			0.94			0.92		1.00	1.00		1.00
Max Out Proba	DIIILY			0.00	,		1.00	J		0.00	J	1.00	0.01		0.10
Movement Gro	oup Res	sults			EB			WE	3		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			5	2	12	1	6	16	7	4	14	3	8	18
Adjusted Flow	Rate(<i>v</i>), veh/h		209	316	313	69	234	233	60	952	97	177	350	333
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n	1810	1900	1876	1810	1809	9 1553	1716	1809	1600	1743	1885	1785
Queue Service		- /		17.0	16.6	16.6	5.7	6.6		2.6	38.7	7.0	7.3	22.6	22.7
Cycle Queue C		e Time (g c), s		17.0	16.6	16.6	5.7	6.6		2.6	38.7	7.0	7.3	22.6	22.7
Green Ratio (g	· · ·			0.13	0.45	0.45	0.05	0.36	_	0.03	0.28	0.28	0.09	0.34	0.34
Capacity (c), v				238	850	839	88	1318		105	1004	444	325	642	607
Volume-to-Cap	-	, ,)	0.879	0.372	_	0.788	0.17	_	0.571	0.948	0.218	0.544	0.546	0.548
	. ,	t/In(95 th percentile eh/In(95 th percenti		333.9 13.4	311.2 12.4	2 308.5 12.3	141.5 5.7	134. 5.4		55.1 2.2	695.9 27.8	124.5 5.0	147.5 5.9	396.8 15.7	378.6 15.1
	· ,	RQ) (95 th percent	,	2.38	0.00	0.00	0.94	0.00		0.15	0.00	0.00	0.41	0.00	0.00
Uniform Delay		,, .		64.0	27.5	27.5	70.6	32.4		71.7	53.1	41.7	65.0	40.1	40.1
	. ,			11.2	1.3	1.3	21.5	0.3	_	4.9	23.6	0.2	1.4	0.9	1.0
	ncremental Delay (d ₂), s/veh nitial Queue Delay (d ȝ), s/veh					0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (•		0.0 75.2	0.0	28.8	92.1	32.7		76.6	76.7	41.9	66.4	41.0	41.2
Level of Service				E	C	C	F	C	D	E	E	D	E	D	D
	pproach Delay, s/veh / LOS					D	42.6	<u> </u>	D	73.6	L	E	46.3		D
Intersection De	-			40.3			3.3						D		
					EB										
	Itimodal Results							WE			NB			SB	
Pedestrian LOS				2.62		С	2.48	_	В	2.48		В	2.33		В
Bicycle LOS So	core / LC	05		3.81		D	2.95	D	С	3.24	1	С	3.92	2	D

		HCS	6 Sigr	nalize	d Inte	ersect	ion R	esu	lts Sum	nmary	1				
								1	-						
General Inform	nation								Intersect						
Agency		Lee Engineering		1					Duration,		1.000				E L
Analyst		BW				e Jun 2			Area Typ	е	Other		××		
Jurisdiction		CABQ		Time F	Period	Buildo Backo (2:30	ground F	РМ	PHF		1.00			w‡€	11
Urban Street		Central Avenue		Analys	sis Yea	r 2024			Analysis	Period	1> 14	:30		4149	2 1
Intersection		Coors Boulevard		File Na	ame	01 Co	ors Cer	ntral B	uildout BO	G PM.xu	JS				
Project Descrip	tion	Buildout Backgroun	d PM (2	2:30 PM)										
.					==		_							0.0	
Demand Inform					EB		<u> </u>	W		<u> </u>	NB		<u> </u>	SB	
Approach Move				L	T	R	L	1	_	L	T	R	L	T	R
Demand (v), v	/eh/h	_		141	427	44	124	57	0 270	122	641	75	343	845	158
Signal Informa	ation							۳	ւլս	E.U.				1	
Cycle, s	120.0	Reference Phase	2	1	-7 e	⊤⊒ਡ	· 🕒 '	Η,		F.	. I ×		→	5	ヤ
Offset, s	0	Reference Point	End		10.1					- 20 (1	Y 2	3	4.
Uncoordinated	No	Simult. Gap E/W	On	Green Yellow		1.2 0.0	44.4	6.5 3.5		30.3 3.5	5	7	4	K.	4
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	0.0	1.0	1.5		1.5		5	6	7	8
				I.											
Timer Results				EBI	-	EBT	WB	L	WBT	NB	_	NBT	SBI	-	SBT
Assigned Phas	е			5		2	1		6	7		4	3		8
Case Number				2.0		4.0	2.0		3.0	2.0		3.0	2.0		4.0
Phase Duration	· · · · · · · · · · · · · · · · · · ·					50.5	15.1	1	49.4	11.5	5	35.3	19.1	i 📃	42.9
Change Period	inge Period, (Y+R c), s					5.0	5.0		5.0	5.0		5.0	5.0		5.0
Max Allow Hea	dway(<i>I</i>	<i>MAH</i>), s		4.1		0.0	4.1		0.0	4.0		4.0	4.0		4.0
Queue Clearan	ice Time	e (g s), s		11.2	2		10.1	1		6.2		21.3	13.5	;	33.1
Green Extensio		(ge),s		0.2		0.0	0.2	_	0.0	0.4		5.0	0.7		3.4
Phase Call Pro				0.99)		0.98	3		0.98	3	1.00	1.00)	1.00
Max Out Proba	bility			0.48	3		0.17	7		0.00)	0.57	0.41		0.85
Movement Gro	oup Res	ults			EB			WE	3		NB			SB	_
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move				5	2	12	1	6	16	7	4	14	3	8	18
Adjusted Flow	Rate(<i>v</i>), veh/h		141	238	233	124	570	270	122	641	75	343	518	485
Adjusted Satura	ation Flo	w Rate (<i>s</i>), veh/h/l	n	1810	1900	1836	1810	180	9 1537	1716	1809	1597	1757	1885	1763
Queue Service	Time (g	g s), S		9.2	10.7	10.8	8.1	14.1	1 16.1	4.2	19.3	4.4	11.5	31.1	31.1
Cycle Queue C	learanc	e Time (<i>g c</i>), s		9.2	10.7	10.8	8.1	14.1	1 16.1	4.2	19.3	4.4	11.5	31.1	31.1
Green Ratio (g	ŋ∕C)			0.09	0.38	0.38	0.08	0.37	7 0.37	0.05	0.25	0.25	0.12	0.32	0.32
Capacity (c), v	/eh/h			170	721	697	152	133	7 568	185	913	403	413	596	557
Volume-to-Cap	acity Ra	itio(X)		0.831	0.331	0.334	0.815	0.42	6 0.475	0.661	0.702	0.186	0.830	0.870	0.870
	. ,	t/In(95 th percentile		214.2	217.9	214.2	186.2	258.		86.3	335.6	76.7	229.7	573	541.6
	· ,	eh/In (95 th percenti	, ,	8.6	8.7	8.6	7.4	10.3		3.4	13.4	3.1	9.2	22.7	21.7
		RQ) (95 th percent	ile)	1.53	0.00	0.00	1.24	0.00		0.24	0.00	0.00	0.64	0.00	0.00
Uniform Delay	· ,			53.4 16.6	26.4 1.2	26.5	54.0	28.3		55.7	40.8	35.2	51.8	38.7	38.7
	ncremental Delay (d ₂), s/veh					1.3	11.5	1.0		4.1	2.3	0.2	8.2	14.6	15.5
	itial Queue Delay (d 3), s/veh					0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (70.1	27.7	27.8	65.6	29.3		59.8	43.1	35.4	60.0	53.3	54.2
Level of Service				E 37.5	С	С	E	C	С	E	D	D	E	D	D
	pproach Delay, s/veh / LOS tersection Delay, s/veh / LOS					D	34.7	7	С	44.8	3	D	55.3	\$	E
Intersection De	lay, s/ve	eh / LOS				44	4.8						D		
Multimodel Be	eulte				EB			WE	2		NB			SB	
	Itimodal Results Jestrian LOS Score / LOS					С	2.47		B	2.47		В	2.31		В
Bicycle LOS So				2.61 3.63		D	3.30		C	3.0		C	4.32		D
510,010 200 00				0.00		5	0.00		5	0.0		•	7.02		5

	HCS Two-Way	Stop-Control Report	
General Information		Site Information	
Analyst	BW	Intersection	Coors Blvd & Gonzales Rd
Agency/Co.	Lee Engingeering	Jurisdiction	CABQ
Date Performed	6/11/2024	East/West Street	Gonzales Road
Analysis Year	2024	North/South Street	Coors Boulevard
Time Analyzed	Buildout BG AM (7:15 AM)	Peak Hour Factor	1.00
Intersection Orientation	North-South	Analysis Time Period (hrs)	1.00
Project Description	Mark Armijo Academy NIA		
Lanes	· · · ·		


Lanes

Vehicle Volumes and Adjustments

	-												_			
Approach	<u> </u>	Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	2	0	0	1	2	0
Configuration							LR				Т	TR		L	Т	
Volume (veh/h)						55		86			1210	106	4	92	652	
Percent Heavy Vehicles (%)						0		0					0	0		
Proportion Time Blocked																
Percent Grade (%)							0									
Right Turn Channelized																
Median Type Storage				Left +	- Thru							ž	2			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)						7.5		6.9					6.4	4.1		
Critical Headway (sec)						6.80		6.90					6.40	4.10		
Base Follow-Up Headway (sec)						3.5		3.3					2.5	2.2		
Follow-Up Headway (sec)						3.50		3.30					2.50	2.20		
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)							141							96		
Capacity, c (veh/h)							293							488		
v/c Ratio							0.48							0.20		
95% Queue Length, Q ₉₅ (veh)							2.7							0.7		
Control Delay (s/veh)							28.5							14.2		
Level of Service (LOS)							D							В		
Approach Delay (s/veh)						28	3.5							1	.8	
Approach LOS)								۹	

	HCS Two-Way	Stop-Control Report	
General Information		Site Information	
Analyst	BW	Intersection	Coors Blvd & Gonzales Rd
Agency/Co.	Lee Engingeering	Jurisdiction	CABQ
Date Performed	6/11/2024	East/West Street	Gonzales Road
Analysis Year	2024	North/South Street	Coors Boulevard
Time Analyzed	Buildout BG PM (2:30 PM)	Peak Hour Factor	1.00
Intersection Orientation	North-South	Analysis Time Period (hrs)	1.00
Project Description	Mark Armijo Academy		
Lanes			

Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	2	0	0	1	2	0
Configuration							LR				Т	TR		L	Т	
Volume (veh/h)						65		88			703	56	2	128	938	
Percent Heavy Vehicles (%)						0		0					0	0		
Proportion Time Blocked																
Percent Grade (%)		-	-			(0	-		-	-					-
Right Turn Channelized																
Median Type Storage				Left +	- Thru							ž	2			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)						7.5		6.9					6.4	4.1		
Critical Headway (sec)						6.80		6.90					6.40	4.10		
Base Follow-Up Headway (sec)						3.5		3.3					2.5	2.2		
Follow-Up Headway (sec)						3.50		3.30					2.50	2.20		
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)							153							130		
Capacity, c (veh/h)							418							847		
v/c Ratio							0.37							0.15		
95% Queue Length, Q ₉₅ (veh)							1.7							0.5		
Control Delay (s/veh)							18.6							10.0		
Level of Service (LOS)							С							В		
Approach Delay (s/veh)						18	3.6							1	.2	
Approach LOS						(С								4	

Conoral and Site Informat	ion					trol Re						
General and Site Informat					Lanes							
Analyst	BW							<i>⊾</i> ↓ <i>⊾</i>				
Agency/Co.	Lee Eng	-					<u>k</u>	* * *				
Date Performed	6/11/20	24				1					i k	
Analysis Year	2024					 						
Analysis Time Period (hrs)	1.00					*						
Time Analyzed	Buildou	t BG AM (7	:15 AM)			× T	4			\$	• 3	
Project Description	Mark Ar	mijo Acad	emy			~ →					<u>▶</u>	
Intersection	Bataan I	Dr & Gonz	ales Rd								* *~	
Jurisdiction	CABQ										¥	
East/West Street	Gonzale	s Road							*		_	
North/South Street	Bataan I	Drive					ካ	* * *	/ / 1 1×	· /*		
Peak Hour Factor	1.00											
Turning Movement Dema	nd Volum	nes										
Approach		Eastbound	1		Westbound	d	1	Northboun	d	S	outhboun	d
Movement	L	Т	R	L	Т	R	L	Т	R	L	Т	R
Volume (veh/h)	21	76	49	27	49	18	42	35	25	2	19	22
% Thrus in Shared Lane												
Lane Flow Rate and Adjus	tments											
Approach		Eastbound	1		Westbound	d	1	Northboun	d	5	outhboun	d
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	146			94			102			43		
Percent Heavy Vehicles	2			0			0			0		
Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20		
Initial Degree of Utilization, x	0.130			0.084			0.091			0.038		
Final Departure Headway, hd (s)	4.20			4.33			4.42			4.26		
Final Degree of Utilization, x	0.170			0.113			0.125			0.051		
Move-Up Time, m (s)	2.0			2.0			2.0			2.0		
Service Time, t₅ (s)	2.20			2.33			2.42			2.26		
Capacity, Delay and Level	of Servic	e										
Approach	T	Eastbound	1		Westbound	d	1	Northboun	d	S	outhboun	.d
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	146			94			102			43		
Capacity (veh/h)	857			831			815			846		
95% Queue Length, Q ₉₅ (veh)	0.6			0.4			0.4			0.2		
Control Delay (s/veh)	8.1			7.9			8.1			7.5		
·	A			A			A			A		
Level of Service, LOS	7.											

Copyright © 2024 University of Florida. All Rights Reserved.

HCS[™] AWSC Version 2023 04 Bataan Gonzales Buildout BG AM.xaw

Generated: 9/24/2024 1:24:24 PM

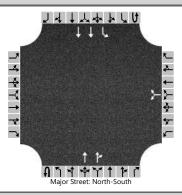
General and Site Informat	ion				Lanes							
					Lanes							
Analyst	BW							≠ ↓ ×	l ata b			
Agency/Co.	Lee Eng	-					ř					
Date Performed	6/11/20	24				X					i k	
Analysis Year	2024											
Analysis Time Period (hrs)	1.00					*					-	
Time Analyzed	Buildout	t BG PM (2	:30 PM)			× ×	4			\$	* 3-	
Project Description	Mark Ar	mijo Acad	emy			× →					* *	
Intersection	Bataan I	Or & Gonz	ales Rd								• •	
Jurisdiction	CABQ											
East/West Street	Gonzale	s Road						~			_	
North/South Street	Bataan I	Drive					ኻ	* * *	╱ ┍┑╺╋	· 7		
Peak Hour Factor	1.00											
Turning Movement Dema	nd Volum	ies										
Approach		Eastbound	ł		Westbound	ł	1	Northboun	d	S	outhboun	d
Movement	L	Т	R	L	Т	R	L	Т	R	L	Т	R
Volume (veh/h)	14	93	64	35	50	19	30	49	22	6	21	17
% Thrus in Shared Lane												
Lane Flow Rate and Adjus	tments		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>				
Approach		Eastbound			Westbound		1	Northboun	d	5	outhboun	d
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	171			104			101			44		
Percent Heavy Vehicles	2			0			0			0		
Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20		
Initial Degree of Utilization, x	0.152			0.092			0.090			0.039		
Final Departure Headway, hd (s)	4.18			4.38			4.49			4.43		
Final Degree of Utilization, x	0.199			0.127			0.126			0.054		
Move-Up Time, m (s)	2.0			2.0			2.0			2.0		
Service Time, t _s (s)	2.18			2.38			2.49			2.43		
Capacity, Delay and Level		•		2.30			2.49			2.43		
								Northboun			outhboun	
Approach	_	Eastbound	1		Westbound							
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	171			104			101			44		
Capacity (veh/h)	861			822			801			813		<u> </u>
95% Queue Length, Q ₉₅ (veh)	0.7			0.4			0.4			0.2		
Control Delay (s/veh)	8.2			8.0			8.1			7.7		<u> </u>
Level of Service, LOS	A			A			A			A		
Approach Delay (s/veh) LOS	8.2		А	8.0		А	8.1		А	7.7		А

Copyright $\ensuremath{\mathbb{C}}$ 2024 University of Florida. All Rights Reserved.

HCS[™] AWSC Version 2023 04 Gonzales Bataan Buildout BG PM.xaw

Generated: 9/24/2024 1:24:55 PM

		HCS	S Sigr	nalize	d Inte	ersect	ion R	esu	lts Sun	nmary	/				
														4.2.49.1	968
General Inform	nation	· - · · ·							Intersec				_	414	24 14
Agency		Lee Engineering							Duration		1.000		3		R.
Analyst		BW				Jun 2			Area Typ	be	Other		×		~ ₹
Jurisdiction		CABQ		Time F	Period	Buildo Backo (7:15	ground A	M	PHF		1.00			W Ì E S	11 11
Urban Street		Coors Boulevard		Analys	sis Year	2024			Analysis	Period	1> 7:	15		ጎተኮ	1. 1
Intersection		Bridge Boulevard		File Na	ame	05 Co	ors Brid	lge B	uildout BC	GAM.xu	s		1 "		
Project Descrip	otion	Buildout Backgroun	d AM (7	7:15 AM)			•							
					==				(P)						
Demand Infor				<u> </u>	EB		<u> </u>	W		<u> </u>	NB		<u> </u>	SB	
Approach Move				L	T	R	L	_	R R	L	T	R	L	T	R
Demand (v), v	/en/n			98	180	73	48	13	36 137	93	1083	63	72	601	36
Signal Informa	ation				5		<u>يال،</u>					t			<u>×</u>
Cycle, s	120.0	Reference Phase	2	1								~	∇		7
Offset, s	0	Reference Point	End	<u> </u>								1	2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Green Yellow		0.6	78.7 4.5	20 4.0		0.0	_				
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.5	0.0	1.0	2.0		0.0	コ	5	6	7	★ *
				1											
Timer Results				EBI	-	EBT	WB	L	WBT	NB	L	NBT	SBL	-	SBT
Assigned Phas	е					8			4	5		2	1		6
Case Number						5.0			5.0	1.1		4.0	1.1		4.0
Phase Duration						26.9			26.9	9.0		84.8	8.3		84.2
Change Period						6.0			6.0	5.0		5.5	5.0		5.5
Max Allow Hea						4.1			4.1	2.5		0.0	2.5		0.0
Queue Clearar						18.4			16.7	4.0			3.6		
Green Extensio		(ge),s				2.0			2.0	0.1		0.0	0.1		0.0
Phase Call Pro						1.00		\rightarrow	1.00	0.9			0.91		
Max Out Proba	bility					0.00			0.00	0.00)		0.00)	
Movement Gro	oup Res	sults			EB			WE	3		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ement			3	8	18	7	4	14	5	2	12	1	6	16
Adjusted Flow	Rate (v), veh/h		98	180	29	48	136	62	93	579	567	72	321	316
Adjusted Satur	ation Flo	ow Rate (<i>s</i>), veh/h/l	n	1272	1900	1610	1223	190	0 1582	1795	1885	1848	1810	1885	1847
Queue Service	Time (g	g s), s		8.9	10.4	1.7	4.5	7.6	3.9	2.0	18.1	18.1	1.6	8.5	8.5
Cycle Queue C	learanc	e Time (g c), s		16.4	10.4	1.7	14.7	7.6	3.9	2.0	18.1	18.1	1.6	8.5	8.5
Green Ratio (g				0.17	0.17	0.21	0.17	0.1		0.69	0.66	0.66	0.68	0.66	0.66
Capacity (c), v				203	332	335	170	332	_	583	1244	1220	355	1234	1209
Volume-to-Cap	-	. ,		0.483		0.087	0.283	0.41		0.159	0.465	0.465	0.203	0.260	0.261
	X 7	t/In (95 th percentile	,	130	214.4	31.1	62.6	162	_	30.7	282.8	277	24	147.3	144.5
	. ,	eh/In (95 th percenti	,	5.2	8.6	1.2	2.5	6.5		1.2	11.2	11.1	1.0	5.8	5.8
		RQ) (95 th percent	tile)	0.93	0.00	0.16	0.48	0.0	_	0.11	0.00	0.00	0.10	0.00	0.00
Uniform Delay	. ,			51.2	45.1	38.3	51.7	44.0		6.5	10.0	10.0	8.2	8.6	8.6
Incremental De				1.8	1.4	0.1	0.9	0.8	_	0.0	1.3	1.3	0.1	0.5	0.5
Initial Queue D		•		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (53.0 D	46.5 D	38.5 D	52.7 D	44.8 D	8 40.0 D	6.6	11.3 B	11.3	8.3	9.1	9.2
	el of Service (LOS) vroach Delay, s/veh / LOS			47.8		D	45.1		D	A 10.9		B	A 9.1	A	A
Intersection Dela				47.0	,		45. 3.3		D	10.8			9.1 B		~
	y, 3/ve												_		
Multimodal Re	sults				EB			WE	3		NB			SB	
Pedestrian LOS	S Score	/LOS		2.31		В	2.31	1	В	2.2	5	В	2.21		В
Bicycle LOS So	core / LC	DS		3.05	5	С	2.94	1	С	2.8	1	С	2.59)	С

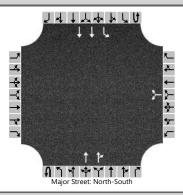

													_		
General Inform	nation								Interse	ction Inf	ormatio	on	2	411	1- L
Agency		Lee Engineering							Duration	n, h	1.000		_	4+4	
Analyst		BW				Jun 2			Area Ty	pe	Other		××		R
Jurisdiction		CABQ		Time F	Period	Buildo Backg (2:30 l	round F	м	PHF		1.00		J 4 1 ↔	W 🗍 E	*
Urban Street		Coors Boulevard		Analys	is Year		101)		Analysi	Period	1> 14	:30		111	
Intersection		Bridge Boulevard		File Na			ors Brid	ae Bi	ildout B			.00	1	4 1 4 4 4	11
Project Descrip	tion	Buildout Backgroun	d PM (2			00 00		90 00			<u> </u>		-		
					/										
Demand Inform	mation				EB			W	В		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	/eh/h			39	123	65	49	15	6 122	. 74	596	40	98	844	57
										Í	_				
Signal Informa					Ju	s de la constante de la consta	n <mark>}-₩</mark> a	d a	E		l	L	-+-		Ð
Cycle, s	110.0	Reference Phase	2		1 8 ¶ -	ľ		R				1		3	Ľ
Offset, s	0	Reference Point	End	Green		0.7	73.2	16	5 0.0	0.0					
Uncoordinated	No	Simult. Gap E/W	On	Yellow		0.0	4.5	4.0		0.0	^	$\langle 4$	DA		-4
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.5	0.0	1.0	2.0	0.0	0.0	+	5	6	7	Y
Timer Results				EBL		EBT	WB		WBT	NB		NBT	SBL		SBT
Assigned Phas	е					8			4	5		2	1	-	6
Case Number						5.0		-	5.0	1.1		4.0	1.1		4.0
Phase Duration	1, S					22.5			22.5	8.1		78.7	8.8		79.3
Change Period	, (Y+R)	c), S				6.0			6.0	5.0		5.5	5.0		5.5
Max Allow Hea		•				4.1			4.1	2.5		0.0	2.5		0.0
Queue Clearan	ice Time	(gs), s				13.6			12.4	3.4			3.9		
Green Extensio	on Time	(ge),s				2.0			2.0	0.1		0.0	0.1		0.0
Phase Call Pro	bability					1.00			1.00	0.9)		0.95	5	
Max Out Proba	bility					0.00			0.00	0.0)		0.00)	
Maxamant Cr	un Dee				ГР	_	_	\A/E		_	ND		_	C D	
Movement Gro	-	Suits			EB T	R	_	WE T	R		NB T	R		SB T	R
Assigned Move				L 3	8	18	L 7	4	14	L 5	2	12	L 1	6	16
Adjusted Flow) veh/h		39	123	65	49	4 156	_	74	321	315	98	456	44
		ow Rate (<i>s</i>), veh/h/l	n	1247	1900	1610	1288	1900		1810	1885	1843	1810	1885	184
Queue Service		. ,		3.3	6.5	3.8	3.9	8.4		1.4	7.6	7.6	1.9	11.6	11.
Cycle Queue C		- ,		11.6	6.5	3.8	10.4	8.4	_	1.4	7.6	7.6	1.9	11.6	11.
Green Ratio (g				0.15	0.15	0.18	0.15	0.15	_	0.69	0.67	0.67	0.70	0.67	0.6
Capacity (c), v	· ·			160	287	289	185	287	_	460	1253	1225	606	1264	123
Volume-to-Cap		tio (X)		0.244	0.429	0.225	0.265		_		0.256	0.257	0.162	0.360	0.3
-	-	/In (95 th percentile)	46.6	137.4	67.5	57.7	178.	_		125.2	122.3	26.6	189.6	184
	. ,	eh/In (95 th percenti		1.9	5.5	2.7	2.3	7.1	5.3	0.8	5.0	4.9	1.1	7.5	7.4
	· ,	RQ) (95 th percent	, ,	0.33	0.00	0.34	0.44	0.00		0.07	0.00	0.00	0.11	0.00	0.0
Uniform Delay				48.5	42.4	38.6	47.1	43.2	. 39.5	6.3	7.5	7.5	5.6	7.9	7.9
Incremental De	lay (d 2), s/veh		0.8	1.0	0.4	0.8	1.6	0.9	0.1	0.5	0.5	0.0	0.8	0.8
Initial Queue D	elay (<i>d</i>	з), s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (<i>d</i>), s/ve	eh		49.3	43.4	39.0	47.8	44.8	40.4	6.3	8.0	8.0	5.6	8.7	8.7
Level of Service	e (LOS)			D	D	D	D	D	D	А	Α	А	А	Α	A
Approach Dela	y, s/veh	/LOS		43.1		D	43.6	6	D	7.8		А	8.4		A
Intersection De	lay, s/ve	h / LOS				16	5.8						В		
Multimodal Re	eulte				EB						NB			SB	
		/1.05		2.31		В	0.04	WE		0.4		P	0.44		D
Pedestrian LOS	s score	/ 103			+	C B	2.31 3.08		B C	2.14 2.3		B	2.14	<u> </u>	В

		HCS	S Sigr	nalize	d Int	ersect	ion R	esu	lts Sun	nmary	1				
									• •						
General Inform	nation								Intersec						
Agency		Lee Engineering							Duration		1.000				
Analyst		BW				e Jun 2			Area Typ	e	Other		×		
Jurisdiction		CABQ		Time F	Period	Buildo (7:15	out Total AM)	AM	PHF		1.00			w‡e U	
Urban Street		Central Avenue		Analys	sis Yea	ır 2024			Analysis	Period	1> 7:	15		55 + +	e 🗖
Intersection		Coors Boulevard		File Na	ame	01 Co	ors Cer	ntral B	uildout To	tal AM.)	(us			4144	14
Project Descrip	tion	Buildout Total AM (7	7:15 AM)											
Demand Inform	nation				EB			W	'B		NB			SB	
Approach Move	ement			L	Т	R	L	٦	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			209	607	27	71	23	34 233	61	936	98	177	613	89
Signal Informa			-		La .			5	r hr	I N					t a
Cycle, s	150.0	Reference Phase	2			'RL			s ľ	_ P	M .	1	▼ 2	3	4
Offset, s	0	Reference Point	End	Green		7.3	54.9	4.6		41.4	-		5		
Uncoordinated	No	Simult. Gap E/W	On	Yellow		4.0	4.0	3.5		3.5				\mathbf{h}	4
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	1.0	1.5	5 1.5	1.5		5	6	7	8
Timer Results				EBI	-	EBT	WB	L	WBT	NBI	-	NBT	SBI	-	SBT
Assigned Phase	e			5		2	1		6	7		4	3		8
Case Number				2.0		4.0	2.0		3.0	2.0		3.0	2.0		4.0
Phase Duration	•			24.7	7	72.2	12.4	1	59.9	9.6		46.4	19.0)	55.8
Change Period	Period, (Y+R c), s			5.0		5.0	5.0		5.0	5.0		5.0	5.0		5.0
Max Allow Head	dway(<i>I</i>	<i>MAH</i>), s		4.1		0.0	4.1		0.0	4.0		4.0	4.0		4.0
Queue Clearan				19.0)		7.8			4.6		39.9	9.3		25.5
Green Extensio		(ge),s		0.7		0.0	0.0		0.0	0.2		1.5	0.4		8.0
Phase Call Pro				1.00			0.95			0.92		1.00	1.00		1.00
Max Out Proba	bility			0.00)		1.00)		0.00)	1.00	0.01		0.11
Movement Gro	oup Res	sults			EB			WE	3		NB			SB	
Approach Move	-			L	T	R	L	Т	R	L	T	R	L	T	R
Assigned Move				5	2	12	1	6	16	7	4	14	3	8	18
Adjusted Flow I	Rate (<i>v</i>), veh/h		209	317	313	71	234	233	61	936	98	177	360	342
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n	1810	1900	1875	1810	180	9 1553	1716	1809	1600	1743	1885	1787
Queue Service	Time (g s), s		17.0	16.6	16.6	5.8	6.6	16.8	2.6	37.9	7.1	7.3	23.4	23.5
Cycle Queue C	learanc	e Time (<i>g c</i>), s		17.0	16.6	16.6	5.8	6.6	16.8	2.6	37.9	7.1	7.3	23.4	23.5
Green Ratio (g				0.13	0.45	0.45	0.05	0.3	7 0.37	0.03	0.28	0.28	0.09	0.34	0.34
Capacity (c), v				238	851	840	90	132		105	998	441	325	638	605
Volume-to-Capa		<u> </u>		0.878	0.372		0.790	0.17		0.579	0.938		0.544	0.564	0.566
	<u> </u>	t/In (95 th percentile	,	333.9	311.6		145.4	133.		56	672.2	126.3	147.5	410.1	391.2
	. ,	eh/In (95 th percenti	,	13.4	12.5	_	5.8	5.3		2.2	26.9 0.00	5.1	5.9 0.41	16.3	15.6
		RQ) (95 th percent	liie)	2.38	0.00	_	0.97 70.5	0.00		0.16	53.1	0.00	65.0	0.00	0.00
Uniform Delay (Incremental De	· ,			64.0 11.2	1.3	1.3	21.4	0.3		5.0	20.3	0.3	1.4	1.1	1.2
Initial Queue De		•		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (·		75.2	28.7	28.7	91.9	32.5		76.8	73.4	42.1	66.4	41.7	41.8
	l of Service (LOS)			E	C	C	F	C	D	E	E	D	E	D	D
	proach Delay, s/veh / LOS			40.3		D	42.6		D	70.7		E	46.7		D
	ersection Delay, s/veh / LOS						2.3						D		
Multimedal D	0.1145				FP)					00	
Multimodal Re Pedestrian LOS		/1.08		2.62	EB	С	2.48	WE		2.48	NB	В	2.33	SB	В
Bicycle LOS Sc				3.81		D	2.48	_	B C	3.23	_	C	3.94		D
				5.0		U	2.90		U	0.20	,	0	3.94	T	U

		HCS	S Sigr	nalize	d Int	ersect	ion R	esu	lts Sur	nmary	/				
									- .				1 -		
General Inform	nation								Intersed				- É		
Agency		Lee Engineering		1					Duratior		1.000				R.
Analyst		BW				e Jun 2			Area Ty	ре	Other	•	*		
Jurisdiction		CABQ		Time F	Period	Buildo (2:30	out Total PM)	PM	PHF		1.00		4 ¥ ¥	W TE	
Urban Street		Central Avenue		Analys	sis Yea	ır 2024			Analysis	Period	1> 14	:30		55++	~ ~
Intersection		Coors Boulevard		File Na	ame	01 Co	ors Cer	ntral E	Buildout T	otal PM.:	xus			4144	24
Project Descrip	tion	Buildout Total PM (2	2:30 PN)											
Demand Inform	nation				EB			W	/B		NB			SB	
Approach Move	ement			L	Т	R	L	Τ-	r r	L	Т	R	L	Т	R
Demand (v), v	eh/h			141	427	45	126	57	70 270	125	655	77	343	861	158
Signal Informa	tion			<u> </u>	1			р		6		_			
Cycle, s	120.0	Reference Phase	2		, مـــــ			Ħ	, ka	• PU	E K		_		tz
Offset, s	0	Reference Point	End						<u> </u>			1	Y 2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Green		1.0	44.1	6.		30.5	5		Ā	ĸ	
Force Mode	Fixed	Simult. Gap N/S	On	Yellow Red	1.0	0.0	4.0	3.		3.5 1.5		5	6		*†
Force Mode	Fixeu	Sinuit. Gap N/S	OII	Itteu	1.0	0.0	1.0	1.	5 1.5	1.5		3	0		0
Timer Results				EBI	-	EBT	WB	L	WBT	NB	_	NBT	SBI	-	SBT
Assigned Phase	e			5		2	1		6	7		4	3		8
Case Number				2.0		4.0	2.0		3.0	2.0		3.0	2.0		4.0
Phase Duration	, S			16.2	2	50.2	15.2	2	49.1	11.6	3	35.5	19.1		43.0
Change Period		,		5.0		5.0	5.0		5.0	5.0		5.0	5.0		5.0
Max Allow Head	dway(<i>I</i>	<i>MAH</i>), s		4.1		0.0	4.1		0.0	4.0		4.0	4.0		4.0
Queue Clearan	ce Time	e (g s), s		11.2	2		10.2	2		6.3		21.8	13.5	5	33.8
Green Extensio	n Time	(ge), s		0.2		0.0	0.2		0.0	0.4		4.9	0.7		3.0
Phase Call Pro				0.99			0.99	_		0.98	3	1.00	1.00)	1.00
Max Out Proba	bility			0.57	7		0.24	1		0.00)	0.60	0.41		0.92
Movement Gro	oup Res	sults			EB			WE	3		NB			SB	
Approach Move	-			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			5	2	12	1	6	16	7	4	14	3	8	18
Adjusted Flow I	Rate (<i>v</i>), veh/h		141	239	233	126	570	270	125	655	77	343	526	493
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n	1810	1900	1835	1810	180	9 1537	1716	1809	1597	1757	1885	1764
Queue Service	Time (g	g s), S		9.2	10.8	10.9	8.2	14.	2 16.2	4.3	19.8	4.5	11.5	31.7	31.8
Cycle Queue C	learanc	e Time (<i>g c</i>), s		9.2	10.8	10.9	8.2	14.	2 16.2	4.3	19.8	4.5	11.5	31.7	31.8
Green Ratio (g	/C)			0.09	0.38	0.38	0.09	0.3	7 0.37	0.05	0.25	0.25	0.12	0.32	0.32
Capacity (c), v	/eh/h			170	715	691	154	133	1 565	188	919	406	413	598	559
Volume-to-Capa	acity Ra	atio(X)		0.831	0.334	0.337	0.818	0.42	28 0.478	0.664	0.712	0.190	0.830	0.881	0.881
Back of Queue	(Q), ft	t/In (95 th percentile	;)	215.2	219.6	6 215.7	190.8	259	.3 261.5	88.5	342.9	78.6	229.7	591.4	559.5
Back of Queue	(Q), ve	eh/In (95 th percenti	le)	8.6	8.8	8.6	7.6	10.	4 10.5	3.5	13.7	3.1	9.2	23.5	22.4
		RQ) (95 th percent	tile)	1.54	0.00	0.00	1.27	0.0		0.25	0.00	0.00	0.64	0.00	0.00
Uniform Delay	, ,			53.4	26.7	26.7	54.0	28.		55.6	40.8	35.1	51.8	38.8	38.8
Incremental De	lay (<i>d</i> 2	e), s/veh		17.3	1.3	1.3	12.7	1.0) 2.9	4.1	2.5	0.2	8.2	16.4	17.4
Initial Queue De		·		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (70.7	28.0		66.7	29.		59.7	43.3	35.3	60.0	55.2	56.3
Level of Service	· /			E	С	С	E	C	С	E	D	D	E	E	E
	proach Delay, s/veh / LOS			37.8	3	D	35.0)	D	45.0)	D	56.8	3	E
Intersection De	lay, s/ve	eh / LOS				4	5.5						D		
Multimodal Re	sults				EB			WE	3		NB			SB	
Pedestrian LOS		/ LOS		2.61		С	2.47		B	2.47		В	2.31		В
Bicycle LOS Sc				3.63	_	D	3.30		C	3.03	_	C	4.34		D
				0.00		-	5.50		-	5.50		-			_

	HCS Two-Way	y Stop-Control Report	
General Information		Site Information	
Analyst	BW	Intersection	Coors Blvd & Gonzales Rd
Agency/Co.	Lee Engingeering	Jurisdiction	CABQ
Date Performed	6/11/2024	East/West Street	Gonzales Road
Analysis Year	2024	North/South Street	Coors Boulevard
Time Analyzed	BO Total AM (7:15 AM)	Peak Hour Factor	1.00
Intersection Orientation	North-South	Analysis Time Period (hrs)	1.00
Project Description	Mark Armijo Academy NIA		
Lanes			

Lanes



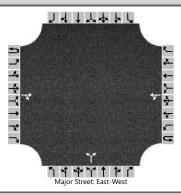
Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	2	0	0	1	2	0
Configuration							LR				Т	TR		L	Т	
Volume (veh/h)						64		99			1210	131	4	114	652	
Percent Heavy Vehicles (%)						0		0					0	0		
Proportion Time Blocked																
Percent Grade (%)			-			(0	-		-	-	-		-		
Right Turn Channelized																
Median Type Storage				Left +	- Thru							:	2			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)						7.5		6.9					6.4	4.1		
Critical Headway (sec)						6.80		6.90					6.40	4.10		
Base Follow-Up Headway (sec)						3.5		3.3					2.5	2.2		
Follow-Up Headway (sec)						3.50		3.30					2.50	2.20		
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)							163							118		
Capacity, c (veh/h)							284							482		
v/c Ratio							0.57							0.24		
95% Queue Length, Q ₉₅ (veh)							3.8							1.0		
Control Delay (s/veh)							34.5							14.9		
Level of Service (LOS)							D							В		
Approach Delay (s/veh)						34	4.5							2	.3	
Approach LOS						[)								Ą	

	HCS Two-Wa	y Stop-Control Report	
General Information		Site Information	
Analyst	BW	Intersection	Coors Blvd & Gonzales Rd
Agency/Co.	Lee Engingeering	Jurisdiction	CABQ
Date Performed	6/11/2024	East/West Street	Gonzales Road
Analysis Year	2024	North/South Street	Coors Boulevard
Time Analyzed	BO Total PM (2:30 PM)	Peak Hour Factor	1.00
Intersection Orientation	North-South	Analysis Time Period (hrs)	1.00
Project Description	Mark Armijo Academy		
Project Description	Mark Armijo Academy		

Lanes

Vehicle Volumes and Adjustments

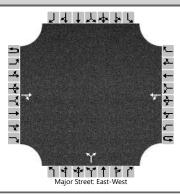

Approach		Eastb	ound			West	bound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		0	0	0		0	1	0	0	0	2	0	0	1	2	0	
Configuration							LR				Т	TR		L	Т		
Volume (veh/h)						78		107			705	65	4	114	652		
Percent Heavy Vehicles (%)						0		0					0	0			
Proportion Time Blocked																	
Percent Grade (%)						. ()										
Right Turn Channelized																	
Median Type Storage		Left + Thru 2															
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)						7.5		6.9					6.4	4.1			
Critical Headway (sec)						6.80		6.90					6.40	4.10			
Base Follow-Up Headway (sec)						3.5		3.3					2.5	2.2			
Follow-Up Headway (sec)						3.50		3.30					2.50	2.20			
Delay, Queue Length, an	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)							185							118			
Capacity, c (veh/h)							450							821			
v/c Ratio							0.41							0.14			
95% Queue Length, Q ₉₅ (veh)							2.1							0.5			
Control Delay (s/veh)							18.6							10.1			
Level of Service (LOS)							С							В			
Approach Delay (s/veh)						- 18	3.6							. 1	.6		
Approach LOS						(2						A				

Copyright © 2024 University of Florida. All Rights Reserved.

HCS[™] TWSC Version 2023 02 Coors Gonzales Buildout Total PM.xtw

Generated: 9/24/2024 1:28:53 PM

	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	BW	Intersection	Site Access & Gonzales Rd
Agency/Co.	Lee Engineering	Jurisdiction	CABQ
Date Performed	6/28/2024	East/West Street	Gonzales Road
Analysis Year	2024	North/South Street	Site Access
Time Analyzed	BO Total AM (7:15 AM)	Peak Hour Factor	1.00
Intersection Orientation	East-West	Analysis Time Period (hrs)	1.00
Project Description	Mark Armijo Academy NIA		
Lanes			


Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	ound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	10	1	2	3	4U	4	5	6	-	7	8	9		10	11	12	
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0	
Configuration				TR		LT					LR						
Volume (veh/h)			198	47		27	61			22		23					
Percent Heavy Vehicles (%)	1					0				0		0					
Proportion Time Blocked																	
Percent Grade (%)										()						
Right Turn Channelized																	
Median Type Storage				Undi	vided								-				
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)						4.1				7.1		6.2					
Critical Headway (sec)						4.10				6.40		6.20					
Base Follow-Up Headway (sec)						2.2				3.5		3.3					
Follow-Up Headway (sec)						2.20				3.50		3.30					
Delay, Queue Length, an	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)						27					45						
Capacity, c (veh/h)						1333					728						
v/c Ratio						0.02					0.06						
95% Queue Length, Q ₉₅ (veh)						0.1					0.2						
Control Delay (s/veh)						7.8	0.2				10.3						
Level of Service (LOS)						A	А				В						
Approach Delay (s/veh)						2	.5			10).3						
Approach LOS						1	4			E	3						

Copyright © 2024 University of Florida. All Rights Reserved.

HCS[™] TWSC Version 2023 03 Site Access Gonzales Buildout Total AM.xtw

	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	BW	Intersection	Site Access & Gonzales Rd
Agency/Co.	Lee Engineering	Jurisdiction	CABQ
Date Performed	6/28/2024	East/West Street	Gonzales Road
Analysis Year	2024	North/South Street	Site Access
Time Analyzed	BO Total PM (2:30 PM)	Peak Hour Factor	1.00
Intersection Orientation	East-West	Analysis Time Period (hrs)	1.00
Project Description	Mark Armijo Academy NIA		
Lanes			

Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	ound			North	bound		South	bound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0	
Configuration				TR		LT					LR						
Volume (veh/h)			184	28		15	97			32		36					
Percent Heavy Vehicles (%)						0				0		0					
Proportion Time Blocked																	
Percent Grade (%)			-				-			()			-			
Right Turn Channelized																	
Median Type Storage				Undi	vided								-				
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)						4.1				7.1		6.2					
Critical Headway (sec)						4.10				6.40		6.20					
Base Follow-Up Headway (sec)						2.2				3.5		3.3					
Follow-Up Headway (sec)						2.20				3.50		3.30					
Delay, Queue Length, an	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)						15					68						
Capacity, c (veh/h)						1370					751						
v/c Ratio						0.01					0.09						
95% Queue Length, Q ₉₅ (veh)						0.0					0.3						
Control Delay (s/veh)						7.7	0.1				10.3						
Level of Service (LOS)						Α	А				В						
Approach Delay (s/veh)		-				1	.1			10).3					-	
Approach LOS						/	4			E	3						

Copyright © 2024 University of Florida. All Rights Reserved.

HCS[™] TWSC Version 2023 03 Site Access Gonzales Buildout Total PM.xtw

General and Site Informat	ion				Lanes							
Analyst	BW				Lancs							
Agency/Co.	Lee Eng	incoring					J		L d b	L.		
Date Performed	6/11/20	-					Ī					
Analysis Year	2024	24				_*					×	
Analysis Time Period (hrs)	1.00					_ X					<u> </u>	
Time Analyzed		I AM (7:15	A N <i>A</i>)			*					←	
Project Description		mijo Acade				\prec	*			*	3	
Intersection	_	Dr & Gonza	-			-					*	
Jurisdiction	CABQ					*					* *	
East/West Street	Gonzale	c Poad									¥	
North/South Street	Bataan I						V		۲			
Peak Hour Factor	1.00						ኘ	* * *	r 1 P	ſ [
Turning Movement Deman												
Approach		Eastbound	1		Westbound			Northboun			outhboun	-
Movement	L	Т	R	L	T	R	L	T	R	L	Т	R
Volume (veh/h)	24	88	57	27	61	18	52	35	25	2	19	27
% Thrus in Shared Lane												
Lane Flow Rate and Adjus	tments											
Approach		Eastbound	1	\ \	Westbound	b	1	Northboun	d	S	outhboun	d
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	169			106			112			48		
Percent Heavy Vehicles	2			0			0			0		
Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20		
Initial Degree of Utilization, x	0.150			0.094			0.100			0.043		
Final Departure Headway, hd (s)	4.26			4.41			4.53			4.33		
Final Degree of Utilization, x	0.200			0.130			0.141			0.058		
Move-Up Time, m (s)	2.0			2.0			2.0			2.0		
Service Time, t₅ (s)	2.26			2.41			2.53			2.33		
Capacity, Delay and Level	of Servic	e										
Approach		Eastbound	1	, v	Westbound	d	1	Northboun	d	S	outhboun	d
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	169			106			112			48		
Capacity (veh/h)	846			816			794			832		
95% Queue Length, Q ₉₅ (veh)	0.7			0.4			0.5			0.2		
Control Delay (s/veh)	8.3			8.1			8.3			7.6		
Level of Service, LOS	A			А			A			A		
Level Of Service, LOS												

Copyright $\ensuremath{\mathbb{C}}$ 2024 University of Florida. All Rights Reserved.

HCS[™] AWSC Version 2023 04 Bataan Gonzales Buildout Total AM.xaw

Generated: 9/24/2024 1:31:03 PM

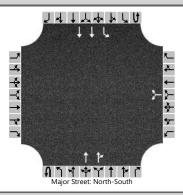
General and Site Informat	ion				Lanes	trol Re						
					Lanes							
Analyst	BW							4 1 1	Lab ♪			
Agency/Co.	Lee Eng	-						-+ + ⊭				
Date Performed	6/11/20	24				1					i k	
Analysis Year	2024					 						
Analysis Time Period (hrs)	1.00					*						
Time Analyzed	BO Tota	I PM (2:30	PM)			* *	4			\$	5-	
Project Description	Mark Ar	mijo Acado	emy			× →					*	
Intersection	Bataan I	Or & Gonz	ales Rd								<u>↓</u>	
Jurisdiction	CABQ										¥	
East/West Street	Gonzale	s Road						×	7		_	
North/South Street	Bataan I	Drive					ኻ	*	╱╵ ↑ ↑	· / ·		
Peak Hour Factor	1.00											
Turning Movement Dema	nd Volum	ies										
Approach		Eastbound	1		Westbound	d	1	Northboun	d	9	Southboun	ıd
Movement	L	Т	R	L	Т	R	L	Т	R	L	Т	R
Volume (veh/h)	17	113	77	35	57	19	35	49	22	6	21	20
% Thrus in Shared Lane												
Lane Flow Rate and Adjust	tments											·
Approach		Eastbound	1		Westbound	b	1	Northboun	d	9	Southboun	ıd
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1 L2		L3
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	207			111			106			47		
Percent Heavy Vehicles	2			0			0			0		<u> </u>
Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20		
Initial Degree of Utilization, x	0.184			0.099			0.094			0.042		
Final Departure Headway, hd (s)	4.22			4.45			4.61			4.52		
Final Degree of Utilization, x	0.243			0.137			0.136			0.059		
Move-Up Time, m (s)	2.0			2.0			2.0			2.0		
Service Time, t₅ (s)	2.22			2.45			2.61			2.52		
Capacity, Delay and Level	of Servic	e										-
Approach		Eastbound			Westbound	d	1	Northboun	d	9	Southboun	ıd
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
Configuration	LTR			LTR			LTR			LTR		1
Flow Rate, v (veh/h)	207			111			106			47		
Capacity (veh/h)	853			809			781			797		
95% Queue Length, Q ₉₅ (veh)	1.0			0.5			0.5			0.2		
Control Delay (s/veh)	8.6			8.2			8.3			7.8		<u> </u>
• • •	A A				A			A		<u> </u>		
Level of Service, LOS	A			A			A					

Copyright $\ensuremath{\mathbb{C}}$ 2024 University of Florida. All Rights Reserved.

HCS[™] AWSC Version 2023 04 Gonzales Bataan Buildout Total PM.xaw

Generated: 9/24/2024 1:31:45 PM

Adjusted Saturation Flow Rate (s), veh/h/ln127219001610122319001582179518851849181018851847Queue Service Time (g s), s9.110.31.74.57.64.12.118.618.61.68.78.7Cycle Queue Clearance Time (g c), s16.510.31.714.67.64.12.118.618.61.68.78.7Green Ratio (g/C)0.180.180.210.180.180.200.690.660.660.680.650.65Capacity (c), veh/h2053353371723353235781241121734812311206Volume-to-Capacity Ratio (X)0.4880.5380.0860.2790.4060.2010.1610.4740.4750.2100.2640.265Back of Queue (Q), veh/ln (95 th percentile)5.38.61.22.56.52.91.211.511.41.06.05.9			HCS	S Sigr	nalize	d Inte	ersect	ion R	esu	lts Sı	ımı	mary	,				
Inter-section motination Inter-section motination Inter-section motination Analysis BW Analysis Date Juni Science Direction motination IOO Analysis CABQ Time Period Buildout Total AM Prior Other Ioo Unban Street Cores Boulevard Analysis Var OS Cores Ioo Ioo Unban Street Cores Boulevard File Name OS Cores Bridge Buildout Total AM May sis Var Analysis Var Max NB L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R	O an anal la fam	4!				Intersection Information											
Agency Lee Engineering Analysis Duration I.L00 I.L00 Jurisdiciion CAPQ Time Ferid Buildout Total AM PHF 1.00 Ion		hation	. <u> </u>							-					- 1		
Jurisdiction CABQ Time Period Buildout Total AM PHF 1.0. Image of the transmitted of transmitted of the transmitted of trans																	R
Outcome Intervention (7:15 AM) Intervention (7:15 AM) Intervention (7:15 AM)	-				-						lype	;			<u> </u>		
Intersection Bridge Boulevard File Name 05 Coors Bridge Buildout Total AM xus Project Description Buildout Total AM (7:15 AM) Demand Information L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R	Jurisdiction		CABQ		l Ime F	Period							1.00		14 We	w†e s	
Project Description Buildout Total AM (7:16 AM) Demand Information L T R L <td>Urban Street</td> <td></td> <td>Coors Boulevard</td> <td></td> <td>Analys</td> <td>sis Yea</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>15</td> <td></td> <td>5 + 6</td> <td></td>	Urban Street		Coors Boulevard		Analys	sis Yea								15		5 + 6	
Demand Information L T R	Intersection		Bridge Boulevard		File Na	ame	05 Co	ors Brid	lge B	uildout	Tota	I AM.xu	us		N	4149	74
Approach Movement L T R	Project Descrip	7:15 AM)														
Demand (v), velvh 100 180 73 48 136 140 93 1103 63 73 608 37 Signal Information Crycle, s 120.0 Reference Point End Component Signal Simult. Gap E/W On Component Vellow 50 0.0 <	Demand Inform			EB			W	/B			NB			SB			
Signal Information Cycle, s 120.0 Reference Phase 2 Greek Mode Fixed Simult. Gap EW On Fore Mode Fixed Simult. Gap IXV On Fixed Simult. Gap IXV Phase Duration, s EEB EBT VWEL WBL NBL NBL SB Phase Duration, s C C C C C C C C C C C <t< td=""><td>Approach Move</td><td>ement</td><td></td><td></td><td>L</td><td>Т</td><td>R</td><td>L</td><td>T</td><td>Г</td><td>R</td><td>L</td><td>Т</td><td>R</td><td>L</td><td>Т</td><td>R</td></t<>	Approach Move	ement			L	Т	R	L	T	Г	R	L	Т	R	L	Т	R
Cycle, s 120.0 Reference Phase 2 0 Reference Phase 2 0 </td <td>Demand (v), v</td> <td>eh/h</td> <td></td> <td></td> <td>100</td> <td>180</td> <td>73</td> <td>48</td> <td>13</td> <td>36 1</td> <td>40</td> <td>93</td> <td>1103</td> <td>63</td> <td>73</td> <td>608</td> <td>37</td>	Demand (v), v	eh/h			100	180	73	48	13	36 1	40	93	1103	63	73	608	37
Cycle, s 120.0 Reference Phase 2 0 Reference Phase 2 0 </td <td colspan="5">Signal Information</td> <td></td> <td>_ [</td> <td>B. I K.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>† I</td> <td></td> <td></td> <td>ĸ</td>	Signal Information						_ [B. I K .						† I			ĸ
Offset, s 0 Reference Point End Vincourdinated No Simult. Gap E/V On Reference Mode 78.5 21.0 0.0		1	[_ M	۹		2	ġ.				_	1		*			
				_	L	<u> " </u>	<u> ""</u>		1	_				1	2	3	4
Force Mode Fixed Simult Gap N/S On Read LS 0.0 1.0 2.0 0.0 0.0 1.0 2.0 0.0 0.0 1.0 2.0 0.0 0.0 1.0 2.0 0.0 0.0 1.0 2.0 0.0 0.0 1.0 2.0 0.0 0.0 1.0 2.0 0.0 0.0 1.0 2.0 0.0		-															_
Timer Results EBL BIL WBL WBT NBL NBL NBL NBL SBL SBL SBL Assigned Phase 50 5.0 1.1 4.0 1.1 4.0 Case Number 5.0 1.1 4.0 1.1 4.0 1.1 4.0 Phase Duration, s 27.0 9.0 84.6 8.4 84.0 Change Period, (Y+R c), s 6.0 6.0 6.0 5.0 5.5 5.0 0.0 Queue Clearance Time (g c), s 4.1 2.0 2.0 0.0 0.0 0.0 0.0 0.0 0.00		_) 『	6	7	- € .	
Assigned Phase 8 4 5 2 1 6 Case Number 5.0 5.0 5.0 1.1 4.0 1.1 4.0 Phase Duration, s 27.0 9.0 84.6 84.4 84.0 Change Period, (Y+R c), s 6.0 5.0 5.5 5.0 5.5 Max Allow Headway (MAH), s 4.1 2.5 0.0 2.5 0.0 Green Extension Time (g s), s 4.1 2.0 2.0 0.0 0.00 0.0 0.0 0.0 0.00 0.0 0.00<	T OICE MODE	TIXEU	Sindit. Gap N/S	OII	INCU	1.5	0.0	1.0	2.0	5 0	.0	0.0	•		· .		
Case Number 5.0 5.0 1.1 4.0 1.1 4.0 Phase Duration, s 27.0 27.0 9.0 84.6 8.4 84.0 Change Period, (Y+R c), s 6.0 6.0 5.0 5.5 5.0 5.5 Max Allow Headway (MAH), s 4.1 2.5 0.0 2.5 0.0 Queue Clearance Time (g *), s 1.00 1.00 0.0	Timer Results				EBI	-	EBT	WB	L	WBT	T	NBL	-	NBT	SBI	-	SBT
Phase Duration, s Product Mark	Assigned Phase	e					8			4		5		2	1		6
Change Period, (Y+R c), s 6.0 6.0 5.0 5.5 5.0 5.5 Max Allow Headway (MAH), s 4.1 4.1 2.5 0.0 2.5 0.0 Queue Clearance Time (g z), s 18.5 18.5 16.6 4.1 2.5 0.0 1.0 Green Extension Time (g v), s 1.00 1.00 0.05 2.0 0.01 0.00 0.00 0.00 Max Out Probability 0.00 <td>Case Number</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5.0</td> <td></td> <td></td> <td>5.0</td> <td></td> <td>1.1</td> <td></td> <td>4.0</td> <td>1.1</td> <td></td> <td>4.0</td>	Case Number						5.0			5.0		1.1		4.0	1.1		4.0
Max Allow Headway (MAH), s 4.1 4.1 2.5 0.0 2.5 0.0 Queue Clearance Time (g e), s 18.5 16.6 4.1	Phase Duration	, S					27.0			27.0		9.0		84.6	8.4		84.0
Queue Clearance Time ($g \circ$), s Image for the transme forme ($g \circ$), s Image for the transme forme ($g \circ$), s Image for the transme forme ($g \circ$), s Image for the transme forme ($g \circ$), s Image for the transme forme ($g \circ$), s Image for the transme forme	Change Period,	, (Y+R	c), S				6.0			6.0		5.0		5.5			
Green Extension Time (g e), s Q.0 Z.0 Q.0	Max Allow Head	dway(<i>I</i>	<i>MAH</i>), s				4.1			4.1		2.5		0.0			0.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $, = ,				18.5								3.6		
Max Out Probability 0.00 0.00 0.00 0.00 0.00 0.00 Movement Group Results E 0.00 Image: Constraint of the constraint o			(ge), s				2.0							0.0	0.1		0.0
Movement Group Results L T R R L T R L T R L T R L T R L T R L Z <td>Phase Call Prol</td> <td>bability</td> <td></td> <td></td> <td></td> <td></td> <td>1.00</td> <td></td> <td></td> <td>1.00</td> <td></td> <td colspan="2"></td> <td></td> <td>0.91</td> <td></td> <td></td>	Phase Call Prol	bability					1.00			1.00					0.91		
Approach Movement L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R Assigned Movement 3 8 18 7 4 14 5 2 12 1 6 16 Adjusted Flow Rate (v), veh/h 100 180 290 48 130 65 93 589 577 73 325 320 Adjusted Saturation Flow Rate (s), veh/h 1272 1900 1610 1223 1900 1582 178 184 180 184	Max Out Proba	bility					0.00			0.00		0.00)	
Assigned Movement 3 8 18 7 4 14 5 2 12 1 6 16 Adjusted Flow Rate (v), veh/h 100 180 29 48 136 65 93 589 577 73 325 320 Adjusted Saturation Flow Rate (s), veh/h/ln 1272 1900 1610 1223 1900 1582 1795 1885 1849 1810 1885 1847 Queue Service Time (g_{c}), s 9.1 10.3 1.7 4.5 7.6 4.1 2.1 18.6 18.6 1.6 8.7 8.7 Cycle Queue Clearance Time (g_{c}), s 16.5 10.3 1.7 14.6 7.6 4.1 2.1 18.6 1.6 8.7 8.7 Green Ratio ($g'C$) 0.18 0.18 0.21 0.18 0.18 0.18 0.18 0.20 0.69 0.66 0.68 0.68 0.65 0.65 Capacity (c), veh/h 205 353 31 62.5 162.1 73 30.9 29.8 284.9 24.6	Movement Gro	oup Res	sults			EB			WB				NB	NB		SB	
Adjusted Flow Rate (v), veh/h 100 180 29 48 136 65 93 589 577 73 325 320 Adjusted Saturation Flow Rate (s), veh/h/ln 1272 1900 1610 1223 1900 1582 1795 1885 1849 1810 1885 1847 Queue Service Time (g s), s 10.3 1.7 4.5 7.6 4.1 2.1 18.6 1.6 8.7 8.7 Cycle Queue Clearance Time (g c), s 16.5 10.3 1.7 14.6 7.6 4.1 2.1 18.6 1.6 8.7 8.7 Green Ratio (g/C) 0.18 0.18 0.21 0.18 0.18 0.23 337 172 335 323 578 1241 1217 348 1231 1206 Volume-to-Capacity Ratio (X) 0.488 0.538 0.086 0.279 0.406 0.201 0.161 0.474 0.475 0.210 0.264 0.266 Back of Queue (Q), ft/ln (95 th percentile) 132.5 13.8 31 62.5 16.2 173 30.9	Approach Move	ement			L	Т	R	L	Т	R		L	Т	R	L	Т	R
Adjusted Saturation Flow Rate (s), veh/h/in 1272 1900 1610 1223 1900 1582 1785 1885 1849 1810 1885 1847 Queue Service Time (g s), s 9.1 10.3 1.7 4.5 7.6 4.1 2.1 18.6 1.6. 8.7 8.7 Cycle Queue Clearance Time (g c), s 16.5 10.3 1.7 14.6 7.6 4.1 2.1 18.6 1.6. 8.7 8.7 Green Ratio (g/C) 0.18 0.18 0.21 0.18 0.18 0.20 0.69 0.66 0.66 0.68 0.65 0.65 Capacity (c), veh/h 205 335 337 172 335 323 578 1241 1217 348 1231 1206 Volume-to-Capacity Ratio (X) 0.488 0.538 0.866 0.279 0.406 0.201 0.161 0.47 0.475 0.210 0.244 0.261 Back of Queue (Q), th/ln (95 th percentile) 5.3 8.6 1.2 2.9 1.2 1.5 11.4 1.0 6.0 5.9 </td <td>Assigned Move</td> <td>ment</td> <td></td> <td></td> <td>3</td> <td>8</td> <td>18</td> <td>7</td> <td>4</td> <td>14</td> <td>-</td> <td>5</td> <td>2</td> <td>12</td> <td>1</td> <td>6</td> <td>16</td>	Assigned Move	ment			3	8	18	7	4	14	-	5	2	12	1	6	16
Adjusted Saturation Flow Rate (s), veh/h/in 1272 1900 1610 1223 1900 1582 1785 1885 1849 1810 1885 1847 Queue Service Time (g s), s 9.1 10.3 1.7 4.5 7.6 4.1 2.1 18.6 1.6. 8.7 8.7 Cycle Queue Clearance Time (g c), s 16.5 10.3 1.7 14.6 7.6 4.1 2.1 18.6 1.6. 8.7 8.7 Green Ratio (g/C) 0.18 0.18 0.21 0.18 0.18 0.20 0.69 0.66 0.66 0.68 0.65 0.65 Capacity (c), veh/h 205 335 337 172 335 323 578 1241 1217 348 1231 1206 Volume-to-Capacity Ratio (X) 0.488 0.538 0.866 0.279 0.406 0.201 0.161 0.47 0.475 0.210 0.244 0.261 Back of Queue (Q), th/ln (95 th percentile) 5.3 8.6 1.2 2.9 1.2 1.5 11.4 1.0 6.0 5.9 </td <td>Adjusted Flow F</td> <td>Rate (v</td> <td>), veh/h</td> <td></td> <td>100</td> <td>180</td> <td>29</td> <td>48</td> <td>136</td> <td>65</td> <td>5</td> <td>93</td> <td>589</td> <td>577</td> <td>73</td> <td>325</td> <td>320</td>	Adjusted Flow F	Rate (v), veh/h		100	180	29	48	136	65	5	93	589	577	73	325	320
Cycle Queue Clearance Time (g c), s 16.5 10.3 1.7 14.6 7.6 4.1 2.1 18.6 18.6 1.6 8.7 8.7 Green Ratio (g/C) 0.18 0.18 0.21 0.18 0.18 0.20 0.69 0.66 0.66 0.68 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.66 0.68 0.57 0.24 0.578 1241 1217 348 1231 1200 0.000 0.66 0.66 0.68 0.57 0.201 0.616 0.474 0.475 0.210 0.244 0.53 0.80 0.279 0.406 0.201 0.161 0.474 0.475 0.210 0.244 0.263 Back of Queue (Q), th/ln (95 th percentile) 132.5 21.38 31 62.5 16.21 73 30.9 29.8 284.9 24.6 15.1 14.7 14.6 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00<	Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n	1272	1900	1610	1223	190	0 158	32	1795	1885	1849	1810	1885	1847
Green Ratio (g/C) 0.18 0.18 0.21 0.18 0.21 0.18 0.20 0.69 0.66 0.66 0.68 0.65 0.65 0.65 Capacity (c), veh/h 205 335 337 172 335 323 578 1241 1217 348 1231 1200 Volume-to-Capacity Ratio (X) 0.488 0.53 0.066 0.279 0.406 0.201 0.161 0.474 0.475 0.210 0.264 0.263 Back of Queue (Q), ft/ln (95 th percentile) 132.5 213.8 31 62.5 162.1 73 30.9 290.8 284.9 24.6 151.3 147.3 Back of Queue (Q), veh/ln (95 th percentile) 0.53 8.6 1.2 2.5 6.5 2.9 1.2 1.1.4 1.0 6.0 5.9 Queue Storage Ratio (RQ) (95 th percentile) 0.95 0.0 0.16 0.48 0.09 0.66 1.0.2 1.0.2 8.4 8.7 8.7 Intermental Delay (d_1), s/veh 1.8 1.3 0.1 0.9 0.8 0.3 0.0	Queue Service	Time (g	g s), s		9.1	10.3	1.7	4.5	7.6	i 4.'	1	2.1	18.6	18.6	1.6	8.7	8.7
Capacity (c), veh/h 205 335 337 172 335 323 578 1241 1217 348 1231 1206 Volume-to-Capacity Ratio (X) 0.488 0.538 0.086 0.279 0.406 0.201 0.161 0.474 0.475 0.210 0.264 0.263 Back of Queue (Q), ft/ln (95 th percentile) 132.5 213.8 31 62.5 162.1 73 30.9 290.8 284.9 24.6 151.3 147.3 Back of Queue (Q), veh/ln (95 th percentile) 5.3 8.6 1.2 2.5 6.5 2.9 1.2 11.5 11.4 1.0 6.0 5.9 Queue Storage Ratio (RQ) (95 th percentile) 0.95 0.00 0.16 0.48 0.00 0.61 0.11 0.00 0.0<	Cycle Queue C	learanc	e Time (<i>g c</i>), s		16.5	10.3	1.7	14.6	7.6	3 4.'	1	2.1	18.6	18.6	1.6	8.7	8.7
Volume-to-Capacity Ratio (X)0.4880.5380.0860.2790.4060.2010.1610.4740.4750.2100.2640.264Back of Queue (Q), ft/ln (95 th percentile)132.521.383162.5162.17330.929.8284.924.6151.3147.3Back of Queue (Q), veh/ln (95 th percentile)5.38.61.22.56.52.91.211.511.41.06.05.9Queue Storage Ratio (RQ) (95 th percentile)0.950.00.160.480.00.610.110.00.000.100.000.00Uniform Delay (d_1), s/veh51.145.038.251.643.939.66.610.210.28.48.78.7Incremental Delay (d_2), s/veh1.81.30.10.90.80.00.00.01.31.30.10.50.5Initial Queue Delay (d_3), s/veh0.00	Green Ratio (g	/C)			0.18	0.18	0.21	0.18	0.1	8 0.2	0	0.69	0.66	0.66	0.68	0.65	0.65
Back of Queue (Q), ft/ln (95 th percentile)132.5213.83162.5162.17330.9290.8284.924.6151.3147.3Back of Queue (Q), veh/ln (95 th percentile)5.38.61.22.56.52.91.211.511.41.06.05.9Queue Storage Ratio (RQ) (95 th percentile)0.950.00.160.480.000.610.110.000.0	Capacity (<i>c</i>), v	/eh/h			205	335	337	172	335	5 32	3	578	1241	1217	348	1231	1206
Back of Queue (Q), veh/ln (95 th percentile)5.38.61.22.56.52.91.211.511.41.06.05.9Queue Storage Ratio (RQ) (95 th percentile)0.950.000.160.480.000.610.110.000.000.100.000.00Uniform Delay (d_1), s/veh51.1 45.0 38.251.6 43.9 39.66.6 10.2 10.28.48.78.7Incremental Delay (d_2), s/veh1.81.30.10.90.80.00.01.31.30.10.50.5Initial Queue Delay (d_3), s/veh0.0 52.9 4.3 38.3 52.4 44.7 39.96.6 11.5 11.58.5 9.2 9.3Level of Service (LOS)DDDDDA 8.7 8.711.29.311.28.4 A AApproach Delay, s/veh / LOS47.7T44.9DABBA A AIntersection Delay, s/veh / LOS47.7T 44.9 D 11.2 $I1.2$ $I1.5$ 9.2 A Intersection Delay, s/veh / LOS47.7 V 44.9 V $I1.2$ <td< td=""><td>-</td><td></td><td></td><td></td><td>0.488</td><td>0.538</td><td>0.086</td><td>0.279</td><td>0.40</td><td>6 0.20</td><td>01</td><td>0.161</td><td>0.474</td><td>0.475</td><td>0.210</td><td>0.264</td><td>0.265</td></td<>	-				0.488	0.538	0.086	0.279	0.40	6 0.20	01	0.161	0.474	0.475	0.210	0.264	0.265
Queue Storage Ratio (RQ) (95 th percentile)0.950.000.160.480.000.610.110.000.000.100.000		<u> </u>	· ·	,					_								147.5
Uniform Delay (d 1), s/veh51.1 45.0 38.2 51.6 43.9 39.6 6.6 10.2 10.2 8.4 8.7 8.7 Incremental Delay (d 2), s/veh1.8 1.3 0.1 0.9 0.8 0.3 0.0 1.3 0.1 0.1 0.5 0.5 Initial Queue Delay (d 3), s/veh 0.0 0		``	· ·	,		8.6				_	9					L	5.9
Incremental Delay (d 2), s/veh1.81.30.10.90.80.30.01.31.30.10.50.5Initial Queue Delay (d 3), s/veh0.0	-			tile)	0.95	0.00	0.16	0.48			1	0.11	0.00	0.00	0.10	0.00	0.00
Initial Queue Delay (d 3), s/veh0.0	-	. ,					38.2			_			_				8.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Incremental Delay (d ₂), s/veh				1.8	1.3	0.1			_			_	1.3			
Level of Service (LOS) D D D D D D D A B A A A Approach Delay, s/veh / LOS 47.7 D 44.9 D 11.2 B 9.2 A Intersection Delay, s/veh / LOS 5 11.2 B 9.2 A Multimodal Results EB EB B B A A	· · · ·						-		_				_				
Approach Delay, s/veh / LOS 47.7 D 44.9 D 11.2 B 9.2 A Intersection Delay, s/veh / LOS 18.4 18.4 5 5 5 Multimodal Results EB WB NB SB						46.3	38.3	52.4		7 39.	9		11.5	11.5			
Intersection Delay, s/veh / LOS 18.4 Multimodal Results EB WB NB SB															1		
Multimodal Results EB WB NB SB		47.7	7			9	D		11.2					А			
	Intersection De				18	3.4							B				
	Multimodal Re	Multimodal Results				EB				3		NB				SB	
							В	2.3									В
Bicycle LOS Score / LOS 3.05 C 2.95 C 2.83 C 2.59 C	Bicycle LOS Sc	ore / LC	DS		3.05	5	С	2.95	5	С		2.83	;	С			С

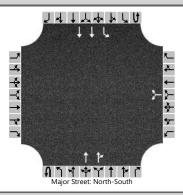

		HCS	S Sigr	nalize	d Int	ersect	ion R	esu	lts Sun	nmary	/				
0	- 4!							1	I	4' e f				4244	
General Inform	ation	. <u> </u>							Intersec				_	446	
Agency		Lee Engineering							Duration	•	1.000				R.
Analyst		BW		Analys			5, 2024		Area Typ	be	Other	•	<u></u>		~
Jurisdiction		CABQ		Time F	Period	Buildo (2:30	out Total PM)	РМ	PHF		1.00		14 M 4	w+e s	1
Urban Street		Coors Boulevard		Analys	sis Yea	r 2024			Analysis	Period	1> 14	:30		5.4.6	
Intersection		Bridge Boulevard		File Na	ame	05 Co	ors Brid	lge Bı	uildout To	tal PM.x	us			14149	14
Project Descript	ion	Buildout Total PM (2	2:30 PN	l)											
Demand Inform	nation				EB			W	В		NB			SB	
Approach Move	ment			L	Т	R	L	Г	R	L	Т	R	L	Т	R
Demand (v), ve	eh/h			40	123	65	49	15	6 123	74	603	40	99	855	58
	41a.m			1		6 111	6 10			Г		*	1		
Signal Informat		Deference Dhace	2		6		~}~~	в.,2			ų		sta		↔
Cycle, s	110.0	Reference Phase	2		25	Г		Æ	_			1	2	3	4
Offset, s	0	Reference Point	End	Green		0.7	73.1	16		0.0					
Uncoordinated	No	Simult. Gap E/W	On	Yellow		0.0	4.5	4.0		0.0	— — î	<u>۲</u>			- -
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.5	0.0	1.0	2.0	0.0	0.0	+	5	6	7	8
Timer Results				EBL	-	EBT	WB	L	WBT	NB	L	NBT	SBI	_	SBT
Assigned Phase	;					8			4	5		2	1		6
Case Number						5.0			5.0	1.1		4.0	1.1		4.0
Phase Duration,	, S					22.6			22.6	8.1		78.6	8.8		79.2
Change Period,	(Y+R	c), S				6.0			6.0	5.0		5.5	5.0		5.5
Max Allow Head	lway (<i>I</i>	MAH), s				4.1			4.1	2.5		0.0	2.5		0.0
Queue Clearand	ce Time	e (gs), s				13.7			12.3	3.4			3.9		
Green Extension	n Time	(ge),s				2.0			2.0	0.1		0.0	0.1		0.0
Phase Call Prob	ability					1.00			1.00	0.90)		0.95	5	
Max Out Probab	oility					0.00			0.00	0.00)		0.00)	
Movement Gro			_		EB			WE	2		NB			SB	
Approach Move	-	Suits			Т	R	L	T	, R	1	T	R		T	R
Assigned Mover				3	8	18	7	4	14	5	2	12	1	6	16
Adjusted Flow R) voh/h		40	123	65	49	156	_	74	325	318	99	462	451
		ow Rate (s), veh/h/l	n	1247	1900	_	1288	190	-	1810	1885	1843	1810	1885	1843
Queue Service		, ,		3.4	6.5	3.8	3.9	8.3	_	1.4	7.7	7.7	1.9	11.8	11.8
Cycle Queue Cl				11.7	6.5	3.8	10.3	8.3	_	1.4	7.7	7.7	1.9	11.8	11.8
Green Ratio (g/		e nine (<i>g c</i>), s		0.15	0.15	0.18	0.15	0.15		0.69	0.66	0.66	0.70	0.67	0.67
Capacity (c), ve	,			161	288	290	186	288		455	1251	1223	602	1262	1234
Volume-to-Capa		itio (X)		0.249	0.427		0.264	0.54	_	0.163	0.260		0.164	0.366	0.366
		t/In(95 th percentile	•)	47.8	137.4		57.6	178.		20.5	127.4		26.8	193.2	189
	. ,	eh/In (95 th percentie		1.9	5.5	2.7	2.3	7.1	_	0.8	5.1	5.0	1.1	7.7	7.6
	. ,	RQ) (95 th percent		0.34	0.00	0.34	0.44	0.00	_	0.07	0.00	0.00	0.11	0.00	0.00
Uniform Delay (,, ,		48.5	42.3	38.5	47.0	43.		6.3	7.5	7.5	5.6	7.9	8.0
Incremental Dela				0.8	1.0	0.4	0.7	1.6	_	0.3	0.5	0.5	0.0	0.8	0.8
Initial Queue De		•		0.0	0.0	0.4	0.0	0.0	_	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (·		49.3	43.3	38.9	47.7	44.7	_	6.4	8.0	8.0	5.7	8.8	8.8
Level of Service	,					D	D	 D	D	A	0.0 A	A	A	A	A
Approach Delay	<u>, ,</u>			43.1		D	43.5		D	7.9		A	8.5		A
Intersection Dela				10.1			5.8	-	<u> </u>	1.5			0.0 B		
	.,												-		
Multimodal Res	sults				EB			WE	3		NB			SB	
Pedestrian LOS	Score	/ LOS		2.31		В	2.3	1	В	2.14	1	В	2.14	1	В
Bicycle LOS Sco	ore / LC	DS		2.92	2	С	3.08	3	С	2.38	3	В	2.84	1	С

		HCS	S Sigr	nalize	d Int	ersect	ion R	esu	lts Sun	nmary	'				
													1 1	4241	(ME)
General Inform	nation	· _ · ·							Intersec			-	- i	4444	
Agency		Lee Engineering							Duration		1.000				
Analyst		BW				e Jun 2			Area Typ	e	Other				
Jurisdiction		CABQ		Time F	Period	Horizo AM)	on AM (7	7:15	PHF		1.00		I4170	w‡e N	
Urban Street		Central Avenue		Analys	sis Yea	ır 2024			Analysis	Period	1> 7:1	15		55 + +	~ _
Intersection		Coors Boulevard		File Na	ame	01 Co	ors Cer	ntral H	lorizon Al	/l.xus			N	4144	14
Project Descrip	tion	Horizon AM (7:15 A	.M)												
Demand Inform	nation				EB			W	′B		NB			SB	
Approach Move	ement			L	Т	R	L	٦	r R	L	Т	R	L	Т	R
Demand (v), v	eh/h			230	671	30	77	25	59 257	66	1063	109	195	675	99
					<u></u>		- 000						-	-	
Signal Informa	_								노 문자	·₽4	n			ιI	† -
Cycle, s	150.0	Reference Phase	2	-		TR.			s 🗋	- P -	NZ Y		₹ 2	3	
Offset, s	0	Reference Point	End	Green	8.0	8.5	52.5	4.7	7 4.3	42.0)		<u><u></u></u>		J
Uncoordinated	No	Simult. Gap E/W	On	Yellow		4.0	4.0	3.5		3.5		~		5	4
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	1.0	1.5	5 1.5	1.5		5	6	7	8
Timer Results				EBI	_	EBT	WB	L	WBT	NBI	_	NBT	SBI	_	SBT
Assigned Phase	e			5		2	1		6	7		4	3		8
Case Number				2.0		4.0	2.0		3.0	2.0		3.0	2.0		4.0
Phase Duration	i, s			26.5	5	71.0	13.0)	57.5	9.7		47.0	19.0)	56.3
Change Period,	, (Y+R	c), S		5.0		5.0	5.0		5.0	5.0		5.0	5.0		5.0
Max Allow Head		,		4.1		0.0	4.1		0.0	4.0		4.0	4.0		4.0
Queue Clearan		,		20.7	,		8.3			4.8		44.0	10.1		28.4
Green Extensio				0.8		0.0	0.0		0.0	0.2		0.0	0.4		9.0
Phase Call Prol	bability			1.00)		0.96	3		0.94	L T	1.00	1.00)	1.00
Max Out Proba	bility			0.00)		1.00)		0.00)	1.00	0.02	2	0.22
Mayamant Cra	un Dee				ГР			WE	2		ND			CD.	
Movement Gro	-	Suits			EB T	R	L	T	R		NB T	R		SB T	R
Assigned Move				5	2	12	1	6	16	7	4	14	3	8	18
Adjusted Flow F) yeh/h		230	∠ 350	346	77	259	_	66	4	109	195	397	377
-		ow Rate (s), veh/h/l	n	1810	1900		1810	180		1716	1809	1600	1743	1885	1786
Queue Service		, ,	11	18.7	19.0		6.3	7.5	_	2.8	42.0	7.9	8.1	26.3	26.4
Cycle Queue C		- /		18.7	19.0		6.3	7.5		2.8	42.0	7.9	8.1	26.3	26.4
Green Ratio (g		o nino (g c), o		0.14	0.44	_	0.05	0.3	_	0.03	0.28	0.28	0.09	0.34	0.34
Capacity (c), v	,			259	836	825	96	126	_	108	1013	448	325	644	611
Volume-to-Capa		atio (X)		0.887	0.419	_	0.798	0.20		0.611	1.049		0.599	0.616	
•		t/In (95 th percentile	:)	360.4	349.1		167.1	153.	_	60.9	1158.6		164.1	455.8	433.9
		eh/In (95 th percenti	,	14.4	14.0		6.7	6.1	_	2.4	46.3	5.6	6.5	18.1	17.4
	. ,	RQ) (95 th percent	,	2.57	0.00	_	1.11	0.00	_	0.17	0.00	0.00	0.46	0.00	0.00
Uniform Delay (niform Delay (<i>d</i> 1), s/veh					28.8	70.2	34.1	1 38.0	71.7	54.0	41.7	65.3	41.2	41.2
Incremental De	lay (d 2), s/veh		11.2	1.5	1.6	29.4	0.4	3.0	5.6	117.6	0.3	1.8	1.8	1.9
Initial Queue De	elay (d	з), s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/ve	eh		74.2	30.4	30.4	99.6	34.	5 40.9	77.3	171.6	42.0	67.1	42.9	43.1
Level of Service	e (LOS)			Е	С	С	F	С	D	Е	F	D	Е	D	D
Approach Delay	y, s/veh	/LOS		41.3	3	D	45.7	7	D	155.	1	F	47.9)	D
Intersection Del	lay, s/ve	eh / LOS				8	1.5						F		
Multimodal Re		// 00			EB		-	WE			NB	-		SB	_
Pedestrian LOS				2.62	_	C	2.48		B	2.48		B	2.33		B
Bicycle LOS Sc	ore / LC	72		3.88	5	D	3.00	J	С	3.34	-	С	4.01		D

		HCS	S Sigr	nalize	d Int	ersect	ion R	esu	ts Sun	nmary	·				
									• •						
General Inforn	nation								Intersec			-	_		
Agency		Lee Engineering							Duration		1.000				~
Analyst		BW				e Jun 2			Area Typ	e	Other		×		
Jurisdiction		CABQ		Time F	Period	Horizo PM)	on PM (2	2:30	PHF		1.00		14 Mas	w‡e U	
Urban Street		Central Avenue		Analys	sis Yea	ır 2024			Analysis	Period	1> 14	:30		55 + +	r 🗖
Intersection		Coors Boulevard		File Na	ame	01 Co	ors Cer	ntral H	orizon PN	/l.xus				4144	14
Project Descrip	tion	Horizon PM (2:30 F	PM)												
Demand Inform	nation				EB			W	В		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			155	472	50	140	62	9 298	137	722	85	379	950	174
					1-										
Signal Informa	_				La				ւբտ	· W	6 33	~		U	† =
Cycle, s	120.0	Reference Phase	2	-		R			s ľ	- P -	12	1		3	4
Offset, s	0	Reference Point	End	Green	11.2	1.0	42.6	7.1	3.2	29.9)		Ň		1
Uncoordinated	No	Simult. Gap E/W	On	Yellow	-	0.0	4.0	3.5		3.5				\mathbf{N}	4
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	0.0	1.0	1.5	5 1.5	1.5		5	6	7	8
Timer Results				EBI	_	EBT	WB	L	WBT	NBI	_	NBT	SBI	_	SBT
Assigned Phas	е			5		2	1		6	7		4	3		8
Case Number				2.0		4.0	2.0		3.0	2.0		3.0	2.0		4.0
Phase Duration	i, S			17.2	2	48.6	16.2	2	47.6	12.1		34.9	20.3	3	43.1
Change Period	, (Y+R	c), S		5.0		5.0	5.0		5.0	5.0		5.0	5.0		5.0
Max Allow Head	dway(<i>I</i>	<i>MAH</i>), s		4.1		0.0	4.1		0.0	4.0		4.0	4.0		4.0
Queue Clearan	ce Time	e (g s), s		12.1			11.1	1		6.7		24.5	14.7	7	38.5
Green Extensio		(g _e), s		0.1		0.0	0.1		0.0	0.4		3.6	0.6		0.0
Phase Call Pro				0.99	_		0.99	_		0.99		1.00	1.00		1.00
Max Out Proba	bility			1.00)		0.88	3		0.00)	0.89	0.84	1	1.00
Movement Gro	un Res	aults			EB			WE	3		NB			SB	
Approach Move	-			1	T	R	L	T	R	1	Т	R	1	Т	R
Assigned Move				5	2	12	1	6	16	7	4	14	3	8	18
Adjusted Flow I), veh/h		155	265	257	140	629	_	137	722	85	379	580	544
		w Rate (<i>s</i>), veh/h/l	n	1810	1900		1810	180		1716	1809	1597	1757	1885	1765
Queue Service	Time (g	g s), s		10.1	12.4	12.5	9.1	16.3	3 18.7	4.7	22.5	5.1	12.7	36.4	36.5
Cycle Queue C	learanc	e Time (<i>g c</i>), s		10.1	12.4	12.5	9.1	16.3	3 18.7	4.7	22.5	5.1	12.7	36.4	36.5
Green Ratio (g	/C)			0.10	0.36	0.36	0.09	0.36	6 0.36	0.06	0.25	0.25	0.13	0.32	0.32
Capacity (c), v	/eh/h			183	691	667	168	128	5 545	202	902	398	448	599	561
Volume-to-Cap	-			0.845	0.383		0.831	0.48	_	0.679	0.801	0.214	0.847	0.968	0.970
		t/In (95 th percentile	,	242	246.2	-	216.3	291.		96.6	390.6	87.9	253.5	806.9	771.4
	. ,	eh/In (95 th percenti	,	9.7	9.8	9.7	8.7	11.6		3.8	15.6	3.5	10.1	32.0	30.9
-		RQ) (95 th percent	tile)	1.73	0.00	_	1.44	0.00	_	0.27	0.00	0.00	0.70	0.00	0.00
Uniform Delay	, ,			53.0	28.2		53.5	30.2		55.4	42.3	35.7	51.2	40.3	40.4
Incremental De	• •			23.5	1.6	1.7	18.7	1.3	_	4.0	5.4	0.3	10.7	47.6	50.8
Initial Queue De	<u> </u>	·		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (,			76.5	29.8		72.2	31.5	_	59.4	47.7	36.0	61.9	87.9	91.2
Level of Service	· /			E 40.6	С	C D	E 37.8	C	D	E 48.3		D	E 82.5	F	F F
Intersection Dela				40.0	,		37.0 6.7		U	40.3	,		82.3 E	,	T
	ay, 5/ve					30							_		
Multimodal Re	sults				EB			WE	3		NB			SB	
Pedestrian LOS	S Score	/ LOS		2.61		С	2.47	7	В	2.47	7	В	2.31		В
Bicycle LOS Sc	ore / LC	DS		3.68	3	D	3.39)	С	3.10)	С	4.45	5	D

	HCS Two-Way S	top-Control Report	
General Information		Site Information	
Analyst	BW	Intersection	Coors Blvd & Gonzales Rd
Agency/Co.	Lee Engingeering	Jurisdiction	CABQ
Date Performed	6/11/2024	East/West Street	Gonzales Road
Analysis Year	2024	North/South Street	Coors Boulevard
Time Analyzed	Horizon AM (7:15 AM)	Peak Hour Factor	1.00
Intersection Orientation	North-South	Analysis Time Period (hrs)	1.00
Project Description	Mark Armijo Academy NIA		
Lanes			

Lanes


Vehicle Volumes and Adjustments

Approach		Eastbound Westbound								North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	2	0	0	1	2	0
Configuration							LR				Т	TR		L	Т	
Volume (veh/h)						69		108			1337	142	4	124	721	
Percent Heavy Vehicles (%)						0		0					0	0		
Proportion Time Blocked																
Percent Grade (%)						(0									
Right Turn Channelized																
Median Type Storage				Left +	- Thru				2							
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)						7.5		6.9					6.4	4.1		
Critical Headway (sec)						6.80		6.90					6.40	4.10		
Base Follow-Up Headway (sec)						3.5		3.3					2.5	2.2		
Follow-Up Headway (sec)						3.50		3.30					2.50	2.20		
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)							177							128		
Capacity, c (veh/h)							246							422		
v/c Ratio							0.72							0.30		
95% Queue Length, Q ₉₅ (veh)							6.5							1.3		
Control Delay (s/veh)							54.5							17.2		
Level of Service (LOS)							F	С								
Approach Delay (s/veh)					54.5 2.6								.6			
Approach LOS							F								4	

Copyright © 2024 University of Florida. All Rights Reserved.

	HCS Two-Wa	y Stop-Control Report	
General Information		Site Information	
Analyst	BW	Intersection	Coors Blvd & Gonzales Rd
Agency/Co.	Lee Engingeering	Jurisdiction	CABQ
Date Performed	6/11/2024	East/West Street	Gonzales Road
Analysis Year	2024	North/South Street	Coors Boulevard
Time Analyzed	Horizon PM (2:30 PM)	Peak Hour Factor	1.00
Intersection Orientation	North-South	Analysis Time Period (hrs)	1.00
Project Description	Mark Armijo Academy	-	·
Lanos			

Lanes

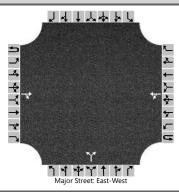
Vehicle Volumes and Adjustments

Approach		Eastbound Westbound								North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	2	0	0	1	2	0
Configuration							LR				Т	TR		L	Т	
Volume (veh/h)						84		116			779	70	2	160	1036	
Percent Heavy Vehicles (%)						0		0					0	0		
Proportion Time Blocked																
Percent Grade (%)						. ()									
Right Turn Channelized																
Median Type Storage				Left +	- Thru				2							
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)						7.5		6.9					6.4	4.1		
Critical Headway (sec)						6.80		6.90					6.40	4.10		
Base Follow-Up Headway (sec)						3.5		3.3					2.5	2.2		
Follow-Up Headway (sec)						3.50		3.30					2.50	2.20		
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)							200							162		
Capacity, c (veh/h)							365							784		
v/c Ratio							0.55							0.21		
95% Queue Length, Q ₉₅ (veh)							3.5							0.8		
Control Delay (s/veh)							26.6							10.8		
Level of Service (LOS)							D		В							
Approach Delay (s/veh)		-		-	26.6 1								.5			
Approach LOS						[)								Ą	

Copyright © 2024 University of Florida. All Rights Reserved.

		HCS	3 Sign	alized	1 Inte	ect	ion R	esul	ts Sun	ımary	/				
O	- 4!									41 a 1 f				l ed Jacks b	
General Informa	ation								Intersec					111	
Agency		Lee Engineering		Analus	in Dat	7/4/00	20.4		Duration	·	1.000		-		4
Analyst		BW				e 7/1/20			Area Typ	e	Other	-			
Jurisdiction		CABQ		Time P		AM (7	ated Hor 2:15 AM)	PHF		1.00		14 14	WHE	
Urban Street		Coors Boulevard		-		r 2024			Analysis		1> 7:1			† †	
Intersection		Gonzales Road		File Na	ime	02 Co	ors Gor	nzales	Horizon	AM - Mi	tigated.	xus		14149	1-1
Project Descripti	on	Mitigated Horizon A	M (7:15	AM)											
Demand Inform	ation				EB			WE	3	1	NB			SB	
Approach Mover	nent			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), ve							69	0	108		1337		128	721	<u> </u>
	_					Ľ, "	هب	كبنا		كبيت					
Signal Informat					45	- 4 <u>k</u>					Ļ		+ -		÷
Cycle, s	80.0	Reference Phase	2			1	r *	1				1	2	3	Ľ,
Offset, s	0	Reference Point	End	Green	4.1	43.7	15.7	0.0	0.0	0.0					
Uncoordinated	No	Simult. Gap E/W	On	Yellow		4.5	4.0	0.0		0.0					
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.5	1.0	2.0	0.0	0.0	0.0		5	6	7	8
Timer Results				EBL		EBT	WB	L	WBT	NBI		NBT	SBI		SBT
Assigned Phase									4			2	1		6
Case Number					+				12.0			8.3	1.0		4.0
Phase Duration,	s								21.7			49.2	9.1		58.3
Change Period,		c). S			+			-	6.0			5.5	5.0		5.5
Max Allow Head		,							4.3			0.0	2.5		0.0
Queue Clearanc		•			+			-	9.2				4.3		
Green Extension		, = ,							0.5			0.0	0.1		0.0
Phase Call Prob		(5,),			+			-	1.00				0.94	1	
Max Out Probab									0.00				0.00		
	_														
Movement Grou	-	ults		<u> </u>	EB		<u> </u>	WB		<u> </u>	NB		<u> </u>	SB	
Approach Mover				L	Т	R	L	T	R		T	R		T	R
Assigned Moven		<u> </u>		\vdash		<u> </u>	7	4	14		2	12	1	6	
Adjusted Flow R	· ·	· · · · · · · · · · · · · · · · · · ·				<u> </u>	<u> </u>	177	_	<u> </u>	749	730	128	721	
-		w Rate (<i>s</i>), veh/h/l	<u>n</u>	\vdash		<u> </u>	<u> </u>	1750	' 		1900	1836	1810	1795	<u> </u>
Queue Service T							<u> </u>	7.2			32.6	24.0	2.3	6.8	
Cycle Queue Cle		e Time (<i>g c</i>), s		\vdash			<u> </u>	7.2			32.6	24.0	2.3	6.8	
Green Ratio (g/	,							0.20			0.55	0.55	0.62	0.66	
Capacity (c), ve		tio (X)						343			1037	1002	234	2370	
Volume-to-Capa								0.516			0.722		0.547	0.304	
	,	t/In (95 th percentile						137.9 5.5	,		359.4		54.8	86.3	
		eh/In (95 th percenti						-			14.4	14.3	2.2	3.4	
-	ueue Storage Ratio (<i>RQ</i>) (95 th percentile)							0.00			0.00	0.00	0.23	0.00	
Uniform Delay (28.8	+		13.6	13.7	17.0	5.8	
Incremental Dela Initial Queue Del	• •	,						1.2 0.0	+		4.5 0.0	4.8 0.0	0.7	0.3	
		·				<u> </u>	<u> </u>							<u> </u>	
Control Delay (c	,			┣━━┥				30.0 C	+		18.1 B	18.5 B	17.7 B	6.1 A	
Approach Delay,	· /						20.0		С	10 (В			
Approach Delay, Intersection Dela				0.0		11	30.0 5.6	,	0	18.3	,		7.9 B		A
	xy, 3/ve						5.0								
Multimodal Res	ults				EB			WB			NB			SB	
Pedestrian LOS		/ LOS		2.14		В	2.3		В	1.66		В	1.34		A
)S					<u> </u>			1.71					

		HCS	s Sigr	nalized	I Inte	rsecti	on Re	esu	ts Sur	nmar	y				
O	4!							1	1	41 a.a. 1.a.	[4.241	(76)
General Informat									Intersec		-	-	- í	111	
Agency		Lee Engineering			D (Duration		1.000				N.
Analyst		BW		Analys					Area Ty	pe	Other	•			
Jurisdiction		CABQ		Time P	eriod	Mitigat PM (2:	ed Hori 30 PM)		PHF		1.00		4 7	W † E S	
Urban Street		Coors Boulevard		Analys	s Year				Analysis					† b	
Intersection		Gonzales Road		File Na	me	02 Coc	ors Gon	zales	Horizon	PM - M	itigated.	xus	1	41491	14
Project Description	n	Mitigated Horizon F	PM (2:30	PM)											
Demand Informa	tion				EB		1	W	В		NB			SB	
Approach Movem	ent			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), veh							84	0	116		779	70	162	1036	
							-							i and	
Signal Information	10				- 14	4 5					ι		÷.		-
	30.0	Reference Phase	2			17	 "					1	2	3	4
Offset, s	0	Reference Point	End	Green	4.7	46.9	11.9	0.0	0.0	0.0					
	No	Simult. Gap E/W	On	Yellow		4.5	4.0	0.0		0.0		-			
Force Mode F	ixed	Simult. Gap N/S	On	Red	1.5	1.0	2.0	0.0	0.0	0.0		5	6	7	8
Timer Results				EBL		EBT	WBL	-	WBT	NB	L	NBT	SBL	_	SBT
Assigned Phase									4			2	1		6
Case Number									12.0			8.3	1.0		4.0
Phase Duration, s	5					_			17.9			52.4	9.7		62.1
Change Period, (:), S							6.0			5.5	5.0		5.5
Max Allow Headw						_			3.3			0.0	3.0		0.0
Queue Clearance		•						\neg	10.8				4.6		
Green Extension		, = ,				_			0.3			0.0	0.2		0.0
Phase Call Proba									0.99				0.97	,	
Max Out Probabili	ity								0.00				0.00	,	
Manager 4 Oraci		14-		_	50	_			•	_				0.0	
Movement Group	-	uits			EB	D		WE	1	<u> </u>	NB			SB	
Approach Movem				L	Т	R	L	Т 4	R	L .	Т	R	L 1	Т	R
Assigned Moveme)				_	7		14		2	12	· ·	6	
Adjusted Flow Ra	· ·	,	In					200 175	_	-	431	418 1844	162 1810	1036 1809	<u> </u>
Queue Service Tir		w Rate (s), veh/h/l	IN					8.8	_	-	1900 15.2	9.7	2.6	9.4	<u> </u>
Cycle Queue Clea								0.0 8.8	_		15.2	9.7	2.6	9.4	
Green Ratio (g/C		e nine (<i>g c</i>), s						0.0			0.59	0.59	0.67	9.4 0.71	
Capacity (c), veh	,							260	_	-	1115	1082	458	2561	
Volume-to-Capaci		tio (X)						260		-	0.386		456 0.354	0.404	
		/In(95 th percentile	2)					169	_		155.2	151.2	31	102.8	
		h/ln (95 th percentie						6.8	_	-	6.2	6.0	1.2	4.1	
		RQ) (95 th percent						0.0	_		0.2	0.00	0.13	0.00	
Uniform Delay (d		,, ,						32.7	_	-	8.8	8.8	7.2	4.8	
Incremental Delay								1.8			1.0	1.0	0.2	0.5	
Initial Queue Dela								0.0	_		0.0	0.0	0.0	0.0	
Control Delay (d)		,						34.6	_		9.8	9.9	7.4	5.3	
Level of Service (I								04.0			A	A	A	A	
Approach Delay, s		/LOS		0.0			34.6	_	С	9.9		A	5.5		A
Intersection Delay				5.5		9.8			-	0.0			A 0.0		
	,, 5, 70					0.0	-						•		
Multimerated Desc	ults				EB			WE	3		NB			SB	
Multimodal Resu						_	_			-		_			
Pedestrian LOS S		LOS		2.14		В	2.31		В	1.6	5	B	1.33	}	А

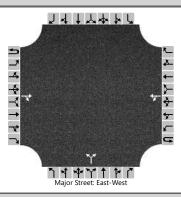

				H	CS R	lour	ndabo	out	s Rep	oort								
General Information							S	ite	Infor	matior	ו		_					
Analyst	SM				1		4			Inters	ection				Coors E	ouleva	ard & (Gonzales.
Agency or Co.	Lee Er	ngineeri	ng				+ +			E/W S	treet Na	ime		(Gonzale	es Roa	d	
Date Performed	7/11/2	2024							17	N/S St	treet Na	me		(Coors E	ouleva	ard	
Analysis Year	2024					. 4 (W + E S		† † ►	Analy	sis Time	Period,	hrs	1	1.00			
Time Analyzed	Horizo	on AM (7:15 Al	M)					1	Peak H	Hour Fac	tor		1	1.00			
Project Description	Mark	Armijo /	Acader	ny				7		Jurisd	iction			(CABQ			
Volume Adjustments	and S	ite Cł	narao	terist	ics													
Approach		E	B		Τ		WB				N	IB				S	SB	
Movement	U	L	Т	R	U		L	т	R	U	L	Т	Γ	R	U	L	Т	R
Number of Lanes (N)	0	0	0	0	0		0	1	0	0	0	2	Г	0	0	0	2	0
Lane Assignment								L	.R		ſ		TR		LT			Т
Volume (V), veh/h					0	Т	64		99	2		1335	1	42	4	124	721	
Percent Heavy Vehicles, %					0		0		0	0		0	T	0	0	0	1	
Flow Rate (VPCE), pc/h					0		64		99	2		1335	1	142	4	124	728	
Right-Turn Bypass		No	one				None				Nc	one				No	one	
Conflicting Lanes							2				ź	2					2	
Pedestrians Crossing, p/h							0				()					0	
Proportion of CAVs										0								
Critical and Follow-U	р Неа	dway	Adj	ustme	nt													
Approach		E	B		Τ	_	WB	_			N	IB			_	S	SB	
Lane	Left	Ri	ght	Bypass	L	eft	Right		Bypass	Left	Rig	ght	Вура	ass	Left	Ri	ght	Bypass
Critical Headway, s							4.3276	;		4.6453	3 4.3	276		4	.6453	4.3	276	
Follow-Up Headway, s		+					2.5352	2		2.6667	7 2.5	352		2	.6667	2.5	352	
Flow Computations,	Capaci	ity an	d v/	c Rati	os			_										
- Approach	-	E	B	_	T		WB	_	_	<u> </u>	N	IB	_	—		S	SB	_
Lane	Left	Ri	ght	Bypass	L	eft	Right		Bypass	Left	Ric	ght	Вура	ass	Left	Ri	ght	Bypass
Entry Flow (v₀), pc/h							163			695	78	34			402		54	
Entry Volume, veh/h		+			+		163	+		695	78	34		-	399	4	50	
Circulating Flow (vc), pc/h		9	22				1341				12	28				6	56	
Exiting Flow (vex), pc/h		2	66				0				14	38				7	94	
Capacity (cpce), pc/h		T					454	Т		1200	12	74			1270	13	343	
Capacity (c), veh/h							454			1200		74			1260	13	331	
v/c Ratio (x)							0.36			0.58	0.	62			0.32	0.	.34	
Delay and Level of Se	rvice									1								
Approach				EE	;				WB			NB	;				SB	
Lane			Left	Rig	ht B	ypass	Left	F	Right	Bypass	Left	Righ	nt	Bypass	Lef	t	Right	Bypass
Lane Control Delay (d), s/veh								-	14.1		10.0	10.4	-		5.8		5.8	
Lane LOS								+	В		В	B	\neg		A		A	
95% Queue, veh					-			+	1.7		4.1	4.7			1.4		1.5	
Approach Delay, s/veh LOS							14			В	10.2	<u> </u>		В		5.8		A
															1			

HCS[™] Roundabouts Version 2023 Roundabouts_Gonzales_AM.xro

				H	CS Ro	un	dabo	uts	Rep	ort								
General Information							Sit	te Int	forn	nation	ı							
Analyst	SM					A	<u>۴</u>			Interse	ection			С	oors Bo	ulevar	d & G	onzales.
Agency or Co.	Lee Er	ngineeri	ng				- -			E/W S	treet Na	me		G	ionzales	Road		
Date Performed	7/11/2	2024			\Box	1			17	N/S St	treet Na	me		С	oors Bo	ulevar	d	
Analysis Year	2024				₹ ↓	L (W + E S	1	t≽	Analys	sis Time	Period,	hrs	1.	.00			
Time Analyzed	Horizo	on PM (2	2:30 PI	VI)	4					Peak H	Hour Fac	tor		1.	.00			
Project Description	Mark	Armijo /	Acader	ny				H		Jurisdi	iction			С	ABQ			
Volume Adjustments	and S	ite Cł	nara	cterist	ics													
Approach		E	B				WB				N	B		Γ		SB	;	
Movement	U	L	Т	R	U		LT		R	U	L	Т	R	l	U	L	Т	R
Number of Lanes (N)	0	0	0	0	0	1	0 1		0	0	0	2	0	(0	0	2	0
Lane Assignment						-		LR		Т		٦	'R		LT			Т
Volume (V), veh/h					0	8	4	· ·	116	2		777	70	1	2 1	60	1036	Τ
Percent Heavy Vehicles, %					0	(D C		0	0		0	0	(0	0	1	
Flow Rate (VPCE), pc/h					0	8	4	1	116	2		777	70	1	2 1	60	1046	
Right-Turn Bypass		No	one				None				No	one				Nor	ne	
Conflicting Lanes							2				2	2				2		
Pedestrians Crossing, p/h							0				()				0		
Proportion of CAVs									()								
Critical and Follow-U	p Hea	dway	Adj	ustme	nt													
Approach		E	B		Τ	_	WB				N	B		Γ		SB		
Lane	Left	Ri	ght	Bypass	Left	:	Right	Вур	bass	Left	Rig	ght	Bypass		Left	Rigł	nt	Bypass
Critical Headway, s						\neg	4.3276			4.6453	4.3	276		4.	.6453	4.32	76	
Follow-Up Headway, s						Ť	2.5352			2.6667	2.5	352		2.	.6667	2.53	52	
Flow Computations,	Capaci	ity an	d v/	c Ratio	bs													
Approach		E	B		T	_	WB	_	-		N	B		Г		SB		
Lane	Left	Ri	ght	Bypass	Left	:	Right	Вур	oass	Left	Ric	ght	Bypass		Left	Rigł	nt	Bypass
Entry Flow (ve), pc/h						T	200			399	45	50			568	640	5	
Entry Volume, veh/h		+				\uparrow	200			399	45	50			563	635	5	
Circulating Flow (v _c), pc/h		12	94				781	-			16	52				86		
Exiting Flow (vex), pc/h		2	30				0				89	95				113	2	
Capacity (cpce), pc/h	<u> </u>				1	Т	731			1163	12	37		1	1247	132	0	
Capacity (c), veh/h		+				+	731			1163	12	37		1	1237	130	9	
v/c Ratio (x)			1		0.27			0.34	0.3	36		(0.46	0.49	9			
Delay and Level of Se	ervice				-						_						_	
Approach				EB				WE	3			NB				ç	SB	
Lane			Left	Righ	nt Byp	ass	Left	Rigł	ht l	Bypass	Left	Righ	t Byp	bass	Left	Ri	ght	Bypass
Lane Control Delay (d), s/veh								8.1			6.4	6.4			7.6		7.8	
Lane LOS								A			А	A			A		A	
95% Queue, veh								1.1			1.6	1.7			2.5	_	2.8	
Approach Delay, s/veh LOS							8.1			A	6.4		A		7.7			A
		_				7.								<i>F</i>				

HCS[™] Roundabouts Version 2023 Roundabouts_Gonzales_PM.xro

	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	BW	Intersection	Site Access & Gonzales Rd
Agency/Co.	Lee Engineering	Jurisdiction	CABQ
Date Performed	6/28/2024	East/West Street	Gonzales Road
Analysis Year	2024	North/South Street	Site Access
Time Analyzed	Horizon AM (7:15 AM)	Peak Hour Factor	1.00
Intersection Orientation	East-West	Analysis Time Period (hrs)	1.00
Project Description	Mark Armijo Academy NIA		
Lanes			



Vehicle Volumes and Adjustments

Approach		Eacth	ound			Worth	oound			North	bound			South	bound	
••	<u> </u>							5				5		1		
Movement	U	L	T	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration				TR		LT					LR					
Volume (veh/h)			223	47		27	126			22		38				
Percent Heavy Vehicles (%)						0				0		0				
Proportion Time Blocked																
Percent Grade (%)										(C					
Right Turn Channelized																
Median Type Storage				Undi	vided								-			
Critical and Follow-up H	eadwa															
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.10				6.40		6.20				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.20				3.50		3.30				
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)						27					60					
Capacity, c (veh/h)						1305					699					
v/c Ratio						0.02					0.09					
95% Queue Length, Q ₉₅ (veh)						0.1					0.3					
Control Delay (s/veh)						7.8	0.2				10.6					
Level of Service (LOS)						A	А				В					
Approach Delay (s/veh)						1	.5			10).6					
Approach LOS							4			I	В					

Copyright © 2024 University of Florida. All Rights Reserved.

	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	BW	Intersection	Site Access & Gonzales Rd
Agency/Co.	Lee Engineering	Jurisdiction	CABQ
Date Performed	6/28/2024	East/West Street	Gonzales Road
Analysis Year	2024	North/South Street	Site Access
Time Analyzed	Horizon PM (2:30 PM)	Peak Hour Factor	1.00
Intersection Orientation	East-West	Analysis Time Period (hrs)	1.00
Project Description	Mark Armijo Academy NIA		
Lanes			

Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	T	R	U	L	T	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration				TR		LT					LR					
Volume (veh/h)			204	28		15	108			32		36				
Percent Heavy Vehicles (%)						0				0		0				
Proportion Time Blocked																
Percent Grade (%)										()				-	
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.10				6.40		6.20				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.20				3.50		3.30				
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)						15					68					
Capacity, c (veh/h)						1348					726					
v/c Ratio						0.01					0.09					
95% Queue Length, Q ₉₅ (veh)						0.0					0.3					
Control Delay (s/veh)						7.7	0.1				10.5					
Level of Service (LOS)						Α	A				В					
Approach Delay (s/veh)		-		-		1	.0			10).5			-		-
Approach LOS		A								I	3					

Copyright $\ensuremath{\mathbb{C}}$ 2024 University of Florida. All Rights Reserved.

Gonoral and Site Informat	ion		All-W									
General and Site Informat					Lanes							
Analyst	BW							4 1 1	\ _∲ }			
Agency/Co.	Lee Eng	-					<u>k</u>	* * *				
Date Performed	6/11/20	24				1					i k	
Analysis Year	2024											
Analysis Time Period (hrs)	1.00					*						
Time Analyzed	Horizon	AM (7:15	AM)			× –	4			\$	5-	
Project Description	Mark Ar	mijo Acado	emy			× →					*	
Intersection	Bataan I	Dr & Gonz	ales Rd								<u>↓</u>	
Jurisdiction	CABQ										¥	
East/West Street	Gonzale	s Road							*		_	
North/South Street	Bataan I	Drive					ኻ	۱ 🌵 ۲	* 1 1	· ["		
Peak Hour Factor	1.00											
Turning Movement Dema	nd Volum	nes										
Approach		Eastbound	1		Westbound	d	1	Northboun	d	9	Southboun	ıd
Movement	L	Т	R	L	Т	R	L	Т	R	L	Т	R
Volume (veh/h)	26	96	63	30	67	20	57	39	28	2	21	29
% Thrus in Shared Lane												
Lane Flow Rate and Adjust	tments											· · · · ·
Approach		Eastbound	1		Westbound	d l	1	Northboun	d	9	Southboun	ıd
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
Configuration	LTR			LTR			LTR			LTR		<u> </u>
Flow Rate, v (veh/h)	185			117			124			52		
Percent Heavy Vehicles	2			0			0			0		<u> </u>
Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20		
Initial Degree of Utilization, x	0.164			0.104			0.110			0.046		
Final Departure Headway, hd (s)	4.31			4.48			4.61			4.42		
Final Degree of Utilization, x	0.222			0.145			0.159			0.064		
Move-Up Time, m (s)	2.0			2.0			2.0			2.0		
Service Time, t₅ (s)	2.31			2.48			2.61			2.42		
Capacity, Delay and Level	of Servic	e										-
Approach	T	Eastbound	1	· ·	Westbound	d l	1	Northboun	d	9	Southboun	ıd
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	185			117			124			52		
Capacity (veh/h)	834			804			781			815		
95% Queue Length, Q ₉₅ (veh)	0.9			0.5			0.6			0.2		
Control Delay (s/veh)	8.5			8.2			8.5			7.7		
·	•			A			A			A		<u> </u>
Level of Service, LOS	A			A			A					

Copyright © 2024 University of Florida. All Rights Reserved.

HCS[™] AWSC Version 2023 04 Bataan Gonzales Horizon AM.xaw

Generated: 9/24/2024 1:37:23 PM

General and Site Informat	ion				Lanes							
					Lanes							
Analyst	BW							×	\			
Agency/Co.	Lee Eng	-					ř	~+ + ×	<u>a</u> 44 4 L			
Date Performed	6/11/20	24				X					k	
Analysis Year	2024											
Analysis Time Period (hrs)	1.00					*					• •	
Time Analyzed	Horizon	PM (2:30	PM)			× ×	4			\$	5-	
Project Description	Mark Ar	mijo Acado	emy			~ →					*	
Intersection	Bataan I	Dr & Gonz	ales Rd								•	
Jurisdiction	CABQ										¥	
East/West Street	Gonzale	s Road							•			
North/South Street	Bataan I	Drive					ኻ	* * *	, ~ † †	· / ·		
Peak Hour Factor	1.00											
Turning Movement Dema	n <mark>d Vol</mark> um	nes										
Approach		Eastbound	1	· ·	Westbound	d	1	Northboun	d	S	outhboun	ıd
Movement	L	Т	R	L	Т	R	L	Т	R	L	Т	R
Volume (veh/h)	18	123	83	39	63	21	38	55	24	6	23	22
% Thrus in Shared Lane												
Lane Flow Rate and Adjus	tments											
Approach		Eastbound	1	· ·	Westbound	d	1	Northboun	d	S	outhboun	d
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	224			123			117			51		
Percent Heavy Vehicles	2			0			0			0		
Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20		
Initial Degree of Utilization, x	0.199			0.109			0.104			0.045		
Final Departure Headway, hd (s)	4.28			4.52			4.69			4.61		
Final Degree of Utilization, x	0.266			0.154			0.153			0.065		
Move-Up Time, m (s)	2.0			2.0			2.0			2.0		
Service Time, t₅ (s)	2.28			2.52			2.69			2.61		
Capacity, Delay and Level	of Servic	e										-
Approach	1	Eastbound	1	· ·	Westbound	d	1	Northboun	d	5	outhboun	d
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	224			123			117			51		
Capacity (veh/h)	841			796			767			782		
95% Queue Length, Q ₉₅ (veh)	1.1			0.5			0.5			0.2		
-	8.8			8.3			8.5			7.9		
Control Delay (s/veh)							1	1			1	1
Control Delay (s/veh) Level of Service, LOS	A			A			А			А		

Copyright $\ensuremath{\mathbb{C}}$ 2024 University of Florida. All Rights Reserved.

HCS[™] AWSC Version 2023 04 Gonzales Bataan Horizon PM.xaw

Generated: 9/24/2024 1:38:00 PM

		HCS	S Sigr	nalize	d Inte	ersect	ion R	esu	Its S	um	mary	,				
General Inform	nation										tion Info			_	411	14
Agency		Lee Engineering							Durat			1.000				N.
Analyst		BW				Jun 2			Area	Туре	e	Other		4		~
Jurisdiction		CABQ		Time F	Period	Horizo AM)	on AM (7	7:15	PHF			1.00		4 <u>1</u>	W TE	1 1 1
Urban Street		Coors Boulevard		Analys	is Yea	r 2024			Analy	'sis F	Period	1> 7:′	15		5 + 6	· · ·
Intersection		Bridge Boulevard		File Na	ame	05 Co	ors Brid	lge H	orizon	AM.	xus				4144	10
Project Descrip	tion	Horizon AM (7:15 A	M)													
Demand Inform	nation				EB		T	W	′B			NB			SB	
Approach Move	ment			L	Т	R	L		r 🗌	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			111	199	81	53	15	50 1	154	103	1216	69	80	671	41
Signal Informa	tion			<u> </u>			8.11		min -				↑ I			ĸ
Cycle, s	120.0	Reference Phase	2			٩		12	Ç.			5	_	1		2
Offset, s	0	Reference Point	End		<u>רין</u>	<u> " "11</u>							1	2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Green		0.7	76.1	23		0.0	0.0	_				_
Force Mode	Fixed	Simult. Gap N/S	On	Yellow Red	3.5	0.0	4.5	4.0).0).0	0.0		`	6	7	-€.
Force Mode	Fixeu	Sindit. Gap N/S	OII	Itteu	1.5	0.0	1.0	2.0).0	0.0	•	, in the second se	0	<u> </u>	3
Timer Results				EBL	-	EBT	WB	L	WBT	r I	NBL	-	NBT	SBI	-	SBT
Assigned Phase	Э					8			4		5		2	1		6
Case Number						5.0			5.0		1.1		4.0	1.1		4.0
Phase Duration	, s					29.0			29.0		9.4		82.3	8.7		81.6
Change Period,	(Y+R	c), S				6.0			6.0		5.0		5.5	5.0		5.5
Max Allow Head	dway (A	MAH), s				4.1		\neg	4.1		2.5		0.0	2.5		0.0
Queue Clearan						20.3		\neg	18.1		4.4			3.9		
Green Extensio	n Time	(ge),s				2.2			2.3		0.1		0.0	0.1		0.0
Phase Call Prol	ability					1.00			1.00		0.97			0.93	3	
Max Out Proba	oility					0.00			0.00	·	0.00			0.00)	
Movement Gro		ulte	_		EB			WE	2	_		NB			SB	
Approach Move	· ·	Juito			Т	R	L	T	, F	2	L	T	R		Т	R
Assigned Move				3	8	18	7	4	14		5	2	12	1	6	16
Adjusted Flow F) veh/h		111	199	32	53	150	_	_	103	648	637	80	359	353
	· ·	ow Rate (s), veh/h/l	In	1256	1900	1610	1202	190		_	1795	1885	1849	1810	1885	1847
Queue Service				10.2	11.3	1.9	5.0	8.3			2.4	22.7	22.7	1.9	10.4	10.4
Cycle Queue C				18.3	11.3	1.9	16.1	8.3			2.4	22.7	22.7	1.9	10.4	10.4
Green Ratio (g		o nino (g c), o		0.19	0.19	0.23	0.19	0.19			0.67	0.64	0.64	0.66	0.63	0.63
Capacity (c), v	,			217	366	369	180	366			531	1206	1182	304	1194	1170
Volume-to-Capa		tio (X)		0.513	0.544		0.295	0.41			0.194	0.538		0.264	0.301	0.301
•		t/In (95 th percentile	e)	146.8	_	33.3	68.6	176.	_	_	37.2	348.7	341.9	29.2	183.7	179.4
	<u> </u>	eh/In (95 th percenti	,	5.9	9.2	1.3	2.7	7.1			1.5	13.8	13.7	1.2	7.3	7.2
	. ,	RQ) (95 th percent		1.05	0.00	0.17	0.53	0.00	_	_	0.13	0.00	0.00	0.12	0.00	0.00
Uniform Delay (,, ,	/	50.4	43.7	36.4	50.9	42.5		_	7.5	11.9	11.9	10.1	10.0	10.0
Incremental De				1.9	1.3	0.1	0.9	0.7			0.1	1.7	1.8	0.2	0.6	0.7
Initial Queue De		•		0.0	0.0	0.0	0.0	0.0	_	_	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (·		52.3	45.0	36.5	51.8	43.2			7.5	13.6	13.7	10.3	10.6	10.6
Level of Service				D	D	D	D	D			A	B	B	B	B	B
Approach Delay	· /			46.6		D	43.6		D	\neg	13.2		В	10.6		B
Intersection Del							9.5							B		_
	, ,									ني						
Multimodal Re	sults				EB			WE	3			NB			SB	
Dedectrice LOS		11.00		2.31		В	2.31	1	В		2.26		В	2.21		В
Pedestrian LOS	Score	/LOS	I	2.51		D	2.0	· [2.20		D	2.2	·	0

		HCS	s Sigr	nalize	d Inte	ersect	ion R	esu	lts Sun	nmary	,				
Conoral Inform	-								Interes	tion Inf			1 1	ا ما بار ما	5. I.
General Informa	ation								Intersec				- Í	416	P 14
Agency		Lee Engineering			·		- 0004		Duration		1.000				n.
Analyst		BW		Analys			5, 2024	0.00	Area Typ	e	Other				~
Jurisdiction		CABQ		Time F	Period	PM)	on PM (2	2:30	PHF		1.00		Ja 200	w+e s	
Urban Street		Coors Boulevard		Analys	sis Yea	r 2024			Analysis	Period	1> 14	:30		5.4.6	
Intersection		Bridge Boulevard		File Na	ame	05 Co	ors Brid	lge H	orizon PN	l.xus				14149	14
Project Descripti	ion	Horizon PM (2:30 F	PM)												
Demand Inform	ation				EB			W	′B		NB			SB	
Approach Mover	ment			L	Т	R	L	1	1	L	Т	R	L	Т	R
Demand (v), ve				44	136	71	55	17		82	666	44	110	943	63
				1	_										
Signal Informat					5	al la l	⊲ <mark>₽₩</mark> ₽		E		l	Ĺ	-+-		- -
	110.0	Reference Phase	2	-	<u>195</u>		- 🗖 🐴		. 1			>	\mathbf{Y}_{2}	3	4
Offset, s	0	Reference Point	End	Green	3.4	0.8	71.3	18	.0 0.0	0.0				1	
Uncoordinated	No	Simult. Gap E/W	On	Yellow		0.0	4.5	4.(0.0	^	5 4		_	
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.5	0.0	1.0	2.0	0.0	0.0	1	5	6	7	Y 8
Timer Results				EBI	-	EBT	WB	L	WBT	NBI	_	NBT	SBI	_	SBT
Assigned Phase	;					8			4	5		2	1		6
Case Number						5.0			5.0	1.1		4.0	1.1		4.0
Phase Duration,	s					24.0			24.0	8.4		76.8	9.2		77.6
Change Period,	(Y+R	c), S				6.0			6.0	5.0		5.5	5.0		5.5
Max Allow Head	way (A	MAH), s				4.1			4.1	2.5		0.0	2.5		0.0
Queue Clearanc	e Time	(gs), s				14.8			13.5	3.7			4.2		
Green Extensior	n Time	(ge),s				2.2			2.2	0.1		0.0	0.1		0.0
Phase Call Prob	ability					1.00			1.00	0.92	2		0.97	7	
Max Out Probab	oility					0.00			0.00	0.00)		0.00)	
Movement Cree	un Dee				ГР			۱۸/۲	>		ND			CD.	
Movement Grou Approach Mover	-	Suits			EB T	R	L	WE T	R		NB T	R		SB T	R
Assigned Moven				3	8	18	7	4	14	5	2	12	1		16
Adjusted Flow R) yoh/h		44	136	71	55	4	_	82	2 359	351	110	6 509	497
		ow Rate (<i>s</i>), veh/h/l	In	1230	1900	1610	1273	190	_	1810	1885	1844	1810	1885	1843
Queue Service T				3.7	7.1	4.1	4.5	9.2	_	1.7	9.1	9.1	2.2	14.0	14.0
Cycle Queue Cle				12.8	7.1	4.1	11.5	9.2	_	1.7	9.1	9.1	2.2	14.0	14.0
Green Ratio (g/		e fille (<i>g c</i>), s		0.16	0.16	0.19	0.16	0.10		0.68	0.65	0.65	0.69	0.66	0.66
Capacity (c), ve	,			166	312	315	193	312	_	411	1221	1194	558	1234	1207
Volume-to-Capa		tio (X)		0.266	0.436		0.285	0.55	_	0.199	0.294	0.294	0.197	0.412	0.412
· ·		/In (95 th percentile	•)	52.6	150	72.4	64.4	193.		24.4	154.5	150.3	31.9	225.7	220.6
		eh/In (95 th percentie	,	2.1	6.0	2.9	2.6	7.7	_	1.0	6.1	6.0	1.3	9.0	8.8
	, ,	RQ) (95 th percent	,	0.38	0.00	0.36	0.50	0.0	_	0.09	0.00	0.00	0.13	0.00	0.00
Uniform Delay (/	48.1	41.4	37.3	46.5	42.3	_	7.2	8.4	8.4	6.2	9.0	9.0
Incremental Dela				0.8	1.0	0.4	0.8	1.5		0.1	0.6	0.6	0.1	1.0	1.0
Initial Queue De		,		0.0	0.0	0.0	0.0	0.0	_	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (a				49.0	42.4	37.6	47.3	43.8		7.3	9.0	9.1	6.3	10.0	10.0
Level of Service				D	D	D	D	D	D	A	A	A	A	В	В
Approach Delay,	. ,	/LOS		42.2		D	42.6	<u> </u>	D	8.9		A	9.6		A
Intersection Dela						17	7.4						B		
Multimodal Res					EB			WE			NB			SB	
Pedestrian LOS				2.31		В	2.31	_	В	2.14		В	2.14		В
Bicycle LOS Sco	ore / LC	DS		2.95	5	С	3.14	1	С	2.44	1	В	2.92	2	С

Appendix E: Signal Timing Sheets

419 - Bridge & Coors

MANUAL PATTERN	AUTO	ECPI COORD	YES
SYSTEM SOURCE	SYS	SYSTEM FORMAT	PTN
SPLITS IN	PERCENT	OFFSET IN	PERCENT
TRANSITION	SMOOTH	MAX SELECT	MAXINH
DWELL/ADD TIME	0	ENABLE MAN SYNC	NO
DLY COORD WK-LZ	NO	FORCE OFF	FLOAT
OFFSET REF	LEAD	CAL USE PED TM	NO
PED RECALL	NO	PED RESERVE	NO
LOCAL ZERO OVRD	NO	FO ADD INI GRN	NO
RE-SYNC COUNT	0	MULTISYNC	NO

USE SPLIT PATT	TERN	2	1	SPLIT S	SUM		10	0%
TS2 (PAT-OFF)		0-	-1					
CYCLE		12	0s	STD (C	OS)		1	11
OFFSET VAL		51	%					
ACTUATED CO	ORD	Y	ES	TIMINO	G PLAN			0
ACT WALK RES	Т	N	0	SEQUE	NCE			0
PHASE RESRVC	E	N	0	ACTIO	N PLAN			0
PHASE	1	2	3	4	5	6	7	8
DIRECTION	S-E	NB		WB	N-W	SB		EB
SPLITS	12	41		47	12	41		47
PHASE	1	2	3	4	5	6	7	8
COORD PHASE		Х				Х		
VEH RECALL								
MAX RECALL		Х				Х		

USE SPLIT PATT	ERN	2	3	SPLIT S	SUM		10	0%
TS2 (PAT-OFF)		0-	-3					
CYCLE		11	0s	STD (C	OS)		1	31
OFFSET VAL		57	7%					
ACTUATED COO	ORD	Y	ES	TIMINO	G PLAN			0
ACT WALK RES	Т	N	0	SEQUE	NCE			0
PHASE RESRVC	E	N	0	ACTIO	N PLAN			0
PHASE	1	2	3	4	5	6	7	8
DIRECTION	S-E	NB		WB	N-W	SB		EB
SPLITS	15	42		43	12	45		43
PHASE	1	2	3	4	5	6	7	8
COORD PHASE		Х				Х		
VEH RECALL								
MAX RECALL		Х				Х		

		COOR	DINAT	ION PAT	TERN	<u>25</u>		
USE SPLIT PATT	ERN	2	.5	SPLIT S	SUM		10	0%
TS2 (PAT-OFF)		0	-5					
CYCLE		13	30s	STD (C	OS)		1	51
OFFSET VAL		52	2%					
ACTUATED COO	ORD	Y	ES	TIMINO	G PLAN			0
ACT WALK RES	Г	N	0	SEQUE	NCE			0
PHASE RESRVC	E	N	0	ACTIO	N PLAN			0
PHASE	1	2	3	4	5	6	7	8
DIRECTION	S-E	NB		WB	N-W	SB		EB
SPLITS	16	46		38	12	50		38
PHASE	1	2	3	4	5	6	7	8
COORD PHASE		Х				Х		
VEH RECALL								
MAX RECALL		Х				Х		l l

CL	OCK / O	CALEN	DAR DATA (M	I <u>M 5-1)</u>	
CURRENT DATE		CURRE	NT DOW	RRENT TOD	
ENA ACTION PLAN)			
SYNC REF TIME	00	:00	SYNC REF	SYNC REF	
TIME FROM GMT	+	00	DAY LIGHT S.	DAY LIGHT SAVE	
TIME RESET INPUT SE	T TIME			3:30:00	

<u>ACTION PLAN 21 (MM 5-2)</u>									
PATTERN	21	SYS OVERRIDE	NO						
TIMING PLAN	0	SEQUENCE	0						
VEHICLE DETECTOR PLAN	0.00	DET LOG	NONE						
FLASH		RED REST	NO						
VEH DET DIAG PLN	0	PED DET DIAG PLN	0						
DIMMING ENABLE	NO								

<u>ACTION PLAN 23</u>									
PATTERN	23	SYS OVERRIDE	NO						
TIMING PLAN	0	SEQUENCE	0						
VEHICLE DETECTOR PLAN	0.00	DET LOG	NONE						
FLASH		RED REST	NO						
VEH DET DIAG PLN	0	PED DET DIAG PLN	0						
DIMMING ENABLE	NO								

	ACTION	PLAN	25	
--	--------	------	----	--

PATTERN	25	SYS OVERRIDE	NO
TIMING PLAN	0	SEQUENCE	0
VEHICLE DETECTOR PLAN	0.00	DET LOG	NONE
FLASH		RED REST	NO
VEH DET DIAG PLN	0	PED DET DIAG PLN	0
DIMMING ENABLE	NO		

ACTION PLAN 100

PATTERN	254	SYS OVERRIDE	NO
TIMING PLAN	0	SEQUENCE	0
VEHICLE DETECTOR PLAN	0.00	DET LOG	NONE
FLASH		RED REST	NO
VEH DET DIAG PLN	0	PED DET DIAG PLN	0
DIMMING ENABLE	NO		

DAY	PLAN/EVENT	<u>1 (MM 5-3)</u>
EVENT	ACTION PLAN	START TIME
1	23	10:00
2	100	18:00
3	0	00:00

DAY PLAN/EVENT 2										
 EVENT	ACTION PLAN	START TIME								
1	21	6:30								
2	23	9:00								
3	25	15:00								
4	23	18:30								
5	100	22:00								
6	0	00:00								
7	0	00:00								

DAY PLAN/EVENT 3									
 EVENT	ACTION PLAN	START TIME							
1	23	9:00							
2	100	22:00							
3	0	00:00							

		SCHED	ULE N	UMBER	1 (MM	5-4)						
SCHEDUI	LE NUM	BER	1					_				
DAY I	PLAN NO)	1	CI	LEAR A	LL FIELI	DS					
SELECT A	LL MO	NTHS			DOW		DOM					
MONTH	J	F	М	Α	Μ	J	J	Α	S	0	Ν	D
	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
DAY(DOW)	SUN	MON	TUE	WED	THU	FRI	SAT					
	Х			•								_
DAY(DOM)	1	2	3	4	5	6	7	8	9	10	11	
	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
	12	13	14	15	16	17	18	19	20	21	22	
	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
	23	24	25	26	27	28	29	30	31			
	Х	Х	Х	Х	Х	Х	Х	Х	Х]

		<u>s</u>	CHEDU	LE NUN	<u>1BER 2</u>							
SCHEDU	LE NUM	BER	2									
DAY	PLAN NO	C	2	CI	LEAR AI	LL FIELI	DS					
SELECT A	ALL MON	ITHS			DOW		DOM					
MONTH	J	F	М	Α	М	J	J	Α	S	0	Ν	D
	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
DAY(DOW)	SUN	MON	TUE	WED	THU	FRI	SAT					
		Х	Х	Х	Х	Х						_
DAY(DOM)	1	2	3	4	5	6	7	8	9	10	11	
	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
	12	13	14	15	16	17	18	19	20	21	22	
	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
	23	24	25	26	27	28	29	30	31			
	Х	Х	Х	Х	Х	Х	Х	Х	Х]

		S	CHEDU	LE NUM	<u>1BER 3</u>							
SCHEDUI	LE NUM	BER	3									
DAY I	PLAN NO	С	3	CI	LEAR AI	LL FIELI	DS					
SELECT A	LL MON	NTHS			DOW		DOM					
MONTH	J	F	М	Α	М	J	J	Α	S	0	Ν	D
	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
DAY(DOW)	SUN	MON	TUE	WED	THU	FRI	SAT					
							Х					_
DAY(DOM)	1	2	3	4	5	6	7	8	9	10	11	
	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
	12	13	14	15	16	17	18	19	20	21	22	
	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
	23	24	25	26	27	28	29	30	31			
	Х	Х	Х	Х	Х	Х	Х	Х	Х			1

1. Coordination sheet created for ASC3 form 11/15/2013.

Intersection No.:	419

Intersection Name: BRIDGE - COORS

Revision Date 9/26/2016

Timing Data

Phase I.D.:	1	2	3	4	5	6	7	8
Phase Dir.:	S-E	NB		WB	N-W	SB		EB
Min Grn	3	24		12	3	24		12
Walk:	0	7		7	0	7		7
Ped Clr:	0	16		37	0	16		37
Veh Ext:	1.5	4.0		3.0	1.5	4.0		3.0
Veh Ext2:	1.5	4.0		3.0	1.5	4.0		3.0
Max 1:	16	40		24	16	40		24
Max 2:	16	40		24	16	40		24
Max 3:								
Yellow:	3.5	4.5		4.0	3.5	4.5		4.0
Red Clr	1.5	1.0		2.0	1.5	1.0		2.0

Recall Data

Locking Memory: Vehicle Recall: Ped Recall:		Y		Х			X
Recall To Max: Flash Mode:	ALL RED	X				X	
Start Up Mode: Time: First Phases: Start In:	ALL RED 8 SEC. 2 & 6 GREEN						
Overlap Phases:	NONE						
	Overlap	Par Ph	Grn	Yel	Red		
	A						
	B C						
	D						
	U						
						ded, 7/10/92.	
					sence mode		
					andard by Bl		
,	4. Timing s	neet update	u to current	uming she	et, 9/26/16	к э.	

Intersection No.: 375

Intersection Name: Coors Blvd

Revision Date 2/8/2023

Timing Data

Phase I.D.:	1	2	3	4	5	6	7	8
Phase Dir.:	W-S	EB	S-E	NB	E-N	WB	N-W	SB
Min Grn	4	14	14	14	4	14	5	14
Walk:		7		7		7		7
Ped Clr:		30		28		27		29
Veh Ext:	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Veh Ext2:								
Max 1:	16	45	16	40	16	45	16	40
Max 2:	40	40	40	40	40	40	40	40
Max 3:								
Yellow:	4.0	4.0	3.5	3.5	4.0	4.0	3.5	3.5
Red Clr	1.0	1.0	1.5	1.5	1.0	1.0	1.5	1.5

Recall Data

Locking Memory:	Х		Х	
Vehicle Recall:				
Ped Recall:				
Recall To Max:	Х		Х	

Flash Mode: ALL RED

Start Up Mode: ALL RED Time: 8 SEC. First Phases: 2 & 6 Start In: GREEN

Overlap Phases: YES

					Not
Overlap	Par Ph	Grn	Yel	Red	OVLP
А	2				5
В					
С	11				1
D					

SEQ1	R1 R2	1 5	2 11	6	3 7	4 8
SEQ4	R1 R2	1 5	2 11	6	3 7	4 8
SEQ5	R1 R2	1 5	2 11	6	3 7	4 8

	gnal Start up Timings, adjustments may be necessary based on field review RT Timing updated by Lee Engineering 05/27/2020
3. Le	e Updated Ped Walk and Flashing Don't Walk Times 02/25/2021
4. Le	e Updated Ped Clear and Splits in Centracs 03/22/2021
5. Le	e Engineering Final Central ATSPM Project Timing Configuration 07-21-2022
6. Co	onfiguration confirmed by Lee Engineering via Centracs 02/08/2023

Appendix G: AASHTO Green Book Intersection Sight Distance Calculations

G	onzales Drive @ Coors Boulevard S	Signal Wara	nt		
	Coors Boulevard and Gonzale	•			
МА	NUAL ON UNIFORM TRAFFIC CON		CES		
	CONTROL SIGNAL WARRANT S				
INAFT	IC CONTROL SIGNAL WARRANT S				
LOCATION:	Albuquerque, New Mexico				
SPECIAL CONDITIONS:	None				
	•				
DATE OF COUNT:	02 May 2024				
DATE OF STUDY:	24 September 2024				
NORTH/SOUTH STREET:	Coors Boulevard Gonzales Drive		MAJOR	MULTI-LANE	
EAST/WEST STREET:	Gonzales Drive		MINOR	SINGLE LANE	
POSTED SPEED LIMIT ON	MAJOR STREET	45 mph	1		
85th PERCENTILE SPEED		mph	1		
			1		
WARRANT		EXISTING	REQUIRED	SATISFIED?	
# 1. EIGHT-HOUR VEHICU			8	YES	
	A. MINIMUM VEHICULAR VOLUME 9				
B. INTERRUPTION OF CONTINUOUS TRAFFIC13COMBINATION OF WARRANTS 1A AND 1B (80% of Values)-				YES	
COMBINATION OF WARRANTS TA AND TB (60% of Values) - COMBINATION OF WARRANTS TA AND TB (60% of Values) -				Not Applicable YES	
	8	123			
# 2. FOUR-HOUR VEHICU	4	YES			
		13			
# 3. PEAK HOUR					
A. PEAK HOUR DELAY	′ - AM	1	4.00	NO	
A. PEAK HOUR DELAY		1	4.00	NO	
B. PEAK HOUR VOLUN	1E	12	650	NO	
			400	NO	
# 4. PEDESTRIAN VOLUM # 4. PEDESTRIAN VOLUM		0	190	NO	
#4. PEDESTRIAN VOLUM	E - FOUR HOUR	0	100	NO	
# 5. SCHOOL CROSSING -		_	_	Not Measured	
# 5. SCHOOL CROSSING -		_	-	Not Measured	
	-				
# 6. COORDINATED SIGN	AL SYSTEM	-	-	Not Applicable	
# 7. CRASH EXPERIENCE					
WITH WARRANT # 1A (Traffic Volumes at 80% of Original Values) - WITH WARRANT # 1B (Traffic Volumes at 80% of Original Values) -				Not Applicable	
	-	Not Applicable			
WITH WARRANT # 1A (T	12	8	YES		
WITH WARRANT # 1B (T TOTAL NUMBER OF CRA	0	8	NO		
NUMBER OF POTENTIAL	4	- 5	- NO		
	E MEANS BEEN ATTEMPTED?	YES		YES	
# 7. ENTIRE WARRANT		-	-	NO	
# 8. ROADWAY NETWORK	K	-	-	Not Applicable	

The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal.

Gonzales Drive @ Coors Boulevard Signal Warant Coors Boulevard and Gonzales Drive MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES

TRAFFIC CONTROL MULTIWAY STOP WARRANT STUDY SUMMARY

	WIRDLINDLINVAT STOP WA			
LOCATION:	Albuquerque, New Mexico			
SPECIAL CONDITIONS:	None			
SPECIAL CONDITIONS.	None			
DATE OF COUNT:	02 May 2024			
DATE OF STUDY:	24 September 2024			
NORTH/SOUTH STREET:	Coors Boulevard		MAJOR	MULTI-LANE
EAST/WEST STREET:	Gonzales Drive		MINOR	SINGLE LANE
POSTED SPEED LIMIT ON		45 mm	7	
85th PERCENTILE SPEED		45 mph	-	
65th FERGENTILE SPEED	ON MAJOR STREET.	mph		
WARRANT		EXISTING	REQUIRED	SATISFIED?
	R TRAFFIC CONTROL SIGNAL			
TRAFFIC SIGNAL WARR	ANTS	4	1	YES
B. CRASH EXPERIENCE				
TOTAL NUMBER OF CRA	SHES	11		
	LY PREVENTABLE CRASHES	4	5	NO
	E MEANS BEEN ATTEMPTED?	YES	-	YES
ENTIRE WARRANT		. 20		NO
C. MINIMUM VOLUMES				
	SATISFYING VOLUME WARRANT	0	1	NO
PEAK HOUR DELAY - AM		26	30	NO
PEAK HOUR DELAY - PM		32	30	YES
ENTIRE WARRANT				NO
	RANTS B AND C (80% of Values)			
TOTAL NUMBER OF CRA	· · · · · · · · · · · · · · · · · · ·	11	_	-
NUMBER OF POTENTIAL	4	4	YES	
HAVE LESS RESTRICTIV	YES	-	YES	
EIGHT-HOUR PERIODS S	SATISFYING VOLUME WARRANT	0	1	NO
PEAK HOUR DELAY - AM		26	24	YES
PEAK HOUR DELAY - PM		32	24	YES
ENTIRE WARRANT				YES

The decision to install multiway stop control should be based on an engineering study.

Appendix G: AASHTO Green Book Intersection Sight Distance Calculations

Table 9-6. Time Gap for Case B1, Left Turn from Stop	Tab	le 9-6.	Time Gap	for Case B	1, Let	ft Turn f	rom Stop
--	-----	---------	----------	------------	--------	-----------	----------

Design Vehicle	Time Gap (t_{a}) (s) at Design Speed of Major Road
Passenger car	7.5
Single-unit truck	9.5
Combination truck	11.5

Note: Time gaps are for a stopped vehicle to turn left onto a two-lane highway with no median and with minor-road approach grades of 3 percent or less. The time gaps are applicable to determining sight distance to the right in left-turn maneuvers. The table values should be adjusted as follows:

For multilane roadways or medians—For left turns onto two-way roadways with more than two lanes, including turn lanes, add 0.5 s for passenger cars or 0.7 s for trucks for each additional lane, from the left, in excess of one, to be crossed by the turning vehicle. Median widths should be converted to an equivalent number of lanes in applying the 0.5 and 0.7 s criteria presented above; for example, an 18-ft [5.5-m] median is equivalent to one and a half lanes, and would require an additional 0.75 s for a passenger to cross and an additional 1.05 s for a truck to cross.

For minor-road approach grades—If the approach grade is an upgrade that exceeds 3 percent, add 0.2 s for each percent grade by which the approach grade exceeds zero percent.

Table 9-8.	Time G	ap for	Case I	B2—Right	Turn	from S	Stop

Design Vehicle	Time Gap (t_q) (s) at Design Speed of Major Road
Passenger car	6.5
Single-unit truck	8.5
Combination truck	10.5

Note: Time gaps are for a stopped vehicle to turn right onto or to cross a two-lane roadway with no median and with minor-road approach grades of 3 percent or less. The table values should be adjusted as follows:

For minor-road approach grades—If the approach grade is an upgrade that exceeds 3 percent, add 0.1 s for each percent grade by which the approach grade exceeds zero percent.

U.S. Customary	Metric	_
$ISD = 1.47 V_{major} t_g$	$ISD = 0.278 \ V_{major} \ t_g$	(9-1)
where:	where:	
ISD - intersection sight distance (length of the leg of sight triangle along the major road) (ft)	ISD - intersection sight distance (length of the leg of sight triangle along the major road) (m)	
$V_{\rm major}$ – design speed of major road (mph)	$V_{\rm major}$ – design speed of major road (km/h)	
t_{g}^{t} – time gap for minor road vehicle to enter the major road (s)	t_{g} - time gap for minor road vehicle to enter the major road (s)	

	U.S. C	ustomary		
Design Speed	Stopping Sight	Intersection Sight Distance for Passenger Cars		Design Speed
(mph)	Distance (ft)	Calculated (ft)	Design (ft)	(km/h)
15	80	165.4	170	20
20	115	220.5	225	30
25	155	275.6	280	40
30	200	330.8	335	50
35	250	385.9	390	60
40	305	441.0	445	70
45	360	496.1	500	80
50	425	551.3	555	90
55	495	606.4	610	100
60	570	661.5	665	110
65	645	716.6	720	120
70	730	771.8	775	130
75	820	826.9	830	<u>85</u>
80	910	882.0	885	

	M	etric		
Design Speed (km/h)	Stopping Sight	Intersection Sight Distance for Passenger Cars		
	Distance (m)	Calculated (m)	Design (m)	
20	20	41.7	45	
30	35	62.6	65	
40	50	83.4	85	
50	65	104.3	105	
60	85	125.1	130	
70	105	146.0	150	
80	130	166.8	170	
90	160	187.7	190	
100	185	208.5	210	
110	220	229.4	230	
120	250	250.2	255	
130	285	271.1	275	

Table 9-7. Design Intersection Sight Distance—Case B1, Left Turn from Stop

Note: Intersection sight distance shown is for a stopped passenger car to turn left onto a two-lane highway with no median and grades 3 percent or less. For other conditions, the time gap should be adjusted and the sight distance recalculated.

U.S. Customary				
Design Speed (mph)	Stopping Sight Distance	Intersection Sight Distance for Passenger Cars		
	(ft)	Calculated (ft)	Design (ft)	
15	80	143.3	145	
20	115	191.1	195	
25	155	238.9	240	
30	200	286.7	290	
35	250	334.4	335	
40	305	382.2	385	
45	360	430.0	430	
50	425	477.8	480	
55	495	525.5	530	
60	570	573.3	575	
65	645	621.1	625	
70	730	668.9	670	
75	820	716.6	720	
80	910	764.4	765	

Metric				
Design Speed (km/h)	Stopping Sight Distance	Intersection Sight Distance for Passenger Cars		
	(m)	Calculated (m)	Design (m)	
20	20	36.1	40	
30	35	54.2	55	
40	50	72.3	75	
50	65	90.4	95	
60	85	108.4	110	
70	105	126.5	130	
80	130	144.6	145	
90	160	162.6	165	
100	185	180.7	185	
110	220	198.8	200	
120	250	216.8	220	
130	285	234.9	235	

Table 9-9. Design Intersection Sight Distance—Case B2, Right Turn from Stop

Note: Intersection sight distance shown is for a stopped passenger car to turn right onto or to cross a two-lane roadway with no median and with grades of 3 percent or less. For other conditions, the time gap should be adjusted and the sight distance recalculated.