CITY OF ALBUQUERQUE

Planning Department
David Campbell, Director

October 12, 2018

David Soule, P.E. Rio Grande Engineering PO Box 93924 Albuquerque, NM 87199

RE: Sunset Gardens Apartments 86th and Sunset Gardens SW

Grading Plan Stamp Date: 10/3/18

Drainage Report Stamp Date: undated, 9/18

Hydrology File: L10D032

Dear Mr. Soule,

PO Box 1293

Based on the submittal received on 10/3/18, the Grading Plan and Drainage Report cannot be approved until the following are corrected and a complete resubmittal is made:

Prior to Site Plan for Building Permit and Grading Permit:

Albuquerque

1. Provide a full size subbasin map; annotations are illegible on the small size provided and additional detail is required:

NM 87103

- a. Define (hatch) the areas of impervious vs. pervious land cover.
- b. Delineate the areas draining to each first flush pond and quantify the required vs. provided volume for each (include supporting calcs in the Report).
- c. Basin F is ROW and drive entrance and can be exempt from the first flush ponding requirement.

www.cabq.gov

- 2. Correct the following errors and typos in the Drainage Report:
 - a. Introduction. Basin U (not V) is the correct basin to reference from the Valhalla report, Q_{100} =24.63cfs is still correct. The Valhalla report is under drainage file L09D019.
 - b. Proposed Conditions. Basin A is the south portion (not the SW portion) and Basin B is the southeastern portion (not the SW portion). Basin B will be discharging to 82nd St (not 84th). Basin C flows are captured by a 24" nyloplast inlet (not a 12").
- 3. In Appendix B (Hydrology), *Proposed E* should be 12.55cfs, based on the land treatments proposed (see attached spreadsheet). However, the amount of land treatment D is suspect when compared to the grading plan; please correct. Also, *Proposed A* may be overstating the impervious area.
- 4. Add proposed contour labels and existing minor contour labels.

CITY OF ALBUQUERQUE

Planning Department David Campbell, Director

Mayor Timothy M. Keller

- 5. Should there be a valley gutter or something to convey the flow from the western Basin E pond down to the D-inlet? Also, it seems like underground storage in the vicinity of the Dinlet would be a more effective way to capture all the imperious area runoff, especially if the roof runoff can be directed to the internal drive aisles.
- 6. Add note on the plan that "No work shall be performed in the public ROW without an approved Work Order or Excavation Permit."
- 7. The following drainage infrastructure needs to be listed on the Infrastructure List:
 - a. The single-A inlet on 82nd St. This connecter pipe will need to be 18" RCP, not 12"; if there's a 12" stub, it'll need to be replaced to the manhole with 18".
 - b. The new single-A inlet and type-E manhole on Sunset Garden.
 - c. The new sidewalk culvert on Sunset Garden.
 - d. Additional drainage infrastructure may be identified, pending final approval of this plan.
- 8. Provide cross sections, one for each road/property line and at the points of maximum retainage. Include retaining walls and footers, property/ROW lines, existing and proposed grades, horizontal and vertical dimensions, and proposed ROW improvements such as: sidewalk, curb and gutter, and paving.

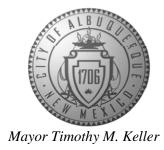
9. For Hydrology, the cross sections must demonstrate that grading and wall construction near the property line will not endanger adjacent property or constrain its use (DPM Ch.22, section 5 part B). Any such encroachment by the retaining wall (including footer) or stable slope will be subject to the following:

- a. Any private encroachment into the public ROW will require a revocable permit.
- b. Any private encroachment into a public easement will require an encroachment agreement.
- c. Any private encroachment into neighboring private property will require written and signed permission from both property owners.
- 10. For information. The cross sections should be included in the Site Plan as well.
- 11. This project requires an ESC Plan, submitted to the Stormwater Quality Engineer (Curtis Cherne PE, ccherne@cabq.gov or 924-3420).
- 12. If only seeking Site Plan for Building Permit approval at this time, label the grading plan "Conceptual, Not For Construction" or similar and address the SPBP comments. If seeking SPBP and Building Permit simultaneously, forgo the conceptual markings and address all SPBP and Building Permit comments.

Prior to Building Permit (For Information):

13. Remove any "Conceptual" markings.

PO Box 1293


Albuquerque

NM 87103

www.cabq.gov

CITY OF ALBUQUERQUE

Planning Department
David Campbell, Director

- 14. Provide sumps around the nyloplast inlets to generate the head required in Appendix C (Hydraulics). The inlet calcs for the basin A inlet and basin E inlet will need to be reassessed once the land treatments are updated.
- 15. Pipe capacity and profiles for public and private storm drain, calculated along the EGL, will be required prior to building permit or work order, whichever comes first.
- 16. If not achieving full capture of the first flush runoff, payment of the Fee in Lieu (Amount = BypassVolume x \$8/CF) for the required first flush volume must be made.
- 17. Additional comments may be provided at Building Permit, based on the outcome of the above remarks and level of detail shown on plans.

Prior to Certificate of Occupancy (For Information):

18. Engineer's Certification, per the DPM Chapter 22.7: *Engineer's Certification Checklist For Non-Subdivision* is required.

PO Box 1293

Albuquerque

19. A Bernalillo County Recorded Private Facility Drainage Covenant is required for the stormwater quality pond. The original notarized form, exhibit A (legible on 8.5x11 paper), and recording fee (\$25, payable to Bernalillo County) must be turned into DRC (4th, Plaza del Sol) for routing. Please contact Charlotte LaBadie (clabadie@cabq.gov, 924-3996) or Madeline Carruthers (mtafoya@cabq.gov, 924-3997) regarding the routing and recording process for covenants. The routing and recording process for covenants can take a month or longer; Hydrology recommends beginning this process as soon as possible as to not delay approval for certificate of occupancy.

NM 87103

www.cabq.gov

20. City acceptance and close-out of the public Work Order will be required, unless financial guarantee has been posted.

If you have any questions, please contact me at 924-3695 or dpeterson@cabq.gov.

Sincerely,

Dana Peterson, P.E.

Senior Engineer, Planning Dept. Development Review Services

City of Albuquerque

Planning Department

Development & Building Services Division

DRAINAGE AND TRANSPORTATION INFORMATION SHEET (REV 6/2018)

Project Title: SUNSET GARDENS APTS	Building Permit	#:	Hydro	logy File #:
DRB#:	EPC#:		Work	
Legal Description: TRACT 52, UNIT				. <u>.</u>
City Address: SOUTH SIDE OF SUNS	ETGARDENS	BETWEEN 8	82 AND 86	
Applicant:			Contact:	·
Address:				
Phone#:	Fax#:		E-mail:	
Other Contact: RIO GRANDE ENGINE			Contact:	DAVID SOULE
Address: PO BOX 93924 ALB NM				david@riograndeengineering com
Phone#: 505.321.9099				
TYPE OF DEVELOPMENT: PLAT	RESIDE	NCE $\frac{X}{}$	_DRB SITE	_ ADMIN SITE
Check all that Apply:				
DEPARTMENT: X HYDROLOGY/ DRAINAGE TRAFFIC/ TRANSPORTATION		_x_BUILDIN	PROVAL/ACCE NG PERMIT APP	
TYPE OF SUBMITTAL: ENGINEER/ARCHITECT CERTIFICATION PAD CERTIFICATION CONCEPTUAL G & D PLAN K GRADING PLAN DRAINAGE REPORT DRAINAGE MASTER PLAN FLOODPLAIN DEVELOPMENT PERMIT AT ELEVATION CERTIFICATE CLOMR/LOMR TRAFFIC CIRCULATION LAYOUT (TCL) TRAFFIC IMPACT STUDY (TIS) STREET LIGHT LAYOUT OTHER (SPECIFY) PRE-DESIGN MEETING? IS THIS A RESUBMITTAL?: Yes X No	PPLIC	SITE PL. X SITE PL. FINAL P SIA/ REI FOUNDA X GRADIN SO-19 A PAVING GRADIN WORK O CLOMRA FLOODP	LAT APPROVA LEASE OF FINAL ATION PERMIT IG PERMIT APP PPROVAL PERMIT APPROVAL IG/ PAD CERTIF RDER APPROVA	APPROVAL PERMIT APPROVAL L NCIAL GUARANTEE APPROVAL ROVAL OVAL FICATION L PMENT PERMIT
DATE SUBMITTED:	By:			***************************************
COA STAFF:	ELECTRONIC SUB	MITTAL RECEIVE	ED:	_

DRAINAGE REPORT

For

SUNSET GARDENS APARTMENTS Albuquerque, New Mexico

Prepared by

Rio Grande Engineering PO Box 93924 Albuquerque, New Mexico 87199

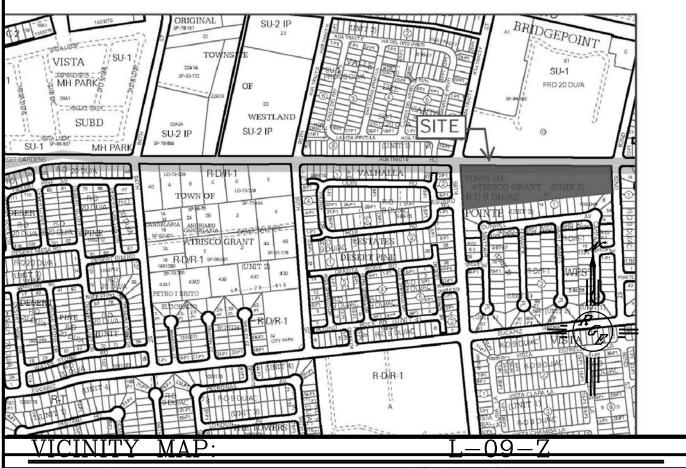
SEPTEMBER 2018

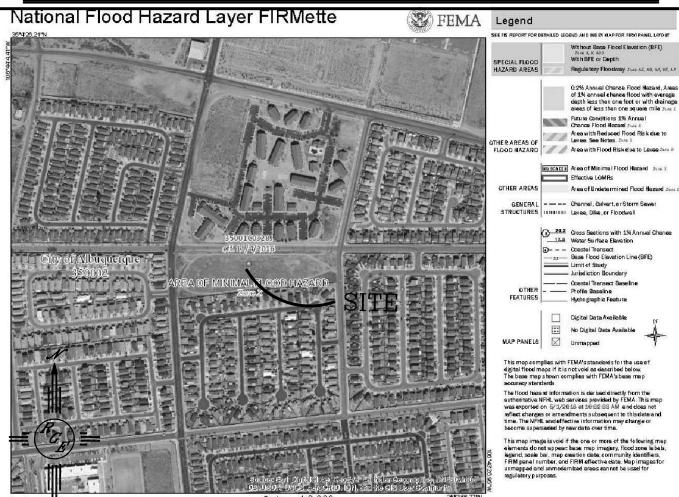
David Soule P.E. No. 14522

TABLE OF CONTENTS

Purpose	3
Introduction	3
Existing Conditions	3
Exhibit A-Vicinity Map	4
Proposed Conditions	5
Summary	5
<u>Appendix</u>	
Excerpts from Master Drainage Plan	A
Site Hydrology	B
Hydraulic calculations	C
Map Site Grading and Drainage Plan	

PURPOSE


The purpose of this report is to provide the Drainage Management Plan for the development of a 5.8 acre multi family project located on Sunset Gardens Road SW between 86th Street and ⁸² Street SW. This plan was prepared in accordance with the City of Albuquerque design regulations, utilizing the City of Albuquerque's Development Process Manual drainage guidelines, and HYDROCAD. This report will demonstrate that the grading does not adversely affect the surrounding properties, nor the upstream or downstream facilities.


INTRODUCTION

The subject of this report, as shown on the Exhibit A, is a 5.8-acre parcel of land located on the south side of Sunset Gardens Road between 86th and 82 streets SW. The legal description of this site is Tract 52, unit 2 Town of Atrisco Grant. As shown on FIRM map35001C0328J, the entire site is located within Flood Zone X. The site has not been developed but is surrounded by fully developed land. The site is in native condition. Due to the upstream construction, the site is not affected by any upland flow other than minor roadway flows adjacent to the site. The site free discharges to the east. The site is located within the Amole Del Norte drainage basin. The site is adjacent to a fully improved storm drain that accounted for the development of this site. The development of the site will require the site to discharge at a rate equal to or less than the fully developed conditions assumed (Basin V-24.63 cfs)for this site in the governing Valhalla drainage report L /9D19,which relevant excerpts can be found in appendix A.

EXISTING CONDITIONS

The site currently does not have structures on it but has been impacted by minor human foot and off road vehicle traffic over the years. The site is not impacted by major upland flows. The surrounding roadway shoulders to drain onto the site. The site currently discharges all of its flow to the East.

FIRM MAP:

1,000

1,500

2.000

PROPOSED CONDITIONS

The proposed improvements consist of a new multi family apartment complex with associated open space and paved parking areas. The lots shall drain from west to east and will be captured by inlets and conveyed to the existing 54" storm drain in Sunset Gardens.

The site consists of 5 onsite basins and one offsite. Basin A contains the south western portion of the site. This basin encompasses 1.02 acres and drains thru several first flush ponds and ultimately discharges 4.24 cfs to a 24" inlet and 18" storm drain that will connect to the existing drain in sunset gardens. Basin B consists of the south western .22 acres of the site. This portion of this site contains the rear portion of some buildings and landscape areas. This basin is below the proposed storm drain connection and will free discharge to 84th street. The construction of the western half of the street will include a singe A inlet that will capture this flow of 0.7 cfs in addition to the roadway flow. Basin C contains .41 acres consisting of the rear portion of several buildings and the landscape area. The flow is captured by a single 12" inlet connected to the new storm drain that will be connected to the existing Sunset Gardens storm drain. Basin D contains .3 acres consisting of the rear portion of several buildings and the landscaping this basin will discharge 0.31 cfs to Sunset Gardens via a sidewalk culvert. The construction of a single A inlet near the intersection of 84th street will capture this flow as well as the flow from the south half of the road that will be constructed. Basin E contains the main portion of the site that encompasses the majority of the buildings and parking lot. This basin generates 10.32 cfs. The flow is captured by a Double A inlet located on the eastern portion of the parking lot. This inlet shall be connected to the existing storm drain in Sunset gardens by a new 24" storm drain.

Basin F contains the southern portion of sunset gardens and the western portion of 86ths that drains to Sunset Gardens. This basin generates 2.70 cfs. This flow is captured by a new single a inlet that drains to the existing storm drain. The site grading contains multiple 1' deep water

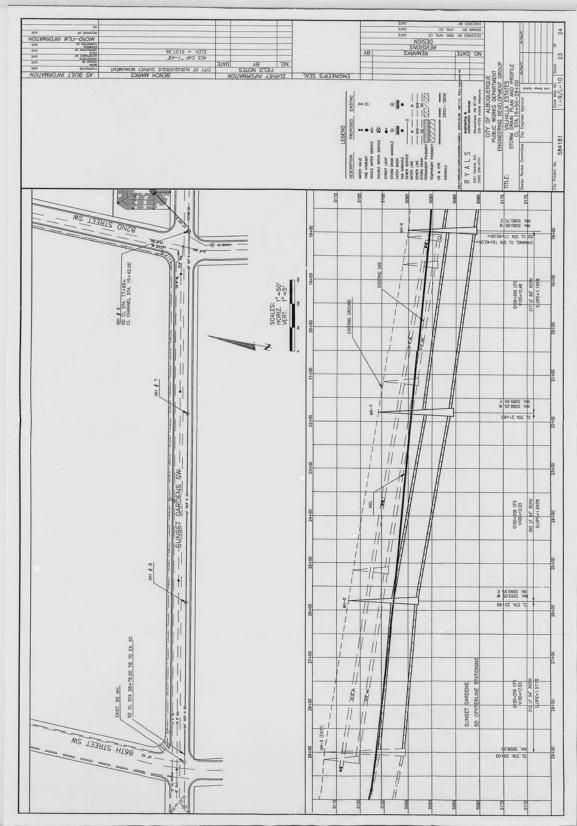
quality ponds that capture 6,840 cubic feet, which exceeds the required volume of 3,058 cubic feet.

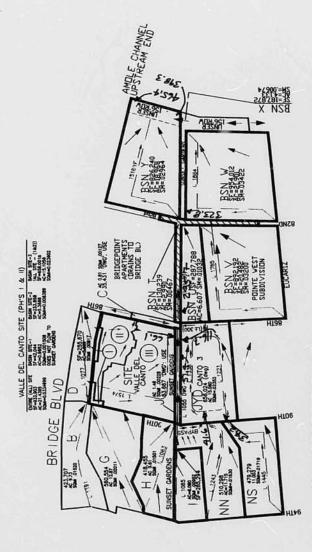
The Basin map and hydraulic calculations is located in appendix A. The pipe and inlet capacities are locate with appendix C. The total flow generated by this development will be 20.18 cfs, which is less than the fully developed assumptions for the storm drain.

SUMMARY AND RECOMMENDATIONS

This project is a development of multi family on the Southwest Mesa. The site is within the Amole Del Norte drainage basin. The site is adjacent to an existing 54" storm drain. The storm drain was designed to accept 24.63 cfs from this site. This site will discharge 20.18 cfs which is less than allowed. The site will manage its first flush requirement by shallow landscape ponds located around the site. The first flush volume is retained onsite. This drainage plan and report conforms to the governing drainage regulations of the City. Since the effected area site encompasses more than 1 acre, a NPDES permit will be required prior to any construction activity.

APPENDIX A


Excerpts from relevant plans



CITY OF ALBUGEROUE

OWG. VC0F77 DATE: 11/20/97 TIME: 22:36 T. GREEN

"FUTURE" BASINS FOR SUNSET/UNSER STORM SEWER
LI BASINS INDIRE DESCRIBED AND SET/UNSER STORM SEWER
LI BASINS IN TUTURE DESCRIBED AND SET/UNSER STORM SET ABRENS IN STORM PROM WEST OF PART SOUTH OF SG, 94H DRAWS SOUTH PRE DESCRIBE TO MARCE NO. SEBRET, AND FOREIT WITH OF SG, 94H DRAWS TO CHIRAL, BRIDGE (TIERA BARTA) SD PER GADES PROMISED THE NOTE OF SET AND SET ABOVE THE TO MARCE HIGH POWE IN 90H I LOT N OF ELARGA SESUAD PER 94D 222. & TOWER JUNEST DUE. FLOW FROGUELY BY STORM DOWN TO BE WED. TO DISTING CONDITIONS OR LESS.

FROGUELY OF LOTH TO SG SO.

SELECTED 100 JR 64 PRAN PRAN SIMON THINS YELL 25× |□

32×

		RY TABLE (ABYN CSGIFOOB.DAT		AMAFC	A Sydrologic M	odel - January,	1994	RUN DAT		/YR) =11/0 0.= PERSE		n
	COMMAND	EYDROGR IDENTIFICAT	APE II	M TO	AREA	PEAK DISCHARGE (CFS)	RUNOFF VOLUME (AC-FT)	RUNOFF (INCRES)		CFS PER ACRE	PAGE	ION
		FOOA.DAT: Can 6-hr storm, v			ardens, lateria	& Foture cond	itions,		un	11	-5-9	7
	+5	o-nt storm, v	ers100 /	5				100	-116	de la	-4.2	EN
	*S AND FLOW *S TO THE HI *S FOR FUTUR *S NORTH TO	IS ROUTED IN	AN EARTH LE CEAN) GARDENS LE AMOLE	EL. SI STORE CHANN	CARDENS STORM D WEL TEROUGE AN EE RECALLED BYD 1 DRAIN CONTINU WEL. A FULLY DE WAS V (POINTE W	UNDEVELOPED BASIN TELEPROPER BASIN	SIS Y	pel	n sad	ll %'s	,015 7	
	*S CONDITIONS *S AND ON ES	GINEERING JUDG	ENT JON		ABOVE ARE I DEVELOPMENT, C							
	COMPUTE NM B		1 -	1	.00952	18.54	.617	1.21467	1.500		AIN6= ER IMP=	2.
	COMPUTE NE I		i -			36.62	1.301	1.62555	1.500		ER IMP	
		PLUS I AT SUNS				68.886	7207				C. C	-15
	ADD BYD		00 16		.02453 TE (ON EOLD):	55.25	1.918	1.46607	1.500	3.519		
	DIVIDE HYD	90.S.PAST.	SG 3	6		8.60	.822	1.46607	1.333	1.278		
		SG.E.OF.	90 AND	4	.01401	46.65	1.096	1.46607	1.500	5.202		
	*S ROUTE MAI	N FLOW EAST DO		ROM 90	TE, FOLLOW IT	TO 86TH ST 46.50	1.093					
		wa		10.74	.00228	5.97	.218	1.46262	1.567	5.185 C	ER IMP	
5	ADD BYD SE A	eace and 110.	00 16	5 3	.01629	51.44	1.311	1.50855	1.567	4.934	en tor-	03
	*S CALC CONT	RIBUTING PART	OF CANT	O SITE	; THEN ADD TO 1		.685					
			FLON >	11.5cf	s TO 86TH (ID-	19.39 7. HOLD FOR LAS	.000 (R3	1.53130	1.500	3.611 P	FK INA:	00
	DIVIDE BYD	52.10.	53 1	2	.00738	11.60	.602	1.53126	1.433	2.457		
		52.10.86		1	.00101	7.79	.083	1.53126	1.500	12.008		
	COMPUTE NA E	YD SITE.I W LEAVING CANT		or en	.02360	54.51	1.927	1.53130	1.500	3.609 P	ER IMP	65
	ADD EYD	SITE.O	DT 16	2 16	.03098	66.11	2,530	1.53128	1.500	3.335		
	*S TOTAL FLO	W SUNSET GARDE	NS WEST	OF 86	IL.							
	ADD BYD COMPUTE NM B					115.19	3.841	1.52344	1.533	3.808		
	ADD HYD		C -		.00127	3.43 11.22	.126	1.85607	1.500	7.676	IN THE	90
	*S COMBINED				NS FROM NORTH &	WEST: HOLD FO	R LATER	1.71177	1.300	1.010		
	ADD BYD	866SG.X	FR 36	1	.04955	125.49	4.049	1.53212	1.533	3.957		
	COMPUTE NM E	YD	<u> </u>	1	.01830	32.97	1.099	1.12653	1.500	2.815 PE		16
		D 90.5.PAST.SG	, ('BELI	' SPI	LL SOUTH OF SUN	SET GONS INTER	SECTION)					30
	ADD BYD	INTO JY				41.57	1.922	1.25044	1.500	2.254		
	ROUTE MCUNGE	300.	00 3	5	NORTH STREET IN	39.88	1.911	1.24326	1.600	2.162 CC	MAR .	
	COMPUTE XM E		· - 28	í	.01719	34,17	1.167	1.27301	1.500	3.106 PE		46
	*S ROUTE SOUT ROUTE MCUNGE			OUGE S	SOUTH STREET IN	33.65	1.167	1.27235	1.567	3.059 CC	2 12. Will	
	BTTL	מא מי	æ 9.		41.57		-30 . 4	5	h 1	2 (% -	L/-	
	4	• 03549		444		7 24.17					1/63/	r
	100	- The same of the same of		ind of the				400,		-77		
	70	D = 41.3	7				2					

O

25×

32× □

							11-5-74	100	. 11.	-1	
WEILE !	Acres on the	FROM	10		PEAK	RUNOFF		TIME TO	CFS	PAGE :	2
CSG IFBO	B.DAT		ID	AREA	DISCHARGE	VOLUME	RUNOFF	PEAK	PER		
		ID						(HOURS)	ACRE	NOTATI	OW
OMMAND I	DENTIFICATION	NO.	NO.	(20 AI)	(CFS)	(AC-FT)	(INCHES)	(Enems)	WERE	MULATI	Ų,
	304.00		1	.04601	72.69	3.078	1.25449	1.600	2.469		
DD EYD						1.922	1.53130	1.500		PER IMP	45 00
OMPUTE NM BYD	JYD		17	.02353	54.35		1.33130	1.500	3.007	tru rut.	03.00
S TOTAL FLOW L	EVALUE TAD (C)	ANTO II	I), INC	LUDING 86TH	ST ROW EAST OF	JYD					
DD EAD	JYD.E.AT.85			.06954		5.000	1.34815	1.533	2.622		
S ROUTE TO 86T	A & SG INTERSE	ECTION,	ASSUME	48" PIPE W/	11 FRICTION S	LOPE			1983 244		2
OUTE MCUNGE	86.S.U7.SG	4	5	.06954	116.55	4.998	1.34764	1.567	2.619	CCODE :	.1
S *AS IF* COMB	INED FLOWS AT	867B #	SUNSET	GARDENS: RE	TRIEVE 'ON-BOL	D' ID:7					
DD BYD	TOT.SGE86			.11909	235.70	9.047	1.42440	1.511	3.092		
5	JULY	23"	41 2	41.23 4							
S FUTURE/FULL				FULL DEVELO							
S ROUTE BOTH TO	DEVELOPMENT										
						9.047	1.42440	1.567	3.072		
DUTE	308.00		5	.11909	234.12					PER IMP	
OMPUTE NM HTD	1		1	.00467	12.22	.446	1.79111	1.500		LEW TULE	03.00
DD EYD	310.00		3	.12376	244.23	9.493	1.43823	1.567	3.083		
DYPUTE NH HYD	U		1	.01032	24.63	.879	1.59825	1.500		PER IMP:	10.00
DD EYD	312.00	16 3	19	.13408	264.83	10.372	1.45039	1.567	3.086		
OMPUTE NM SYD	V		11	.03200	66.62	2.281	1.33643	1.500	3.253	PER IMP:	50.00
DD EYD	SG.AT.82ND		1	.16608	323.76	12.653	1.42843	1.533	3.046		
OUTE	314.00		5	.16608	322.21	12.653	1.42844	1.567	3.031		
	314.00		12	.03422	64.02	2.439	1.33643	1.533		PER IMP:	50 00
OMPUTE NH BYD							1.41271	1.567	2.996	ten rat-	34.4
DD HYD	316.00		3	.20030	384.09	15.092				PER IMP	
OMPUTE NM HYD	I		13	.00674	17.11	.620	1.72616	1.500		LTH TUL:	50.00
DD EYD	SG.AT.UNSER	136 3	4	.20704	398.29	15.712	1.42292	1.567	3.006		
OUTE	318.00	4	5	.20704	399.01	15.712	1.42292	1.567	3.011		
OMPUTE NM BYD	YD		14	.02964	78.24	2.855	1.80576	1.500	4.125	PER IMP=	85.00
S TOTAL UNSER				AT BRIDGE:	FOTURE/FULLY D	EVELOPED					
DD BYD	FUT. TO. AMOLE				465.36	18.567	1.47086	1.533	3.072		
5	(VIII VIIII VIII	*10 2				-	TERROTOR.				
S											
		TW	TERIM		1491	PIN.					
S INTERIM											
S INTERIM: RE-			J, ROUTE	IN DIRT CHA	IN ACROSS BASIS	10.374	10/01/02/02/03	1.600	1 414	CCODE =	
											- 2
	502.00		5	.13408	260.04		1.45076				
	302.00 YE		15	.13408	260.04	.738	1.45076 .46670	1.533		PER IMP	
COMPUTE NM BYD				.02964		.738	.46670	1.533	1.380		.00
OMPUTE NM HYD	YE	•	15	.02964							
OMPUTE NM BYD S ADD BYD		•	15		26.19	.738	.46670	1.533	1.380		
OMPUTE NH BYD S ADD BYD	YE INT.2.AMOLE	156 5	15	.02964	26.19	.738 11.112	.46670	1.533	1.380		
OMPUTE NM HYD S ADD HYD S INTERIM W/ V	INT.2.AMOLE	156 5	15	.02964 .16372	26.19 281.49	.738 11.112	.46670	1.533	1.380		
COMPUTE NM BYD S ADD BYD S S INTERIM W/ V S RE-USE BYD 3	INT.2.AMOLE (POINTE WEST 12 W/ ID=19,	156 5 1 HYD V 1	15 8 W/ ID=11	.02964 .16372 INTERIM 1	26.19 281.49 4/ V (POINTE W	.738 11.112	.46670	1.533	1.380		
COMPUTE NM BYD S ADD BYD S INTERIM W/ V S RE-USE BYD 3 S ROUTE IN DIR	INT. 2. AMOLE (POINTE WEST 12 W/ ID=19, 17 CEAN ACROSS	156 5 HYD V I	8 8 W/ ID=11 Y EXIST	.02964 .16372 INTERIM N	26.19 281.49 4/ V (POINTE WE 8/ ID=15	.738 11.112 ISTU	.46670 1.27260	1.533	1.380		
COMPUTE NM BYD S ADD BYD S S INTERIM W/ V S RE-USE BYD J S ROUTE IN DIR	INT. 2. AMOLE (POINTE WEST 12 W/ ID=19, T CEAN ACROSS 602.00	156 5 HYD V I BASIN 19611	8 W/ ID=11 Y EXIST	.02964 .16372 INTERIM 9	26.19 281.49 // V (POINTE VI I/ ID=15 323.76	.738 11.112 ISTU	.46670 1.27260 1.42843	1.533	1.380 2.686 3.046	PER IMP=	.00
COMPUTE NM EYD S LDD HYD S S S INTERIM W/ W S RE-USE HYD 3 S ROUTE IN DIR LDD HYD ROUTE MCUNGE	YE INT.2.AMOLE (POINTE WEST 12 W/ ID=19, T CEAN ACROSS 602.00 604.00	156 5 BASIN 19611	8 W/ ID=11 Y EXIST	.02964 .16372 INTERIM 1 1, & EYD YE 1 1.16608 .16608	26.19 281.49 4/ V (POINTE VI 1/ ID=15 323.76 320.37	.738 11.112 IST) 12.653 12.643	1.42843 1.42737	1.533 1.600	1.380 2.686 3.046 3.014		.00
OMPUTE NM EYD S DD HYD S S INTERIM W/ W S RE-USE HYD 3 S ROUTE IN DIR DD HYD OUTE MCUNGE	INT. 2. AMOLE (POINTE WEST 12 W/ ID=19, T CEAN ACROSS 602.00	156 5 BASIN 19611	8 W/ ID=11 Y EXIST	.02964 .16372 INTERIM 9	26.19 281.49 // V (POINTE VI I/ ID=15 323.76	.738 11.112 ISTU	.46670 1.27260 1.42843	1.533	1.380 2.686 3.046	PER IMP=	.00
OMPUTE NM EYD S DD HYD S S INTERIM W/ V S RE-USE HYD 3 S ROUTE IN DIR DD HYD OUTE MCUNGE DD HYD	YE INT.2.AMOLE (POINTE WEST 12 W/ ID=19, T CEAN ACROSS 602.00 604.00	156 5 BASIN 19611	8 W/ ID=11 Y EXIST	.02964 .16372 INTERIM 1 1, & EYD YE 1 1.16608 .16608	26.19 281.49 4/ V (POINTE VI 1/ ID=15 323.76 320.37	.738 11.112 IST) 12.653 12.643	1.42843 1.42737	1.533 1.600	1.380 2.686 3.046 3.014	PER IMP=	.00
OMPUTE NM HYD S DD HYD S S INTERIM W/ V S RE-USE HYD J S ROUTE IN DIR DD HYD OUTE MCUNGE DD HYD S	YE INT.2.AMOLE (POINTE WEST 12 W/ ID=19, T CEAN ACROSS 602.00 604.00	156 5 BASIN 19611	8 W/ ID=11 Y EXIST	.02964 .16372 INTERIM 1 1, & EYD YE 1 1.16608 .16608	26.19 281.49 A/ V (POINTE VI A/ ID=15 323.76 320.37	.738 11.112 IST) 12.653 12.643	1.42843 1.42737	1.533 1.600	1.380 2.686 3.046 3.014	PER IMP=	.00
OMPUTE XM BYD S DD BYD S S INTERIM W/ V S RE-USE BYD 3 S ROUTE IN DIR DD BYD OUTE XCUNGE DD BYD S S ALLEY	YE INT.2.AMOLE (POINTE WEST 12 W/ ID=19, T CEAN ACROSS 602.00 604.00 INT.V.2AMOLE	156 5 BYD V 1 BASIN 19611 3 156 3	15 8 W/ ID=11 Y EXIST 3 5 98	.02964 .16372 INTERIM 1 . 6 EVO YE 1 .16608 .16608 .19572	26.19 281.49 27 (POINTE VI 1/ ID:15 323.76 320.37 349.94	11.112 12.653 12.643 13.390	1.42843 1.42737	1.533 1.600	1.380 2.686 3.046 3.014	PER IMP=	.00
OMPUTE SM BYD S DD BYD S S INTERIM M/ V S RE-USE BYD 3 S ROUTE IN DIR DD BYD OUTE MCUNGE DD BYD S S ALLEY	YE INT.2.AMOLE (POINTE WEST 12 W/ ID=19, T CEAN ACROSS 602.00 604.00 INT.V.2AMOLE	156 5 BYD V 1 BASIN 19611 3 156 3	15 8 W/ ID=11 Y EXIST 3 5 98	.02964 .16372 INTERIM 1 . 6 EVO YE 1 .16608 .16608 .19572	26.19 281.49 27 (POINTE VI 1/ ID:15 323.76 320.37 349.94	11.112 12.653 12.643 13.390	1.42843 1.42737	1.533 1.600	1.380 2.686 3.046 3.014	PER IMP=	.00
OMFUTE NM HYD S DD HYD S S INTERIM W/ W S RE-USE HYD 3 S ROUTE IN DIR DD HYD OUTE MUNGE DD HYD S S S S S ALLEY S BASINS B, G,	YE INT.2.AMOLE (POINTE WEST 12 W/ ID=19, T CHAN ACROSS 602.00 604.00 INT.V.2AMOLE	156 5 BASIN 19611 3 156 3	8 W/ ID=11 Y EXIST 3 5 98 BASIN /	.02964 .16372 INTERIN 5 1, 6 EVD YE 8 .16608 .16608 .19572	26.19 281.49 27 (POINTE WI 1/ ID-15 323.76 320.37 349.94	11.112 12.653 12.643 13.390	1.42843 1.42737	1.533 1.600	1.380 2.686 3.046 3.014	PER IMP=	.0
OMPUTE SM BYD S S DUD BYD S S S INTERIM W/ W S RE-USE BYD 3 S ROUTE IN DIR S S S S S S S S S S S S S S S S S S S	YE INT.2.AMOLE (POINTE WEST 12 W ID-19, TY CHAN ACROSS 602.00 604.00 INT.Y.2AMOLE & SITE-I TO IIH ALLEY FLOW	BASIN 19611 3 156 3 ALLEY ALLEY. S FOR	8 W/ ID=11 Y EXIST 3 5 98 BASIN /	.02964 .16372 .16372 .16608 .16608 .16608 .19572	26.19 281.49 // V (POINTE WI // ID=15 323.76 320.37 349.94 ALLEY SOTE INTERIM/FT EXISTING CONDIT	11.112 12.653 12.653 12.643 13.390 OTURE	1.42843 1.42737 1.28279	1.533 1.600 1.533 1.600 1.533	1.380 2.686 3.046 3.014 2.794	PER IMP=	.00
OMPUTE NM HYD S DD HYD S S INTERIM M/ W S RE-USE HYD 3 S ROUTE IN DIR DD HYD OUTE MCUNGE DD HYD S S ALLEY S BASINS 3, G, S FUTURE/INTER OMPUTE NM HYD	YE INT.Z.AMOLE (POINTE WEST 12 W/ ID-19, T CEAN ACROSS 602.00 604.00 INT.Y.ZAMOLE & SITE-I TO IIH ALLEY FLOW B	156 5 BASIN 19611 3 156 3 ALLEY ALLEY. S FOR	8 W/ ID=11 Y EXIST 3 5 98 BASIN / INFO ONI	.02964 .16372 INTERIM N ., & EVD YE N .16608 .16608 .19572 A NOT CONTRIE LY; EOLD TO N	26.19 281.49 4/ Y (POINTE WI 1/ ID-15 323.76 320.37 349.94 ALLEY SOTE INVERIM/FF EXISTING CONDITION 38.30	11.112 12.653 12.643 13.390 DTURE FIONS 1.376	1.42843 1.42737 1.28279	1.533 1.600 1.533 1.600 1.533	3.046 3.014 2.794	PER IMP	76.00
DOMPUTE SM BYD S S S S S S S S S S S S S	YE INT.2.AMOLE (POINTE WEST 12 W/ ID-19, T CHAN ACROSS 602.00 604.00 INT.V.2AMOLE & SITE-1 TO IN ALLEY FLOW G G G G G G G G G G G G G G G G G G G	156 5 BASIN 19611 3 156 3 ALLEY ALLEY	8 W/ ID=11 Y EXIST 3 5 98 BASIN J INFO ONI 1 2	.02964 .16372 INTERIN 1 1, & EYD YE 1 1.6608 .16608 .19572 A NOT CONTRIE VY; BOLD TO 1 .01520	26.19 281,49 4/ V (POINTE WI // ID-15 323.76 320.37 349.94 ALLEY SOTE INTERIM/FI EXISTING CONDIT 38.30 36.62	.738 11.112 12.653 12.643 13.390 OTURE 1.376 1.376 1.301	1.42843 1.42737 1.28279	1.533 1.600 1.533 1.600 1.533	3.046 3.014 2.794 3.937 3.812	PER IMP=	.100
DOMPUTE NM BYD S IND BYD S S INTERIM M/ V S RE-USE BYD 3 S ROUTE IN DIR HOD BYD S S ALLEY S ALLEY S PASING D, G, F DYDRE/INTER ORPUTE NM BYD O	YE INT.2.AMOLE (POINTE WEST 12 W/ ID-19, 17 CEAN ACROSS 602.00 INT.V. ZAMOLE & SITE-1 TO TH ALLEY FLOW B TO. TOP. ALLEY	156 5 BASIN 19611 3 156 3 ALLEY ALLEY ALLEY 16 2	8 8 Y ID=11 Y EXIST 3 5 98 BASIN / INFO ONI	.02964 .16372 INVERTM 9. 1, & BTD TE 10 1.16608 .16608 .19572 3 NOT CONTRIE VY; BOLD TO 10 .01520 .01520 .01520	26.19 281.49 4/ Y (POINTE #1 4/ ID-15 323.76 320.37 349.94 MALLEY BOTE INTERIM/FF EXISTING CONDIT 38.30 36.62 74.92	.738 11.112 12.653 12.643 13.390 PTURE 1.376 1.301 2.677	1.42843 1.42737 1.28279 1.62555 1.66180	1.533 1.600 1.533 1.600 1.533 1.500 1.500	3.046 3.014 2.794 3.937 3.812 3.875	PER IMP- CCODE - PER IMP- PER IMP-	76.00
COMPUTE NM BYD S ADD BYD S INTERIM W/ V S RE-USE BYD 3 S ROUTE IN DIR	YE INT.2.AMOLE (POINTE WEST 12 W/ ID-19, T CEAN ACROSS 604.00 INT.V.2AMOLE & SITE-1 TO IM ALLEY FLOW TO TOP.ALLEY SITE.1	156 5 BASIN 19611 3 156 3 ALLEY ALLEY. S FOR	8 W/ ID=11 Y EXIST 3 5 98 BASIN / INFO ONI 1 2 3	.02964 .16372 [NTERIN 6] .16608 .16608 .19572 .1572 .01507 .01501 .01501 .0201	26.19 281,49 27 V POINTE WI 1/ ID-15 323.76 320.37 349.94 *********************************	.738 11.112 12.653 12.643 13.390 PTURE FIONS 1.376 1.301 2.677 .123	1.42843 1.42737 1.20279 1.69764 1.62555 1.66180	1.533 1.600 1.533 1.600 1.533 1.500 1.500 1.500	3.046 3.014 2.794 3.937 3.812 3.875 3.624	PER IMP	76.00
DOMPUTE NM BYD S IND BYD S S INTERIM M/ V S RE-USE BYD 3 S ROUTE IN DIR HOD BYD S S ALLEY S ALLEY S PASING D, G, F DYDRE/INTER ORPUTE NM BYD O	YE INT.2.AMOLE (POINTE WEST 12 W/ ID-19, 17 CEAN ACROSS 602.00 INT.V. ZAMOLE & SITE-1 TO TH ALLEY FLOW B TO. TOP. ALLEY	156 5 BASIN 19611 3 156 3 ALLEY ALLEY. S FOR	8 W/ ID=11 Y EXIST 3 5 98 BASIN / INFO ONI 1 2 3	.02964 .16372 INVERTM 9. 1, & BTD TE 10 1.16608 .16608 .19572 3 NOT CONTRIE VY; BOLD TO 10 .01520 .01520 .01520	26.19 281.49 4/ Y (POINTE #1 4/ ID-15 323.76 320.37 349.94 MALLEY BOTE INTERIM/FF EXISTING CONDIT 38.30 36.62 74.92	.738 11.112 12.653 12.643 13.390 PTURE 1.376 1.301 2.677	1.42843 1.42737 1.28279 1.62555 1.66180	1.533 1.600 1.533 1.600 1.533 1.500 1.500	3.046 3.014 2.794 3.937 3.812 3.875	PER IMP- CCODE - PER IMP- PER IMP-	.00 76.00 70.00

25× 0

32×**□**

INPUT PILE :	CSGIF10B.DAT								PERSEENG.194	
	**********	FROM	T0	AREA	PEAK DISCHARGE	RUNOFF	RUNOFF	TIME TO PEAK	CFS PAGE PER	: 1
COMMAND	HYDROGRAPH IDENTIFICATION	NO.		(SQ MI)	(CFS)	(AC-FT)	(INCHES)		ACRE NOTAT	ION
	FIOA.DAT: Canto /		t Garde	os, Interia	& Future condi	tions,			11-5-9 9's cano e NN, N:	1
*S 10-yr 6-h	r storm, version	٨					,		11-5-7	1
	IN CONDITIONS, TE	E SUNS	ET GARD	ENS STORM DI	AIN STOPS AT 8	2ad ST	/	0 416	I IMP	
	IS ROUTED IN AN E					IS Y	L	ar	9.5	
	AD OF THE AMOLE (_	18	u-	- NN, N.	•
	E, THE SUNSET GAS						n	TMIS	•	
	ES TO THIS FLOW,						1			
15										
	S EXCEPT BASIN BASED ON CURRENT									
	GINEERING JUDGMEN		6 & DET	ELUPRENT, CO	INNER! DEVELOP	TENT PLANS,				
15	OTHERTING JODGHE									
RAINFALL TY									RAIN6=	1.4
COMPUTE NM H			1	.00952	9.84	.321	.63243	1.500	1.615 PER IMP: 2.284 PER IMP:	
COMPUTE NE I	PLUS I AT SUNSET	CARREN	2	.01501	21.94	.766	.95742	1.500	2.204 PER INF	70.0
ADD EYD	208.00			.02453	31.78	1.088	.83127	1.500	2.024	
	15T 8.6 CFS (ID:				D:4 E ON SUNSI	T GARDENS				
DIAIDE HAD	90.S.PAST.SG	3	6	.01508	8.60	.669	.83127	1.367	.891	
	\$6.E.0F.90		1 0000	.00945	23.18	.419	.83127	1.500	3.835	
ROUTE MOUTE HAL	FLOW EAST DOWN 203.00		M SOTH,	.00945	22.36	.419	.83156	1.567	3.698 CCODE =	
COVERED VY TO	rn 1		i	.00228	3.71	.133	1.09340	1.500	2.541 PER IMP:	
ADD HYD SEM	100 CANT 210.00	14 5	3	.01173	25.41	.552	.88241	1.567	3.386	
	RIBUTING PART OF									
COMPUTE NM H			1	.00839	11.35	.398	.88845	1.500	2.113 PER IMP:	65.0
DIVIDE BYD	ATERBLOCK ==> FLO S2.TO.S3		2	.00839	11.35	.398	.88841	1.500	2.113	
211102 210	\$2.TO.86TH		i	.00000	.00	.000	.00000	033	.000	
COMPUTE NE E	TD SITE.III	•	1	.02360	31.91	1.118	.88845	1.500	2.112 PER IMP:	65.0
	LEAVING CANTO N									
ADD BYD	SITE.OUT SUNSET GARDENS			.03199	41.26	1.516	.88843	1.500	2.113	
ADD EYD	SG.W.OF.86			.04372	66.30	2.068	.88681	1.533	2.370	
COMPUTE ME			i	.00127	2.15	.078	1.14463	1.500	2.651 PER IMP:	90.0
ADD EYD	218.00		3	.00127	2.15	.078	1.14442	1.500	2.651	
	FLOW TO BETH & SU			FROM MORTE 6		2.145	.89409	1.533	2.374	
ADD HYD	86ESG.NEW	28.2	7	.01177	68.35	2.145	.03109	1.533	2.3/4	
COMPUTE NH E	YD NN		1	.01830	19.79	.655	.67082	1.500	1.690 PER IMP:	42.0
S ADD IN BY	90.5.PAST.SG, (
ADD EYD	INTO.JYDN	14 6	3	.03338	28.39	1.323	.74331	1.500	1.329	
*S ROUTE NOR	TH PART OF OFFSIT	E TERO	UGE NOR	TH STREET IN	27.42	1.315	.73832	1,600	1.284 CCODE =	
COMPUTE NE I			1	.03338	20.10	.681	.74294	1.500	1.827 PER IMP:	
	TE PART OF OFFSIT	E TERO							A STATE OF THE STA	
ROUTE MCUNGE	302.00	10	2	.01719	19.12	.675	.73590	1.600	1.738 CCODE =	

											196
		_					11-5	-97	10-40	2	
FILE - CS	G TRIOR P	FROM	10		PEAK	RUNOFF	1000	TIME TO	CFS	PAGE =	2
3HLG	HYDROGRAPH	ID	ID	AREA	DISCHARGE	VOLUME	RUNOFF	PEAK	PER		
DEMAND I	DESTIFICATION	NO.	NO.	(SO MI)	(CFS)	(AC-FT)	(INCHES)	(HOURS)	ACRE	NOTATI	ON
Unnamy 1	DESTITION	nv.		(98 111)	(0.0)	,	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
DD HYD	304.00	26 5	3	.05057	46.55	1.989	.73748	1.600	1.438		
OMPUTE MM HYD			17	.02353	31.81	1.115	.88845	1.500	2.112	PER IMP:	65.0
S TOTAL FLOW L	FAVING JYD (C)	STO II	I). INC		ST ROW EAST OF	JAD					
DD EYD	JYD.E.AT.86			.07410	69.68	3.104	.78541	1.567	1.469		
					18 FRICTION S	LOPE					
OUTE MCUNGE	86.S.OF.SG	4	5	.07410	69.40	3.104	.78533	1.600	1.463	CCODE =	
				GARDENS: RI	TRIEVE 'ON-BOL	D' 1D=7					
DD HYD	TOT.SGE86					5.249	.82641	1.533	1.776		
5	4										
S FUTURE/FULL	DEVELOPMENT		FUTURE	/FULL DEVELO	PHENT						
S ROUTE BOTH T	O 82ND IN SUN	SET GA									
OUTE	308.00		5	.11909	134.17	5.249	.82641	1.567	1.760		
OMPUTE NM HYD	Ī		1	.00467	7.59	.272	1.09340	1.500	2.538	PER IMP:	85.0
DD HYD	310.00		3	.12376	140.42	5.521	.83648	1.567	1.773		
OMPUTE NM HYD	U		1	.01032	14.66	.517	.93969	1.500	2.219	PER IMP:	70.0
DD EYD	312.00		19	.13408	152.60	6.038	.84442	1.567	1.778		
OMPUTE NH HYD	V		11	.03200	36.76	1.254	.73474	1.500	1.795	PER IMP:	50.0
DD EYD	SG.AT.82ND		3	.16608	187.38	7.292	.82329	1.533	1.763		
OUTE	314.00	3	5	.16608	186.17	7.292	.82329	1.567	1.752		
OMPUTE MM HYD	V		12	.03422	35.41	1.341	.73474	1.537	1.617	PER IMP:	50.0
DD EYD	316.00		3	.20030	220.23	8.633	.80816	1.567	1.718		
OMPUTE NM HYD			13	.00674	10.49	.375	1.04216	1.500	2.431	PER IMP:	80.0
DD EYD	SG.AT.UNSER		1	.20704	228.90	9.008	.81577	1.567	1.727		
ROUTE	318.00		5	.20704	230.04	9.008	.81577	1.567	1.736		
OMPUTE NM EYD	YD.		14	.02964	48.72	1.742	1.10226	1.500	2.569	PER IMP=	85.0
S TOTAL HASED					FUTURE/FULLY I						
DD HYD	FUT. TO. AMOLE			.23668	270.23	10.750	.85165	1.567	1.784		
S	- Ultivianovac	110.7									
is											
S INTERIM		18	TERIN		INT	MIN					
S INTERIM: RE-	USE BYD 312 W			IN DIRT CE	AN ACROSS BASII	Y EXIST					
OUTE MOUNGE	502.00			.13408	150.48	6.033	.84373	1.600		CCODE =	
OMPUTE MM HYD	YE		15	.02964	5.10	.142	.08995	1.533	.269	PER IMP:	. (
S			20								
DD HYD	INT.2.AMOLE	154 5	8	.16372	154.77	6.176	.70726	1.600	1.477		
5											
S INTERIM W/					W/ V (POINTE W	EST)_					
S RE-USE HYD :					W/ 1D=15						
S ROUTE IN DI								1200			
IDD HYD	602.00			.16608	187.38	7.292	.82329	1.533			
ROUTE MCUNGE	604.00			.16608	183.87	7.282	.82214	1.600		CCODE =	
DD EYD	INT.V. ZAMULE	156 3	98	.19572	192.46	7.435	.71223	1.533	1.537		
S											
·\$											
S ALLEY		ALLEY	B1618 -		ALLEY .	nempr					
					BUTE INTERIM/F						
					EXISTING CONDI		1 01525	1.500	2 200	PER IMP:	76
COMPUTE MM HYD			1	.01520	23.33	.823	1.01536	1.500		PER IMP	
COMPUTE NA BYD			2	.01501	21.94	.765	.95742	1.500			70.1
DD EYD	70.TOP.ALLEY			.03021	45.27	1.590	.98656				
COMPUTE NH 149	SITE.I		1	.00151	2.05	.072	.88845	1.500		PER IMP:	05.
IND WUN	BOT. ALLEY	16 3	4	.03172	47.32	1.661	.98188	1.500	2.331		
FINISE	DOI: NEED!	48 0									

25×**□**

32×**□**

AHYMO PROGRAM (AHYM0194) - AMAFCA Hydrologic Model - January, 1994 RUN DATE (MON/DAY/YR) = 11/05/1997 START TIME (HR:MIN:SEC) = 12:36:46 USER NO. = PERSEENG. 194 INPUT FILE = CSGIFOOB.DAT

* file (tg386) csgif00a.dat 10-15-96

*C PRINT CODES: 0=ALL; 1=TOTALS ONLY; 2=EVERY 2ND + TOTALS; 3,5,10,20 SIMILAR *C RATING CURVE ID MEGATIVE => COMPUTE BUT NOT PRINT RATING CURVE *C RATING CURVE = MEGATIVE => FLOODPLAIN SLOPE, = POSITIVE => CHANNEL SLOPE *S FILE CSGIFFOA.DAT: Canto / Sunset Gardens, Interim & Future conditions, *S (1)00-yr 6-hr storm, version A

*S FOR INTERIM CONDITIONS, THE SUNSET GARDENS STORM DRAIN STORS AT 82nd ST *S AND FLOW IS ROUTED IN AN EARTE CHANNEL THROUGH AN UNDEVELOPED BASIN Y *S TO THE HEAD OF THE AMOLE CHANNEL. SEE RECALLED HYD 314 AMD BYD

*C FOR INTERIM, FLOW AT 82nd & SUSSET GARDENS --PRIOR TO THE ADDITION OF FLOW *C BASIN V (FOINTE WEST SUBDY)-- IS SAVED FOR LATER RECALL AND ROUTING. *C THE BYDS DIRECTLY FOLLOWING THE UNSAVED BYD 314 DON'T APPLY TO INTERIM

*S FOR FUTURE, THE SUNSET CARDENS STORM DRAIN CONTINUES TO UNSER THEM
*S NORTH TO THE HEAD OF THE ANOLE CHANNEL. A FULLY DEVELOPED BASIN Y
*S CONTRIBUTES TO THIS FLOW, AS DO BASINS V (POINTE WEST), W, & X.

*S ALL BASINS --EXCEPT BASIN Y AS NOTED ABOVE-- ARE IN FUTURE FULLY-DEVELOPED
*S CONDITONS BASED ON CURRENT ZONING & DEVELOPMENT, CURRENT DEVELOPMENT PLANS,
*S AND ON ENGINEERING JUDGHENT.

*C BASIN & CHANNEL ROUTING PARAMETERS REFLECT THE JUDGMENT OF THE ENGINEER, *C AND MAY DIFFER FROM OTHER STUDIES IN THE AREA.

*C REVISION NOTES: BASED ON FILES VCF4100 & SGU100.DAT BY TUCKER GREEN P.E. BASED ON FILES VCT4100 & SCUIDOLONT BY TOCKER CREER P.E.

REVISED 10-15-97 TO REFLECT KEW BASIN BOUNDARIES BASED ON
DISCUSSION WITH THE CITY, THE ENGINEERS FOR SAD 222, AND
DEVELOPERS OF NEARBY PROFERTIES, ESPECIALLY BASINS V & W.
IN PARTICULAR: (1) BASIN M (S OF SUNSET CARDENS, BETWEEN
94TH & 94TH 15 REMOVED FROM INTERIN & FOUTHE CONDITION CASES
BY PROPOSED CONSTRUCTION OF 94TH ST; AND (2) THE BIGS FOINT
IN 86 ST IS MOVED NORTH TO THE SOUTH PROPERTY LINE OF THE CANTO III SITE (BASIN JYD).

* RAINFALLS PER ALBUQUERQUE NM DPM - COMMENT OUT TROSE TRAT DON'T APPLY

**TYPE 1 IS 6-ER STORM PER NOAA ATLAS 2 W PEAK INTENSITY @ 1.4 ERS (EQ C1-C5)

**FOR 6-ER USE DT = 0.033333 ER = 2 MISUNES

**TYPE 2 IS 24-ER STORM PER NOAA ATLAS 2 W PEAK INTENSITY @ 1.4 ERS (EQ C1-C6)

**FOR 24-ER USE DT = 0.0500 ER = 5 MINUTES

**BAIN QUARTER = 0.0 EXCEPT FOR TYPE 3 (6-ER PMP: SEE ARTHO MANUAL)

C

C

RAIMFALL

PAINFALL AMOUNTS, INCHES
BUNDBED TYPE: 2 PAIN QUARTER: 0.0 RAIN ONE: 2.23
RAIN SIX: 2.95 RAIN DAY: 3.76 DT: .033333 ER
BUNDBED TYPE: 1 0.0 1.90 2.22 2.67 0.033333 · ZAINFALL

COMPUTED 6-BOUR BAINFALL DISTRIBUTION BASED ON MOAA ATLAS 2 - PEAR AT 1.40 MP.
DT = .033333 BOURS END TIME = 5.999940 BOURS
.0000 .0015 .0030 .0046 .0062 .0073 .0096
.0113 .0130 .0149 .0157 .0186 .0206 .0226

25×

```
.0246
.0411
.0627
.1291
                .0268
.0438
.0665
.1735
                           .0290 .0312
.0466 .0496
.0704 .0757
.2373 .3244
                                                     .0526
                                                                 .0558
                                                                            .0592
                                                     .0813
                                                                 .0873
    .9881 1.1931 1.2789 1.3514 1.4159 1.4745 1.5285
.5786 1.6255 1.6694 1.7107 1.7497 1.7865 1.8214
.8544 1.8857 1.9154 1.9436 1.9704 1.9765 1.9822
  1.8544
  1.9876
             1.9928
                          1.9977 2.0025 2.0070 2.0114 2.0156
2.0273 2.0310 2.0346 2.0381 2.0415
```

* RAINFALL TEMPEAR TYPE= 1 0.0 1.23 1.48 1.78 0.033333

COMPUTE KM BYD ID= 1 BTD= 1 DA=0.00952 SQ MI PER A= 12 B= 25 C= 24 D= 38 TP= -0.13333 BRS RAIK= -1

K = .072665BR TF = .133330BR K/TF RATIO = .545000 SEAPE CONSTANT, N = 7.106420 UNIT PERAK = 144.279 CFS UNIT VOLUME = .9985 B = .526.28 PE0 = 1.9000 AREA = .003618 SQ MI IA = .10000 INCEES INF = .04000 INCEES PER BOUR RUNOFF CONFUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER MITBOD - DT = .033333

E = .127510ER TP = .133330ER K/TP RATIO = .956348 SEAFE CONSTANT, H = 3.695043
UNIT PEAK = 14.799 CPS UNIT VOLUME = .9993 B = 334.30 P60 = 1.9000
AREA = .005902 SQ MI IA = .47097 INCRES INF = 1.16071 INCRES PER HOUR
RUNOFF COMPUTER BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .033333

PRINT SYD ID: 1 CODE: 1

0

0

HYDROGRAPH FROM AREA I

RUNOFF VOLUME = 1.21467 INCRES = .6167 ACRE-FEET
FEAX DISCRARGE RATE = 18.64 CFS AT 1.500 BOURS BASIN AREA = .0095 SQ. MI.

...... COMPUTE NM NTO ID= 2 NTO= 8 DA=0.01501 SQ MI PER A= 0 B= 20 C= 10 D= 70 TP= -0.13333 NRS RAIN= -1

K = .072655ER TP = .133330ER K/TP RATIO = .545000 SEAPE COMSTANT, N = 7.106420
UNIT PEAK = 41.473 CPS UNIT VOLUME = .9991 B = 526.28 P60 = 1,9000
AREA = .010507 SQ MI IA = .10000 INCHES INF = .04000 INCHES PER BOUR
RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .033333

25×

32× 🛘

0

K = .122603BR TP = .133330BR K/TP RATIO = .919546 SEAPE CONSTANT, N = 3.849372 UNIT FEAK = 11.652 CFS UNIT VOLUME = .9992 B = .345.00 P60 = 1.9000 AREA = .004503 50 HI IA = .45000 INCHES INF = 1.11000 INCHES PER BOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METROD - DT = .033333

ID: 2 CODE: 1

HYDROGRAPH FROM AREA H

RUNOFF VOLUME : 1.62555 INCRES : 1.3013 ACRE-FEET
PEAK DISCEARGE RATE : 36.62 CFS AT 1.500 BOURS BASIN AREA : .0150 SQ. MI.

+S E PLUS E PLUS I AT SURSET GARDENS & 90TE FOLLOWS
ADD HYD ID 00T: 3 HYD: 208 IDIN I: 1 IDIN II: 2
PRINT HYD ID: 3 CODE: 1

PARTIAL HYDROGRAPH 208.00

RUNOFF VOLUME = 1.46607 INCRES = 1.9180 ACRE-FEET
PEAK DISCRARGE RATE = 55.25 CFS AT 1.500 BOURS BASIN AREA = .0245 SQ. MI.

EYDROGRAPH FROM AREA SG.E.OF.90

RUNOFF VOLUME : 1.46607 INCHES : 1.0956 ACRE-FEET
PEAK DISCHARGE RATE : 46.65 CFS AT 1.500 BOURS BASIN AREA : .0140 SQ. HI.

ID= 6 CODE= 1

0

0

EYDROGRAPH FROM AREA 90.S.PAST.SG

RUNDFF VOLUME : 1.46607 INCRES : .8224 ACRE-FEET
PEAK DISCRARGE RATE : 8.60 CFS AT 1.333 BOURS BASIN AREA : .0105 SQ. MI.

*S ROUTE MAIN FLOW EAST DOWN SG FROM 90TB, FOLLOW IT TO 86TB ST

*C APPROX AS 40" F-F STREET, ASSUME APF 2.15% SLOPE

*C ASSUME AS IF BOTH SIDES PAVED, EST a S .017

COMPUTE RATING CURVE CID: -1 VS NO: 1 KO SEGS FOR MAINING n: 1

ELMIN: 0 ELMANA: 4 FT CESLP: .0235 FFSLP: .0235 FT/FT

n .017 DIST 40

DIST ELEV DIST ELEV DIST ELEV DIST ELEV

0 4 .01 0 20 .40 39.99 0

40 4

ROUTE NCUMEE ID: 5 ETD: 209 INFLOW ETD ID: 4 DT: 0.0 ER

LENGTH: 1055 BSUBRCH: 0 SLOPE: .0235

25×

32× 🔲

0000 0000 0808

MATCODE: 0 REGCODE: 0 CCODE: 0 Inflow ID end: 63 Max Number:600

dt = .0333 hr q0 = 23.33 cfs ck0 = 5.46 fps nlen = 4 dlen = 263.75

PARTIAL HYDROGRAPH 209.00

RUNOFF VOLUME : 1.46262 INCRES : 1.0931 ACRE-FEET
PEAK DISCEARGE RATE : 46.50 CFS AT 1.567 BOURS BASIN AREA : .0140 SQ. HI.

COMPUTE NM STD ID=1 STD=J DA=0.00228 SQ M1
PER A= 0 B=15 C= D=65
TP=-0.13333 SPS RAIN=-1

K = .130790ER TP = .133330ER K/TP RATIO = .980950 SHAPE CONSTANT, N = 3.599935
UNIT PEAK = .84019 CPS UNIT VOLUME = .9837 B = 327.55 F30 = 1.9000
AREA = .000342 SQ M I IA = .50000 INCRES INF = 1.25000 INCRES PIR HOUR
RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METROD - DT = .033333

ID: 1 CODE: 1

C

C

O

SYDROGRAPS FROM AREA J

RUNOFF VOLUME = 1.79112 INCRES = .2178 ACRE-FEET
FEAK DISCHARGE RATE = 5.97 CFS AT 1.500 HOURS BASIN AREA = .0023 SQ. MI.

25×

32× 🔲

0000 0000 0809

ADD EYD ID OUT: 3 BYD: 210 IDIN I: 1 IDIN II: 5
PRINT BYD ID: 3 CODE: 1

PARTIAL EYDROGRAPE 210.00

RUNOFF VOLUME : 1.50855 INCRES : 1.3108 ACRE-FEET
PEAK DISCRARGE RATE : 51.44 CFS AT 1.567 HOURS BASIN AREA : .0163 SQ. MI.

*S CALC CONTRIBUTING PART OF CANTO SITE; THEN ADD TO BYD 210
COMPUTE MR BTD ID: 1 BUT-SITE.II DA:0.00839 SQ MI
PER A: 0 B: 35 C: 0 D: 65
TP: -0.13333 BRS RAIN: -1

K = .072655ER TP = .133330ER K/TP RATIO = .545000 SEAPE CONSTANT, N = 7.106420
UNIT PEAK = 21.526 CFS UNIT VOLUME = .9888 B = 526.28 P60 = 1,9000
AREA = .005454 SQ MI IA = .10000 INCRES INF = .04000 INCRES PER BOUR
RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION BURBER MITEOD - DT = .033333

E = .130790ER TP = .133330ER K/TP RATIO = .980950 SEAPE CONSTANT, N = 3.599935
UNIT PEAR = 7.2141 CPS UNIT VOLUME = .9985 B = 327.55 P60 = 1,9000
AREA = .002937 SQ MI IA = .50000 INCHES INF = 1.25000 INCHES PER HOUR
RUNOFF CONFUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METROD - DT = .033333

FRINT HYD ID= 1 CODE: 5

0

0

EYDROGRAPH FROM AREA SITE.II

TIME	FLOW								
.000	.0	1.500	19.4	3.000	.2	4.500	.1	6.000	.1
.167	.0	1.667	10.0	3.167	.2	4.667	.1	6.167	.0
.333	.0	1.833	5.9	3.333	.1	4.833	.1	6.333	.0
.500	.0	2.000	4.2	3.500	.1	5.000	.1	6.500	.0
.667	.0	2.167	2.0	3.667	.1	5.167	.1	6.667	.0
.833	.0	2.333	.9	3.833	.1	5.333	.1	6.833	.0
1.000	.0	2.500	.6	4.000	.1	5.500	.1		
1.167	.0	2.667	.4	4.167	.1	5.667	.1		
1 333	4.1	2 811	1	4 222	1	5 822	1		

RUMOFF VOLUME : 1.53130 INCRES : .6852 ACRE-FERT
FRAK DISCRARGE RAYE : 19.39 CFS AT 1.500 BOORS BASIF AREA : .0024 SQ. MI.

EYDROGRAPH FROM AREA \$2.70.53

TIME	FLOW	TIME	FLOW	TIME	FLOW	TIME	FLOW	TIME	FLOW
	res	END	CFS	HRS	CFS	HRS	CFS	IRS	CFS
.000	.0	1.500	11.6	3.000	.2	4.500	.1	6.000	.1
.167	.0	1.667	10.0	3.167	.2	4.667	.1	6.167	.0
.333	.0	1.833	5.9	3.333	.1	4.833	.1	6.333	.0

25×

32× 🛘

8888 8888 88 IB

.500 .0 2.000 4.2 3.500 .1 5.000 .1 6.500 .0 .667 .0 2.167 2.0 3.667 .1 5.167 .1 6.667 .0 .833 .0 2.333 .9 3.833 .1 5.333 .1 6.833 .0 1.000 .0 2.500 .6 4.000 .1 5.500 .1 1.167 .0 2.667 .4 4.167 .1 5.667 .1 1.333 4.8 2.833 .3 4.333 .1 5.833 .1

RUNOFF VOLUME : 1.53126 INCHES : .6024 ACRE-FEET
FEAK DISCRARGE RATE : 11.60 CFS AT 1.433 BOURS BASIN AREA : .0074 SQ. MI.

PRINT HYD ID= 7 CODE= 5

BYDROGRAPH FROM AREA S2.TO.86TH

TIME	FLOW	TIME	FLOW	TIME	FLOW	TIME	FLOW	TIME	FLOW
HRS	CFS	ERS	CFS	ERS	CFS	ERS	CFS	ERS	CFS
.000	.0	.333	.0	.667	.0	1.000	.0	1.333	.0
.167	.0	.500	.0	.833	.0	1.167	.0	1.500	7.8

RUNOFF VOLUME = 1.53126 INCHES = .0828 ACME-FEET
PEAK DISCHARGE RAYE = 7.79 CFS AT 1.500 BOURS BASIN AREA = .0010 SQ. MI.

COMPUTE BM BYD ID: 1 BYD:SITE.III DA:0.02360 SQ MI

ID= 1 BYD=SITE.III DA=0.02360 SQ MI PER A= 0 B= 35 C= 0 D= 65 TP= -0.13333 BRS RAIN= -1

K = .072665ER TP = .133330ER K/TP RATIO = .545000 SHAPE CONSTANT, N = 7.106420 UNIT PEAK = 60.549 CPS UNIT VOLUME = .9992 B = .526.28 P50 = 1,9000 AREA = .015340 SQ MI IA = .10000 INCHES INF = .04600 INCHES PER BOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METIOD - DT = .033333

K = .130790ER TP = .133330ER K/TP RATIO = .980950 SEAFE CONSTANT, N = 3.599955 UNIT FEAR = 20.292 CFS UNIT VOLUME = .9997 B = 327.55 F60 = 1.9000 AREA = .008265 SQ MI IA = .50000 INCRES INF = 1.25000 INCRES PER BOUR RUIOFF COMPUTED BY INITIAL ABSTRACTION/INFILITATION NUMBER METROD - DT = .033333

PRINT HYD ID= 1 CODE= 2

HYDROGRAPH FROM AREA SITE.III TIME HRS .000 .067 .133 FLOW CPS 49.5 52.4 38.6 TIME HRS 1.467 1.533 1.600 1.667 1.733 TIME BRS 2.933 3.000 3.067 TIME ERS 4.400 4.467 4.533 TIME HRS 5.867 5.933 6.000 6.067 6.133 FLOW CFS .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .200 .267 .333 .400 .467 .533 .600 .667 .733 .800 .867 .933 1.000 28.1 22.1 4.600 3.200 6.200 1.800 1.867 1.933 2.000 2.067 2.133 2.200 2.267 2.333 2.400 2.467 2.533 18.2 15.5 13.4 11.8 10.1 6.9 4.5 3.3 2.7 2.2 1.8 1.5 3.267 3.333 3.400 3.467 3.533 3.600 3.667 3.733 3.800 3.867 3.933 4.000 6.267 6.333 6.400 6.467 6.533 6.600 6.667 6.733 4.867 4.933 5.000 5.067 5.133 5.200 5.333 5.400 5.467 6.800

									£3:
1.133	.0	2.600	1.3	4.067	.2	5.533	.3	7,000	.0
1.200	.6	2.667	1.1	4.133	.2	5,600	.3	7.067	.0
1.267	5.0	2.733	.9	4.200	.2	5.667	.3		
1.333	13.6	2.800	.8	4.267	.2	5.733	.3		
1.400	28.8	2.867	.7	4.333	.2	5.800	.3		
RUNOFF VO	LUME :	1.53130 INCHES		1.9274 ACI	RE-FEET				
PEAK DISC	BARGE RATE	: 54.51 CFS	AT	1.500 EOURS	BASIN AREA =	.0236 SQ. MI.			

** TOTAL FLOW LEAVING CANTO MORTE OF SUMSET GAMBERS
ADD BYD 1D OUT= 16 ETD-SITE.OUT IDIN I= 1 IDIN II= 2
PRINT EYD 1D= 16 CODE= 1

EYDROGRAPE FROM AREA SITE.OUT

RUNOFF VOLUME : 1.53128 INCRES : 2.5298 ACRE-FEET
FEAK DISCHARGE RATE : 66.11 CFS AT 1.500 BOURS BASIN AREA : .0310 SQ. MI.

"S TOTAL FLOW SURSET GARDERS WEST OF 86TE ADD BYD ID OUT-5 BYD-SG.W.OF.86 IDIN I-3 IDIN II-16 FRIRT BYD ID-5 CODE-1

HYDROGRAPH FROM AREA SG.W.OF.86

RUNOFF VOLUME : 1.52344 INCRES : 3.8406 ACRE-FRET
PEAK DISCRARGE RAYE : 115.19 CFS AT 1.533 HOURS BASIN AREA : .0473 SQ. MI.

COMPUTE EN ETD ID= 1 ETD= C DA=0.00127 SQ MI PER A= 0 B= 10 C= 0 0= 90 TF- -0.13333 BHS RAIN= -1

K = .072655ER TF = .133330ER K/TP RATIO = .545000 SHAPE CONSTANT, N = 7.106420 UNIT PEAR = 4.5116 CFS UNIT VOLUME = .9969 B = 526.28 P60 = 1.9000 AREA = .001143 SQ MI IA = .10000 IKCES INF = .04000 IECES FEE BOUR BUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .033333

E = .130790BF TP = .133330BF K/TP RATIO = .980950 SEAPE CONSTANT, N = 3.599935
UNIT PEAR = .31200 CFS UNIT VOLUME = .9579 B = .277.55 P40 = 1.9900
AREA = .000127 SQN II 1A = .50000 INCERS INF = 1.25000 INCERS PER BOUR
BUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METROD = DT = .033333

PRINT MYD ID: 1 CODE: 1

0

0

BYDROGRAPH FROM AREA C

RUNOFF VOLUME : 1.85607 INCRES : .1257 ACRE-FEET
PEAK DISCRARGE RATE : 3.43 CFS AT 1.500 BOURS BASIN AREA : .0013 SQ. MI.

25× 🛘

32× □

0000 0000 08 14

*C ADD SPILL FROM S2 TO ROAD FLOW IN 85TE N OF SURSET GARDENS
ADD HTO ID COT: 3 NYD: 218 IDIN I: 1 IDIN II: 7
FRINT NYD ID: 3 CONE: 1

PARTIAL HYDROGRAPH 218.00

RUNOFF VOLUME = 1.71179 INCHES : .2085 ACRE-FEET
FEAR DISCRARGE RATE = 11.22 CFS AT 1.500 BOURS BASIN AREA : .0023 SQ. MI.

*S COMBINED FLOW TO 86TE & SURSET CARDENS FROM MORTH & WEST; HOLD FOR LATER ADD BYD 1D OUT: 7 BYD: 866SC.NEW 1DIN 1: 3 1DIN 11: 5 PRINT BYD 1D: 7 CODE: 1

HYDROGREPH FROM AREA 8665G. NEW

RUNOFF VOLUME = 1.53212 INCRES = 4.0491 ACRE-FEET PEAK DISCRARGE RAYE = 125.49 CFS AT 1.533 BOURS BASIN AREA = .0496 SQ. MI.

*S
*C BASIN NN (N NOTED): CURRENTLY PARTLY DEVELOPED
COMPUTE NN HYD

LD: 1 HYD: NN DA:0.01830 SQ NI
PER A: 28.0 B: 20.2 C: 15.4 D: 36.4

TP: -0.13333 ERS RAIN: -1

K = .072655ER TP = .133330ER K/TP EATIO = .545000 SEAFE CONSTANT, N = 7.106420 UNIT PEAK = .26.293 CPS UNIT VOLUME = .9869 B = .526.28 F60 = 1.9000 AREA = .006661 SQ MI IA = .10000 INCRES IKF = .04000 INCRES FER BOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METROD - DT = .033333

K = .139008ER TP = .133330ER K/TP RATIO = 1.042583 SHAPE CONSTANT, N = 3.386093
UNIT PEAK = 27.229 CFS UNIT VOLUME = .9996 B = 311.92 P60 = 1.9000
AREA = .011639 SQ MI IA = .52972 INCHES INF = 1.33321 INCHES PER BOUR
BUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METEOD - DT = .033333

PRINT HYD ID= 1 CODE= 0

				PH FROM AREA	aa .				
ERS .000 .033 .067	FLOW CFS .0 .0 .0	TIME HRS 1.400 1.433 1.467 1.500	FLOW CFS 15.4 22.7 29.5 33.0	TIME ERS 2.800 2.833 2.867 2.900	FLOW CPS .5 .5 .4	TIME HRS 4.200 4.233 4.267 4.300	FLOW CFS .1 .1 .1	TIME BRS 5.600 5.633 5.667 5.700	FLOW CPS .1 .1
.133 .167 .200 .233 .267 .300 .333 .367	.0 .0 .0 .0	1.533 1.567 1.600 1.633 1.667 1.700 1.733 1.767	32.2 28.6 24.4 20.7 17.6 15.1 13.1 11.5	2.933 2.967 3.000 3.033 3.067 3.100 3.133 3.167	.4 .3 .3 .3 .3 .3 .3 .3 .3 .3	4.333 4.367 4.400 4.423 4.467 4.500 4.533 4.567	.1 .1 .1 .1 .1 .1	5.733 5.767 5.800 5.833 5.867 5.900 5.933 5.967	.1 .1 .1 .1 .1 .1

25× 🛘

									0.00
.433	.0	1.833	9.0	3.233	.2	4.633	.1	6.033	.1
.467	.0	1.867	8.2	3.267	.2	4.667	.1	6.067	.1
.500	.0	1.900	7.5	3.300	.2	4.700	.1	6.100	.1
.533	.0	1.933	6.9	3.333	.2	4.733	.1	6.133	.1
.567	.0	1.967	6.4	3.367	.2	4.767	.1	6.167	.1
.567 .600	.0	2.000	6.0	3.400	.2	4.800	.1	6.200	.0
.633	.0	2.033	5.6	3.433	.2	4.833	.1	6.233	.0
.667	.0	2.067	5.1	3.467	.2	4.857	.1	6.267	.0
.700	.0	2.100	4.4	3.500	.2	4.900	.1	6.300	.0 .0 .0
.733	.0	2.133	3.6	3.533	.2	4.933	.1	6.333	.0
.767	.0	2.167	3.0	3.567	.1	4.967	.1	6.367	.0
.800	.0	2.200	2.5	3.600	1	5.000	.1	6.400	.0
.833	.0	2.233	2.1	3.633	.1	5.033	.1	6.433	.0
.867	.0	2.267	1.9	3.667	ï	5.067	ï.i	6.467	.0
.900	.0	2.300	1.7	3.700	.1	5.100	.1	6.500	.0
.933	.0	2.333	1.5	3.733	ï	5.133	i	6.533	.0
.967	.0	2.367	1.4	3.767	ii.	5.167	.1	6.567	.0
1.000	.0		1.3	3.800	ii.		.1		.0
1.000	.0	2.400			.1	5.200	**	6.600	.0
1.033	.0	2.433	1.2	3.833		5.233	.1	6.633	.0
1.067	.0	2.467	1.1	3.867	.1	5.267	.1	6.667	.0
1.100	.0	2.500	1.0	3.900	.1	5.300	.1	6.700	.0
1.133	.0	2.533	.9	3.933	.1	5.333	.1	6.733	.0
1.167	.0	2.567	.8	3.967	.1	5.367	.1	6.767	.0
1.200	.3	2.600	.8	4.000	.1	5.400	.1	5.800	.0
1.233	1.0	2.633	.1	4.033	.1	5.433	.1	6.833	.0
1.267	2.2	2.667	.1	4.067	.1	5.467	.1	6.867	.0
1.300	3.8	2.700	.6	4.100	.1	5.500	.1	6.900	.0
1.333	6.0	2.733	.6	4.133	.1	5.533	.1		
1.367	9.7	2.767	.5	4.167	.1	5.567	.1		

RUNOFF VOLUME = 1.12653 INCHES = 1.0995 ACRE-FEET
PEAK DISCRARGE RAYE = 32.97 CTS AT 1.500 BOURS BASIN AREA = .0183 SQ. MI.

*S ADD IN BTD 90.S.PAST.SG, ("BELD" SPILL SOUTH OF SUNSET GONS INTERSECTION)
ADD BTD 10 OUT= 3 BTD= INTO.3YDN IDIN I= 1 IDIN II= 6
PRINT BYD 1D= 3 CODE= 1

EYDROGRAPE FROM AREA INTO.JYDE

RUNOFF VOLUME : 1.25044 INCHES : 1.9218 ACRE-FEET
FEAK DISCHARGE RATE : 41.57 CFS AT 1.500 BOURS BASIN AREA : .0288 SQ. MI.

*S BOUTE MORTE PART OF OFFSITE TEROUGH MORTE STREET IN JTD

*C APPROX AS 28 *F-F STREET, ASSUME APE 1.8\$ SLOPE

*C ASSUME PAYED ROAD, EST n AS .017

COMPUTE RATING CURVE CID: -1 VS NO: 1 NO SEGS FOR MANNING n: 1

ELINE 0 LARAL: 4 FT CHSLP: .018 FFSLP: .018 FFSLP: .018

0 1017 DIST 28

DIST ELEV DIST ELEV DIST ELEV DIST ELEV DIST ELEV 0 4 .01 0 14 .28 27.99 0 28 4

ROUTE MCUNGE 1D: 5 NTD: 300 INFLOW NTD ID: 3 DT: 0.0 NR

LENGTH: 1338 NSUBRCE: 0 SLOPE: .018

MATCODE: 0 RECCODE: 0 CCODE: 0

dt = .0333 hr q0 = 20.78 cfs ck0 = 5.86 fps

25× □

nlen = 4 dlen = 334.50

Route using Maidment procedure: CO, C1 & C2 > 0 NT EYD ID: 5 CODE: 1

SYDROGRAPH FROM AREA 300.00

RUNOFF VOLUME = 1.24326 INCRES = 1.9108 ACRE-FEET
FEAK DISCRARGE RATE = 39.88 CFS AT 1.600 BOURS BASIN AREA = .0288 SQ. MI.

K: .072665ER TP: .13333GER K/TP RATIO: .545000 SEAPE CONSTANT, N: 7.106420 UNIT PEAK: = 31.619 CPS UNIT VOLUME: .9990 B: 526.28 PF0 = 1.9000 AREA = .008011 SQ MI IA: .10000 INCHES INF: .04000 INCHES FER BOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILITARION NUMBER METROD - DT: .033333

K = .136383ER TP = .133330ER K/TP RATIO = 1.022896 SEAFE CONSTANT, N = 3.450895 Usit peak = 21.806 CPS ubit volume = .9996 B = 316.73 PFG = 1.9000 AREA = .009179 SQ M I IA = .52022 ISCEES INF = 1.30663 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER NETHOD - DT = .033333

PRINT HYD ID: 1 CODE: 1

O

EYDROGRAPH FROM AREA MS

RUMOFF VOLUME = 1.27301 INCRES = 1.1671 ACRE-FEET
PEAK DISCRARGE RATE = 34.17 CFS AT 1.500 BOURS BASIN AREA = .0172 SQ. MI.

25× □

PUNOFF VOLUME : 1.27335 INCRES : 1.1674 ACRE-FEET
PEAK DISCRARGE RATE : 33.65 CFS AT 1.567 BOURS BASIK AREA : .0172 SQ. H1.

*C ADD NOTE & SOUTE BOUTED OFFSITE, THEM COMPUTE & ADD JTD
ADD BTO ID 00T= 3 BTD= 304 IDIN I= 2 IDIN II= 5
PRINT BTD ID= 3 CODE= 1

0

0

0

EYDROGRAPE FROM AREA 304.00

RUNOFF VOLUME : 1.25449 INCHES : 3.0782 ACRE-FEET
FEAK DISCEARGE RATE : 72.69 CFS AT 1.600 BOURS BASIN AREA : .0460 SQ. HI.

25×

32× 🛘

0

COMPUTE HM BYD JPD DA-0.02353 SQ MI PER A= 0 B= 35 C= 0 D= 65 TP= -0.13333 BRS RAIE= -1

E : .072655BR TP : .133330BR K/TP RATIO : .545000 SHAPE CONSTANT, N : 7.106420
UNIT PEAK : 60.370 CPS UNIT VOLUME : .9952 B : 526.28 P60 : 1,5000
AREA : .015295 SQ NI IA : .10000 INCHES INF : .04000 INCHES PER BOUR
RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METBOD - DT : .033333

K = .130790BR TP = .133330RR K/TP RATIO = .980950 SEAPE CONSTANT, N = 3.599935
UNIT PEAK = 20.232 CFS UNIT VOLUME = .9997 B = .227.55 P60 = 1,9000
AREA = .008236 SQ MI 1A = .50000 INCRES INF = 1.25000 INCRES PER BOUR
RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METEOD - DT = .033333

PRINT MYD ID: 17 CODE: 2

o

0

HYDROGRAPH	FROM	AREA	JYD
------------	------	------	-----

TIME	FLOW CFS	TIME	FLOW	TIME	FLOW	TIME	FLOW	TIME	FLOW
.000					CFS	ERS	CFS	ERS	CFS
	.0	1.467	49.3	2.933	.6	4.400	.2	5.867	.3
.067	.0	1.533	52.2	3.000	.6	4.467	.2	5.933	.3
.133	.0	1.600	38.5	3.067	.5	4.533	.2	6.000	.3
.200	.0	1.667	28.0	3.133	.5	4.600	.2	6.067	1
.267	.0	1.733	22.0	3.200	.4	4.667	.2	6.133	.3 .3 .3
.333	.0	1.800	18.2	3.267	.4	4.733	.2	6.200	**
.400	.0	1.867	15.4	3.333	.4	4.800	.2	6.267	.1
.467	.0	1.933	13.4	3.400	.3	4.867	.2		.0
.533	.0	2.000	11.8	3.467	.3			6.333	.0
.600	.0	2.067			.,	4.933	.2	6.400	.0
	.0		10.1	3.533	.3	5.000	.2	6.467	.0
.667	.0	2.133	6.9	3.600	.3	5.067	.2	6.533	.0
.733	.0	2.200	4.5	3.667	.3	5.133	.2	6.600	.0
.800	.0	2.267	3.3	3.733	.3	5.200	.2	6.667	.0
-867	.0	2.333	2.6	3.800	.3	5.267	.3	6.733	.0
.933	.0	2.400	2.2	3.867	.3	5.333	.3	6.800	.0
1.000	.0	2.467	1.8	3.933	,	5.400	1	6.867	.0
1.067	.0	2.533	1.5	4.000	.2	5.467	.3	6.933	.,
1.133	.0	2.600	1.3	4.067			.,		.0
1.200	.6	2.667	1.1		.2	5.533	.3	7.000	.0
1.267	5.0			4.133		5.600	.3	7.067	.0
		2.733	.9	4.200	.2	5.667	.3		
1.333	13.6	2.800	.8	4.267	.2	5.733	.3		
1.400	28.8	2.867	.7	4.333	.2	5.800	.3		

RUMOFF VOLUME : 1.53130 INCHES : 1.9217 ACRE-FEET
PEAK DISCRARGE RATE : 54.35 CFS AT 1.500 BOURS BASIN AREA : .0235 SQ. MI.

** TOTAL FLOW LEAVING JTD (CANTO III), INCLUDING 86TH ST ROW EAST OF JYD
ADD HTD ID 00T: 4 HTD: JYD.E.AT.86 IDIN 1: 3 IDIN II: 17
FRINT HTD ID: 4 CODE: 1

HYDROGRAPH FROM AREA JYD.E.AT.86

RUNOFF VOLUME = 1.34815 INCRES = 4.9998 ACRE-FEET
PEAK DISCRARGE RAYE = 116.71 CFS AT 1.533 HOURS BASIN AREA = .0695 SQ. MI.

25×

32× 🗖

0000×0000

O

```
*S ROUTE TO 86TH & SG INTERSECTION, ASSUME 48* PIPE W/ 1% FRICTION SLOPE
COMPUTE RATING CURVE CID: -1 VSN: 1 CODE: -1 S: .010 D: 4 FT n: 0.013
ROUTE MCUNGE ID: 5 RTD: 86.S.OP.SG INFLOW NTD ID: 4 DT: 0.0 BR
LENGTB: 300 KSUBRCE: 0 SLOPE: .010

RATCODE: J RECCODE: 0 CCODE: 0

Inflow ID end:215 Max Number:600
                                       dt = .0333 hr q0 = 58.35 cfs ck0 = 14.67 fps
nlen = 1 dlen = 300.00
nlen = 1 dlen = 300.00

Depth Area 0 Obar ck b C D cl
ft sf cfs cfs fps ft
.00 .0 .0 .4 3.02 .9 1.21 .05 .96
.21 .2 .8 .2.0 5.66 .2.1 2.26 .06 .97
.42 .7 3.3 5.4 7.74 2.7 3.09 .09 .96
.63 1.3 7.6 10.6 9.44 3.1 3.78 .12 .95
.83 1.9 13.7 17.5 10.88 3.4 4.35 .16 .94
1.04 2.6 21.4 25.9 12.09 3.6 4.84 .20 .93
1.25 3.4 30.5 35.6 13.12 3.8 5.25 .24 .93
1.66 4.1 40.8 46.5 13.98 3.9 5.59 .28 .92
1.67 5.0 52.2 58.3 14.67 4.0 5.87 .33 .91
1.88 5.8 64.3 70.7 15.19 4.0 6.08 .39 .90
2.08 6.6 77.0 83.4 15.54 4.0 6.22 .45 .88
2.29 7.5 88.9 96.3 15.69 4.0 6.28 .51 .87
2.50 8.3 102.7 108.9 15.62 4.0 6.25 .58 .85
2.71 9.1 115.1 120.9 15.27 4.0 6.11 .66 .83
2.92 9.8 126.7 131.9 14.52 4.0 5.81 .76 .80
3.13 10.5 137.1 141.5 13.18 4.0 5.27 .89 .15
3.34 11.2 145.8 148.9 10.71 4.0 4.29 1.16 .64
3.54 11.8 152.0 153.2 5.41 4.0 2.16 2.36 .14
3.75 12.2 154.5 154.5 .0 4.0 .00****** -1.00
nlen: 1 Outflow ID end-216
Route using Fonce procedure: Cl > 0
nlen: 1 Outflow ID end-215
Route using Maidment procedure: CO, Cl & C2 > 0
PRINT BYD

RYDBOGRAPE FROM AREA 86
                                                                                                                                                                                                                                                                                                                                            cl cl vel fr
                                                                                                                                                                                                                                                                                                                                                                   fps

.11 3.02 1.42

.40 4.26 1.59

.52 5.58 1.63

.59 6.75 1.66

.64 7.78 1.68

.67 8.69 1.69

.69 9.50 1.68

.71 10.21 1.67

.72 10.84 1.64

.73 11.39 1.61

.74 11.85 1.58

.74 12.25 1.54

.74 12.57 1.51

.74 12.81 1.47

.74 12.96 1.43

.72 13.02 1.39

.69 12.96 1.35

.64 12.76 1.35

.64 12.76 1.35

.66 12.76 1.35
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        .011
.010
.009
.008
```

(

0

O

C

HYDROGRAPH FROM AREA 86.S.OF.SG

1.34764 INCHES 4.9979 ACRE-FEET PEAK DISCHARGE RATE = 116.55 CFS AT 1.567 HOURS BASIN AREA = .0695 SQ. MI.

•			
***************************************	*******	***************************************	****
*S *AS IF* COMBINED	FLOWS AT	86TH & SUNSET GARDENS: RETRIEVE 'ON-HOLD' ID=	1
ADD BYD	ID OUT:	6 HYD: TOT.SG686 IDIN I: 5 IDIN II: 7	
PRINT HYD	ID: 6	CODE: 2	

			BIDROGRAM	E PRUS AREA	101.36800				
TIME	FLOW CPS	TIME	FLOW	TIME	FLOW	TIME	FLOW	TIME	FLOW
.000	.0	1.467	180.7	2.933	3.5	4.400	1.0	5.867	1.3
.067	.0	1.533	235.7	3.000	3.1	4.467	1.0	5.933	1.3
.133	.0	1.600	211.8	3.067	2.7	4.533	1.0	6.000	1.3
.200	.0	1.667	165.8	3.133	2.4	4.600	1.0	6.067	1.3
.267	.0	1.733	125.4	3.200	2.2	4.667	1.0	6.133	1.1
.333	.0	1.800	98.8	3.267	2.0	4.733	1.0	6.200	.8
.400	.0	1.867	80.9	3.333	1.8	4.800	1.0	6.267	.6
.467	.0	1.933	68.5	3.400	1.7	4.867	1.0	6.333	.3

25×

32× □

0

.533	.0	2.000	60.5	3.467	1.6	4.933	1.1	6.400	.2
.600	.0	2.067	51.9	3.533	1.5	5.000	1.1		
		2.133	40.9	3.600	1.4	5.067	1.1	6.533	.1
.667	.0			3.667	1.3	5.133	1.1	6.600	.1
.733	.0	2 200	30.8			5.200	1.1	6.667	.0
.800	.0	2.257	22.5	3.733	1.3				.0
.867	.0	2.333	16.4	3.800	1.2	5.267	1.1	6.733	
		2.400	13.2	3.867	1.2	5.333	1.1	6.800	.0
.933	.0				1.1	5.400	1.1	6.867	.0
1.000	.0	2.467	10.9	3.933			1.2	6.933	.0
1.067	.0	2.533	9.0	4.000	1.1	5.467			
1.133	.0	2.600	7.5	4.067	1.1	5.533	1.2	7.000	.0
				4.133	1.1	5.600	1.2	7.057	.0
1.200	1.0	2.667	6.4			5.667	1.2	7.133	.0
1.267	10.8	2.733	5.4	4.200	1.1				
1.333	32.2	2.800	4.6	4.267	1.0	5.733	1.2		
1.333	77.1	2 867	4.0	4.333	1.0	5.800	1.3		

O

RUNOFF VOLUME = 1.42440 INCRES = 9.0470 ACRE-FEET FEAR DISCRANGE RATE = 235.70 CFS AT 1.533 BOURS BASIN AREA = .1191 SQ. MI.

,

*S
*S FUTURE/FULL DEVELOPMENT
*S FUTURE/FULL DEVELOPMENT
*S ROUTE 65FE TO SEND IN SUNSET GARDERS: CONC PIPE; Sf:.01 APX
*C IF EST DIAM SHALL: > TRAVEL FASTER :> DNSTR PEAK BIGSER :> CONSERVATIVE
*C VALLEY SECHENT & PEACE NUMBERS ARE USER ID'S NOT USED BY PROC; DURMIES BERE
COMPUTE RATING CURVE CID: -1 VS NO: 11 NO SECS FOR MANNING n: -1

SLOPE: .01 DIAM: 5.0 FT n: -013

COMPUTE TRAVEL TIME ID: 5 REACE: 11 NO VS: 1 L: 1100 FT S: .01

TRAVEL TIME TABLE REACE: 11.0

		WATER DEPTE	AVERAGE AREA	FLOW RATE	TRAVEL TIME ERS
		FEET	SQ.FT.	CFS	
		.261	.390	1.37	.0873
		.521	1.086	5.93	.0559
		.782	1.961	13.79	.0435
		1.042	2.966	24.80	.0365
		1.303	4.069	38.72	.0321
		1.563	5.246	55.24	.0290
		1.824	6.479	74.01	.0267
		2.084	7.749	94.62	.0250
		2.345	9.043	116.65	.0237
		2.606	10.345	139.60	.0226
		2.866	11.641	162.98	.0218
		3.127	12.918	186.22	.0212
		3.387	14.159	208.72	.0207
		3.648	15.348	229.78	.0204
			16.467	248.64	.0202
		3.908	17.492	264.32	.0202
		4.169		275.55	.0204
		4.429	18.395		.0209
		4.690	19.130	280.16	
		5.000	19.635	280.16	.0214
ROUTE	1D= 5	EYD: 308	IN ID: 6	DT= 0.0	
PRINT HYD	10: 5	CODE= 1			

0

HYDROGRAPH FROM AREA 308.00

RUMOFF VOLUME = 1.42440 INCHES = 9.0470 ACRE-FEET
FRAM DISCRARGE RATE = 234.12 CFS AT 1.567 BOURS BASIN AREA = .1191 SQ. MI.

25×

32× □

0

COMPUTE NM BYD

1D: 1 HYD: T DA: PER A: 0 B: 15 C: 0 TP: -0.13333 ERS RAIN: -1 DA= .00467 SQ MI

E = .072665ER TP = .133330ER K/TP RATIO = .545000 SHAFE CONSTANT, N = 7.106420 UNIT PEAK = 15.668 CFS UNIT VOLUME = .9987 B = .526.28 P60 = 1.9000 AREA = .003970 SQ MI IA = .10000 INCHES INF = .04000 INCHES PER BOUN BUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METEOL - DT = .033333

K = .130790ER TP = .133330ER K/TP RATIO = .980950 SHAPE CONSTANT, N = 3.599935
UNIT PEAK = 1.7209 CFS UNIT VOLUME = .9926 B = 327.55 P60 = 1.9000
ARRA = .000701 SQ MI IA = .50000 INCRES INF = 1.25000 INCRES PER HOUR
RUMOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METADD - DT = .033333

ID= 1 CODE= 1

HYDROGRAPH FROM AREA T

RUNOFF VOLUME = 1.79111 INCHES = .4461 ACRE-FEET
PEAK DISCHARGE RAYE = 12.22 CFS AT 1.500 BOURS BASIK AREA = .0047 SQ. MI.

EYDROGRAPH FROM AREA 310.00

RUNOFF VOLUME : 1.43823 INCRES : 9.4931 ACRE-FEET
PEAK DISCRARGE RATE : 244.23 CFS AT 1.567 HOURS BASIN AREA : .1238 SQ. MI.

BASIN U COMPUTE NM BYD

K = .072655BR TP = .133330BR K/TP RATIO = .545000 SHAPE CONSTANT, N = 7.106420 UNIT PEAK = 28.514 CPS UNIT VOLUME = .9990 B = .526.28 P50 = 1.9000 AREA = .007224 SQ MI IA = .10000 INCHES INF = .04000 INCHES PER BOUR RUNOPY COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METBOD - DT = .033333

K = .130790ER TP = .133330ER K/TP RATIO = .980950 SHAPE CONSTANT, N = 3.599935
UNIT PEAK = 7.659 CPS UNIT VOLUME = .9885 B = .327.55 P60 = 1.5000
AREA = .003095 SON BI IA = .50000 INCESS INF = 1.25000 INCESS PER BOUR
RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METROD - DT = .033333

RINT HYD

ID: 1 CODE: 1

HYDROGRAPH FROM AREA U

RUNOFF VOLUME = 1.59625 INCHES =

25×

32× 🔲

PEAK DISCHARGE RATE = 24.63 CFS AT 1.500 BOURS BASIN AREA = .0103 SQ. MI.

*C NOTE LARGE ID\$ - WILL RE-USE THIS BYD LATER
ADD HTD ID007: 19 HTD: 312 IDIN I: 1 IDIN II: 3
PRINT HYD ID: 19 CODE: 1

HYDROGRAPH FROM AREA 312.00

RUNOFF VOLUME = 1.45039 INCHES = 10.3716 ACRE-FEET
FEAK DISCHARGE RATE = 264.83 CFS AT 1.567 BOURS BASIN AREA = .1341 SQ. MI.

* BASIN V: 1 IMPERV A LA POINTE WEST DESIGN & DEKSITY
COMPUTE EN BTD ID= 11 ETD= V DA= .03200 SQ M1
FER A= 0 B= 50 C= 0 D= 50
TP= -0.13333 BRS RAIN= -1

K = .072665ER TP = .133330ER K/TP RATIO = .545000 SEAFE CONSTANT, N = 7.106420 UNIT PERK = 63.155 CPS UNIT VOLUME = .9992 B = 526.28 P60 = 1.9000 AREA = .016000 SQ NI IA = .10000 INCES INF = .04600 INCHES PER BOUR RUKOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION KUMBER METBOD - DT = .033333

E : .130790ER TP = .133330ER K/TP RATIO = .980950 SEAPE CONSTANT, N = 3.599935 UNIT FEAK = 39.307 CFS UNIT VOLUME = 1.000 B = 327.55 F60 = 1.5000 AREA = .016000 SQ MI 1A = .50000 INCEES INF = 1.25000 INCEES PER BOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METBOD - DT = .033333

PRINT BYD ID: 11 CODE: 1

0

C

HYDROGRAPH FROM AREA V

RUMOFF VOLUME : 1.33643 INCRES : 2.2808 ACRE-FEET
PEAK DISCRARGE RATE : 66.62 CPS AT 1.500 BOURS BASIN AREA : .0320 SQ. MI.

ADD BYD 1D OUT: 3 BYD: SG.AT.82MD 1DIN I: 11 1DIN II: 19
PRINT BYD 1D: 3 CODE: 1

HYDROGRAPH FROM AREA SG.AT.828D

RUNOFF VOLUME = 1.42843 INCRES = 12.6524 ACRE-FEET
FEAK DISCRARGE RATE = 323.76 CFS AT 1.533 BOURS BASIN AREA = .1661 SQ. MI.

C ROUTE TO UNSER IN CONC PIPE; Sf.01 APX AVG

*C IF EST DIAN SMALL => TRAVEL PASTER => DOSTR PEAK BIGBER => CONSERVATIVE

*C VALETY SEGMENT & PEACH BOMBERS ABE USER ID*S OBLY; DURNIES BERE

*C VALETY SEGMENT & PEACH BOMBERS ABE USER ID*S OBLY; DURNIES BERE

*C AVAIL SLOPE BTW UNSER/AMOLE & SG/82 APX .01 AVG.

COMPUTE RATING CURVE CID= -1 VS NO= 11 NO SEGS FOR MANNING n= -1

25× □

32× 🛘

0000 0000 0823

TRAVEL TIME TABLE REACE: 11.0

	WATER	AVERAGE AREA	FLOW RATE	TRAVEL TIME
	FEET	SQ.FT.	CFS	ERS
	.287	.472	1.76	.0819
	.573	1.314	7.65	.0525
	.860	2.373	17.78	.0408
	1.146	3.589	31.97	.0343
	1.433	4.923	49.92	.0301
	1.720	6.348	71.23	.0272
	2.006	7.839	95.43	.0251
	2.293	9.377	122.00	.0235
	2.579	10.942	150.40	.0222
	2.866	12.518	180.00	.0212
	3.153	14.086	210.14	.0205
	3.439	15.630	240.11	.0199
	3.726	17.132	269.11	.0195
	4.013	18.571	296.28	.0192
	4.299	19.925	320.59	.0190
	4.586	21.166	340.81	.0190
	4.872	22.258	355.29	.0191
	5.159	23.147	361.23	.0196
	5,500	23.758	361.23	.0201
ID: 5	EYD: 314	IN ID: 3	DT= 0.0	
ID= 5	CODE: 1			

HYDROGRAPH FROM AREA 314.00

RUNOFF VOLUME = 1.42844 INCEES = 12.6524 ACRE-FEET
PEAK DISCHARGE RATE = 322.21 CFS AT 1.567 EOURS BASIN AREA = .1661 SQ. MI.

*C BASIN W: 1 IMPERV A LA POINTE WEST DESIGN & DENSITY: SAME OWNER & ENGR *C BASIN W IS OBLY BASIN W TP (&Tc) > REGULATORY MINIMUM COMPUTE NH NYD 10= 12 RYD= W DA=-03422 SQ M1 PER A= 0 B= 50 C= 0 D= 50 TP=-0.16325 BES BAIN=-1

K = .088971ER TP = .163250ER K/TP RATIO = .545000 SEAFE CONSTANT, N = 7.106420
UNIT PEAK = .55.158 CFS UNIT VOLUME = .9997 B = .526.28 P60 = 1.9000
ARRA = .017110 SQ MI IA = .10000 INCES INF = .04000 INCES PER BOUR
RUMOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METEOD - DT = .033333

R = .160140BR TP = .163250BR R/TP RATIO = .980950 SBAPE CORSTANT, N = 3.599930
UNIT PEAR = 34.330 CPS UNIT VOLUME = .9998 B = 327.55 F60 = 1.9000
AREA = .017110 SQ MI IA = .50000 INCESS INF = 1.25000 INCESS PER ROUR
RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METROD - DT = .033333

ID: 12 CODE: 1

ROUTE

C

HYDROGRAPH FROM AREA W

RUNOFF VOLUME : 1.33643 INCEES : 2.4391 ACRE-FEET
PEAK DISCHARGE RATE : 64.02 CFS AT 1.533 BOURS BASIN AREA : .0342 SQ. MI.

25× 🔲

32× □

ID OUT: 3 HYD: 316 IDIN I: 12 IDIN II: 5 ID: 3 CODE: 1

HYDROGRAPH FROM AREA 316.00

RUNOFF VOLUME : 1.41271 INCRES : 15.0915 ACRE-FEET
FEAK DISCHARGE RAYE : 384.09 CFS AT 1.567 BOURS BASIN AREA : .2003 SQ. MI.

* BASIN 1: R.O.W. FOR SUBSET GARDERS AND (LIMITED ACCESS) UNSER
COMPUTE WM BYD ID: 13 BYD: X DA: .00674 SQ NI
PER A: 0 B: 20 C: 0 D: 80 TP= -0.13333 ERS RAIN= -1

E = .072655ER TP = .133330ER K/TP RATIO = .545000 SHAPE CONSTANT, N = 7.106420 UNIT PEAK = 21.283 CFS UNIT VOLUME = .988 B = .526.28 P60 = 1.9000 AFEA = .005392 SQ MI IA = .10000 INCHES INF = .04000 INCHES PER BOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .033333

E = .130790HR TP = .133330HR K/TP RATIO = .980950 SHAPE CONSTANT, N = 3.599935
UNIT FEAK = 3.3116 CFS UNIT VOLUME = .9961 B = 377.55 F60 = 1.5000
AREA = .001348 _0 MI IA = .50000 INCHES INF = 1.25000 INCHES PER BOUR
RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .033333

PRINT HYD

0

ID: 13 CODE: 1

HYDROGRAPH FROM AREA I

RUNOFF VOLUME = 1.72616 INCRES = .6205 ACRE-FEET
PEAK DISCHARGE RATE = 17.11 CFS AT 1.500 BOURS BASIN AREA = .0067 SQ. MI.

ID OUT: 4 HYD: SG.AT.UNSER IDIN I: 13 IDIN II: 3 ID: 4 CODE: 1

SYDROGRAPH FROM AREA SG.AT.UNSER

RUNOFF VOLUME : 1.42292 INCRES : 15.7120 ACRE-FERT
PEAK DISCRARGE RATE : 398.29 CFS AT 1.567 BOURS BASIN AREA : .2070 SQ. MI.

*C ROUTE TO UNSER 340 FT N OF SG (APN BALF DIST TO ANOLE CHAN); Sf..01 APX
*C EST DIAM SMALL => TRAVEL FASTER => DUSTR PEAK BIGBER => CORSERVATIVE

*C VILLLY SECREMT & REACH NUMBERS ARE USER ID'S ONLY; DUSCHIES BERE

COMPUTE RATING CUNVE CID: -1 VS NO: 11 NO SEGS FOR MANNING n: -1

SLOPE - .01 DIAM: 6.0 FT n: .013

COMPUTE TRAVEL TIME ID: 5 REACH: 11 NO VS: 1 L: 340 FT S: .01

TRAVEL TIME TABLE REACE: 11.0

25× 🛘

32× 🔲

	WATER	AVERAGE	FLOW	TRAVEL
	DEPTH	AREA	RATE	TIME
	FEET	SO.FT.	CFS	ERS
	.313	.562	2.22	.0239
	.625	1.564	9.64	.0153
	.938	2.824	22.42	.0119
	1.251	4.271	40.32	.0100
	1.563	5.859	62.96	.0088
	1.876	7.554	89.83	.0079
	2.189	9.329	120.35	.0073
	2.501	11.159	153.87	.0068
	2.814	13.022	189.68	.0065
	3.127	14.897	227.01	.0062
	3,439	16.764	265.02	.0060
	3.752	18.601	302.81	.0058
	4.065	20.388	339.39	.0057
	4.377	22.101	373.65	.0056
	4.690	23.712	404.31	.0055
	5.003	25.189	429.82	.0055
	5.315	26.489	448.07	.0056
	5.628	27.547	455.57	.0057
	6.000	28,274	455.57	.0059
5	HYD: 318	IN ID= 4	DT= 0.0	.0033
5	CODE: 1			

HYDROGRAPH FROM AREA 318.00

RUNOFF VOLUME : 1.42292 INCRES : 15.7120 ACRE-FEET
PEAK DISCRARGE RATE : 399.01 CFS AT 1.567 BOURS BASIN AREA : .2070 SQ. HI.

* BASIN Y DEVELOPED: EST ENTIRE SITE; LONING = 0-1; USE % IMPERV AS POR C-2

* WHEN BUILT, N APX 200' POSS DRAIN 10 BRIDGE PER GREINER FOR BRIDGE BLVD SD

COMPUTE NN BYD ID= 14 HYD= YD DR= .02964 SQ NI

PER A= 0 B= 10 C= 5 D= 85

TP= -0.13333 BRS RAIN= -1

K = .072655ER TP = .133330ER K/TP RATIO = .545000 SEAFE CONSTANT, N = 7.106420 UNIT PEAK = 99.445 CFS CVIT VOLUME = .9993 B = 526.28 P60 = 1.9000 AREA = .025194.50 MI IA = .10000 INCRES INF = .04000 INCRES PER BOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METBOD - DT = .033333

K = .122603HR TP = .133330HR K/TF RATIO = .919546 SHAFE CONSTANT, N = 3.849372
UNIT FRAK = 11.504 CFS UNIT VOLUME = .9992 B = 345.00 F60 = 1.5000
AREA = .004446 SQ MI IA = .45000 INCHES INF = 1.11000 INCHES FER HOUR
RUNOFF COMPOTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .033333

PRINT EYD ID: 14 CODE: 1

ROUTE PRINT HYD

0

EYDROGRAPH FROM AREA YD

RUNOFF VOLUME = 1.80576 INCHES = 2.8545 ACRE-FEET
PEAK DISCRARGE RATE = 78.24 CFS AT 1.500 BOURS BASIK AREA = .0296 SQ. MI.

*S TOTAL UNSER API 300' S OF AMOLE CHARMEL AT BRIDGE: FUTURE/FULLY DEVELOPED ADD BTD ID OUT= 7 BTD= FUT.TO.AMOLE IDIN I= 14 IDIN II= 5

25× 🛘

32× 🔲

PRINT HYD

0

ID: 7 CODE: 1

HYDROGRAPH FROM AREA FUT. TO. AMOLE

RUNOFF VOLUME : 1.47085 INCHES : 18.5665 ACRE-FEET
PEAK DISCHARGE RATE : 465.36 CFS AT 1.533 BOURS BASIK AREA : .2367 SQ. MI.

```
*S INTERIM INTERIM INTERIM INTERIM

*S INTERIM: RE-USE HTD 312 W/ ID-19, ROUTE IN DIRT CRAW ACROSS RASIN Y EXIST

*C APPROX AS 12' BOTTOM, 38:1V SIDESLOPES, n=.030, L APX 1250, S=.005

*COMPUTE RATING CURVE CID: -1 VS NO: 1 NO SEGS FOR RANKING n= 1

*ELMINE 0 ELMAR: 8 FT CRSLP=.005 FFSLP=.005 FF/FT

*n .030 DIST 60

*DIST ELEV DIST ELEV DIST ELEV DIST ELEV DIST ELEV

*O 8 24 0 35 0 60 8

*ROUTE MCUNGE ID=5 HYD: 502 LIMPLOW BYD ID= 19 DT= 0.0 BR

**LEMSTR= 1250 NSUBERCE= 0 SLOPE=.005

*MATCODE= 0 NEGROEDE= 0 CCCODE= 0

*Inflow ID end=222 Max Number=600
                   Inflow ID end=222 Max Number=600
                   dt = .0333 \ hr \ q0 = 132.42 \ cfs \ ch0 = 6.19 \ fps nlen = 3 \ dlen = 416.67
```

OUTFLOW BYDROGRAPE RESERVOIR 502.00

RUNOFF VOLUME = 1.45076 INCHES PEAK DISCEARGE RATE = 260.04 CFS 45076 INCHES : 10.3742 ACRE-FEET 260.04 CFS AT 1.600 HOURS BASIN AREA : .1341 SQ. HI.

25× 0

32× 🛘

K = .161262ER TP = .133330ER K/TP RATIO = 1.209496 SEAPE CONSTANT, N = 2.939924
UNIT PEAK = 61.553 CFS UNIT VOLUME = .9995 B = 276.89 P60 = 1.5000
AREA = .029640 SQ MI IA = .64100 INCRES INF = 1.64480 INCRES PER BOUR
RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METBOD - DT = .033333

PRINT HYD ID: 15 CODE: 1

C

0

0

EYDROGRAPH FROM AREA YE

RUNOFF VOLUME = .46670 INCRES = .7378 ACRE-FEET
FEAK DISCHARGE RATE = 26.19 CFS AT 1.533 BOURS BASIN AREA = .0296 SQ. MI.

*S ADD STD ID OUT: 8 BYD: INT.2.AMOLE IDIN I: 15 IDIN II: 5

HYDROGRAPH FROM AREA INT. 2. AMOLE

BUNOFF VOLUME : 1.27260 INCHES : 11.1120 ACRE-FEET
FEAK DISCRARGE RATE : 281.49 CFS AT 1.600 HOURS BASIN AREA : .1637 SQ. MI.

*S
*S RE-DSE BYD 312 W/ 1D=19, BYD V W/ 1D=11, & BYD YE W/ ID=15
*S ROUTE 1H DIRY CHAN ACROSS BASIN Y EXIST
ADD BYD

ID 00T= 3 RYD= 602

ID IN I= 19 IDIN II= 11

PRINT BYD

ID = 3 CODE= 1

BYDROGRAPH FROM AREA 602.00

BUNOFF VOLUME = 1.42843 INCRES : 12.6524 ACRE-FEET
FEAK DISCRARGE RATE = 323.76 CFS AT 1.533 BOURS BASIN AREA : .1661 SQ. MI.

**C APPROX AS 12' BOTTOM, 38:1V SIDESLOPES, ms.030, L AFX 1250, Ss.005

COMPUTE RATING CURVE CID: -1 VS NO: 1 NO SEGS FOR MANKING ms: 1

ELMIN: 0 ELMAX: 8 F7 CHSLP: .005 FFSLP: .005 FF/F7

m.030 DIST 60

DIST ELEV DIST ELEV DIST ELEV DIST ELEV DIST ELEV

0 8 24 0 36 0 60 8

ROUTE MCUNGE 1D= 5 MTD= 604 1 NFLOW NTD 1D: 3 DT= 0.00 ER

LENGTH: 1250 MSUBRCE: 0 SLOPE: .005

MATCODE: 0 REGCODE: 0 CCODE: 0

25× 🛘

32×

```
dt = .0333 \ hr \ q0 = 161.88 \ cfs \ ck0 = 6.19 \ fps alen = 3 \ dlen = 416.67
EYDROGRAPH FROM AREA 604.00
     RUNOFF VOLUME = 1.42737 INCHES = 12.6430 ACRE-FEET
PEAK DISCHARGE RATE = 320.37 CFS AT 1.600 BOURS BASIN AREA = .1661 SQ. MI.
 +C RE-DEE HTD YE W/ ID-15, ADD TO ROUTED FLOW
ADD HTD ID OUT- 98 HTD- HTT.V.2AMOLE IDIN I= 15 IDIN II= 3
PRINT HTD ID-9 CODE-1
                                         OUTFLOW HYDROGRAPH REACH
     RUNOFF VOLUME = .00000 INCHES = .0000 ACRE-FEET
PEAK DISCEARGE RATE = .000 CFS AT .000 BOURS BASIN AREA = .0000 SQ. MI.
 *S ALLEY *S LET ALLEY *S BASINS B, G, & SITE-1 TO ALLEY. BASIN A NOT CONTRIBUTE INTERIM/FUTURE *S FUTURE/INTERIM ALLEY FLOWS FOR INFO ONLY; BOLD TO EXISTING CONDITIONS
                      ID= 1 HYD= 8 DA=0.01520 SQ MI
PER A= 0 B= 16 C= 8 D= 76
TF= -0.13333 BRS RAIN= -1
 COMPUTE NH MYD
     K = .072665HR TP = .133330HR K/TP RATIO = .545000 SHAPE CONSTANT, N = 7.106420
```

0

32×

25× □

O

C

0

UNIT PEAK = 45.598 CFS UNIT VOLUME = .9991 B = 526.28 P60 = 1.9000
AREA = .011552 SQ MI IA = .10000 INCRES INF = .04000 INCRES PER BOUR
RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .033333

K : .122603ER TP = .133330ER K/TP RATIO = .919546 SEAPE CORSTANT, K = 3.849372 UNIT PEAK = 9.4394 CPS UNIT VOLUME = .9990 B = 345.00 P60 = 1.9000 AREA = .003648 SQ NI IA = .45000 INCHES INF = 1.11000 INCHES PER BOUR RUMOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION MUMBER METBOD - DT = .033333

PRINT EYD

ID= 1 CODE= 1

SYDROGRAPS FROM AREA B

RUNOFF VOLUME : 1.69764 INCHES : 1.3762 ACRE-FEET
PEAK DISCHARGE RATE : 38.30 CFS AT 1.500 BOURS BASIK AREA : .0152 SQ. MI.

* BASIN G COMPUTE NN BYD ID= 2 EYD= G DA=0.01501 SQ MI PER A= 0 B= 20 C= 10 D= 70 TP= -0.13333 ERS RAIN= -1

K = .072665BR TP = .133330BR K/TP RATIO = .545000 SBAPE CONSTANT, N = 7.106420
UNIT PEAK = 41.473 CPS UNIT VOLUME = .9991 B = 526.28 P50 = 1.9000
AREA = .010507 SQ MI IA = .10000 INCHES INF = .04000 INCHES PER BOUR
RUNDIF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METAGO - DT = .033333

K : .122603ER TP : .133330ER K/TP RATIO : .919546 SEAPE CONSTART, N : 3.849372
UNIT PEAK : 11.652 CPS UNIT VOLUME : .9992 B : 345.00 P60 : 1.9000
AREA = .004503 SQ MI IA = .45000 INCEES ISF = 1.11000 INCEES PER BOUR
RUHOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT : .033333

PRINT HYD ID= 2 C

C

SYDROGRAPH FROM AREA G

RUMOFF VOLUME = 1.62555 INCHES = 1.3013 ACRE-FEET
FEAK DISCRARGE RATE = 36.52 CFS AT 1.500 ROURS BASIN AREA = .0150 SQ. MI.

ADD ETD ID OUT= 3 ETD= TO.TOF.ALLET IDIN I= 1 IDIN II= 2
PRINT ETD ID= 3 CODE= 1

STOROGRAPH FROM AREA TO. TOP. ALLEY

RUNOFF VOLUME : 1.66180 INCRES : 2.6775 ACRE-FERT
FEAR DISCRARGE RATE : 74.92 CFS AF 1.500 BOURS BASIN AREA : .0302 SQ. MI.

* RASIN SITE.I

COMPUTE NN BYD | ID= 1 | BYD= SITE.I | DA=0.00151 SQ NI

PER A= 0 | B= 35 | C= 0 | D= 55

25× □

32× 🛘

0000 0000<u>0830</u>

TP= -0.13333 ERS RAIN= -1

E : .072655ER TP : .133330ER E/TP RATIO : .545000 SEAFE CONSTANT, N : 7.106420
UNIT PEAK : 3.8741 CFS UNIT VOLUME : .9965 B : 526.28 F60 = 1.9000
AREA : .000982 SQ NI 1A : .10000 INCRES INF : .04000 INCRES PER BOUR
RUMOFF COMPOTED BY INITIAL ABSTRACTION/IMPLICATION NUMBER METHOD - DT : .033333

E = .130790ER TP = .133330ER K/TP RATIO = .980950 SEAPE CONSTANT, N = 3.59935
UNIT FEAK = 1.2984 CFS UNIT VOLUME = .9894 B = 327.55 F60 = 1.9000
AREA = .000529 SQ MI IA = .50000 INCRES INF = 1.25000 INCRES PER BOUR
RUNOFF CONFUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METROD - DT = .033333

PRINT HYD

ID: 1 CODE: 1

HYDROGRAPH FROM AREA SITE.I

RUNOFF VOLUME = 1.53130 INCRES = .1233 ACRE-FEET
PEAK DISCHARGE RATE = 3.50 CFS AT 1.500 BOURS BASIN AREA = .0015 SQ. MI.

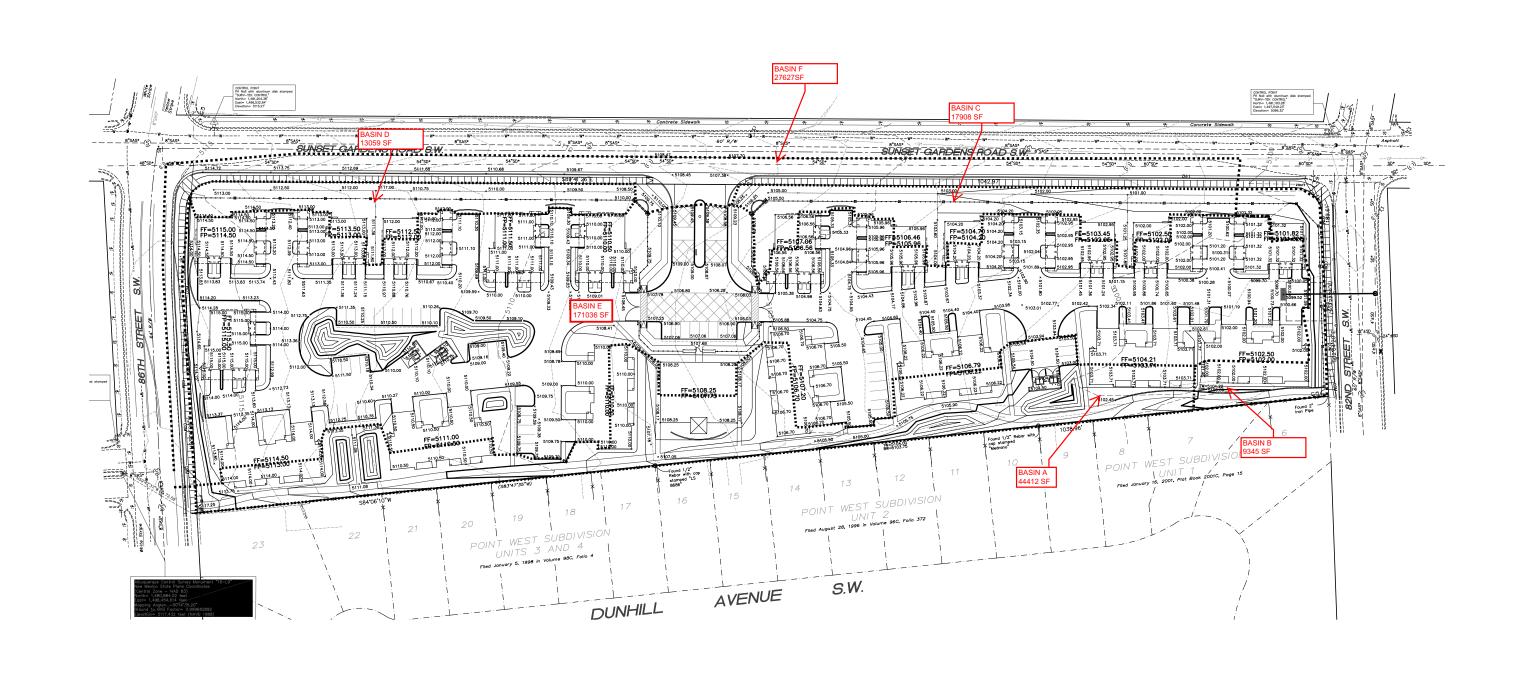
ADD HTD ID OUT: 4 HTD: BOT.ALLEY IDIN I: 1 IDIN II: 3
PRINT HTD ID: 4 CODE: 1

EYDROGRAPH FROM AREA BOT.ALLEY

RUNOFF VOLUME : 1.65558 INCRES : 2.8008 ACRE-FEET
FEAX DISCRARGE RATE : 78.42 CFS AT 1.500 BOURS BASIN AREA : .0317 SQ. MI.

NORMAL PROGRAM FINISE

0


END TIME (HR:MIN:SEC) = 12:37:11

25×

32×

0

APPENDIX B SITE HYDROLOGY

Weighted E Method

							100-Year, 6-hr.						
Basin	Area	Area	Treatment A		Treatment B		Treatment C		Treatment D		Weighted E	Volume	Flow
	(sf)	(acres)	%	(acres)	%	(acres)	%	(acres)	%	(acres)	(ac-ft)	(ac-ft)	cfs
ALLOWED													24.63
PROPOSED A	44412.00	1.020	0%	0	5%	0.051	6%	0.0612	89%	0.907	1.846	0.157	4.24
PROPOSED B	9345.00	0.215	0%	0	20%	0.043	44%	0.0944	36%	0.077	1.279	0.023	0.70
PROPOSED C	17908.00	0.411	0%	0	16%	0.066	60%	0.2467	24%	0.099	1.174	0.040	1.27
PROPOSED D	13059.00	0.300	0%	0	20%	0.060	47%	0.1409	33%	0.099	1.249	0.031	0.96
PROPOSED E	171036.00	3.926	0%	0	20%	0.785	47%	1.8454	33%	1.296	1.124	0.368	10.32
PROPOSED F	27627.00	0.634	0%	0	0%	0.000	8%	0.0507	92%	0.583	0.158	0.008	2.70

TOTAL **Equations:**

2.478 20.18

Weighted $E = Ea^*Aa + Eb^*Ab + Ec^*Ac + Ed^*Ad / (Total Area)$

Volume = Weighted D * Total Area

Flow = Qa * Aa + Qb * Ab + Qc * Ac + Qd * Ad

Where for 100-year, 6-hour storm-zone 1

Ea= 0.44 Qa= 1.29 Eb= 0.67 Qb= 2.03 Ec= 0.99 Qc= 2.87 Ed= 1.97 Qd= 4.37

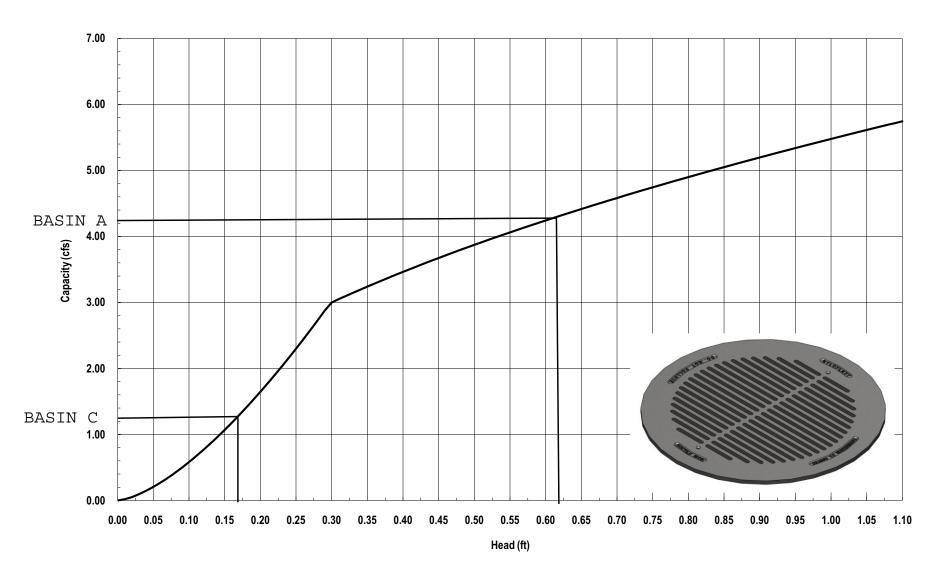
ONSITE Conditions

WATER QUALITY

FIRST FLUSH WATER QUALITY VOLUME

REQUIRED PROVIDED (CF)

3058 6840


Narrative

This site is within the boundary of the Amole del norte drainage basin. The site is identified as basin U within the Val Halla drainage report. this site drains to an existing storm drain within sunset gardens. This site is allowed to drain 24.63 cfs. We are draining 20.18 cfs to this storm drair there is no upland flow. This plan provided for onsite ponding of the water quality volume

This plan is in conformance to the master drainage plan

APPENDIX C HYDRAULIC CALCULATIONS

Nyloplast 24" Drop In Grate Inlet Capacity Chart

DROP INLET CALCULATIONS

INLET	TYPE OF	AREA	Q	Н	H ALLOW	
	INLET	(SF)	(CFS)	(FT)	(FT)	
INLET A	DOUBLE	7.68	20.64	0.3115	1	

ORIFICE EQUATION

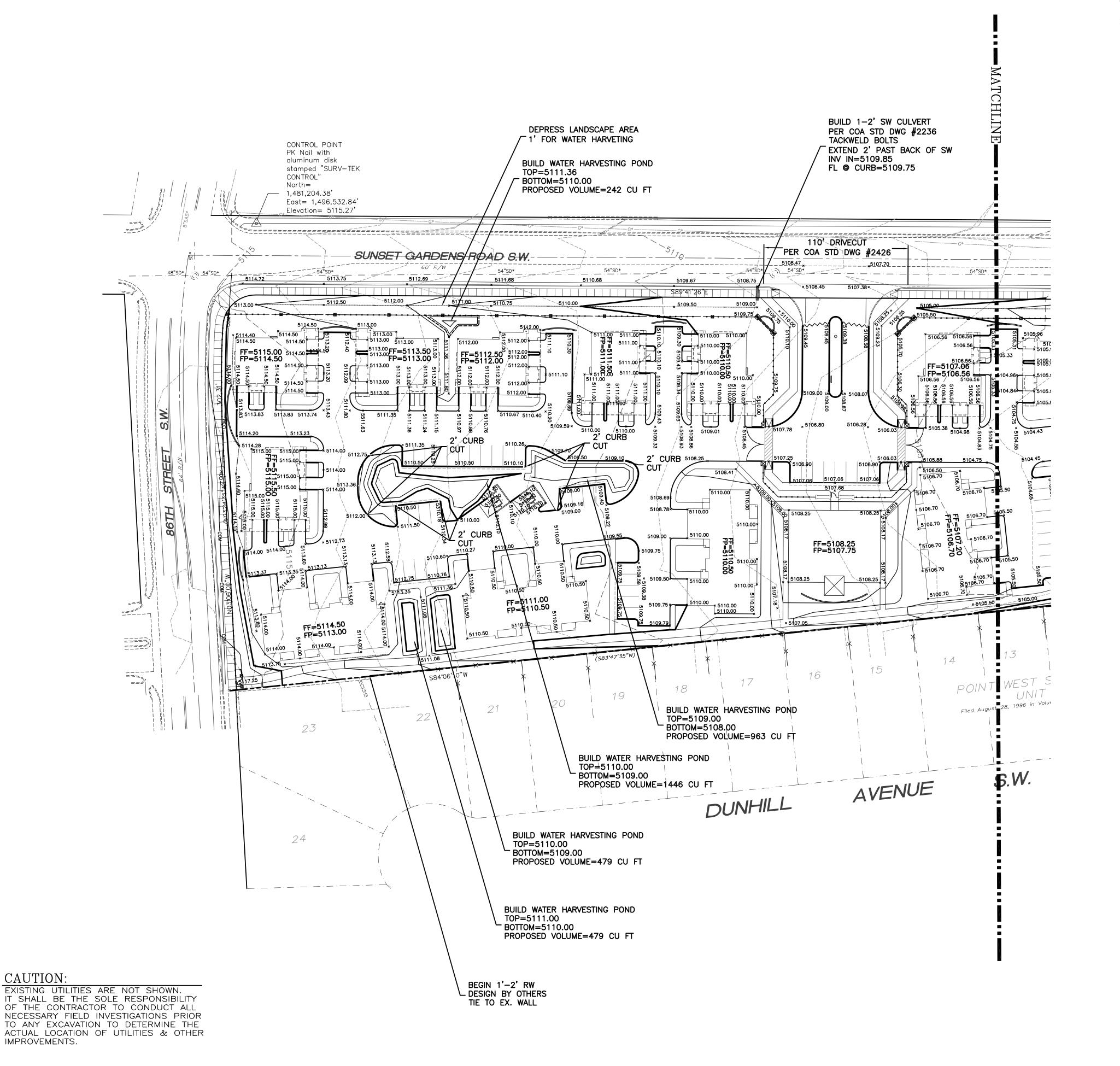
 $Q = CA \ sqrt(2gH)$

C = 0.6g = 32.2

^{*} FLOW DOUBLED DUE TO SUMP CONDITION

Pipe Capacity

Pipe	D	Slope	Area	R	Q Provided	Q Required	Velocity
	(in)	(%)	(ft^2)		(cfs)	(cfs)	(ft/s)
EXISISTING	24	3	3.14	0.5	34.05	14.56	4.63


 $\frac{\text{Manning's Equation:}}{Q = 1.49/n * A * R^{(2/3)} * S^{(1/2)}$

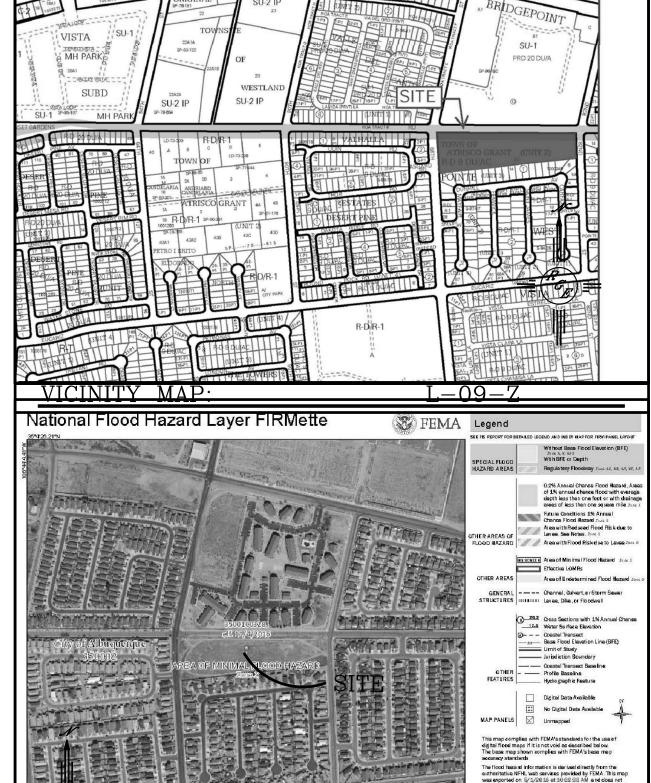
A = Area

R = D/4

S = Slope

n = 0.015

EROSION CONTROL NOTES:


1. CONTRACTOR IS RESPONSIBLE FOR OBTAINING A TOPSOIL DISTURBANCE PERMIT PRIOR TO BEGINNING WORK.

2. CONTRACTOR IS RESPONSIBLE FOR MAINTAINING RUN-OFF ON SITE DURING CONSTRUCTION.

3. CONTRACTOR IS RESPONSIBLE FOR CLEANING ALL SEDIMENT THAT GETS INTO EXISTING RIGHT-OF-WAY.

4. REPAIR OF DAMAGED FACILITIES AND CLEANUP OF SEDIMENT ACCUMULATIONS ON ADJACENT PROPERTIES AND IN PUBLIC FACILITIES IS THE RESPONSIBILITY OF THE CONTRACTOR.

5. ALL EXPOSED EARTH SURFACES MUST BE PROTECTED FROM WIND AND WATER EROSION PRIOR TO FINAL ACCEPTANCE OF ANY PROJECT.

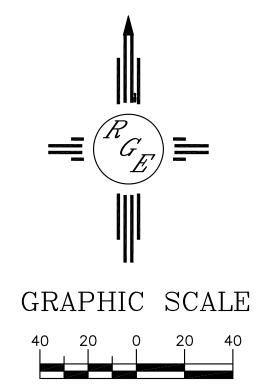
LEGAL DESCRIPTION:

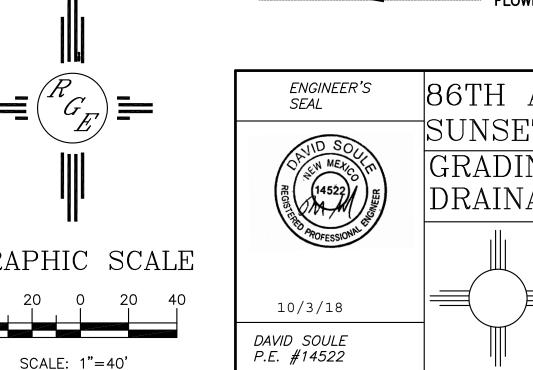
FIRM MAP:

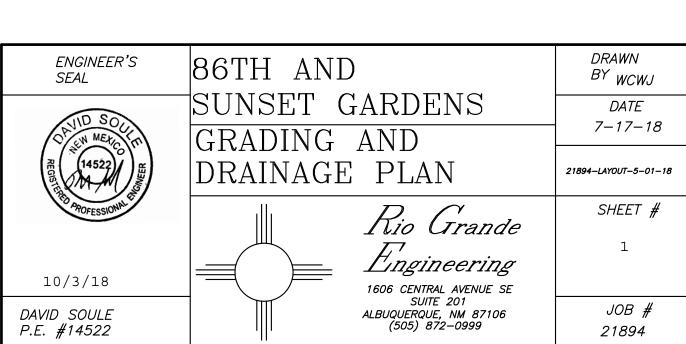
TRACT 52, UNIT 2, TOWN OF ATRISCO GRANT

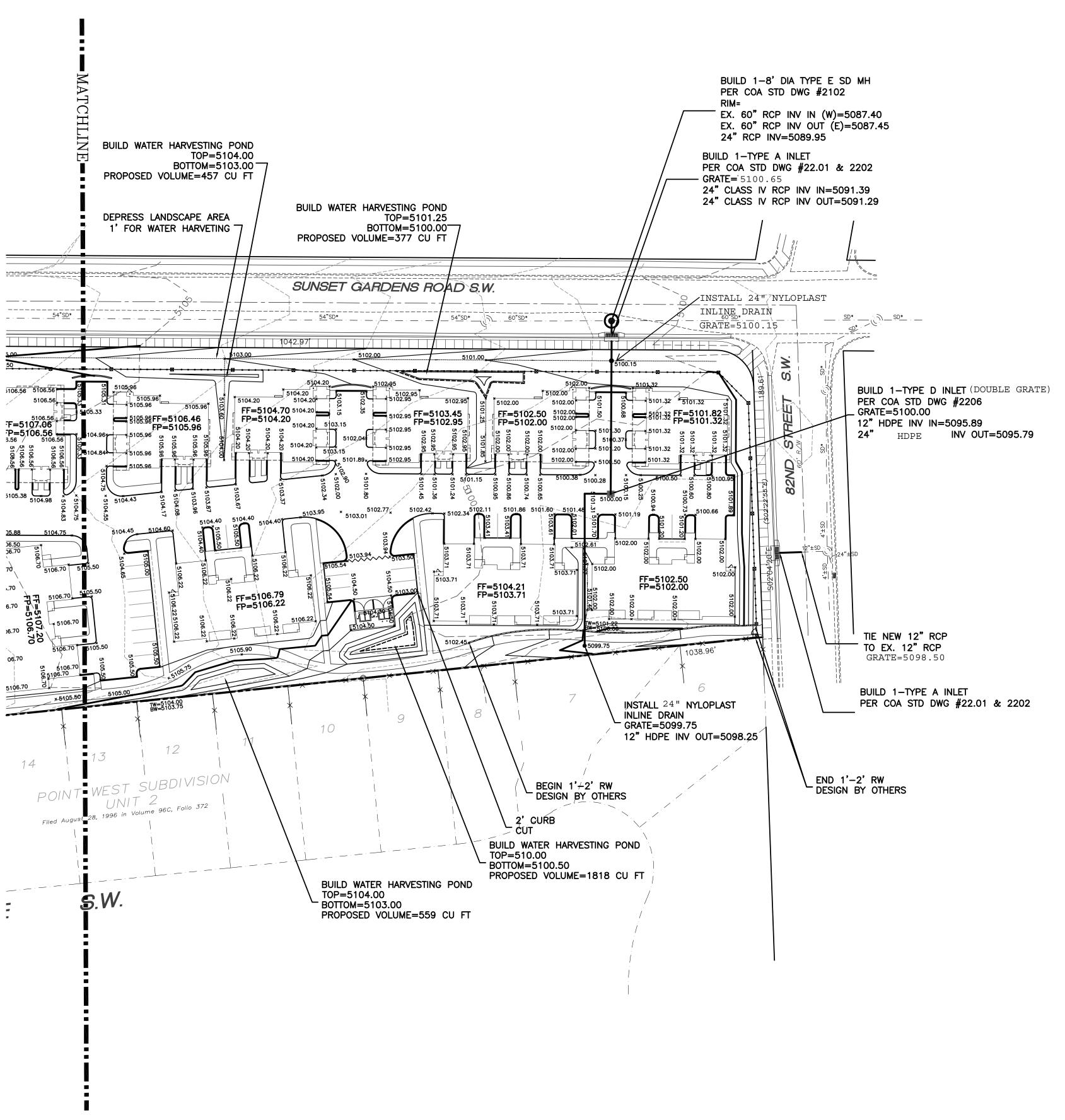
1. ALL SPOT ELEVATIONS REPRESENT FLOWLINE ELEVATION UNLESS OTHERWISE

2. ALL CURB AND GUTTER TO 6" HEADER UNLESS OTHERWISE

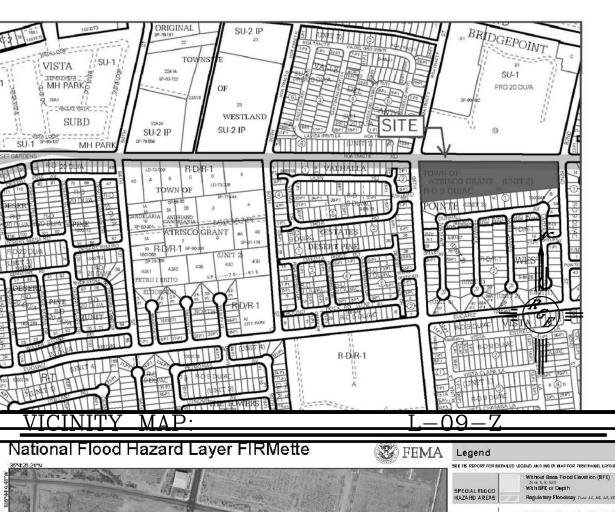

3. ALL RETAINING WALL DESIGN SHALL BE BY OTHERS.


4. ALL NEW PAVING SHALL BE 6" PCC OVER 8" SUBGRADE PREPARATION IN CONFORMANCE TO ACI 330R-08. UNLESS OTHERWISE NOTED.


5. ANY CURBS OR PAVEMENT NEGATIVELY IMPACTED BY CONSTRUCTION ACTIVITY SHALL BE REPLACED TO MATCH EXISTING CONDITIONS.


6. ALL SITE WORK SHALL CONFORM TO CITY OF ALBUQUERQUE STANDARDS FOR PUBLIC WORKS CONSTRUCTION EDITION 9 LEGEND

EXISTING CONTOUR ---- EXISTING INDEX CONTOUR — PROPOSED CONTOUR PROPOSED INDEX CONTOUR SLOPE TIE × 4048.25 EXISTING SPOT ELEVATION × 4048.25 PROPOSED SPOT ELEVATION BOUNDARY ____ - ___ - ___ - ___ CENTERLINE — RIGHT—OF—WAY PROPOSED CURB EXISTING CURB AND GUTTER PROPOSED SIDEWALK EXISTING SIDEWALK PROPOSED SCREEN WALL --- FLOWLINE

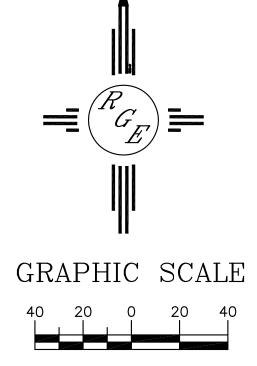


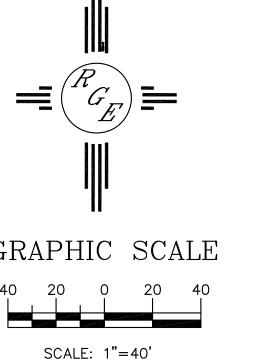
CAUTION:

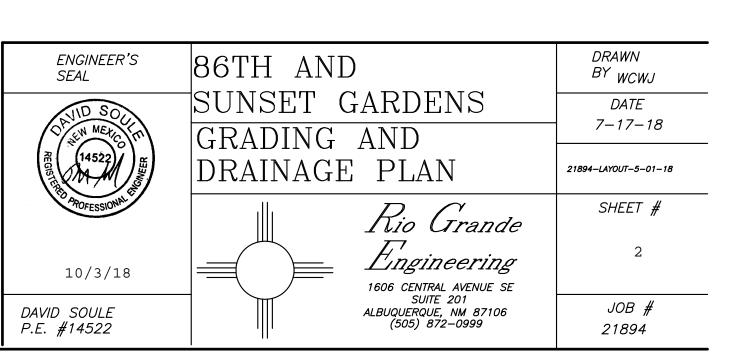
EXISTING UTILITIES ARE NOT SHOWN. IT SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO CONDUCT ALL NECESSARY FIELD INVESTIGATIONS PRIOR TO ANY EXCAVATION TO DETERMINE THE ACTUAL LOCATION OF UTILITIES & OTHER IMPROVEMENTS.

EROSION CONTROL NOTES:

- 1. CONTRACTOR IS RESPONSIBLE FOR OBTAINING A TOPSOIL DISTURBANCE PERMIT PRIOR TO BEGINNING WORK.
- 2. CONTRACTOR IS RESPONSIBLE FOR MAINTAINING RUN-OFF ON SITE DURING CONSTRUCTION.
- 3. CONTRACTOR IS RESPONSIBLE FOR CLEANING ALL SEDIMENT THAT GETS INTO EXISTING RIGHT-OF-WAY.
- 4. REPAIR OF DAMAGED FACILITIES AND CLEANUP OF SEDIMENT ACCUMULATIONS ON ADJACENT PROPERTIES AND IN PUBLIC FACILITIES IS THE RESPONSIBILITY OF THE CONTRACTOR.
- 5. ALL EXPOSED EARTH SURFACES MUST BE PROTECTED FROM WIND AND WATER EROSION PRIOR TO FINAL ACCEPTANCE OF ANY PROJECT.


LEGAL DESCRIPTION:


TRACT 52, UNIT 2, TOWN OF ATRISCO GRANT


1. ALL SPOT ELEVATIONS REPRESENT FLOWLINE ELEVATION UNLESS OTHERWISE

- 2. ALL CURB AND GUTTER TO 6" HEADER UNLESS OTHERWISE
- 3. ALL RETAINING WALL DESIGN SHALL BE BY OTHERS.
- 4. ALL NEW PAVING SHALL BE 6" PCC OVER 8" SUBGRADE PREPARATION IN CONFORMANCE TO ACI 330R-08. UNLESS OTHERWISE NOTED.
- 5. ANY CURBS OR PAVEMENT NEGATIVELY IMPACTED BY CONSTRUCTION ACTIVITY SHALL BE REPLACED TO MATCH EXISTING CONDITIONS.
- 6. ALL SITE WORK SHALL CONFORM TO CITY OF ALBUQUERQUE STANDARDS FOR PUBLIC WORKS CONSTRUCTION EDITION 9 LEGEND

-----5414-----EXISTING CONTOUR ---- EXISTING INDEX CONTOUR PROPOSED INDEX CONTOUR SLOPE TIE × 4048.25 EXISTING SPOT ELEVATION × 4048.25 PROPOSED SPOT ELEVATION BOUNDARY ____ - ___ - ___ - ___ CENTERLINE — RIGHT—OF—WAY PROPOSED CURB EXISTING CURB AND GUTTER PROPOSED SIDEWALK EXISTING SIDEWALK PROPOSED SCREEN WALL ----- FLOWLINE

