Planning Department David Campbell, Director

Mayor Timothy M. Keller

November 16, 2018

David Soule, P.E. Rio Grande Engineering PO Box 93924 Albuquerque, NM 87199

RE: Sunset Gardens Apartments 86th and Sunset Gardens SW Grading Plan Stamp Date: 11/1/18 Drainage Report Stamp Date: 11/12/18 Hydrology File: L10D032

Dear Mr. Soule,

PO Box 1293 Based on the submittal received on 11/13/18, the Grading Plan and Drainage Report cannot be approved until the following are corrected:

1. Correct the following errors and typos in the Drainage Report:

- Albuquerque <u>Prior to Site Plan for Building Permit and Grading Permit:</u>
- _ _
- NM 87103
- not 84th St. Get rid of any 84th St references.
 b. Proposed Conditions. Basin E1 and E2 are captured by a Double-D inlet, not Double-A.

a. Purpose, Introduction, and Proposed Conditions. 82nd St is the correct boundary street,

www.cabq.gov

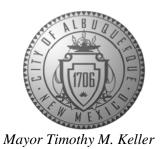
- Provide cross sections, one for each road/property line and at the points of maximum retainage. Include retaining walls and footers, property/ROW lines, existing and proposed grades, horizontal and vertical dimensions, and proposed ROW improvements such as: sidewalk, curb and gutter, and paving. The section provided is insufficient.
 - 3. For Hydrology, the cross sections must demonstrate that grading and wall construction near the property line will not endanger adjacent property or constrain its use (DPM Ch.22, section 5 part B). Any such encroachment by the retaining wall (including footer) or stable slope will be subject to the following:
 - a. Any private encroachment into the public ROW will require a revocable permit.
 - b. Any private encroachment into a public easement will require an encroachment agreement.
 - c. Any private encroachment into neighboring private property will require written and signed permission from both property owners.
 - 4. For information. The cross sections should be included in the Site Plan as well.

Planning Department David Campbell, Director

NM 87103

Mayor Timothy M. Keller

Prior to Grading/Building Permit (For Information):


- 5. This project requires an ESC Plan, submitted to the Stormwater Quality Engineer (Curtis Cherne PE, ccherne@cabq.gov or 924-3420).
- 6. Remove any "Conceptual" markings.
- 7. Provide sumps around the nyloplast inlets (Basin A & C) to generate the head required in Appendix C (Hydraulics).
- 8. Pipe capacity and profiles for public and private storm drain, calculated along the EGL, will be required prior to building permit or work order, whichever comes first.
- 9. Payment of the Fee in Lieu of managing the stormwater quality volume (Amount = 1608CF x \$8/CF = \$12,864, drainage report, Basin E-2) for the bypass volume must be made. Include a copy of the paid receipt when resubmitting.
- PO Box 1293
 10. Because the response to the initial application for this project indicated that Fee-in-Lieu of managing the stormwater quality volume can be accepted, the City will allow this option as presented. If you elect to make this application under the new ordinance (Council Bill C/S O-18-2) it must comply with § 14-5-2-6 (H). Applications made after 10/2/18 are otherwise required to comply with the new ordinance.
 - 11. Additional comments may be provided at Building Permit, based on the outcome of the above remarks and level of detail shown on plans.

Prior to Certificate of Occupancy (For Information):

www.cabq.gov 12. Engineer's Certification, per the DPM Chapter 22.7: *Engineer's Certification Checklist For Non-Subdivision* is required.

- 13. A Bernalillo County Recorded Private Facility Drainage Covenant is required for the stormwater quality pond. The original notarized form, exhibit A (legible on 8.5x11 paper), and recording fee (\$25, payable to Bernalillo County) must be turned into DRC (4th, Plaza del Sol) for routing. Please contact Charlotte LaBadie (clabadie@cabq.gov, 924-3996) or Madeline Carruthers (mtafoya@cabq.gov, 924-3997) regarding the routing and recording process for covenants. The routing and recording process for covenants can take a month or longer; Hydrology recommends beginning this process as soon as possible as to not delay approval for certificate of occupancy.
- 14. City acceptance and close-out of the public Work Order will be required, unless financial guarantee has been posted.

Planning Department David Campbell, Director

If you have any questions, please contact me at 924-3695 or dpeterson@cabq.gov.

Sincerely,

Dana Peterson, P.E. Senior Engineer, Planning Dept. Development Review Services

PO Box 1293

Albuquerque

NM 87103

www.cabq.gov

TREASURY DIVISION DAILY DEPOSIT

Transmittals for: PROJECTS Only

Payment In-Lieu for Storm Water Quality Volume Requirement

CASH COUNT	AMOUNT	ACCOUNT NUMBER	FUND NUMBER	BUSINESS UNIT	PROJECT ID	ACTIVITY ID	AMOUNT
TOTAL CHECKS	\$ 12,864.00	461615	305	PCDMD	24_MS4	7547210	\$ 12,864.00
TOTAL AMOUNT						TOTAL DEPOSIT	\$12,864.00

Hydrology#: L10D032 Payment In-Lieu For Storm Water Quality Volume Requirement
Address/Legal Description: Sunset Gardens and 86 th St SW Tr52, Unit2, Town of Atrisco Grant
DEPARTMENT NAME: Planning Department/Development Review Services, Hydrology
PREPARED BY Dana Peterson PHONE 924-3695
BUSINESS DATE 11/16/18
DUAL VERIFICATION OF DEPOSIT
AND BYEMPLOYEE SIGNATURE
REMITTER:
AMOUNT:

The Payment-in-Lieu can be paid at the Plaza del Sol Treasury, 600 2nd St. NW. **Bring two copies of this invoice to the Treasury** and provide a copy of the receipt to Hydrology, Suite 201, 600 2nd St. NW, or e-mail with the Hydrology submittal to PLNDRS@cabq.gov.

C.T.T.T.	LBU	ter ter
		NA.
	(1706)	
A A A		555

City of Albuquerque

Planning Department Development & Building Services Division

DRAINAGE AND TRANSPORTATION INFORMATION SHEET (REV 6/2018)

Project Title: SUNSET GARDENS APTS	^S Building Permit	#:	Hydrol	logy File #: <u>L10-D03</u> 2
DRB#:				
Legal Description: TRACT 52, UNIT				
City Address: SOUTH SIDE OF SUNS	SETGARDENS	BETWEEN 8	32 AND 86	
Applicant:			Contact:	
Address:				
Phone#:	Fax#:		E-mail:	
Other Contact: RIO GRANDE ENGINE			Contact:	DAVID SOULE
Address: PO BOX 93924 ALB NM				
Phone#:	Fax#: 505.872	.0999	E-mail: ^d	avid@riograndeengineering.com
TYPE OF DEVELOPMENT: PLAT	RESIDE	NCE X	DRB SITE	_ ADMIN SITE
Check all that Apply:				
DEPARTMENT: HYDROLOGY/ DRAINAGE TRAFFIC/ TRANSPORTATION		_X_BUILDIN	PROVAL/ACCE IG PERMIT APPE CATE OF OCCUI	
TYPE OF SUBMITTAL: ENGINEER/ARCHITECT CERTIFICATION PAD CERTIFICATION CONCEPTUAL G & D PLAN XGRADING PLAN DRAINAGE REPORT DRAINAGE MASTER PLAN FLOODPLAIN DEVELOPMENT PERMIT A ELEVATION CERTIFICATE CLOMR/LOMR TRAFFIC CIRCULATION LAYOUT (TCL) TRAFFIC IMPACT STUDY (TIS) STREET LIGHT LAYOUT OTHER (SPECIFY) PRE-DESIGN MEETING? IS THIS A RESUBMITTAL?:Yes XNO	PPLIC	SITE PLA SITE PLA FINAL P SIA/ REI FOUNDA GRADIN PAVING GRADIN WORK OI CLOMR/ FLOODP	LAT APPROVAJ LEASE OF FINAN ATION PERMIT A G PERMIT APPH PPROVAL PERMIT APPRO G/ PAD CERTIF RDER APPROVAJ	APPROVAL PERMIT APPROVAL L NCIAL GUARANTEE APPROVAL ROVAL OVAL ICATION L MENT PERMIT
DATE SUBMITTED:	By:			
COA STAFF:	ELECTRONIC SUB		5D:	-

Planning Department David Campbell, Director

Mayor Timothy M. Keller

October 12, 2018

David Soule, P.E. Rio Grande Engineering PO Box 93924 Albuquerque, NM 87199

RE: Sunset Gardens Apartments 86th and Sunset Gardens SW Grading Plan Stamp Date: 10/3/18 Drainage Report Stamp Date: undated, 9/18 Hydrology File: L10D032

Prior to Site Plan for Building Permit and Grading Permit:

additional detail is required:

Dear Mr. Soule,

PO Box 1293 Based on the submittal received on 10/3/18, the Grading Plan and Drainage Report cannot be approved until the following are corrected and a complete resubmittal is made:

Albuquerque

NM 87103

www.cabq.gov

a. Define (hatch) the areas of impervious vs. pervious land cover. PROVIDED MAP
b. Delineate the areas draining to each first flush pond and quantify the required vs. provided volume for each (include supporting calcs in the Report). PROVIDED

1. Provide a full size subbasin map; annotations are illegible on the small size provided and

c. Basin F is ROW and drive entrance and can be exempt from the first flush ponding requirement. PLAN REVISED TO INCLUDE IN FIRST FLUSH CALCULATIONS

- 2. Correct the following errors and typos in the Drainage Report:
 - a. Introduction. *Basin U* (not V) is the correct basin to reference from the Valhalla report, $Q_{100}=24.63$ cfs is still correct. The Valhalla report is under drainage file *L09D01* CORRECTED
 - b. Proposed Conditions. Basin A is the south portion (not the SW portion) and Basin B is the southeastern portion (not the SW portion). Basin B will be discharging to 82nd St (not 84th). Basin C flows are captured by a 24" nyloplast inlet (not a 12"). CORRECTED
- In Appendix B (Hydrology), *Proposed E* should be 12.55cfs, based on the land treatments proposed (see attached spreadsheet). However, the amount of land treatment D is suspect when compared to the grading plan; please correct. Also, *Proposed A* may be overstating the impervious area. WE HAVE CORRECTED UPDATED AND CALCULATIONS
- Add proposed contour labels and existing minor contour labels.
 WE HAVE ADDED THE LABELS

Planning Department David Campbell, Director

Mayor Timothy M. Keller

	5. Should there be a valley gutter or something to convey the flow from the western Basin E pond down to the D-inlet? Also, it seems like underground storage in the vicinity of the D-
	inlet would be a more effective way to capture all the imperious area runoff, especially if the
	roof runoff can be directed to the internal drive aisles.
	We are wanting sheet flow in the drive isle rather than inverted crown.
	6. Add note on the plan that "No work shall be performed in the public ROW without an
	approved Work Order or Excavation Permit." ADDED NOTE
	7. The following drainage infrastructure needs to be listed on the Infrastructure List:
	a. The single-A inlet on 82^{nd} St. This connecter pipe will need to be 18" RCP, not 12"; if
	there's a 12" stub, it'll need to be replaced to the manhole with 18".
	b. The new single-A inlet and type-E manhole on Sunset Garden.c. The new sidewalk culvert on Sunset Garden.
	d. Additional drainage infrastructure may be identified, pending final approval of this plan.
	a. Maanshar aramage mirashaetare may se raenanea, penamg mar approval of this plant
	8. Provide cross sections, one for each road/property line and at the points of maximum
	retainage. Include retaining walls and footers, property/ROW lines, existing and proposed
PO Box 1293	grades, horizontal and vertical dimensions, and proposed ROW improvements such as:
	sidewalk, curb and gutter, and paving. ADDED
	9. For Hydrology, the cross sections must demonstrate that grading and wall construction near
Albuquerque	the property line will not endanger adjacent property or constrain its use (DPM Ch.22,
	section 5 part B). Any such encroachment by the retaining wall (including footer) or stable
	slope will be subject to the following:
NM 87103	a. Any private encroachment into the public ROW will require a revocable permit.
	b. Any private encroachment into a public easement will require an encroachment agreement.
	c. Any private encroachment into neighboring private property will require written and
www.cabq.gov	signed permission from both property owners.
NO RETAINING	REQUIRED. A TYPICAL WALL DETAIL WAS ADDED TO SHOW NO ENCROACHMENT
	10. For information. The cross sections should be included in the Site Plan as well.
	GRADING PLAN INCLUDED IN SITE PLAN PACKAGE
	11. This project requires an ESC Plan, submitted to the Stormwater Quality Engineer (Curtis
ERO	SION AND SEDIMENT CONTROL PLAN BEING PREPARED FOR BUILDING PERMIT
	12. If only seeking Site Plan for Building Permit approval at this time, label the grading plan
	"Conceptual, Not For Construction" or similar and address the SPBP comments. If seeking
	SPBP and Building Permit simultaneously, forgo the conceptual markings and address all
	SPBP and Building Permit comments.
	Prior to Building Permit (For Information):
	<u>There is building remaining to mornauony.</u>

13. Remove any "Conceptual" markings.

Planning Department David Campbell, Director

Mayor Timothy M. Keller

- 14. Provide sumps around the nyloplast inlets to generate the head required in Appendix C (Hydraulics). The inlet calcs for the basin A inlet and basin E inlet will need to be reassessed once the land treatments are updated.
- 15. Pipe capacity and profiles for public and private storm drain, calculated along the EGL, will be required prior to building permit or work order, whichever comes first.
- 16. If not achieving full capture of the first flush runoff, payment of the Fee in Lieu (Amount = BypassVolume x \$8/CF) for the required first flush volume must be made.
- 17. Additional comments may be provided at Building Permit, based on the outcome of the above remarks and level of detail shown on plans.

Prior to Certificate of Occupancy (For Information):

18. Engineer's Certification, per the DPM Chapter 22.7: *Engineer's Certification Checklist For Non-Subdivision* is required.

PO Box 1293

19. A Bernalillo County Recorded <u>Private Facility Drainage Covenant</u> is required for the stormwater quality pond. The original notarized form, exhibit A (legible on 8.5x11 paper), and recording fee (\$25, payable to Bernalillo County) must be turned into DRC (4th, Plaza del Sol) for routing. Please contact Charlotte LaBadie (clabadie@cabq.gov, 924-3996) or Madeline Carruthers (mtafoya@cabq.gov, 924-3997) regarding the routing and recording process for covenants. The routing and recording process for covenants can take a month or longer; Hydrology recommends beginning this process as soon as possible as to not delay approval for certificate of occupancy.

www.cabq.gov 20. City acceptance and close-out of the public Work Order will be required, unless financial guarantee has been posted.

If you have any questions, please contact me at 924-3695 or dpeterson@cabq.gov.

Sincerely,

Dana Peterson, P.E. Senior Engineer, Planning Dept. Development Review Services

DRAINAGE REPORT

For

SUNSET GARDENS APARTMENTS

Albuquerque, New Mexico

Prepared by

Rio Grande Engineering PO Box 93924 Albuquerque, New Mexico 87199

SEPTEMBER 2018

11/12/18

David Soule P.E. No. 14522

TABLE OF CONTENTS

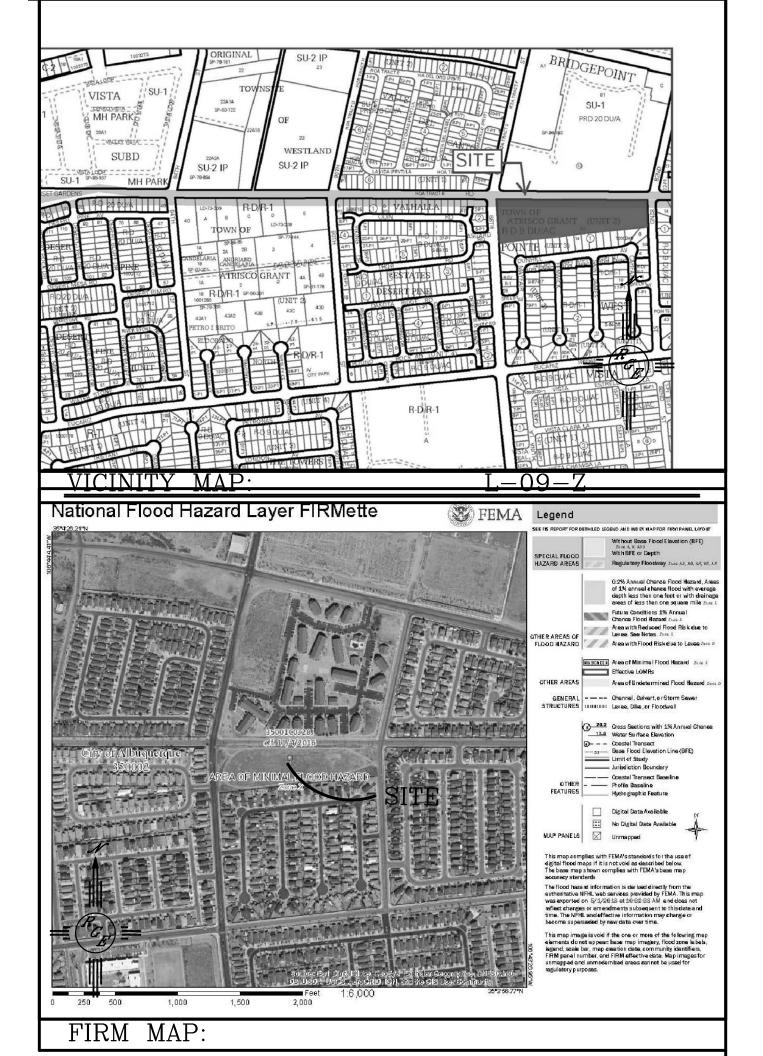
Purpose	.3
Introduction	.3
Existing Conditions	.3
Exhibit A-Vicinity Map	.4
Proposed Conditions	.5
Summary	.5

<u>Appendix</u>

Excerpts from Master Drainage Plan	A
Site Hydrology	
Hydraulic calculations	

<u>Map</u> Site Grading and Drainage Plan

PURPOSE


The purpose of this report is to provide the Drainage Management Plan for the development of a 5.8 acre multi family project located on Sunset Gardens Road SW between 86th Street and 84th Street SW. This plan was prepared in accordance with the City of Albuquerque design regulations, utilizing the City of Albuquerque's Development Process Manual drainage guidelines, and HYDROCAD. This report will demonstrate that the grading does not adversely affect the surrounding properties, nor the upstream or downstream facilities.

INTRODUCTION

The subject of this report, as shown on the Exhibit A, is a 5.8-acre parcel of land located on the south side of Sunset Gardens Road between 86th and 84th streets SW. The legal description of this site is Tract 52, unit 2 Town of Atrisco Grant. As shown on FIRM map35001C0328J, the entire site is located within Flood Zone X. The site has not been developed but is surrounded by fully developed land. The site is in native condition. Due to the upstream construction, the site is not affected by any upland flow other than minor roadway flows adjacent to the site. The site free discharges to the east. The site is located within the Amole Del Norte drainage basin. The site is adjacent to a fully improved storm drain that accounted for the development of this site. The development of the site will require the site to discharge at a rate equal to or less than the fully developed conditions assumed (Basin U-24.63 cfs)for this site in the governing Valhalla drainage report L9/D19, which relevant excerpts can be found in appendix A.

EXISTING CONDITIONS

The site currently does not have structures on it but has been impacted by minor human foot and off road vehicle traffic over the years. The site is not impacted by major upland flows. The surrounding roadway shoulders to drain onto the site. The site currently discharges all of its flow to the East.

PROPOSED CONDITIONS

The proposed improvements consist of a new multi family apartment complex with associated open space and paved parking areas. The lots shall drain from west to east and will be captured by inlets and conveyed to the existing 54" storm drain in Sunset Gardens.

The site consists of 5 onsite basins and one offsite. Basin A contains the southern portion of the site. This basin encompasses 1.02 acres and drains thru several first flush ponds and ultimately discharges 3.72 cfs to a 24" inlet and 18" storm drain that will connect to the existing drain in sunset gardens. Basin B consists of the south eastern .22 acres of the site. This portion of this site contains the rear portion of some buildings and landscape areas. This basin is below the proposed storm drain connection and will free discharge to 82th street. The construction of the western half of the street will include a singe A inlet that will capture this flow of 0.73 cfs in addition to the roadway flow. Basin C contains .41 acres consisting of the rear portion of several buildings and the landscape area. The flow of 1.33 cfs is captured by a single 24" inlet connected to the new storm drain that will be connected to the existing Sunset Gardens storm drain. Basin D contains .3 acres consisting of the rear portion of several buildings and the landscaping this basin will discharge 0.89 cfs to Sunset Gardens via a sidewalk culvert. The construction of a single A inlet near the intersection of 84th street will capture this flow as well as the flow from the south half of the road that will be constructed. Basin E1 and E2 contains the main portion of the site that encompasses the majority of the buildings and parking lot. This basin generates 15.11 cfs. The flow is captured by a Double A inlet located on the eastern portion of the parking lot. This inlet shall be connected to the existing storm drain in Sunset gardens by a new 24" storm drain. Basin E2 is the basin below the first flush pond.

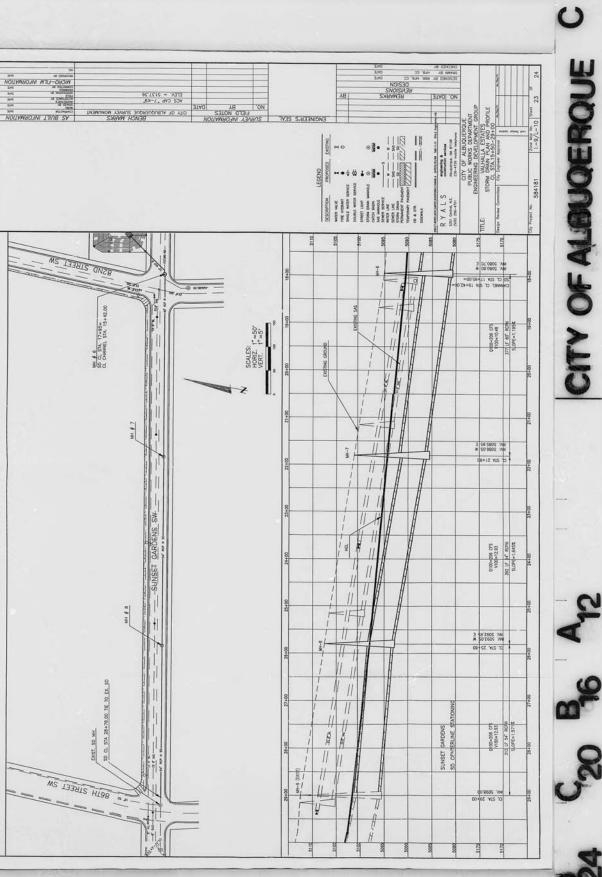
Basin F contains the southern portion of sunset gardens and the western portion of 86ths that drains to Sunset Gardens. This basin generates 2.70 cfs. This flow is captured by a new single a inlet that drains to the existing storm drain. The site grading contains multiple 1' deep water

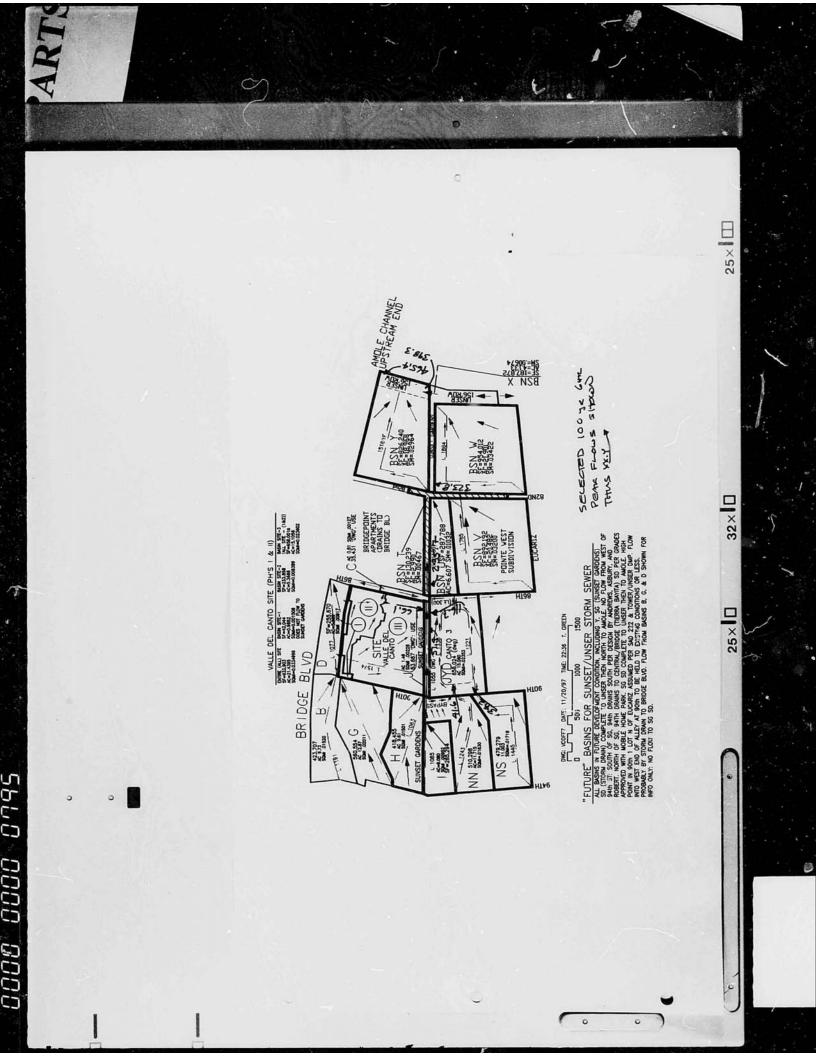
quality ponds that capture the required volume for all the basins except basin E2. Basin E2 will discharge 1608 cf which will require a \$12,864 fee in lieu

The Basin map and hydraulic calculations is located in appendix A. The pipe and inlet capacities are locate with appendix C. The total flow generated by this development will be 24.46 cfs, which is less than the fully developed assumption of 24.63 cfs for the storm drain.

SUMMARY AND RECOMMENDATIONS

This project is a development of multi family on the Southwest Mesa. The site is within the Amole Del Norte drainage basin. The site is adjacent to an existing 54" storm drain. The storm drain was designed to accept 24.63 cfs from this site. This site will discharge 24.46 cfs which is less than allowed. The site will manage its first flush requirement by shallow landscape ponds located around the site. The majority of first flush volume is retained onsite. A fee in lieu payment of \$12,864 is required prior to building permit. This drainage plan and report conforms to the governing drainage regulations of the City. Since the effected area site encompasses more than 1 acre, a NPDES permit will be required prior to any construction activity. An Erosion and Sediment Control plan is required prior to grading permit.


APPENDIX A


Excerpts from relevant plans

		O		
	/	ASYMO SUMMARY TABLE (ASYMO194) - AMAFCA Sydrologic Model - January, 1994 BUN INFUT FILE = CSGIFOOB.OAT	DATE (MOK/DAY/YR) =11/05/1597 USER NO.= FERSEEKG.194	
		FROM TO PEAK BUNOFF Sydrocrafs ID ID Area Discearge volume runo	TIME TO CFS PAGE = 1	
	C		6-4R 11-5-97 EUSER 96'S RN \$NS	
		*S FOR INTERIM CONDITIONS, THE SUBSET GARDENS STORM DRAIN STOPS AT 82nd ST *S AND FLOW IS ROUTED IN AN EARTH CRANNEL TEROUGH AN UNDEVELOPED BASIS Y *S TO THE BEAD OF THE ANDLE CHANNEL. SEE RECALLED BYD 314 AND BYD *S FOR FUTURE, THE SUBSET GARDENS STORM DRAIN CONTINUES TO UNSER THEM *S NORTH TO THE FEAD OF THE AMOLE CHANNEL. A FULLY DEVELOPED BASIS Y *S CONTRIBUTES TO THIS FLOW, AS DO BASINS V (FOLKTE WEST), W, & I.	euser %'s KNEN-	
		-S CONDITIONS TO THE TOOL AS DO WALKS & TOTALE BEST, F, F, F. T. -S ALL BASINSEKCEPT BASIN Y AS NOTED ABOVE ARE IN FUTURE FULLY-DEVELOPED -S CONDITIONS BASED ON CORRENT IONING & DEVELOPMENT, CUBRENT DEVELOPMENT PLANS, -S AND ON ENGINEERING JUDGHENT. -S		
		RAISFALL TYPE: 1 COMFUTE SM HTD I - 1 .00952 18.54 .617 1.211 COMFUTE SM HTD H - 2 .01501 35.52 1.301 1.622		
		*S E PLUS H PLUS I AT SUBSET GARDENS & 90TH FOLLOWS ADD HTD 208.00 1& 2 3 .02453 55.25 1.918 1.460 *S DIVIDE SO 1ST 3.5 CFS (1D=6) S OM 90TH (ON HOLD): 1D=4 E ON SUBSET GARDENS OLVIDE HTD 90.5.7AST.SG 3 6 .01052 8.60 .822 1.460	and a second second	
		<u>SG.E.OF.90 AND 4 .01401 46.65</u> 1.096 1.466 *S ROUTE MAIN FLOW EAST DOWN SG FROM 90TE, FOLLOW IT TO 86TE ST ROUTE MILWEE 209.00 4 5 .01401 46.50 1.093 1.462	607 1.500 5.202 262 1.567 5.185 CCODE = .2	
	Ø	COMPUTE NH BTD J - 1 .00228 5.97 .218 1.791 ADD BYD & Advit 210.00 16 5 3 .01629 51.44 1.311 1.508 * 5 CALC CONFIDUTION FAR TO F CANTO SITE; TEEN ADD TO ETD 210 COMPUTE NH BTD SITE.11 - 1 .00839 19.39 .685 1.531	855 1.567 4.934	
		*S PARTIAL WATERBLOCK ==> FLOW > 11.5cfs TO 85TH (ID=7, BOLD FOR LATER) DIVIDE HYD 52.TO.53 1 2 .00738 11.50 .502 1.531 52.TO.85TH AND 7 .00101 7.79 .083 1.531	126 1.433 2.457	
		COMPUTE 3M STD SITE.III - 1 .02360 54.51 1.927 1.531 -5 TOTAL FLOW LEAVISG CANTO NORTH OF SUBSET CANDENS ADD STD SITE.OUT 16 2 16 .03098 56.11 2.530 1.531 -5 TOTAL FLOW SUBSET CANDERS WEST OF 85TE .	and automate success	
		ADD RTD <u>5G.W.OF.85 3616 5 .04727 115.19</u> 3.841 1.523 COMPUTE SM HTD C - 1 .00127 3.43 .126 1.521 ADD RTD 218.00 16 7 3 .00228 11.22 .208 1.711	07 1.500 4.219 PER IMP= 90.00	
1		* <u>C COMBISED FLOW TO 3678 & SUNSET GARDENS FROM NORTH & VEST: HOLD FOR LATER</u> ADD BYD 8565G.New 36 5 7 .04955 <u>125.49</u> 4.069 1.532 5	112 1.533 1.957	
0		COMPUTE NM BTD <u>XM</u> - 1 .01830 <u>32.37</u> 1.099 1.126 *5 ADD 1% STD 90.5.PAST.SC, ('EELD' SPILL SOUTH OF SUNSET GDMS INTERSECTION) ADD 3TD <u>INTO.JPN 16 6 3 .02882 41.57</u> 1.922 1.250 *5 ROUTE NORTH PART OF OFFSITE TEROUGE NORTH STREEF IN JYD	and there are a second to	
		ROUTE SCUREE 300.00 3 5 .02882 39.88 1.911 1.243 COMPUTE NM BTD <u>55 - 1 .01719 34(17</u> 1.167 1.273 5 ROUTE SOUTE PART OF OFFSITE TEROUGE SOUTE STREET IN JYD	01 1.500 3.106 ERR sint + 46.60	
c			15 1.567 3.059 CCODE = .2 ma to 73.55 7/23/97 9.4 * u3277)	0
J	-	% 0 = 41.34 N # + Ny ap 10 yr = 25.41 = (see CSGIF108.344)	ш үю нд .	
	U	100 42 SPILL OUDE NOU-> 51.94-25:41-	26.03	
		and the second	1.	
C	0		25×	□ 32×

CSG IF DO B OAT FROM TO CSG IF DO B TOROGRAPH 10 ID IDENTIFICATION NO. NO.

COMMAND

0

0

(

C

 ADD BYD
 304.00
 24.5
 3
 .04601
 72.69
 3.078

 CORFUTE SM BYD
 JTD - 17
 .02153
 54.35
 1.922

 *S TOTAL FLOW LEAVING LYD (CANTO III), INCLUDING 86H ST ROW EAST OF JTD
 JTD.7.47.85
 36754
 1.621
 5.000

 ADD BYD
 JTD.7.47.85
 36174
 .05554
 1.621
 5.000

 S ROUTE TO 86TH & SG INTERSECTION, ASSUME 46
 PIPE W/ 14 FRICTION SLOPE
 80.50
 4.58
 .06554
 116.55
 4.988

 *S * AS IF* COMBISED FLOWS AT 86TH & SUNSET GARDES: RETRIEVE '0.0F-1000' 1008
 .05851
 .11809
 .235.10
 9.047

 *S FOTURE/FULL DEFELORMENT
 FUTURE/FULL DEFELORMENT
 FUTURE/FULL DEFELORMENT
 .04667
 1.222
 .4451

 ROUTE
 108.00
 6
 .11509
 2.34.12
 9.047

 *S FOTURE/FULL DEFELORMENT
 FUTURE/FULL DEFELORMENT
 .11009
 234.12
 9.047

 *S ROUTE 86TH TO 823D IS SUBSET GARDES: COKC FIPE: S1-01 AFI
 .038.00
 6
 .11509
 234.12
 9.047

 *S ROUTE 86TH TO 823D IS SUBSET GARDES: COKC FIPE: S1-01 AFI
 .1222
 .4465
 3.609 PER IMP: 65.00 1.53130 2.622 1.34815 1.533 2.619 CCODE : 1.567 1.34764 .1 1.42440 L.511 3.092 1.42440 1.567 3.072 1.500 1.567 1.500 .446 9.493 1.79111 1.43823 4.087 PER IMP: 85.00 310.00 14 5 3.083 3.729 PER IMP: T0.00 COMPUTE NH HYD .01032 24.63 264.83 .879 1.59825 312.00 16 3 19 1.45039 1.567 3.086 ADD EYD .13408 3.253 PER IMP: 50.00 SG.AT.8280 11619 2.281 12.653 12.653 COMPUTE SH HYD 11 .03200 66.62 323.76 1.33643 1.500 1.42843 1.533 3.046 ADD EYD 3 3 314.00 W 16608 322.21 1.42844 1.567 3.031 ROUTE 64.02 2.439 1.33643 1.533 2.923 PER IMP: 50.00 COMPUTE NH BYD .03422 316.00 128 5 384.09 15.092 1.41271 1.567 2.996 ADD BYD .20030 .00574 17.11 398.29 .620 1.72616 1.500 1.567 3.967 PER INP: 80.00 COMPUTE NH HYD SG.AT.UNSER 136 3 3.006 ADD SYD AT.UNSER 136 3 4 318.00 4 5 YD - 14 399.01 78.24 15.712 2.855 1.42292 1.80576 1.567 ROUTE COMPUTE NH BYD .20704 3.011 1.500 4.125 PER IMP= 85.00 .02964 CONFUE AM BID AT 300' S OF ANOLE CRANNEL AT BRIDGE: FUTURE/FULLY DEVELOFED ADD BTD FUT.TO.AMOLE 144 5 7 .23668 465.36 18.567 1.47086 1.533 3.072 FUT. TO. AMOLE 146 5 7 15
 S INTERIM
 INTERIM
 INTERIM

 *5 INTERIM:
 RE-USE BTO 312 W/ ID=19, ROUTE IN DIRT CEAN ACROSS BASIS Y EXIST
 ROUTE YOURGE
 \$02.00
 19
 \$1.3408
 260.04
 10.374

 COMPUTE YR BYD
 YE
 15
 .02964
 26.19
 .730
 1.45076 1.600 3.030 CCODE = 10.374 .46670 1.533 1.380 PER IMP= .00 .738 15 1.27260 1.600 2.685 ADD HYD INT. 2. AMOLE 156 5 8 .16372 281.49 11.112 +5 *5 ISTERIM W/ V (POINTE WEST) *5 RE-USE HTD 312 W/ ID-19, HTD V W/ ID-11, & EVD TE W/ ID-15 *5 RE-USE HTD 312 W/ ID-19, HTD V W/ ID-11, & EVD TE W/ ID-15 *5 ROUTE IN DIRY CEAN ACROSS BASIN Y EXIST ADD BTD CEAN ACROSS BASIN Y EXIST ADD BTD CEAN ACROSS BASIN Y EXIST ROUTE YCUNGE 604.00 3 5 .16608 320.37 12.653 1.42843 1.533 3.046 3.014 CCODE = ROUTE MCUNGE INT.V. 2AMOLE 155 3 98 .19572 13.390 1.28279 1.533 2.794 349.94 ADD EYD 1.376 1.301 2.677 .123 2.801 3.937 PER IMP: 76.00 1.69764 1.500 1.500 1.500 1.500 1.500 3.817 FER INF= 70.00 3.812 FEP INF= 70.00 3.875 3.624 FER INF= 65.00 3.863 1.62555 1.53130 SITE.I -BOT.ALLEY 16 3 ADD BYD FINISE 03172 78.42 1.65558 1.500

0

O.

0

PEAK

DISCHARGE

(CFS)

72.69

AREA

(SQ 11)

.04601

TIME TO CFS

PEAK

1.600

1.500

11-

ACRE

2.469

PAGE = 2

NOTATION

11-5-74

RUNOFF

1.25449

(INCHES) (HOURS)

RUNOFF VOLUME (AC-FT)

3.078

25×

.2

32× 0

0

0

0

RUN DATE (MON/DAY/YR) =11/05/1997 USER NO.= PERSEENG.194

ABYMO SUMMARY TABLE (ABYMO194) - AMAFCA Bydrologic Model - January, 1994 INFUT FILE = CSGIF10B.DAT

COMMAND	HYDROGRAPH IDENTIFICATION	FROM ID NO.	TO 1D NO.	AREA (SQ MI)	PEAX DISCHARGE (CFS)	RUKOFF VOLUME (AC-FT)	RUNOFF (INCHES)	TIME TO PEAK (HOURS)	CFS PAGE PER ACRE NOTAT	
	IFIOA.DAT: Canto /		et Garde	as, Isteria	& Future condi	tions,			11-5-9 9's camp e NN, NS	1
	hr stors, version								11-5-1	
15							1	1 Yr		
	RIM CONDITIONS, TH IS ROUTED IN AN E						(g's LAND	
	EAD OF THE ANOLE (10	A DI-	·/·· . NS	
	RE, THE SUNSET CAN						110		O NNI	
	THE BEAD OF THE A						m	TWID	•	
	TES TO THIS FLOW,						1			
15										
IS ALL BAST	NS EXCEPT BASIN	Y as H	OTED AB	OVE ARE IN	FUTURE FULLY-	DEVELOPED				
AS CONDITOR	S BASED ON CURRENT	ZONIN	IG & DEV	ELOPHENT, CU	RRENT DEVELOPS	ENT PLANS,				
	NGINEERING JUDGMEN	17.								
15										
RAINFALL T									RAIN6=	1.480
COMPUTE NH		•	1	.00952	9.84	.321	.63243	1.500	1.615 PER IMP:	
COMPUTE NH			2	.01501	21.94	.766	.95742	1.500	2.284 PER IMP=	70.00
	PLUS I AT SUNSET									
ADD EYD	208.00			.02453	31.78	1.088	.83127	1.500	2.024	
	0 15T 8.6 CFS (ID:			(ON HOLD): 1 .01508	DE4 E ON SUNSE 8.60	T GARDENS	.83127	1.367	.891	
DIVIDE HYD	90.5.PAST.5G	3	6	.01508	23.18	.009	.83127	1.500	3.835	
	SG.E.OF.90 IN FLOW EAST DOWN					. 417	.03121	1.500	3.033	
ROUTE HOUTE HA		50 PAL		.00945	22.36	.419	.83156	1.567	3.698 CCODE =	.2
CONDUCT IN	EVA 1		i	.00228	3.71	.133	1.09340	1.500	2.541 PER IMP:	
ADD EVD 44	HOVE CANT 210.00	15 5	i	.01173	25.41	.552	.88241	1.567	3.386	
	TRIBUTING PART OF									
COMPUTE NH			1	.00839	11.35	.398	.88845	1.500	2.113 PER IMP=	65.00
S PARTIAL	WATERBLOCK ==> FLO	W > 11		TO 86TE (ID=7	, BOLD FOR LAS	ER)				
DIVIDE HYD	\$2.TO.53	1	2	.00839	11.35	.398	.88841	1.500	2.113	
	\$2.TO.86TH	AND	7	.00000	.00	.000	.00000	033	.000	
COMPUTE NH		•	1	.02360	31.91	1.118	.88845	1.500	2.112 PER IMP=	65.00
	OW LEAVING CANTO N									
ADD HYD	SITE.OUT			.03199	43.26	1.516	.88843	1.500	2.113	
	OW SUNSET GARDENS									
ADD EYD	SG.W.OF.86		5	.04372	66.30 2.15	2.068	.88681	1.533	2.370 2.651 PER IMP:	00.00
ADD EYD	EYD C 218.00		1	.00127	2.15	.078	1.14442	1.500	2.651	90.00
	FLOW TO BETH & SU						1.19994	1.500	2.031	
ADD EYD	B645C.NEW			.04499	68.35	2.145	.89409	1.533	2.374	
15			-		Marca .					
COMPUTE NH	EYD XX		1	.01830	19.79	.655	.67082	1.500	1.690 PER IMP:	42.00
*S ADD IN E	TD 90.5.PAST.SC, (SPILL							
ADD EYD	INTO. JYDN		3	.03338	28.39	1.323	.74331	1.500	1.329	
	RTE PART OF OFFSIT	E TERC		TE STREET IN	JYD					
ROUTE MCUNG		3	5	.03338	27.42	1.315	.73832	1.600	1.284 CCODE =	.1
CONPUTE NH			1	.01719	20.10	.681	.74294	1.500	1.827 PER IMP=	49.80
	UTE PART OF OFFSIT					1.00				
ROUTE MCUNG	E 302.00	1	2	.01719	19.12	.675	.73590	1.600	1.738 CCODE =	.1

O APA DAY UP 10 -YR + ANY SPILLO NON PRON JYD

e

0

0

C

ï

(

0

25×

32×

0

(

0

0

0

		~	Ŧ					11-5	-97 (2
SALE	. CSG TPIDE	5.m	FROM	TO		PEAK	RUNOFF		TIME TO	CFS	PAGE =	1
	EYDROGR	APE	ID	ID	AREA	DISCHARGE	VOLUME	RUNOFF	PEAK	PER		
DEMAND	IDENTIFICAT	105	NO.	¥0.	(SQ HI)	(CFS)	(AC-FT)	(INCHES)	(HOURS)	ACRE	NOTATI	ON
D HYD	304	00	26 5	3	.05057	46.55	1.989	.73748	1.600	1.438		
DEPUTE N				17	.02353	31.81	1.115	.88845	1.500	2.112	PER IMP:	65.0
PAPULE A	FLOW LEAVING JYD	-121	PPA 11									
					.07410	69.68	3.104	.78541	1.567	1.469		
D EYD	JYD.E.AT	.80	341/	4				./0311	1.307	1.103		
	TO BETE & SG INT			ASSUM	E 48" PIPE W	18 FRICTION S	LUPE			1 112		
UTE MCU	KGE 86.S.OF	.SG	4		.07410	69.40	3.104	.78533	1.600	1.403	CCODE =	
*AS IF	. COMBINED FLOWS					TRIEVE 'ON-EOL	<u>.0' 10=7</u>		1			
D HYD	TOT.SC	686	56 7	6	.11909	135.38	5.249	.82641	1.533	1.776		
		and the base										
FUTURE	FULL DEVELOPMEN	T		FUTUR	E/FULL DEVEL	OPHENT						
ROUTE	86TH TO 82ND IN	SUNS	SET GA	DEES:	CONC PIPE: SI	E=.01 API						
UTE		8.00		5	.11909	134.17	5.249	.82641	1.567	1.760		
MPOTE N				ĩ	.00467	7.59	.272	1.09340	1.500	2.538	PER IMP:	85.
D HYD			16 5	i	.12376	140.42	5.521	.83648	1.567	1.773		
		0.00	10.2	ĩ	.01032	14.66	.517	.93969	1.500		PER IMP:	70
MPUTE N						152.60	6.038	.84442	1.567	1.778		
D EYD		2.00		19	.13408				1.500		PER IMP:	60
MPUTE N		۷		11	.03200	36.76	1.254	.73474				30.
D EYD	SG.AT.8			3	.16608	187.38	7.292	.82329	1.533	1.763		
UTE	314	4.00	3	5	.16608	186.17	7.292	.82329	1.567	1.752		122
MPUTE N	M HYD	¥		12	.03422	35.41	1.341	.73474	1.533		PER IMP:	50.
DEYD	316	5.00	126 5	3	.20030	220.23	8.633	.80816	1.567	1.718		
MPUTE N				13	.00674	10.49	.375	1.04216	1.500	2.431	PER IMP:	80.
D EYD	SG.AT.U			1	.20704	228.90	9.008	.81577	1.567	1.727		
DUTE		8.00		5	.20704	230.04	9,008	.81577	1.567	1.736		
				14	.02964	48.72	1.742	1.10226	1.500		PER IMP:	85
MPUTE N	A STO	YD						1.10220	1.500	2.303	ten mi-	
	UNSER APX 300' S							45145	1.557	1.784		
DD HYD	FUT.TO.A.	OLE	146 5	1	.23668	270.23	10.750	.85165	1.50/	1./04		
1												
S INTERI	X			TERIM			ERIM					
S INTERI	M M: RE-USE BYD 3	2 W,			E IN DIRT CE	AN ACROSS BASIN	Y EXIST					
INTERI INTERI	IN: RE-USE BYD 3			9, ROUT	E IN DIRT CE .13408			.84373	1.600		CCODE =	
S INTERI S INTERI DUTE MCU	INCE SO	2.00	/ ID=1 19	9, ROUT		AN ACROSS BASIN	Y EXIST	.84373	1.600		CCODE = PER 1MP=	
S INTERI S INTERI DUTE NCU	INCE SO		/ ID=1 19	9, ROUT 5	.13408	AN ACROSS BASIN 150.48	6.033					
S INTERI S INTERI DUTE MCU DMPUTE N	IN: RE-USE BYD 3 INGE 50 IM BYD	2.00 YE	/ ID=1 19 -	9, ROUT 5 15	.13408	AN ACROSS BASIN 150.48 5.10	6.033				PER 1MP=	
S INTERI S INTERI DUTE MCU DMPUTE N S DD HYD	INCE SO	2.00 YE	/ ID=1 19 -	9, ROUT 5 15	.13408	AN ACROSS BASIN 150.48	6.033 .142	.08995	1.533	.269	PER 1MP=	
S INTERI S INTERI DUTE MCU DMFUTE N S DD HYD S INTERI	IN: RE-USE BYD 31 JNGE 507 IM BYD INT.2.AJ IM W/ V (POINTE 1	2.00 YE BOLE	/ ID=1 19 - 15& 5	9, ROUT 5 15 8	.13408 .02964 .16372	AN ACROSS BASII 150.48 5.10 154.77 W/ V (POINTE W	6.033 .142 6.176	.08995	1.533	.269	PER 1MP=	
S INTERI S INTERI DUTE MCU DMPUTE N S DD HYD S INTERI S RE-USE	IN: RE-USE EYD 31 JNGE 507 IN EYD INT.2.AJ IN W/ V (POINTE 1 E EYD 312 W/ ID=1	2.00 YE KOLE WEST 19, 1	/ ID=1 19 - 15% 5] EYD V	9, ROUT 5 15 8 W/ ID=1	.13408 .02964 .16372 INTERIM 1, 6 EYD YE	AN ACROSS BASII 150.48 5.10 154.77 W/ V (POINTE W	6.033 .142 6.176	.08995	1.533	.269	PER 1MP=	
S INTERI S INTERI DUTE MCU DMFUTE N S DD HYD S INTERI S RE-USE S ROUTE	IN: RE-USE EYD 31 INGE 507 IN EYD INT.2.AU INT.2.AU INT.2.AU INT.2.AU INT.2.AU INT.2.AU INT.2.AU INT.2.AU INT.2.AU INT.2.AU INT.2.AU INT.2.AU	YE KOLE WEST 19, 1 ROSS	/ ID=1 19 - 15% 5) EYD V BASIN	9, ROUT 5 15 8 V/ ID=1 Y EXIS	.13408 .02964 .16372 INTERIM 1, 6 HYD YE	AN ACROSS BASII 150.48 5.10 <u>154.77</u> W/ V (POINTE W W/ ID=15	6.033 .142 6.376	.08995 .70726	1.533	.269	PER 1MP=	
S INTERI S INTERI DUTE MCU OMPUTE N S DD HYD S INTERI S RE-USE S ROUTE	IN: RE-USE EYD 31 INGE 507 IN EYD INT.2.AU INT.2.AU INT.2.AU INT.2.AU INT.2.AU INT.2.AU INT.2.AU INT.2.AU INT.2.AU INT.2.AU INT.2.AU INT.2.AU	YE KOLE WEST 19, 1 ROSS	/ ID=1 19 - 15% 5] EYD V	9, ROUT 5 15 8 V/ ID=1 Y EXIS	.13408 .02964 .16372 INTERIM 1, 6 EYD YE	AN ACROSS BASII 150.48 5.10 154.77 W/ V (POINTE W	6.033 .142 6.376 <u>EST)</u> 7.292	.08995 .70726 .82329	1.533	.269 1.477 1.763	PER IMP=	
S INTERI S INTERI DUTE MCU DMFUTE NCU DMFUTE N S DD HYD S INTERI S RE-USE S ROUTE DD HYD	(M: RE-USE EYD 3) INGE 50: (M EYD INT.2.A) IN W/ V (POINTE 1 E EYD 312 W/ ID= IN DIRT CEAN AC 60:	YE KOLE WEST 19, 1 ROSS	/ ID=1 19 - 15& 5) EYD V BASIN 19&11	9, ROUT 5 15 8 V/ ID=1 Y EXIS	.13408 .02964 .16372 INTERIM 1, 6 HYD YE	AN ACROSS BASII 150.48 5.10 <u>154.77</u> W/ V (POINTE W W/ ID=15	6.033 .142 6.376	.08995 .70726	1.533	.269 1.477 1.763	PER 1MP=	
S INTERI S INTERI DUTE NCU DOMPUTE NCU DD HYD S INTERI S RE-USE S ROUTE DD HYD DUTE NCU	(M: RE-USE BYD 3) INGE 50; (M BYD INT.2.A) INT.2.A IN W/ V (POINTE 1 E BYD 312 W/ ID= IN DIRT CBAN AC) INGE 60	2.00 YE HOLE WEST 19, 1 ROSS 2.00 4.00	/ ID=1 19 - 15& 5) EYD V BASIN 19611 3	9, ROUT 5 15 8 V/ ID=1 Y EXIS 3 5	.13408 .02964 .16372 INTERIM 1, 5 HYD YE IT .16608	AN ACROSS BASII 150.48 5.10 <u>154.77</u> W/ V (POINTE WI W/ ID=15 187.38	K Y EXIST 6.033 .142 6.174 EST) 7.292 7.282	.08995 .70726 .82329	1.533	.269 1.477 1.763	PER IMP:	
S INTERI S INTERI DUTE NCU DNPUTE NCU DD HYD S INTERI S RE-USE S ROUTE DD HYD DUTE NCU DD HYD	(M: RE-USE EYD 3) INGE 50: (M EYD INT.2.A) IN W/ V (POINTE 1 E EYD 312 W/ ID= IN DIRT CEAN AC 60:	2.00 YE HOLE WEST 19, 1 ROSS 2.00 4.00	/ ID=1 19 - 15& 5) EYD V BASIN 19611 3	9, ROUT 5 15 8 V/ ID=1 Y EXIS 3 5	.13408 .02964 .16372 INTERIM 1, 5 EYD YE .16608 .16608	AN ACROSS BASII 150.48 5.10 <u>154.77</u> W/ V (POINTE W W/ ID=15 187.38 183.87	K Y EXIST 6.033 .142 6.174 EST) 7.292 7.282	.08996 .70726 .82329 .82214	1.533 1.600 1.533 1.600	.269 1.477 1.763 1.730	PER IMP:	
S INTERI S INTERI DUTE MCU DMPUTE MCU DMPUTE MCU DMPUTE MCU S INTERI S RE-USE S ROUTE DD EYD DUTE MCU DD EYD S	(M: RE-USE BYD 3) INGE 50; (M BYD INT.2.A) INT.2.A IN W/ V (POINTE 1 E BYD 312 W/ ID= IN DIRT CBAN AC) INGE 60	2.00 YE HOLE WEST 19, 1 ROSS 2.00 4.00	/ ID=1 19 - 15& 5) EYD V BASIN 19611 3	9, ROUT 5 15 8 V/ ID=1 Y EXIS 3 5	.13408 .02964 .16372 INTERIM 1, 5 EYD YE .16608 .16608	AN ACROSS BASII 150.48 5.10 <u>154.77</u> W/ V (POINTE W W/ ID=15 187.38 183.87	K Y EXIST 6.033 .142 6.174 EST) 7.292 7.282	.08996 .70726 .82329 .82214	1.533 1.600 1.533 1.600	.269 1.477 1.763 1.730	PER IMP:	
INTERI INTERI NUTE MCU INFUTE N INTERI RE-USE ROUTE DUTE MCU DUTE MCU	(M: RE-USE BYD 3) INGE 50; (M BYD INT.2.A) INT.2.A IN W/ V (POINTE 1 E BYD 312 W/ ID= IN DIRT CBAN AC) INGE 60	2.00 YE NOLE NEST 19, 1 ROSS 2.00 4.00 NDLE	/ ID=1 19 - 154 5) EYD V BASIN 19611 3 156 3	9, ROUT 5 15 8 V/ ID=1 Y EXIS 3 5	.13408 .02964 .16372 INTERIM .1, & EYD YE .16608 .16608 .19572	AN ACROSS BASII 150.48 5.10 <u>154.77</u> W/ V (POINTE W W/ ID=15 187.38 183.87	K Y EXIST 6.033 .142 6.174 EST) 7.292 7.282	.08996 .70726 .82329 .82214	1.533 1.600 1.533 1.600	.269 1.477 1.763 1.730	PER IMP:	
S INTERI S INTERI DUTE MCU DAPUTE MCU DAPUTE MCU DAPUTE MCU DA HYD S INTERI S RE-USE S ROUTE DD HYD DUTE MCU DD HYD S S S ALLEY	IX: BE-USE BYD 33 INGE 50: IM BYD INT.2.AJ INT.2.AJ INT.2.AJ INT.2.AJ INT.2.AJ INT.2.AJ INT.2.AJ INT.V.2AJ INT.V.2AJ	2.00 YE HOLE WEST 19, 1 ROSS 2.00 4.00 HOLE	/ ID=1 19 - 154 5) EYD V BASIN 19611 3 156 3 ALLEY	9, ROUT 5 15 8 V/ ID=1 Y EXIS 3 5 98	.13408 .02964 .16372 INTERIM .1, & EYD YE .16608 .16608 .19572	AK ACROSS BASI 150.48 5.10 154.77 W/ V (POINTE W) W/ 1D=15 187.38 183.87 192.48 ALLEY	7.292 7.435	.08996 .70726 .82329 .82214	1.533 1.600 1.533 1.600	.269 1.477 1.763 1.730	PER IMP:	
S INTERI S INTERI DUTE MCU OMFUTE NCU DD HYD S INTERI S INTERI S RE-USE S ROUTE DD HYD DUTE MCU DD HYD S S S ALLEY S BASINS	IN: EE-USE EYD 33 INGE 50: IN EYD INY.2.AI IN W/ V (POINTE 1 E HYD 312 W/ ID- IN DIRY CBAN AC INGE 60 INGE 60 INT.V.2AU S B. G. 4 SITE-L	2.00 YE MOLE WEST 19, 1 ROSS 2.00 4.00 MULE	/ ID=1 19 - 15& 5) EYD V BASIN 19&11 3 15& 3 ALLEY ALLEY.	9, ROUT 5 15 8 W/ ID=1 Y EXIS 3 5 98 BASIN	.13408 .02964 .16372 INTERIM 1, & ETD YE .16608 .16608 .19572 A BOT CONTRI	AK ACROSS BASI 150.48 5.10 154.77 W/ V (POINTE W W/ ID=15 187.38 183.67 192.48 ALLEY BUTE INTERIN/F	F Y EXIST 6.033 .142 6.376 6.376 7.292 7.292 7.282 7.435 7.435	.08996 .70726 .82329 .82214	1.533 1.600 1.533 1.600	.269 1.477 1.763 1.730	PER IMP:	
S INTERI S INTERI DUTE MCU MFUTE NCU DD HYD S INTERI S INTERI S RE-USE S ROUTE DD HYD S S S ALLEY S BASINS S FUTURE	IN: BEUSE BYD 33 INGE 50: IM BYD INY 2. N INY 2. N INY 2. N INY 2. N INY 2. N INGE 600 INY 2. N INY 2.	2.00 YE HOLE WEST 19, 1 ROSS 2.00 HOLE TO FLOW	/ ID=1 19 - 15& 5) EYD V BASIN 19&11 3 15& 3 ALLEY ALLEY. S FOR	9, ROUT 5 15 8 4 7 EXIS 3 5 98 BASIN INFO 01	. 13408 .02964 .16372 INTERIM 1, & EYD YE .16608 .16608 .19572 A ROT CONTRII ALT: BOLD TO	AN ACROSS BASI 150.48 5.10 154.77 W/ V (POINTE W W/ ID-15 187.38 183.87 192.48 ALLEY ENTEL INTERIM/F	F Y EXIST 6.033 .142 6.376 EST) 7.292 7.282 7.282 7.435 UTURE TLORS	.08995 .70726 .82329 .82214 .71223	1.533 1.600 1.533 1.600 1.533	.269 1.477 1.763 1.730 1.537	PER 1MP=	
S INTERI S INTERI OUTE MCU OMPUTE MCU ODD HYD S S INTERI S RE-USE S ROUTE DD HYD DD HYD DD HYD S S S ALLEY S BALLEY S FUTURE OMPUTE S	IN: BE-USE BYD 33 INGE 50: IM BYD INT.2.AI	2.00 YE KOLE KOLE 19, 1 ROSS 2.00 4.00 MJLE TO FLOW B	/ ID=1' 19 - 15% 5) BASIN 19%11 3 15% 3 ALLEY ALLEY. S FOR	9, ROUT 5 15 8 V/ ID=1 Y EXIS 3 5 98 BASIN INFO OJ 1	. 13408 .02964 .16372 INTERIM 11, 6 RYD YE 15 .16608 .16608 .19572 A BOT CONTRI (LY: BOLD TO .01520	AN ACROSS BASI 150.48 5.10 154.77 W/ V (POINTE W W/ ID=15 187.38 183.87 193.46 ALLEY . BUTE INTERIM/FI EXISTING COMPUT 23.33	F Y EXIST 6.033 .142 6.376 EST) 7.292 7.282 7.282 7.435 UTURE HORE 1005 .823	.08995 .70726 .82329 .82214 .71223 1.01536	1.533 1.600 1.533 1.600 1.533	.269 1.477 1.763 1.730 1.537 2.398	PER IMP: CCODE =	76.
S INTERI S INTERI OUTE MCU OMFUTE NS S DD HYD S S INTERI S RE-USE S ROUTE DD HYD S S ROUTE S S ROUTE S S S S S S S S S S S S S S S S S S S	IN: BE-USE BYD 33 INGE 50: IM HTD INT.2.AI END 312 W/ ID- IN DIRT CBAS AC INGE 60: INGE 60: INT.Y.2AI S. G. 4 SITE-I E/INTERIM ALLEY IM BYD	2.00 YE KOLE KOLE 19, 1 ROSS 2.00 4.00 NJLE TO FLOW B G	/ ID=1' 19 - 154 5) EYD V BASIN 19611 3 156 3 ALLEY ALLEY. 5 FOR -	9, ROUT 5 15 8 V/ ID=1 Y EXIS 3 5 98 BASIN INFO OI 1 2	. 13408 .02964 .16372 INTERIM 11, & EYD YE .16608 .16608 .19572 A ROT CONTRI ILY: BOLD TO .01500 .01501	AN ACROSS BASI 150.48 5.10 154.77 W/ V (POINTE W W/ ID-15 187.38 183.87 192.46 ALLEY EXISTING COMDI 23.33 21.94	6.033 .142 6.176 <u>557</u> 7.292 7.282 7.282 7.435 - 7.435 <u>00006</u> <u>10065</u> .823 .766	.08995 .70726 .82329 .82214 .71223 1.01535 .95742	1.533 1.600 1.533 1.600 1.533	.269 1.477 1.763 1.730 1.537 2.398 2.284	PER IMP: CCODE : PER IMP: PER IMP:	76.
OUTE MCU OMFUTE N S DD HYD S S INTERI S RE-USE S ROUTE DD HYD S S ALLEY S BASINS S FUTURE OMPUTE S DD HYD S DD HYD	IN: BEUSE BYD 33 INGE 50: IM BYD INY 2.A. INY 2.A.	2.00 YE MOLE MEST 19, 1 PROSS 2.00 MOLE TO MOLE ELOW B G G LLEY	/ ID=1 19 - 15% 5) EYD V BASIN 19%11 3 15% 3 ALLEY ALLEY. 5 FOR - 1% 2	9, ROUT 5 15 8 Y EXIS 3 5 98 BASIN 1NFO 01 2 3		AN ACROSS BASI 150.48 5.10 154.77 V/ V (POINTE W W/ ID-15 167.38 183.67 192.46 ALLEY RUTE INTERIM/F EXISTING COMDI 23.33 21.94 45.27	6 Y EXIST 6.031 .142 6.174 6.174 6.174 7.292 7.292 7.292 7.292 7.292 7.292 7.435 .013 .013 .013 .013 .014 .0	.08995 .70726 .82329 .82214 .71223 1.01536 .95742 .98656	1.533 1.600 1.533 1.600 1.533 1.500 1.500 1.500	.269 1.477 1.763 1.730 1.537 2.398 2.284 2.341	PER 1MP= CCODE = PER 1MP= PER 1MP=	76. 70.
S INTERI S INTERI OUTE MCU OMFUTE NS S DD HYD S S INTERI S RE-USE S ROUTE DD HYD S S ROUTE S S ROUTE S S S S S S S S S S S S S S S S S S S	IN: IE-USE ETD 33 INGE 50: IM ETD INT.2.AI IN M/ V (POINTE E HTD 312 W/ ID= IN DIRT CEANS AC INGE 600 INGE 600 INGE 600 INGE 600 INT.2.AI INT.2.A	2.00 YE MOLE MEST 19, 1 PROSS 2.00 MOLE TO MOLE ELOW B G G LLET TE.I	/ ID=1 19 - 15% 5) EYD V BASIN 19%11 3 15% 3 ALLEY ALLEY. 5 FOR - 1% 2	9, ROUT 5 15 8 Y/ ID=1 Y EXIS 3 5 98 BASIM INFO 01 1 2 3 1	. 13408 .02964 .16372 INTERIM 11, & EYD YE .16608 .16608 .19572 A ROT CONTRI ILY: BOLD TO .01500 .01501	AN ACROSS BASI 150.48 5.10 154.77 W/ V (POINTE W W/ ID-15 187.38 183.87 192.46 ALLEY EXISTING COMDI 23.33 21.94	6.033 .142 6.176 <u>557</u> 7.292 7.282 7.282 7.435 - 7.435 <u>00006</u> <u>10065</u> .823 .766	.08995 .70726 .82329 .82214 .71223 1.01535 .95742	1.533 1.600 1.533 1.600 1.533	.269 1.477 1.763 1.730 1.537 2.398 2.284 2.341	PER IMP= CCODE = PER IMP= PER IMP= PER IMP=	76. 70.

ø

U

0

0

25×

32×

AHYMO PROGRAM (AHYMO194) - AMAFCA Hydrologic Model - January, 1994 RUN DATE (MON/DAY/YR) = 11/05/1997 START TIME (HR:MIN:SEC) = 12:36:46 USER NO.= PERSEENG.194 INPUT FILE = CSGIF00B.DAT

* file (tg386) csgif00a.dat 10-15-96

FINISE CODES AT START = 027 038 107 050 083

0000	0 0	000	۷.,	V	υu	۷.	
CONTROL	CODES	AT END	1 2 1	0 0	0 1	0 0	

*C PRINT CODES: 0=ALL; 1=TOTALS ONLY; 2=EVERY 2ND + TOTALS; 3,5,10,20 SIMILAR C RATING CURVE ID REGATIVE => COMPUTE BUT NOT PRINT RATING CURVE +C RATING CURVE IN REGATIVE => FLOODPLAIN SLOPE, IN POSITIVE => CHANNEL SLOPE +S FILE CSGIFGOA.DAT: Canto / Sunset Gardens, Interim & Fature conditions, *S (1)00-yr 6-hr stors, version A

S FOR INTERIM CONDITIONS, THE SUNSET GARDENS STORM DRAIN STOPS AT 82ad ST *S AND FLOW IS ROUTED IN AN EARTE CHANNEL TEROUGH AN UNDEVELOPED BASIN Y *S TO THE HEAD OF THE ANDLE CHANNEL. SEE RECALLED HYD 314 AND HYD _____

*C FOR INTERIM, FLOW AT 62nd & SUBSET GARDENS --PRIOR TO THE ADDITION OF FLOW *C BASIN V (POINTE WEST SUBDY)-- IS SAVED FOR LATER RECALL AND ROUTING. *C THE HYDS DIRECTLY FOLLOWING THE UNSAVED BYD 314 DON'T APPLY TO INTERIM

*5 FOR FUTURE, THE SUNSET CARDENS STORM DRAIN CONTINUES TO UNSER THEM *5 NORTH TO THE HEAD OF THE AMOLE CHANNEL. A FULLY DEVELOPED BASIN Y *5 CONTRIBUTES TO THIS FLOW, AS DO BASINS V (POINTE WEST), W, & X.

*5 ALL BASINS --ERCEPT BASIN Y AS NOTED ABOVE-- ARE IN FUTURE FULLY-DEVELOPED *5 CONDITONS BASED ON CURRENT LONING & DEVELOPMENT, CURRENT DEVELOPMENT PLANS, *5 AND ON ENGINEERING JUDGKENT. +5

*C BASIN & CHANNEL ROUTING PARAMETERS REFLECT THE JUDGMENT OF THE ENGINEER, *C AND MAY DIFFER FROM OTHER STUDIES IN THE AREA. *C

*C REVISION NOTES: BASED ON FILES VCF4100 & SGUIDO.DAT BY TUCKER GREEN P.E. EASED ON FILES VC4100 & SCUIDO.DAT BY TUCKER CHEEM F.E. REVISED 10-15-97 TO REFLECT NEW BASIN BOUNDARIES BASED ON DISCUSSION WITH THE CITY, THE ENGINEERS FOR SAN 222, AND DEVELOPERS OF NEARBY PROFERTIES, ESPECIALLY BASINS V & W. IN FARTICULAR: (1) BASIN M (S OF SUNSET CARDENS, BETWEEN 94TH & 90TH) IS REMOVED FOM INTERIM & FOTURE CONDITION CASES BY PROPOSED CONSTRUCTION OF 94TH ST; AND (2) THE HIGH FOIT IN 65 ST IS MOVED NORTH TO THE SOUTH PROFERTY LINE OF THE 10 •0 *C +C :0 CANTO III SITE (BASIN JYD). +0

BAINFALLS PER ALBUQUERQUE NM DPM - COMMENT OUT TEOSE THAT DON'T APPLY TYPE 1 IS 6-BR STORM PER NOAA ATLAS 2 W PEAK INTENSITY @ 1.4 BRS (EQ C1-C5) FOR 6-BR USE DT = 0.03333 BR = 2 MISUTES TYPE 2 IS 24-BR STORM PER NOAA ATLAS 2 W PEAK INTENSITY @ 1.4 BRS (EQ C1-C6) FOR 24-BR USE DT = 0.0500 BR = 5 MISUTES BAIN QUARTER = 0.0 EXCEPT FOR TYPE 3 (6-BR PMP: SEE ARTHO MANUAL)

C

C

(

C

RAINFALL

· SAINFALL

EAISFALL AMOUNTS, INCEES BUXDRED TTPE-2 RAIN QUARTER-0.0 RAIN ONE-2.23 RAIN SIX-2.55 RAIN DAY-3.76 DT-.033333 ER HUNDRED TTPE-1 0.0 1.90 2.22 2.67 0.033333

COMPUTED 6-BOUR BAINFALL DISTRIBUTION BASED ON NOAA ATLAS 2 - PEAK AT 1.40 HB. DT = .03333 BOURS END TIME = 5.599940 BOURS .0000 .0015 .0030 .0046 .0052 .0079 .0096 .0113 .0130 .0149 .0167 .0186 .0206 .0226

0

32×

0

0

6

0

25×

0

32× 🛛

.0246	.0268	.0290	.0312	.0336	.0360	.0385
.0411	.0438	.0466	.0496	.0526	.0558	.0592
.0627	.0665	.0704	.0757	.0813	.0873	.1002
.1291	.1735	.2373	.3244	.4388	.5847	.7664
.9881	1.1931	1.2789	1.3514	1.4159	1.4745	1.5285
1.5786	1.6255	1.6594	1.7107	1.7497	1.7865	1.8214
1.8544	1.8857	1.9154	1.9436	1.9704	1.9765	1.9822
1.9876	1.9928	1.9977	2.0025	2.0070	2.0114	2.0156
2.0196	2.0235	2.0273	2.0310	2.0346	2.0381	2.0415
2.0448	2.0480	2.0511	2.0542	2.0571	2.0601	2.0629
2.0657	2.0685	2.0712	2.0738	2.0764	2.0789	2.0814
2.0839	2.0863	2.0887	2.0910	2.0933	2.0955	2.0978
2.0999	2.1021	2.1042	2.1063	2.1084	2.1104	2.1124
2.1144	2.1164	2.1183	2.1202	2.1221	2.1240	2.1258
2.1277	2.1295	2.1312	2.1330	2.1347	2.1365	2.1382
2.1399	2.1415	2.1432	2.1448	2.1464	2.1480	2.1496
2.1512	2.1527	2.1543	2.1558	2.1573	2.1588	2.1603
2.1618	2.1633	2.1647	2.1661	2.1676	2.1690	2.1704
2.1718	2.1732	2.1745	2.1759	2.1772	2.1786	2.1799
2.1812	2.1825	2.1838	2.1851	2.1864	2.1876	2.1889
2.1902	2.1914	2.1926	2.1939	2.1951	2.1963	2.1975
2.1987	2.1999	2.2010	2.2022	2.2034	2.2045	2.2057
2.2058	2.2080	2.2091	2.2102	2.2113	2.2124	2.2135
2.2146	2.2157	2.2168	2.2179	2.2189	2.2200	

* RAINFALL TERYEAR TYPE= 1 0.0 1.23 1.48 1.78 0.033333

СОМРИТЕ КИ ВУД ID=1 ВТД=1 Da=0.00952 SQ HI PER A=12 B=26 C=24 D=38 TP=-0.13333 BRS RAIN=-1

 K =
 .072665BR
 TP =
 .133330HR
 K/TP BATIO =
 .545000
 SHAPE CONSTANT, N =
 7.106420

 UNIT PEAK =
 14.279
 CFS
 UNIT VOLUME =
 .9985
 B =
 526.28
 P60 =
 1,9000

 ABEA =
 .003618 S0 MI
 IA =
 .10000 INCEES PER HOUR
 RUMOFF CONJUGE DET INITIAL ABSTRACTION KUMEER MITHOD - DT =
 .033333

K = .127510ER TP = .133330ER K/TP RATIO = .956348 SEAPE CONSTANT, H = 3.695043 UNIT FEAK = 14.799 CFS UNIT VOLUME = .9993 B = 334.30 P40 = 1,9000 AREA = .005902 SQ MI IA = .47097 INCHES INF = 1.16871 INCHES FER HOUR RUNDFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .033333

PRINT NYD ID= 1 CODE= 1

0

0

(

0

SYDROGRAPE FROM AREA I

RUNOFF VOLOME = 1.21467 INCHES = .6167 ACRE-FEET FEAK DISCHARGE RATE = 18.64 CFS AT 1.500 HOURS BASIN AREA = .0095 SQ. H1.

COMPUTE NM HYD ID-2 HYD-B DA+0.01501 SQ HI PER A= 0 B= 20 C= 10 D= 70 TP=-0.13333 HRS RAIN=-1

K = .072655HR TP = .133330HR K/TP RATIO = .545000 SHAPE CONSTANT, H = 7.106420 UNIT PEAK = 41.473 CPS UNIT VOLUME = .9991 B = 526.28 PE0 = 1.9000 AREA = .010507 SQ HI IA = .10000 INCHES INF = .04000 INCHES PER NOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFLUTRATION NUMBER METROD - DT = .033333

 K =
 .1226038R
 TP =
 .133330ER
 K/TP RATIO =
 .919546
 SEMPE CONSTANT, N =
 3.849372

 UNIT FEAK =
 11.652
 CFS
 UNIT VOLUME =
 .9992
 B =
 345.00
 P60 =
 1.9000

 AFEA =
 .004503
 SUN II
 IA =
 .45000
 IKFE =
 1.11000
 IKCES PER BOUR

 RUKOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METIOD - DT =
 .033333

Ū.

0

PRINT HYD ID: 2 CODE: 1

EYDROGRAPE FROM AREA H

RUNOFF VOLUME = 1.62555 INCRES = 1.3013 ACRE-FEET PEAK DISCEARGE RATE = 36.62 CFS AT 1.500 BOURS BASIN AREA = .0150 SQ. MI.

*S E PLUS I PLUS I AT SUNSET GARDENS & 90TH FOLLOWS ADD BYD ID ODT- 3 HTD- 208 IDIN I= 1 IDIN II= 2 PRINT HYD ID= 3 CODE= 1

PARTIAL HYDROGRAPH 208.00

RUNOFF VOLUME = 1.46607 INCRES = 1.9180 ACRE-FEET PEAK DISCHARGE RATE = 55.25 CF5 AT 1.500 BOURS BASIN AREA = .0245 SQ. MI.

*S DIVIDE SO IST 8.6 CFS (1D=6) S ON 90TE (ON BOLD): 1D=4 E ON SUNSET GANDENS DIVIDE NVD 1D=10 Q=8.6 1D=6 NVD=90.S.PAST.SG 1D=4 NVD= SG.E.0F.90 PRINT FVD 1D=4 CODE: 1

EYDROGRAPH FROM AREA SG.E.OF.90

RUNOFF VOLUME = 1.46607 INCHES = 1.0956 ACRE-FEET PEAK DISCHARGE RATE = 45.65 CFS AT 1.500 HOURS BASIN AREA = .0140 SQ. MI.

PRINT HYD ID= 6 CODE= 1

0

0

(

0

EYDROGRAPH FROM AREA 90.5.PAST.SG

0

RUNOFF VOLUME = 1.46507 INCHES = .8224 ACRE-FEET PEAK DISCHARGE RATE = 8.60 CFS AT 1.333 HOURS BASIN AREA = .0105 SQ. MI.

25× 0

6

32× 0

0

0

0

HATCODE: 0 REGCODE: 0 CCODE: 0 Inflow ID end: 63 Max Humber:600

dt = .0333 hr q0 = 23.33 cfs ck0 = 5.46 fps nlen = 4 dlen = 263.75

	Depth	Area	0	Qbar	ck	ь	С	D	c1	c2	vel	fr	tt	
	ft	sf	cfs	cfs	fps	ft					fps		hr	
	.00	.0	.0	3.3	2.95	10.5	1.34	.02	.99	.15		1.60	.099	
	.21	2.2	6.5	24.6	5.46	30.5	2.48	.02	.99	.43	4.45	1.84	.056	
	.42	8.8	42.7	86.0	10.29	40.0	4.68	.03	.99	.65	6.59	2.03	.044	
	.63	17.3	129.3	189.2	14.23	40.0	6.47	.05	.99	.73	8.81	2.12	.033	
		25.7	249.1	323.0	17.56	40.0	7.99	.07	.98	.78	10.81	2.20	.027	
	1.05	34.1	396.9	483.2	20.51	40.0	9.33	.10	.98	.81	12.62	2.27	.023	
	1.26	42.5	569.6	667.1	23.18	40.01	0.54	.12	.98	.83	14.28	2.33	.021	
	1.47	50.9	764.7	872.5	25.62	40.01	1.66	.14	.98	.84	15.82	2.37	.019	
	1.68	59.3	980.4	1097.7	27.88	40.01	2.69	.16	.98	.85	17.27	2.41	.017	
	1.89	67.8	1215.1	1341.3	29.99	40.01	3.64	.18	.98	.87	18.64	2.45	.016	
	2.11	76.2	1467.6	1602.1	31.97	40.01	4.54	.20	.97	.87	19.93	2.48	.015	
	2.32	84.6	1736.7	1879.1	33.83	40.01	5.39	.22	.97	.88	21.16	2.50	.014	
	2.53	93.0	2021.5	2171.3	35.59	40.01	6.19	.25	.97		22.33		.013	
	2.74	101.4	2321.1	2478.0	37.25	40.01	6.95	.27	.97	.89	23.45	2.54	.012	
	2.95	109.9	2634.8	2798.3	38.84	40.01	7.67	.29	.97	.89	24.53	2.56	.012	
	3.16	118.3	2961.8	3131.6	40.34	40.01	8.36	.31	.97	.90	25.57	2.57	.011	
	3.37	126.7	3301.5	3477.4	41.78	40.01	9.01	.34	.97	.90	26.56	2.59	.011	
	3.58	135.1	3653.3	3835.0	43.16	40.01	9.63	.36	.97	.90	27.52	2.60	.011	
	3.79	143.5	4016.7	4204.0	44.47	40.02	0.23	.38	.96	.91	28.45	2.61	.010	
	4.00	152.0	4391.2	.0	.00	.0	.00	.00	.00	.00	.00	.00	.000	
	nlen:	4 Out	flow ID	end: 0										
R	oute us	ing Pon	ce proce	dure: C	1 > 0									

ROULE USING FONCE procedure: CI > 0 PRINT HYD ID= 5 CODE= 1

PARTIAL HYDROGRAPH 209.00

RUNOFF VOLUME = 1.45262 INCHES = 1.0931 ACRE-FEET PEAK DISCEARGE RAYE = 46.50 CFS AT 1.567 HOURS BASIN AREA = .0140 SQ. MI.

COMPUTE NH BYD ID= 1 BYD= J DA=0.00228 SQ M1 PER A= 0 B= 15 C= 0 D= 85 TP= -0.13333 BRS RAIN= -1

 K =
 .072655ER
 TP =
 .133330ER
 K/TP RATIO =
 .545000
 SHAPE CONSTANT, N =
 7.106420

 UNIT PEAR =
 7.6495
 CFS
 UNIT VOLUME =
 .9978
 B =
 526.28
 P60 =
 1,9000

 AREA =
 .001938
 SQ MI
 IA =
 .10000
 INCHES
 IMF =
 .04000
 INCHES
 PBUR

 RUNOFF
 COMPUTED BY INITIAL ABSTRACTION/INFILTRATION HUMBER METBOD - DT =
 .033333

K = .130730ER TP = .133330ER K/TP RATIO = .980950 SEAFE CONSTANT, N = 3.599935 UNIT PEAK = .84019 CFS UNIT VOLUME = .9837 B = .327.55 F50 = 1.9000 AREA = .000342 SQ MI IA = .50000 INCEES INF = 1.25000 INCEES PER HOUR RUNOFF COMPUTED BY INITIAL ARSTRACTION/INFILTATION NUMBER METROD - DT = .03333

PRINT HYD ID= 1 CODE= 1

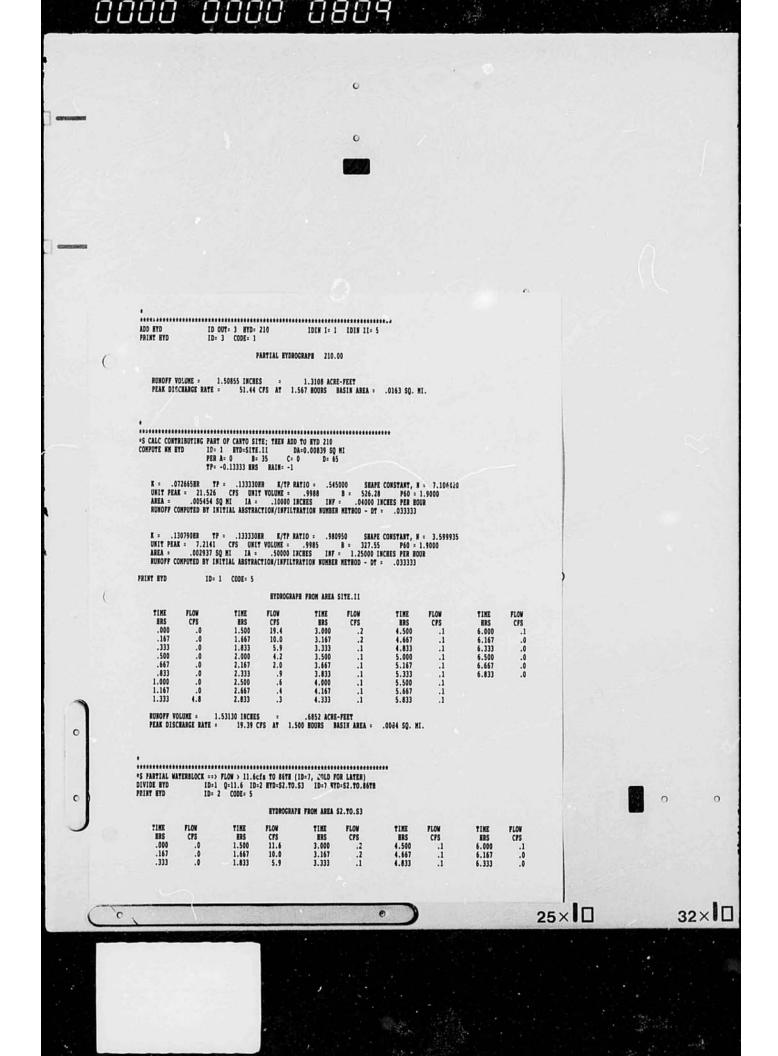
C

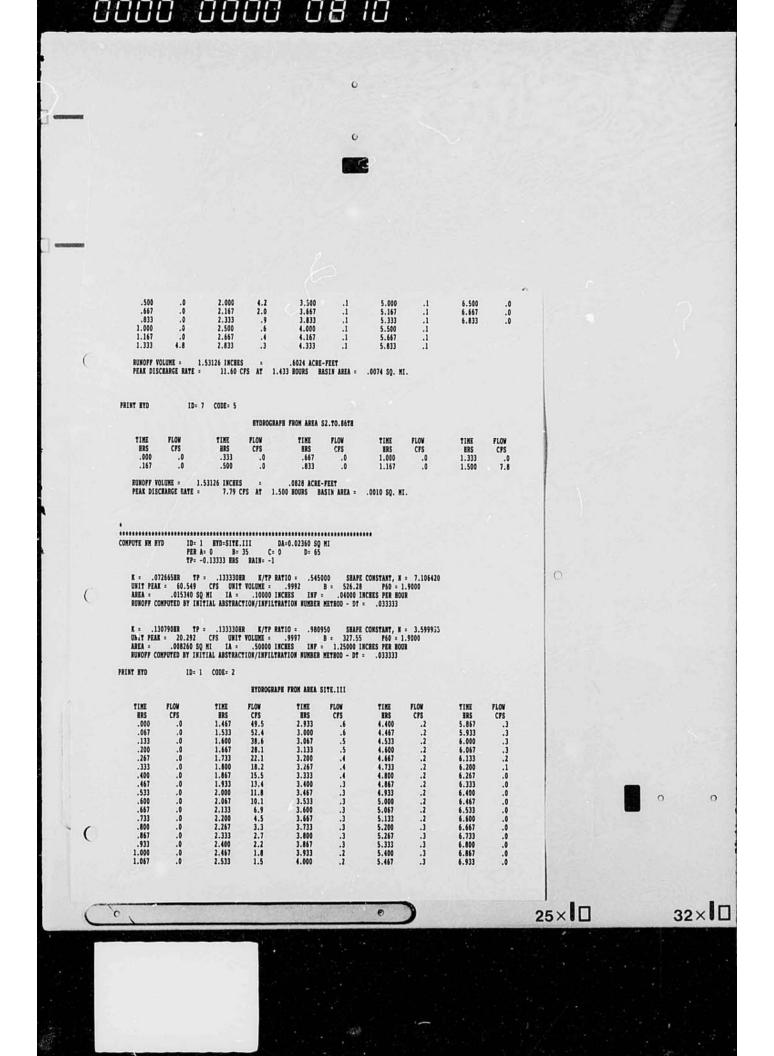
C

(

0

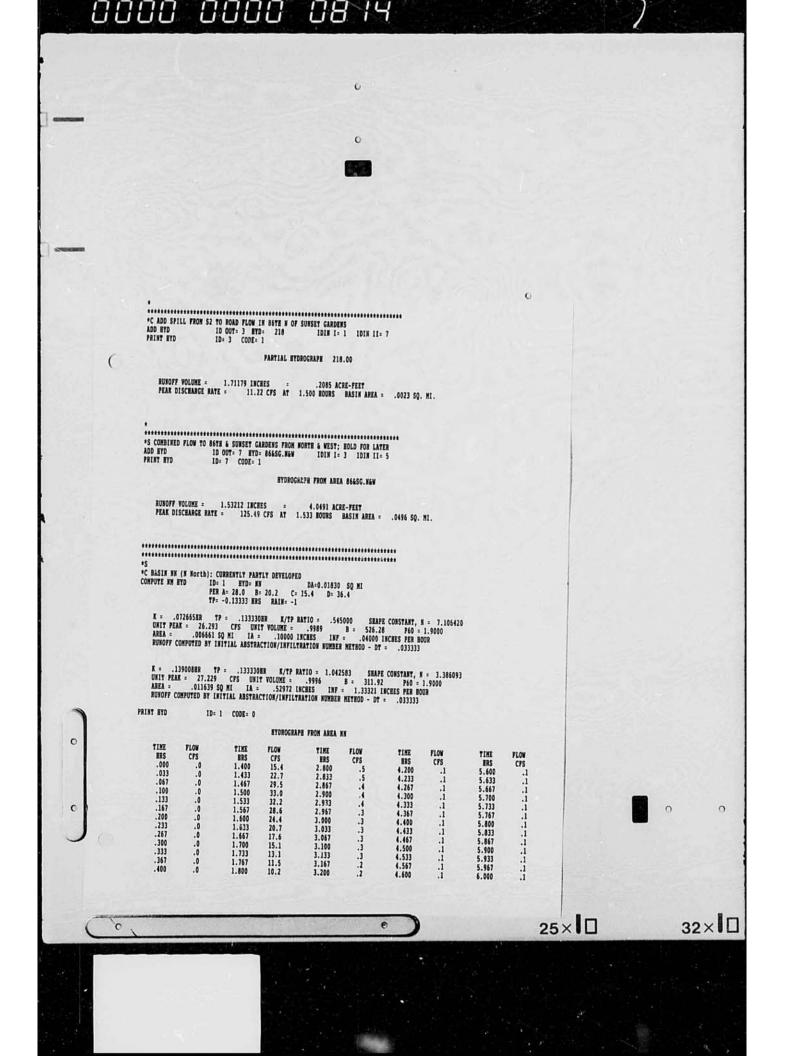
SYDROGRAPH FROM AREA J

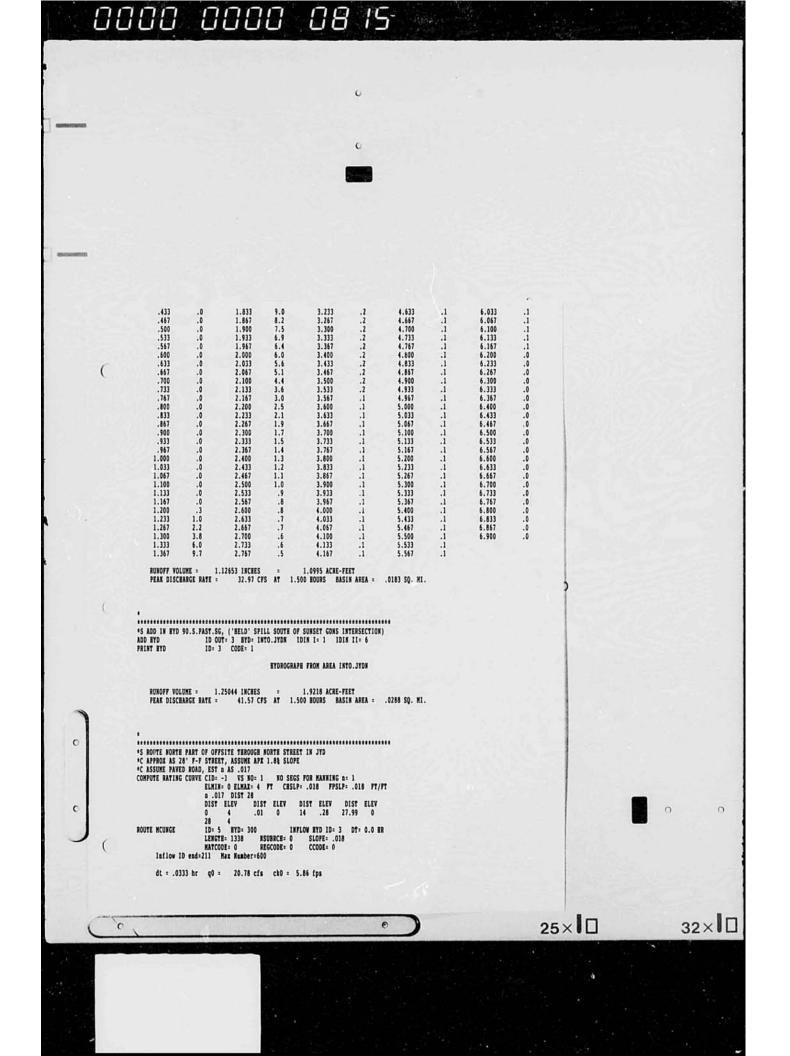

0


0

32×□

25×


RUNOFF VOLUME = 1.79112 INCHES = .2178 ACRE-FEET PEAK DISCHARGE RATE = 5.97 CFS AT 1.500 HOURS BASIN AREA = .0023 SQ. MI.



0000 0000 08 1

		7.000 .0 7.067 .0	
C	RUNOFF VOLUME = 1.53130 INCRES = 1.9274 ACRE-FEET PEAK DISCHARGE RATE = 54.51 CFS AT 1.500 BOURS BASIN AREA = .0236 SQ. HI.		
	* *S TOTAL FLOW LEAVING CANTO MORTE OF SUBSET GAMDENS ADD WTD ID OUT- 16 HTD-SITE.OUT IDIN I= 1 IDIN II= 2 PRINT EVD ID= 16 CODE= 1		
	EYDROGRAPE FROM AREA SITE.OUT Runoff Volume = 1.53128 incres = 2.5208 Acre-Feey		
	PEAK DISCHARGE RATE = 66.11 CFS AT 1.500 HOURS BASIN AREA = .0310 SQ. MI.		
	* *S TOTAL FLOW SUNSET CARDENS WEST OF BETE ADD BTD ID OUT- 5 HYD= SC.W.OF.86 IDIN 1= 3 IDIN 11= 16 FRINT HYD ID= 5 CODE= 1		
	BYDROGRAPH FROM AREA SG.W.OF.86		
	RUNOFF VOLUME = 1.52344 INCEES = 3.8406 ACRE-FEET Peak discearge rate = 115.19 CPS at 1.533 Bours Basin Area = .0473 SQ. MI.		
	* COMFUTE NK HTD ID= 1 HTD= C DA=0.00127 SQ MI PER A= 0 B= 10 C= 0 D= 90 TP= -0.13333 HBS RAIN= -1		
١	R = .072655ER TP = .133330ER K/TP RATIO = .545000 SEAPE CONSTANT, N = 7.106420 UNIT PEAK = 4.5116 CFS UNIT VOLUME = .5969 B = 526.28 P60 = 1.9000 AREA = .001143 SQ M1 IA = .10000 INCEES INF = .04000 INCEES PER BOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METROD - DT = .033333		
	K = .130750BR TP = .133330BR K/TP RATIO = .580950 SHAPE CONSTANT, H = 3.595935 UHIT FEAK = .31200 CFS UNIT VOLUME = .9579 B = .327.55 P40 = 1.5000 AREA = .000127 50 HI IA = .50000 INCHES IMF = 1.25000 INCHES PER HOUR BUNGPF COMPUTED BY INITIAL RESTRACTION/INFILTERTEDO - DT = .033333		
	PRINT ETD ID= 1 CODE= 1 ETDROGRAPH FROM ANEA C		
	RUNOFF VOLUME = 1.85607 INCRES = .1257 ACME-FEET PEAK DISCEARGE RATE = 3.43 CPS AT 1.500 BOURS BASIN AREA = .0013 SQ. MI.		
			1-
C'e,	e e e e e e e e e e e e e e e e e e e	25×	32×

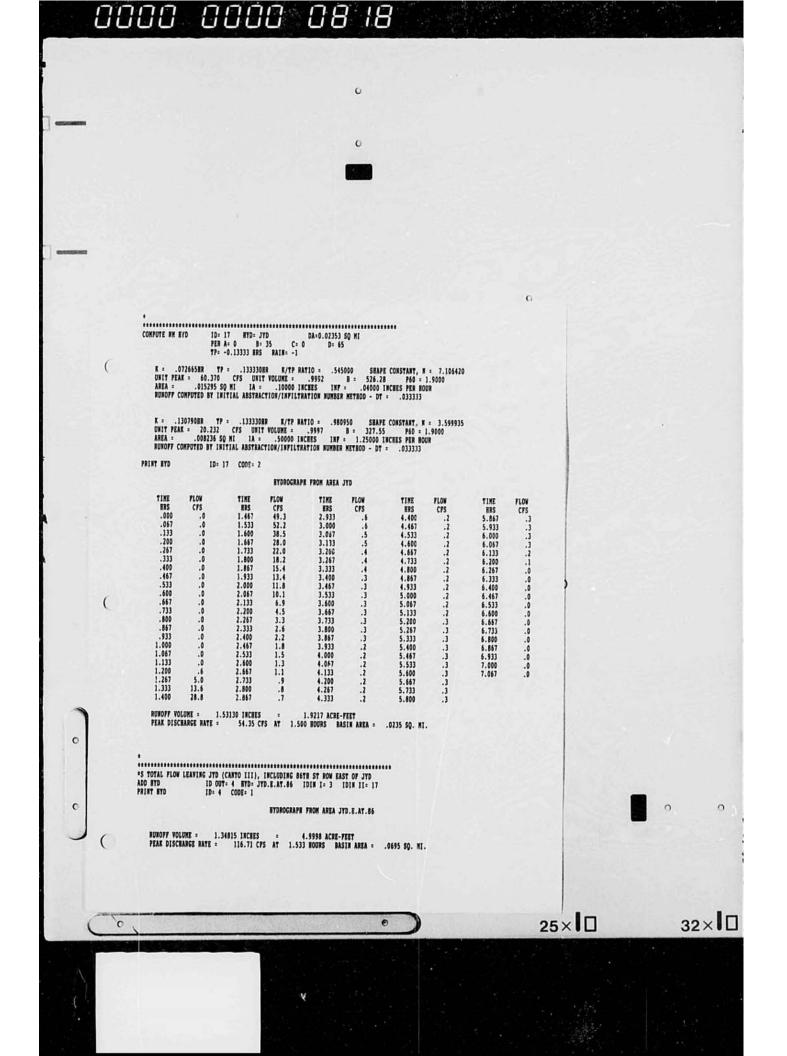
0000 08 0000 15 Ó O nlen = 4 dlen = 334.50 (Route using Maidment procedure: CO, C1 & C2 > O NT BYD ID: 5 CODE: 1 PRINT BYD SYDROGRAPH FROM AREA 300.00 RUNOFF VOLUME = 1.24326 INCRES = 1.9108 ACRE-FEET FEAK DISCHARGE RATE = 39.88 CFS AT 1.600 BOURS BASIN AREA = .0288 SQ. MI. *C BASIN NS (N South): CURRENTLY PARTLY DEVELOPED COMPUTE NN HYD ID= 1 BYD= NS DA=0.01719 SQ HI PER A= 16.0 B= 28.6 C= 8.8 D= 46.6 TP= -0.13333 BBS RAIN= -1 K = .072665BR TP = .133330BR K/TP RATIO = .545000 SHAPE CONSTANT, N = 7.106420 UNIT FEAR = 31.619 CFS UNIT VOLUME = .9990 B = 526.28 F60 = 1.9000 AREA = .008011 S0 MIT IA = .10000 INCHES INF = .04000 INCHES FER HOUME RUNOFF CONFUTED BY INFILAL ABSTRACTOR/INFILTARTION NUMEREM READO - DT = .033333 .033333 .0000 0 K = .136383BR TP = .133330BR K/TP BATIO = 1.022896 SHAFE CONSTANT, N = 3.450895 UNIT PEAK = 21.806 CFS UNIT VOLUME = .9996 B = 316.73 PFO = 1.9000 AREA = .009179 50 HI IA = .52022 INCEES INF = 1.30663 INCHES PER HOUR RUKOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER NETHED - DT = .033333 PRINT HYD ID= 1 CODE= 1 0 EYDROGRAPH FROM AREA NS RUNOFF VOLUME = 1.27301 INCEES = 1.1671 ACME-FEET PEAK DISCHARGE RATE = 34.17 CPS AT 1.500 HOURS BASIN AREA = .0172 SQ. HI. (25× 0 0

32×

0

0000 0000 08 0 (NCUNGE 10-2 EYD: 302 INFLOW EYD ID: 1 DT: 0.0 ER LEMOTE: 1221 NSUBACE: 0 SLOPE: 020 NATCODE: 0 RECODE: 0 CCODE: 0 Inflow ID exd:209 Max Number:600 ROUTE MCUNGE dt = .0333 hr q0 = 17.08 cfs ck0 = 6.17 fps nlen = 4 dlen = 305.25

 alea = 4
 dlea = 305.25


 Depth Area
 0
 Obar
 ck
 b
 C
 D
 cl
 c2
 vel
 fr
 tt

 ft
 sf
 cfs
 cfs
 fps
 hr
 fps
 hr

 0.0
 0.0
 3.0
 2.72
 10.5
 1.07
 .02
 .98
 .04
 2.72
 1.48
 1.25

 .21
 2.2
 6.0
 23.5
 6.17
 24.5
 2.43
 .03
 .99
 .42
 4.65
 1.81
 .073

 .42
 7.5
 40.9
 71.9
 10.51
 28.0
 4.13
 .04
 .98
 .61
 6.55
 1.88
 .65
 1.89
 .69
 .60
 .69
 .60
 .69
 .60
 .60
 .60
 .60
 .60
 .60
 .60
 .60
 .60
 .60
 .60
 .60
 .60
 .60
 .60
 .60
 .60
 .60
 .60
 .60
 .60
 .60
 .60
 .60
 .60
 .60
 .60
 .60
 .60
 .60
 .60
 .60
 .60
 .60
 PRINT HYD SYDROGRAPH FROM AREA 302.00 RUNOFF VOLUME = 1.27335 INCRES = 1.1674 ACRE-FEET PEAK DISCHARGE RATE = 33.65 CFS AT 1.567 BOURS BASIN AREA = .0172 SQ. HI. 0 *C ADD NORTE & SOUTE BOUTED OFFSITE, THEN COMPUTE & ADD JTD ADD HTD ID OUT: 3 HTD: 304 IDIN I: 2 IDIN II: 5 PRINT HTD ID: 3 CODE: 1 0 0 EYDROGRAPE FROM AREA 304.00 RUKOFF VOLUME = 1.25449 INCHES = 3.0782 ACHE-FEET PEAK DISCHARGE RATE = 72.69 CFS AT 1.600 BOURS BASIN AREA = .0460 SQ. HI. 25× 32× 0 0

0000~0000 08 19

Ū.

0

*S ROUTE YO 86TH & SG INTERSECTION, ASSUME 46" FIFE W/ 1% FRICTION SLOPE COMPUTE RATING CURVE CID: -1 VSN: 1 CODE: -1 S: 010 D: 4 FF 0: 0.013 ROUTE MCUNGE ID: 5 RTD: 86.S.OF.SG INFLOW HTO ID: 4 DT: 0.0 HR LEWCHE: 300 SCHORE: 0 SLOPE: 010 MATCODE: 3 RECCODE: 0 SLOPE: 01 LEFLOW ID: 040215. May Home for

(

0

0

o

			q0 = len = 3		5 cfs	ck0	: 14.	67 fp:					
1	Depth	Area	0	Qbar	ck	b	c	D	cl	c2	vel	fr	tt
	ft	sf	cfs	cfs	fps	ft					fps		hr
	.00	.0	.0	.4			1.21		.96	.11	3.02		.028
	.21	.2	.8		5.66		2.26		.97	.40			.020
	.42	.7	3.3	5.4			3.09		.96	.52		1.63	.015
	.63	1.3	7.6		9.44		3.78		.95	.59			.012
	.83	1.9	13.7		10.88		4.35		.94	.64			.011
	1.04	2.6	21.4	25.9	12.09	3.6	4.84	.20	.93	.67			.010
	1.25	3.4	30.5		13.12		5.25		.93		9.50		.009
	1.46	4.1	40.8	46.5	13.98	3.9	5.59	.28	.92		10.21		.008
	1.67	5.0	52.2	58.3	14.67	4.0	5.87	.33	.91	.72	10.84	1.64	.008
	1.88	5.8	64.3	70.7	15.19	4.0	5.08	.39	.90	.73	11.39	1.61	.007
	2.08	6.6	77.0	83.4	15.54	4.0	6.22	.45	.88	.74	11.86	1.58	.007
	2.29	7.5	89.9	96.3	15.69	4.0	6.28	.51	.87	.74	12.25	1.54	.007
	2.50	8.3	102.7	108.9	15.62	4.0	6.25	.58	.85	.74	12.57	1.51	.007
	2.71	9.1	115.1	120.9	15.27	4.0	6.11	.65	.83	.74	12.81	1.47	.007
	2.92	9.8	126.7	131.9	14.52	4.0	5.81	.76	.80	.74	12.96	1.43	.006
	3.13	10.5	137.1	141.5	13.18	4.0	5.27	.89	.75	.72	13.02	1.39	.006
	3.34	11.2	145.8	148.9				1.16	.64		12.96		.006
	3.54	11.8	152.0	153.2				2.36		.64	12.76	1.30	.007
	3.75	12.2	154.5	154.5		4.0			-1.00		12.46		.007
	4.00	12.6	154.5	.0		.0		.00	.00	.00		.00	.000
h	alen:		flow ID										

3.	15 1	4.4 154	.5 154.5	.00	4.0	.00.		-1.00	
4.	00 1	2.6 154	.5 .0	.00	.0	.00	.00	.00	
nle	1 1	Outflow	ID end=215						
Route	using	Ponce pr	ocedure: Cl	>0					
nle	1 =1	Outflow	ID end=216						
Route	using	Maidment	procedure:	C0,	C1 & C	2 > 0			
PRINT HYD		ID=	5 CODE= 1						

HYDROGRAPH FROM AREA 86.S.OF.SC

RUNOFF VOLUME = 1.34764 INCHES = 4.9979 ACRE-FEET PEAR DISCEARGE RATE = 116.55 CFS AT 1.567 BOURS BASIN AREA = .0695 SQ. MI.

*S *AS IF* COMBINED FLOWS AT 85TH & SUNSET CARDENS: RETRIEVE 'OK-BOLD' ID=7 ADD BTD ID OUT= 6 BTD= TOT.SG666 IDIN I= 5 IDIN II= 7 FRINT HTD ID= 6 CODE= 2

EYDROGRAPE FROM AREA TOT. SG485

TINE	FLOW	TIME	FLOW	TIME	FLOW	TIME	FLOW	TIME	FLON
ERS	CFS	ERS	CFS	HRS	CFS	ERS	CFS	ERS	CFS
.000	.0	1.467	180.7	2.933	3.5	4.400	1.0	5.867	1.3
.067	.0	1.533	235.7	3.000	3.1	4.467	1.0	5.933	1.3
.133	.0	1.600	211.8	3.067	2.7	4.533	1.0	6.000	1.3
.200	.0	1.667	165.8	3.133	2.4	4.600	1.0	6.067	1.3
.267	.0	1.733	125.4	3.200	2.2	4.667	1.0	6.133	1.1
. 333	.0	1.800	98.8	3.267	2.0	4.733	1.0	6.200	.8
.400	.0	1.867	80.9	3.333	1.8	4.800	1.0	6.267	.6
.467	.0	1.933	68.5	3.400	1.7	4.867	1.0	6.333	.3

0

0

25×

0

32×10

.533	.0	2.000	60.5	3.467	1.6	4.933	1.1	6.400	.2	
		2.067	51.9	3.533	1.5	5.000	1.1	6.467		
.600	.0			3,600	1.4	5.067	1.1	6.533	.1	
.667	.0	2.133	40.9			5.133	1.1	6.600	.1	
.733	.0	2 200	30.8	3.667	1.3			6.667		
.800	.0	2.257	22.5	3.733	1.3	5.200	1.1		.0 .0	
	.0	2.333	16.4	3.800	1.2	5.267	1.1	6.733	.0	
.867			13.2	3.867	1.2	5.333	1.1	6.800	.0	
.933	.0	2.400			1.1	5.400	1.1	6.867	.0	
1.000	.0	2.467	10.9	3.933			1.2	6.933	.0	
1.067	.0	2.533	9.0	4.000	1.1	5.467		7.000	.0	
1.133	.0	2.600	7.5	4.067	1.1	5.533	1.2			
		2.667	6.4	4.133	1.1	5.600	1.2	7.067	.0	
1.200	1.0			4.200	1.1	5.667	1.2	7.133	.0	
1.267	10.8	2.733	5.4			5.733	1.2			
1.333	32.2	2.800	4.6	4.267	1.0					
1 400	77.4	2.867	4.0	4.333	1.0	5.800	1.3			

Û

0

RUNOFF VOLUME =	1.42440 INCHES	:	9.0470 AC	RE-FEET	0.0010010201022
PEAK DISCHARGE RATE		۸T	1.533 HOURS	BASIN AREA =	.1191 SQ. HI.

.

*S *S FUTURE/FULL DEVELOPMENT *S FUTURE/FULL DEVELOPMENT *S ROUTE 65TH TO EXPD IN SUNSET GARDENS: CONC PIPE; Sf=.01 APX *C IF EST DIM SHALL >> TRAVEL FASTER >> DNSTR PEAR BLGERE => CONSERVATIVE *C VALLEY SECKETY & FEACE NUMERS ARE USER ID'S NOT USED BY PROG; DUMHES HERE COMPUTE RATING CUPVE CID= -1 VS NO=11 NO SECS TON PAINING D= -1 SLOPE=.01 DIAM=5.0 FT B= .013 COMPUTE TRAVEL TIME ID= 5 BEACH= 11 NO VS= 1 L= 1100 FT S= .01

TRAVEL TIME TABLE REACE: 11.0

WATER	AVERAGE	FLOW	TRAVEL
DEPTE	AREA	RATE	TIME
FEET	SQ.FT.	CFS	ERS
.261	. 390	1.37	.0873
.521	1.086	5.93	.0559
.782	1.961	13.79	.0435
1.042	2.966	24.80	.0365
1.303	4.069	38.72	.0321
1.563	5.246	55.24	.0290
1.824	6.479	74.01	.0267
2.084	7.749	94.62	.0250
2.345	9.043	116.65	.0237
2.606	10.345	139.60	.0226
2.866	11.641	162.98	.0218
3.127	12.918	186.22	.0212
3.387	14.159	208.72	.0207
3.648	15.348	229.78	.0204
3.908	16.467	248.64	.0202
	17.492	264.32	.0202
4.169		275.55	.0204
4.429	18.395		.0209
4.690	19.130	280.16	
5.000	19.635	280.16	.0214
EYD: 308	IN ID: 6	DT= 0.0	
CODE= 1			

ROUTE PRINT HYD

0

10: 5 10: 5

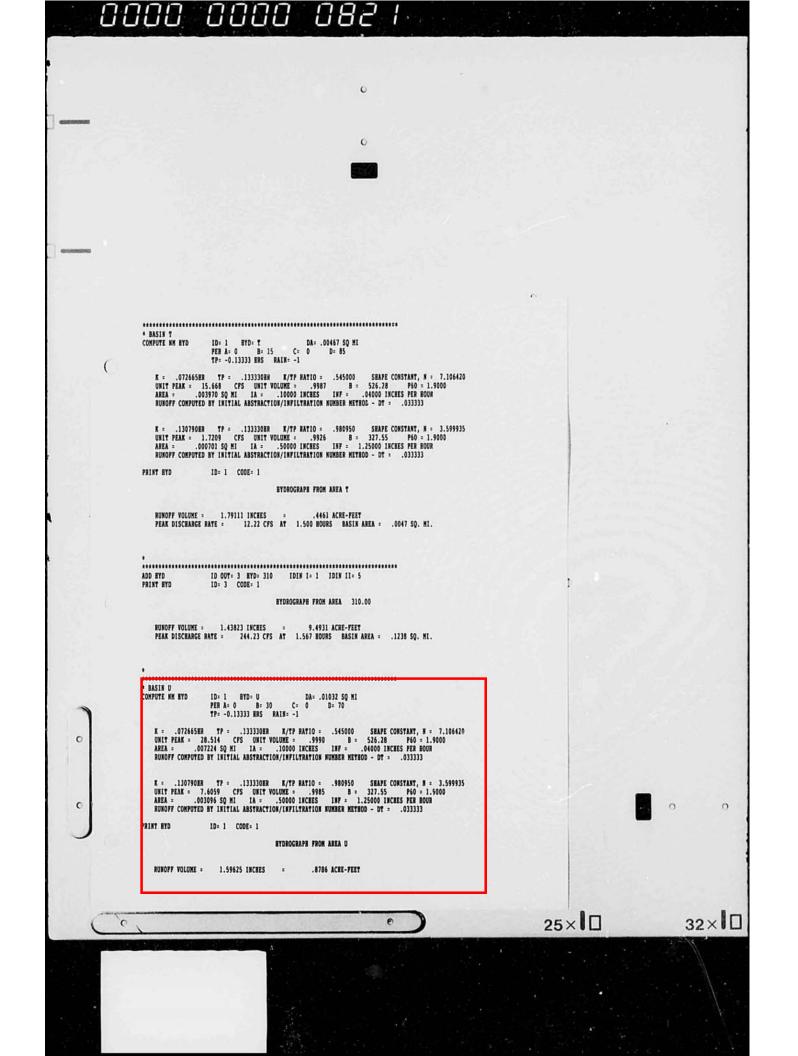
(

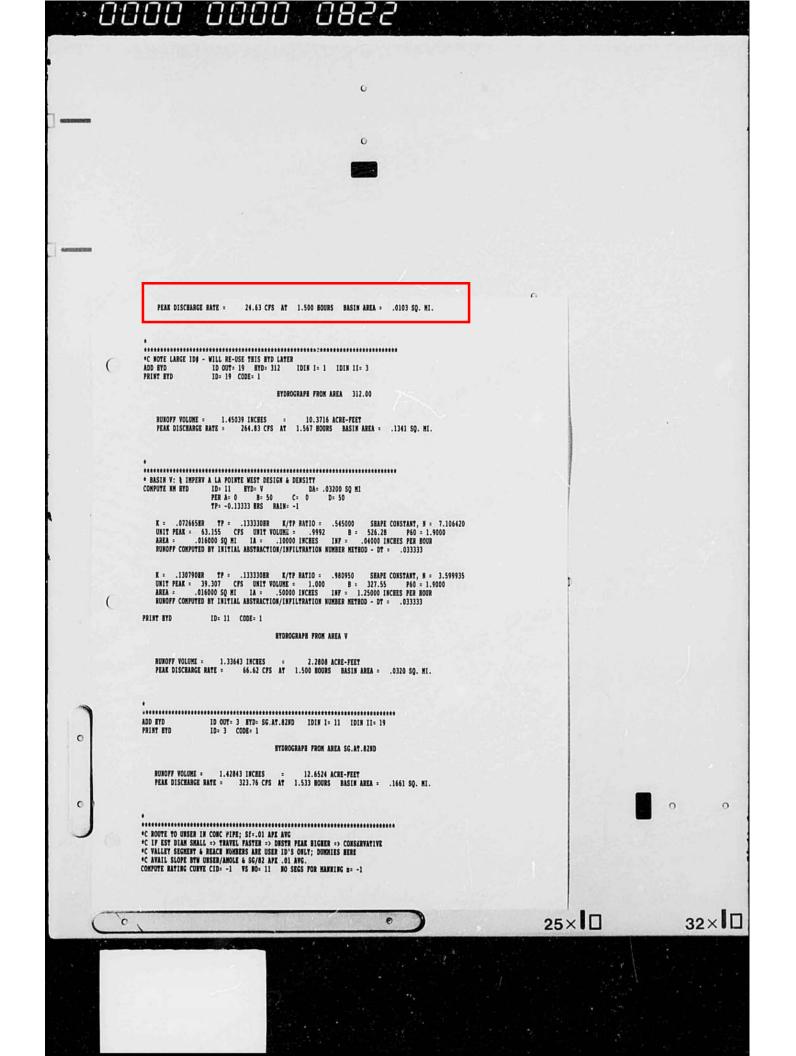
o

0

HYDROGRAPH FROM AREA 308.00

0


0


32×

0

25×

RUMOFF VOLUME = 1.42440 INCRES = 9.0470 ACRE-FEET FEAR DISCHARGE RATE = 234.12 CFS AT 1.567 BOURS BASIN AREA = .1191 SQ. MI.

0000 0000 0823

0

ú

COMPUTE TRAVEL TIME ID= 5 REACE= 11 NO VS= 1 L= 1100 FT S= .01 TRAVEL TIME TABLE PEACE= 11.0

		RE			
	WATER DEPTH FEET	AVERAGE AREA SQ.FT.	FLOW RATE CFS	TRAVEL TIME BRS	
	.287	.472	1.76	.0819	
	.573	1.314	7.65	.0525	
	.860	2.373	17.78	.0408	
	1.146	3.589	31.97	.0343	
	1.433	4.923	49.92	.0301	
	1.720	6.348	71.23	.0272	
	2.006	7.839	95.43	.0251	
	2.293	9.377	122.00	.0235	
	2.579	10.942	150.40	.0222	
	2.866	12.518	180.00	.0212	
	3.153	14.085	210.14	.0205	
	3.439	15.630	240.11	.0199	
	3.726	17.132	269.11	.0195	
	4.013	18.571	296.28	.0192	
	4.299	19.925	320.59	.0190	
	4.586	21.166	340.81	.0190	
	4.872	22.258	355.29	.0191	
	5.159	23.147	361.23	.0196	
	5.500	23.758	361.23	.0201	
: 5	EYD: 314	IN 10: 3	DT= 0.0		
: 5	CODE: 1				

HYDROGRAPH FROM AREA 314.00

RUNOFF VOLUME = 1.42844 INCEES = 12.6524 ACRE-FEET PEAK DISCHARGE RATE = 322.21 CFS AT 1.567 EOURS BASIN AREA = .1661 SQ. MI.

*C BASIN W: § IMPERVA LA POINTE WEST DESIGN & DENSITY: SAME OWNER & ENGR *C BASIN W IS ONLY BASIN W TP (ATC) > REGULATORY MINIMUM COMPUTE NM HTD ID: 12 HTD: W DA: .03422 SQ MI PER A: 0 B: 50 C: 0 D: 50 TP: -0.16325 ENS BAIN: -1

 K =
 .088971ER
 TP =
 .163250ER
 K/TP RATIO =
 .545000
 SHAFE CONSTANT, N =
 7.106420

 UNIT PEAK =
 55.158
 CFS
 UNIT VOLUME =
 .9997
 B =
 526.28
 P60 =
 1,9000

 AREA =
 .017110
 SQ MI IA =
 .10000 INCEES
 INF =
 .04000 INCEES PER HOUR

 RUKOFF CONFUED BY INITIAL ASSTRACTION (INFLICTANTION NUMBER MITHOD - DT =
 .033333

 K =
 .160140BR
 TP =
 .163250BR
 K/TP RATIO =
 .980950
 SHAPE CONSTANT, N =
 3.559930

 UNIT FEAR =
 34.330
 CFS
 UNIT YOLUKE =
 .9998
 B =
 327.55
 F60 =
 1.9000

 AREA =
 .07110 SQ MI IA
 .50000 INCHES INF =
 1.25000 INCHES FER NOUR
 RUNOFF CONFUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER HEATOD - DT =
 .033333

PRINT HYD ID= 12 CODE= 1

ID:

ID:

ROUTE

C

C

(

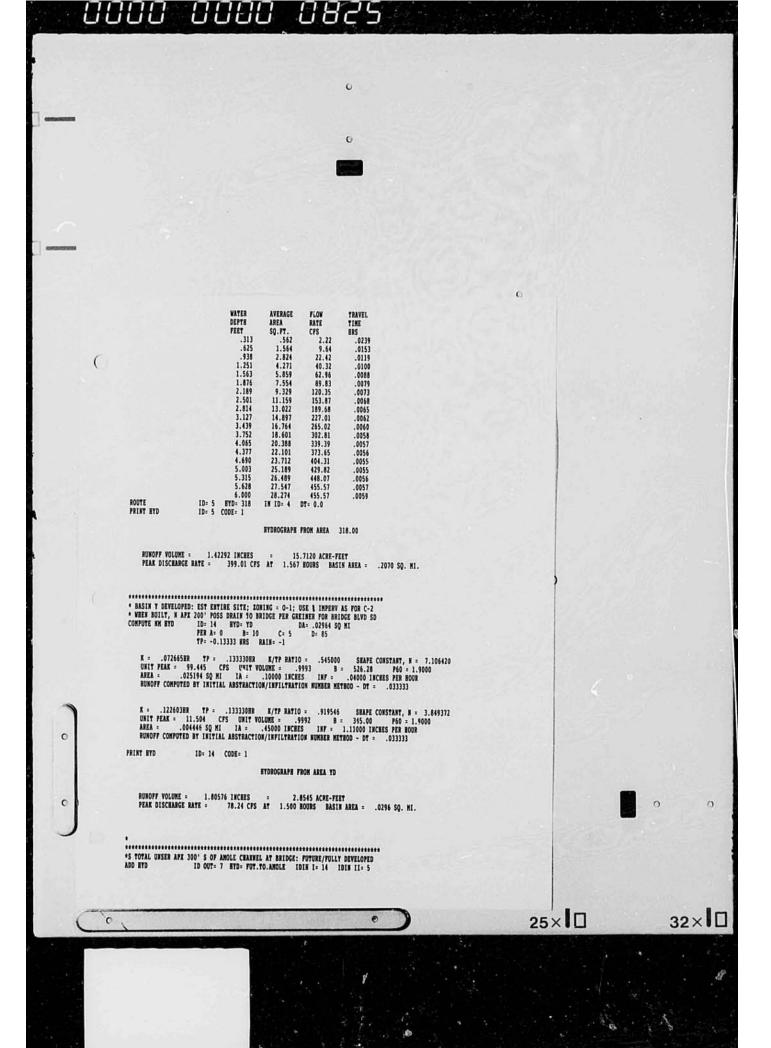
C

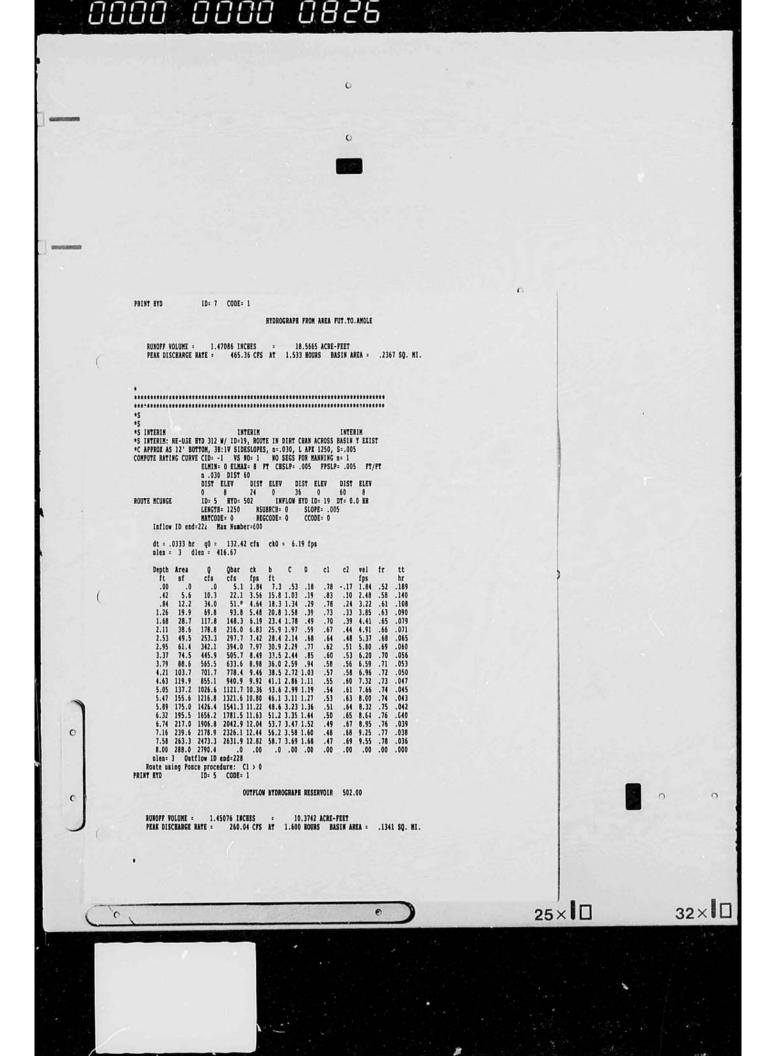
PRINT BYD

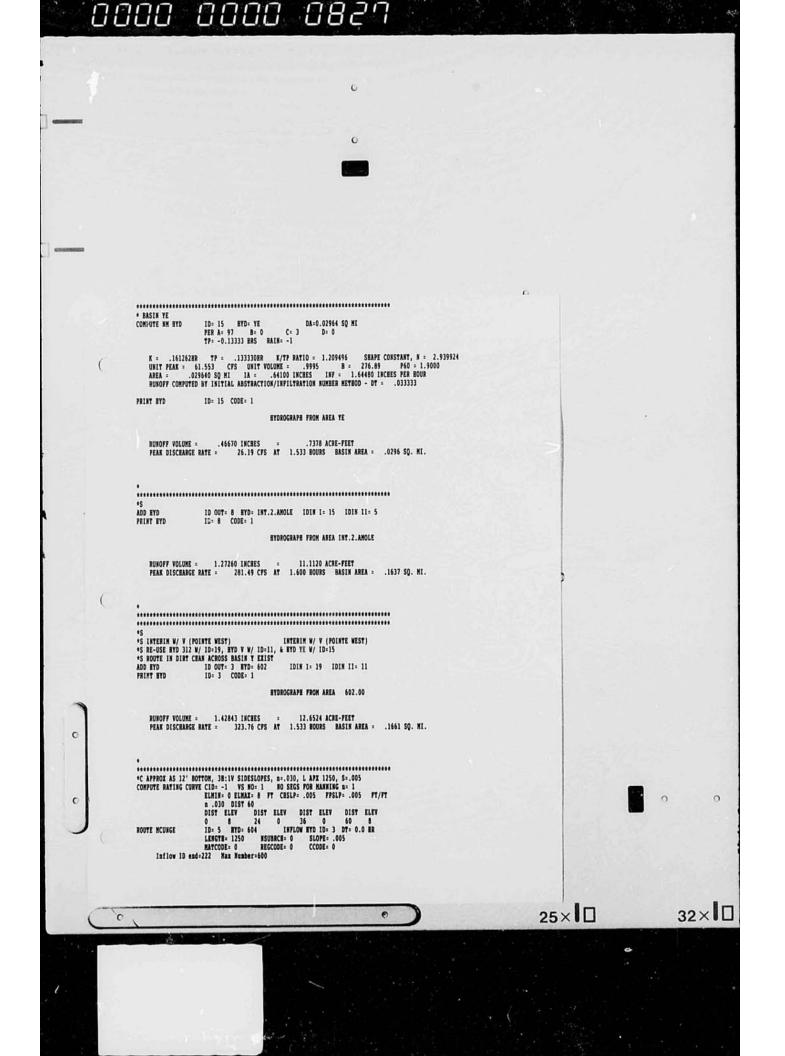
SYDROGRAPS FROM AREA W

0

0

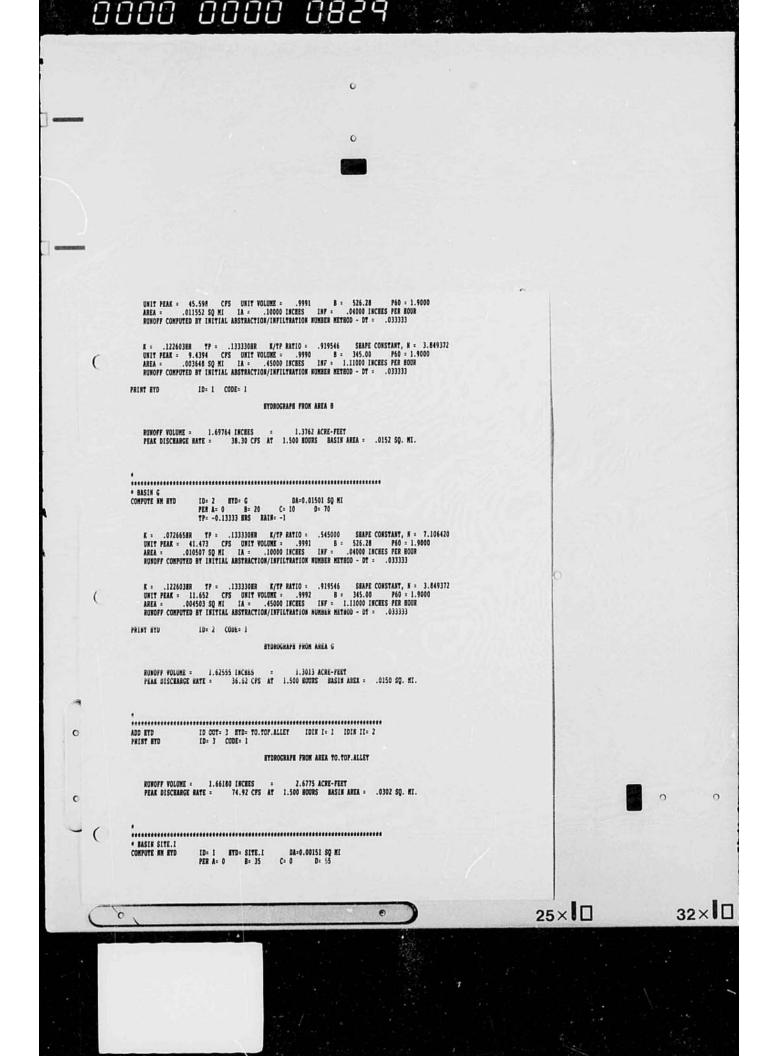

25×


0


32×

RUNOFF VOLUME = 1.33643 INCEES = 2.4391 ACRE-FEET PEAK DISCHARGE RATE = 64.02 CFS AT 1.533 HOURS BASIN AREA = .0342 SQ. MI.

<text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text>				
<text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text>		c		
<text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text>	NUMBER OF	c		
<text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text>				
<text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text>				
<text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text>	CONTACTOR .			
Marcine Marcine			0	
<text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text>		ADD HTD ID OUT: 3 HTD: 316 IDIN I: 12 IDIN II: 5		
 A DESCRIPTION IN THE SECOND DESCRIPTION AND ADDRESS AND ADDRESS ADDRE	C			
A SAN TA A TAN TA AN AND A SAN TA AN AN A ANALY AN ANALY ANA				
Convert No For Distance and the second secon		é tertertertertertertertertertertertertert		
<pre>mutry constraints and constraints and constraints weak weak weak of the states of</pre>		COMPUTE NH BYD ID= 13 BYD= X DA= .00674 SQ HI PER A= 0 B= 20 C= 0 D= 80		
<pre>Mint Full Full Full Full Full Full Full Ful</pre>		URIT PEAK = 21.283 CFS UNIT VOLUME = .9988 B = 526.28 P60 = 1.9000 AREA = .005392 SQ MI IA = .10000 INCHES INF = .04000 INCHES PER HOUR		
<pre>HIDDORAVE FROM ABLE I MENTY POLINE: 1.72515 INCIEST:</pre>		UNIT FEAK = 3.3116 CFS UNIT VOLUME = .9961 B = 327.55 P60 = 1.9000 AREA = .001348 .0 M1 IA = .50000 INCHES INF = 1.25000 INCHES PER HOUR		
MUNOFY VOLUME: 1.72615 INCEES :)	
ADD HTD ID OUT: 4 HTD: SC.AT. UNSER IDIN 1: 13 IDIN 11: 3 HTDBOGRAPH FROM AREA SC.AT. UNSER HTDBOGRAPH FROM AREA SC.AT. UNSER BUNDFF VOLUME : 1.42292 INCHES : 15.7120 ACKE-FERT PEAR DISCRAME RATE : 358.29 CFS AT 1.567 HOURS BASIN AREA : .2070 SQ. NI. 		RUNOFF VOLUME = 1.72616 INCRES = .6205 ACRE-FEET		
MUKOFF VOLUME : 1.42292 INCRES : 15.7120 ACRE-FERT PEAK DISCURARCE RATE : 398.29 CFS AT 1.567 BOURS BASIN AREA : .2070 SQ. MI. * * *C BOUTE TO UNSER 340 FF K OF SG (APX BALF DIST TO AMOLE CEMAN); Sf01 APX *C SST DIAM SMALL :> TAAVEL FASTER :> DASYR FEAK HIGHER *> CONSERVATIVE *C TVILLEY SECRUTH & REACE NUMBERS ARE USER ID'S OUT; DURCHSE BEER COMPUTE RATING CONVE CIA-11 K NO TS 1 L: 340 FT s: .01 COMPUTE TAAVEL TIME ID: S REACE: 11 NO YS: 1 L: 340 FT s: .01 TAAVEL TIME TABLE REACE: 11.0		ADD HYD ID OUT= 4 HYD= SG.AT.UNSER IDIN 1= 13 IDIN 11= 3		
PEAK DISCHARGE RATE = 398.29 CFS AT 1.567 HOURS BASIN ANEA = .2070 SQ. HI.)	HYDROGRAPH FROM AREA SG.AT.UMSER		
*C ROUTE TO UNSER 340 FT K OF SG (AFX HALF DIST TO ANOLE CRANNE); Sf.JOL AFX *C EST DIAM SMALL => TRAVEL FASTER => DBSTR PEAR HIGER => CONSERVATIVE *C VILLET SECURA UNMERRS ARE USER ID'S OUT; DUDNIES HERE COMPUTE RATING CURVE CID: -1 VS NO- 11 NO SEGS FOR MANNING B: -1 SLOPE - 01 DIAM 6.0 FT B: -013 COMPUTE TRAVEL TIME ID: 5 REACH: 11 NO VS: 1 L: 340 FT S: .01 TRAVEL TIME TABLE REACH: 11.0	C	RUNOFF VOLUME = 1.42292 INCHES = 15.7120 ACRE-FEET PEAK DISCHARGE RATE = 398.29 CFS AT 1.567 BOURS BASIN AREA = .2070 SQ. MI.		
TRAVEL TIME TABLE REACE: 11.0	0	*C ROUTE TO UNSER 340 FT K OF SG (AFX BALF DIST TO ANOLE (CBAN); ST-01 AFX *C EST DIAR SMALL => TRAVEL FASTER => DNSER FEAR BIGINE >> CONSERVATIVE *C VILLEY SECHENT & REACH NUMBERS ARE USER 1D'S ORLY; DURNIES HERE COMPUTE RATING CUVER CID= -1 VS NO: 11 NO SEES FOR MAKING m -1 SLOPE. 01 DIAMS 5.0 FT m = 0.03		0 0
25×10 32×1		TRAVEL TIME TABLE		
			25	20
			25×10	32×1L



8580 0000 0000

dt = .0333 hr q0 = 161.88 cfs ck0 = 6.19 fps nlen = 3 dlen = 416.67 tt hr 11 52 .189 58 .140 .61 .108 .63 .090 .65 .079 .66 .071 .68 .065 .70 .056 .71 .053 .72 .050 .73 .047 (.050 .047 .045 .043 .042 .040 .039 .038 EYDROGRAPH FROM AREA 604.00 RUNOFF VOLUME = 1.42737 INCHES = 12.6430 ACRE-FEET PEAK DISCHARGE RATE = 320.37 CFS AT 1.600 BOURS BASIN AREA = .1661 SQ. MI. *C RE-USE HTD YE W/ ID-15, ADD TO ROUTED FLOW ADD HTD ID OUT 98 HTD= INT.V.2AMOLE IDIN I= 15 IDIN II= 3 PRINT HTD ID-9 CODE= 1 OUTFLOW HYDROGRAPH BEACH .00 EUNOFF VOLUME = .00000 INCRES = .0000 ACRE-FEET PEAK DISCHARGE RATE = .00 CFS AT .000 BOURS BASIN AREA = .0000 SQ. MI. o *S *S ALLEY ALLEY ALLEY ALLEY *S BASINS B, G, & SITE-1 TO ALLEY. BASIN A NOT CONTRIBUTE INTERIM/FUTURE *S FUTURE/INTERIM ALLEY FLOWS FOR INFO ONLY; BOLD TO EXISTING CONDITIONS 0 0 C 1D= 1 BYD= B DA=0.01520 SQ NI PER A= 0 B= 16 C= 8 D= 76 TP= -0.13333 BRS RAIN= -1 COMPUTE NH HYD (K = .072665HR TP = .133330HR K/TP RATIO = .545000 SHAPE CONSTANT, N = 7.106420 32× 25×10 ò

0

0

0000 0000 0830

K = .072655HR TP = .133330HR K/TP RATIO = .545000 SHAFE CONSTANT, K = 7.106420 UNIT PEAK = 3.8741 CPS UNIT VOLUME = .9965 B = 526.28 P60 = 1.9000 AREA = .000962 SQ MI IA = .10000 INCEES INF = .04000 INCEES PER BOUR RUNOPF COMPTLE BY INITIAL ASSTRACTION/IMPILTRATION NUMBER KETHOD - DT = .033333

0

0

K = .130790BR TP = .133330ER K/TP RATIO = .980950 SEAPE CONSTANT, K = 3.599935 UNIT FEAK = 1.2984 CFS UNIT VOLUME = .9894 B = 327.55 P60 = 1.9000 AREA = .000529 SQ HI IA = .50000 INCEES INF = 1.25000 INCEES FER HOUR RUNOFF CONFUTED BT INITIAL ABSTRACTION/INFLLTRATION NUMBER METROD - DT = .033333

PRINT HYD ID= 1 CODE= 1

(

0

0

ò

HYDROGRAPH FROM AREA SITE.I

RUNOFF VOLUME = 1.53130 INCRES = .1233 ACRE-FEET PEAK DISCHARGE RATE = 3.50 CFS AT 1.500 HOURS BASIN AREA = .0015 SQ. MI.

ADD HYD ID OUT: 4 HYD: BOT.ALLEY IDIN I: 1 IDIN II: 3 PRINT HYD ID: 4 CODE: 1

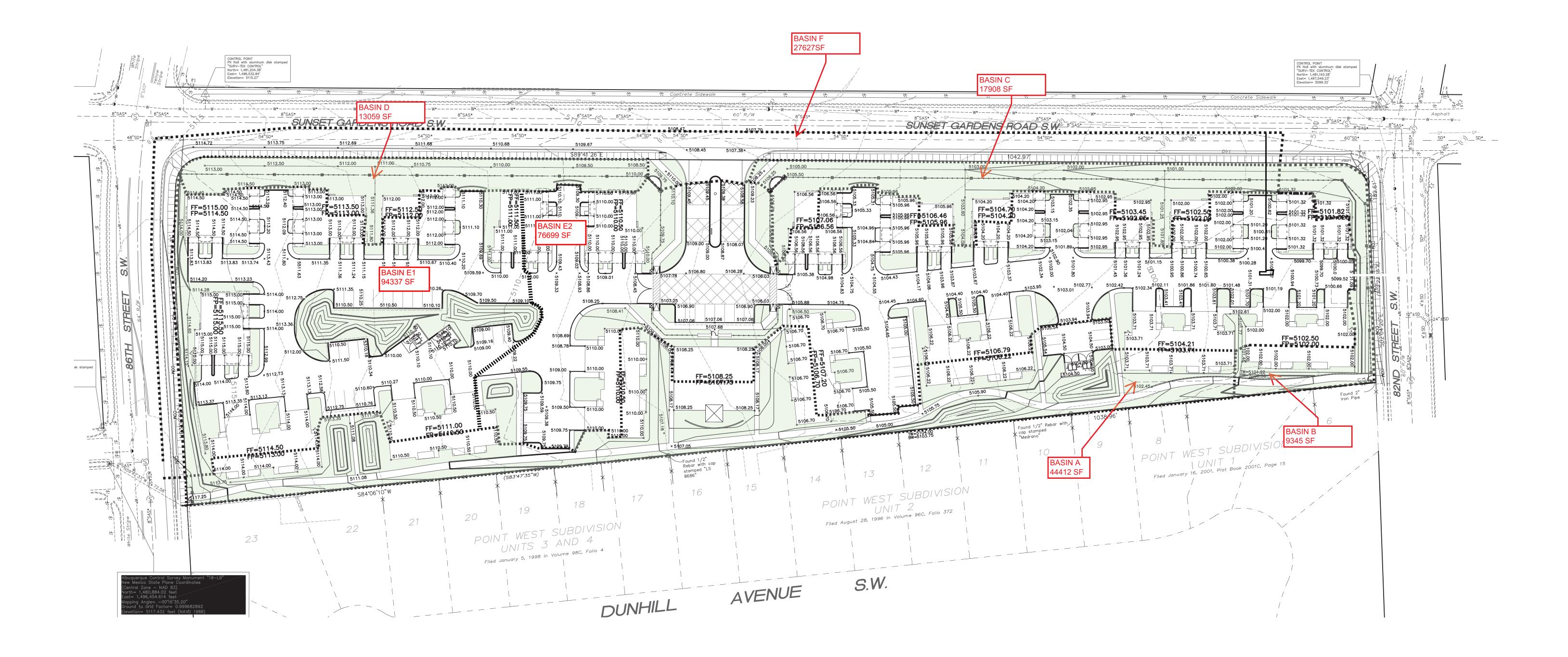
EYDROGRAPH FROM AREA BOT.ALLEY

RUNOFF VOLUME = 1.65558 INCRES = 2.8008 ACRE-FEET PEAK DISCEARGE HATE = 78.42 CFS AT 1.500 BOURS BASIN AREA = .0317 SQ. MI.

TIXISI

NORMAL PROGRAM FINISH END TIME (HR:HIN:SEC) = 12:37:11

25×


0

32×

0

APPENDIX C

HYDRAULIC CALCULATIONS

Weighted E Method

												100-Yea	, 6-hr.
Basin	Area	Area	Treat	ment A	Treat	ment B	Treat	ment C	Treat	ment D	Weighted E	Volume	Flow
	(sf)	(acres)	%	(acres)	%	(acres)	%	(acres)	%	(acres)	(ac-ft)	(ac-ft)	cfs
ALLOWED													24.63
PROPOSED A	44412.00	1.020	0%	0	18%	0.184	20%	0.2039	62%	0.632	1.540	0.131	3.72
PROPOSED B	9345.00	0.215	0%	0	20%	0.043	34%	0.0729	46%	0.099	1.377	0.025	0.73
PROPOSED C	17908.00	0.411	0%	0	16%	0.066	51%	0.2097	33%	0.136	1.262	0.043	1.33
PROPOSED D	13059.00	0.300	0%	0	20%	0.060	62%	0.1859	18%	0.054	1.102	0.028	0.89
PROPOSED E-1	94337.00	2.166	0%	0	11%	0.238	20%	0.4331	69%	1.494	0.503	0.091	8.26
PROPOSED E2	76699.00	1.761	0%	0	11%	0.194	15%	0.2641	74%	1.303	0.404	0.059	6.85
PROPOSED F	27627.00	0.634	0%	0	0%	0.000	8%	0.0507	92%	0.583	0.158	0.008	2.70

TOTAL

Equations:

Weighted E = Ea*Aa + Eb*Ab + Ec*Ac + Ed*Ad / (Total Area)

Volume = Weighted D * Total Area

Flow = Qa * Aa + Qb * Ab + Qc * Ac + Qd * Ad

Where for 100-year, 6-hour storm- zone 1

Ea= 0.44	Qa= 1.29
Eb= 0.67	Qb= 2.03
Ec= 0.99	Qc= 2.87
Ed= 1.97	Qd= 4.37

ONSITE Conditons

FIRST FLUSH WATER QUALT	Y VOLUME	
	REQUIRED	PROVIDED
	(CF)	(CF)
BASIN A	780	3375
BASIN B	122	0
BASIN C	167	377
BASIN D	67	242
BASIN E-1	1844	2409
BASIN E-2	1608	0
BASIN F	NA	NA

Narrative

This site is within the boundary of the Amole del norte drainage basin. The site is identified as basin U within the Val Halla drainage report. this site drains to an existing storm drain within sunset gardens. This site is allowed to drain 24.63 cfs. We are draining 24.46cfs to this storm drain there is no upland flow. This plan provided for onsite ponding of the water quality volume This plan is in conformance to the master drainage plan

24.46

APPENDIX C

HYDRAULIC CALCULATIONS

DROP INLET CALCULATIONS

INLET TYPE OF		AREA	Q	Н	H ALLOW			
	INLET	(SF)	(CFS)	(FT)	(FT)			
INLET A	DOUBLE	7.68	30.22	0.6678	1			

ORIFICE EQUATION

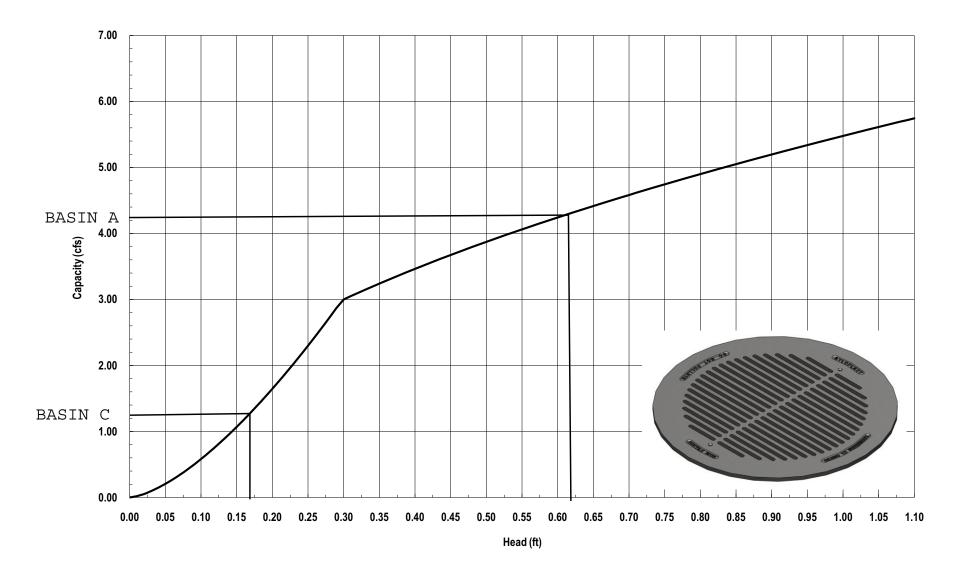
Q = CA sqrt(2gH) C =

C = 0.6 g = 32.2

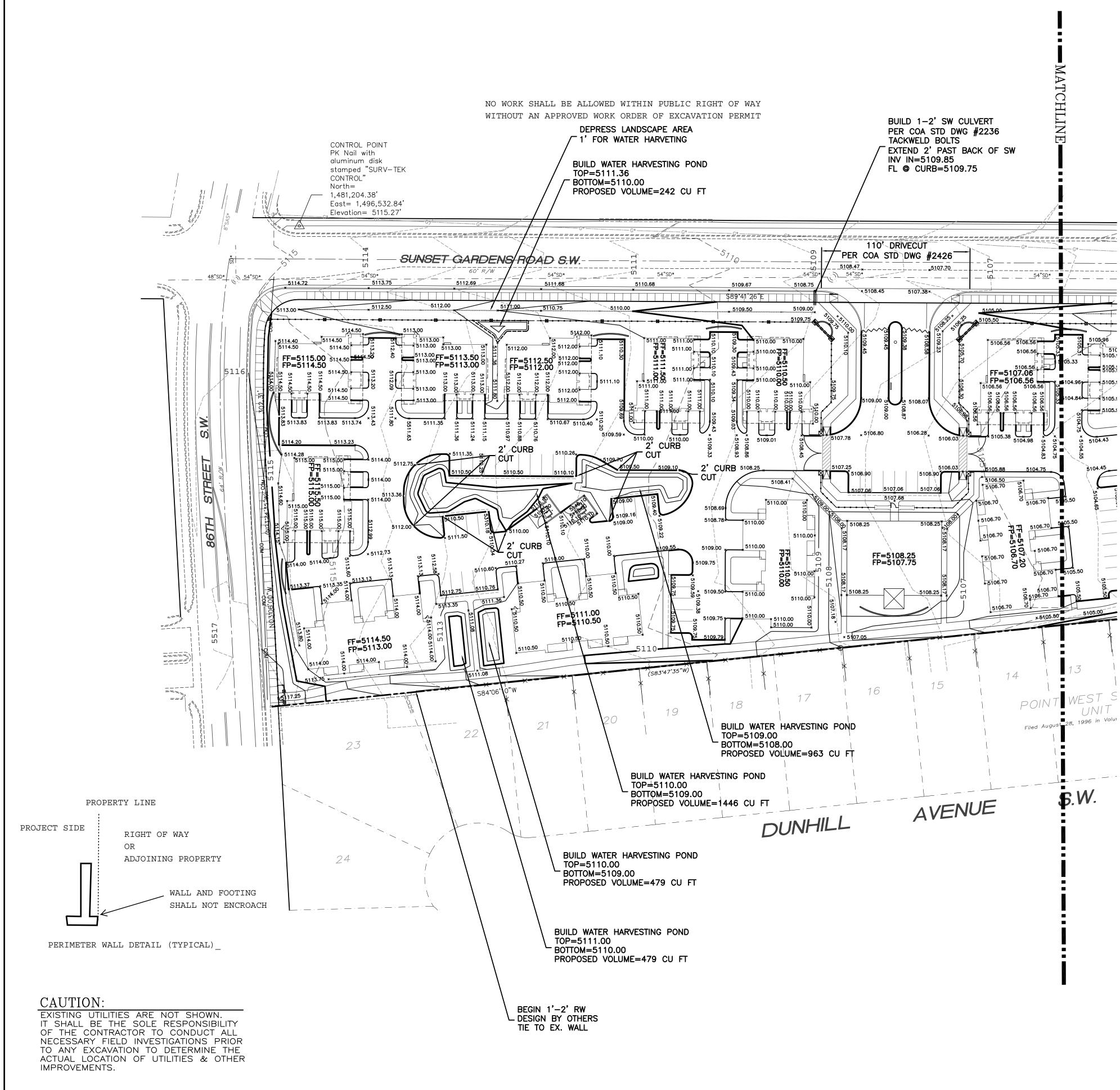
* FLOW DOUBLED DUE TO SUMP CONDITION

Pipe Capacity

Pipe	D	Slope	Area	R	Q Provided	Q Required	Velocity
	(in)	(%)	(ft^2)		(cfs)	(cfs)	(ft/s)
EXISISTING	24	3	3.14	0.5	34.05	15.84	5.04


 $\frac{Manning's Equation:}{Q = 1.49/n * A * R^{(2/3)} * S^{(1/2)}}$

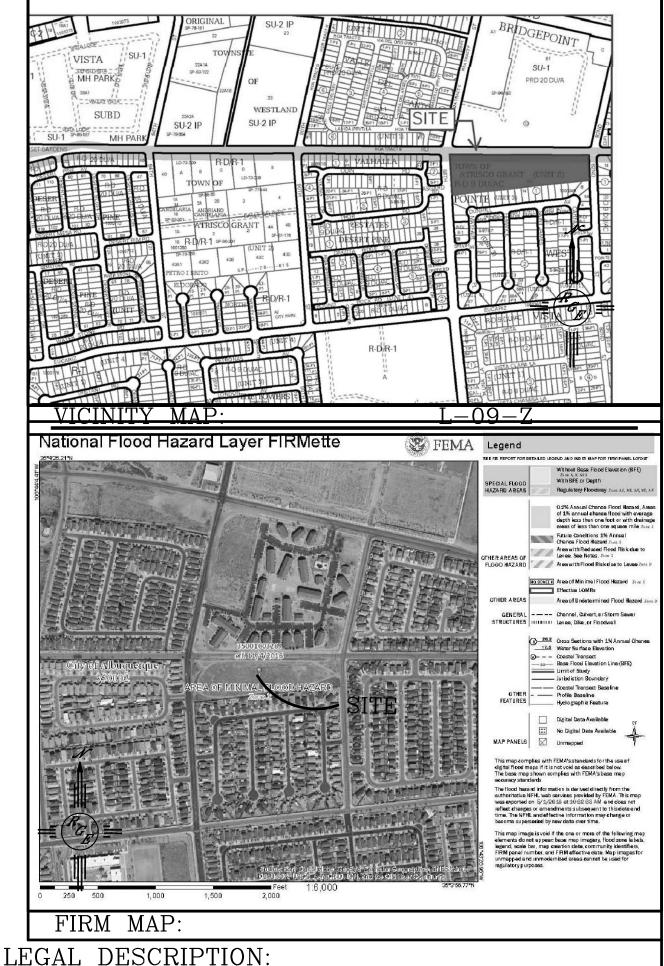
A = Area


R = D/4

S = Slope n = 0.015

Nyloplast 24" Drop In Grate Inlet Capacity Chart

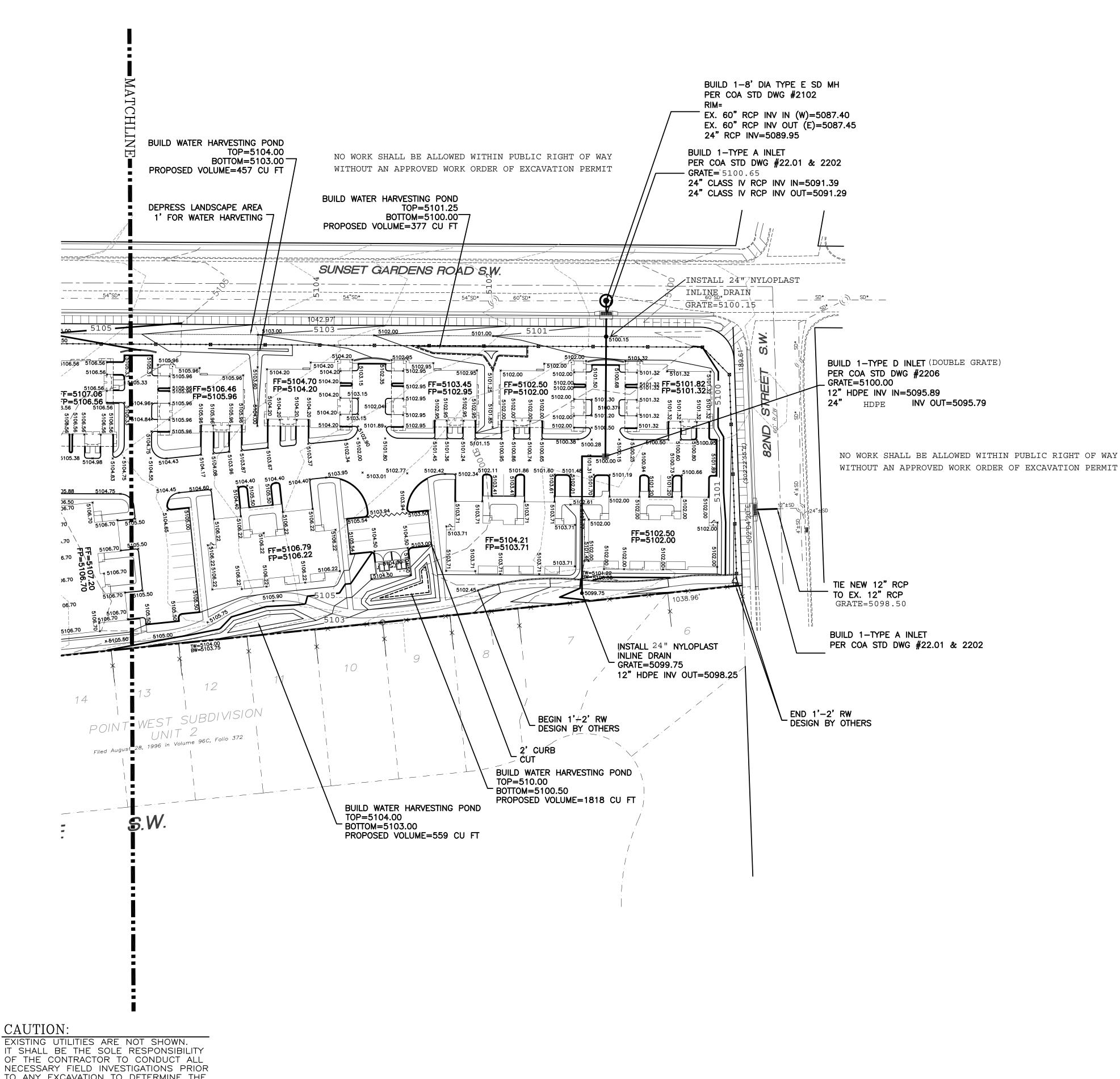
EROSION CONTROL NOTES: PERMIT PRIOR TO BEGINNING WORK.


CONSTRUCTION.

3. CONTRACTOR IS RESPONSIBLE FOR CLEANING ALL SEDIMENT THAT GETS INTO EXISTING RIGHT-OF-WAY.

4. REPAIR OF DAMAGED FACILITIES AND CLEANUP OF SEDIMENT RESPONSIBILITY OF THE CONTRACTOR.

5. ALL EXPOSED EARTH SURFACES MUST BE PROTECTED FROM WIND AND WATER EROSION PRIOR TO FINAL ACCEPTANCE OF ANY PROJECT.


TRACT 52, UNIT 2, TOWN OF ATRISCO GRANT					
NOTES: 1. ALL SPOT ELEVATIONS REPRESENT FLOWLINE ELEVATION UNLESS OTH					
NOTED.	ILRWISE				
2. ALL CURB AND GUTTER TO 6" HEADER UNLESS OTHERWISE NOTED.					
3. ALL RETAINING WALL DESIGN SHALL BE BY OTHERS.					
4. ALL NEW PAVING SHALL BE 6" PCC OVER 8" SUBGRADE PREPARATION CONFORMANCE TO ACI 330R-08. UNLESS OTHERWISE NOTED.	ON IN				
5. ANY CURBS OR PAVEMENT NEGATIVELY IMPACTED BY CONSTRUCT SHALL BE REPLACED TO MATCH EXISTING CONDITIONS.	ION ACTIVITY				
6. ALL SITE WORK SHALL CONFORM TO CITY OF ALBUQUERQUE STAND PUBLIC WORKS CONSTRUCTION EDITION 9 ${ m LEGEND}$	DARDS FOR				
EXISTING CONTOUR					
EXISTING INDEX CONTOUR					
× 4048.25 EXISTING SPOT ELEVATION					
× 4048.25 PROPOSED SPOT ELEVATION					
BOUNDARY					
RIGHT-OF-WAY					
EXISTING CURB AND GUTTER					
M					
FLOWLINE					
CONCEPTUAL NOT FOR CONSTRUCTION					
$= \begin{pmatrix} R \\ G_n \end{pmatrix} = \qquad \qquad$	DRAWN ^{BY} WCWJ				
SUNSET GARDENS	DATE				
GRADING AND	7–17–18				
DRAINAGE PLAN	21894–LAYOUT–5–01–18				
CRAPHIC SCALE Rio Grande	SHEET #				
GRAPHIC SCALE 40 20 0 20 40 11/1/18 11/1/18 11/0 Urande Engineering	1				
$40 20 0 20 40 \qquad $					
DAVID SOULE DAVID SOULE ALBUQUERQUE, NM 87106 SCALE: 1"=40' P.E. #14522 (505) 872-0999	JOB # 21894				

ACCUMULATIONS ON ADJACENT PROPERTIES AND IN PUBLIC FACILITIES IS THE

1. CONTRACTOR IS RESPONSIBLE FOR OBTAINING A TOPSOIL DISTURBANCE

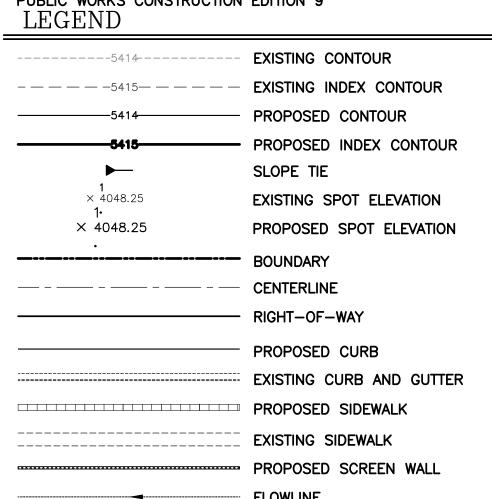
2. CONTRACTOR IS RESPONSIBLE FOR MAINTAINING RUN-OFF ON SITE DURING

NECESSARY FIELD INVESTIGATIONS PRIOR TO ANY EXCAVATION TO DETERMINE THE ACTUAL LOCATION OF UTILITIES & OTHER

IMPROVEMENTS.

EROSION CONTROL NOTES:

PERMIT PRIOR TO BEGINNING WORK.


CONSTRUCTION.

3. CONTRACTOR IS RESPONSIBLE FOR CLEANING ALL SEDIMENT THAT GETS INTO EXISTING RIGHT-OF-WAY.

4. REPAIR OF DAMAGED FACILITIES AND CLEANUP OF SEDIMENT ACCUMULATIONS ON ADJACENT PROPERTIES AND IN PUBLIC FACILITIES IS THE RESPONSIBILITY OF THE CONTRACTOR.

5. ALL EXPOSED EARTH SURFACES MUST BE PROTECTED FROM WIND AND WATER EROSION PRIOR TO FINAL ACCEPTANCE OF ANY PROJECT.

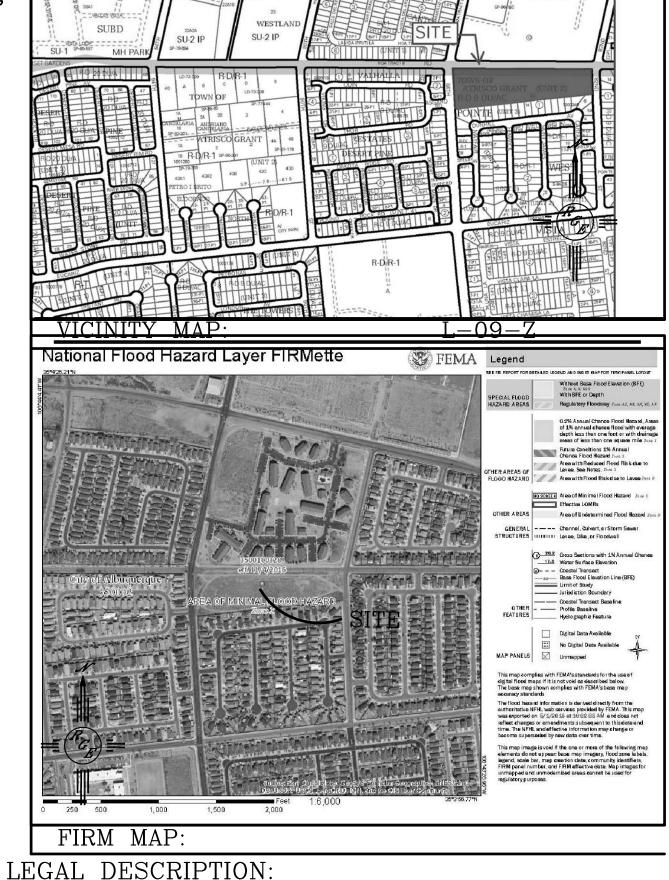
, ↑ ,		FLOWLINE						
	CONCEPTUAL NOT FOR CONSTRUCTION							
=	ENGINEER'S SEAL	86TH AND	DRAWN ^{BY} _{WCWJ}					
	OF UN MET CIER	SUNSET GARDENS GRADING AND	DATE 7-17-18					
		DRAINAGE PLAN	21894—LAYOUT—5—01—18					
GRAPHIC SCALE	11/1/18	Rio Grande	SHEET #					
40 20 0 20 40		1606 CENTRAL AVENUE SE SUITE 201	2					
SCALE: 1"=40'	DAVID SOULE P.E. #14522	ALBUQUERQUE, NM 87106 (505) 872–0999	JOB # 21894					

6. ALL SITE WORK SHALL CONFORM TO CITY OF ALBUQUERQUE STANDARDS FOR PUBLIC WORKS CONSTRUCTION EDITION 9

5. ANY CURBS OR PAVEMENT NEGATIVELY IMPACTED BY CONSTRUCTION ACTIVITY SHALL BE REPLACED TO MATCH EXISTING CONDITIONS.

4. ALL NEW PAVING SHALL BE 6" PCC OVER 8" SUBGRADE PREPARATION IN CONFORMANCE TO ACI 330R-08. UNLESS OTHERWISE NOTED.

3. ALL RETAINING WALL DESIGN SHALL BE BY OTHERS.


2. ALL CURB AND GUTTER TO 6" HEADER UNLESS OTHERWISE NOTED.

NOTED.

1. ALL SPOT ELEVATIONS REPRESENT FLOWLINE ELEVATION UNLESS OTHERWISE

NOTES:

RD 20 DU//

1. CONTRACTOR IS RESPONSIBLE FOR OBTAINING A TOPSOIL DISTURBANCE

VISTA MH PARK

2. CONTRACTOR IS RESPONSIBLE FOR MAINTAINING RUN-OFF ON SITE DURING

11