Traffic Impact Study (TIS) In-N-Out (Gibson)

> Draft Report Version 2

> > April 2025

Prepared for: In-N-Out Burger

Prepared By:

EXECUTIVE SUMMARY

The following contains a Traffic Impact Study (TIS) for an In-N-Out restaurant to be developed on Gibson Boulevard between Alumni Drive and the I-25 Interchange in Albuquerque, New Mexico. Lee Engineering has completed this report for In-N-Out Burger. All analyses and items contained herein conform to scoping requirements set forth in a scoping meeting held on April 29th, 2024, with In-N-Out, the City of Albuquerque (CABQ), and the New Mexico Department of Transportation (NMDOT).

BACKGROUND

The proposed development is an In-N-Out Burger quick service restaurant on Gibson Boulevard between Alumni Drive and the I-25 Interchange.

The site, which is to comprise of a 3,886 square foot building with 74 parking spaces and a drive-through window, is anticipated to generate 145 ingress and 140 egress trips during the MD peak hour, and 105 ingress trips and 97 egress trips during the PM peak hour. The number of vehicle trips generated by the proposed development was based on average driveway traffic data collected from 12 In-N-Out Burger developments in California. Trip data from these 12 developments and trips based on the Institute of Transportation Engineers (ITE) Trip Generation Manual, land use code 934-Fast-Food Restaurant with Drive-Through can be found in Appendix C for comparison.

Site access is available according to current site plans through two driveways on Alumni Drive.

Study intersections include:

- 1) Gibson Boulevard and I-25 SB
- 2) Gibson Boulevard and I-25 NB
- 3) Gibson Boulevard and Mulberry Street
- 4) Alumni Drive and Site Driveway 1
- 5) Alumni Drive and Site Driveway 2
- 6) Gibson Boulevard and Alumni Drive
- 7) Gibson Boulevard and University Boulevard

For the purposes of this analysis, the development is assumed to reach full completion by 2026. The development is to be constructed in one phase.

Analysis scenarios for this study include:

- Existing 2024 Existing field-counted traffic volumes.
- Build-Out Year 2026 Background 2026 traffic volumes projected from the Existing traffic volumes via the application of a growth factor developed from the Mid-Region Council of Governments (MRCOG) Metropolitan Transportation Plan (MTP) CUBE/2 Regional Model, plus trips generated by adjacent developments.
- Build-Out Year 2026 Total 2026 background volumes plus trips generated by the proposed development.
- Horizon Year 2036 Background 2036 traffic volumes projected from the Existing traffic volumes via the application of a growth factor developed from the MRCOG Metropolitan Transportation Plan (MTP) CUBE/2 Regional Model, plus trips generated by adjacent developments.
- Horizon Year 2036 Total 2036 background volumes plus trips generated by the proposed development.

Existing turning movement counts were collected on Thursday, May 16th, 2024, for the following study intersections:

- Gibson Boulevard and I-25 SB Interchange
- Gibson Boulevard and I-25 NB Interchange
- Gibson Boulevard and Mulberry Street
- Gibson Boulevard and Alumni Drive
- Gibson Boulevard and University Boulevard

These volumes were analyzed unaltered in the Existing scenario of the Level of Service and Queueing Analysis section. Site trips for the development site were generated based on trip survey data collected from 12 In-N-Out Burger developments in California. Proposed development-generated trips were used to analyze Build-Out Year and Horizon Year Total volumes.

SUMMARY OF TRAFFIC ANALYSIS AND RECOMMENDATIONS

The following presents a summary of the traffic analysis and recommendations included in this report.

Assumptions

The following assumptions regarding new developments in the roadway network were made for the Build-Out Year scenarios based on the information discussed in the scoping meeting:

- Alumni Drive is assumed to be extended north of its current location to Avenida Caesar Chavez through a project designed and funded by the University of New Mexico. Site Driveways 1 and 2 will be constructed on the west side of the new segment of Alumni Drive. For this analysis, the full extension of Alumni Drive is assumed to be completed by Horizon Year 2036.
- The Gibson Boulevard and I-25 Interchange is currently being redesigned by NMDOT. Capacity and queuing issues at the interchange are assumed to be addressed in the future by this reconstruction project. Therefore, mitigations for the interchange are not provided in this analysis.

CONCLUSIONS

The capacity and queuing analysis showed that several study intersection movements operate at unacceptable levels of service under Existing and Background conditions.

Under Existing 2024 conditions, traffic operation is summarized as follows:

- At the stop-controlled intersection of Gibson Boulevard and I-25 NB Off-Ramp
 - NBL operates at LOS E and LOS F during the MD and PM peak hours, respectively.
 - NBR operates at LOS E during the PM peak hour.
- At the stop-controlled intersection of Gibson Boulevard and Mulberry Street
 - NBL operates at LOS E and LOS F during the MD and PM peak hours, respectively.
- At the stop-controlled intersection of Gibson Boulevard and Alumni Drive
 - SBL operates at LOS E and LOS F during the MD and PM peak hours, respectively.
- At the signalized intersection of Gibson Boulevard and University Boulevard
 - SBL operates at LOS E during the PM peak hour.
 - \circ $\:$ SBR operates at LOS E during the PM peak hour.

Under Background 2026 conditions, traffic operation is summarized as follows:

- At the stop-controlled intersection of Gibson Boulevard and I-25 SB Off-Ramp
 - NBR operates at LOS E during the MD peak hour.
- At the stop-controlled intersection of Gibson Boulevard and I-25 NB Off-Ramp
 - NBL operates at LOS E and LOS F during the MD and PM peak hours, respectively.
 - NBR operates at LOS F during the PM peak hour.
- At the stop-controlled intersection of Gibson Boulevard and Mulberry Street
 - NBL operates at LOS E and LOS F during the MD and PM peak hours, respectively.
- At the stop-controlled intersection of Gibson Boulevard and Alumni Drive
 - \circ $\;$ NBL/R operates at LOS F during the MD and PM peak hours.
 - SBL operates at LOS F during the MD and PM peak hours.
 - EBL operates at LOS F during the PM peak hours.
- At the signalized intersection of Gibson Boulevard and University Boulevard
 SBL operates at LOS E during the PM peak hour.

Under the Full-Build 2026 scenario, traffic operation is summarized as follows:

- At the stop-controlled intersection of Gibson Boulevard and I-25 SB Off-Ramp

 NBR operates at LOS E during the MD and PM peak hours.
- At the stop-controlled intersection of Gibson Boulevard and I-25 NB Off-Ramp
 - NBL operates at LOS F during the MD and PM peak hours.
 - NBR operates at LOS F during the PM peak hour.
- At the stop-controlled intersection of Gibson Boulevard and Mulberry Street
 - NBL operates at LOS F during the MD and PM peak hours.
- At the stop-controlled intersection of Gibson Boulevard and Alumni Drive
 - NBL/R operates at LOS F during the MD peak hour.
 - SBL operates at LOS F during the MD and PM peak hours.
 - EBL operates at LOS F PM peak hours.
- At the signalized intersection of Gibson Boulevard and University Boulevard
 - SBL operates at LOS E during the PM peak hour.
 - SBR operates at LOS E during the PM peak hour.

Detailed traffic operation results for Existing, Build Out Year 2026 Background, Build Out Year 2026 Full-Build, Horizon Year 2036 Background, and Horizon Year 2036 Full-Build scenarios can be found in the LOS, Capacity and Queuing section of the report.

SITE RECOMMENDATIONS

- Proposed Access Points and Locations:
 - Full access configuration, with right and left turns being permitted, is recommended for Site Driveways 1 and 2 on Alumni Drive, to provide adequate site circulation for ingress and egress Development trips.
 - An area bounded by the required sight distance of 355 feet for left-turning vehicle and 290 feet for right-turning vehicles should be cleared and maintained free of obstructions on either side of each site driveway.

OFF-SITE INTERSECTION RECOMMENDATIONS

- Mulberry Street and Gibson Boulevard
 - A "No U-Turn" sign (R-3-4) should be installed on the median at Mulberry Street and Gibson Boulevard, facing westbound traffic.

TABLE OF CONTENTS

Executive Summary	i
Background	i
Summary of Traffic Analysis and Recommendations	ii
Assumptions	ii
Conclusions	ii
Site Recommendations	iii
Off-site Intersection Recommendations	iii
Table of Contents	iv
List of Figures	v
List of Tables	v
List of Appendices	vi
Introduction	1
Background Information	
Project Location & Site Plan	1
Study Area, Area Land Use, and Streets Narrative Summary	
Study Area	3
Area Land Use	3
Streets	4
Intersections	4
Bicycle Facilities	
Adjacent Developments	5
Data Collection	6
Field Data Collection	6
Traffic Scenario Development	7
Traffic Counts, Growth Rates, Adjacent Site Trips and Trip Generations	7
Turning Movement Counts	7
Traffic Growth	8
Site Trip Generation, Distribution and Assignment	10
Traffic Volume Calculations	20
Site CONDITIONS and Site Analysis	25
Assumptions	25
Site Access Analysis and Justification	25
Site Circulation and Queueing Analysis	25
Auxiliary Lane Analysis	

Site Driveways Sight Distance
Traffic Analysis27
LOS, Capacity, and Queuing Analysis28
Existing Year 2024 Conditions29
Build-Out Year (2026) Background conditions31
Build-Out Year (2026) Full-Build Conditions33
Horizon Year (2036) Background Conditions35
Horizon Year (2036) Full-Build Conditions
Comparison of Background and Full-Build Scenario Results
Intersection Capacity Mitigations
Gibson Boulevard40
Crash Data Summary
Conclusions and Recommendations
Assumptions
Conclusions
Site Recommendations
Off-site Intersection Recommendations47

LIST OF FIGURES

Figure 1: Site Plan	2
Figure 2: Vicinity Map	3
Figure 3: Existing Traffic Counts	8
Figure 4: Pass-by Trip Percentages	11
Figure 5: Pass-by Trip Volumes	12
Figure 6: Direct Trip Percentages	13
Figure 7: Direct Trip Volumes	14
Figure 8: Horizon Year Pass-By Trip %	16
Figure 9: Horizon Year Pass-By Trip Volumes	17
Figure 10: Horizon Year Direct Trip %	18
Figure 11: Horizon Year Direct Trip Volumes	
Figure 12: Build Out Year 2026 Background Volumes	21
Figure 13: Build Out Year 2026 Full-Build Volumes	22
Figure 14: Horizon Year 2036 Background Volumes	23
Figure 15: Horizon Year 2036 Full-Build Volumes	24

LIST OF TABLES

Table 1: Intersection and Network Peak Hours	7
Table 2: Yearly Growth Rates	9
Table 3: Proposed Development Trip Generation	10
Table 4: Pass-by Trip Percentages – Build-Out Year 2026	10

Table 5: Pass-By Trip Percentages - Horizon Year 2036	15
Table 6: Access Spacing Requirements from CABQ DPM	25
Table 7: Turn Lane Warrants – City of Albuquerque DPM Requirements	26
Table 8: Deceleration Lane Lengths	26
Table 9: Required Sight Distance Values	27
Table 10: LOS Criteria and Descriptions for Signalized Intersections	28
Table 11: LOS Criteria for Unsignalized Intersections	28
Table 12: HCM Results for Existing Year (2024) Conditions	30
Table 13: HCM Results for Build-Out Year (2026) Background Conditions	32
Table 14: HCM Results for Build-Out Year (2026) Full-Build Conditions	34
Table 15: HCM Results for Horizon Year (2036) Background Conditions	36
Table 16: HCM Results for Horizon Year (2036) Full-Build Condition	38
Table 17: Crash Summary	41

LIST OF APPENDICES

Appendix A: Scoping Meeting Notes Appendix B: Turning Movement Counts Appendix C: ITE Trip Generation and In-N-Out Trip Survey Data Appendix D: HCM Analysis Output Sheets Appendix E: AASHTO Green Book Intersection Sight Distance Calculations Appendix F: Site Plan

INTRODUCTION

This report details the procedures and findings of a Traffic Impact Study (TIS) performed by Lee Engineering for In-N-Out Burger. This report and the analyses herein were performed for a quick service development to be constructed on Gibson Boulevard between Alumni Drive and the I-25 interchange in Albuquerque, New Mexico. This study examines the impacts of the proposed development on surrounding traffic conditions and discusses the potential impacts of trips generated by the development on the study intersections.

The scope of this report and the analyses performed were completed in agreement with the scoping requirements set forth by the City of Albuquerque (CoA) and the New Mexico Department of Transportation (NMDOT). Scoping meeting notes from the scoping meeting held on April 29th, 2024, are included in Appendix A. Analysis procedures, conclusions, and recommendations for this study were developed according to the *Highway Capacity Manual (HCM)* 7th Edition and the Manual on Uniform Traffic Control Devices (MUTCD) 11th Edition.

For the purposes of this analysis, the development is assumed to be completed in one phase and to reach full completion by 2026. The site plan displayed in Figure 1 shows that the proposed development is a travel center. Traffic generated by the site is anticipated to generate 145 ingress and 140 egress trips during the MD peak hour, and 105 ingress trips and 97 egress trips during the PM peak hour. Figure 2 shows the site plan for the development. Lee Engineering conducted a Level of Service and Queuing Analysis for the following MD and PM peak hour scenarios:

Traffic Analysis

- Existing 2024 Existing field-counted traffic volumes.
- Build-Out Year 2026 Background 2026 traffic volumes projected from the Existing traffic volumes via the application of a growth factor developed from the MRCOG Metropolitan Transportation Plan (MTP) CUBE/2 Regional Model, plus trips generated by adjacent developments.
- Build-Out Year 2026 Total 2026 background volumes plus trips generated by the proposed development.
- Horizon Year 2036 Background 2036 traffic volumes projected from the Existing traffic volumes via the application of a growth factor developed from the MRCOG Metropolitan Transportation Plan (MTP) CUBE/2 Regional Model, plus trips generated by adjacent developments.
- Horizon Year 2036 Total 2036 background volumes plus trips generated by the proposed development.

The Level of Service and Queuing Analysis Reports are presented in full in the Appendix.

The site's legal descriptions, as shown in the Bernalillo County Assessor Map at the time of this report, are as follows:

TR 1 PLAT OF UNM GIBSON COMMERCIAL DISTRICT (A REPL OF TRSA & B, EVER READY SUBD TRS 4 & 5, GIBSON TRS & TR A, 40/25ASSOCIATES SUBD) CONT 1.1891 AC

TR 4 PLAT OF UNM GIBSON COMMERCIAL DISTRICT (A REPL OF TRSA & B, EVER READY SUBD TRS 4 & 5, GIBSON TRS & TR A, 40/25ASSOCIATES SUBD) CONT .8735 AC

BACKGROUND INFORMATION Project Location & Site Plan

LEE ENGINEERING

The In-N-Out Burger development will be located on Gibson Boulevard between Alumni Drive and the I-25 Interchange. Figure 1 shows the complete proposed site plan, and Figure 2 shows the site location, study intersections, and the surrounding area. Nearby intersections include the following:

- 1) Gibson Boulevard and I-25 SB
- 2) Gibson Boulevard and I-25 NB
- 3) Gibson Boulevard and Mulberry Street
- 4) Alumni Drive and Site Driveway 1
- 5) Alumni Drive and Site Driveway 2
- 6) Gibson Boulevard and Alumni Drive
- 7) Gibson Boulevard and University Boulevard

The proposed development would convert approximately 2.06 acres of land into an In-N-Out Burger development. For the purposes of this analysis, the development is anticipated to comprise a total of a 3,886 square foot building with 74 parking spaces and a drive-through window. Proposed access points include two driveways on Alumni Drive.

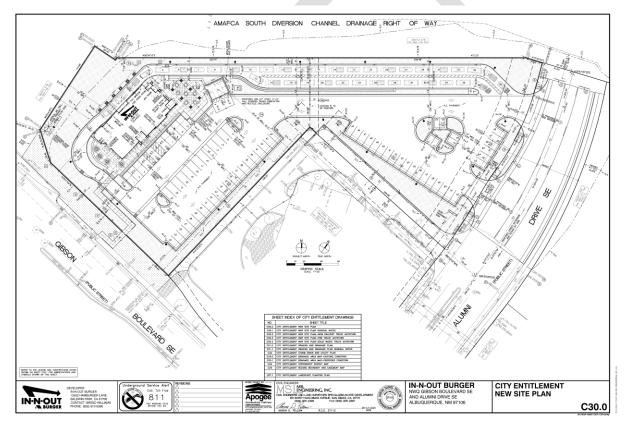


Figure 1: Site Plan

Figure 2: Vicinity Map

STUDY AREA, AREA LAND USE, AND STREETS NARRATIVE SUMMARY

STUDY AREA

The study area is defined as North of Gibson Boulevard, from the I-25 interchange to University Boulevard. The following intersections were identified for analysis during the scoping meeting:

- 1) Gibson Boulevard and I-25 SB
- 2) Gibson Boulevard and I-25 NB
- 3) Gibson Boulevard and Mulberry Street
- 4) Alumni Drive and Site Driveway 1
- 5) Alumni Drive and Site Driveway 2
- 6) Gibson Boulevard and Alumni Drive
- 7) Gibson Boulevard and University Boulevard

AREA LAND USE

As described, the development is to be located on the north side of Gibson Boulevard, and immediately west of Alumni Drive. Adjacent to and surrounding the project site are land uses consisting of the following:

- Undeveloped: The land immediately North and West of the site is currently undeveloped.
- Fire Station: The proposed development is neighboring Albuquerque Fire Station 2.
- Educational: Schools located within 2 miles of the proposed development include Lowell Elementary, East San Jose Elementary, John Marshall School, South Valley Preparatory, William W. Josephine Dorn Charter, Mission Achievement and Success Charter, and University of New Mexico.

- Residential: Several areas surrounding the development are Single-family detached housing, as well as University of New Mexico student housing developments.
- Commercial: Other fast-food developments in the vicinity of the proposed development include Subway, Burger King, Del Taco, Wienerschnitzel, Chick-Fil-A, and Blake's Lotabuger.

STREETS

The following details the characteristics and features of streets included in the study area:

Gibson Boulevard is a CoA-maintained, six-lane roadway with a raised median that runs east and west. The roadway is classified by MRCOG as a principal arterial. The posted speed limit on westbound Gibson Boulevard is 45 MPH east of the I-25 SB ramps, and 35 MPH west of the I-25 SB ramps. The posted speed limit on eastbound Gibson Boulevard is 35 MPH west of the proposed development and 45 MPH east of the development. There are bike lanes, curb and gutter, and sidewalks present on both sides of the roadway.

Alumni Drive is a CoA-maintained, two-lane roadway with a raised median that runs north and south. The roadway is classified by MRCOG as a local urban street. The posted speed limit is 30 MPH. There are bike lanes, curb and gutter, and sidewalks present on both sides of the roadway. The roadway ends approximately 320 feet north of Gibson Boulevard.

University Boulevard is a CoA-maintained roadway that runs north and south. North of Gibson Boulevard, the roadway is classified as a minor arterial, comprises four lanes divided by a raised median, and has the posted speed limit is 40 MPH. South of Gibson Boulevard, the roadway is classified as a local urban street, comprises two lanes, and has a posted speed limit is 25 MPH. Curb, gutter, and Sidewalks are present on both sides of the roadway. Bike lanes are present on both sides of the roadway north of Gibson Boulevard, and sharrow markings and bike route signing is present south of Gibson Boulevard.

Mulberry Street is a CoA-maintained, two-way, undivided roadway that runs north and south. The roadway is classified by MRCOG as a local urban street, and the posted speed limit is 25 MPH. Curb, gutter, and sidewalks are present on both sides of the roadway.

I-25 is an NMDOT-maintained interstate that runs north and south. At Gibson Boulevard and NB I-25, there are three ramps: an off-ramp with an advisory speed limit of 45 MPH that splits into two lanes, one to EB Gibson Boulevard and one to WB Gibson Boulevard, an on-ramp from EB Gibson to NB I-25, and a one-lane on-ramp from WB Gibson to NB I-25. At Gibson Boulevard and SB I-25, there are three ramps: a one-lane off-ramp from SB I-25 to EB Gibson Boulevard with an advisory speed limit of 25 MPH, a one-lane off-ramp from SB-I-25 to WB Gibson Boulevard with an advisory speed limit of 35 MPH, and an on-ramp to SB I-25 with one lane at the base of the ramp from EB Gibson Boulevard and one lane at the base of the ramp from EB Gibson Boulevard and one ramp.

INTERSECTIONS

The following details the traffic control and characteristics of the existing intersections in the study area:

Gibson Boulevard and I-25 SB is an interchange joining two interstate off-ramps, an interstate onramps, and a principal arterial. The north leg comprises the I-25 Southbound off-ramp to WB Gibson Boulevard, joining Gibson Boulevard without stop or yield control via an added lane. The south leg comprises the I-25 Southbound off-ramp to EB Gibson Boulevard, joining Gibson Boulevard without stop or yield control via an added lane. The east leg comprises two through lanes and a left-turn lane onto

the I-25 SB on-ramp. The west leg comprises two through lanes and a right-turn lane onto the I-25 SB on-ramp. No crosswalks are present.

Gibson Boulevard and I-25 NB is an interchange joining an interstate off-ramp, two interstate on-ramps, and a principal arterial. The south leg comprises the I-25 NB off-ramp to Gibson Boulevard, which splits into one left-turn lane and one right-turn lane. Stop control is present on the left-turn lane, while the right-turn lane joins Gibson Boulevard EB without stop or yield control via an added lane. The east leg comprises two through lanes and a right-turn lane onto an I-25 NB on-ramp. The west leg comprises two through lanes and a right-turn lane onto an I-25 NB on-ramp. No crosswalks are present.

Gibson Boulevard and Mulberry Street is a 3-legged, minor-street stop-controlled intersection. The south leg is stop-controlled and comprises a right-turn lane and a left-turn lane. The east leg comprises three through lanes and a left-turn lane. The west leg comprises two through lanes and a shared right-turn through lane. No crosswalks are present. Based on conversations with NMDOT, it is noted that future access for this intersection could be limited.

Gibson Boulevard and Alumni Drive a 4-legged, minor-street stop-controlled intersection. The north leg is stop-controlled and consists of a bike lane, a right-turn lane, and a left-turn lane. The south leg is a business access driveway with one lane, with left and right turns permitted. No stop sign is present on the south leg. The east leg comprises a left-turn lane, three through lanes, a bike lane, and a right-turn lane. The west leg comprises a left turn lane, two through lanes, a shared through/right-turn lane, and a bike lane. A crosswalk is present on the north leg of the intersection.

Gibson Boulevard and University Boulevard is a 4-legged, signalized intersection. The north leg comprises a left-turn lane, a through lane, a bike lane, and a right-turn lane. The south leg comprises a left-turn lane and a shared right-turn/through lane. The east leg comprises a left-turn lane, three through lanes, a bike lane, and a right-turn lane. The west leg comprises a left-turn lane, three through lanes, a bike lane, and a right-turn lane. Left-turn phasing at the south, east, and west legs is protected-permitted with five-section signal heads. Left-turn phasing at the north leg is protected only. Vehicle detection is present on each approach, and emergency vehicle preemption is present on Gibson Boulevard for each direction. Crosswalks, pedestrian pushbuttons, and pedestrian signal heads are present on each approach.

BICYCLE FACILITIES

Bicycle lanes are present within the study area on Gibson Boulevard, Alumni Drive, and University Boulevard. A paved multi-use trail is present on Gibson Boulevard, east of University Boulevard. South of Gibson Boulevard, University Boulevard is classified as a bike route with sharrow pavement markings and bike route signing present.

ADJACENT DEVELOPMENTS

Two adjacent developments are planned for construction near the study area, and site trips for these developments were included in the background traffic volumes for this analysis.

A Raising Cane's Restaurant is planned on the northeast corner of Gibson Boulevard and Alumni Drive, and the build-out year listed in the Traffic Impact Study is 2023. The infrastructure improvements required by the City for this development are as follows:

On Alumni Drive, SE Centerline:

- Removal of Curb and Gutter
- Removal of Concrete Sidewalk
- Removal of Concrete Median Pavement

- Removal and Replacement of Asphalt Pavement for Utility Trenching
- Removal of Sewer Manhole
- Removal of Sewer Line
- Sidewalk Flume (Per COA #2236)
- Standard Curb & Gutter (Per COA #2415A)
- Concrete Median Pavement (Per COA #2408)
- Public Concrete Sidewalk (Per COA #2430)
- Barrier Free Ramp (Per COA #2446)
- White Pavement Striping to Match Existing
- 1.5' Domestic Water Meter (Per ABCWUA #2363)
- 1.5" Domestic Water Service

At Proposed Sewer Easement North of the Subject Property:

 Relocated Sewer Line and Associated Appurtenances – to be fully designed with Work Order #W20230006

A commercial development owned by Prime Properties is planned on the southwest corner of Gibson Boulevard and Yale Boulevard, just east of the proposed In-N-Out Burger restaurant. The build-out year listed in the Traffic Impact Study for the commercial development is 2023.

An extension of Alumni Drive to University Boulevard, designed and funded by the University of New Mexico, is also planned for development. A build out year for this project is not yet available; however, the extension is assumed to be complete in Horizon Year 2036 for the purpose of this analysis.

DATA COLLECTION

The following section details the data collection method used in subsequent analyses of this report. The data discussed below was collected via a combination of field observations and machine/video recordings.

FIELD DATA COLLECTION

On-Street Parking

No dedicated on-street space is provided in the study area.

Pedestrians and Bicycles

Pedestrian and bicycle volumes were collected at all study intersections with turning movement counts (see Turning Movement Counts section below). Pedestrian and bicycle hourly volumes are provided in Appendix B.

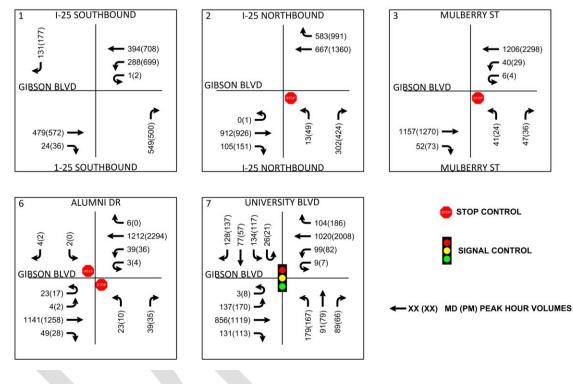
Transit

According to the City of Albuquerque's ABQ Ride System Map (2023), no bus routes pass through the study area.

Signal Timings

The City of Albuquerque Traffic Engineering Division provided signal timing for the signalized intersection of Gibson Boulevard and University Boulevard. Signal timing sheets used in the capacity analyses are provided in Appendix C.

TRAFFIC SCENARIO DEVELOPMENT


The following sections detail the methods and calculations used to obtain traffic volumes for the existing 2026 and 2036 analysis scenarios. This process used the following tools as described below: Traffic Projections, Site Trip Generation, and Trip Distribution and Assignment. Figures at the end of this section show the resulting traffic volumes determined for the 2026 and 2036 analysis scenarios.

TRAFFIC COUNTS, GROWTH RATES, ADJACENT SITE TRIPS AND TRIP GENERATIONS TURNING MOVEMENT COUNTS

Turning movement counts (TMC) were collected for nine hours in three periods: 6:00 AM-9:00 AM, 11:00 AM-2:00 PM, and 3:30 PM-6:30 PM on Thursday, May 16th, 2024, for each of the study intersections. Since the development will not operate during the AM hours, the Midday and PM peak hours were calculated and analyzed. Table 1 shows the observed peak hours for each intersection where traffic counts were collected and the peak hours for the entire study area (network peak). MD and PM peak-hour traffic volumes are shown in Figure 3. Complete turning movement counts can be found in Appendix B.

Intersection	MD Peak Hour	PM Peak Hour
I-25 SB Ramps & Gibson Blvd	12:00 PM	3:30 PM
I-25 NB Ramps & Gibson Blvd	12:00 PM	3:30 PM
Gibson Blvd & Mulberry St	12:00 PM	3:30 PM
Gibson Blvd & Alumni Dr	12:00 PM	3:30 PM
Gibson Blvd & University Blvd	12:00 PM	3:30 PM
Network Peak Hours:	12:00 PM	3:30 PM

Figure 3: Existing Traffic Counts

TRAFFIC GROWTH

For the purposes of this analysis, the future year volumes were forecast from existing traffic volumes using values from 2016 and 2040 (updated) travel demand models provided by MRCOG. These models were then compared using AM and PM peak hour direction volumes (AMPH LOAD and PMPH LOAD) to calculate anticipated growth rates for individual roadways near the study area. Roadways calculated to have a yearly growth rate of less than 1% were analyzed with a 1% per year growth rate to facilitate a conservative analysis. Growth rates were then converted to growth factors for specific analysis scenarios. Values provided by MRCOG are reproduced verbatim in Table 2, in addition to the calculated growth rates used in the analysis. Growth rates were then applied to the 2024 existing volumes to forecast future volumes. Projected turning movement volumes were used along with adjacent developments' site-generated trips for the Build-Out Year 2026 Background scenario. 2026 Background volumes plus the proposed development's site-generated trips were used for the Build-Out Year 2026 Full-Build scenario.

			Tuble	2: Yearly G	Frowth Rate				
Street	Segment Begin	Segment End	Direction	Period	MRCOG 2016 Model "Peak Hour Load"	MRCOG 2040 Model "Peak Hour Load"	Annual Growth Rate	Average Annual Growth	Growth Rate for Analysis
	Node 3659	University	WB	AM PH	1270	1440	0.52%		
	Noue 3033	University	VVD	PM PH	2184	1775	-0.86%		
	University	Node 3659	EB	AM PH	2133	2043	-0.18%		
	Oniversity	Noue 3035		PM PH	1389	1694	0.83%		
lvd	University	Node 3652	WB	AM PH	1475	1730	0.67%		
Gibson Blvd	Oniversity	10000 5052	~~	PM PH	2845	2798	-0.07%	1.13%	1.10%
osc	Node 3652	University	EB	AM PH	2645	2780	0.21%	1.1370	1.10/0
Ш	10000 3032	Oniversity		PM PH	1643	2140	1.11%		
	Node 3652	Node 3649	WB	AM PH	557	1730	4.84%		
	10000 3032	10002 3043	VVD	PM PH	1786	2798	1.89%		
	Node 3649	Node 3652	EB	AM PH	1729	2780	2.00%		
	10000 3043	10002 5052	LD	PM PH	1164	2140	2.57%		
	Gibson	Node 3631	NB	AM PH	407	752	2.59%		
q	Gibson	1006 5051	ND	PM PH	290	475	2.08%		
Blv	Node 3631	Gibson	SB	AM PH	230	398	2.31%		2.80%
ity	NOGE 2021	0103011	30	PM PH	675	1132	2.18%	2.84%	
University Blvd	Node 3631	Sunshine	NB	AM PH	337	749	3.38%	2.64%	
ln iv	NOUE 3031	Sunsmine	ND	PM PH	225	466	3.08%		
	Gunching	Node 2021	CD.	AM PH	123	371	4.71%		
	Sunshine	Node 3631	SB	PM PH	644	1146	2.43%		
	Nede 2720	Nodo 2000	ND	AM PH	3815	5287	1.37%		1.00%
	Node 3720	Node 3688	NB	PM PH	3279	4746	1.55%		
ج		No. do. 2010	ND	AM PH	2866	3879	1.27%	- 0.93%	
lort	Node 3688	Node 3648	NB	PM PH	2772	3868	1.40%		
I-25 North		No. do. 2015	ND	AM PH	3233	3879	0.76%		
I-2	Node 3648	Node 3615	NB	PM PH	3653	3868	0.24%		
	N	N 1 2550	ND	AM PH	4185	4806	0.58%		
	Node 3615	Node 3558	NB	PM PH	4741	5026	0.24%		
			6.0	AM PH	4283	4238	-0.04%		
	Node 3568	Node 3618	SB	PM PH	4229	4392	0.16%		
<u> </u>		N 1 2650	6.0	AM PH	3897	3305	-0.68%		
I-25 South	Node 3618	Node 3650	SB	PM PH	4027	3602	-0.46%		0.30%
5 S			6.5	AM PH	2733	3305	0.79%	0.28%	
I-2	Node 3650	Node 3679	SB	PM PH	3170	3602	0.53%		
				AM PH	3071	3945	1.05%		
	Node3679	Node 3721	SB	PM PH	3961	4951	0.93%		
Alumni Dr				N/A					1.00%
Mulberry St				N/A					1.00%

Table 2: Yearly Growth Rates

Source: MRCOG 2016 and 2040 Models

SITE TRIP GENERATION, DISTRIBUTION AND ASSIGNMENT

Trip generation for the Proposed Development was taken from trip survey data for 12 In-N-Out Burger Restaurants. The average of the 12 developments' Mid-day and PM peak hour trips was used for this analysis. Pass-by Trip rates of 50% for the Mid-day peak hour and 55% for the PM peak hour taken from the ITE Trip Generation Manual for land use code 934-Fast-Food Restaurant with Drive-Through were used.

Trip data from 12 In-N-Out Burger restaurants show higher peak hour volumes than those based on the ITE Trip Generation Manual. Trip survey data and ITE Trip Generation data can be found in Appendix C for comparison. Trips generated by the proposed development are shown in the tables below. Site-generated trips were added to the Background traffic volumes to create the Total Build-Out and Horizon Year traffic volumes. Table 3 shows the trip generation volumes and percents.

In-N-Out Burger Trip Generation					
	Peak Hour	INGRESS	EGRESS		
PASS-BY	MD	72	70		
PA33-D1	PM	57	53		
DIDECT	MD	73	70		
DIRECT	PM	48	44		
TOTAL ¹	MD	145	140		
TOTAL	PM	105	97		

Table 3.	Pronosed	Developmen	nt Trin (Generation
10010 01	1 TOPOSCO	Developiner	ic inp	ochiciation

Trip Distribution and Assignment – Build Out Year 2026

The proposed site-generated trip distribution was determined based on the analysis of existing intersection demand characteristics within the study area. These direct trips were routed within the roadway network to and from the Development based on the proportions of existing turning movement counts during the AM and PM peak hours. Figures 4 through 7 show the routing percentages and trips generated by the development. Pass-by trip percentages for Build-Out Year 2026 are also shown in Table 4.

Table 4: Pass-by Trip Percentages – Build-Out Year 2026

Pass-by	Trip Percentages	
From	То	
I-25 SB	I-25 SB	35%
I-25 NB	I-25 NB	20%
Gibson EB	Gibson EB	10%
Gibson WB	University NB	5%
Gibson WB	I-25 SB	5%
Gibson WB	I-25 NB	5%
University SB	I-25 SB	5%
University SB	I-25 NB	10%
University SB	University SB	5%
	Total	100%

¹ Average trips from data collected for 12 In-N-Out Burger developments, see Appendix C

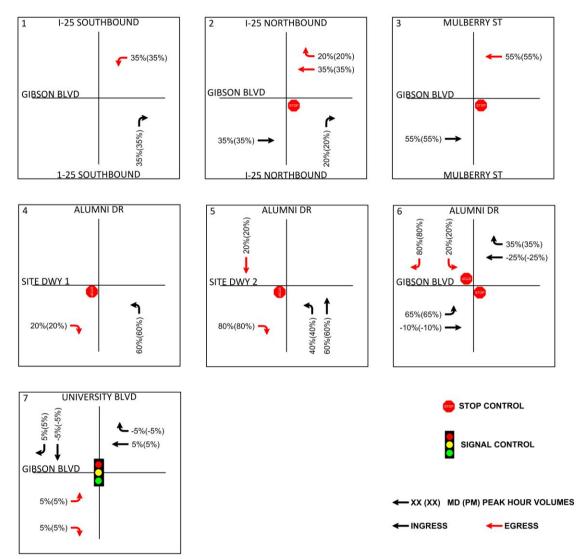


Figure 4: Pass-by Trip Percentages

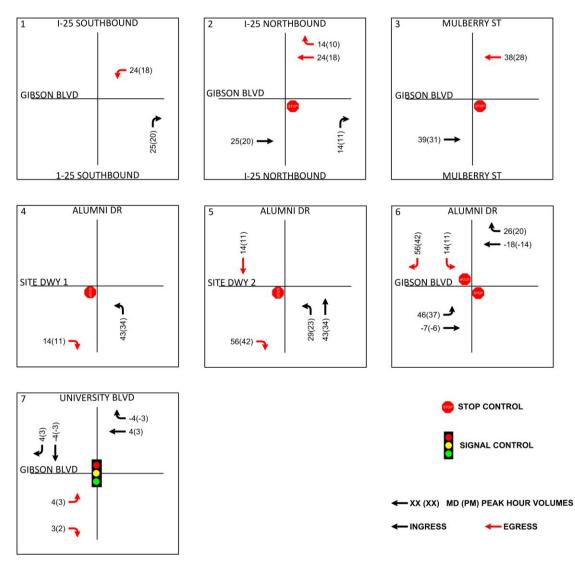


Figure 5: Pass-by Trip Volumes

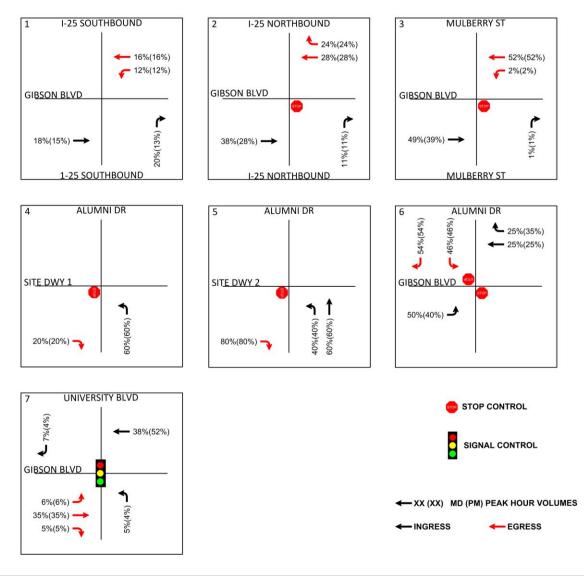
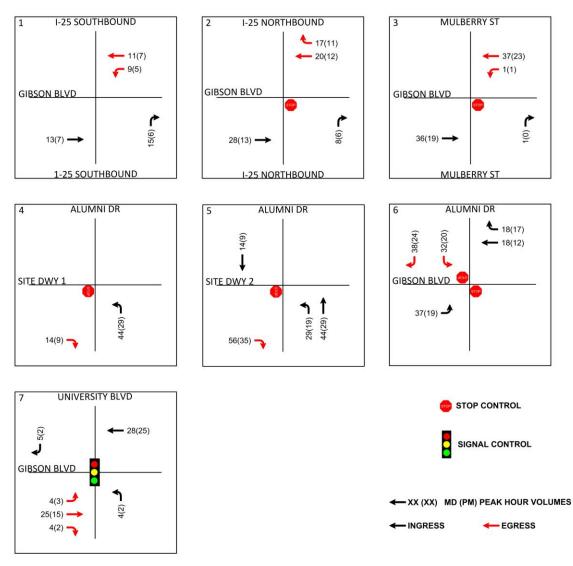



Figure 6: Direct Trip Percentages

Trip Distribution and Assignment – Horizon Year 2036

Since the extension of Alumni Drive is assumed to be completed in Horizon Year 2036, a second trip distribution was created for the Horizon Year. Figures 8 through 11 show the routing percentages and trips generated by the development. Pass-by trip percentages for Build-Out Year 2026 are also shown in Table 5. Direct and pass-by trips to and from the extended portion of Alumni Drive are approximated based on assumed future traffic patterns. Without existing volumes, routing percentages could not be calculated from existing traffic patterns.

Tuble 5: Pass-By Thp Percentages - Honzon Year 2036					
Pass-by Trip Percentages - Horizon Year 2036					
From	То	Percentage			
I-25 SB	I-25 SB	30%			
I-25 NB	I-25 NB	15%			
Gibson EB	Gibson EB	10%			
Gibson EB	Alumni NB	5%			
Gibson WB	Gibson WB	10%			
Gibson WB	Alumni NB	5%			
Gibson WB	I-25 SB	5%			
Gibson WB	I-25 NB	5%			
University SB	University SB	5%			
University SB	I-25 SB	5%			
University SB	I-25 NB	5%			
	Total	100%			

1	Table	5:	Pass	s-By	Trip	Pei	rce	nta	ges -	Но	rizo	on	Yea	r 20	036	
												•				

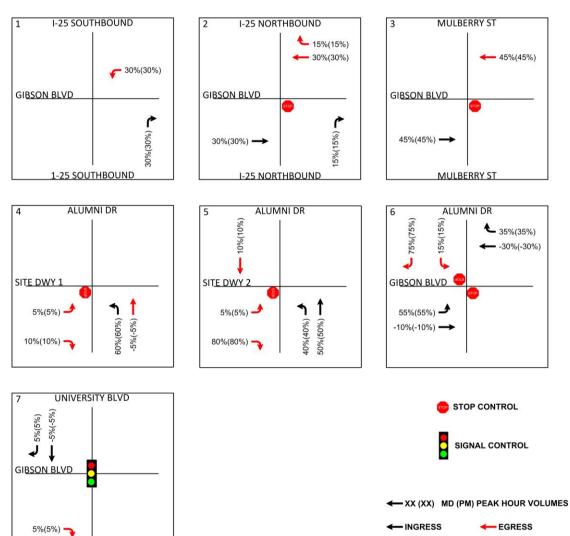


Figure 8: Horizon Year Pass-By Trip %

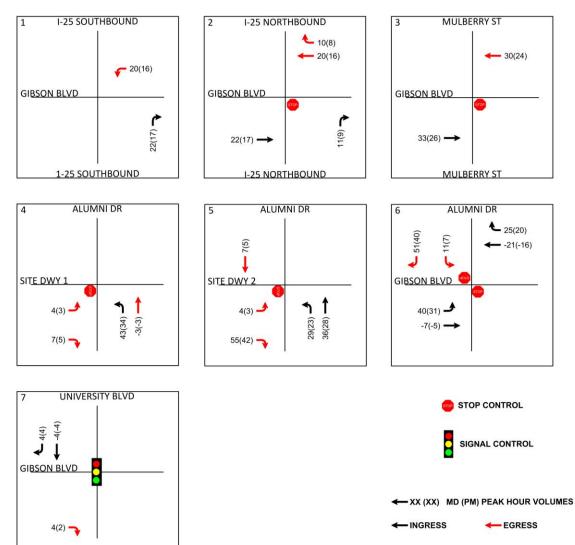


Figure 9: Horizon Year Pass-By Trip Volumes

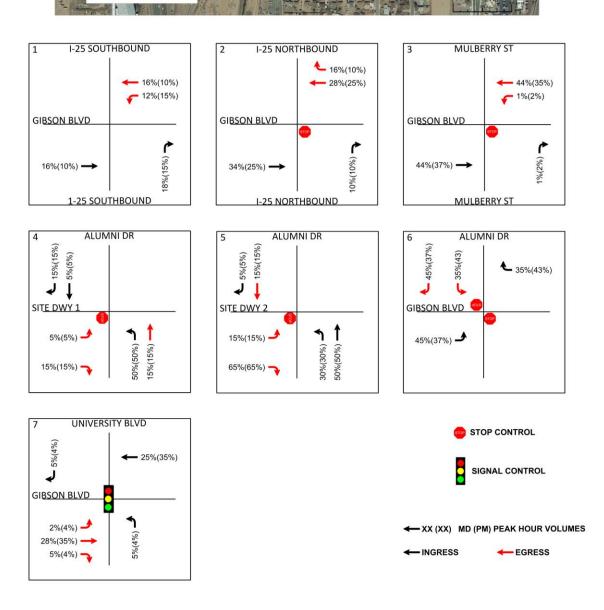
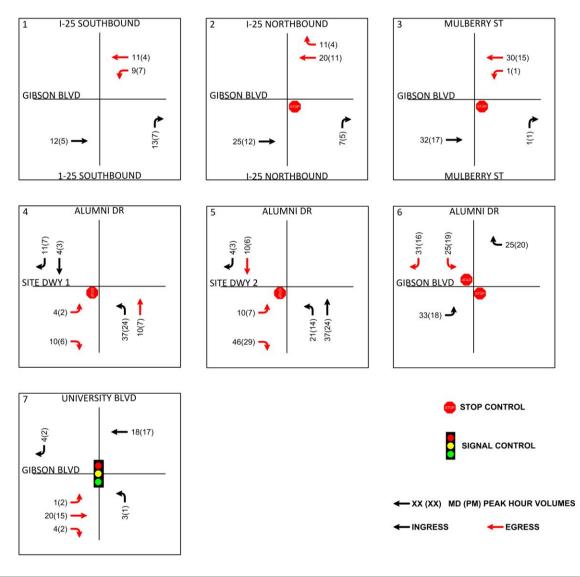



Figure 10: Horizon Year Direct Trip %

VICINITY MAP

STUDY INTERSECTIONS

TRAFFIC VOLUME CALCULATIONS

Traffic volumes used in the Build-Out Year and Horizon Year analyses were calculated as follows:

- Build-Out Year 2026 Background 2026 traffic volumes projected from the Existing traffic volumes via the application of a growth factor developed from the MRCOG Metropolitan Transportation Plan (MTP) CUBE/2 Regional Model, plus trips generated by the adjacent developments.
- Build-Out Year 2026 Total 2026 background volumes plus trips generated by the proposed development.
- Horizon Year 2036 Background 2036 traffic volumes projected from the Existing traffic volumes via the application of a growth factor developed from the MRCOG Metropolitan Transportation Plan (MTP) CUBE/2 Regional Model, plus trips generated by the adjacent developments.
- Horizon Year 2036 Total 2036 traffic volumes projected from the Existing traffic volumes via the application of a growth factor developed from the MRCOG Metropolitan Transportation Plan (MTP) CUBE/2 Regional Model, plus trips generated by the proposed development.

Figures 12 through 15 show the volumes for each Build-Out Year and Horizon Year scenario.

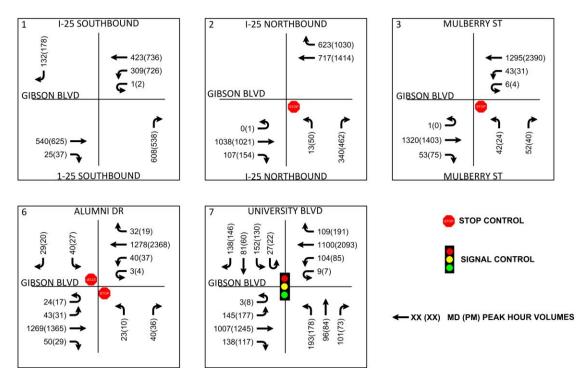
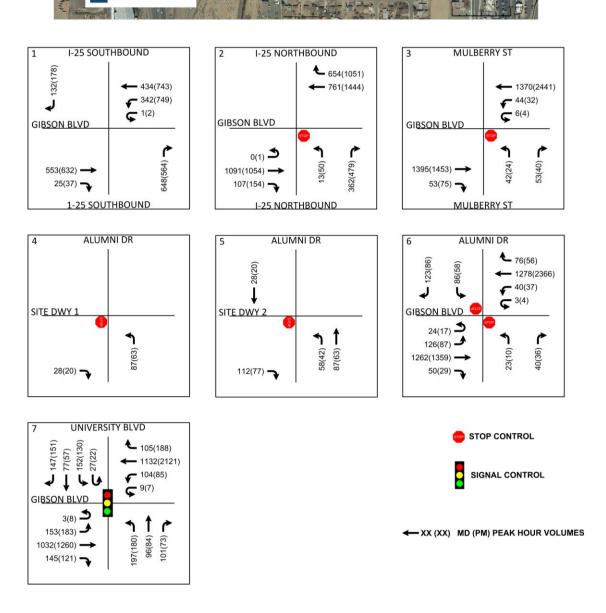



Figure 12: Build Out Year 2026 Background Volumes

VICINITY MAP

STUDY INTERSECTIONS

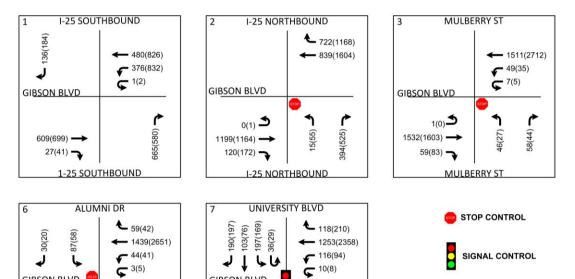


Figure 14: Horizon Year 2036 Background Volumes

127(110)

٢

131(95)

257(236)

GIBSON BLVD

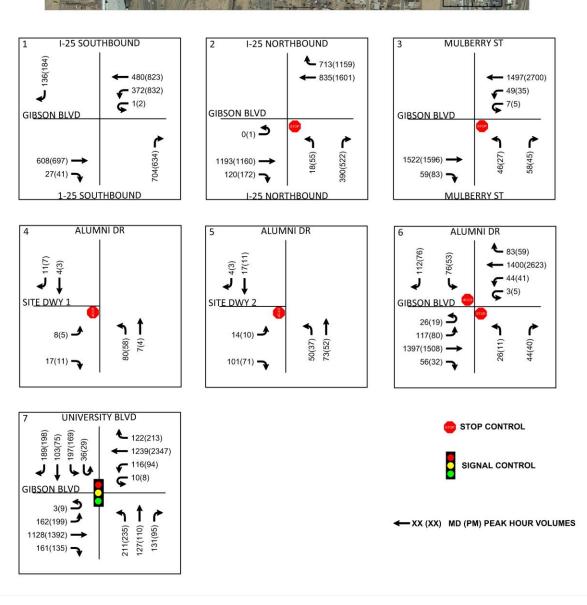
٢

44(40)

26(11)

3(9) **S**

169(203) 🌙


161(136) 🍞

GIBSON BLVD

26(19)

128(87)

56(32)

VICINITY MA

STUDY INTERSECTIONS

SITE CONDITIONS AND SITE ANALYSIS

Assumptions

The following assumptions regarding new developments in the roadway network were made for the Build-Out Year scenarios based on the information discussed in the scoping meeting:

- Alumni Drive is assumed to be extended north of its current location through a project designed and funded by the University of New Mexico. Site Driveways 1 and 2 will be constructed on the west side of the new segment of Alumni Drive.
- The Gibson Boulevard and I-25 Interchange is currently being redesigned by NMDOT. Capacity and queuing issues at the interchange are assumed to be addressed in the future by this reconstruction project. Therefore, mitigations for the interchange are not provided in this analysis.

SITE ACCESS ANALYSIS AND JUSTIFICATION

Site access is to be provided via two driveways on Alumni Drive. CoA Development Process Manual (DPM) requirements were reviewed for the two access driveways. DPM Table 7.4.45 provides a minimum distance between commercial site access points and intersections, and DPM Table 7.4.46 provides the maximum number of commercial site access points per site. The results of this analysis are shown in Table 6.

	City of Albuquerque Development Process Manual Recommended Access Spacing								
Site Access	Major			Distance Betwo	4.45 Minimum een Commercial nd Intersection	DPM Table 7.4.46 Maximum Number of Commercial Site	Distance from Site		
ALLESS	Street	Street	(MPH)	Approach Distance	Departure Distance	Access Points Per Site	Access to Intersection		
Driveway 1	Alumni Dr (Local)	Gibson Blvd (Principal Arterial)	30	75 ft	75 ft		470		
Driveway 2	Alumni Dr (Local)	Gibson Blvd (Principal Arterial)	30	75 ft	75 ft		360		

Table 6: Access Spacing Requirements from CABQ DPM

Based on the information above, both driveways on Alumni Drive meet COA DPM requirements.

SITE CIRCULATION AND QUEUEING ANALYSIS

In the current Development site plans, queuing space for up to 39 vehicles is provided between the entrance of the development on the east side of the parcel and the drive through window. The trip and queuing data provided for this report from other In-N-Out Burger restaurants shows that the max drive-through queue length during a 15-minute period for any of the locations studied was 25 vehicles. Therefore, the left-turn lane shown in the current Development plans is adequate to accommodate anticipated site trips.

AUXILIARY LANE ANALYSIS

Since Alumni Drive is a CoA maintained local street, the CoA DPM was used to analyze the need for leftturn auxiliary turn lanes from Alumni Drive to Site Driveways 1 and 2 in the Build Out Year 2026 scenario. The need for right-turn auxiliary turn lanes from Alumni Drive to Site Driveways 1 and 2 in the Horizon Year were also analyzed, in anticipation of the extension of Alumni Drive. Table 7 provides the thresholds from Table 7.4.67 of the DPM and the warrant results at each driveway.

Location	Posted Speed Limit	Movement	Right Turning Volume MD (PM)	DPM Criteria - Turn Volume Per Hour	Turn Lane Warrant Result (DPM)
Site Driveway 1 & Alumni Dr	30 MPH	NBL	87 (63)	40	Required
Site Driveway 2 & Alumni Dr	30 MPH	NBL	58 (42)	40	Required
Site Driveway 1 & Alumni Dr	30 MPH	SBR	11 (7)	50	Not Required
Site Driveway 2 & Alumni Dr	30 MPH	SBR	4 (3)	50	Not Required

Table 7: Turn Lane Warrants – City of Albuquerque DPM Requirements

Deceleration Lane Lengths

Guidelines in the CoA DPM Chapter 7 state that:

- Where traffic is to be controlled by a traffic signal, the left turn lane should be of sufficient length to store the turning vehicles and clear the equivalent lane volume of all other traffic on the approach, where feasible.
- The total length of the turn lane and taper should accommodate storage requirements plus deceleration and taper. If this is not feasible, the lane should accommodate the 95th percentile queue length.

Table 8 displays the recommended deceleration lengths for each turn lane.

Location	Posted Speed Limit	Movement	Existing or Planned Auxiliary Lane Length	Recommended Auxiliary Lane Lengths Per CoA Guidelines
Site Driveway 1 & Alumni Dr	30 MPH	NBL	160 ft	150 - 150 Reverse Curve
Site Driveway 2 & Alumni Dr	30 MPH	NBL	160 ft	150 - 150 Reverse Curve

Table 9: Deceleration Lang Longths

The NBL movement from Alumni Drive to Site Driveways 1 and 2 requires deceleration lengths shown in Table 8. The site plan for the proposed Development shows striping for a two-way left-turn lane (TWLTL) in the extended segment of Alumni Drive, and there is 35 feet between the beginning of the TWLTL and

Site Driveway 2. There is 160 feet between the beginning of the TWLTL and Site Driveway 1. The Full-Build 95th percentile queue length for the NBL movements at each driveway is less than one vehicle length and could be accommodated in the space provided in the current plans.

SITE DRIVEWAYS SIGHT DISTANCE

The following presents a narrative detailing the development's recommended intersection sight distance requirements. Intersection sight distance requirements were calculated using the 2018 AASHTO "Green Book" chapter 9.5. Two sight distance cases were used for this analysis:

- Case B1 A stopped vehicle turning left from a minor street approach onto a major road.
- Case B2 A stopped vehicle turning right from a minor street approach onto a major road.

The intersection sight distance for Case B2 at all access driveways was calculated based on the assumption that the design vehicle turns into the nearest traffic lane. A passenger vehicle was used as the design vehicle. The required sight distance values provided in Table 9 rounded up to the nearest 5-foot increment. Formulas, values, and calculations used in the sight distance analysis can be found in Appendix F.

Table 9: Required Sight Distance Values							
Access Location	Posted Speed Limit (MPH)	Case	Required Sight Distance (FT)				
Site Driveway 1 & Alumni Drive	30	B1	355				
Site Driveway 1 & Alumin Drive		В2	290				
Site Driveway 2 and Alumni Drive	20	B1	355				
Site Driveway 2 and Alumni Drive	30	B2	290				

Table 9: Required	Sight Distance	Values

Using the values shown above, all development driveways are recommended to adhere to the sight distance provisions detailed in the AASHTO "Green Book," and CABQ DPM Section 7-4(I)(5)(iii). An area bounded by the above sight distances with the decision point placed 14.5 feet back from the edge of the shoulder midway between the outbound driving lane should be maintained clear of any obstructions.

Since the section of Alumni Drive where Site Driveway's 1 and 2 are planned is not constructed yet, no measurements of existing sight distance could be collected. When this section of Alumni Drive is constructed, an area bounded by the above sight distance of 290 feet for right-turning vehicles should be kept clear of any obstructions. When Alumni Drive is extended beyond the northern barrier shown in the site plans, and left-turns can be made from Site Driveways 1 and 2, the required 355 feet of sight distance should be kept clear of any obstructions.

TRAFFIC ANALYSIS

Highway Capacity Software (HCS) was used to analyze each study intersection for Level of Service (LOS) and 95th percentile queueing conditions. HCS implements methods and procedures detailed by the Highway Capacity Manual (HCM). Detailed capacity output sheets showing all individual movements can be found in Appendix D.

LOS, CAPACITY, AND QUEUING ANALYSIS

Per the HCM, LOS is presented as a letter grade (A through F) based on the calculated average delay for an intersection or movement. Delay is calculated as a function of several variables, including signal phasing operations, cycle length, traffic volumes, and opposing traffic volumes, but it is a measurement of the average wait time a driver can expect when moving through an intersection. Factors such as total cycle time (for all movements), queueing restrictions, and vehicle volumes can affect measurements of delay, especially for lower-volume movements and side streets. Generally, these factors are only realized when delays reach or exceed LOS E thresholds. In such cases, a narrative is offered in subsequent sections specific to the individual movement in question.

Table 10 and Table 11, reproduced from the HCM, show delay thresholds and the associated Level of service assigned to delay ranges for signalized intersections and stop-controlled intersections, respectively. Generally, a LOS of D or better is considered an acceptable level of service.

	Tuble 10. LOS Chiena and Descriptions for Signalized Intersections					
Level of	Average Control Delay	General Description (Signalized Intersections)				
service	(sec/vehicle)					
A	≤10	Free flow				
В	>10-20	Stable flow (slight delays)				
С	>20 – 35	Stable flow (acceptable delays)				
	>35 - 55	Approaching unstable flow (tolerable delay, occasionally wait				
D	>55 - 55	through more than one signal cycle before proceeding)				
E	>55 – 80	Unstable flow (intolerable delay)				
F	>80	Forced flow (jammed)				

Table 10: LOS Criteria and Descriptions for Signalized Intersections

Table 11: LOS Criteri	a for Unsignalized Intersections
Level of service	Average Control Delay (sec/vehicle)
А	≤10
В	>10-15
С	>15 – 25
D	>25 – 35
E	>35 – 50
F	>50

Queueing is reported in feet for all intersections with queue lengths greater than one vehicle, with a base assumption of 25 feet queue length per vehicle. Queues are reported for queue measurements falling within the 95th percentile. It should be noted that 95th percentile queues are statistically expected to occur during only 5% of the peak hour's sign cycles. It is also noted that unreported average queueing at an intersection would statistically be much shorter than 95th-percentile queueing.

The volume-to-capacity (V/C) ratio is a performance measure that shows the ratio of traffic volume to the lane group capacity. A V/C ratio greater than 1.00 indicates that demand creates a residual queue for the analysis period.

LEE ENGINEERING

For the purposes of this analysis, acceptable levels of service (LOS) are defined to be a LOS D or better. Based on procedures outlined in the HCM, intersection delay and level of service for stop-controlled intersections are reported as the delay and level of service for the worst-case movement at each intersection. For all other control types, they are taken for the whole intersection. Detailed output sheets can be found in Appendix D.

EXISTING YEAR 2024 CONDITIONS

Table 12 summarizes the intersection delay, level of service, and queueing under Existing Year 2024 conditions. The following conclusions are made from the Existing Conditions analysis:

Delay and LOS Results

At all other intersections where LOS results are present, all movements operate at acceptable LOS during the MD and PM peaks except:

- At the stop-controlled intersection of Gibson Boulevard and I-25 NB Off-Ramp
 - NBL operates at LOS E and LOS F during the MD and PM peak hours, respectively.
 - NBR operates at LOS E during the PM peak hour.
- At the stop-controlled intersection of Gibson Boulevard and Mulberry Street
 - NBL operates at LOS E and LOS F during the MD and PM peak hours, respectively.
- At the stop-controlled intersection of Gibson Boulevard and Alumni Drive
 - SBL operates at LOS E and LOS F during the MD and PM peak hours, respectively.
- At the signalized intersection of Gibson Boulevard and University Boulevard
 - SBL operates at LOS E during the PM peak hour.
 - SBR operates at LOS E during the PM peak hour.

Queuing Results

At all intersections where queue length results are present, existing storage lengths are sufficient to accommodate 95th percentile queue lengths except:

- At the signalized intersection of Gibson Boulevard and University Boulevard
 - The SBR lane is not expected to accommodate the 95th percentile queue lengths during the MD and PM peak hours.

				10			UITS FOR EX		· ·		tions				
	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS	amps	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
-×	NBR	180.0	0.76	23.2	С			ak	NBR	172.5	0.75	23.9	C		
MD Peak	SBR	<1 Veh	0.17	10.4	В			PM Peak	SBR	32.5	0.30	13.2	В		
Σ	EBT					23.2	с	F	EBT					23.9	с
	EBR					23.2	C		EBR					23.5	C
	WBL	30.0	0.29	10.0	А				WBL	207.5	8.30	21.3	С		
	WBT								WBT						
						Gibson Blvd	& I-25 NB F	lamps	(Stop-Con	trolled)					
	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS		Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
MD Peak	NBL	<1 Veh	0.11	37.0	E			Peak	NBL	95.0	0.83	178.6	F		
Į Į	NBR	87.5	0.56	19.7	С			PM P	NBR	217.5	0.84	37.9	E		
~	EBT					37.0	E	•	EBT					178.6	F
	EBR								EBR					ļ	
	WBT								WBT						
						Gibson Blv	d & Mulber	ry St	Stop-Cont						
	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS		Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
¥	NBL	25.0	0.27	36.4	E			놂	NBL	<1 Veh	0.25	50.9	F		
MD Peak	NBR	<1 Veh	0.13	15.9	С			PM Peak	NBR	<1 Veh	0.12	17.4	С		
Σ	EBT					36.4	E	Ę	EBT					50.9	F
	EBR					50.4			EBR					50.5	'
	WBL	<1 Veh	0.14	18.1	С				WBL	<1 Veh	0.13	20.9	C		
	WBT			2.4	А				WBT			2.7	А		
						Gibson Bl	vd & Alumn	i Dr (S	Stop-Contr	<u> </u>					
	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS		Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
	NBL/R	35.0	0.34	33.7	D				NBL/R	27.5	0.27	33.5	D		
	SBL	<1 Veh	0.02	47.9	E				SBL	<1 Veh	0.00	282.2	F		
MD Peak	SBR	<1 Veh	0.01	14.9	В			PM Peak	SBR	<1 Veh	0.01	28.9	D		
Į Į	EBL	<1 Veh	0.06	13.5	В			Σ	EBL	<1 Veh	0.13	33.0	D	-	
~	EBT					47.9	E	-	EBT					282.2	F
	EBR								EBR					+	
	WBL	<1 Veh	0.14	18.4	С				WBL	<1 Veh	0.15	20.6	С		
	WBT					K			WBT					ļ	
	WBR					0.1			WBR						
	Movement	95% Queue Length	v/c	Delay (s/veh)	LOS	Gibson Bi Intersection Delay	vd & Univer Intersection LOS	rsity E	Novement	95% Queue Length	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
	NBL	(ft/lane) 23.1	0.52	40.0	D				NBL	(ft/lane) 198.7	0.46	42.1	D		
	NBT/R	194.3	0.41	37.5	D				NBT/R	170.0	0.33	40.1	D	1	
	SBL	209.0	0.65	50.5	D				SBL	200.4	0.63	56.4	E		
ak	SBT	92.9	0.26	45.0	D			ak	SBT	76.6	0.23	50.4	D		
MD Peak	SBR	161.8	0.52	47.3	D			PM Peak	SBR	195.4	0.66	55.1	E		
Σ	EBL	61.5	0.32	10.2	В	20.0	В	2	EBL	150.1	0.79	26.3	C	21.9	с
	EBT	161.3	0.28	12.7	B				EBT	222.8	0.36	13.3	В		-
	EBR	70.2	0.14	11.6	B	1			EBR	61.9	0.12	11.2	B	1	
	WBL	47.8	0.24	10.0	B				WBL	43.6	0.25	10.9	B	t	
	WBT	203.3	0.35	13.8	В	1			WBT	475.4	0.67	19.7	В	1	
	WBR	55.6	0.11	11.8	В	1			WBR	114.4	0.20	13.2	В	1	
		55.6 0.11 11.8 B													

Table 12: HCM Results for Existing Year (2024) Conditions

BUILD-OUT YEAR (2026) BACKGROUND CONDITIONS

Table 13 summarizes the intersection delay, level of service, and queueing under Build-Out Year 2026 Background conditions. The following conclusions are made for the Build-Out Year Background analysis:

Delay and LOS Results

At all other intersections where LOS results are present, all movements operate at acceptable LOS during the MD and PM peaks except:

- At the stop-controlled intersection of Gibson Boulevard and I-25 SB Off-Ramp

 NBR operates at LOS E during the MD peak hour.
- At the stop-controlled intersection of Gibson Boulevard and I-25 NB Off-Ramp
 - NBL operates at LOS E and LOS F during the MD and PM peak hours, respectively.
 - NBR operates at LOS F during the PM peak hour.
- At the stop-controlled intersection of Gibson Boulevard and Mulberry Street
 - NBL operates at LOS E and LOS F during the MD and PM peak hours, respectively.
- At the stop-controlled intersection of Gibson Boulevard and Alumni Drive
 - NBL/R operates at LOS F during the MD and PM peak hours.
 - SBL operates at LOS F during the MD and PM peak hours.
 - EBL operates at LOS F during the PM peak hours.
- At the signalized intersection of Gibson Boulevard and University Boulevard
 - SBL operates at LOS E during the PM peak hour.

Queuing Results

At all intersections where queue length results are present, existing storage lengths are sufficient to accommodate 95th percentile queue lengths.

						Gibson Blvd	& I-25 SB R	amps	(Stop-Con	trolled)					
	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS		Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
ak	NBR	275.0	0.88	35.2	E			ak	NBR	235.0	0.84	32.2	D		
MD Peak	SBR	<1 Veh	0.18	10.6	В			PM Peak	SBR	32.5	0.31	13.5	В		
Σ	EBT					35.2	Е	đ	EBT					32.2	D
	EBR					55.2	L .		EBR					52.2	U
	WBL	37.5	0.34	10.7	В				WBL	275.0	0.86	28.7	D		
	WBT								WBT						
						Gibson Blvd	& I-25 NB F	amps	s (Stop-Con	trolled)					
~	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS	, v	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
MD Peak	NBL	<1 Veh	0.14	48.0	E			PM Peak	NBL	115.0	1.06	279.2	F		
Ę	NBR	135.0	0.70	27.4	D			ž	NBR	327.5	0.99	66.3	F		
	EBT					48.0	E	-	EBT					279.2	F
	EBR								EBR					-	
	WBT								WBT						
						Gibson Blv	d & Mulber	ry St	(Stop-Cont						
	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Delay LOS			Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
к	NBL	35.0	0.35	49.2			Ř	NBL	27.5	0.30	64.2	F			
MD Peak	NBR	<1 Veh	0.16	17.8	С			PM Peak	NBR	<1 Veh	0.14	19.2	С		
Σ	EBT					49.2	E	Ę	EBT					64.2	F
	EBR					45.2	-		EBR					04.2	
	WBL	<1 Veh	0.19	21.7	С				WBL	<1 Veh	0.17	24.4	C		
	WBT			3.6	Α				WBT			4.0	A		
						Gibson Blvd	vd & Alumn	i Dr (Stop-Contr						
	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Gibson Bl Intersection Delay	vd & Alumn Intersection LOS	i Dr (!	Stop-Contr Movement	olled) 95% Queue Length (ft/lane)	V/C	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
	Movement NBL/R	Length	v/c 0.52			Intersection	Intersection	i Dr (!		95% Queue Length	v/c 0.55	Delay			
		Length (ft/lane)		(s/veh)	LOS	Intersection	Intersection		Movement	95% Queue Length (ft/lane)		Delay (s/veh)	LOS		
teak	NBL/R	Length (ft/lane) 60.0	0.52	(s/veh) 61.4	LOS F	Intersection	Intersection		Movement NBL/R	95% Queue Length (ft/lane) 62.5	0.55	Delay (s/veh) 88.7	LOS F		
AD Peak	NBL/R SBL	Length (ft/lane) 60.0 65.0	0.52 0.61	(s/veh) 61.4 119.7	LOS F F	Intersection	Intersection LOS		Movement NBL/R SBL	95% Queue Length (ft/lane) 62.5 115.0	0.55 2.93	Delay (s/veh) 88.7 1632.4	LOS F F		LOS
MD Peak	NBL/R SBL SBR	Length (ft/lane) 60.0 65.0 <1 Veh	0.52 0.61 0.09	(s/veh) 61.4 119.7 16.2	LOS F F C	Intersection	Intersection	i Dr (S BW Beak	Movement NBL/R SBL SBR	95% Queue Length (ft/lane) 62.5 115.0 <1 Veh	0.55 2.93 0.15	Delay (s/veh) 88.7 1632.4 34.2	LOS F F D		
MD Peak	NBL/R SBL SBR EBL	Length (ft/lane) 60.0 65.0 <1 Veh <1 Veh	0.52 0.61 0.09 0.22 	(s/veh) 61.4 119.7 16.2 19.9 	LOS F C C 	Intersection Delay	Intersection LOS		Movement NBL/R SBL SBR EBL	95% Queue Length (ft/lane) 62.5 115.0 <1 Veh 67.5	0.55 2.93 0.15 0.60	Delay (s/veh) 88.7 1632.4 34.2 97.5	LOS F D F 	Delay	LOS
MD Peak	NBL/R SBL SBR EBL EBT	Length (ft/lane) 60.0 65.0 <1 Veh <1 Veh 	0.52 0.61 0.09 0.22 	(s/veh) 61.4 119.7 16.2 19.9 	LOS F C C C	Intersection Delay	Intersection LOS		Movement NBL/R SBL SBR EBL EBT	95% Queue Length (ft/lane) 62.5 115.0 <1 Veh 67.5 	0.55 2.93 0.15 0.60	Delay (s/veh) 88.7 1632.4 34.2 97.5 	LOS F D F 	Delay	LOS
MD Peak	NBL/R SBL SBR EBL EBT EBR WBL WBT	Length (ft/lane) 60.0 65.0 <1 Veh <1 Veh <1 Veh 	0.52 0.61 0.09 0.22 0.17	(s/veh) 61.4 119.7 16.2 19.9 21.1 	LOS F C C C 	Intersection Delay	Intersection LOS		Movement NBL/R SBL SBR EBL EBT EBR WBL WBT	95% Queue Length (ft/lane) 62.5 115.0 <1 Veh 67.5 <1 Veh 	0.55 2.93 0.15 0.60 0.18 	Delay (\$/veh) 88.7 1632.4 34.2 97.5 23.2 	LOS F D F C 	Delay	LOS
MD Peak	NBL/R SBL SBR EBL EBT EBR WBL	Length (ft/lane) 60.0 65.0 <1 Veh <1 Veh <1 Veh	0.52 0.61 0.09 0.22 0.17	(s/veh) 61.4 119.7 16.2 19.9 21.1	LOS F C C C C	Intersection Delay 119.7	Intersection LOS	PM Peak	Movement NBL/R SBL SBR EBL EBT EBR WBL WBT WBR	95% Queue Length (ft/lane) 62.5 115.0 <1 Veh 67.5 <1 Veh 	0.55 2.93 0.15 0.60 0.18	Delay (s/veh) 88.7 1632.4 34.2 97.5 23.2	LOS F D F C	Delay	LOS
MD Peak	NBL/R SBL SBR EBL EBT EBR WBL WBT	Length (ft/lane) 60.0 65.0 <1 Veh <1 Veh <1 Veh <1 Veh 95% Queue Length	0.52 0.61 0.09 0.22 0.17	(s/veh) 61.4 119.7 16.2 19.9 21.1 	LOS F C C C 	Intersection Delay 119.7	Intersection LOS	PM Peak	Movement NBL/R SBL SBR EBL EBT EBR WBL WBT WBR	95% Queue Length (ft/lane) 62.5 115.0 <1 Veh 67.5 <1 Veh ized) 95% Queue Length	0.55 2.93 0.15 0.60 0.18 	Delay (\$/veh) 88.7 1632.4 34.2 97.5 23.2 	LOS F D F C 	Delay	LOS
MD Peak	NBL/R SBL SBR EBL EBT EBR WBL WBT WBR	Length (ft/lane) 60.0 65.0 <1 Veh <1 Veh <1 Veh <1 Veh 95% Queue Length (ft/lane)	0.52 0.61 0.09 0.22 0.17 V/C	(s/veh) 61.4 119.7 16.2 19.9 21.1 21.1 21.1 21.1 	LOS F C C C C C C C C C C C C C C C C C C	Intersection Delay 119.7 Gibson Bl Intersection	Intersection LOS F Vd & Univer Intersection	PM Peak	Movement NBL/R SBL SBR EBL EBT EBR WBL WBT WBR Slvd (Signa Movement	95% Queue Length (ft/lane) 62.5 115.0 <1 Veh 67.5 <1 Veh (1 Veh 95% Queue Length (ft/lane)	0.55 2.93 0.15 0.60 0.18 v/c	Delay (s/veh) 88.7 1632.4 34.2 97.5 23.2 23.2 Delay (s/veh)	LOS F D F C C C LOS	Delay 1632.4 Intersection	F Intersection
MD Peak	NBL/R SBL SBR EBL EBT EBR WBL WBT WBR	Length (ft/lane) 60.0 65.0 <1 Veh <1 Veh 95% Queue Length (ft/lane) 37.3	0.52 0.61 0.09 0.22 0.17 v/c 0.52	(s/veh) 61.4 119.7 16.2 19.9 21.1 21.1 Delay (s/veh) 38.9	LOS F C C C C C C C C C C C C C C C C C C	Intersection Delay 119.7 Gibson Bl Intersection	Intersection LOS F Vd & Univer Intersection	PM Peak	Movement NBL/R SBL SBR EBL EBT EBR WBL WBT WBR Slvd (Signa Movement NBL	95% Queue Length (ft/lane) 62.5 115.0 <1 Veh 67.5 <1 Veh st Veh 95% Queue Length (ft/lane) 206.8	0.55 2.93 0.15 0.60 0.18 v/c 0.47	Delay (s/veh) 88.7 1632.4 34.2 97.5 23.2 	LOS F D F C C C C C C C C C C C C C C D D F D D D F D D D F D D D D F D	Delay 1632.4 Intersection	F Intersection
MD Peak	NBL/R SBL SBR EBL EBT EBR WBL WBT WBR Movement NBL NBL	Length (ft/lane) 60.0 65.0 <1 Veh <1 Veh <1 Veh 95% Queue Length (ft/lane) 37.3 205.7	0.52 0.61 0.09 0.22 0.17 v/c 0.52 0.42	(s/veh) 61.4 119.7 16.2 19.9 21.1 21.1 21.1 Delay (s/veh) 38.9 36.1	LOS F C C C C C C LOS D D	Intersection Delay 119.7 Gibson Bl Intersection	Intersection LOS F Vd & Univer Intersection	PM Peak	Movement NBL/R SBL SBR EBL EBT EBR WBL WBT WBR Blvd (Signa Movement NBL NBL/R	95% Queue Length (ft/lane) 62.5 115.0 <1 Veh 67.5 <1 Veh ized) 95% Queue Length (ft/lane) 206.8 181.7	0.55 2.93 0.15 0.60 0.18 v/c 0.47 0.34	Delay (s/veh) 88.7 1632.4 34.2 97.5 23.2 23.2 23.2 23.2 5 (s/veh) 40.9 39.0	LOS F D F C C C C C C C D D D D	Delay 1632.4 Intersection	F Intersection
	NBL/R SBL SBR EBL EBT EBR WBL WBT WBR Movement NBL NBT/R SBL	Length (ft/lane) 60.0 65.0 <1 Veh <1 Veh <1 Veh 95% Queue Length (ft/lane) 37.3 205.7 227.6	0.52 0.61 0.09 0.22 0.17 v/c 0.52 0.42 0.67	(s/veh) 61.4 119.7 16.2 19.9 21.1 21.1 21.1 21.1 31.9 32.1 Selay (s/veh) 38.9 36.1 49.4	LOS F C C C C C C L C L C L OS D D D D	Intersection Delay 119.7 Gibson Bl Intersection	Intersection LOS F Vd & Univer Intersection	Ye od We	Movement NBL/R SBL SBR EBL EBT EBR WBL WBT WBR Blvd (Signa Movement NBL NBL/ NBL/ SBL	95% Queue Length (ft/lane) 62.5 115.0 <1 Veh 67.5 <1 Veh ized) 95% Queue Length (ft/lane) 206.8 181.7 215.7	0.55 2.93 0.15 0.60 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.15 0.18 0.18 	Delay (s/veh) 88.7 1632.4 34.2 97.5 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 32.0 55.6	LOS F D F C C C C C C C D D D D	Delay 1632.4 Intersection	F Intersection
	NBL/R SBL SBR EBL EBT EBR WBL WBT WBR Movement NBL NBT/R SBL SBT	Length (ft/lane) 60.0 65.0 <1 Veh <1 Veh <1 Veh 95% Queue Length (ft/lane) 37.3 205.7 227.6 95.5	0.52 0.61 0.09 0.22 0.17 0.17 0.17 0.57 0.52 0.42 0.67 0.25	(s/veh) 61.4 119.7 16.2 19.9 21.1 21.1 21.1 21.1 31.1 Selay (s/veh) 38.9 36.1 49.4 43.1	LOS F C C C C C C C C C C C C C C C C C C	Intersection Delay 119.7 Gibson Bl Intersection	Intersection LOS F Vd & Univer Intersection	yead Wd	Movement NBL/R SBL SBR EBL EBT EBR WBL WBT WBR BIVd (Signa Movement NBL NBT/R SBL SBT	95% Queue Length (ft/lane) 62.5 115.0 <1 Veh 67.5 <1 Veh ized) 95% Queue Length (ft/lane) 206.8 181.7 215.7 79.4	0.55 2.93 0.15 0.18 0.18 v/c 0.47 0.34 0.65 0.22	Delay (s/veh) 88.7 1632.4 34.2 97.5 23.2 0 40.9 39.0 55.6 49.5	LOS F D F C C C C C C C D D D D	Delay 1632.4 Intersection	F Intersection
MD Peak MD Peak	NBL/R SBL SBR EBL EBR WBL WBT WBR Movement NBL NBT/R SBL SBT SBR	Length (ft/lane) 60.0 65.0 <1 Veh <1 Veh <1 Veh 95% Queue Length (ft/lane) 37.3 205.7 227.6 95.5 171.2	0.52 0.61 0.09 0.22 0.17 0.17 0.17 0.17 0.52 0.52 0.42 0.67 0.25 0.50	(s/veh) 61.4 119.7 16.2 19.9 21.1 21.1 21.1 21.1 31.1 3.5 38.9 36.1 49.4 43.1 45.5	LOS F C C C LOS D D D D D D D D D	Intersection Delay 119.7 Gibson Bl Intersection Delay	Intersection LOS F Intersection LOS	Ye od We	Movement NBL/R SBL SBR EBL EBT EBR WBL WBT WBR NVBR NVBR NBL NBL NBL NBT/R SBL SBT SBR	95% Queue Length (ft/lane) 62.5 115.0 <1 Veh 67.5 <1 Veh ized) 95% Queue Length (ft/lane) 206.8 181.7 215.7 79.4 203.4	0.55 2.93 0.15 0.60 0.18 0.18 0.18 0.18 0.47 0.47 0.34 0.65 0.22 0.64	Delay (s/veh) 88.7 1632.4 34.2 23.2 </td <td>LOS F D F C C C C C C C D D D D</td> <td>Delay 1632.4</td> <td>F Intersection LOS</td>	LOS F D F C C C C C C C D D D D	Delay 1632.4	F Intersection LOS
	NBL/R SBL EBL EBR WBL WBT WBR Movement NBL NBT/R SBL SBT SBR EBL	Length (ft/lane) 60.0 65.0 <1 Veh <1 Veh <1 Veh 95% Queue Length (ft/lane) 37.3 205.7 227.6 95.5 171.2 70.1	0.52 0.61 0.09 0.22 0.17 0.17 0.17 0.17 0.52 0.52 0.42 0.67 0.25 0.50 0.39	(s/veh) 61.4 119.7 16.2 19.9 21.1 21.1 Delay (s/veh) 38.9 38.9 38.9 38.9 49.4 43.1 45.5 11.6	LOS F C C C C C C C C C C C C C C C C C C	Intersection Delay 119.7 Gibson Bl Intersection	Intersection LOS F Vd & Univer Intersection	yead Wd	Movement NBL/R SBL SBR EBL EBT EBR WBL WBT WBR SIVC (Signa Movement NBL NBT/R SBL SBT SBR EBL	95% Queue Length (ft/lane) 62.5 115.0 <1 Veh 67.5 <1 Veh (1 Veh (1 Veh (1 Veh (1 Veh (1 Veh) (2 0.6 (1 Veh) (1 Veh) (2 0.6 (1 Veh) (1 Veh) (2 0.6 (1 Veh) (1 Veh) (2 0.6 (1 Veh) (1 Veh) (2 0.6 (1 Veh) (1 Veh) (2 0.6 (1 Veh) (2	0.55 2.93 0.15 0.60 0.18 0.18 0.18 0.18 0.48 0.47 0.34 0.65 0.22 0.64 0.86	Delay (s/veh) 88.7 1632.4 34.2 23.2 23.2 (s/veh) 40.9 39.0 55.6 49.5 53.7 30.2	LOS F D F C C C C C C C C C C D D D D D C C	Delay 1632.4 Intersection	F Intersection
	NBL/R SBL EBT EBT WBL WBT WBR Movement NBL NBT/R SBL SBT SBR EBL EBT	Length (ft/lane) 60.0 65.0 <1 Veh <1 Veh 95% Queue Length (ft/lane) 37.3 205.7 227.6 95.5 171.2 70.1 205.2	0.52 0.61 0.09 0.22 0.17 0.17 0.17 0.27 0.52 0.52 0.42 0.67 0.25 0.50 0.39 0.35	(s/veh) 61.4 119.7 16.2 19.9 21.1 21.1 21.1 8 21.1 38.9 36.1 49.1 45.5 11.6 14.5	LOS F C C C C LOS D D D D D D D B B B	Intersection Delay 119.7 Gibson Bl Intersection Delay	Intersection LOS F Intersection LOS	yead Wd	Movement NBL/R SBL SBR EBL EBT WBL WBT WBR BIvd (Signa Movement NBL NBT/R SBL SBT SBR EBL EBT	95% Queue Length (ft/lane) 62.5 115.0 <1 Veh 67.5 <1 Veh (1 Veh (1 Veh (1 Veh (1 Veh) (2 0.8 181.7 206.8 181.7 206.8 181.7 205.8 181.7	0.55 2.93 0.15 0.60 0.18 0.18 0.18 0.18 0.34 0.47 0.34 0.65 0.22 0.64 0.86 0.41	Delay (s/veh) 88.7 1632.4 34.2 97.5 23.2 23.2 23.2 2 23.2 2 23.2 (s/veh) 40.9 39.0 55.6 49.5 53.7 30.2 14.8	LOS F D F C C LOS D D D D D D D D D D C B	Delay 1632.4	F Intersection LOS
	NBL/R SBL EBT EBT WBL WBT WBR Movement NBL NBT/R SBL SBT SBR EBL EBT	Length (ft/lane) 60.0 65.0 <1 Veh <1 Veh 95% Queue Length (ft/lane) 37.3 205.7 227.6 95.5 171.2 70.1 205.2 79.2	0.52 0.61 0.09 0.22 0.17 0.17 0.17 0.25 0.52 0.42 0.67 0.25 0.50 0.39 0.35 0.15	(s/veh) 61.4 119.7 16.2 19.9 21.1 21.1 21.1 38.9 36.1 49.4 43.1 45.5 11.6 14.5 12.9	LOS F C C C C LOS D D D D D D D D D D B B B B	Intersection Delay 119.7 Gibson Bl Intersection Delay	Intersection LOS F Intersection LOS	yead Wd	Movement NBL/R SBL SBR EBL EBT EBR WBL WBT WBT WBR SBV G (Signa Movement NBL NBT/R SBL SBT SBR EBL EBT EBR	95% Queue Length (ft/lane) 62.5 115.0 <1 Veh 67.5 <1 Veh (1 Veh (1 Veh (1 Veh) (2 0.6 8 181.7 206.8 181.7 206.8 181.7 206.8 181.7 205.8 181.7 205.3 258.7 67.3	0.55 2.93 0.15 0.60 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.22 0.64 0.86 0.41 0.12	Delay (s/veh) 88.7 1632.4 34.2 97.5 23.2 	LOS F D F C C LOS D D D D D D D D D D D D D	Delay 1632.4	F Intersection LOS
	NBL/R SBL EBT EBT WBL WBT WBR Movement NBL NBT/R SBL SBR EBL EBT EBR WBL	Length (ft/lane) 60.0 65.0 <1 Veh <1 Veh 95% Queue Length (ft/lane) 37.3 205.7 227.6 95.5 171.2 70.1 205.2 79.2 54.0	0.52 0.61 0.09 0.22 0.17 0.17 0.17 0.25 0.52 0.52 0.52 0.50 0.39 0.35 0.15 0.29	(s/veh) 61.4 119.7 16.2 19.9 21.1 21.1 21.1 38.9 36.1 49.4 38.9 36.1 49.4 49.4 1.5 11.6 14.5 12.9 11.5	LOS F C C C C LOS D D D D D D D D D D B B B B B	Intersection Delay 119.7 Gibson Bl Intersection Delay	Intersection LOS F Intersection LOS	yead Wd	Movement NBL/R SBL EBT EBR WBL WBT WBR SIvd (Signa NBL NBT/R SBL SBT SBR EBL EBT EBR WBL	95% Queue Length (ft/lane) 62.5 115.0 <1 Veh 67.5 <1 Veh (1 Veh 95% Queue Length (ft/lane) 206.8 181.7 205.8 181.7 205.3 258.7 67.3 47.5	0.55 2.93 0.15 0.60 0.18 0.18 0.18 0.12 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.44 0.65 0.22 0.64 0.86 0.41 0.12 0.29	Delay (s/veh) 88.7 1632.4 34.2 97.5 23.2 23.2 0 40.9 39.0 55.6 49.5 53.7 30.2 14.8 12.1 12.2	LOS F D F C C C C C C C C C C C C C C C C C C C C 	Delay 1632.4	F Intersection LOS
	NBL/R SBL EBT EBT WBL WBT WBR Movement NBL NBT/R SBL SBT SBR EBL EBT	Length (ft/lane) 60.0 65.0 <1 Veh <1 Veh 95% Queue Length (ft/lane) 37.3 205.7 227.6 95.5 171.2 70.1 205.2 79.2	0.52 0.61 0.09 0.22 0.17 0.17 0.17 0.25 0.52 0.42 0.67 0.25 0.50 0.39 0.35 0.15	(s/veh) 61.4 119.7 16.2 19.9 21.1 21.1 21.1 38.9 36.1 49.4 43.1 45.5 11.6 14.5 12.9	LOS F C C C C LOS D D D D D D D D D D B B B B	Intersection Delay 119.7 Gibson Bl Intersection Delay	Intersection LOS F Intersection LOS	yead Wd	Movement NBL/R SBL SBR EBL EBT EBR WBL WBT WBT WBR SBV G (Signa Movement NBL NBT/R SBL SBT SBR EBL EBT EBR	95% Queue Length (ft/lane) 62.5 115.0 <1 Veh 67.5 <1 Veh (1 Veh (1 Veh (1 Veh) (2 0.6 8 181.7 206.8 181.7 206.8 181.7 206.8 181.7 205.8 181.7 205.3 258.7 67.3	0.55 2.93 0.15 0.60 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.12	Delay (s/veh) 88.7 1632.4 34.2 97.5 23.2 	LOS F D F C C LOS D D D D D D D D D D D D D	Delay 1632.4	F Intersection LOS

Table 13: HCM Results for Build-Out Year (2026) Background Conditions

BUILD-OUT YEAR (2026) FULL-BUILD CONDITIONS

Table 14 summarizes the intersection delay, level of service, and queueing under Build-Out Year 2026 Full-Build conditions. The following conclusions are made for the Build-Out Year Full-Build analysis:

Delay and LOS Results

At all other intersections where LOS results are present, all movements operate at acceptable LOS during the MD and PM peaks except:

- At the stop-controlled intersection of Gibson Boulevard and I-25 SB Off-Ramp

 NBR operates at LOS E during the MD and PM peak hours.
- At the stop-controlled intersection of Gibson Boulevard and I-25 NB Off-Ramp
 - NBL operates at LOS F during the MD and PM peak hours.
 - NBR operates at LOS F during the PM peak hour.
- At the stop-controlled intersection of Gibson Boulevard and Mulberry Street
 - NBL operates at LOS F during the MD and PM peak hours.
- At the stop-controlled intersection of Gibson Boulevard and Alumni Drive
 - NB L/R operates at LOS F during the MD peak hour.
 - SBL operates at LOS F during the MD and PM peak hours.
 - EBL operates at LOS E during the MD peak hour and LOS F during the PM peak hour.
- At the signalized intersection of Gibson Boulevard and University Boulevard
 - SBL operates at LOS E during the PM peak hour.
 - SBR operates at LOS E during the PM peak hour.

Queuing Results

At all intersections where queue length results are present, existing storage lengths are sufficient to accommodate 95th percentile queue lengths.

						Gibson Blvd	& I-25 SB R	amps	(Stop-Con	trolled)					
	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS		Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
×	NBR	345.0	0.95	46.4	E			¥	NBR	272.5	0.89	37.9	E		
MD Peak	SBR	<1 Veh	0.18	10.6	В	1		PM Peak	SBR	32.5	0.31	13.6	В		
QW	EBT					46.4	E	M	EBT					37.9	E
	EBR					10.1	-		EBR					57.5	-
	WBL	47.5	0.40	11.6	В				WBL WBT	322.5	0.91	34.3	D	-	
	WBT					Gibson Blvd	& I-25 NB R	amns							
×	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS		Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
MD Peak	NBL	<1 Veh	0.16	55.1	F			PM Peak	NBL	122.5	1.16	327.5	F		
ШШ	NBR EBT	170.0	0.77	34.0	D	55.1	F	δ	NBR EBT	382.5 	1.05	84.3	F	327.5	F
	EBR					55.1	r -		EBR					527.5	Г
	WBT								WBT					1	
						Gibson Blv	d & Mulber	ry St (Stop-Cont	rolled)					
	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS		Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
eak	NBL	40.0	0.39	57.2	F			eak	NBL	30.0	0.32	70.8	F		
MD Peak	NBR	<1 Veh	0.17	18.7	С	-		PM Peak	NBR	<1 Veh	0.15	19.9	С	+	
Σ	EBT					57.2	F	=	EBT EBR					70.8	F
	WBL	 <1 Veh	0.21	23.6	C	-			WBL	 <1 Veh	0.18	26.0	D		
	WBT			4.4	A				WBT			4.6	A		
				·		Gibson Bl	vd & Alumn	i Dr (S	top-Contr	olled)		l			
	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS		Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
	NBL/R	147.5	1.27	345.4	F				NBL/R						
<u> </u>	SBL	257.5	2.72	1038.4	F			<u>×</u>	SBL	210.0	3.94	1818.8	F		
MD Peak	SBR	40.0	0.36	21.0	С			PM Peak	SBR	85.0	0.63	64.8	F		
Ð	EBL	87.5	0.59	37.1	E 	1038.4	F	δ	EBL	242.5	1.67	463.2	F	1818.8	F
	EBR					1036.4	r r		EBR					1010.0	F
	WBL	<1 Veh	0.16	20.9	с				WBL	<1 Veh	0.18	23.1	С	-	
	WBT								WBT					1	
	WBR								WBR						
						Gibson B	vd & Unive	rsity E	lvd (Signa						
	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS		Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
	NBL	42.3	0.53	39.1	D				NBL	208.8	0.47	41.0	D	-	
	NBT/R	205.7	0.42	36.1	D				NBT/R	181.7	0.34	39.0	D		
he 보	SBL SBT	227.6 90.6	0.67	49.4 43.0	D			¥	SBL SBT	215.7 75.3	0.65	55.6 49.4	E		
MD Peak	SBR	183.5	0.24	43.0	D			PM Peak	SBR	209.5	0.21	49.4 54.0	D	+	
ž	EBL	74.2	0.42	11.8	В	21.0	с	2	EBL	160.5	0.87	32.6	C	23.9	с
	EBT	210.2	0.35	14.6	В	1			EBT	262.8	0.41	14.9	В	1	
	EBR	83.6	0.16	13.0	В]			EBR	70.1	0.13	12.1	В]	
	WBL	54.3	0.30	11.6	В				WBL	48.1	0.29	12.4	В	-	
	WBT	239.0	0.40	15.9	B				WBT	543.8	0.73	22.9	C	-	
	WBR	60.5	0.12	13.2	В	Alumni P	r & Site DW	V 1./c	WBR	122.9	0.21	14.6	В		
		95% Queue						- 1 (5	top-contro	95% Queue					
MD Peak	Movement	Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS	PM Peak	Movement	Length (ft/lane)	V/C	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
ž	NBL EBR	<1 Veh	0.08	8.4 9.0	A	9.0	А	E	NBL EBR	<1 Veh <1 Veh	0.06	8.3 9.0	A	9.0	А
	LUIN	~1 ven	5.05	5.0		Alumni D	r & Site DW	Y 2 (S			5.02	5.0			
	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS		Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
Peak	NBL	<1 Veh	0.04	7.4	А			Peak	NBL	<1 Veh	0.03	7.3	А		
MD Peak	NBT						_	PM Peak	NBT						
	SBT					10.1	В		SBT					9.6	А
	EBL	<1 Veh <1 Veh	0.00	10.1 8.9	B	1			EBL EBR	<1 Veh <1 Veh	0.00	9.6 8.7	A	+	
	EBK	<1 veh	0.12	8.9	А				EBK	<1 veh	0.08	ð./	А		

Table 14: HCM Results for Build-Out Year (2026) Full-Build Conditions

HORIZON YEAR (2036) BACKGROUND CONDITIONS

Table 15 summarizes the intersection delay, level of service, and queueing under Horizon Year 2036 Background conditions. The following conclusions are made for the Horizon Year analysis:

Delay and LOS Results

At all other intersections where LOS results are present, all movements operate at acceptable LOS during the MD and PM peaks except:

- At the stop-controlled intersection of Gibson Boulevard and I-25 SB Off-Ramp
 - NBR operates at LOS E during the MD and PM peak hours.
 - WBL operates at LOS F during the PM peak hour.
- At the stop-controlled intersection of Gibson Boulevard and I-25 NB Off-Ramp
 - NBL operates at LOS F during the MD and PM peak hours.
 - NBR operates at LOS E and LOS F during the MD and PM peak hours, respectively.
- At the stop-controlled intersection of Gibson Boulevard and Mulberry Street
 NBL operates at LOS F during the MD and PM peak hours.
- At the stop-controlled intersection of Gibson Boulevard and Alumni Drive
 - NBL/R operates at LOS F during the MD and PM peak hours.
 - SBL operates at LOS F during the MD and PM peak hours.
 - SBR operates at LOS E during the PM peak hour.
 - EBL operates at LOS F during the PM peak hour.

Queuing Results

At all intersections where queue length results are present, existing storage lengths are sufficient to accommodate 95th percentile queue lengths.

						Gibson Blvd	& I-25 SB R	amps	(Stop-Con	trolled)					
	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS		Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
ak	NBR	420.0	1.02	63.3	F			ak	NBR	342.5	0.96	52.3	F		
MD Peak	SBR	<1 Veh	0.19	10.9	В			PM Peak	SBR	37.5	0.34	14.6	В		
Σ	EBT					63.3	F	Ę	EBT					101.0	F
	EBR					63.3	F		EBR					101.0	F
	WBL					1			WBL	657.5	1.14	101.0	F		
	WBT					1			WBT						
						Gibson Blvd	& I-25 NB R	amps	(Stop-Con	trolled)					
	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS		Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
MD Peak	NBL	<1 Veh	0.23	75.9				PM Peak	NBL	165.0	1.81	653.1			
Ę	NBR	255.0	0.92	55.4	F			ž	NBR	575.0	1.26	159.5	F		
2	EBT					75.9	F		EBT					653.1	F
	EBR								EBR						
	WBT								WBT						
						Gibson Blv	d & Mulber	ry St	Stop-Cont	<u> </u>					
	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Delay LOS			Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
,	NBL	57.5	0.53	85.1	F		Peak	NBL	45.0	0.47	109.1	F			
MD Peak	NBR	<1 Veh	0.21	21.0	С			1 Pe	NBR	<1 Veh	0.19	22.7	С		
Ξ	EBT					85.1	F	Ā	EBT					109.1	F
	EBR					05.1			EBR					105.1	
	WBL	<1 Veh	0.27	28.7	D				WBL	<1 Veh	0.24	32.3	D		
	WBT			6.9	А				WBT			7.6	А		
						Gibson Bl	vd & Alumn	i Dr (S	Stop-Contr	<u> </u>					
	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS		Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
	NBL/R	205.0	2.17	796.0					NBL/R						
	SBL	297.5	5.21	2340.6					SBL	230.0	8.73	4508.4			
MD Peak	SBR	<1 Veh	0.10	17.9	С			eak	SBR	<1 Veh	0.18	43.5			
đ	EBL	110.0	0.69	49.0					obit				E		
2	EBT							Σ	EBL	277.5	2.12	685.9	F		
	EBR					2340.6	F	PM Peak		277.5	2.12	685.9 		4508.4	F
						2340.6	F	PM	EBL				F	4508.4	F
	WBL	 <1 Veh	_			2340.6	F	H M H	EBL EBT				F	4508.4	F
	WBL WBT					2340.6	F	1 M I	EBL EBT EBR				F 	4508.4	F
		<1 Veh	 0.21	 24.9	 C				EBL EBT EBR WBL WBT WBR	 <1 Veh 	 0.24	 28.2	F D	4508.4	F
	WBT	<1 Veh	 0.21	 24.9 Delay	с 	Gibson B Intersection	vd & Univer Intersection		EBL EBT EBR WBL WBT WBR	 <1 Veh 	 0.24 	 28.2 Delay	F D	Intersection	Intersection
	WBT WBR Movement	<1 Veh 95% Queue Length (ft/lane)	 0.21 V/C	 24.9 Delay (s/veh)	 C LOS	Gibson Bl	vd & Univer		EBL EBT WBL WBT WBR Blvd (Signal Movement	 <1 Veh ized) 95% Queue Length (ft/lane)	 0.24 V/C	 28.2 Delay (s/veh)	F D LOS		
	WBT WBR Movement NBL	<1 Veh 95% Queue Length (ft/lane) 103.7	 0.21 v/c 0.57	 24.9 Delay (s/veh) 35.3	C LOS D	Gibson B Intersection	vd & Univer Intersection		EBL EBT WBL WBT WBR Blvd (Signa Movement NBL	 <1 Veh lized) 95% Queue Length	 0.24 v/c 0.55	 28.2 Delay (s/veh) 38.9	F D LOS D	Intersection	Intersection
	WBT WBR Movement NBL NBT/R	<1 Veh 95% Queue Length (ft/lane) 103.7 239.4	 0.21 v/c 0.57 0.43	 24.9 Delay (s/veh) 35.3 30.7	 C LOS D C	Gibson B Intersection	vd & Univer Intersection		EBL EBT EBR WBL WBT WBR Blvd (Signa Movement NBL NBL	 <1 Veh ized) 95% Queue Length (ft/lane)	 0.24 v/c 0.55 0.38	 28.2 Delay (s/veh)	F D LOS D D D	Intersection	Intersection
~	WBT WBR Movement NBL NBT/R SBL	<1 Veh 95% Queue Length (ft/lane) 103.7	 0.21 v/c 0.57 0.43 0.73	 24.9 Delay (s/veh) 35.3	LOS D C D	Gibson B Intersection	vd & Univer Intersection	sity E	EBL EBT EBR WBL WBT WBR Blvd (Signa Movement NBL NBL NBL/R SBL	 <1 Veh lized) 95% Queue Length (ft/lane) 253.6	 0.24 v/c 0.55	 28.2 Delay (s/veh) 38.9	F D LOS D	Intersection	Intersection
Peak	WBT WBR Movement NBL NBT/R SBL SBT	<1 Veh 95% Queue Length (ft/lane) 103.7 239.4 287.1 111.4	 0.21 v/c 0.57 0.43 0.73 0.22	 24.9 Delay (s/veh) 35.3 30.7 48.9 36.6	C LOS D C D D D	Gibson B Intersection	vd & Univer Intersection	sity E	EBL EBT EBR WBL WBT WBR Slvd (Signa Movement NBL NBL/R SBL SBT	 <1 Veh ized) 95% Queue Length (ft/lane) 253.6 218.9 268.2 95.7	 0.24 v/c 0.55 0.38 0.71 0.21	 28.2 Delay (s/veh) 38.9 35.5 54.1 444.9	F D LOS D D D D D D D D	Intersection	Intersection
dD Peak	WBT WBR Movement NBL NBT/R SBL	<1 Veh 95% Queue Length (ft/lane) 103.7 239.4 287.1 111.4 213.4	 0.21 v/c 0.57 0.43 0.73 0.22 0.49	 24.9 Delay (s/veh) 35.3 30.7 48.9 36.6 39.5	LOS D C D	Gibson Bl Intersection Delay	ivd & Univer Intersection LOS	sity E	EBL EBT EBR WBL WBT WBR Blvd (Signa Movement NBL NBT/R SBL SBT SBR	 <1 Veh ized) 95% Queue Length (ft/lane) 253.6 218.9 268.2 95.7 252.6	 0.24 v/c 0.55 0.38 0.71	 28.2 Delay (s/veh) 38.9 35.5 54.1	F D LOS D D D D D	Intersection Delay	Intersection LOS
MD Peak	WBT WBR Movement NBL NBT/R SBL SBT SBR EBL	<1 Veh 95% Queue Length (ft/lane) 103.7 239.4 287.1 111.4	 0.21 v/c 0.57 0.43 0.73 0.22 0.49 0.55	24.9 24.9 (s/veh) 35.3 30.7 48.9 36.6 39.5 17.5	C LOS D C D D D D D B	Gibson B Intersection	vd & Univer Intersection		EBL EBT EBR WBL WBT WBR Slvd (Signa Movement NBL NBT/R SBL SBT SBR EBL	 <1 Veh ized) 95% Queue Length (ft/lane) 253.6 218.9 268.2 95.7	 0.24 v/c 0.55 0.38 0.71 0.21 0.66 0.89	 28.2 Delay (s/veh) 38.9 35.5 54.1 444.9	F D LOS D D D D D D D D D D D D D D	Intersection	Intersection
MD Peak	WBT WBR Movement NBL NBT/R SBL SBT SBR EBL EBT	<1 Veh 95% Queue Length (ft/lane) 103.7 239.4 287.1 111.4 213.4	0.21 v/c 0.57 0.43 0.73 0.22 0.49 0.55 0.45	 24.9 (s/veh) 35.3 30.7 48.9 36.6 39.5 17.5 21.0	 C LOS D C C D D D D B R C	Gibson Bl Intersection Delay	ivd & Univer Intersection LOS	sity E	EBL EBT EBR WBL WBT WBR Slvd (Signa Movement NBL NBT/R SBL SBT SBR EBL EBT	 <1 Veh ized) 95% Queue Length (ft/lane) 253.6 218.9 268.2 95.7 252.6	 0.24 v/c 0.55 0.38 0.71 0.21 0.66 0.89 0.50	 28.2 (s/veh) 38.9 35.5 54.1 44.9 49.9	F D LOS D D D D D D D B	Intersection Delay	Intersection LOS
MD Peak	WBT WBR Movement NBL NBT/R SBL SBT SBR EBL EBT EBR	<1 Veh 95% Queue Length (ft/lane) 103.7 239.4 287.1 111.4 213.4 102.8	0.21 v/c 0.57 0.43 0.73 0.22 0.49 0.55 0.45 0.21	 24.9 (s/veh) 35.3 30.7 48.9 36.6 39.5 17.5 21.0 18.3	 C LOS D C D D D D D B C B	Gibson Bl Intersection Delay	ivd & Univer Intersection LOS	sity E	EBL EBT EBR WBL WBT WBR Stvd (Signa Movement NBL NBT/R SBL SBT SBR EBL EBT EBR	 <1 Veh ized) 95% Queue Length (ft/lane) 253.6 218.9 268.2 95.7 252.6 301.7	 0.24 v/c 0.55 0.38 0.71 0.21 0.66 0.89 0.50 0.16	 28.2 (s/veh) 38.9 35.5 54.1 44.9 49.9 54.0	F D LOS D D D D D D D B B	Intersection Delay	Intersection LOS
MD Peak	WBT WBR Movement NBL NBT/R SBL SBT SBR EBL EBT EBR WBL	<1 Veh 95% Queue Length (ft/lane) 103.7 239.4 287.1 111.4 213.4 102.8 274.1 116.3 76.2	0.21 v/c 0.57 0.43 0.73 0.22 0.49 0.55 0.45 0.21 0.40	 24.9 (s/veh) 35.3 35.3 35.3 35.3 30.7 48.9 36.6 39.5 17.5 21.0 18.3 16.7	C C C C C D D D D D B C C B B B	Gibson Bl Intersection Delay	ivd & Univer Intersection LOS	sity E	EBL EBR WBL WBT WBR Slvd (Signa Movement NBL NBT/R SBL SBT SBR EBL EBT EBR WBL	 <1 Veh (1 Veh (1 Veh (1 Veh)) (1 Veh (1 Veh)) (1 Veh (1 Veh) (1 Veh)	 0.24 v/c 0.55 0.38 0.71 0.21 0.66 0.89 0.50 0.16 0.37	 28.2 28.2 38.9 35.5 54.1 44.9 49.9 54.0 19.6 15.5 17.2	F D C C C C D D D D D D D D D D	Intersection Delay	Intersection LOS
MD Peak	WBT WBR Movement NBL NBT/R SBL SBT SBR EBL EBT EBR	<1 Veh Jength (ft/lane) 103.7 239.4 287.1 111.4 213.4 102.8 274.1 1116.3	0.21 v/c 0.57 0.43 0.73 0.22 0.49 0.55 0.45 0.21	 24.9 (s/veh) 35.3 30.7 48.9 36.6 39.5 17.5 21.0 18.3	 C LOS D C D D D D D B C B	Gibson Bl Intersection Delay	ivd & Univer Intersection LOS	sity E	EBL EBT EBR WBL WBT WBR Stvd (Signa Movement NBL NBT/R SBL SBT SBR EBL EBT EBR	 <1 Veh ized) 95% Queue Length (ft/lane) 253.6 218.9 268.2 95.7 252.6 301.7 331.0 92.3	 0.24 v/c 0.55 0.38 0.71 0.21 0.66 0.89 0.50 0.16	 28.2 28.2 (s/veh) 38.9 35.5 54.1 44.9 49.9 54.0 19.6 15.5	F D LOS D D D D D D D B B	Intersection Delay	Intersection LOS

Table 15: HCM Results for Horizon Year (2036) Background Conditions

HORIZON YEAR (2036) FULL-BUILD CONDITIONS

Table 16 summarizes the intersection delay, level of service, and queueing under Horizon Year 2036 Full-Build conditions. Horizon Year 2036 Conditions were analyzed with existing signal timing. The following conclusions are made for the Horizon Year analysis:

Delay and LOS Results

At all intersections where LOS results are present, all movements operate at acceptable LOS during the MD and PM peaks except:

- At the stop-controlled intersection of Gibson Boulevard and I-25 SB Off-Ramp
 - NBR operates at LOS F during the MD and PM peak hours.
- At the stop-controlled intersection of Gibson Boulevard and I-25 NB Off-Ramp

 All movements operate at LOS F during the MD and PM peak hours.
 - At the stop-controlled intersection of Gibson Boulevard and Mulberry Street
 - NBL operates at LOS F during the MD and PM peak hours.
- At the stop-controlled intersection of Gibson Boulevard and Alumni Drive
 - NBL/R operates at LOS F during the MD peak hour.
 - SBL operates at LOS F during the MD and PM peak hours.
 - SBR operates at LOS E during the PM peak hour.
 - EBL operates at LOS E and LOS F during the MD and PM peak hours, respectively.

Queuing Results

At all intersections where queue length results are present, existing storage lengths are sufficient to accommodate 95th percentile queue lengths.

						Gibson Blv	d & I-25 SB R	amps	(Stop-Cont	rolled)					
	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS		Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
ak	NBR	502.5	1.08	80.5				ä	NBR	447.5	1.05	74.7			
MD Peak	SBR	<1 Veh	0.19	10.9	В			PM Peak	SBR	37.5	0.34	14.6	В		
Ξ	EBT					90 F	F	2	EBT					74.7	F
	EBR					80.5	Г		EBR					/4./	г
	WBL								WBL						
	WBT								WBT						
						Gibson Blvo	4 & I-25 NB R	amps	(Stop-Cont			-			
¥	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS	×	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
Pea	NBL	25.0	0.28	78.7	F			Pea	NBL	162.5	1.79	641.4	F		
MD Peak	NBR	245.0	0.90	52.8	F			PM Peak	NBR	565.0	1.24	154.7	F	.	_
	EBT					78.7	F		EBT					641.4	F
	EBR WBT								EBR WBT						
	WBI					Gibson Bl	vd & Mulber	ny St (olled)					
	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS	iy 30 (Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
¥	NBL	57.5	0.52	83.1	F			¥	NBL	45.0	0.46	107.2	F		
MD Peak	NBR	<1 Veh	0.21	20.9	С			PM Peak	NBR	<1 Veh	0.19	22.6	С		
Ð	EBT					00.1	-	Δ	EBT					107.2	r
	EBR					83.1	F		EBR					107.2	F
	WBL	27.5	0.27	28.5	D				WBL	<1 Veh	0.24	32.0	D		
	WBT			6.9	А				WBT			7.5	А		
						Gibson B	lvd & Alumn	i Dr (S	top-Contro						
	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS		Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
	NBL/R	215.0	2.56	1001.4					NBL/R						
¥	SBL	255.0	3.90	1694.7	F			×	SBL	212.5	7.52	3907.9	F		
MD Peak	SBR	40.0	0.36	22.6	С			PM Peak	SBR	90.0	0.68	85.3			
Ę	EBL	25.0	0.65	46.4	E			Σ	EBL	272.5	2.26	766.4	F		
	EBT					1694.7	F		EBT					3907.9	F
	EBR				 C				EBR						
	WBL	<1 Veh	0.21	24.9					WBL	<1 Veh	0.24	28.3	D 		
	WBT WBR								WBT WBR						
	WDI					Gihson F	Blvd & Univer	rcity P		zed)					
	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS		Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
	NBL	37.0	0.47	32.3	С				NBL	252.4	0.55	38.8	D		
	NBT/R	239.4	0.43	30.7	С				NBT/R	218.9	0.38	35.5	D	l	
풍	SBL	287.1	0.73	48.9	D			¥	SBL	268.2	0.71	54.1	D D	ł	
AD Peak	SBT SBR	111.4 212.6	0.22	36.6 39.5	D			M Peak	SBT SBR	94.3 253.8	0.21	44.9 49.9	D	ļ	
Ξ	EBL	98.5	0.49	17.3	B	25.2	С	2	EBL	255.8	0.00	52.1	D	34.7	D
	EBT	272.4	0.45	20.9	C				EBT	331.0	0.50	19.6	B	5	-
	EBR	116.1	0.21	18.3	B				EBR	91.7	0.16	15.5	B	ł	
	WBL	75.5	0.39	16.6	В				WBL	66.2	0.37	17.1	В	l	
	WBT	312.1	0.51	22.7	С				WBT	804.9	0.94	41.6	D		
	WBR	87.4	0.16	18.5	В				WBR	174.0	0.27	20.6	С		
						Alumni [Or & Site DW	Y 1 (S	top-Contro						
MD Peak	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS	PM Peak	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
Ę	NBL	<1 Veh	0.05	7.4	А			Σ	SBR	<1 Veh	0.04	7.3	A		
	EBL	<1 Veh	0.01	9.8	A	9.8	A		EBT	<1 Veh	0.01	9.4	A	9.4	A
	EBR	<1 Veh	0.02	8.4	A		0.01		WBT	<1 Veh	0.01	8.4	A		
		05% 0				Alumni I	Or & Site DW	Y 2 (S	top-Contro	<u> </u>					
MD Peak	Movement	95% Queue Length (ft/lane)	V/C	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS	PM Peak	Movement	95% Queue Length (ft/lane)	V/C	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
Q	NBL	<1 Veh	0.03	7.4	Α			Σ	NBL	<1 Veh	0.03	7.3	Α	-	
	EBL	<1 Veh	0.02	9.9	A	9.9	A		EBL	<1 Veh	0.01	9.5	A	9.5	A
	EBR	<1 Veh	0.10	8.8	A				EBR	<1 Veh	0.07	8.6	A		

Table 16: HCM Results for Horizon Year (2036) Full-Build Condition

COMPARISON OF BACKGROUND AND FULL-BUILD SCENARIO RESULTS

Based on the results for Existing, Background and Full-Build results for the Build-Out and Horizon Years, capacity and queuing concerns are currently present at the study intersections and, except for the intersection of Gibson Boulevard and Alumni Drive, are not significantly impacted by the proposed Development. The following presents a summary of the differences between Background and Full-Build results for each analysis year.

In the Build-Out Year 2026 scenarios:

- At the intersection of Gibson Boulevard and I-25 SB, the NBR movement changes from LOS D under Background conditions to LOS E under Full-Build conditions. These results are present in the PM peak hour.
- At the intersection of Gibson Boulevard and I-25 NB, the NBL movement change from LOS E under Background conditions to LOS F under Full-Build conditions. These results are present in the MD peak hour.
- At the intersection of Gibson Boulevard and Mulberry Street, the NBL movement changes from LOS E under Background conditions to LOS F under Full-Build conditions. These results are present in the MD peak hour.
- At the intersection of Gibson Boulevard and Alumni Drive, the EBL movement changes from LOS C under Background conditions to LOS E under Full-Build conditions. These results are present in the MD peak hour.
- At the intersection of Gibson Boulevard and University Boulevard, the SBR movement changes from LOS D under Background conditions to LOS E under Full-Build conditions. These results are present in the PM peak hour.

In the Horizon Year 2036 scenarios:

- At the intersection of Gibson Boulevard and I-25 SB, the NBR movement changes from LOS E under Background conditions to LOS F under Full-Build conditions. These results are present in the MD and PM peak hours.
- At the intersection of Gibson Boulevard and I-25 NB, the NBR movement changes from LOS E under Background conditions to LOS F under Full-Build conditions. These results are present in the MD peak hour.
- At the intersection of Gibson Boulevard and Alumni Drive, the EBL movement changes from LOS C under Background conditions to LOS E under Full-Build conditions. These results are present in the MD peak hour.
- At the intersection of Gibson Boulevard and University Boulevard, the EBL movement changes from LOS C under Background conditions to LOS E under Full-Build conditions. These results are present in the MD peak hour.

INTERSECTION CAPACITY MITIGATIONS GIBSON BOULEVARD

The Gibson Boulevard and I-25 interchange and the intersections of Gibson Boulevard and Mulberry Street, Gibson Boulevard and Alumni Drive, and Gibson Boulevard and University Boulevard experience capacity and queueing issues in the Existing and Build-Out Year 2026 Background scenarios.

The Gibson Boulevard and I-25 interchange is currently being redesigned by the NMDOT, and traffic operations are expected to improve when reconstruction is complete. Therefore, no mitigations for the interchange are provided in this report.

The minor street stop-controlled intersections Gibson Boulevard and Mulberry Street and Gibson Boulevard and Alumni Drive are too close to the interchange to be signalized. At Mulberry Street, capacity and queuing issues are only present on the stop-controlled approach and do not affect operations on Gibson Boulevard. Therefore, no mitigations are recommended in this report.

At Alumni Drive, in addition to the northbound and southbound movements, the eastbound left turn movement is expected to experience delays and queuing issues. These issues are present in the Background 2026 traffic scenario and are not triggered by the proposed development. When Alumni Drive is extended to Avenida Caesar Chavez, and traffic can travel to and from the north on Alumni Drive, delay and queuing at Alumni Drive and Gibson Boulevard is expected to decrease. The existing left-turn lane for the EBL movement at the intersection is sufficient to accommodate the 95th Percentile queue lengths in every scenario; therefore, the delay for this movement is not anticipated to affect operations for through traffic on Gibson Boulevard. Since egress trips making the southbound left movement at Alumni Drive and Gibson Boulevard might instead turn right and execute a U-turn at Mulberry Street, a No U-Turn sign should be installed on the median on Gibson Boulevard facing westbound traffic.

CRASH DATA SUMMARY

At the request of the NMDOT, a crash summary for the major intersections within the study area has been completed. The purpose of this analysis is to highlight trends and observations from summarized crash data. Crash data provided by the New Mexico Department of Transportation (NMDOT) for the years 2017 to 2021 is summarized in Table 17.

	Table 17: Crash Summary					
	Crash Summary	Gibson Blvd & I-25 NB	Gibson Blvd & I-25 SB	Gibson Blvd & Alumni Dr	Gibson Blvd & Mulberry St	Gibson Blvd & University Blvd
	Total Crashes	151	50	9	57	162
	2018	35	16	1	14	42
	2019	34	11	2	12	40
	2020	24	7	1	12	23
	2021	41	8	5	10	36
	2022	17	8	0	9	21
	Fixed Object - Barricade	1	1	0	0	1
	Fixed Object - Guard or Reflector Posts	1	0	0	0	0
	Fixed Object - Guard Rail	3	0	0	0	0
	Fixed Object - Light Standard (Light Pole)	3	1	0	0	0
	Fixed Object - Median Raised Or Curb	3	0	0	1	0
	Fixed Object - Roadway Divider - Concrete Jersey Bounce	0	1	0	0	0
	Fixed Object - Sign or Sign Post (Traffic)	0	1	0	0	0
	Fixed Object - Unknown/Not Stated	2	0	1	0	0
	Non-Collision - All Other/Not Stated	1	0	0	0	0
	Non-Collision - Vehicle Downhill Into Canyon/Ravine	1	0	0	0	0
	Other Object - All Other	0	0	0	0	1
	Other Object - Object Dropped From Vehicle - Furniture	0	1	0	0	0
	Other Object - Unknown/Not Stated	2	2	0	0	0
e	Other Vehicle - Both Going Straight/Entering At Angle	9	6	0	5	11
Crash Type	Other Vehicle - Both Turn Left/Entering At Angle	0	0	0	0	1
L H	Other Vehicle - From Opposite Direction	18	4	0	8	18
ras	Other Vehicle - From Opposite Direction/Both Going Straight	1	0	0	0	2
C	Other Vehicle - From Opposite Direction/One Left Turn	1	0	1	1	5
	Other Vehicle - From Opposite Direction/One Right Turn	1	0	0	0	0
	Other Vehicle - From Same Direction/All Others	0	0	0	0	1
	Other Vehicle - From Same Direction/Both Going Straight	9	8	0	3	13
	Other Vehicle - From Same Direction/One Left Turn	0	0	0	1	0
	Other Vehicle - From Same Direction/One Right Turn	0	0	0	1	1
	Other Vehicle - From Same Direction/One Stopped	0	1	0	0	1
	Other Vehicle - From Same Direction/One Vehicle Spun On Roadway Before Being Hit	1	0	0	0	0
	Other Vehicle - From Same Direction/Rear End Collision	12	2	1	4	24
	Other Vehicle - From Same Direction/Sideswipe Collision	10	3	1	1	2
	Other Vehicle - From Same Direction/Vehicle Backing	1	0	0	0	1
	Other Vehicle - One Left Turn/Entering At Angle	2	0	0	1	7
	Other Vehicle - One Right Turn/Entering At Angle	0	0	0	2	0

		0	0		0	
	Other Vehicle - One Stopped/Entering At Angle	0	0	0	0	1
	Other Vehicle - One Vehicle/Making A U-Turn	0	0	0	1	0
	Other Vehicle - Vehicle Wrong Way On Divided Hwy - Other Improper Entry	1	0	0	0	0
	Overturn/Rollover - Left Side of Road	1	0	0	0	0
	Overturn/Rollover - Right Side of Road	1	0	0	0	0
	Pedestrian Collision - Vehicle Going Straight	0	0	0	0	2
	Pedestrian Collision - Vehicle Turning Right	0	0	0	0	1
	Rollover - Left Side of Road	1	0	0	0	0
	Rollover - On The Road	1	0	0	0	0
	Vehicle On Other Roadway - Not Stated	0	0	0	3	0
	Vehicle Struck Pedalcyclist At Angle	0	0	0	0	1
	%Other Vehicle - From Same Direction/Rear End Collision	8%	4%	11%	7%	15%
	%Other Vehicle - From Opposite Direction	12%	8%	0%	14%	11%
	%Other Vehicle - From Same Direction/Both Going Straight	6%	16%	0%	5%	8%
	Daylight	95	30	5	38	109
2	Dark-Lighted	29	12	3	7	28
ing	Dark-Not Lighted	6	2	0	2	2
Lighting Conditions	Dusk/Dawn	0	0	0	0	0
Cor	%Daylight	63%	60%	56%	67%	67%
	%Dark-Lighted	19%	24%	33%	12%	17%
	Fatal Crash (K)	3	0	0	0	0
	Suspected Serious Injury (A)	4	1	1	1	6
_	Suspected Minor Injury (B)	5	1	0	4	9
rity	Complaint of Injury (C)	20	8	3	13	35
Severity	Property Damage Only Crash (O)	120	41	6	40	113
Se	%Suspected Minor Injury	3%	2%	0%	7%	6%
	%Complaint of Injury	13%	16%	33%	23%	83%
	%Property Damage Only Crash	79%	82%	67%	70%	70%
Bike/Ped Involvemen t	Pedestrian Involved	1	0	0	0	3
Pe em	Pedalcycle Involved	0	0	0	0	1
ike/ olv t	%Pedestrian Involved	1%	0%	0%	0%	2%
Bi Inv	%Pedalcycle Involved	0%	0%	0%	0%	1%
	Avoid No Contact Other	4	1	0	0	1
	Avoid No Contact Vehicle	8	5	0	3	5
	Cell Phone	0	0	0	0	1
	Defective Steering	0	1	0	0	0
	Defective Tires	1	1	0	0	0
	Disregarded Traffic Signal	0	0	0	0	14
S	Driver Inattention	76	25	6	25	95
Contributing Factors	Driverless Moving Vehicle	0	0	0	0	0
Fa	Drove Left Of Center	2	1	0	1	0
ng	Excessive Speed	20	5	1	11	11
uti	Failed To Yield For Emergency Vehicle	0	0	0	1	0
trib	Failed To Yield For Police Vehicle	1	0	0	0	0
ont	Failed To Yield Right Of Way	17	1	1	15	26
Ŭ	Following Too Closely	23	10	1	5	22
	High Speed Pursuit	0	0	0	1	0
	Improper Backing	0	0	0	0	3
	Improper Lane Change	13	6	1	8	7
	Improper Overtaking	5	0	0	2	6
	Inadequate Brakes	3	1	0	0	5
	Low Visibility Due To Smoke	0	0	0	0	0

Made Improper Turn	5	1	1	5	13
None	49	28	2	14	82
Other Improper Driving	18	7	0	2	9
Other Mechanical Defect	4	0	0	1	1
Other, No Driver Error	57	18	5	24	65
Passed Stop Sign	0	0	0	1	1
Pedestrian Error	0	0	0	0	2
Road Defect	2	0	0	0	1
Speed Too Fast For Conditions	7	4	0	1	4
Texting	0	0	0	0	1
Traffic Control Missing	0	0	0	0	0
Under The Influence Of Drugs	1	0	0	1	0
Under The Influence Of Alcohol	8	1	0	1	7
Vehicle Skidded Before Braking	2	0	0	1	1
Animal(S) In Roadway	0	1	0	0	0
Backup - Prior Crash	0	0	0	0	0
Backup - Prior Incident	0	0	0	0	0
Traffic Congestion	0	0	0	0	0
Coupling Device (Hitch, Chains)	0	0	0	0	0
Debris	1	0	0	0	0
Exhaust System	1	0	0	0	0
Low Visibility Due To Glare	0	0	0	0	0
Lights (Head, Signal, Tail)	0	0	0	1	0
Mirrors	0	0	0	0	0
Driver Distracted By Other Activity	2	1	1	0	3
Driver Distracted By Passenger	1	0	0	0	1
Obstruction In Road	3	0	0	1	0
Road Surface Conditions	6	4	0	0	1
Suspension	0	0	0	0	0
Driver Distracted By Talking On Hands-Free Device	0	0	0	0	0
Driver Distracted By Talking On Cell Phone	0	0	0	0	0
Other Visual Obstruction(S)	3	0	0	1	0
Weather Conditions	4	3	0	0	1
Wheels	0	2	0	0	0
Windows/Windshield	0	0	0	0	0
Wipers	0	0	0	0	0
%Driver Inattention	50%	50%	67%	44%	59%
%None	32%	56%	22%	25%	51%
%Other, No Driver Error	38%	36%	56%	42%	40%

From the table, the following observations are made:

- For the intersection of Gibson Boulevard and I-25 Southbound:
 - Within the years 2018 to 2022, 50 crashes were reported.
 - The most common crash types were Other Vehicle From Same Direction/ Both Going Straight and Other Vehicle Both Going Straight/Entering At Angle.
 - 60% of reported crashes occurred during daylight hours and 24% occurred during Dark-Lighted conditions.
 - No fatal crashes were reported from 2018 to 2022.
 - 2 Injury Crashes were reported; 41 crashes were classified as Property Damage Only.
 - The most common contributing factor was Driver Inattention.

- No pedestrian-involved or bicyclist-involved crashes were reported from 2019 to 2021.
- For the intersection of Gibson Boulevard and I-25 Northbound
 - Within the years 2018 to 2022, 151 crashes were reported.
 - The most common crash types were Other Vehicle From Opposite Direction and Other Vehicle From Same Direction/Rear End Collision.
 - 63% of reported crashes occurred during daylight hours and 19% occurred during Dark-Lighted conditions.
 - \circ $\,$ 3 fatal crashes were reported from 2018 to 2022.
 - The reported fatal pedestrian-involved crash occurred on September 1st, 2022, at 2:00 AM. The crash was reported in clear, Dark Not-Lighted conditions. The contributing factor was listed as Other-None. The crash resulted in one pedestrian fatality.
 - The reported fatal crash occurred August 8th, 2020, at 1:00 AM. The crash was reported to be clear, Dark-Lighted conditions. The contributing factors were reported as Under the Influence of Alcohol and Drove Left of Center. The crash resulted in one fatality.
 - The reported fatal crash occurred January 1st, 2021, at 5:00 PM. The crash was reported in clear, Dusk conditions. The contributing factor was reported as Failed to Yield Right of Way. One fatality was reported.
 - 9 Injury crashes were reported.
 - The most common contributing factors were Driver Inattention, None, and Other No Driver Error.
 - 1 fatal pedestrian-involved crash was reported (Described above).
- For the intersection of Gibson Boulevard and Alumni Drive:
 - Within the years 2018 to 2022, 9 crashes were reported.
 - The most common crash types were Other Vehicle From Same Direction/Rear End Collision and Other Vehicle From Opposite Direction/One Left Turn.
 - 56% of reported crashes occurred during daylight hours and 33% occurred during Dark-Lighted conditions.
 - No fatal crashes were reported from 2018 to 2022.
 - 1 Injury crash was reported; 6 crashes were classified as Property Damage Only.
 - The most common contributing factors were Driver Inattention and No Driver Error.
 - No pedestrian-involved crashes were reported from 2018 to 2022.
- For the intersection of Gibson Boulevard and Mulberry Street:
 - Within the years 2018 to 2022, 57 crashes were reported.
 - The most common crash types were Other Vehicle From Opposite Direction and Other Vehicle Both Going Straight/Entering at Angle.
 - 67% of crashes at this intersection occurred during daylight hours and 12% occurred under Dark-Lighted conditions.
 - No fatal crashes were reported from 2018 to 2022.
 - 17 injury crashes were reported; 40 crashes were classified as Property Damage Only.

- The most common contributing factors were Driver Inattention and Other No Driver Error.
- No pedestrian or bicyclist-involved crashes were reported from 2018 to 2022.
- For the intersection of Gibson Boulevard and University Boulevard:
 - Within the years 2018 to 2022, 162 crashes were reported.
 - The most common crash types were Other Vehicle From Same Direction/Rear End Collision and Other Vehicle From Opposite Direction.
 - 67% of crashes at this intersection occurred during daylight hours and 17% occurred under Dark-Lighted conditions.
 - No fatal crashes were reported from 2018 to 2022.
 - 15 injury crashes were reported; 113 crashes were classified as Property Damage Only.
 - The most common contributing factors were Driver Inattention and Failed to Yield Right of Way.
 - 3 pedestrian-involved crashes were reported.
 - One reported pedestrian-involved crash occurred on September 9th, 2018, at 5:00 PM. The crash was reported with clear, Daylight conditions. The contributing factor was listed as Other-None. Complaint of injury reported by pedestrian.
 - One reported pedestrian-involved crash occurred May 5th, 2020, at 10:00 AM.
 The crash was reported to be in clear, daylight conditions. The contributing factor was listed as Other-Mechanical Defect. No injuries were reported.
 - The reported pedestrian-involved crash occurred on November 11th, 2020, at 8:00 PM. The crash reportedly had clear, dark-lighted conditions. The contributing factor was Other-Improper Driving. Serious injury was reported for the pedestrian involved.
 - 1 bicyclist-involved crash was reported.
 - The reported bicyclist-involved crash occurred June 6th, 2019, at 9:00 PM. The crash was reported in clear, Dark-Lighted conditions. The contributing factor was listed as Disregarded Traffic Signal.

CONCLUSIONS AND RECOMMENDATIONS

The following presents a summary of the traffic analysis and recommendations included in this report.

Assumptions

The following assumptions regarding new developments in the roadway network were made for the Build-Out Year scenarios based on the information discussed in the scoping meeting:

- Alumni Drive is assumed to be extended north of its current location to Avenida Caesar Chavez through a project designed and funded by the University of New Mexico. Site Driveways 1 and 2 will be constructed on the west side of the new segment of Alumni Drive. For this analysis, the full extension of Alumni Drive is assumed to be completed by Horizon Year 2036.
- The Gibson Boulevard and I-25 Interchange is currently being redesigned by NMDOT. Capacity and queuing issues at the interchange are assumed to be addressed in the future by this reconstruction project. Therefore, mitigations for the interchange are not provided in this analysis.

Conclusions

The capacity and queuing analysis showed that several study intersection movements operate at unacceptable levels of service under Existing and Background conditions.

Under Existing 2024 conditions, traffic operation is summarized as follows:

- At the stop-controlled intersection of Gibson Boulevard and I-25 NB Off-Ramp
 - NBL operates at LOS E and LOS F during the MD and PM peak hours, respectively.
 - NBR operates at LOS E during the PM peak hour.
- At the stop-controlled intersection of Gibson Boulevard and Mulberry Street
 - NBL operates at LOS E and LOS F during the MD and PM peak hours, respectively.
- At the stop-controlled intersection of Gibson Boulevard and Alumni Drive
 - SBL operates at LOS E and LOS F during the MD and PM peak hours, respectively.
- At the signalized intersection of Gibson Boulevard and University Boulevard
 - SBL operates at LOS E during the PM peak hour.
 - SBR operates at LOS E during the PM peak hour.

Under Background 2026 conditions, traffic operation is summarized as follows:

- At the stop-controlled intersection of Gibson Boulevard and I-25 SB Off-Ramp
 - NBR operates at LOS E during the MD peak hour.
- At the stop-controlled intersection of Gibson Boulevard and I-25 NB Off-Ramp
 - NBL operates at LOS E and LOS F during the MD and PM peak hours, respectively.
 - NBR operates at LOS F during the PM peak hour.
- At the stop-controlled intersection of Gibson Boulevard and Mulberry Street
 - NBL operates at LOS E and LOS F during the MD and PM peak hours, respectively.
- At the stop-controlled intersection of Gibson Boulevard and Alumni Drive
 - NBL/R operates at LOS F during the MD and PM peak hours.
 - SBL operates at LOS F during the MD and PM peak hours.
 - EBL operates at LOS F during the PM peak hours.
- At the signalized intersection of Gibson Boulevard and University Boulevard
 - SBL operates at LOS E during the PM peak hour.

Under the Full-Build 2026 scenario, traffic operation is summarized as follows:

- At the stop-controlled intersection of Gibson Boulevard and I-25 SB Off-Ramp

 NBR operates at LOS E during the MD and PM peak hours.
- At the stop-controlled intersection of Gibson Boulevard and I-25 NB Off-Ramp
 - NBL operates at LOS F during the MD and PM peak hours.
 - NBR operates at LOS F during the PM peak hour.
- At the stop-controlled intersection of Gibson Boulevard and Mulberry Street
 NBL operates at LOS F during the MD and PM peak hours.
 - At the stop-controlled intersection of Gibson Boulevard and Alumni Drive
 - NBL/R operates at LOS F during the MD peak hour.
 - SBL operates at LOS F during the MD and PM peak hours.
 - EBL operates at LOS F PM peak hours.
- At the signalized intersection of Gibson Boulevard and University Boulevard
 - SBL operates at LOS E during the PM peak hour.
 - SBR operates at LOS E during the PM peak hour.

Detailed traffic operation results for Existing, Build Out Year 2026 Background, Build Out Year 2026 Full-Build, Horizon Year 2036 Background, and Horizon Year 2036 Full-Build scenarios can be found in the LOS, Capacity and Queuing section of the report. Mitigated 2026 and 2036 Full-Build scenario results are also provided.

SITE RECOMMENDATIONS

- Proposed Access Points and Locations:
 - Full access configuration, with right and left turns being permitted, is recommended for Site Driveways 1 and 2 on Alumni Drive, to provide adequate site circulation for ingress and egress Development trips.
 - An area bounded by the required sight distance of 355 feet for left-turning vehicles and 290 feet for right-turning vehicles should be cleared and maintained free of obstructions on either side of each site driveway.

OFF-SITE INTERSECTION RECOMMENDATIONS

- Mulberry Street and Gibson Boulevard
 - A "No U-Turn" sign (R-3-4) should be installed on the median at Mulberry Street and Gibson Boulevard, facing westbound traffic.

Appendix A: Scoping Meeting Notes

ARIZONA NEW MEXICO OKLAHOMA TEXAS

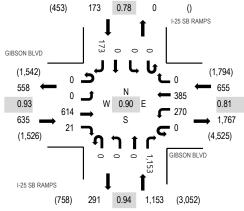
Agenda for Traffic Study Scoping Meeting Gibson In-N-Out April 29, 2024 -Meeting Notes in Red-

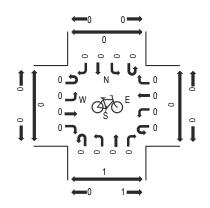
Attendees: Nancy Perea – NMDOT Margaret Haynes – NMDOT Matt Grush – CABQ

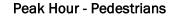
> Jonathon Kruse – Lee Engineering Abigail Yoerger – Lee Engineering

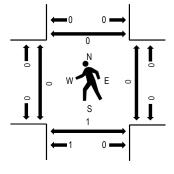
- 1. Introductions
- 2. Review of Site Plan
 - a. Site Plan & Land Uses
 - b. Access Review
- 3. Discussion of Scope for TIS
 - a. Study Intersections
 - i. Site Driveways
 - ii. Gibson & Alumni
 - iii. Gibson & University
 - iv. Gibson & Interchange
 - 1. Note: Interchange construction is horizon. Analyze as is today under buildout conditions and as 30% designed under horizon year conditions.
 - 2. Camera to gauge queueing from interchange.
 - v. Gibson & Mullberry
 - 1. Interim fix for Mulberry = restrict access. Future access in NMDOT access plan is right in / right out / left in. NMDOT ROW Map.
 - b. Data Collection
 - i. Existing Study Intersections
 - ii. Extra camera to capture queues at interchange
 - c. Trip Generation, Pass By, & Internal Capture
 - i. Trip Generation Manual (11th Edition) Land Use
 - 1. ITE 934 Fast Food Restaurant with Drive-Through
 - 2. Check for comparable sites for trip generation.

Use		Units		Weekda	ay AM Pe	ak Hour			Weekda	iy PM Pe	ak Hour	
Use		Units	Total	Enter	Exit	In	Out	Total	Enter	Exit	In	Out
ITE 934 -Fast-Food Restaurant with Drive-Through	3885	Sq. Ft.	197	52%	48%	102	95	198	51%	49%	101	97

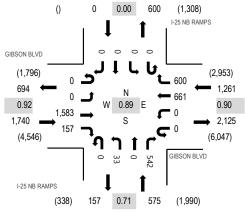

- ii. Pass-by/Diverted trips. Full allowance.
- iii. No Internal Capture
- iv. Trips distributed based on existing traffic patterns
- d. Known Developments or Pending Improvements in Area
 - i. Gibson Interchange.
 - ii. Gibson & Yale Development: partially built. Matt to provide study.
 - iii. Raising Cane's at Gibson & Alumni (South Side). Matt to provide study.
- e. Build-out Year and Growth Rate
 - i. Build-Out Year (2026)
 - 1. Will look at Historic Traffic Volumes and calculate growth rate, if less than 1%, will assume 1% growth per year.
- f. Analysis scenarios
 - i. Existing Conditions
 - ii. Opening Year Background (No Build)
 - iii. Opening Year Buildout (Full Build)
 - iv. Opening Year Buildout Optimized (if needed)
 - 1. All scenarios with existing signal timings except opening year buildout optimized.
 - v. Horizon year 10 Years from opening (Background & Buildout).
- g. Required Analysis & Methodology
 - i. LOS Capacity and Queueing analysis based on HCM 6th Edition (HCS)
 - 1. Capacity & Queueing for network peak
 - 2. Mid-Day and PM Peak Hours
 - ii. No Arterial Analysis.
 - iii. Auxiliary Lane Analysis
 - iv. Sight Distance Analysis at Proposed Driveways
 - v. Safety (Crash) Summary
 - 1. 5 Years for Gibson & Alumni and study intersections
 - 2. Highlight bike & ped crashes in summary
 - vi. Weaving Analysis for Right-Out onto Gibson
 - vii. Right out access justification
- 4. Agency Input (Comments & Issues)
 - a. SB Queues on Alumni would likely support right out access onto Gibson.
- 5. Meeting Notes (distributed by Lee Engineering)

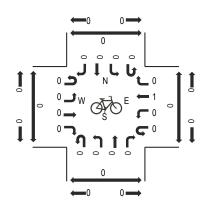

Appendix B: Turning Movement Counts

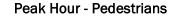

Location: 1 I-25 SB RAMPS & GIBSON BLVD AM Date: Thursday, May 16, 2024 Peak Hour: 07:15 AM - 08:15 AM Peak 15-Minutes: 07:45 AM - 08:00 AM

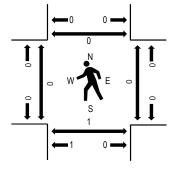

Peak Hour - Motorized Vehicles

Peak Hour - Bicycles

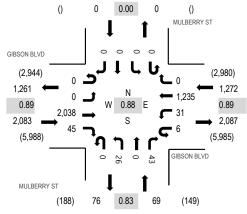

Note: Total study counts contained in parentheses.

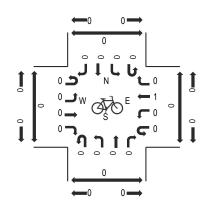

		G	IBSON	I BLVD)	GI	BSON	BLVD		1-3	25 SB F	RAMPS		1-3	25 SB	RAMPS	3						
Interval			Eastb	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	estrian	Crossir	igs
Start Tim	е	U-Turn	Left	Thru	Right	U-Turn	Left	Thru Rig	ht	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South I	North
6:00 AM		0	0	72	4	0	46	24	0	0	0	0	181	0	0	0	21	348	1,936	0	0	0	0
6:15 AM		0	0	73	2	0	38	39	0	0	0	0	227	0	0	0	28	407	2,156	0	0	0	1
6:30 AM		0	0	104	6	0	66	62	0	0	0	0	291	0	0	0	67	596	2,357	0	0	0	0
6:45 AM		0	0	128	3	0	50	70	0	0	0	0	280	0	0	0	54	585	2,399	0	0	0	0
7:00 AM		0	0	117	4	0	59	65	0	0	0	0	290	0	0	0	33	568	2,540	0	0	0	0
7:15 AM		0	0	122	7	0	53	72	0	0	0	0	300	0	0	0	54	608	2,616	0	0	0	0
7:30 AM		0	0	163	5	0	72	81	0	0	0	0	266	0	0	0	51	638	2,566	0	0	0	0
7:45 AM		0	0	167	5	0	73	129	0	0	0	0	312	0	0	0	40	726	2,489	0	0	0	0
8:00 AM		0	0	162	4	0	72	103	0	0	0	0	275	0	0	0	28	644	2,349	0	0	1	0
8:15 AM		0	0	130	6	0	53	107	0	0	0	0	230	0	0	0	32	558		0	0	0	0
8:30 AM		0	0	112	3	0	57	157	0	0	0	0	213	0	0	0	19	561		0	0	0	0
8:45 AM		0	0	123	4	0	66	180	0	0	0	0	187	0	0	0	26	586		0	0	0	0
Count Total		0	0	1,473	53	0	705	1,089	0	0	0	0	3,052	0	0	0	453	6,825		0	0	1	1
Peak Hour		0	0	614	21	0	270	385	0	0	0	0	1,153	0	C) () 173	8 2,61	16	0	0	1	0

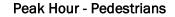

Location: 2 I-25 NB RAMPS & GIBSON BLVD AM Date: Thursday, May 16, 2024 Peak Hour: 07:30 AM - 08:30 AM Peak 15-Minutes: 07:45 AM - 08:00 AM

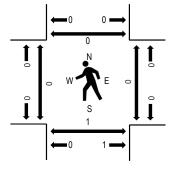

Peak Hour - Motorized Vehicles

Peak Hour - Bicycles

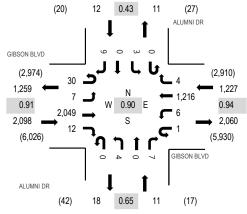

Note: Total study counts contained in parentheses.

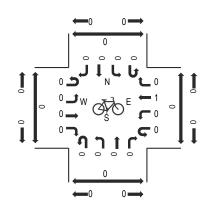

	G	IBSON	I BLVD)	GI	BSON	BLVD		1-2	25 NB F	RAMPS		I-3	25 NB	RAMPS	6						
Interval		Eastb	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	estrian	Crossir	ıgs
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South	North
6:00 AM	0	0	237	18	0	0	70	72	0	3	0	120	0	0	0	0	520	2,729	0	0	0	0
6:15 AM	0	0	281	17	0	0	74	84	0	2	0	138	0	0	0	0	596	2,956	0	0	0	0
6:30 AM	0	0	366	25	0	0	124	122	0	4	0	154	0	0	0	0	795	3,139	0	0	0	0
6:45 AM	0	0	383	30	0	0	118	122	0	3	0	162	0	0	0	0	818	3,202	0	0	0	0
7:00 AM	0	0	370	33	0	0	118	87	0	6	0	133	0	0	0	0	747	3,390	0	0	0	0
7:15 AM	0	0	373	34	0	0	122	119	0	1	0	130	0	0	0	0	779	3,505	0	0	0	0
7:30 AM	0	0	397	44	0	0	140	133	0	7	0	137	0	0	0	0	858	3,576	0	0	0	0
7:45 AM	0	0	432	45	0	0	196	154	0	12	0	167	0	0	0	0	1,006	3,559	0	0	0	0
8:00 AM	0	0	393	40	0	0	173	133	0	8	0	115	0	0	0	0	862	3,370	0	0	1	0
8:15 AM	0	0	361	28	0	0	152	180	0	6	0	123	0	0	0	0	850		0	0	0	0
8:30 AM	0	0	321	15	0	0	171	62	0	47	0	225	0	0	0	0	841		0	0	0	0
8:45 AM	0	0	294	9	0	0	187	40	0	52	0	235	0	0	0	0	817		0	0	0	0
Count Total	0	0	4,208	338	0	0	1,645	1,308	0	151	0	1,839	0	0	0	0	9,489		0	0	1	0
Peak Hour	0	0	1,583	157	0	0	661	600	0	33	0	542	0	C) () (3,57	76	0	0	1	0

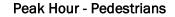

Location: 3 MULBERRY ST & GIBSON BLVD AM Date: Thursday, May 16, 2024 Peak Hour: 07:30 AM - 08:30 AM Peak 15-Minutes: 07:45 AM - 08:00 AM

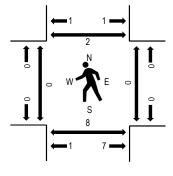

Peak Hour - Motorized Vehicles

Peak Hour - Bicycles


Note: Total study counts contained in parentheses.

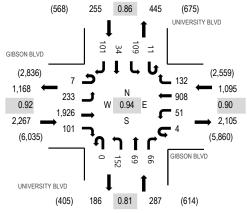

		G	I BLVD)	GI	BSON	BLVD		N	IULBER	RY ST		N	IULBEI	RRY ST	Γ							
	Interval		Eastb	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	estrian	Crossin	ıgs
	Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru I	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South 1	North
	6:00 AM	0	0	350	7	1	3	139	0	0	3	0	2	0	0	0	0	505	2,660	0	0	0	0
	6:15 AM	0	0	414	3	1	2	159	0	0	1	0	3	0	0	0	0	583	2,861	0	0	0	0
	6:30 AM	0	0	508	12	0	7	236	0	0	2	0	6	0	0	0	0	771	3,047	0	0	0	0
	6:45 AM	0	0	534	10	1	7	240	0	0	7	0	2	0	0	0	0	801	3,085	0	1	1	0
	7:00 AM	0	0	488	9	2	0	200	0	0	2	0	5	0	0	0	0	706	3,252	0	0	0	0
	7:15 AM	0	0	500	6	5	7	232	0	0	9	0	10	0	0	0	0	769	3,381	0	0	0	0
	7:30 AM	0	0	507	11	3	3	268	0	0	5	0	12	0	0	0	0	809	3,424	0	0	1	0
	7:45 AM	0	0	589	8	2	10	345	0	0	5	0	9	0	0	0	0	968	3,407	0	0	0	0
	8:00 AM	0	0	496	14	0	10	298	0	0	6	0	11	0	0	0	0	835	3,205	0	0	0	0
	8:15 AM	0	0	446	12	1	8	324	0	0	10	0	11	0	0	0	0	812		0	0	0	0
	8:30 AM	0	0	529	10	1	9	225	0	0	6	0	12	0	0	0	0	792		0	0	0	0
	8:45 AM	0	0	512	13	4	7	220	0	0	2	0	8	0	0	0	0	766		0	0	0	0
С	ount Total	0	0	5,873	115	21	73	2,886	0	0	58	0	91	0	0	0	0	9,117		0	1	2	0
I	Peak Hour	0	0	2,038	45	6	31	1,235	0	0	26	0	43	0	() () () 3,42	24	0	0	1	0

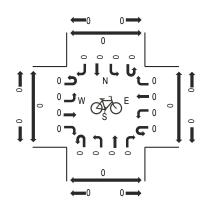

Location: 4 ALUMNI DR & GIBSON BLVD AM Date: Thursday, May 16, 2024 Peak Hour: 07:30 AM - 08:30 AM Peak 15-Minutes: 07:45 AM - 08:00 AM

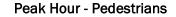

Peak Hour - Motorized Vehicles

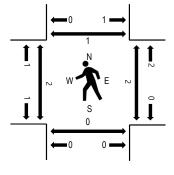
Peak Hour - Bicycles

Note: Total study counts contained in parentheses.

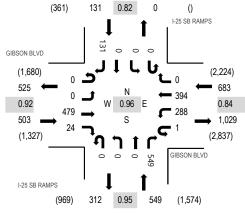

		G	IBSON	I BLVD		GI	BSON	BLVD			ALUM	NI DR			ALUM	NI DR							
	Interval		Eastb	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	estrian	n Crossin	ıgs
	Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru I	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South 1	North
	6:00 AM	0	0	340	1	0	1	140	0	0	0	0	0	0	0	0	0	482	2,589	0	0	0	0
	6:15 AM	8	1	407	1	0	0	154	0	0	0	0	0	0	0	0	0	571	2,813	0	0	0	0
	6:30 AM	4	1	511	1	0	0	247	1	0	0	0	0	0	0	0	0	765	2,994	0	0	4	0
	6:45 AM	3	6	533	1	0	1	226	0	0	0	0	1	0	0	0	0	771	3,047	0	0	1	1
	7:00 AM	7	3	495	0	0	0	199	0	0	0	0	1	0	0	0	1	706	3,201	0	0	0	1
	7:15 AM	11	2	502	3	1	2	229	0	0	0	0	0	0	0	0	2	752	3,346	0	0	5	0
	7:30 AM	8	2	519	3	0	0	277	0	0	0	0	2	0	1	0	6	818	3,348	0	0	4	0
	7:45 AM	6	2	587	3	1	1	323	1	0	0	0	0	0	0	0	1	925	3,317	0	0	2	1
	8:00 AM	11	2	503	4	0	3	321	2	0	3	0	1	0	1	0	0	851	3,183	0	0	2	0
	8:15 AM	5	1	440	2	0	2	295	1	0	1	0	4	0	1	0	2	754		0	0	0	1
	8:30 AM	5	0	532	3	0	3	242	0	0	0	0	0	0	2	0	0	787		0	0	3	0
	8:45 AM	4	1	539	3	3	4	229	1	0	1	0	3	0	0	0	3	791		0	1	0	1
Cou	unt Total	72	21	5,908	25	5	17	2,882	6	0	5	0	12	0	5	0	15	8,973		0	1	21	5
Pe	eak Hour	30	7	2,049	12	1	6	1,216	4	0	4	0	7	0	3	3 () (3,34	48	0	0	8	2

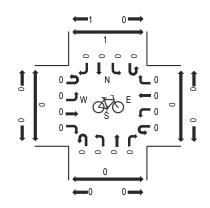


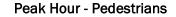

Location: 5 UNIVERSITY BLVD & GIBSON BLVD AM Date: Thursday, May 16, 2024 Peak Hour: 07:30 AM - 08:30 AM Peak 15-Minutes: 07:45 AM - 08:00 AM

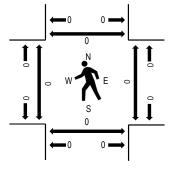

Peak Hour - Bicycles

Peak Hour - Motorized Vehicles


Note: Total study counts contained in parentheses.

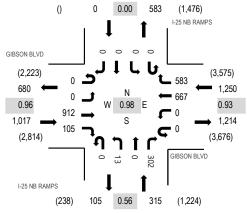

		G	IBSO	N BLVD		GI	BSON	BLVD		UNI	VERSI	ry Blvi)	UNI	VERSI	TY BL\	/D						
	Interval		Eastb	ound			Westb	ound			Northb	ound			Southb	ound			Rolling	Ped	estrian	Crossin	ngs
	Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru F	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South I	North
	6:00 AM	0	4	352	5	2	4	96	2	0	16	1	3	0	5	2	8	500	2,798	0	0	0	0
	6:15 AM	0	7	409	17	1	4	119	2	0	27	1	13	1	13	4	12	630	3,097	0	1	1	0
	6:30 AM	0	11	518	15	1	4	200	6	0	26	0	14	1	12	2	14	824	3,282	0	2	0	1
	6:45 AM	1	16	527	17	3	4	179	2	0	28	8	15	1	17	6	20	844	3,431	0	0	0	1
	7:00 AM	2	17	492	25	0	3	171	11	0	16	6	11	0	27	5	13	799	3,625	0	0	0	0
	7:15 AM	0	25	482	18	1	7	177	13	0	33	3	7	0	24	7	18	815	3,862	2	0	1	2
	7:30 AM	2	45	490	30	1	9	259	28	0	38	5	14	1	22	5	24	973	3,904	0	1	0	0
	7:45 AM	3	79	528	20	1	10	201	33	0	49	17	23	3	36	8	27	1,038	3,659	0	1	0	1
	8:00 AM	1	73	492	32	0	22	239	43	0	26	27	14	4	27	10	26	1,036	3,353	0	0	0	0
	8:15 AM	1	36	416	19	2	10	209	28	0	39	20	15	3	24	11	24	857		2	0	0	0
	8:30 AM	1	17	354	15	0	6	228	15	0	25	8	9	2	29	6	13	728		0	1	1	0
	8:45 AM	1	22	377	21	1	13	177	12	0	30	15	12	1	24	9	17	732		0	0	0	0
Co	unt Total	12	352	5,437	234	13	96	2,255	195	0	353	111	150	17	260	75	216	9,776		4	6	3	5
Pe	eak Hour	7	233	1,926	101	4	51	908	132	0	152	69	66	11	109	34	101	3,90	4	2	2	0	1

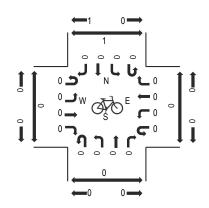

Location: 1 I-25 SB RAMPS & GIBSON BLVD Noon Date: Thursday, May 16, 2024 Peak Hour: 12:00 PM - 01:00 PM Peak 15-Minutes: 12:45 PM - 01:00 PM


Peak Hour - Motorized Vehicles

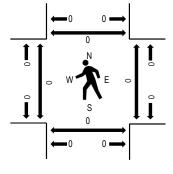
Peak Hour - Bicycles

Note: Total study counts contained in parentheses.

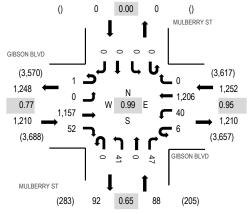

		G	IBSON	I BLVD)	G	BSON	BLVD		-;	25 SB F	RAMPS		I-	25 SB	RAMPS	6						
Interv	ral		Eastb	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	lestriar	Crossir	ıgs
Start T	ime	U-Turn	Left	Thru	Right	U-Turn	Left	Thru Ri	ght	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South	North
11:00	AM	0	0	129	4	3	51	181	0	0	0	0	106	0	0	0	36	510	1,817	0	0	0	0
11:15	AM	0	0	99	7	1	60	145	0	0	0	0	131	0	0	0	26	469	1,763	0	0	0	0
11:30	AM	0	0	90	4	1	68	92	0	0	0	0	127	0	0	0	19	401	1,743	0	0	0	1
11:45	AM	0	0	99	6	0	86	97	0	0	0	0	123	0	0	0	26	437	1,819	0	0	0	0
12:00	PM	0	0	124	0	0	75	92	0	0	0	0	138	0	0	0	27	456	1,866	0	0	0	0
12:15	PM	0	0	102	9	1	73	99	0	0	0	0	132	0	0	0	33	449	1,860	0	0	0	0
12:30	PM	0	0	124	7	0	70	103	0	0	0	0	133	0	0	0	40	477	1,861	0	0	0	0
12:45	PM	0	0	129	8	0	70	100	0	0	0	0	146	0	0	0	31	484	1,842	0	0	0	0
1:00 F	PM	0	0	99	7	1	80	91	0	0	0	0	146	0	0	0	26	450	1,803	0	0	0	0
1:15 F	PM	0	0	78	5	1	96	111	0	0	0	0	128	0	0	0	31	450		0	0	0	0
1:30 F	M	0	0	101	7	0	87	103	0	0	0	0	129	0	0	0	31	458		0	0	1	0
1:45 F	PM	0	0	81	8	0	81	105	0	0	0	0	135	0	0	0	35	445		0	0	0	0
Count Tot	al	0	0	1,255	72	8	897	1,319	0	0	0	0	1,574	0	0	0	361	5,486		0	0	1	1
Peak Ho	ur	0	0	479	24	1	288	394	0	0	0	0	549	0	() () 131	1,86	6	0	0	0	0

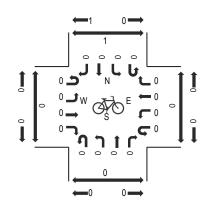


Location: 2 I-25 NB RAMPS & GIBSON BLVD Noon Date: Thursday, May 16, 2024 Peak Hour: 12:00 PM - 01:00 PM Peak 15-Minutes: 12:30 PM - 12:45 PM

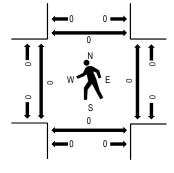

Peak Hour - Bicycles

Peak Hour - Motorized Vehicles

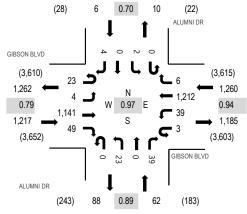

Note: Total study counts contained in parentheses.

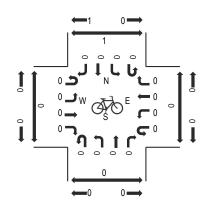

		GIBSO	N BLVE)	GI	BSON	BLVD		1-3	25 NB F	RAMPS		1-3	25 NB	RAMPS	6						
Interval		East	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	estrian	Crossir	igs
Start Time	e U-Turr	Left	Thru	Right	U-Turn	Left	Thru I	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South I	North
11:00 AM	0	0	218	10	0	0	182	25	0	51	0	236	0	0	0	0	722	2,550	0	0	0	0
11:15 AM	0	0	228	7	0	0	164	70	0	43	0	167	0	0	0	0	679	2,474	0	0	0	0
11:30 AM	1	0	202	16	0	0	161	101	0	3	0	65	0	0	0	0	549	2,424	0	0	0	0
11:45 AM	0	0	186	22	0	0	185	126	0	2	0	79	0	0	0	0	600	2,533	0	0	0	0
12:00 PM	0	0	238	27	0	0	157	137	0	6	0	81	0	0	0	0	646	2,582	0	0	0	0
12:15 PM	0	0	215	20	0	0	170	160	0	1	0	63	0	0	0	0	629	2,535	0	0	0	0
12:30 PM	0	0	227	25	0	0	170	156	0	3	0	77	0	0	0	0	658	2,528	0	0	0	0
12:45 PM	0	0	232	33	0	0	170	130	0	3	0	81	0	0	0	0	649	2,515	0	0	0	0
1:00 PM	0	0	228	26	0	0	174	114	0	1	0	56	0	0	0	0	599	2,481	0	0	0	0
1:15 PM	0	0	194	11	0	0	201	140	0	1	0	75	0	0	0	0	622		0	0	1	0
1:30 PM	0	0	208	18	0	0	192	160	0	5	0	62	0	0	0	0	645		0	0	0	0
1:45 PM	0	0	199	23	0	0	173	157	0	4	0	59	0	0	0	0	615		0	0	0	0
Count Total	1	0	2,575	238	0	0	2,099	1,476	0	123	0	1,101	0	0	0	0	7,613		0	0	1	0
Peak Hour	0	0	912	105	0	0	667	583	0	13	0	302	0	C) () (2,58	32	0	0	0	0

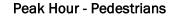
Location: 3 MULBERRY ST & GIBSON BLVD Noon Date: Thursday, May 16, 2024 Peak Hour: 12:00 PM - 01:00 PM Peak 15-Minutes: 12:30 PM - 12:45 PM

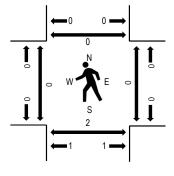

Peak Hour - Motorized Vehicles

Peak Hour - Bicycles


Note: Total study counts contained in parentheses.

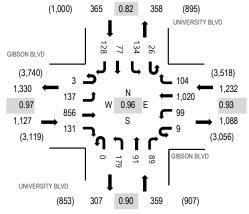

	G	IBSON	I BLVD)	GI	BSON	BLVD		Ν	IULBER	RY ST		N	IULBEI	RRY ST	Г						
Interval		Eastb	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	estrian	Crossin	igs
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru F	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South I	North
 11:00 AM	4	0	437	8	3	14	199	0	0	3	0	5	0	0	0	0	673	2,486	0	0	0	0
11:15 AM	5	0	383	14	1	12	220	0	0	4	0	11	0	0	0	0	650	2,452	0	1	0	0
11:30 AM	0	0	256	15	2	14	257	0	0	8	0	9	0	0	0	0	561	2,437	0	0	0	0
11:45 AM	2	0	258	8	4	17	298	0	0	8	0	7	0	0	0	0	602	2,522	0	0	0	0
12:00 PM	0	0	299	17	2	14	284	0	0	9	0	14	0	0	0	0	639	2,550	0	0	0	0
12:15 PM	0	0	271	12	0	3	315	0	0	14	0	20	0	0	0	0	635	2,511	0	0	0	0
12:30 PM	0	0	289	11	4	10	320	0	0	6	0	6	0	0	0	0	646	2,503	0	0	0	0
12:45 PM	1	0	298	12	0	13	287	0	0	12	0	7	0	0	0	0	630	2,495	0	0	0	0
1:00 PM	0	0	274	14	3	8	284	0	0	7	0	10	0	0	0	0	600	2,474	0	0	0	0
1:15 PM	2	0	255	11	0	14	333	0	0	5	0	7	0	0	0	0	627		0	0	1	0
1:30 PM	0	0	262	12	0	5	340	0	0	9	0	10	0	0	0	0	638		0	0	0	0
1:45 PM	0	0	247	11	0	14	323	0	0	11	0	3	0	0	0	0	609		0	0	0	0
Count Total	14	0	3,529	145	19	138	3,460	0	0	96	0	109	0	0	0	0	7,510		0	1	1	0
 Peak Hour	1	0	1,157	52	6	40	1,206	0	0	41	0	47	0	() () () 2,5	50	0	0	0	0

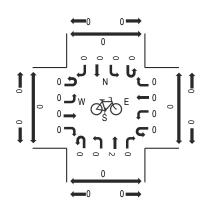

Location: 4 ALUMNI DR & GIBSON BLVD Noon Date: Thursday, May 16, 2024 Peak Hour: 12:00 PM - 01:00 PM Peak 15-Minutes: 12:00 PM - 12:15 PM

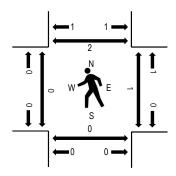

Peak Hour - Motorized Vehicles

Peak Hour - Bicycles

Note: Total study counts contained in parentheses.


		G	IBSON	I BLVD)	GI	BSON	BLVD			ALUMN	II DR			ALUM	NI DR							
	Interval		Eastb	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	lestriar	n Crossin	ıgs
S	Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru F	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South I	North
1	1:00 AM	6	1	419	11	1	10	202	1	0	1	0	9	0	2	0	3	666	2,475	1	0	0	2
1	1:15 AM	6	1	385	15	0	10	221	1	0	2	0	11	0	0	0	3	655	2,462	0	0	0	0
1	1:30 AM	5	0	256	7	1	6	249	1	0	4	0	16	0	1	0	4	550	2,424	0	0	6	1
1	1:45 AM	4	0	249	17	0	8	310	1	0	3	0	11	0	1	0	0	604	2,525	0	0	0	0
1	12:00 PM	6	1	291	16	0	11	313	4	0	5	0	6	0	0	0	0	653	2,545	0	0	1	0
1	l2:15 PM	8	1	274	6	0	10	297	1	0	10	0	9	0	0	0	1	617	2,476	0	0	0	0
1	12:30 PM	6	2	281	13	2	8	320	1	0	3	0	13	0	2	0	0	651	2,492	0	0	1	0
1	12:45 PM	3	0	295	14	1	10	282	0	0	5	0	11	0	0	0	3	624	2,468	0	0	0	0
	1:00 PM	6	1	256	9	2	10	278	1	0	6	0	14	0	0	0	1	584	2,458	0	0	2	0
	1:15 PM	5	0	244	11	1	8	347	0	0	5	0	11	0	0	0	1	633		0	0	2	0
	1:30 PM	1	1	264	5	4	11	329	0	0	4	0	8	0	0	0	0	627		0	0	2	0
	1:45 PM	2	1	241	6	1	11	329	1	0	7	0	9	1	1	0	4	614		0	0	0	0
Cou	nt Total	58	9	3,455	130	13	113	3,477	12	0	55	0	128	1	7	0	20	7,478		1	0	14	3
Pea	ak Hour	23	4	1,141	49	3	39	1,212	6	0	23	0	39	0	2	. () 4	4 2,54	15	0	0	2	0

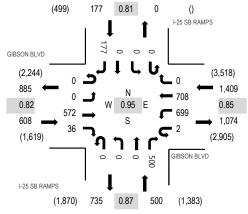


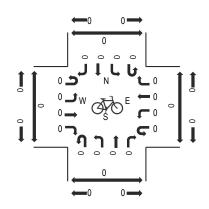

Location: 5 UNIVERSITY BLVD & GIBSON BLVD Noon Date: Thursday, May 16, 2024 Peak Hour: 12:00 PM - 01:00 PM Peak 15-Minutes: 12:30 PM - 12:45 PM

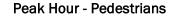
Peak Hour - Bicycles

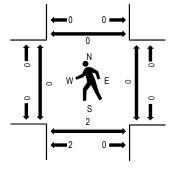
Peak Hour - Motorized Vehicles

Peak Hour - Pedestrians

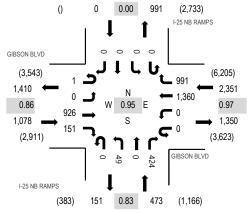

Note: Total study counts contained in parentheses.

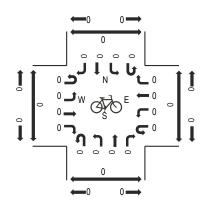

	G	IBSO	N BLVD)	GI	BSON	BLVD		UN	VERSI	ry Blvi	D	UN	IVERSI	TY BL\	/D						
Interval		Eastb	ound			Westb	ound			Northb	ound			Southb	bound			Rolling	Ped	estrian	Crossir	ıgs
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru F	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South	North
11:00 AM	2	24	200	26	2	37	205	22	0	25	9	15	4	23	29	28	651	2,649	0	0	0	0
11:15 AM	0	27	189	25	0	22	208	17	0	38	16	18	4	27	18	38	647	2,770	0	0	0	1
11:30 AM	1	22	181	28	2	9	227	25	0	33	17	20	9	32	17	20	643	2,901	0	0	0	1
11:45 AM	1	31	195	36	4	30	230	23	0	37	18	23	8	26	25	21	708	3,057	0	1	0	1
12:00 PM	0	35	214	34	4	29	228	31	0	42	20	23	4	40	25	43	772	3,083	0	0	0	2
12:15 PM	2	40	209	41	2	26	237	27	0	46	31	23	11	35	21	27	778	2,991	0	0	0	0
12:30 PM	1	34	227	30	2	26	286	19	0	43	21	30	4	28	16	32	799	2,888	0	1	0	0
12:45 PM	0	28	206	26	1	18	269	27	0	48	19	13	7	31	15	26	734	2,810	0	0	0	0
1:00 PM	0	36	184	22	6	18	251	26	0	39	9	17	6	35	15	16	680	2,812	1	1	1	0
1:15 PM	1	30	186	31	6	18	245	13	0	43	20	11	3	22	15	31	675		0	0	0	0
1:30 PM	0	14	207	35	2	17	276	14	0	40	17	23	6	39	11	20	721		0	0	0	0
1:45 PM	2	24	205	27	4	24	277	26	0	31	13	16	4	48	11	24	736		1	0	1	1
Count Total	10	345	2,403	361	35	274	2,939	270	0	465	210	232	70	386	218	326	8,544		2	3	2	6
Peak Hour	3	137	856	131	9	99	1,020	104	0	179	91	89	26	134	77	128	3,08	3	0	1	0	2


Location: 1 I-25 SB RAMPS & GIBSON BLVD PM Date: Thursday, May 16, 2024 Peak Hour: 03:30 PM - 04:30 PM Peak 15-Minutes: 03:45 PM - 04:00 PM


Peak Hour - Motorized Vehicles

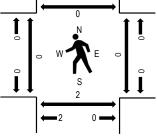
Peak Hour - Bicycles


Note: Total study counts contained in parentheses.


	G	IBSON	I BLVC)	G	BIBSON	BLVD		1-	25 SB F	RAMPS		1-3	25 SB	RAMPS	3						
Interval		Eastb	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	estrian	Crossin	gs
Start Time	U-Turn	Left	Thru	Right	U-Turr	n Left	Thru Rig	jht	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South N	√orth
3:30 PM	0	0	174	12	0	154	188	0	0	0	0	144	0	0	0	26	698	2,694	0	0	0	0
3:45 PM	0	0	127	11	0	229	183	0	0	0	0	122	0	0	0	35	707	2,644	0	0	2	0
4:00 PM	0	0	164	6	1	157	170	0	0	0	0	124	0	0	0	54	676	2,531	0	0	0	0
4:15 PM	0	0	107	7	1	159	167	0	0	0	0	110	0	0	0	62	613	2,484	0	0	0	0
4:30 PM	0	0	140	13	0	159	168	0	0	0	0	122	0	0	0	46	648	2,433	0	0	0	0
4:45 PM	0	0	126	6	0	159	166	0	0	0	0	97	0	0	0	40	594	2,294	0	0	1	0
5:00 PM	0	0	133	9	1	160	162	0	0	0	0	122	0	0	0	42	629	2,195	0	0	0	0
5:15 PM	0	0	109	15	0	158	125	0	0	0	0	111	0	0	0	44	562	2,024	0	0	0	0
5:30 PM	0	0	134	6	0	116	103	0	0	0	0	112	0	0	0	38	509	1,892	0	0	0	0
5:45 PM	0	0	104	6	0	113	106	0	0	0	0	127	0	0	0	39	495		0	0	0	0
6:00 PM	0	0	102	4	0	100	111	0	0	0	0	99	0	0	0	42	458		0	0	0	0
6:15 PM	0	0	99	5	0	106	96	0	0	0	0	93	0	0	0	31	430		0	0	0	0
Count Total	0	0	1,519	100	3	1,770	1,745	0	0	0	0	1,383	0	0	0	499	7,019		0	0	3	0
Peak Hour	0	0	572	36	2	699	708	0	0	0	0	500	0	() () 177	2,69)4	0	0	2	0

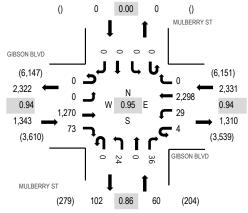
Location: 2 I-25 NB RAMPS & GIBSON BLVD PM Date: Thursday, May 16, 2024 Peak Hour: 03:30 PM - 04:30 PM Peak 15-Minutes: 03:30 PM - 03:45 PM

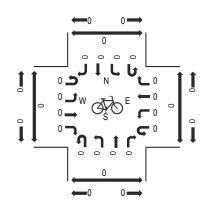
Peak Hour - Motorized Vehicles

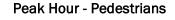


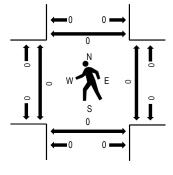
Peak Hour - Bicycles

Peak Hour - Pedestrians


Note: Total study counts contained in parentheses.


		G	N BLVC)			BLVD			25 NB F			I-3		RAMPS	6							
	Interval		Eastb	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	lestrian	Crossin	igs
	Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South N	North
	3:30 PM	0	0	254	60	0	0	327	282	0	19	0	87	0	0	0	0	1,029	3,902	0	0	0	0
	3:45 PM	1	0	230	22	0	0	378	231	0	16	0	126	0	0	0	0	1,004	3,774	0	0	2	0
	4:00 PM	0	0	244	44	0	0	332	250	0	8	0	94	0	0	0	0	972	3,659	0	0	0	0
	4:15 PM	0	0	198	25	0	0	323	228	0	6	0	117	0	0	0	0	897	3,620	0	0	0	0
	4:30 PM	0	0	221	36	0	0	331	227	0	2	0	84	0	0	0	0	901	3,580	0	0	0	0
	4:45 PM	0	0	186	36	0	0	319	258	0	6	0	84	0	0	0	0	889	3,479	0	0	0	0
	5:00 PM	0	0	230	32	0	0	313	264	0	5	0	89	0	0	0	0	933	3,330	0	0	0	0
	5:15 PM	0	0	197	22	0	0	288	242	0	2	0	106	0	0	0	0	857	3,055	0	0	0	0
	5:30 PM	0	0	210	43	0	0	223	246	0	0	0	78	0	0	0	0	800	2,800	0	0	0	0
	5:45 PM	0	0	206	24	0	0	224	187	0	3	0	96	0	0	0	0	740		0	0	0	0
	6:00 PM	0	0	174	16	0	0	217	180	0	2	0	69	0	0	0	0	658		0	0	0	0
	6:15 PM	0	0	177	23	0	0	197	138	0	1	0	66	0	0	0	0	602		0	0	0	0
(Count Total	1	0	2,527	383	0	0	3,472	2,733	0	70	0	1,096	0	0	0	0	10,282		0	0	2	0
	Peak Hour	1	0	926	151	0	0	1,360	991	0	49	0	424	0	() () () 3,90)2	0	0	2	0

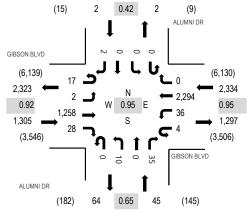

Location: 3 MULBERRY ST & GIBSON BLVD PM Date: Thursday, May 16, 2024 Peak Hour: 03:30 PM - 04:30 PM Peak 15-Minutes: 03:45 PM - 04:00 PM

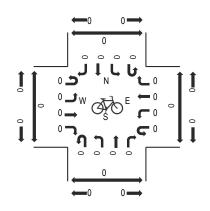

Peak Hour - Motorized Vehicles

Peak Hour - Bicycles

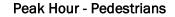
Note: Total study counts contained in parentheses.

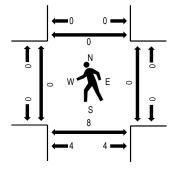
	G	IBSON	I BLVC)	G	BSON	BLVD		N	IULBER	RRY ST		N	IULBEI	RRY ST	Г						
Interval		Eastb	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	estrian	Crossin	igs
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru F	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South N	√orth
3:30 PM	0	0	301	27	1	10	609	0	0	5	0	9	0	0	0	0	962	3,734	0	0	0	0
3:45 PM	0	0	343	15	1	2	598	0	0	7	0	14	0	0	0	0	980	3,641	0	0	0	0
4:00 PM	0	0	330	17	2	3	556	0	0	4	0	9	0	0	0	0	921	3,510	0	0	0	0
4:15 PM	0	0	296	14	0	14	535	0	0	8	0	4	0	0	0	0	871	3,516	0	0	0	0
4:30 PM	0	0	291	16	1	8	536	0	0	6	0	11	0	0	0	0	869	3,482	0	0	0	0
4:45 PM	0	0	250	14	1	7	565	0	0	4	0	8	0	0	0	0	849	3,376	0	0	0	0
5:00 PM	0	0	298	21	1	6	579	0	0	8	0	14	0	0	0	0	927	3,247	0	0	0	0
5:15 PM	0	0	282	18	0	3	520	0	0	6	0	8	0	0	0	0	837	2,983	0	0	0	0
5:30 PM	1	0	274	11	0	5	451	0	0	11	0	10	0	0	0	0	763	2,749	0	0	0	0
5:45 PM	1	0	279	15	0	13	392	0	0	11	0	9	0	0	0	0	720		0	0	0	0
6:00 PM	1	0	232	15	2	12	378	0	0	13	0	10	0	0	0	0	663		0	0	0	0
6:15 PM	0	0	241	7	0	6	334	0	0	8	0	7	0	0	0	0	603		0	0	0	0
Count Total	3	0	3,417	190	9	89	6,053	0	0	91	0	113	0	0	0	0	9,965		0	0	0	0
 Peak Hour	0	0	1,270	73	4	29	2,298	0	0	24	0	36	0	() () () 3,73	34	0	0	0	0


 Location:
 4 ALUMNI DR & GIBSON BLVD PM


 Date:
 Thursday, May 16, 2024

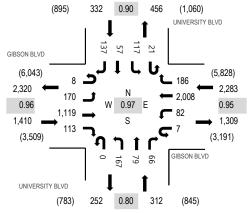
 Peak Hour:
 03:30 PM - 04:30 PM

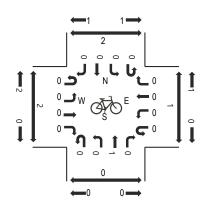

 Peak 15-Minutes:
 03:45 PM - 04:00 PM

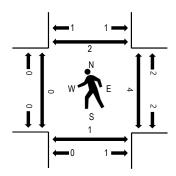

Peak Hour - Motorized Vehicles

Peak Hour - Bicycles

Note: Total study counts contained in parentheses.


Interval	G	IBSON Eastb	I BLVC)	G		BLVD							ALUM				Dolling	Dod	ootrion	Crossir	200
Interval Start Time	U-Turn	Left		Right	U-Turn	Westb	Thru R	light	U-Turn	Northb Left		Pight	U-Turn	Left	bound Thru	Right	Total	Rolling Hour	West		Crossin	0
3:30 PM	8	0	310	<u> </u>	0-1011	5	606	0	0-1411	4	0	11	0-1411	0	0	0	948	3,686	0	0	6	0
	0	0												Ű		0		,			-	
3:45 PM	1	1	342	9	2	9	596	0	0	2	0	8	0	0	0	1	971	3,617	0	0	0	0
4:00 PM	4	0	320	7	1	6	550	0	0	2	0	8	0	0	0	1	899	3,512	0	0	1	0
4:15 PM	4	1	286	8	1	16	542	0	0	2	0	8	0	0	0	0	868	3,520	0	0	1	0
4:30 PM	9	0	286	10	1	10	537	0	0	8	0	15	0	0	0	3	879	3,472	0	0	1	0
4:45 PM	4	3	258	5	2	5	567	0	0	5	0	11	0	1	0	5	866	3,329	0	0	1	0
5:00 PM	5	1	295	10	2	9	575	0	0	2	0	8	0	0	0	0	907	3,170	0	0	0	0
5:15 PM	7	1	279	7	1	3	510	0	0	2	0	9	0	0	0	1	820	2,903	0	0	1	0
5:30 PM	10	1	267	2	1	8	438	0	0	4	0	5	0	0	0	0	736	2,678	0	0	1	0
5:45 PM	2	0	284	8	2	12	385	0	0	5	0	8	0	0	0	1	707		0	1	2	0
6:00 PM	5	1	230	9	0	3	382	0	0	2	0	7	0	0	0	1	640		0	0	0	0
6:15 PM	3	0	231	8	0	9	334	0	0	3	0	6	0	0	0	1	595		0	1	0	0
Count Total	62	9	3,388	87	13	95	6,022	0	0	41	0	104	0	1	0	14	9,836		0	2	14	0
Peak Hour	17	2	1,258	28	4	36	2,294	0	0	10	0	35	0	() () 2	2 3,68	36	0	0	8	0




Location: 5 UNIVERSITY BLVD & GIBSON BLVD PM Date: Thursday, May 16, 2024 Peak Hour: 03:30 PM - 04:30 PM Peak 15-Minutes: 04:00 PM - 04:15 PM

Peak Hour - Bicycles

Peak Hour - Motorized Vehicles

Peak Hour - Pedestrians

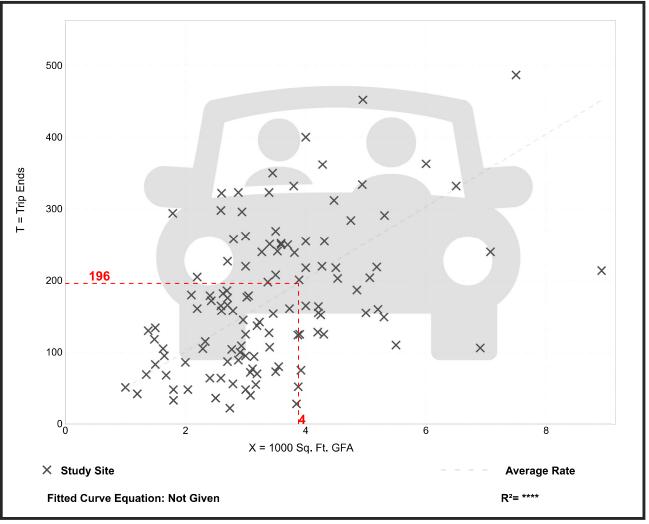
Note: Total study counts contained in parentheses.

Traffic Counts - Motorized Vehicles

	G	IBSO	N BLVC)	G	BSON	BLVD		UNI	VERSI	Y BLVI	C	UNI	VERSI	TY BL	/D						
Interval		Eastb	ound			Westb	ound			Northbo	ound			Southb	ound			Rolling	Ped	estrian	Crossin	igs
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru F	Right	U-Turn	Left	Thru I	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South N	√orth
3:30 PM	2	34	252	25	2	20	516	27	0	56	18	24	7	28	13	37	1,061	4,337	0	3	1	1
3:45 PM	2	48	290	28	1	22	501	55	0	43	24	15	2	39	17	33	1,120	4,191	0	0	0	1
4:00 PM	3	43	294	28	3	27	515	53	0	33	19	13	8	30	14	40	1,123	4,054	0	1	0	0
4:15 PM	1	45	283	32	1	13	476	51	0	35	18	14	4	20	13	27	1,033	3,918	0	0	0	0
4:30 PM	1	28	204	26	2	14	468	44	0	37	15	11	1	22	15	27	915	3,762	0	0	0	0
4:45 PM	2	34	205	27	2	18	515	31	0	38	16	14	2	26	25	28	983	3,573	0	0	0	0
5:00 PM	0	27	212	42	0	14	518	20	0	41	19	13	5	27	12	37	987	3,398	0	0	0	0
5:15 PM	0	43	212	34	3	28	402	24	0	29	14	11	7	23	12	35	877	3,175	3	0	2	0
5:30 PM	1	29	187	37	3	17	316	15	0	40	17	12	9	14	7	22	726	2,978	0	0	2	0
5:45 PM	1	41	193	49	0	22	332	17	0	45	12	15	6	32	13	30	808		1	0	0	6
6:00 PM	2	25	190	25	5	19	346	20	0	40	11	16	3	29	8	25	764		0	0	0	0
6:15 PM	0	29	159	34	4	21	287	18	0	34	15	18	7	18	12	24	680		0	0	0	0
Count Total	15	426	2,681	387	26	235	5,192	375	0	471	198	176	61	308	161	365	11,077		4	4	5	8
 Peak Hour	8	170	1,119	113	7	82	2,008	186	0	167	79	66	21	117	57	7 137	7 4,33	37	0	4	1	2

Appendix C: In-N-Out Burger Trip Survey Data and ITE Trip Generation

Fast-Food Restaurant with Drive-Through Window


1	O	2	Λ	1	
Ĺ	J	J	4	1	

Vehicle Trip Ends vs: On a:	1000 Sq. Ft. GFA Weekday, AM Peak Hour of Generator
Setting/Location:	General Urban/Suburban
Number of Studies:	118
Avg. 1000 Sq. Ft. GFA:	3
Directional Distribution:	52% entering, 48% exiting

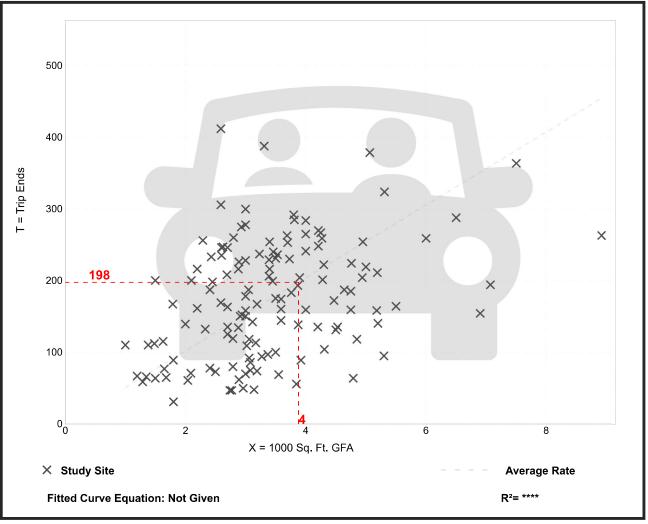
Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
50.57	7.28 - 164.25	25.99

Data Plot and Equation

Trip Gen Manual, 11th Edition

• Institute of Transportation Engineers


Fast-Food Restaurant with Drive-Through Window (934)

(0	• • •
Vehicle Trip Ends vs: On a:	1000 Sq. Ft. GFA Weekday, PM Peak Hour of Generator
Number of Studies: Avg. 1000 Sq. Ft. GFA:	

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
50.94	13.36 - 159.07	24.91

Data Plot and Equation

Trip Gen Manual, 11th Edition

• Institute of Transportation Engineers

Table A1
Weekday Drive Through Queue Survey Summary

	Peak Queue Observed within 15-Minute Increment											
Time	Corona	Highland	Indio	La Quinta	Long Beach	Los Angeles	Thousand Palms	Average	85th- %ile			
LUNCH												
11:00 AM	17	14	5	8	3	6	15	10	15			
11:15 AM	17	17	7	7	6	12	16	12	17			
11:30 AM	16	16	12	12	7	16	18	14	16			
11:45 AM	17	17	12	13	14	19	14	15	17			
12:00 PM	23	19	12	21	15	20	17	18	21			
12:15 PM	24	21	10	22	15	18	16	18	22			
12:30 PM	23	21	9	19	13	21	16	17	21			
12:45 PM	17	20	12	18	8	19	20	16	20			
1:00 PM	16	19	16	18	12	22	10	16	19			
1:15 PM	18	14	12	20	13	21	12	16	20			
1:30 PM	17	16	10	18	8	20	13	15	18			
1:45 PM	15	18	8	16	7	20	10	13	18			
2:00 PM	16	17	7	14	8	21	19	15	19			
DINNER												
4:00 PM	17	15	7	15	6	17	7	12	17			
4:15 PM	16	19	4	21	5	15	10	13	19			
4:30 PM	17	17	7	20	3	12	9	12	17			
4:45 PM	16	18	7	20	6	10	11	13	18			
5:00 PM	23	19	6	22	5	9	10	13	22			
5:15 PM	23	19	12	18	7	14	14	15	19			
5:30 PM	23	19	10	21	7	17	13	16	21			
5:45 PM	18	21	9	19	5	19	9	14	19			
6:00 PM	23	23	10	16	12	20	12	17	23			
6:15 PM	24	22	8	22	7	19	16	17	22			
6:30 PM	24	19	11	23	10	20	18	18	23			
6:45 PM	24	18	10	21	12	18	18	17	21			
7:00 PM	23	19	7	21	10	17	19	17	21			
7:15 PM	18	21	10	16	11	18	20	16	20			
7:30 PM	23	21	12	7	7	19	17	15	21			
7:45 PM	24	19	7	17	6	20	16	16	20			
8:00 PM	23	18	15	16	8	21	10	16	21			
8:15 PM	17	17	12	17	6	19	17	15	17			
8:30 PM	16	17	10	15	9	19	15	14	17			
PEAK	24	23	16	23	15	22	20	20	23			

Source: Queue observations at existing In-N-Out restaurants; see attachments.

Table A2
Weekend Drive Through Queue Survey Summary

	Peak Queue Observed within 15-Minute Increment												
Time	Corona	Highland	Indio	La Quinta	Long Beach	Los Angeles	Thousand Palms	Average	85th- %ile				
LUNCH													
11:00 AM	9	9	6	8	7	8	8	8	9				
11:15 AM	13	14	4	11	8	11	8	10	13				
11:30 AM	17	16	7	16	9	12	12	13	16				
11:45 AM	19	18	8	11	16	18	14	15	18				
12:00 PM	17	18	11	10	16	20	11	15	18				
12:15 PM	18	20	8	14	14	16	12	15	18				
12:30 PM	23	20	9	18	16	20	18	18	20				
12:45 PM	24	21	11	16	10	20	16	17	21				
1:00 PM	24	19	16	15	15	23	15	18	23				
1:15 PM	23	20	7	14	16	22	15	17	22				
1:30 PM	24	20	6	18	10	20	18	17	20				
1:45 PM	23	22	8	15	9	20	18	16	22				
2:00 PM	22	17	12	16	12	21	14	16	21				
DINNER													
4:00 PM	20	14	10	14	8	10	12	13	15				
4:15 PM	18	15	15	17	10	14	11	14	17				
4:30 PM	17	16	15	17	8	18	12	15	17				
4:45 PM	17	18	16	20	5	8	11	14	18				
5:00 PM	23	19	20	21	9	8	12	16	21				
5:15 PM	24	20	22	18	10	9	11	16	22				
5:30 PM	24	22	22	19	10	20	6	18	22				
5:45 PM	23	18	24	12	9	19	16	17	23				
6:00 PM	24	23	21	11	13	20	19	19	23				
6:15 PM	24	21	16	10	9	19	17	17	21				
6:30 PM	25	20	10	17	10	20	15	17	21				
6:45 PM	25	19	11	18	14	18	20	18	21				
7:00 PM	24	21	8	10	12	19	19	16	21				
7:15 PM	24	19	7	12	13	20	13	15	20				
7:30 PM	23	18	6	11	9	21	12	14	21				
7:45 PM	23	19	9	8	9	22	14	15	22				
8:00 PM	15	20	12	15	10	21	13	15	20				
8:15 PM	16	19	9	16	9	22	17	15	19				
8:30 PM	17	21	8	16	11	18	17	15	18				
PEAK	25	23	24	21	16	23	20	22	24				

Source: Queue observations at existing In-N-Out restaurants; see attachments.

Corona (2305 Compton Ave, Corona, CA 92881)

	Corona In-N-Out										
	Friday	Thursday	Wednesday	Tuesday	Monday	Sunday	Saturday				
Peak	12/8/2017	12/7/2017	12/6/2017	12/5/2017	12/4/2017	12/3/2017	12/2/2017	Time			
7	6	5	6	5	6	5	7	10:30-10:45			
14	8	7	12	7	14	11	14	10:45-11:00			
17	10	9	12	11	17	9	7	11:00-11:15			
17	17	11	12	15	14	13	9	11:15-11:30			
17	16	16	15	15	14	17	9	11:30-11:45			
19	15	16	14	10	17	19	11	11:45-12:00			
23	23	15	18	13	12 17	17	13	12:00-12:15			
24	24 23	14 13	18 16	13 13	20	18 23	16 20	12:15-12:30 12:30-12:45			
23	17	13	16	13	15	23	20	12:30-12:45			
24	17	14	13	17	15	24	22	12:43-1:00			
24	14	18	15	11	14	24	22	1:15-1:30			
23	15	18	15	14	11	23	23	1:30-1:45			
23	15	14	13	10	10	17	24	1:45-2:00			
22	15	10	16	10	15	18	22	2:00-2:15			
22	13	10	16	11	17	18	22	2:15-2:30			
23	13	13	10	15	17	23	23	2:30-2:45			
24	15	13	12	13	18	14	24	2:45-3:00			
23	15	13	10	23	12	14	20	3:00-3:15			
19	18	14	18	19	15	10	17	3:15-3:30			
13	17	16	10	17	18	16	17	3:30-3:45			
17	15	14	15	12	16	17	15	3:45-4:00			
20	17	15	12	9	12	20	18	4:00-4:15			
18	11	11	9	10	16	18	16	4:15-4:30			
17	11	9	10	14	17	17	16	4:30-4:45			
17	13	15	16	12	14	17	16	4:45-5:00			
23	13	18	23	13	16	15	23	5:00-5:15			
24	16	21	18	12	23	17	24	5:15-5:30			
24	23	16	16	13	16	23	24	5:30-5:45			
23	15	18	17	13	15	23	23	5:45-6:00			
24	19	23	18	12	12	24	18	6:00-6:15			
24	17	24	23	17	15	24	23	6:15-6:30			
25	18	24	23	23	23	25	23	6:30-6:45			
25	15	23	17	17	24	25	20	6:45-7:00			
24	17	13	14	18	23	24	23	7:00-7:15			
24	18	17	16	15	16	24	15	7:15-7:30			
23	23	16	13	14	12	23	14	7:30-7:45			
24	24	20	13	12	14	23	16	7:45-8:00			
23	23	17	14	12	14	15	15	8:00-8:15			
<u>17</u> 17	17 16	14 15	12	13 14	15 14	15 16	16 17	8:15-8:30 8:30-8:45			
17	10	15	10 14	14	14	16	17	8:30-8:45			
13	15	13	14	10	14	14	14	9:00-9:15			
17	15	15	11	9	14	12	17	9:15-9:30			
15	15	10	8	8	11	10	12	9:30-9:45			
15	10	13	11	8	9	15	10	9:45-10:00			
13	11	13	11	7	14	13	12	10:00-10:15			
15	15	13	11	6	9	9	12	10:15-10:30			
15	15	11	7	6	11	13	14	10:30-10:45			
19	14	9	8	7	9	11	19	10:45-11:00			
20	13	8	6	6	8	8	20	11:00-11:15			
16	11	7	5	5	6	12	16	11:15-11:30			
14	11	5	4	4	7	10	14	11:30-11:45			
12	11	6	5	4	5	8	12	11:45-12:00			
11	11	4	4	3	5	5	11	12:00-12:15			
11	11	3	3	3	4	7	11	12:15-12:30			
13	11	3	2	3	3	6	13	12:30-12:45			
13	11	2	2	2	2	4	13	12:45-1:00			
25	24	24	23	23	24	25	24	Day Peak			

Highland (28009 Greenspot Rd, Highland, CA 92346)

	Highland In-N-Out										
[Saturday	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday				
Time	12/2/2017	12/3/2017	12/4/2017	12/5/2017	12/6/2017	12/7/2017	12/8/2017	Peak			
10:30-10:45	4	6	6	5	4	4	6	6			
10:45-11:00	5	7	8	7	6	7	11	11			
11:00-11:15	6	9	11	9	9	10	14	14			
11:15-11:30 11:30-11:45	14 12	11 16	17 15	10 14	13 15	14 14	15 16	17 16			
11:45-12:00	12	18	15	14	15	14	16	18			
12:00-12:15	15	18	14	14	14	14	17	18			
12:15-12:30	20	20	17	17	14	18	21	21			
12:30-12:45	20	20	16	19	15	10	21	21			
12:45-1:00	20	19	13	18	11	18	20	21			
1:00-1:15	18	19	14	17	7	18	19	19			
1:15-1:30	20	19	11	13	10	14	14	20			
1:30-1:45	20	18	14	13	10	13	16	20			
1:45-2:00	22	17	14	18	3	13	18	22			
2:00-2:15	17	15	13	15	14	16	17	17			
2:15-2:30	17	17	18	16	15	19	18	19			
2:30-2:45	14	18	14	13	14	16	15	18			
2:45-3:00	17	15	15	12	13	18	15	18			
3:00-3:15	16	16	18	14	12	16	18	18			
3:15-3:30	18	19	18	12	13	14	18	19			
3:30-3:45	14	19	17	10	17	19	19	19			
3:45-4:00	12	16	18	11	16	18	17	18			
4:00-4:15	14	14	15	14	14	15	13	15			
4:15-4:30	15	14	13	16	12	16	19	19			
4:30-4:45	14	16	15	14	15	14	17	17			
4:45-5:00	15	18	18	15	14	17	16	18			
5:00-5:15	15	19	15	14	13	19	15	19			
5:15-5:30	18	20	13	13	17	19	19	20			
5:30-5:45	22	19	16	19	16	18	19	22			
5:45-6:00	17	18	20	19	18	21	20	21			
6:00-6:15	23	21	20	18	20	21	23	23			
6:15-6:30	19	21	19	17	13	19	22	22			
6:30-6:45 6:45-7:00	19 19	20 19	19 18	17 15	16 14	18 17	17 18	20 19			
7:00-7:15	21	19	16	15	14	17	18	21			
7:15-7:30	19	17	15	14	15	21	20	21			
7:30-7:45	13	18	13	15	13	19	20	21			
7:45-8:00	15	19	15	10	17	19	19	19			
8:00-8:15	18	20	18	13	18	14	18	20			
8:15-8:30	19	17	13	16	16	14	17	19			
8:30-8:45	21	15	13	13	17	12	17	21			
8:45-9:00	19	14	12	13	19	14	15	19			
9:00-9:15	20	16	11	14	18	15	18	20			
9:15-9:30	20	16	14	15	16	19	17	20			
9:30-9:45	18	17	15	12	14	18	16	18			
9:45-10:00	17	16	12	11	12	16	16	17			
10:00-10:15	20	13	10	10	13	15	14	20			
10:15-10:30	19	12	9	10	15	14	14	19			
10:30-10:45	18	12	8	8	14	11	14	18			
10:45-11:00	18	13	7	7	10	11	14	18			
11:00-11:15	15	15	8	7	11	10	11	15			
11:15-11:30	17	16	7	8	9	9	12	17			
11:30-11:45	19	12	6	6	7	8	10	19			
11:45-12:00	16	9	5	5	8	9	9	16			
12:00-12:15	16	8	5	6	6	7	8	16			
12:15-12:30 12:30-12:45	15 9	7	4	4	5	5	7	15 9			
12:30-12:45	9	4	2	2	2	2	5	9			
Day Peak	23	4 21	20	19	20	2	23	23			
Day Peak	23	21	20	19	20	21	23	23			

Indio (82043 Highway 111, Indio, CA 92201)

MAX Queue Study In-N-Out, Rancho Mirage

Location: 82043 CA-111

City: Indio

Time	Queue	Time	Queue
11:00	4	16:00	7
11:05	5	16:05	7
11:10	5	16:10	6
11:15	7	16:15	4
11:20	4	16:20	3
11:25	6	16:25	3
11:30	6	16:30	1
11:35	11	16:35	5
11:40	12	16:40	7
11:45	11	16:45	4
11:50	12	16:50	6
11:55	9	16:55	7
12:00	11	17:00	5
12:05	10	17:05	5
12:10	10	17:10	6
12:10	12	17:10	7
12:13	9	17:15	12
12:20	8	17:20	12
12:25	8 9	17:25	12
	-		
12:35	7	17:35	10
12:40	7	17:40	10
12:45	7	17:45	5
12:50	9	17:50	6
12:55	12	17:55	9
13:00	14	18:00	9
13:05	16	18:05	10
13:10	14	18:10	9
13:15	12	18:15	6
13:20	11	18:20	3
13:25	7	18:25	8
13:30	6	18:30	7
13:35	9	18:35	10
13:40	10	18:40	11
13:45	8	18:45	9
13:50	8	18:50	10
13:55	8	18:55	8
14:00	7	19:00	7
14:05	5	19:05	6
14:10	7	19:10	6
14:15	7	19:15	9
14:20	8	19:20	8
14:25	7	19:25	10
14:30	5	19:30	12
14:35	9	19:35	11
14:40	5	19:40	8
14:45	4	19:45	7
14:50	4	19:50	7
14:55	4	19:55	6
15:00	6	20:00	9
15:05	9	20:05	15
15:10	10	20:10	13
15:15	8	20:15	12
15:20	8	20:20	12
15:25	8	20:25	10
15:30	7	20:30	9
15:35	4	20:35	8
15:40	5	20:40	10
15:45	6	20:45	8
15:50	8	20:50	9
15:55	10	20:55	8
13.55	10	20.55	0

Time	Queue	
21:00	7	
21:05	6	
21:10	8	
21:15	9	
21:20	8	
21:25	8	
21:30	11	
21:35	9	
21:40	12	
21:45	10	
21:50	10	
21:55	12	
22:00	11	
22:05	9	
22:10	8	
22:15	8	
22:20	7	
22:25	8	
22:30	6	
22:35	10	
22:40	7	
22:45 22:50	8	
22:55	8	
	-	

İ
İ

Day: Thursday Date: 6/27/2019

MAX Queue Study In-N-Out, Rancho Mirage

Location: 82043 CA-111

City: Indio

Time	Queue	Time	Queue
11:00	3	16:00	10
11:05	6	16:05	8
11:10	4	16:10	10
11:15	4	16:15	11
11:20	3	16:20	15
11:25	3	16:25	12
11:30	4	16:30	14
11:35	4	16:35	14
11:40	7	16:40	15
11:45	8	16:45	16
11:50	7	16:50	16
11:55	8	16:55	13
12:00	9	17:00	19
12:05	11	17:05	18
12:10	7	17:10	20
12:15	7	17:15	18
12:20	8	17:20	22
12:25	7	17:25	20
12:30	6	17:30	22
12:35	9	17:35	20
12:40	6	17:40	21
12:45	10	17:45	24
12:50	9	17:50	20
12:55	11	17:55	18
13:00	16	18:00	21
13:05	14	18:05	18
13:10	11	18:10	20
13:15	4	18:15	16
13:20	7	18:20	14
13:25	7	18:25	15
13:30	5	18:30	9
13:35	4	18:35	10
13:40	6	18:40	10
13:45	8	18:45	11
13:50	8	18:50	9
13:55	8	18:55	10
14:00	10	19:00	8
14:05 14:10	12 12	19:05 19:10	7
14:10	12	19:10	8
14:15	12	19:15	7
14:25	13	19:25	5
14:25	9	19:25	6
14:35	11	19:35	5
14:33	11	19:33	6
14:45	11	19:45	6
14:50	12	19:50	9
14:55	15	19:55	8
15:00	19	20:00	8
15:05	18	20:05	9
15:10	13	20:10	12
15:15	13	20:15	8
15:20	15	20:20	9
15:25	14	20:25	5
15:30	8	20:30	8
15:35	9	20:35	6
15:40	9	20:40	4
15:45	7	20:45	9
15:50	9	20:50	12
15:55	11	20:55	14

Time	Queue		
21:00	15		
21:05	13		
21:10	13		
21:15	10		
21:20	12		
21:25	10		
21:30	14		
21:35	14		
21:40	15		
21:45	13		
21:50	11 14		
21:55 22:00			
22:00	13		
22:03	10 12		
22:10	6		
22:13	11		
22:25	7		
22:30	3		
22:35	5		
22:40	6		
22:45	8		
22:50	9		
22:55	9		
		-	
-			

	-
-	
-	-
-	-
-	-
-	
	-
-	
	1

Day: Saturday Date: 6/22/2019 La Quinta (78611 Highway 111, La Quinta, CA 92253)

MAX Queue Study In-N-Out, Rancho Mirage

Location: 78611 CA-111 City: La Quinta

Time	Queue	Time	Queue
11:00	7	16:00	13
11:05	7	16:05	15
11:10	8	16:10	13
11:15	7	16:15	18
11:20	7	16:20	18
11:25	6	16:25	21
11:30	4	16:30	20
11:35	7	16:35	19
11:40	12	16:40	18
11:45	11	16:45	19
11:50	13	16:50	20
11:55	12	16:55	19
12:00	14	17:00	22
12:05	18	17:05	18
12:10	21	17:10	18
12:15	22	17:15	15
12:20	19	17:20	17
12:25	17	17:25	18
12:30	19	17:30	19
12:35	15	17:35	18
12:40	18	17:40	21
12:45	18	17:45	19
12:50	17	17:50	15
12:55	17	17:55	8
13:00	16	18:00	13
13:05	15	18:05	13
13:10	18	18:10	16
13:15	18	18:15	22
13:20	17	18:20	17
13:25	20	18:25	20
13:30	18	18:30	22
13:35	18	18:35	23
13:40	15	18:40	20
13:45	16	18:45	21
13:50	16	18:50	19
13:55	14	18:55	17
14:00	12	19:00	18
14:05	14	19:05	21
14:10	12	19:10	15
14:15	14	19:15	16
14:20	14	19:20	12
14:25	13	19:25	5
14:30	15	19:30	7
14:35	15	19:35	6
14:40	12	19:40	6
14:45	12	19:45	17
14:50	13	19:50	15
14:55	13	19:55	16
15:00	13	20:00	16
15:05	15	20:05	16
15:10	14	20:10	15
15:15	17	20:15	17
15:20	13	20:20	16
15:25	13	20:25	13
15:30	11	20:30	15
15:35	7	20:35	11
15:40	3	20:40	11
15:45	2	20:45	16
15:50	13	20:50	14
15:55	14	20:55	19

Time	Queue	
21:00	17	
21:05	17	
21:10	19	
21:15	18	
21:20	14	
21:25	15	
21:30	15	
21:35	7	
21:40	9	
21:45	7	
21:50	16	
21:55	16	
22:00	13	
22:05 22:10	15	
22:10	17 17	-
22:15	17	
22:20	13	
22:30	12	
22:30	12	
22:40	7	
22:45	3	
22:50	5	
22:55	2	

-	
-	
-	
-	
	1
-	
	1
	l .
-	

Day: Thursday Date: 6/27/2019

MAX Queue Study In-N-Out, Rancho Mirage

Location: 78611 CA-111 City: La Quinta

Time	Queue	Time	Queue
11:00	6	16:00	13
11:05	8	16:05	12
11:10	4	16:10	14
11:15	3	16:15	17
11:20	7	16:20	15
11:25	11	16:25	14
11:30	16	16:30	16
11:35	15	16:35	17
11:40	12	16:40	12
11:45	11	16:45	11
11:50	11	16:50	14
11:55	9	16:55	20
12:00	6	17:00	18
12:05	9	17:05	21
12:10	10	17:10	18
12:10	10	17:15	18
12:20	14	17:20	16
12:25	14	17:25	15
12:30	17	17:30	19
12:35	18	17:35	15
12:40	14	17:40	12
12:45	15	17:45	12
12:50	14	17:50	11
12:55	16	17:55	10
13:00	15	18:00	8
13:05	14	18:05	11
13:10	12	18:10	8
13:15	14	18:15	9
13:20	13	18:20	10
13:25	11	18:25	10
13:30	16	18:30	9
13:35	16	18:35	17
13:40	18	18:40	16
13:45	14	18:45	18
13:50	14	18:50	18
13:55	15	18:55	16
14:00	16	19:00	8
14:05	13	19:05	10
14:10	10	19:10	7
14:15	11	19:15	8
14:20	8	19:20	9
14:25	13	19:25	12
14:30	19	19:30	11
14:35	18	19:35	10
14:40	10	19:40	9
14:45	15	19:45	8
14:50	13	19:50	7
14:55	9	19:55	6
14.55	10	20:00	5
15:00	10	20:00	11
15:10	15	20:10	15
15:15	11	20:15	10
15:20	8	20:20	15
15:25	7	20:25	16
15:30	4	20:30	16
15:35	2	20:35	15
15:40	8	20:40	8
15:45	10	20:45	9
15:50	8	20:50	15
15:55	8	20:55	12

Time	Queue	
21:00	12	
21:05	5	
21:10	5	
21:15	7	
21:20	20	
21:25	20	
21:30	16	
21:35	17	
21:40	14	
21:45	11	
21:50	10	
21:55	12	
22:00	14	
22:05	14	
22:10	13	
22:15	14	
22:20	15	
22:25	16	
22:30	12	
22:35	9	
22:40	7	
22:45	7	
22:50	8	
22:55	11	

-	
-	
-	
-	
-	
	1
-	
	1
	l .
-	

Day: Saturday Date: 6/22/2019 Long Beach (6391 E Pacific Coast Highway, Long Beach, CA 90803) Wednesday, May 16,2012

CITY: Long Beach

PROJECT:

In N Out Burger

0000 00151720312515550030124525136121213601301245231362912136013012136332713838013013313829121383913013013313829141383913013014313829141383914013014314351414141414023014143514141414140230141535151414141402401545154514194504401545141414514141404451445141414514	AM Period IN OUT	MAXIMUM QUEUE PM Period	IN		OUT		MAXIMUM QUEUE
00.2612.305259191800.4512.4513.802229191301.1513.002223231301.1513.2013.2013.202323701.1513.2013.2013.207702.0014.1514.1514.1514.15702.1014.1514.1514.1514.1514.1502.1014.1515.1514.1514.1514.1502.1015.1515.1514.1514.1514.1502.1015.1515.1514.1514.1514.1503.1015.1515.1514.1514.1514.1504.0015.1515.1514.1514.1514.1504.0115.1514.1514.1514.1514.1504.0215.1514.1614.1514.1514.1504.0314.1514.1514.1514.1514.1504.0414.1514.1514.1514.1514.1504.0514.1514.1514.1514.1514.1504.0514.1514.1514.1514.1514.1504.0514.1514.1514.1514.1514.1505.0514.1514.1514.1514.1514.1505.0514.1514.1514.1514.1514.1505.0514.1514.1514.1514.1514.1505.05	00:00	12:00	31		25		15
00.2612.305259191800.4512.4513.802229191301.1513.002223231301.1513.2013.2013.202323701.1513.2013.2013.207702.0014.1514.1514.1514.15702.1014.1514.1514.1514.1514.1502.1014.1515.1514.1514.1514.1502.1015.1515.1514.1514.1514.1502.1015.1515.1514.1514.1514.1503.1015.1515.1514.1514.1514.1504.0015.1515.1514.1514.1514.1504.0115.1514.1514.1514.1514.1504.0215.1514.1614.1514.1514.1504.0314.1514.1514.1514.1514.1504.0414.1514.1514.1514.1514.1504.0514.1514.1514.1514.1514.1504.0514.1514.1514.1514.1514.1504.0514.1514.1514.1514.1514.1505.0514.1514.1514.1514.1514.1505.0514.1514.1514.1514.1514.1505.0514.1514.1514.1514.1514.1505.05	00:15	12:15	30		15		15
0100 13.00 29 29 29 12 0115 13.15 32 23 79 8 0145 13.45 X 79 X 79 8 0145 13.45 X 79 X 79 7 0250 14.45 X 79 X 79 7 0251 14.45 X 79 X 79 8 0245 14.45 X 7 8 7 8 0246 14.45 X 7 8 7 8 0240 15.35 15.35 5 5 5 5 0343 15.45 15.45 5 5 5 5 0443 16.50 16 19 14	00:30	12:30	52		50		13
0130 13:15 32 27 37 8 0130 13:6 X 79 X 79 7 02:0 13:6 X 79 X 79 7 02:0 14:60 X 79 X 79 7 02:0 14:30 X 79 X 79 7 02:0 14:30 X 79 X 79 7 02:0 14:30 X 79 X 79 7 7 02:0 14:30 X 14:30 X 7 7 7 02:0 15:15 14:15 15:15 X 14 3 7 04:0 16:15 12 17:20 19 14 3 7 04:0 16:15 14 14 14 3 1 14 3 04:45 16:58 16:58 10 0 0 7 1 1 14 1 1 1 1 1 1 1	00:45	12:45	25	138	29	119	
01.43 13.20 18 23 37 7 02.00 14.00 14.00 7 7 02.10 14.00 14.00 7 7 02.23 14.00 14.15 7 7 02.24 14.45 14.45 5 6 02.30 15.15 15.15 5 5 03.30 15.15 15.15 5 5 04.00 15.15 12 7 5 04.10 15.45 14 14 14 3 04.15 12 14 14 14 3 04.15 12 14 14 14 3 04.15 14 14 14 14 3 04.15 14 14 14 14 3 04.15 14 14 14 14 3 04.15 14 14 14 14 14 14 05.15 14 14 14 14 14 14 14	01:00	13:00	29		29		12
0145 1345 X Y9 X 79 X 79 79 0200 14.00 14.00 14.00 17 7 7 0215 14.30 14.30 14.30 6 8 0245 14.30 14.30 14.30 6 6 0300 15.00 15.00 15.00 5 5 0315 15.15 15.30 14 5 6 0346 15.45 16.15 12 17 5 6 0400 16 16 19 1 5 6 6 0415 16.15 12 17 6	01:15	13:15	32		27		13
0200 14.00 7 0210 14.15 7 0224 14.45 6 0245 14.45 5 0240 15.15 5 0240 15.15 5 0240 15.15 5 0140 15.15 12 5 0140 15.15 12 7 0440 14.45 14 4 0441 14 14 3 0443 14 14 3 0443 14 14 3 0445 16 10 6 0530 17.15 20 19 7 0545 17.20 19 7 7 0545 18.15 X X 7 0545 19 10 6 10 0545 19 10 6 10 0545 19 20 12 73 5 0645 19.20 19.20 10 10 0700 19	01:30	13:30	18		23		
02.50 14.51 7 02.62 14.45 6 02.05 14.45 6 02.06 15.05 5 02.07 15.05 4 02.08 15.36 5 02.09 15.47 5 04.00 16 16 17.16 04.01 16.02 16.03 14 14 04.02 16.03 14 14 5 04.03 16.05 16.05 14 14 04.15 11 14 14 5 04.15 11 14 14 5 04.15 11 14 14 5 05.05 17.15 20 14 5 05.15 17.15 20 19 7 05.05 17.15 20 19 7 05.15 17.15 20 12 10 06:05 17.26 11 60 21 7 06:15 17.15 20 12 12	01:45	13:45	Х	79	Х	79	7
02.45 14.45 6 02.45 14.45 5 03.00 15.15 5 03.30 15.53 5 03.46 15.45 5 04.47 15.49 19 6 04.48 16.60 16 19 6 04.43 16.60 16 19 6 04.43 14.45 14 14 3 04.43 16.60 16 19 6 04.43 14.5 14 60 6 05.55 17.75 20 14 5 05.55 17.75 11 60 6 05.55 17.75 11 60 12 05.55 17.75 11 60 12 05.55 17.75 11 73 12 05.55 17.75 11 60 12 12 05.55 17.75 11 60 12 12 05.50 17.75 11 73 20 12 <tr< td=""><td>02:00</td><td>14:00</td><td></td><td></td><td></td><td></td><td>8</td></tr<>	02:00	14:00					8
02:45 14:45	02:15	14:15					7
03:00	02:30	14:30					8
03:30 15:30 15:30 4 04:40 15:40 5 04:40 1 15:40 6 04:50 16:40 16 2 17 5 04:30 1 16:40 16 58 10 60 6 04:40 16 58 10 60 6	02:45	14:45					6
03:30 15:30 15:30 4 04:40 15:40 5 04:40 1 15:40 6 04:50 16:40 16 2 17 5 04:30 1 16:40 16 58 10 60 6 04:40 16 58 10 60 6	03:00	15:00					6
03:30 15:30 15:37 5 03:45 15:45 5 04:00 16:15 12 17 5 04:30 16:45 12 17 5 04:30 16:45 12 17 5 04:45 16:45 16 58 10 60 6 05:00 17:00 19 14 5 5 5 05:15 17:00 19 19 7 5 5 06:16 12 73 5 7 5							
03:46 15:45 5 04:00 16:00 16 12 17 5 04:15 16:30 14 14 3 04:45 16:30 14 14 3 04:45 16:30 14 14 3 04:45 16:50 14 14 4 3 06:00 17:15 20 19 7 3 06:15 17:15 20 19 7 3 5 06:16 17:13 19 9 12 73 5 06:00 17:15 20 12 73 5 12 06:00 17:15 16 20 12 73 12 06:00 17:15 18:80 17 X 20 12 06:01 18:45 X 17 X 20 12 06:01 19:30 19:30 11 10 10 10 07:45 20:00 19:30 11 10 10 10							
04.00							
04:15 12 17 5 04:30 16:30 14 14 3 05:00 16:30 16 58 10 60 6 05:00 17:30 19 14 5 5 5 05:30 17:30 19 19 7 7 7 7 05:45 17:30 11 69 21 73 7 7 06:46 17:30 11 69 21 73 7 7 06:30 18:35 X X X 7 7 7 7 7 7 7 12 10 12 10 12 10 12			16		19		6
04:30 14 14 14 14 3 04:45 16 58 10 60 60 60 05:00 17:30 19 19 7 7 7 7 05:30 17:30 19 19 19 7 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
04.46 16.45 16 58 10 60 6 05.00 17.00 17 14 5 5 05.15 17.30 19 19 7 7 05.30 17.30 19 69 21 73 5 06.00 17.30 19 69 21 73 5 06.01 18.15 X X X 7 06.30 18.15 X X 20 122 07.00 19.10 19.10 X X 7 10 07.45 19.10 19.10 X X 20 122 07.45 19.10 19.15 11							
05:00				58		60	
05:15 17:15 20 19 19 7 05:45 17:30 10 69 21 73 5 06:00 17:45 11 69 21 73 5 06:01 18:00 17 20 12 12 06:15 18:15 X X 7 10 06:46 19 17 20 12 10 06:47 18:16 X X X 12 06:48 19:15 X 20 12 07:00 19:15 17 20 12 10 07:45 19:16 17 20 12 11 07:45 19:30 17 20 11 11 07:45 20:30 20:30 19 11 11 07:45 20:40 21:30 10 14 14 09:00 21:30 21:30 11 14 14 09:01 21:30 21:30 11 14 13 10:							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
06:00 18:00 17 20 12 06:15 18:15 X X X 7 06:30 18:30 X X X 10 06:45 18:45 X 17 X 20 12 06:45 18:45 X 17 X 20 12 07:00 19:00 18:45 X 17 X 20 12 07:05 19:00 19:00 19:00 7 2				69		73	
06:15 18:15 X X X 7 06:30 18:40 X X 10 06:45 18:40 X 17 X 20 12 07:00 19:00 19:00 19:00 10 11 11 07:30 19:00 19:30 19:30 11 11 07:30 19:00 19:30 19:30 11 11 07:30 19:00 19:30 19:30 11 11 07:30 19:00 20:00 19:30 6 6 08:00 20:00 20:30 20:30 9 6 08:30 20:30 20:30 10 9 10 09:00 20:30 20:30 10 10 10 09:00 21:30 21:45 10 11 14 09:45 21:45 21:45 12 13 10:00 21:45 21:45 12 12 10:45 3 22:30 12 12 10:45 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
06:30 18:30 X X 10 06:45 18:45 X 17 X 20 12 07:00 19:00 19:00 10 11 11 11 07:15 19:15 19:15 19:15 11 11 11 07:45 19:30 19:30 19:30 16 6 6 08:00 20:15 20:00 20:15 6 6 6 08:01 20:02 20:01 10 6 6 6 6 08:02 20:15 20:15 20:15 10 6 6 6 6 08:03 20:15 20:15 20:15 10 10 12 6							
06:45 18:45 X 17 X 20 12 07:00 19:00 19:00 10 11<							
07:00 19:00 10 07:15 19:15 11 07:30 19:30 7 07:45 19:30 7 07:45 19:45 6 08:00 20:00 8 08:15 20:15 6 08:30 20:15 6 08:45 20:15 6 09:00 20:230 9 09:45 20:45 10 09:00 20:245 10 09:00 20:215 10 09:00 20:215 10 09:00 20:215 10 09:00 20:215 10 09:00 20:215 10 09:00 20:215 11 09:00 20:215 12 10:00 20:200 14 10:01 3 22:00 14 10:02 3 23:00 12 11:00 7 22:45 12 11:01 7 23:30 9 11:02 7 23:30				17		20	
07:15 19:15 11 07:30 19:30 7 07:45 19:45 6 08:00 20:00 8 08:15 20:15 6 08:30 20:30 9 08:45 20:45 10 09:00 21:00 12 09:15 21:15 16 09:30 21:30 14 09:45 22:00 14 10:00 22:30 12 10:00 3 22:30 12 10:15 3 23:00 11 11:00 3 23:00 11 11:11 6 23:15 13 11:11 11 13 13 11:12 19 25 7 23:30 9 11:45 14 23:45 13 13 11:12 19 25 7 23:30 9 11:45 14 23:45 8 8 13	07:00	19:00					10
07:30 19:30 7 07:45 19:45 6 08:00 20:00 8 08:15 20:15 6 08:30 20:30 9 08:45 20:45 10 09:00 21:15 10 09:01 21:15 16 09:30 21:15 16 09:45 21:45 15 10:00 2 21:45 15 10:00 3 22:30 12 10:15 3 22:30 12 10:00 3 32:30 12 11:00 3 23:00 11 11:15 6 23:15 13 11:10 19 25 7 23:30 9 11:45 21 40 27 52 14 23:45 8							
07:45 19:45 6 08:00 20:00 8 08:15 20:15 6 08:30 20:30 9 08:45 20:45 10 09:00 21:00 12 09:15 21:15 16 09:30 21:30 14 09:45 22:00 13 10:00 22:00 14 10:15 13 13 10:30 7 22:45 12 11:00 3 23:00 11 11:15 6 23:15 13 11:30 19 25 7 23:30 9 11:45 21 40 27 52 14 23:45 8							
08:00 20:00 8 08:15 20:15 6 08:00 20:30 9 08:45 20:45 10 09:00 21:00 12 09:15 21:00 12 09:16 21:15 16 09:30 21:45 16 09:45 21:45 15 10:00 21:45 15 10:01 21:45 15 10:02 21:45 15 10:03 21:45 12 10:15 21:15 12 10:15 21:15 12 10:15 21:15 12 10:15 21:15 12 10:15 21:15 12 10:15 13 13 11:00 21:15 12 11:15 6 23:15 13 11:30 19 25 7 23:30 9 11:45 21 40 27 52 14 23:45 8							
08:15 20:15 6 08:30 20:30 9 08:45 20:45 10 09:00 21:00 12 09:15 21:15 16 09:30 21:30 14 09:45 21:45 15 10:00 21:45 15 10:00 21:45 15 10:00 21:45 13 10:15 5 22:15 13 10:30 8 22:30 12 10:45 7 22:45 12 11:00 3 23:00 11 11:15 6 23:15 13 11:130 19 25 7 23:30 9 11:45 21 40 27 52 14 23:45 8							
08:30 20:30 9 08:45 20:45 10 09:00 21:00 12 09:15 21:15 16 09:30 21:30 14 09:45 21:45 15 10:00 22:00 14 10:15 5 22:15 13 10:30 8 22:30 12 10:45 7 22:45 12 11:00 3 23:00 11 11:15 6 23:15 13 11:10 19 25 7 23:30 9 11:45 21 40 27 52 14 23:45 8							
08:45 20:45 10 09:00 21:00 12 09:15 21:15 16 09:30 21:30 14 09:45 21:45 15 10:00 22:00 14 10:15 5 22:15 13 10:00 8 22:30 12 10:15 7 22:45 12 10:45 7 22:45 12 11:45 7 22:45 12 11:15 6 23:15 13 11:15 7 23:30 9 11:45 21 40 27 52 14 23:45 8							
09:00 21:00 12 09:15 21:15 16 09:30 21:30 14 09:45 21:45 15 10:00 22:00 14 10:15 5 22:15 13 10:03 8 22:30 12 10:45 7 22:45 12 10:45 7 22:45 12 11:00 3 23:00 11 11:15 6 23:15 13 11:15 6 23:15 13 11:30 19 25 7 23:30 9 11:45 21 40 27 52 14 23:45 8							
09:15 21:15 16 09:30 21:30 14 09:45 21:45 15 10:00 22:00 14 10:15 5 22:15 13 10:30 8 22:30 12 10:45 7 22:45 12 11:00 3 23:00 11 11:15 6 23:15 13 11:30 19 25 7 23:30 9 11:45 21 40 27 52 14 23:45 8							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
10:45 7 22:45 12 11:00 3 23:00 11 11:15 6 23:15 13 11:30 19 25 7 23:30 9 11:45 21 40 27 52 14 23:45 8							
11:00 3 23:00 11 11:15 6 23:15 13 11:30 19 25 7 23:30 9 11:45 21 40 27 52 14 23:45 8							
11:15 6 23:15 13 11:30 19 25 7 23:30 9 11:45 21 40 27 52 14 23:45 8							
11:30 19 25 7 23:30 9 11:45 21 40 27 52 14 23:45 8							
<u>11:45 21 40 27 52 14 23:45 8</u>							
Total Vol. 40 52 361 351		20.45					5

	Daily Total	
	IN	401
PACIFIC TRAFFIC & TRANSIT	OUT DATA SERVICES	361

05.19.2012

Saturday, May 19,	2012		CITY:	Long Beac	h					PROJECT:	In N Out Burger
AM Period IN	OUT		MAXI	MUM QUEUE	PM Period	IN		OUT			MAXIMUM QUE
00:00					12:00	17		17			16
00:15					12:15	34		20			14
00:30					12:30	22		30			16
00:45					12:45	32	105	37	104		10
01:00					13:00	33		27			15
01:15					13:15	29		23			16
01:30					13:30	29		33			10
01:45					13:45	Х	91	Х	83		9
02:00					14:00						12
02:15					14:15						13
02:30					14:30						9
02:45					14:45						8
03:00					15:00						9
03:15					15:15						9
03:30					15:30						6
03:45					15:45						9
04:00					16:00	21		25			8
04:15					16:15	22		16			10
04:30					16:30	21		25			8
04:45					16:45	24	88	24	90		5
05:00					17:00	19		19			9
05:15					17:15	19		21			10
05:30					17:30	28		25			10
05:45					17:45	18	84	19	84		9
06:00					18:00	23		18			13
06:15					18:15						9
06:30					18:30						10
06:45					18:45	Х	23	Х	18		14
07:00					19:00						12
07:15					19:15						13
07:30					19:30						9
07:45					19:45						9
08:00					20:00						10
08:15					20:15						9
08:30					20:30						11
08:45					20:45						12
09:00					21:00						13
09:15					21:15						17
09:30					21:30						15
09:45					21:45						10
10:00					22:00						12
10:15				4	22:15						14
10:30				7	22:30						13
10:45				9	22:45						11
11:00				7	23:00						9
11:15				8	23:15						10
11:30 25	16			9	23:30						8
11:45 27 5	52 18	34		16	23:45						6

Daily Total	
IN	443
OUT	391

PACIFIC TRAFFIC & TRANSIT DATA SERVICES

Los Angeles (9149 S Sepulveda Blvd, Los Angeles, CA 90045)

05.16.2012

Wednesday, May 1	6th, 20 ⁻	12	CI	TY:	Los Angeles					PROJ	ECT:	In-N-Out Bur	ger
AM Period IN	OUT			N	AXIMUM QUEUE	PM Period	IN		OUT				MAXIMUM QUEUE
00:00						12:00	39		35				20
00:15						12:15	48		36				18
00:30						12:30	52		37				21
00:45						12:45	57	196	41	149			19
01:00						13:00	39		45				22
01:15						13:15	36		46				21
01:30						13:30	35		41				20
01:45						13:45	Х	110	Х	132			20
02:00						14:00							21
02:15						14:15							21
02:30						14:30							22
02:45						14:45							21
03:00						15:00							18
03:15						15:15							17
03:30						15:30							16
03:45						15:45							18
04:00						16:00	31		24				17
04:15						16:15	18		18				15
04:30						16:30	27		28				12
04:45						16:45	33	109	22	92			10
05:00						17:00	34		30				9
05:15						17:15	25		33				14
05:30						17:30	36		23				17
05:45						17:45	32	127	25	111			19
06:00						18:00	30		36				20
06:15						18:15							19
06:30						18:30							20
06:45						18:45							18
07:00						19:00							17
07:15						19:15							18
07:30						19:30							19
07:45						19:45							20
08:00						20:00							21
08:15						20:15							19
08:30						20:30							19 20
08:45						20:45							
09:00						21:00							18
09:15 09:30						21:15 21:30							19 20
09:45						21:30							20 19
					0								21
10:00 10:15					2	22:00 22:15							21 17
10:30					5	22:15							16
10:45					6	22:30							18
11:00					6	23:00							16
11:15					12	23:00							18
11:30 28	32				12	23:30							15
11:45 31 5		61	12	20	19	23:45							13
			·					F 40					-
Total Vol. 5	7	61	w				1	542		484			

Daily	Daily Totals					
IN	OUT					
601	545					

PACIFIC TRAFFIC & TRANSIT DATA SERVICES

05/19/12	CITY: Los Angele	8				PROJECT:	In-N-Out Burger
AM Period IN OUT	MAXIMUM QUEUE	PM Period	IN		OUT		MAXIMUM QUE
00:00		12:00	49		38		20
00:15		12:15	49		41		16
00:30		12:30	51		43		20
00:45		12:45	66	215	57	179	20
01:00		13:00	53		49		23
01:15		13:15	54		51		22
01:30		13:30	49		54		20
01:45		13:45	Х	156	Х	154	20
02:00		14:00					21
02:15		14:15					26
02:30		14:30					22
02:45		14:45					21
03:00		15:00					18
03:15		15:15					17
03:30		15:30					17
03:45		15:45					9
04:00		16:00	28		24		10
04:15		16:15	37		20		14
04:30		16:30	38		25		18
04:45		16:45	25	128	34	103	
05:00		17:00	15		26		8
05:15		17:15	28		30		9
05:30		17:30	43		24		20
05:45		17:45	33	119	33	113	19
06:00		18:00	35		38		20
06:15		18:15	Х		Х		19
06:30		18:30	Х		Х		20
06:45		18:45	Х	35	Х	38	18
07:00		19:00					19
07:15		19:15					20
07:30		19:30					21
07:45		19:45					22
08:00		20:00					21
08:15		20:15					22
08:30		20:30					18
08:45		20:45					17
09:00		21:00					16
09:15		21:15					19
09:30		21:30					18
09:45		21:45					20
10:00		22:00					19
10:15	3	22:15					18
10:30	4	22:30					19
10:45	6	22:45					18
11:00	8	23:00					21
11:15	11	23:15					17
11:30 31 46	12	23:30					16
11:45 42 73 35 81	18	23:45					14

PACIFIC TRAFFIC & TRANSIT DATA SERVICES

Thousand Palms (72265 Varner Rd, Thousand Palms, CA 92276)

MAX Queue Study In-N-Out, Rancho Mirage

Location: 72265 Varner Road City: Thousand Palms

Time	Queue	Time	Queue
11:00	12	16:00	7
11:05	14	16:05	6
11:10	15	16:10	4
11:15	15	16:15	9
11:20	16	16:20	8
11:25	14	16:25	10
11:30	18	16:30	9
11:35	17	16:35	7
11:40	17	16:40	5
11:45	13	16:45	10
11:50	12	16:50	11
11:55	14	16:55	10
12:00	17	17:00	10
12:05	15	17:05	9
12:10	14	17:10	10
12:15	13	17:15	14
12:20	16	17:20	14
12:25	15	17:25	11
12:30	14	17:30	11
12:30	14	17:35	11
12:35	14	17:35	13
12:40	18	17:40	9
-			
12:50	20	17:50	6
12:55	15	17:55	7
13:00	10	18:00	11
13:05	9	18:05	12
13:10	9	18:10	11
13:15	12	18:15	12
13:20	9	18:20	16
13:25	8	18:25	12
13:30	11	18:30	17
13:35	12	18:35	18
13:40	13	18:40	16
13:45	10	18:45	15
13:50	7	18:50	18
13:55	10	18:55	15
14:00	14	19:00	16
14:05	13	19:05	18
14:10	19	19:10	19
14:15	21	19:15	20
14:20	18	19:20	17
14:25	17	19:25	17
14:30	14	19:30	17
14:35	14	19:35	14
14:40	6	19:40	15
14:45	7	19:45	16
14:50	9	19:50	16
14:55	12	19:55	12
15:00	12	20:00	10
15:05	13	20:05	6
15:10	7	20:10	6
15:15	8	20:15	12
15:20	10	20:20	13
15:25	9	20:25	17
15:30	11	20:30	15
15:35	13	20:35	13
15:40	14	20:40	15
15:45	13	20:45	11
15:50	11	20:45	8
15:55	9	20:55	9
13.55	5	20.55	5

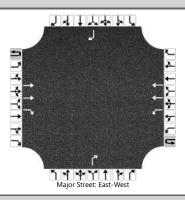
Time	Queue	
21:00	10	
21:05	12	
21:10	14	
21:15	12	
21:20	15	
21:25	18	
21:30	18	
21:35	17	
21:40	16	
21:45	16	
21:50	19	
21:55	18	
22:00	19	
22:05	18	
22:10	19	
22:15	17	
22:20	20	
22:25	17	
22:30	19	
22:35	18	
22:40	19	
22:45	17	
22:50	14	
22:55	10	
	<u> </u>	

Day: Thursday Date: 6/27/2019

MAX Queue Study In-N-Out, Rancho Mirage

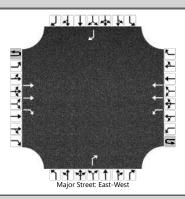
Location: 72265 Varner Road City: Thousand Palms

Time	Queue	Time	Queue
11:00	6	16:00	12
11:05	6	16:05	7
11:10	8	16:10	7
11:15	7	16:15	6
11:20	8	16:20	7
11:25	7	16:25	11
11:30	10	16:30	12
11:35	9	16:35	9
11:40	12	16:40	12
11:45	12	16:45	11
11:50	11	16:50	10
11:55	14	16:55	11
12:00	9	17:00	12 12
12:05	9 11	17:05	12
12:10 12:15	9	17:10 17:15	11
12:15	9 11	17:15	8
12:20	11	17:20	5
12:30	12	17:30	2
12:35	12	17:35	3
12:40	18	17:40	6
12:45	14	17:45	10
12:50	15	17:50	16
12:55	16	17:55	16
13:00	15	18:00	19
13:05	13	18:05	16
13:10	15	18:10	12
13:15	15	18:15	11
13:20	13	18:20	13
13:25	14	18:25	17
13:30	17	18:30	14
13:35	18	18:35	15
13:40	17	18:40	15
13:45	15	18:45	15
13:50	17	18:50	18
13:55 14:00	18 14	18:55 19:00	20 19
14:05	14	19:05	15
14:03	14	19:00	15
14:15	14	19:15	13
14:20	14	19:20	12
14:25	16	19:25	11
14:30	18	19:30	12
14:35	16	19:35	12
14:40	17	19:40	12
14:45	15	19:45	12
14:50	14	19:50	14
14:55	15	19:55	10
15:00	15	20:00	10
15:05	15	20:05	10
15:10	11	20:10	13
15:15	16	20:15	13
15:20	17	20:20	17
15:25	16	20:25	15
15:30	15	20:30	12
15:35	13	20:35	16
15:40 15:45	15 11	20:40 20:45	17
15:45	11	20:45	19 17
15:50	14	20:50	17
15.55	14	20.35	10

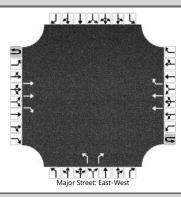

Time	Queue	
21:00	12	
21:05	11	
21:10	9	
21:15	13	
21:20	14	
21:25	15	
21:30	13	
21:35	16	
21:40	18	
21:45	15	
21:50	16	
21:55	14	
22:00	8	
22:05	12	
22:10	16	
22:15	19	
22:20	20	
22:25	14	
22:30	16	
22:35	14	
22:40	11	
22:45	9	
22:50	6	
22:55	10	

Day: Saturday Date: 6/22/2019 Appendix D: HCM Analysis Output Sheets

	HCS Two-Way S	top-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson I 25 SB
Agency/Co.	Lee	Jurisdiction	СОА
Date Performed	5/31/2024	East/West Street	Gibson Boulevard
Analysis Year	2024	North/South Street	I 25 SB
Time Analyzed	Existing MD	Peak Hour Factor	0.96
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out	-	·
Lanes	0.000		

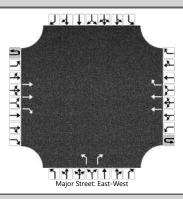

Lanes

Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	1	0	1	2	0		0	0	1		0	0	1
Configuration			т	R		L	т					R				R
Volume (veh/h)			479	24	1	288	394					549				131
Percent Heavy Vehicles (%)					1	1						1				2
Proportion Time Blocked																
Percent Grade (%)										. (0			. ()	
Right Turn Channelized		Ν	lo							Y	es			Ye	es	
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)					6.4	4.1						6.9				6.9
Critical Headway (sec)					6.42	4.12						6.92				6.93
Base Follow-Up Headway (sec)					2.5	2.2						3.3				3.3
Follow-Up Headway (sec)					2.51	2.21						3.31				3.32
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)						301						572				136
Capacity, c (veh/h)						1027						753				802
v/c Ratio						0.29						0.76				0.17
95% Queue Length, Q ₉₅ (veh)						1.2						7.2				0.6
Control Delay (s/veh)						10.0						23.2				10.4
Level of Service (LOS)						A						С				В
Approach Delay (s/veh)					4.2					23	3.2	10.4				
Approach LOS							4			(С		В			


	HCS Two-Way St	top-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson I 25 SB
Agency/Co.	Lee	Jurisdiction	СОА
Date Performed	5/31/2024	East/West Street	Gibson Boulevard
Analysis Year	2024	North/South Street	I 25 SB
Time Analyzed	Existing PM	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		
Lanas	*		

Lanes

Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	1	0	1	2	0		0	0	1		0	0	1
Configuration			Т	R		L	Т					R				R
Volume (veh/h)			572	36	2	699	708					500				177
Percent Heavy Vehicles (%)					0	0						0				3
Proportion Time Blocked																
Percent Grade (%)										(0			. (0	
Right Turn Channelized		Ν	lo							Y	es			Y	es	
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)					6.4	4.1						6.9				6.9
Critical Headway (sec)					6.40	4.10						6.90				6.96
Base Follow-Up Headway (sec)					2.5	2.2						3.3				3.3
Follow-Up Headway (sec)					2.50	2.20						3.30				3.33
Delay, Queue Length, an	d Leve	l of Se	ervice		<u> </u>											
Flow Rate, v (veh/h)						738						526				186
Capacity, c (veh/h)						940						701				622
v/c Ratio						0.79						0.75				0.30
95% Queue Length, Q ₉₅ (veh)						8.3						6.9				1.3
Control Delay (s/veh)						21.3						23.9				13.2
Level of Service (LOS)						С						С				В
Approach Delay (s/veh)					10.6					23	3.9		13.2			
Approach LOS							3			(2		В			

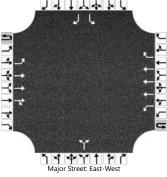

	HCS Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson I 25 NB
Agency/Co.	Lee	Jurisdiction	СОА
Date Performed	5/31/2024	East/West Street	Gibson Boulevard
Analysis Year	2024	North/South Street	I 25 NB
Time Analyzed	Existing MD	Peak Hour Factor	0.98
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		
Lanes			

Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	1	0	0	2	1		1	0	1		0	0	0
Configuration			Т	R			т	R		L		R				
Volume (veh/h)			912	105			667	583		13		302				
Percent Heavy Vehicles (%)										1		1				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized		Ν	lo			Ye	es			Ye	es					
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)										7.5		6.9				
Critical Headway (sec)										7.52		6.92				
Base Follow-Up Headway (sec)										3.5		3.3				
Follow-Up Headway (sec)										3.51		3.31				
Delay, Queue Length, and	l Leve	l of Se	ervice													
Flow Rate, v (veh/h)										13		308				
Capacity, c (veh/h)										126		547				
v/c Ratio										0.11		0.56				
95% Queue Length, Q ₉₅ (veh)										0.3		3.5				
Control Delay (s/veh)										37.0		19.7				
Level of Service (LOS)										E		С				
Approach Delay (s/veh)									20.5							
Approach LOS										(2					

	HCS Two-Wa	ay Stop-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson I 25 NB
Agency/Co.	Lee	Jurisdiction	СОА
Date Performed	5/31/2024	East/West Street	Gibson Boulevard
Analysis Year	2024	North/South Street	I 25 NB
Time Analyzed	Existing PM	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		
Lanes			

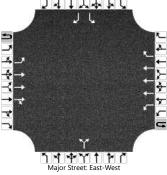
Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	1	0	0	2	1		1	0	1		0	0	0
Configuration			Т	R			Т	R		L		R				
Volume (veh/h)			927	151			1360	991		49		424				
Percent Heavy Vehicles (%)										0		0				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized		Ν	lo			Y	es			Ye	es					
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)										7.5		6.9				
Critical Headway (sec)										7.50		6.90				
Base Follow-Up Headway (sec)										3.5		3.3				
Follow-Up Headway (sec)										3.50		3.30				
Delay, Queue Length, and	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)										52		446				
Capacity, c (veh/h)										62		531				
v/c Ratio										0.83		0.84				
95% Queue Length, Q ₉₅ (veh)										3.8		8.7				
Control Delay (s/veh)										178.6		37.9				
Level of Service (LOS)										F		E				
Approach Delay (s/veh)										52	2.5					
Approach LOS	1									F	=					

	HCS Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson and Mulberry
Agency/Co.	Lee	Jurisdiction	СОА
Date Performed	5/21/2024	East/West Street	Gibson Boulevard
Analysis Year	2024	North/South Street	Mulberry Street
Time Analyzed	Existing MD	Peak Hour Factor	0.99
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		
Lanes			


Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	3	0	0	1	3	0		1	0	1		0	0	0
Configuration			Т	TR		L	т			L		R				
Volume (veh/h)			1157	52	6	40	1206			41		47				
Percent Heavy Vehicles (%)					0	1				0		0				
Proportion Time Blocked																
Percent Grade (%)						1				(0				1	
Right Turn Channelized										Ν	lo					
Median Type Storage				Left +	- Thru								1			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)					5.6	5.3				6.4		7.1				
Critical Headway (sec)					5.60	5.32				5.70		7.10				
Base Follow-Up Headway (sec)					2.3	3.1				3.8		3.9				
Follow-Up Headway (sec)					2.30	3.11				3.80		3.90				
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)						46				41		47				
Capacity, c (veh/h)						321				155		378				
v/c Ratio						0.14				0.27		0.13				
95% Queue Length, Q ₉₅ (veh)						0.5				1.0		0.4				
Control Delay (s/veh)						18.1	2.4			36.4		15.9				
Level of Service (LOS)						С	А			E		С				
Approach Delay (s/veh)						2	.9			25	5.5					
Approach LOS							4			[)					

	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson and Mulberry
Agency/Co.	Lee	Jurisdiction	СОА
Date Performed	5/21/2024	East/West Street	Gibson Boulevard
Analysis Year	2024	North/South Street	Mulberry Street
Time Analyzed	Existing PM	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		
Lanes			

Approach	Eastbound Westbound Northbound Sou											South	bound						
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R			
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12			
Number of Lanes	0	0	3	0	0	1	3	0		1	0	1		0	0	0			
Configuration			Т	TR		L	Т			L		R							
Volume (veh/h)			1270	73	4	29	2298			24		36							
Percent Heavy Vehicles (%)					0	0				0		0							
Proportion Time Blocked																			
Percent Grade (%)										(0								
Right Turn Channelized										N	lo								
Median Type Storage	Left + Thru											1							
Critical and Follow-up H	eadwa	ys																	
Base Critical Headway (sec)					5.6	5.3				6.4		7.1							
Critical Headway (sec)					5.60	5.30				5.70		7.10							
Base Follow-Up Headway (sec)					2.3	3.1				3.8		3.9							
Follow-Up Headway (sec)					2.30	3.10				3.80		3.90							
Delay, Queue Length, an	d Leve	l of Se	ervice																
Flow Rate, v (veh/h)						35				25		38							
Capacity, c (veh/h)						261				103		328							
v/c Ratio						0.13				0.25		0.12							
95% Queue Length, Q ₉₅ (veh)						0.5				0.9		0.4							
Control Delay (s/veh)						20.9	2.7			50.9		17.4							
Level of Service (LOS)						С	А			F		С							
Approach Delay (s/veh)						3	.0			30).8		-		-				
Approach LOS					4		D												


	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson and Alumni
Agency/Co.	Lee	Jurisdiction	СОА
Date Performed	5/21/2024	East/West Street	Gibson Boulevard
Analysis Year	2024	North/South Street	Alumni Drive
Time Analyzed	Existing MD	Peak Hour Factor	0.97
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		
Lanes			

	1				1														
Approach		Eastb	ound			West	oound			North	bound			South	bound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R			
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12			
Number of Lanes	0	1	3	0	0	1	3	1		0	1	0		1	0	1			
Configuration		L	Т	TR		L	Т	R			LR			L		R			
Volume (veh/h)	23	4	1141	49	3	39	1212	6		23		39		2		4			
Percent Heavy Vehicles (%)	0	0			0	0				0		0		0		0			
Proportion Time Blocked																			
Percent Grade (%)		-				-				()		0						
Right Turn Channelized		No No																	
Median Type Storage	Left + Thru 1																		
Critical and Follow-up H	eadwa	ys																	
Base Critical Headway (sec)	5.6	5.3			5.6	5.3				6.4		7.1		6.4		7.1			
Critical Headway (sec)	5.60	5.30			5.60	5.30				6.40		7.10		6.40		7.10			
Base Follow-Up Headway (sec)	2.3	3.1			2.3	3.1				3.8		3.9		3.8		3.9			
Follow-Up Headway (sec)	2.30	3.10			2.30	3.10				3.80		3.90		3.80		3.90			
Delay, Queue Length, and	d Leve	l of Se	ervice																
Flow Rate, v (veh/h)		28				43					64			2		4			
Capacity, c (veh/h)		450				311					188			86		369			
v/c Ratio		0.06				0.14					0.34			0.02		0.01			
95% Queue Length, Q ₉₅ (veh)		0.2				0.5					1.4			0.1		0.0			
Control Delay (s/veh)		13.5				18.4					33.7			47.9		14.9			
Level of Service (LOS)		В				С					D			E		В			
Approach Delay (s/veh)		0	.3			0	.6			33	3.7		25.9						
Approach LOS			4				4			[)		D						

Copyright $\ensuremath{\mathbb{C}}$ 2025 University of Florida. All Rights Reserved.

	HCS Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson and Alumni
Agency/Co.	Lee	Jurisdiction	СОА
Date Performed	5/21/2024	East/West Street	Gibson Boulevard
Analysis Year	2024	North/South Street	Alumni Drive
Time Analyzed	Existing PM	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		
Lanes			

Approach	T	Fasth	ound			West	oound			North	bound			South	bound					
Movement	U		Т	D	U		Т	R	U		T	D	U		T	R				
		L		R	-	L			U	L		R	0	L						
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12				
Number of Lanes	0	1	3	0	0	1	3	1		0	1	0		1	0	1				
Configuration		L	Т	TR		L	Т	R			LR			L		R				
Volume (veh/h)	17	2	1258	28	4	36	2294	0		10		35		0		2				
Percent Heavy Vehicles (%)	0	0			0	0				0		3		0		0				
Proportion Time Blocked																				
Percent Grade (%)		-				-				()		0							
Right Turn Channelized		No No																		
Median Type Storage	Left + Thru 1																			
Critical and Follow-up H	eadwa	ys																		
Base Critical Headway (sec)	5.6	5.3			5.6	5.3				6.4		7.1		6.4		7.1				
Critical Headway (sec)	5.60	5.30			5.60	5.30				6.40		7.16		6.40		7.10				
Base Follow-Up Headway (sec)	2.3	3.1			2.3	3.1				3.8		3.9		3.8		3.9				
Follow-Up Headway (sec)	2.30	3.10			2.30	3.10				3.80		3.93		3.80		3.90				
Delay, Queue Length, an	d Leve	l of Se	ervice																	
Flow Rate, v (veh/h)	Τ	20				42					47			0		2				
Capacity, c (veh/h)		149				273					173			13		153				
v/c Ratio		0.13				0.15					0.27			0.00		0.01				
95% Queue Length, Q ₉₅ (veh)		0.5				0.5					1.1			0.0		0.0				
Control Delay (s/veh)		33.0				20.6					33.5			282.2		28.9				
Level of Service (LOS)	1	D				С					D			F		D				
Approach Delay (s/veh)		. 0	.5			. 0	.4			33	8.5		28.9							
Approach LOS			4				4			[)		D							

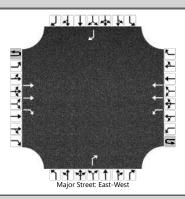
Copyright $\ensuremath{\mathbb{C}}$ 2025 University of Florida. All Rights Reserved.

HCS Signalized Intersection Results Summary

		HCS	S Sigr	nalize	d Inte	ersect	ion R	esu	lts Su	mma	ry						
-									-								
General Inform	nation										nformat		↓ 4 ~ 5 ~ 5 ↓ ↓ ↓	ta la			
Agency									Duratio	on, h	1.00	0		×+4	the second second second second second second second second second second second second second second second se		
Analyst		OR		Analysis Date 5/21/2024					Area T	уре	Othe	r	≾_* 1 →		K∆ 4 — b		
Jurisdiction		CABQ		Time F	Period	Existi	ng MD		PHF		1.00			₩ĴE	+ + +		
Urban Street		Gibson Boulevard		Analys	sis Yea	r 2024			Analys	is Perio	d 1>7	:00	*		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Intersection		University and Gibs	on	File Na	ame	5 Univ	versity-0	Gibso	n Existir	ig MD.x	us			5 1			
Project Descrip	tion	Gibson In-N-Out Ex	cisting N	1D										। ৰ † ক প	7 1		
Demand Inform	nation				EB			V	/B		NE	;		SB			
Approach Move	ement			L	Т	R	L		F F	t L	. Т	R	L	Т	R		
Demand (v), v	/eh/h			140	856	131	108	10	20 10	4 17	9 91	89	160	77	128		
Signal Informa	ignal Information									1	_		1				
	E E E				Le .				20	/ 34	3		x		st 2		
Cycle, s Offset, s	0	Reference Point	End		1.		- 🔫 '	•	RA7			1	\$ 2	3	Y 4		
				Green		1.0	69.1	8.		6.4 0.		_	A	-	X		
Uncoordinated		Simult. Gap E/W	On	Yellow		0.0	4.5	3.).	хtх		
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.5	0.0	1.0	0.	5 1.	5 0.	U	5	6	7	8		
Timer Results				EBI	-	EBT	WB	L	WBT	N	BL	NBT	SB	L	SBT		
Assigned Phas	е			5		2	1		6		7	4			8		
Case Number				1.1		3.0	1.1		3.0	1	.0	4.0			5.3		
Phase Duration	1, S			9.4		75.6	8.4	-	74.6	12	2.0	35.9			23.9		
Change Period	, (Y+R	c), S		3.5		5.5	3.5	;	5.5	3	.5	5.5			5.5		
Max Allow Hea		,		3.0		0.0	3.0)	0.0	3	.1	3.4			3.4		
Queue Clearan	2 1	,		5.8			4.9).5	12.3			17.3		
Green Extensio		, ,		0.2		0.0		0.2 0.0			.0	1.2			1.2		
Phase Call Pro				0.99)		0.97	7		1.	00				1.00		
Max Out Proba				0.00)		0.00	0.00		1.	1.00 0.				0.00		
														C.D.			
Movement Gro	-	sults			EB			W	1	<u> </u>	NB		<u> </u>	SB			
Approach Move					Т	R	L	T	R		Т	R	L	T	R		
Assigned Move				5	2	12	1	6	16	7	4	14	3	8	18		
Adjusted Flow	· ·	· ·		140	856	131	108	102			_		160	77	128		
		ow Rate (<i>s</i>), veh/h/l	n	1810	1725	1598	1810	171	_		_		1223	1900	1610		
Queue Service		- /		3.8	9.9	4.5	2.9	12.			_		15.3	4.3	8.8		
-		e Time (<i>g c</i>), s		3.8	9.9	4.5	2.9	12.			_		15.3	4.3	8.8		
Green Ratio (g	•			0.63	0.58	0.58	0.62	0.5	_		_		0.15	0.15	0.15		
Capacity (c), v				414	3025	934	452	295			_		248	292	247		
Volume-to-Cap	,		.)	0.338			0.239	_					0.645	0.264	0.517		
	, ,	t/In(95 th percentile eh/In(95 th percenti		61.5 2.5	161.3 6.5	70.2 2.8	47.8 1.9	203 8.1			_		209 8.4	92.9 3.7	161.7 6.5		
		RQ) (95 th percent	,	0.00	0.00	0.00	0.00	0.0			_		0.4	0.00	0.00		
Uniform Delay			uic)	10.00	12.4	11.3	9.9	13.			_	-	49.4	44.8	46.7		
Incremental De				0.2	0.2	0.3	0.1	0.3	_		_		1.1	0.2	0.6		
Initial Queue D	2 1	,		0.2	0.2	0.0	0.1	0.0			_	-	0.0	0.2	0.0		
				10.2	12.7	11.6	10.0	13.					50.5	45.0	47.3		
	ntrol Delay (<i>d</i>), s/veh			10.2 B	B	B	B	13. B	6 11.c B	D	D	-	50.5 D	45.0 D	47.3 D		
	el of Service (LOS) roach Delay, s/veh / LOS					В	13.3		B		3.7	D	48.2	<u> </u>	D		
Intersection De		12.2	-		0.0						B 40.2	-					
	ay, 3/ve					20											
Multimodal Re			EB			W	3		NB		SB						
Pedestrian LOS		/LOS		1.89		В	2.08		B	2.	72	С	2.73	2.73			
	core / LC			1.11		A	1.17		A		08	A	1.09		C A		

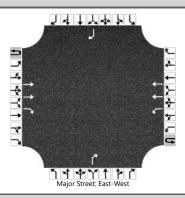
Copyright © 2025 University of Florida, All Rights Reserved.

HCS™ Streets Version 2023

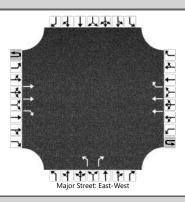

HCS Signalized Intersection Results Summary

		HCS	6 Sigr	nalize	d Inte	ersect	ion R	esu	lts Sur	nmary	/						
General Inform	nation			Intersec							ormatio	on		4444	la la		
Agency	nation								Duration		1.000			51 f f			
Analyst		OR		Analys	sis Dat	e 5/21/2	2024								K&		
Jurisdiction		CABQ		Time F			ng PM		PHF		1.00		\rightarrow \rightarrow \rightarrow	w‡e			
Urban Street		Gibson Boulevard				r 2024		_	Analysis	Period	1> 7:	00			+ + 		
Intersection		University and Gibs	on	File Na			vorsity (Zibsor	n Existing			00					
Project Descrip	tion	Gibson In-N-Out Ex			ame	1 5 011	versity-c	310301		j i wi.xu3			_	ן (אייי די די	* *		
T Toject Descrip		Gibson III-IN-Out Ex	usung i	IVI													
Demand Inform	mation				EB			W	'B		NB			SB			
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R		
Demand (v), v	/eh/h			178	1119	113	89	20	08 186	167	79	66	138	57	137		
Signal Informa	ignal Information						1.1	2		M		_					
Cycle, s	130.0	Reference Phase	2		P* •	T <u></u>	- 🛒 i	η,	547 R	12		 – 	4	2	· Y		
Offset, s	0	Reference Point	End	Green	4.5	2.8	75.9	12	.0 16.	9 0.0			3 ²	3	1		
Uncoordinated	No	Simult. Gap E/W	On	Yellow		0.0	4.5	3.0		0.0		7	*	5	$\mathbf{\Phi}$		
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.5	0.0	1.0	0.5		0.0		5	6	7	8		
					_						_						
Timer Results				EBI	- -	EBT	WB	L	WBT	NBI		NBT	SBI	L	SBT		
Assigned Phas	е			5		2	1	_	6	7		4			8		
Case Number				1.1		3.0	1.1	_	3.0	1.0		4.0			5.3		
Phase Duration				10.7		84.1	8.0	_	81.4	15.5		37.9			22.4		
Change Period		,		3.5		5.5	3.5		5.5	3.5	_	5.5			5.5		
Max Allow Hea	2 1	,		3.0		0.0	3.0		0.0	3.1		3.3			3.3		
Queue Clearan		, = ,		7.0	_		4.6	_		12.1		10.8			15.9		
Green Extensio		(ge),s		0.3		0.0		0.1		0.0					1.0		
Phase Call Pro	-			1.00				0.96		1.00		1.00	<u> </u>		1.00		
Max Out Proba	bility			0.00)		0.0	0		1.00)	0.00			0.00		
Movement Gro	oun Ros	aulte			EB			WE	2		NB			SB			
Approach Move	-			L	Т	R	L	T	R	L	Т	R	L	Т	R		
Assigned Move				5	2	12	1	6	16	7	4	14	3	8	18		
Adjusted Flow) veh/h		178	1119	113	89	200	_	167	145		138	57	137		
,	· ·	ow Rate (<i>s</i>), veh/h/l	n	1810	1725	1598	1810	171		1810	1756		1263	1900	1610		
Queue Service				5.0	14.2	3.9	2.6	34.8		10.1	8.8		13.9	3.5	10.5		
		e Time (<i>g c</i>), s		5.0	14.2	3.9	2.6	34.8	_	10.1	8.8		13.9	3.5	10.5		
Green Ratio (g				0.65	0.60	0.60	0.62	0.58		0.24	0.25		0.13	0.13	0.13		
Capacity (c), v	. ,			225	3130	966	363	299		364	438		219	246	209		
Volume-to-Cap		atio (X)		0.792			0.245		_		0.331		0.630	0.231	0.656		
		t/In (95 th percentile	e)	150.1	222.8	-	43.6	475.	_	198.7	170		200.4	76.6	195.4		
	. ,	eh/In (95 th percentie	,	6.0	8.9	2.5	1.7	18.9		7.9	6.8		8.0	3.1	7.8		
	. ,	RQ) (95 th percent	,	0.00	0.00	0.00	0.00	0.00		0.00	0.00		0.00	0.00	0.00		
				23.8	13.0	10.9	10.8	18.5		41.7	39.9		55.3	50.8	53.8		
	m Delay (<i>d</i> 1), s/veh nental Delay (<i>d</i> 2), s/veh			2.4	0.3	0.2	0.1	1.2	_	0.3	0.2		1.1	0.2	1.3		
	eiay(α2), s/ven Delay(α3), s/veh		0.0	0.0	0.2	0.0	0.0	_	0.0	0.2		0.0	0.2	0.0			
	bl Delay (<i>d</i>), s/veh		26.3	13.3	11.2	10.9	19.7		42.1	40.1		56.4	50.9	55.1			
Level of Service (LOS)				20.3 C	B	B	B	B	B	-42.1 D	40.1 D		E	D	E		
Approach Delay, s/veh / LOS				14.8		B	18.9		B	41.2		D	<u>54.</u>		D		
Intersection De		14.0			1.9		U	+1.2	-		C 34.8						
						2							5				
Multimodal Re	Multimodal Results							WE	3	NB				SB			
Pedestrian LOS		/LOS		1.89	EB	В	2.0		B	2.73	1	С		1	С		
Bicycle LOS So				1.26		А	1.74		В	1.00		А	1.04		А		

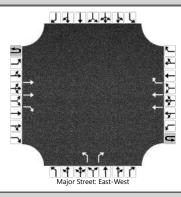
 $Copyright @ {\tt 2025} \ University \ of \ Florida, \ All \ Rights \ Reserved.$


HCS[™] Streets Version 2023

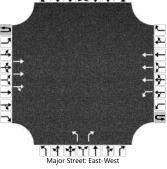
	HCS Two-Way St	op-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson I 25 SB
Agency/Co.	Lee	Jurisdiction	СОА
Date Performed	5/31/2024	East/West Street	Gibson Boulevard
Analysis Year	2026	North/South Street	I 25 SB
Time Analyzed	2026 Background MD	Peak Hour Factor	0.96
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		
Lanas			


Approach		Eastb	ound			West	bound			North	bound			South	bound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R			
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12			
Number of Lanes	0	0	2	1	0	1	2	0		0	0	1		0	0	1			
Configuration			Т	R		L	Т					R				R			
Volume (veh/h)			540	25	1	309	423					608				132			
Percent Heavy Vehicles (%)					1	1						1				2			
Proportion Time Blocked																			
Percent Grade (%)										. ())			. (0				
Right Turn Channelized		Ν	lo							Y	es			Y	es				
Median Type Storage		Undivided								<u>'</u>									
Critical and Follow-up H	eadwa	ys																	
Base Critical Headway (sec)					6.4	4.1						6.9				6.9			
Critical Headway (sec)					6.42	4.12						6.92				6.93			
Base Follow-Up Headway (sec)					2.5	2.2						3.3				3.3			
Follow-Up Headway (sec)					2.51	2.21						3.31				3.32			
Delay, Queue Length, an	d Leve	l of Se	ervice																
Flow Rate, v (veh/h)						323						633				138			
Capacity, c (veh/h)						953						719				785			
v/c Ratio						0.34						0.88				0.18			
95% Queue Length, Q ₉₅ (veh)						1.5						11.0				0.6			
Control Delay (s/veh)						10.7						35.2				10.6			
Level of Service (LOS)			В									E				В			
Approach Delay (s/veh)		-		-		4	.5			35	5.2		10.6						
Approach LOS							4				E		В						

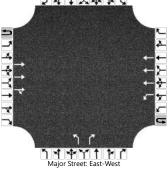
	HCS Two-Way Sto	p-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson I 25 SB
Agency/Co.	Lee	Jurisdiction	СОА
Date Performed	5/31/2024	East/West Street	Gibson Boulevard
Analysis Year	2026	North/South Street	I 25 SB
Time Analyzed	Background PM	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		
Lanas			


Approach	1	Eacth	ound			Worth	oound		I	North	bound			South	bound		
••	<u> </u>																
Movement	U	L	T	R	U	L	Т	R	U	L	T	R	U	L	T	R	
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	2	1	0	1	2	0		0	0	1		0	0	1	
Configuration			Т	R		L	Т					R				R	
Volume (veh/h)			625	37	2	726	736					538				178	
Percent Heavy Vehicles (%)					0	0						0				3	
Proportion Time Blocked																	
Percent Grade (%)										(C			(0		
Right Turn Channelized		Ν	lo							Y	es			Y	es		
Median Type Storage				Undi	vided				1								
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)					6.4	4.1						6.9				6.9	
Critical Headway (sec)					6.40	4.10						6.90				6.96	
Base Follow-Up Headway (sec)					2.5	2.2						3.3				3.3	
Follow-Up Headway (sec)					2.50	2.20						3.30				3.33	
Delay, Queue Length, an	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)						766						566				187	
Capacity, c (veh/h)						886						673				608	
v/c Ratio						0.86						0.84				0.31	
95% Queue Length, Q ₉₅ (veh)	1					11.0						9.4				1.3	
Control Delay (s/veh)						28.7						32.2				13.5	
Level of Service (LOS)					D							D				В	
Approach Delay (s/veh)						14	4.3			32	2.2		13.5				
Approach LOS							В			[)		В				

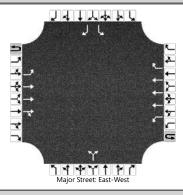
	HCS Two-W	/ay Stop-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson I 25 NB
Agency/Co.	Lee	Jurisdiction	СОА
Date Performed	5/31/2024	East/West Street	Gibson Boulevard
Analysis Year	2026	North/South Street	I 25 NB
Time Analyzed	Background MD	Peak Hour Factor	0.98
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		
Lanes			


Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	1	0	0	2	1		1	0	1		0	0	0
Configuration			Т	R			Т	R		L		R				
Volume (veh/h)			1038	107			717	623		13		340				
Percent Heavy Vehicles (%)										1		1				
Proportion Time Blocked																
Percent Grade (%)										. ())					
Right Turn Channelized		Ν	lo			Y	es			Y	es					
Median Type Storage				Undi	vided											
Critical and Follow-up He	eadwa	ys														
Base Critical Headway (sec)										7.5		6.9				
Critical Headway (sec)										7.52		6.92				
Base Follow-Up Headway (sec)										3.5		3.3				
Follow-Up Headway (sec)										3.51		3.31				
Delay, Queue Length, and	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)										13		347				
Capacity, c (veh/h)										97		497				
v/c Ratio										0.14		0.70				
95% Queue Length, Q ₉₅ (veh)										0.5		5.4				
Control Delay (s/veh)										48.0		27.4				
Level of Service (LOS)										E		D				
Approach Delay (s/veh)										28	3.1					
Approach LOS										[)					

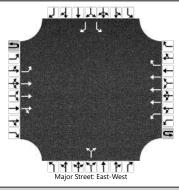
	HCS Two-Way St	op-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson I 25 NB
Agency/Co.	Lee	Jurisdiction	СОА
Date Performed	5/31/2024	East/West Street	Gibson Boulevard
Analysis Year	2026	North/South Street	I 25 NB
Time Analyzed	Background PM	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		
Lanes			


Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	1	0	0	2	1		1	0	1		0	0	0
Configuration			Т	R			Т	R		L		R				
Volume (veh/h)			1022	154			1414	1030		50		462				
Percent Heavy Vehicles (%)										0		0				
Proportion Time Blocked																
Percent Grade (%)										())					
Right Turn Channelized		Ν	lo			Y	es			Ye	es					
Median Type Storage				Undi	vided								-			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)										7.5		6.9				
Critical Headway (sec)										7.50		6.90				
Base Follow-Up Headway (sec)										3.5		3.3				
Follow-Up Headway (sec)										3.50		3.30				
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)										53		486				
Capacity, c (veh/h)										49		493				
v/c Ratio										1.06		0.99				
95% Queue Length, Q ₉₅ (veh)										4.6		13.1				
Control Delay (s/veh)										279.2		66.3				
Level of Service (LOS)										F		F				
Approach Delay (s/veh)										87	7.1			-		_
Approach LOS											F					

	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson and Mulberry
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/21/2024	East/West Street	Gibson Boulevard
Analysis Year	2026	North/South Street	Mulberry Street
Time Analyzed	BO Background MD	Peak Hour Factor	0.99
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		
Lanes			


venicie volumes and Auj					1											
Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	3	0	0	1	3	0		1	0	1		0	0	0
Configuration			Т	TR		L	Т			L		R				
Volume (veh/h)			1321	53	6	43	1295			42		52				
Percent Heavy Vehicles (%)					0	1				0		0				
Proportion Time Blocked																
Percent Grade (%)										. ())					
Right Turn Channelized										Ν	lo					
Median Type Storage				Left +	⊦ Thru								1			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)					5.6	5.3				6.4		7.1				
Critical Headway (sec)					5.60	5.32				5.70		7.10				
Base Follow-Up Headway (sec)					2.3	3.1				3.8		3.9				
Follow-Up Headway (sec)					2.30	3.11				3.80		3.90				
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)						49				42		53				
Capacity, c (veh/h)						265				123		333				
v/c Ratio						0.19				0.35		0.16				
95% Queue Length, Q ₉₅ (veh)						0.7				1.4		0.6				
Control Delay (s/veh)						21.7	3.6			49.2		17.8				
Level of Service (LOS)						С	A			E		С				
Approach Delay (s/veh)						. 4	.3			31	1.8					
Approach LOS					A					[)					

	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson and Mulberry
Agency/Co.	Lee	Jurisdiction	СОА
Date Performed	5/21/2024	East/West Street	Gibson Boulevard
Analysis Year	2026	North/South Street	Mulberry Street
Time Analyzed	BO Background PM	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		
Lanes			


Approach		Easth	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	3	0	0	1	3	0		1	0	1		0	0	0
Configuration		-	Т	TR		L	Т	-		L	-	R				-
Volume (veh/h)			1403	75	4	31	2390			24		40				
Percent Heavy Vehicles (%)					0	0				0		0				
Proportion Time Blocked																
Percent Grade (%)		I								(0					
Right Turn Channelized										Ν	lo					
Median Type Storage				Left +	+ Thru								1			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)					5.6	5.3				6.4		7.1				
Critical Headway (sec)					5.60	5.30				5.70		7.10				
Base Follow-Up Headway (sec)					2.3	3.1				3.8		3.9				
Follow-Up Headway (sec)					2.30	3.10				3.80		3.90				
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	Τ					37				25		42				
Capacity, c (veh/h)						222				85		295				
v/c Ratio						0.17				0.30		0.14				
95% Queue Length, Q ₉₅ (veh)						0.6				1.1		0.5				
Control Delay (s/veh)						24.4	4.0			64.2		19.2				
Level of Service (LOS)						С	Α			F		С				
Approach Delay (s/veh)		-	-	-		4	.2			36	5.1					-
Approach LOS							4				E					

	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson and Alumni
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/21/2024	East/West Street	Gibson Boulevard
Analysis Year	2026	North/South Street	Alumni Drive
Time Analyzed	Background MD	Peak Hour Factor	0.97
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		
Lanes			

Approach		Eastb	ound			West	bound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	1	3	0	0	1	3	1		0	1	0		1	0	1	
Configuration		L	Т	TR		L	Т	R			LR			L		R	
Volume (veh/h)	24	43	1269	50	3	40	1278	32		23		40		40		29	
Percent Heavy Vehicles (%)	0	0			0	0				0		0		0		0	
Proportion Time Blocked																	
Percent Grade (%)										())			. ()		
Right Turn Channelized						Ν	lo							N	lo		
Median Type Storage				Left +	- Thru								1				
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)	5.6	5.3			5.6	5.3				6.4		7.1		6.4		7.1	
Critical Headway (sec)	5.60	5.30			5.60	5.30				6.40		7.10		6.40		7.10	
Base Follow-Up Headway (sec)	2.3	3.1			2.3	3.1				3.8		3.9		3.8		3.9	
Follow-Up Headway (sec)	2.30	3.10			2.30	3.10				3.80		3.90		3.80		3.90	
Delay, Queue Length, an	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)		69				44					65			41		30	
Capacity, c (veh/h)		310				268					125			68		350	
v/c Ratio		0.22				0.17					0.52			0.61		0.09	
95% Queue Length, Q ₉₅ (veh)		0.8				0.6					2.4			2.6		0.3	
Control Delay (s/veh)		19.9				21.1					61.4			119.7		16.2	
Level of Service (LOS)		С				С					F			F		С	
Approach Delay (s/veh)		. 1	.0			0	.7			61	1.4		76.2				
Approach LOS	1	A A									F		F				

	HCS Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson and Alumni
Agency/Co.	Lee	Jurisdiction	СОА
Date Performed	5/21/2024	East/West Street	Gibson Boulevard
Analysis Year	2026	North/South Street	Alumni Drive
Time Analyzed	Background PM	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		
Lanes			

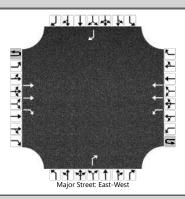
venicie volumes and Auj	ustine																
Approach		Eastb	ound			West	oound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	1	3	0	0	1	3	1		0	1	0		1	0	1	
Configuration		L	Т	TR		L	Т	R			LR			L		R	
Volume (veh/h)	17	31	1365	29	4	37	2368	19		10		36		27		20	
Percent Heavy Vehicles (%)	0	0			0	0				0		3		0		0	
Proportion Time Blocked																	
Percent Grade (%)		-		-		-	-				0			()	-	
Right Turn Channelized						Ν	10							N	lo		
Median Type Storage				Left +	⊦ Thru								1				
Critical and Follow-up H	eadwa	adways															
Base Critical Headway (sec)	5.6	5.3			5.6	5.3				6.4		7.1		6.4		7.1	
Critical Headway (sec)	5.60	5.30			5.60	5.30				6.40		7.16		6.40		7.10	
Base Follow-Up Headway (sec)	2.3	3.1			2.3	3.1				3.8		3.9		3.8		3.9	
Follow-Up Headway (sec)	2.30	3.10			2.30	3.10				3.80		3.93		3.80		3.90	
Delay, Queue Length, an	d Leve	l of Se	ervice		<u> </u>									-			
Flow Rate, v (veh/h)		51				43					48			28		21	
Capacity, c (veh/h)		84				240					87			10		144	
v/c Ratio		0.60				0.18					0.55			2.93		0.15	
95% Queue Length, Q ₉₅ (veh)		2.7				0.6					2.5			4.6		0.5	
Control Delay (s/veh)		97.5				23.2					88.7			1632.4		34.2	
Level of Service (LOS)		F				С					F			F		D	
Approach Delay (s/veh)		. 3	.2	0.4						. 88	3.7		952.3				
Approach LOS		A A								F		F					

HCS Signalized Intersection Results Summary

General Information Intersection Results Summa										mary	/					
General Inform	nation								Into	react	ion Inf	ormatic	.		474+	to La
<u> </u>	ation								<u></u>	ation,		1.000			717	
Agency				Analyz	in Dat	E 104 /C	0004					_				R 2
Analyst		OR		-		e 5/21/2				а Тур -	e	Other 1.00		-22		
Jurisdiction		CABQ		Time F			ground N	VID	PHF		D		20		****	
Urban Street		Gibson Boulevard				r 2026		2.1	1		Period	1> 7:(
Intersection		University and Gibs		File Na			/ersity-0	ibso	n BO	Васк	ground	MD.xu	S	_	11	1
Project Descrip	tion	Gibson In-N-Out BC) Васко	ground N	/ID										4 † 4* Y	P
Demand Inform	nation				EB		T	W	/B			NB			SB	
Approach Move	ement			L	Т	R	L		г	R	L	Т	R	L	Т	R
Demand (v), v	/eh/h			148	1007	' 138	113	11	00	109	193	96	101	179	81	138
							_		1							
Signal Informa	_												~	_		-+-
Cycle, s	120.0	Reference Phase	2		[]	R		7	S/17	51	7	×	1	€₂	3	Y
Offset, s	0	Reference Point	End	Green	5.2	1.1	66.5	8.	5	20.6				<u><u></u></u>	U.Î	1
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.0	0.0	4.5	3.	0	4.0	0.0		~		5	Φ
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.5	0.0	1.0	0.	5	1.5	0.0		5	6	7	8
Timen Descrift				E DI		EDT			WBT				NDT	0.51		ODT
Timer Results				EBL		EBT 2				_	NBI	-	NBT	SBI	-	SBT
Assigned Phas	e			5			1		6		7	_	4			8
Case Number				1.1	_	3.0	1.1		3.0	_	1.0		4.0	<u> </u>	_	5.3
Phase Duration		\ \		9.9		73.1	8.7		72.		12.0		38.1			26.1
Change Period	· ·	,		3.5	.5 5.5 .0 0.0		3.5		5.5		3.5		5.5		_	5.5
	Allow Headway (<i>MAH</i>), s le Clearance Time (<i>q</i> s), s				.0 0.0		3.0	_	0.0	0.0 3.1			3.4		_	3.4
	eue Clearance Time (<i>g</i> _s), s en Extension Time (<i>g</i> _e), s				0.0		5.2		0.0	0	10.5		13.2			19.3
		(ge), s		0.2		0.0	0.2		0.0	0	0.0		1.3	<u> </u>	_	1.3
Phase Call Pro				0.99						_	1.00		1.00			1.00
Max Out Proba	Dility			0.00			0.00	5			1.00)	0.00			0.00
Movement Gro	oup Res	ults	_		EB	_		W	3			NB			SB	
Approach Move	-			L	Т	R	L	Т		R	L	Т	R	L	Т	R
Assigned Move	ment			5	2	12	1	6		16	7	4	14	3	8	18
Adjusted Flow	Rate (v), veh/h		148	1007	138	113	110	0 1	109	193	197		179	81	138
		w Rate (<i>s</i>), veh/h/l	n	1810	1725	1598	1810	171	_	610	1810	1739		1204	1900	1610
Queue Service				4.2	12.6	5.0	3.2	14.	_	3.9	8.5	11.2		17.3	4.4	9.3
Cycle Queue C		· ,		4.2	12.6	5.0	3.2	14.	_	3.9	8.5	11.2		17.3	4.4	9.3
Green Ratio (g				0.61	0.56	0.56	0.60	0.5).55	0.26	0.27		0.17	0.17	0.17
Capacity (c), v	/eh/h			381	2917	900	390	284	6 8	392	369	473		267	326	277
Volume-to-Cap	acity Ra	tio(X)		0.388	0.345	0.153	0.290	0.38	87 0.	.122	0.523	0.417		0.671	0.248	0.499
Back of Queue	(Q), ft	/In (95 th percentile	;)	70.1	205.2	79.2	54	231	.5 6	62.5	37.3	205.7		227.6	95.5	171.2
Back of Queue	(Q), ve	eh/In (95 th percenti	ile)	2.8	8.2	3.1	2.2	9.2	2 2	2.5	1.5	8.2		9.1	3.8	6.8
Queue Storage	Ratio (RQ) (95 th percent	tile)	0.00	0.00	0.00	0.00	0.0	0 0	0.00	0.00	0.00		0.00	0.00	0.00
Uniform Delay	(d 1), s/	/veh		11.3	14.2	12.5	11.3	15.	2 1	2.8	38.2	35.9		48.3	43.0	45.0
Incremental De	lay (<i>d</i> 2), s/veh		0.2	0.3	0.4	0.2	0.4	(0.3	0.7	0.2		1.1	0.1	0.5
Initial Queue D	Queue Delay (d 3), s/veh				0.0	0.0	0.0	0.0) (0.0	0.0	0.0		0.0	0.0	0.0
	rol Delay (<i>d</i>), s/veh				14.5	12.9	11.5	15.	6 1	3.1	38.9	36.1		49.4	43.1	45.5
Level of Service	· /			В	В	В	В	В		В	D	D		D	D	D
Approach Dela	y, s/veh	/LOS		14.0)	В	15.0	D C	В	5	37.5	5	D	46.8	3	D
Intersection De	lay, s/ve	h / LOS				20).9							С		
					_											
Multimodal Re					EB	_		WE				NB			SB	
Pedestrian LOS				1.90		B	2.09	_	B	_	2.72		C	2.73		C
Bicycle LOS So	ore / LC		1.20)	А	1.2		A	1	1.13	5	A	1.14	•	A	

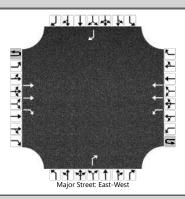
Copyright © 2025 University of Florida, All Rights Reserved.

HCS[™] Streets Version 2023

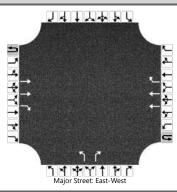

HCS Signalized Intersection Results Summary

			s sigr	ialize	u mt	erseci		esu	แร่ เ	Sum	mary	/				
Conorol Inform	otion								Inte		lion Inf	o rmotic		T	박각하수	IS U
General Inforn	nation											ormatic		Í	JŤĽ	
Agency		0.0			·	E 10 4 11	2004			ration,		1.000				2
Analyst		OR				e 5/21/2		~~~		а Тур -	е	Other				
Jurisdiction		CABQ		Time F			ground F	-M	PHI	-	<u> </u>	1.00			W + E S	
Urban Street		Gibson Boulevard		<u></u>		ır 2026		~	.88		Period	1> 7:(
Intersection		University and Gibs		File Na		7 Uni	versity-0	Sibso	n BO) Back	ground	PM.xu	S		11	
Project Descrip	tion	Gibson In-N-Out BC) Backg	round F	PM										4 1 4*Y	P C
Demand Inform	nation				EB			V	/B		1	NB			SB	
Approach Move	ement			L	Т	R	L	-	Т	R	L	Т	R	L	Т	R
Demand (v), v	/eh/h			185	124	5 117	92	20	93	191	178	84	73	152	60	146
							_									<u> </u>
Signal Informa	_			-								100	_	_		
Cycle, s	130.0	Reference Phase	2		1	R			.	- M	7	×		6 ,	3	Y
Offset, s	0	Reference Point	End	Green	4.7	2.9	73.8	12	2.1	18.5				ĸ		1
Uncoordinated	No	Simult. Gap E/W	On	Yellow		0.0	4.5	3.	0	4.0	0.0		×	2	5	Φ
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.5	0.0	1.0	0.	5	1.5	0.0	5		6	7	8
					_		14/2								_	0.0.7
Timer Results				EBI	BL EBT		WB				NBI	-	NBT	SBL	-	SBT
Assigned Phase	e			-	\rightarrow		1		6		7	_	4		_	8
Case Number				1.1						.0	1.0		4.0	<u> </u>		5.3
Phase Duration		```		11.1		82.2		8.2 79.3		_	15.6		39.6			24.0
Change Period	•	,		3.5 3.0	5.5		3.5			3.5		5.5		_	5.5	
	Allow Headway (<i>MAH</i>), s eue Clearance Time (<i>q</i> _s), s					0.0		3.0 0.0		3.1	<u> </u>	3.4	<u> </u>		3.4	
	eue Clearance Time (g s), s een Extension Time (g e), s				_	0.0	4.8		0	12.6	_	11.4			17.4	
		(ge), s		0.3		0.0	0.1 0.0 0.96		.0	0.0		1.1		_	1.1	
Phase Call Pro								_		_	1.00		1.00			1.00
Max Out Proba	DIIILY			0.00			0.00	5			1.00)	0.00			0.00
Movement Gro	oup Res	ults			EB	_		W	B			NB			SB	
Approach Move	-			L	Т	R	L	Т		R	L	Т	R	L	Т	R
Assigned Move	ment			5	2	12	1	6		16	7	4	14	3	8	18
Adjusted Flow I	Rate (v), veh/h		185	1245	117	92	209	3	191	178	157		152	60	146
		w Rate (<i>s</i>), veh/h/l	n	1810	1725		1810	171		1610	1810	1753		1249	1900	1610
Queue Service				5.4	16.9	_	2.8	38.		7.6	10.6	9.4		15.4	3.6	11.1
Cycle Queue C		- ,		5.4	16.9		2.8	38.		7.6	10.6	9.4		15.4	3.6	11.1
Green Ratio (g				0.64	0.59	0.59	0.60	0.5		0.57	0.25	0.26		0.14	0.14	0.14
Capacity (c), v				216	3054	943	322	291	4 9	914	380	460		233	270	229
Volume-to-Cap	acity Ra	tio(X)		0.858	0.408	3 0.124	0.285	0.71	18 0).209	0.469	0.341		0.652	0.222	0.637
Back of Queue	(Q), ft	/In (95 th percentile	:)	155.3	258.7	67.3	47.5	526	.7 1	23.4	206.8	181.7		215.7	79.4	203.4
	. ,	eh/In (95 th percenti		6.2	10.3	2.7	1.9	20.	9	4.9	8.3	7.3		8.6	3.2	8.1
Queue Storage	Ratio (RQ) (95 th percent	tile)	0.00	0.00	0.00	0.00	0.0	0 0	0.00	0.00	0.00		0.00	0.00	0.00
Uniform Delay	(d1), s	/veh		26.2	14.4	11.8	12.0	20.	5 ´	13.8	40.6	38.9		54.4	49.4	52.6
Incremental De	lay (<i>d</i> 2), s/veh		4.0	0.4	0.3	0.2	1.6	3	0.5	0.3	0.2		1.2	0.2	1.1
Initial Queue D	al Queue Delay (d 3), s/veh			0.0	0.0	0.0	0.0	0.0)	0.0	0.0	0.0		0.0	0.0	0.0
Control Delay (ntrol Delay (<i>d</i>), s/veh			30.2	14.8	12.1	12.2	22.	1 1	14.3	40.9	39.0		55.6	49.5	53.7
Level of Service	, ,			С	В	В	В	С		В	D	D		E	D	D
Approach Dela	y, s/veh	/LOS		16.4	1	В	21.1	1	C	2	40.0)	D	53.8	3	D
Intersection De	lay, s/ve	h / LOS				2	3.4							С		
Multimodal Re					EB			W				NB	-		SB	
Pedestrian LOS				1.89 1.34	_	B	2.09		E	_	2.73		C	2.74	_	C
Bicycle LOS Sc	LOS Score / LOS				ł	Α	1.79	9	E	3	1.04	ł	A	1.08	5	A

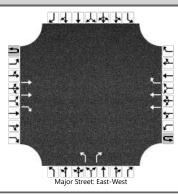
Copyright © 2025 University of Florida, All Rights Reserved.


HCS[™] Streets Version 2023

	Site Information	Gibson I 25 SB
	Intersection	Gibson L 25 SB
		0103011123 30
	Jurisdiction	COA
24	East/West Street	Gibson Boulevard
	North/South Street	I 25 SB
d MD	Peak Hour Factor	0.96
st	Analysis Time Period (hrs)	0.25
In-N-Out		
2	st	d MD Peak Hour Factor st Analysis Time Period (hrs)


Approach		Eastb	ound			West	oound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	2	1	0	1	2	0		0	0	1		0	0	1	
Configuration			Т	R		L	т					R				R	
Volume (veh/h)			553	25	1	342	434					648				132	
Percent Heavy Vehicles (%)					1	1						1				2	
Proportion Time Blocked																	
Percent Grade (%)						1	•				0				0		
Right Turn Channelized		Ν	lo							Y	es			Y	es		
Median Type Storage				Undi	vided												
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)	Γ				6.4	4.1						6.9				6.9	
Critical Headway (sec)					6.42	4.12						6.92				6.93	
Base Follow-Up Headway (sec)					2.5	2.2						3.3				3.3	
Follow-Up Headway (sec)					2.51	2.21						3.31				3.32	
Delay, Queue Length, an	d Leve	of Se	ervice											<u>.</u>			
Flow Rate, v (veh/h)	Τ					357						675				138	
Capacity, c (veh/h)						901						712				778	
v/c Ratio						0.40						0.95				0.18	
95% Queue Length, Q ₉₅ (veh)	1					1.9						13.8				0.6	
Control Delay (s/veh)						11.6						46.4				10.6	
Level of Service (LOS)						В						E				В	
Approach Delay (s/veh)					5.1					- 46	5.4		10.6				
Approach LOS							4				E		В				

	HCS Two-Way	Stop-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson I 25 SB
Agency/Co.	Lee	Jurisdiction	СОА
Date Performed	5/31/2024	East/West Street	Gibson Boulevard
Analysis Year	2026	North/South Street	I 25 SB
Time Analyzed	Full Build PM	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		
Lanos			


Approach		Eastb	ound			West	oound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	2	1	0	1	2	0		0	0	1		0	0	1	
Configuration			Т	R		L	т					R				R	
Volume (veh/h)			632	37	2	749	743					564				178	
Percent Heavy Vehicles (%)					0	0						0				3	
Proportion Time Blocked																	
Percent Grade (%))			. (0		
Right Turn Channelized		Ν	lo							Y	es			Y	es		
Median Type Storage				Undi	vided												
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)					6.4	4.1						6.9				6.9	
Critical Headway (sec)					6.40	4.10						6.90				6.96	
Base Follow-Up Headway (sec)					2.5	2.2						3.3				3.3	
Follow-Up Headway (sec)					2.50	2.20						3.30				3.33	
Delay, Queue Length, an	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)						791						594				187	
Capacity, c (veh/h)						872						669				605	
v/c Ratio						0.91						0.89				0.31	
95% Queue Length, Q ₉₅ (veh)						12.9						10.9				1.3	
Control Delay (s/veh)						34.3						37.9				13.6	
Level of Service (LOS)						D						E				В	
Approach Delay (s/veh)					17.2					37	7.9	-	13.6				
Approach LOS							С				E		В				

	HCS Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson I 25 NB
Agency/Co.	Lee	Jurisdiction	СОА
Date Performed	5/31/2024	East/West Street	Gibson Boulevard
Analysis Year	2026	North/South Street	I 25 NB
Time Analyzed	Full Build MD	Peak Hour Factor	0.98
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		
Lanes			

Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	1	0	0	2	1		1	0	1		0	0	0
Configuration			Т	R			т	R		L		R				
Volume (veh/h)			1091	107			761	654		13		362				
Percent Heavy Vehicles (%)										1		1				
Proportion Time Blocked																
Percent Grade (%))					
Right Turn Channelized		N	lo			Ye	es			Ye	es					
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)										7.5		6.9				
Critical Headway (sec)										7.52		6.92				
Base Follow-Up Headway (sec)										3.5		3.3				
Follow-Up Headway (sec)										3.51		3.31				
Delay, Queue Length, and	d Leve	l of Se	ervice	<u> </u>							<u> </u>	<u> </u>				
Flow Rate, v (veh/h)										13		369				
Capacity, c (veh/h)										85		477				
v/c Ratio										0.16		0.77				
95% Queue Length, Q ₉₅ (veh)										0.5		6.8				
Control Delay (s/veh)										55.1		34.0				
Level of Service (LOS)										F		D				
Approach Delay (s/veh)																
Approach LOS	1									[)					

	HCS Two-Way Stop	o-Control Report	
	, , , , , , , , , , , , , , , , , , ,		
General Information		Site Information	
Analyst	AY	Intersection	Gibson I 25 NB
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/31/2024	East/West Street	Gibson Boulevard
Analysis Year	2026	North/South Street	I 25 NB
Time Analyzed	Full Build PM	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		
Lanes			

Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	1	0	0	2	1		1	0	1		0	0	0
Configuration			Т	R			т	R		L		R				
Volume (veh/h)			1055	154			1444	1051		50		479				
Percent Heavy Vehicles (%)										0		0				
Proportion Time Blocked																
Percent Grade (%)																
Right Turn Channelized		No Yes Yes									es					
Median Type Storage				Undi	vided											
Critical and Follow-up He	eadwa	ys														
Base Critical Headway (sec)										7.5		6.9				
Critical Headway (sec)										7.50		6.90				
Base Follow-Up Headway (sec)										3.5		3.3				
Follow-Up Headway (sec)										3.50		3.30				
Delay, Queue Length, and	l Leve	l of Se	ervice													
Flow Rate, v (veh/h)										53		504				
Capacity, c (veh/h)										45		480				
v/c Ratio										1.16		1.05				
95% Queue Length, Q ₉₅ (veh)										4.9		15.3				
Control Delay (s/veh)										327.5		84.3				
Level of Service (LOS)										F		F				
Approach Delay (s/veh)										10	7.3					
Approach LOS										ŀ	:					

		ŀ	ICS ⁻	Гwo-'	Way	Stop	-Cor	ntrol	Repo	ort						
General Information							Site	Inforr	natio	n						
Analyst	AY						Inters	ection			Gibso	n and M	lulberry			
Agency/Co.	Lee						Jurisd	liction			COA					
Date Performed	5/21/	2024					East/\	Nest Stre	eet		Gibso	n Boule	vard			
Analysis Year	2026						North	/South	Street		Mulbe	erry Stre	et			
Time Analyzed	·										0.99					
Intersection Orientation		Analy	sis Time	Period (hrs)	0.25										
Project Description	Gibso	on In-N-0	Dut													
Lanes																
				74 1 1 4 4 1 0 4 1 1 0		η Γ or Street: Ea	st-West									
Vehicle Volumes and Ad	ustme															
Approach		1	ound			1	oound			North					bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12

Critical and	Follow-up	Headways
---------------------	-----------	----------

Number of Lanes

Percent Heavy Vehicles (%)

Proportion Time Blocked

Percent Grade (%) Right Turn Channelized

Median Type | Storage

Configuration Volume (veh/h)

		·								
Base Critical Headway (sec)	5.6			5.6	5.3		6.4	7.1		
Critical Headway (sec)	5.66			5.60	5.32		5.70	7.10		
Base Follow-Up Headway (sec)	2.3			2.3	3.1		3.8	3.9		
Follow-Up Headway (sec)	2.33			2.30	3.11		3.80	3.90		

3

Т

1370

0

1

L

42

0

0

No

0

1

R

53

0

1

0

0

0

Delay, Queue Length, and Level of Service

1

U

0

3

0

3

Т

1395

0

TR

53

0

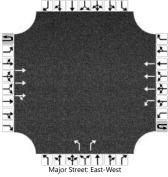
6

0

Left + Thru

1

L


44

1

Flow Rate, v (veh/h)	0				51			42		54		
Capacity, c (veh/h)	430				243			110		315		
v/c Ratio	0.00				0.21			0.39		0.17		
95% Queue Length, Q ₉₅ (veh)	0.0				0.8			1.6		0.6		
Control Delay (s/veh)	13.4				23.6	4.4		57.2		18.7		
Level of Service (LOS)	В				С	А		F		С		
Approach Delay (s/veh)		0	.0		5	.1		35	5.8			
Approach LOS		1	Ą		A	4		I	E			

Copyright © 2025 University of Florida. All Rights Reserved.

General Information		Site Information	
	AY	Intersection	Cibcon and Mulhorn
Analyst Agency/Co.	Lee	Jurisdiction	Gibson and Mulberry COA
Date Performed	5/21/2024	East/West Street	Gibson Boulevard
Analysis Year	2026	North/South Street	Mulberry Street
Time Analyzed	Full Build PM	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		•
Lanes			
	4 1 1 4 4 1 1 A 4 1 1 A 4 1 1 A 4 1 1 A 4 1 1 A 4 1 1 A 4 1 1 A 4 4 1 A 4 4 1 A 4 4 1 A 4 4 4 4		

Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	3	0	0	1	3	0		1	0	1		0	0	0
Configuration			т	TR		L	т			L		R				
Volume (veh/h)			1453	75	4	32	2441			24		40				
Percent Heavy Vehicles (%)					0	0				0		0				
Proportion Time Blocked																
Percent Grade (%)																
Right Turn Channelized										N	lo					
Median Type Storage		Left + Thru										-	1			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)					5.6	5.3				6.4		7.1				
Critical Headway (sec)					5.60	5.30				5.70		7.10				
Base Follow-Up Headway (sec)					2.3	3.1				3.8		3.9				
Follow-Up Headway (sec)					2.30	3.10				3.80		3.90				
Delay, Queue Length, an	d Leve	l of Se	ervice											<u>.</u>		
Flow Rate, v (veh/h)						38				25		42				
Capacity, c (veh/h)						209				79		283				
v/c Ratio						0.18				0.32		0.15				
95% Queue Length, Q ₉₅ (veh)						0.6				1.2		0.5				
Control Delay (s/veh)						26.0	4.6			70.8		19.9				
Level of Service (LOS)						D	Α			F		С				
Approach Delay (s/veh)						. 4	.9			39	9.0			-		
Approach LOS							4				E					

							C ':									
General Information							Site	Inforr	natio	n						
Analyst	AY						Inters	section			Alum	ni Site D	WY 1			
Agency/Co.	Lee						Jurisc	liction			COA					
Date Performed	5/31/	2024					East/	West Stre	eet		Site D	WY 1				
Analysis Year	2026						North	n/South	Street		Alum	ni Drive				
Time Analyzed	Full B	uild MD					Peak	Hour Fac	ctor		0.92					
Intersection Orientation	North	n-South					Analy	sis Time	Period (hrs)	0.25					
Project Description	Gibsc	n In-N-(Out													
Lanes																
					JA	114	1 J J									
						.		JAIJAANU								
Vehicle Volumes and Ad	justme	nts				ጉ ተ ት ት ጥ Street: Nor		P C				_	_	_		_
Vehicle Volumes and Ad	justme		bound			Street: Nor				North	bound			South	bound	
	justme		pound	R		Street: Nor	th-South	R	U	North	bound	R	U	South	bound	R
Approach		Eastb			Major	Street: Nor	th-South		U 1U			R 3	U 4U		1	
Approach Movement		Eastb	T	R	Major	Street: Nor West	th-South Dound	R		L	Т			L	Т	6
Approach Movement Priority		Eastk L 10	T 11	R 12	Major	Street: Nor Westl	th-South cound T 8	R 9	1U	L 1	T 2	3	4U	L 4	Т 5	6
Approach Movement Priority Number of Lanes		Eastk L 10	T 11	R 12 1	Major	Street: Nor Westl	th-South cound T 8	R 9	1U	L 1 1	T 2 1	3	4U	L 4	Т 5	6
Approach Movement Priority Number of Lanes Configuration		Eastk L 10	T 11	R 12 1 R	Major	Street: Nor Westl	th-South cound T 8	R 9	1U	L 1 1 L	T 2 1 T	3	4U	L 4	Т 5	6
Approach Movement Priority Number of Lanes Configuration Volume (veh/h)		Eastk L 10	T 11	R 12 1 R 28	Major	Street: Nor Westl	th-South cound T 8	R 9	1U	L 1 1 L 87	T 2 1 T	3	4U	L 4	Т 5	6
Approach Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%)		Eastb L 10 0	T 11	R 12 1 R 28	Major	Street: Nor Westl	th-South cound T 8	R 9	1U	L 1 1 L 87	T 2 1 T	3	4U	L 4	Т 5	R 6 0
Approach Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked		Eastb L 10 0	T 11 0	R 12 1 R 28	Major	Street: Nor Westl	th-South cound T 8	R 9	1U	L 1 1 L 87	T 2 1 T	3	4U	L 4	Т 5	6
Approach Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%)		Eastb L 10 0	T 11 0	R 12 1 R 28 0	Major	Street: Nor Westl	th-South cound T 8	R 9	1U	L 1 1 L 87	T 2 1 T	3	4U	L 4	Т 5	6
Approach Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage		Easth 10 0	T 11 0	R 12 1 R 28 0		Street: Nor Westl	th-South cound T 8	R 9	1U	L 1 1 L 87	T 2 1 T	3	4U	L 4	Т 5	6
Approach Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage		Easth 10 0	T 11 0	R 12 1 R 28 0		Street: Nor Westl	th-South cound T 8	R 9	1U	L 1 1 L 87	T 2 1 T	3	4U	L 4	Т 5	6
Approach Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H		Easth 10 0	T 11 0	R 12 1 R 28 0		Street: Nor Westl	th-South cound T 8	R 9	1U	L 1 L 87 0	T 2 1 T	3	4U	L 4	Т 5	6
Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up H Base Critical Headway (sec)		Easth 10 0	T 11 0	R 12 1 R 28 0 0		Street: Nor Westl	th-South cound T 8	R 9	1U	L 1 1 87 0	T 2 1 T	3	4U	L 4	Т 5	6

Delay, Queue Length, and	Leve	I OT SE	ervice					
Flow Rate, v (veh/h)				30			95	
Capacity, c (veh/h)				923			1161	
v/c Ratio				0.03			0.08	
95% Queue Length, Q ₉₅ (veh)				0.1			0.3	
Control Delay (s/veh)				9.0			8.4	
Level of Service (LOS)				А			А	

9.0

А

Approach Delay (s/veh)

Approach LOS

8.4

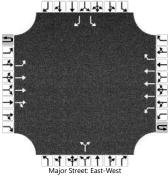
А

			HCS -													
General Information							Site	Inforr	natio	n						
Analyst	AY						Inters	ection			Alum	ni Site D	WY 1			
Agency/Co.	Lee						Jurisd	liction			COA					
Date Performed	5/31/	2024					East/\	West Stre	eet		Site D	WY 1				
Analysis Year	2026						North	n/South	Street		Alum	ni Drive				
Time Analyzed	Full B	uild PM					Peak	Hour Fac	ctor		0.92					
Intersection Orientation	North	n-South					Analy	sis Time	Period (hrs)	0.25					
Project Description	Gibsc	n In-N-(Out													
Lanes																
				<u> </u>												
-	ustme					ን ተ ትትም	th-South	1 X A K								
Vehicle Volumes and Adj Approach	ustme		pound			r Street: Nor		P F C		North	bound			South	bound	
Approach Movement	ustme		Т	R		West	th-South Dound	R	U	L	Т	R	U	L	Т	F
Approach Movement Priority		Eastk L 10	T 11	12	Majo	Westl	bound T 8	R 9	1U	L 1	T 2	3	4U	L 4	Т 5	6
Approach Movement Priority Number of Lanes		Eastb	Т	12 1	Majo	West	th-South Dound	R		L 1 1	T 2 1			L	Т	6
Approach Movement Priority Number of Lanes Configuration		Eastk L 10	T 11	12 1 R	Majo	Westl	bound T 8	R 9	1U	L 1 1 L	T 2 1 T	3	4U	L 4	Т 5	F
Approach Movement Priority Number of Lanes Configuration Volume (veh/h)		Eastb L 10	T 11	12 1 R 20	Majo	Westl	bound T 8	R 9	1U	L 1 1 L 63	T 2 1	3	4U	L 4	Т 5	6
Approach Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%)		Eastb L 10	T 11	12 1 R	Majo	Westl	bound T 8	R 9	1U	L 1 1 L	T 2 1 T	3	4U	L 4	Т 5	6
Approach Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked		Eastb L 10 0	T 11 0	12 1 R 20	Majo	Westl	bound T 8	R 9	1U	L 1 1 L 63	T 2 1 T	3	4U	L 4	Т 5	6
Approach Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%)		Eastb L 10 0	T 11 0 	12 1 R 20	Majo	Westl	bound T 8	R 9	1U	L 1 1 L 63	T 2 1 T	3	4U	L 4	Т 5	6
Approach Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized		Eastb L 10 0	T 11 0	12 1 R 20 3	U	Westl	bound T 8	R 9	1U	L 1 1 L 63	T 2 1 T	3	4U	L 4	Т 5	6
Approach Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage	U U U U U U U U U U U U U U U U U U U	Easth 10 0	T 11 0 	12 1 R 20 3	Majo	Westl	bound T 8	R 9	1U	L 1 1 L 63	T 2 1 T	3	4U	L 4	Т 5	6
Approach Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage	U U U U U U U U U U U U U U U U U U U	Easth 10 0	T 11 0 	12 1 R 20 3	U	Westl	bound T 8	R 9	1U	L 1 L 63 3	T 2 1 T	3	4U	L 4	Т 5	6
Approach Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up He Base Critical Headway (sec)	U U U U U U U U U U U U U U U U U U U	Easth 10 0	T 11 0 	12 1 R 20 3 Undi	U	Westl	bound T 8	R 9	1U	L 1 63 3	T 2 1 T	3	4U	L 4	Т 5	6
Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up He	U U U U U U U U U U U U U U U U U U U	Easth 10 0	T 11 0 	12 1 R 20 3	U	Westl	bound T 8	R 9	1U	L 1 L 63 3	T 2 1 T	3	4U	L 4	Т 5	6

Delay, Queue Length, and Level of Service

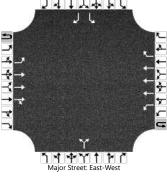
Flow Rate, v (veh/h)			22			68				
Capacity, c (veh/h)			917			1151				
v/c Ratio			0.02			0.06				
95% Queue Length, Q ₉₅ (veh)			0.1			0.2				
Control Delay (s/veh)			9.0			8.3				
Level of Service (LOS)			А			А				
Approach Delay (s/veh)	9	.0				8	.3			
Approach LOS	/	4				ļ	4			

	HCS Two-Way Sto	p-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Alumni Site DWY 2
Agency/Co.	Lee	Jurisdiction	СОА
Date Performed	5/31/2024	East/West Street	Site DWY 2
Analysis Year	2026	North/South Street	Alumni Drive
Time Analyzed	Full Build MD	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out	<u>.</u>	
Lanes			
Vehicle Volumes and A	Adjustments		


Vehicle Volumes and Adj	ustme	nts															
Approach		Eastb	ound			West	bound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		1	0	1		0	0	0	0	1	1	0	0	0	1	0	
Configuration		L		R						L	Т				Т		
Volume (veh/h)		0		112						58	87				28		
Percent Heavy Vehicles (%)		2		2						2							
Proportion Time Blocked																	
Percent Grade (%)		(0	-			-									-	
Right Turn Channelized		N	lo														
Median Type Storage				Undi	vided							-					
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)		7.1		6.2						4.1							
Critical Headway (sec)		6.42		6.22						4.12							
Base Follow-Up Headway (sec)		3.5		3.3						2.2							
Follow-Up Headway (sec)		3.52		3.32						2.22							
Delay, Queue Length, an	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)		0		122						63							
Capacity, c (veh/h)		708		1044						1582							
v/c Ratio		0.00		0.12						0.04							
95% Queue Length, Q ₉₅ (veh)		0.0		0.4						0.1							
Control Delay (s/veh)		10.1		8.9						7.4							
Level of Service (LOS)		В		A						A							
Approach Delay (s/veh)		8	.9							2	.9						
Approach LOS		A								A							

General Information		Site Information	
Analyst	AY	Intersection	Alumni Site DWY 2
Agency/Co.	Lee	Jurisdiction	СОА
Date Performed	5/31/2024	East/West Street	Site DWY 2
Analysis Year	2026	North/South Street	Alumni Drive
Time Analyzed	Full Build PM	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		
Lanes			
		L M M M M	

Vehicle Volumes and Ad	ustme	nts														
Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		1	0	1		0	0	0	0	1	1	0	0	0	1	0
Configuration		L		R						L	Т				Т	
Volume (veh/h)		0		77						42	63				20	
Percent Heavy Vehicles (%)		2		2						2						
Proportion Time Blocked																
Percent Grade (%)		(0	-		-				-					-	-
Right Turn Channelized		Ν	lo													
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		7.1		6.2						4.1						
Critical Headway (sec)		6.42		6.22						4.12						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.52		3.32						2.22						
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		0		84						46						
Capacity, c (veh/h)		785		1055						1594						
v/c Ratio		0.00		0.08						0.03						
95% Queue Length, Q ₉₅ (veh)		0.0		0.3						0.1						
Control Delay (s/veh)		9.6		8.7						7.3						
Level of Service (LOS)		A		A						A						
Approach Delay (s/veh)		. 8	.7							2	.9					
Approach LOS			۹							/	4					


Copyright © 2025 University of Florida. All Rights Reserved.

	HCS Two-Way	Stop-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson and Alumni
Agency/Co.	Lee	Jurisdiction	СОА
Date Performed	5/21/2024	East/West Street	Gibson Boulevard
Analysis Year	2026	North/South Street	Alumni Drive
Time Analyzed	Full Build MD	Peak Hour Factor	0.97
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		
Lanes			

venicle volumes and Adj	ustine	1115															
Approach		Eastb	ound			West	bound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	1	3	0	0	1	3	1		0	1	0		1	0	1	
Configuration		L	Т	TR		L	Т	R			LR			L		R	
Volume (veh/h)	24	126	1262	50	3	40	1278	76		23		40		86		123	
Percent Heavy Vehicles (%)	0	0			0	0				0		0		0		0	
Proportion Time Blocked																	
Percent Grade (%)											0			. ()		
Right Turn Channelized						Ν	10						No				
Median Type Storage		Left + Thru											1				
Critical and Follow-up He	eadwa	ys															
Base Critical Headway (sec)	5.6	5.3			5.6	5.3				6.4		7.1		6.4		7.1	
Critical Headway (sec)	5.60	5.30			5.60	5.30				6.40		7.10		6.40		7.10	
Base Follow-Up Headway (sec)	2.3	3.1			2.3	3.1				3.8		3.9		3.8		3.9	
Follow-Up Headway (sec)	2.30	3.10			2.30	3.10				3.80		3.90		3.80		3.90	
Delay, Queue Length, and	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)		155				44					65			89		127	
Capacity, c (veh/h)		261				270					51			33		350	
v/c Ratio		0.59				0.16					1.27			2.72		0.36	
95% Queue Length, Q ₉₅ (veh)		3.5				0.6					5.9			10.3		1.6	
Control Delay (s/veh)		37.1				20.9					345.4			1038.4		21.0	
Level of Service (LOS)		E				С					F			F		C	
Approach Delay (s/veh)		3	.8			0	.6			34	5.4		439.6				
Approach LOS	A A								F					F			

	HCS Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson and Alumni
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/21/2024	East/West Street	Gibson Boulevard
Analysis Year	2026	North/South Street	Alumni Drive
Time Analyzed	Full Build PM	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		
Lanes			

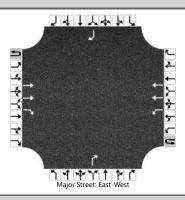
venicie volumes and Adj	ustine	1113														
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	3	0	0	1	3	1		0	1	0		1	0	1
Configuration		L	Т	TR		L	Т	R			LR			L		R
Volume (veh/h)	17	87	1359	29	4	37	2366	56		10		36		58		86
Percent Heavy Vehicles (%)	0	0			0	0				0		3		0		0
Proportion Time Blocked																
Percent Grade (%)		-		-		-	-			(0			()	-
Right Turn Channelized						Ν	10						No			
Median Type Storage								1								
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)	5.6	5.3			5.6	5.3				6.4		7.1		6.4		7.1
Critical Headway (sec)	5.60	5.30			5.60	5.30				6.40		7.16		6.40		7.10
Base Follow-Up Headway (sec)	2.3	3.1			2.3	3.1				3.8		3.9		3.8		3.9
Follow-Up Headway (sec)	2.30	3.10			2.30	3.10				3.80		3.93		3.80		3.90
Delay, Queue Length, an	d Leve	l of Se	ervice		<u> </u>											
Flow Rate, v (veh/h)		109				43					48			61		91
Capacity, c (veh/h)		66				242					0			16		144
v/c Ratio		1.67				0.18								3.94		0.63
95% Queue Length, Q ₉₅ (veh)		9.7				0.6								8.4		3.4
Control Delay (s/veh)		463.2				23.1								1818.8		64.8
Level of Service (LOS)		F				С								F		F
Approach Delay (s/veh)		. 32	2.3			. 0	.4						771.3			
Approach LOS	F A								F							

HCS Signalized Intersection Results Summary

		HCS	6 Sigr	nalize	d Inte	ersect	ion R	esu	lts Sun	nmary	/				
								1	_						
General Inforn	nation								Intersec				_	1 4 4 4 1 ↓↓↓	
Agency				1					Duration		1.000			***	r.
Analyst		OR		Analys	sis Dat	e 5/21/2	2024		Area Typ	e	Other		× →>		
Jurisdiction		CABQ		Time F	Period	Full B	uild MD		PHF		1.00			W‡E S	
Urban Street		Gibson Boulevard		Analys	sis Yea	r 2026			Analysis	Period	1> 7:0	00	1		<u>ب</u> ب
Intersection		University and Gibs	on	File Na	ame	7 Univ	versity-0	Gibsor	ו BO TOT	AL MD.	xus			11	
Project Descrip	tion	Gibson In-N-Out BC	D Total I	MD										4 1 4 4	7 4
Demand Inform	nation				EB			W	Έ		NB			SB	
Approach Move	ement			L	Т	R	L	T	R	L	Т	R	L	Т	R
Demand (v), v				156	1032	2 145	113	11;	32 105	197	96	101	179	77	147
Signal Informa	ation				Γ			4							
Cycle, s	120.0	Reference Phase	2		• ۳-	⋳⋬	- 🛃 1	Ξ,					4		· V
Offset, s	0	Reference Point	End	<u> </u>	F 0							1	Y 2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Green Yellow		1.4	66.2 4.5	8.5		60.0 0.0	_	7	\rightarrow	ĸ	4
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.5	0.0	1.0	0.5		0.0		5	6	7	8
T D k				EDI		EDT			MOT	ND		NDT	0.01	_	ODT
Timer Results				EBL		EBT	WB		WBT	NB		NBT	SBI		SBT
Assigned Phase	e			5	2		1	_	6	7	_	4		_	8
Case Number				1.1		3.0	1.1		3.0	1.0		4.0	<u> </u>		5.3
Phase Duration	-			10.2		73.1	8.8		71.7	12.0		38.1			26.1
Change Period		•		3.5	_	5.5	3.5	_	5.5	3.5		5.5			5.5
Max Allow Head	• •	,		3.0		0.0	3.0	_	0.0	3.1		3.4			3.4
Queue Clearan				6.4				5.2		10.5		13.2			19.3
Green Extensio		(ge), s		0.2		0.0	0.2		0.0						1.3
Phase Call Pro				0.99			0.98			1.00		1.00			1.00
Max Out Proba	bility			0.00			0.00)		1.00)	0.00			0.00
Movement Gro	oup Res	sults			EB			WE	3		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ement			5	2	12	1	6	16	7	4	14	3	8	18
Adjusted Flow I	Rate (v), veh/h		156	1032	145	113	113	2 105	197	197		179	77	147
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n	1810	1725	1598	1810	171	2 1610	1810	1739		1204	1900	1610
Queue Service	Time (g	g s), S		4.4	13.0	5.2	3.2	15.2	2 3.8	8.5	11.2		17.3	4.2	10.0
Cycle Queue C	learanc	e Time (g c), s		4.4	13.0	5.2	3.2	15.2	2 3.8	8.5	11.2		17.3	4.2	10.0
Green Ratio (g				0.61	0.56	0.56	0.60	0.55	5 0.55	0.26	0.27		0.17	0.17	0.17
Capacity (c), v	/eh/h			375	2916	900	383	283	3 888	372	473		267	327	277
Volume-to-Cap	acity Ra	ntio(X)		0.416	0.354	0.161	0.295	0.40	0 0.118	0.529	0.416		0.670	0.236	0.531
•		t/In (95 th percentile	e)	74.2	210.2	-	54.3	239	_	42.3	205.7		227.6	90.6	183.5
	. ,	eh/In (95 th percenti		3.0	8.4	3.3	2.2	9.5	2.4	1.7	8.2		9.1	3.6	7.3
	. ,	RQ) (95 th percent		0.00	0.00	0.00	0.00	0.00	_	0.00	0.00		0.00	0.00	0.00
Uniform Delay				11.5	14.3	12.6	11.4	15.5	_	38.4	35.9		48.3	42.9	45.3
-	cremental Delay ($d \neq j$, s/ven					0.4	0.2	0.4		0.7	0.2		1.1	0.1	0.6
Initial Queue D		,:		0.3	0.3	0.0	0.0	0.0	_	0.0	0.0		0.0	0.0	0.0
Control Delay (• •	,		11.8	14.6	13.0	11.6	15.9		39.1	36.1		49.4	43.0	45.9
Level of Service				В	В	B	В	В	В	D	D		D	D	D
Approach Dela				14.1		B	15.3		B	37.6	<u> </u>	D	46.9	<u> </u>	D
Intersection De							1.0						C		
	•														
Multimodal Re					EB	_		WE		<u> </u>	NB	-		SB	
Pedestrian LOS				1.90		В	2.09		B	2.72		C	2.73		С
Bicycle LOS Sc	core / LC	DS		1.22	2	А	1.23	3	A	1.14	1	A	1.15	5	Α

Copyright © 2025 University of Florida, All Rights Reserved.

HCS[™] Streets Version 2023

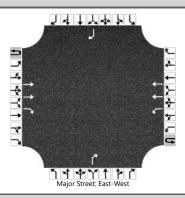

HCS Signalized Intersection Results Summary

		HCS	Sigr	alize	a inte	ersect	ion R	esul	ts Sun	nmary	/				
Concursting								1	laters -	tion in f	o ##** c 41			4444	b. L
General Inform	hation								Intersec			-		ĴΪĹ	* *
Agency						- 10 / 10			Duration		1.000				R.
Analyst		OR				e 5/21/2			Area Typ	e	Other				~▲ ← <mark>}-</mark>
Jurisdiction		CABQ		Time F		_	uild PM		PHF		1.00				+ + + +
Urban Street		Gibson Boulevard				2026			Analysis		1> 7:(00			5 F
Intersection		University and Gibs		File Na	ame	7 Univ	/ersity-C	Gibson	BO TOT	AL PM.:	xus			11	
Project Descrip	tion	Gibson In-N-Out BC) Total I	РМ									×	4144	<u>۲</u>
Demand Inform	nation				EB			W	3		NB			SB	
Approach Move				L	Т	R	L	Т	1	L	T	R	L	T	R
Demand (v), v				191	1260	_	92	212		180		73	152	57	151
	UN/II			101	1200	121	02	212	100	100	UT	10	102	01	101
Signal Informa	tion														
Cycle, s	130.0	Reference Phase	2	-	┝╸ҝ	±₹		Τ,		Ma			A		- Y
Offset, s	0	Reference Point	End	Green	47	0.0	73.1	12.				1	Y 2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Yellow		3.0	4.5	3.0		0.0	_	7	\rightarrow	K	
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.5	0.5	1.0	0.5		0.0		5	6	7	8
Timer Results				EBL	-	EBT	WB	L	WBT	NB		NBT	SBI	-	SBT
Assigned Phase	e			5		2	1		6	7		4			8
Case Number				1.1		3.0	1.1		3.0	1.0		4.0			5.3
Phase Duration		<u>``</u>		11.8		82.2	8.2		78.6	15.6	3	39.6			24.0
Change Period,	•			3.5		5.5	3.5		5.5	3.5		5.5			5.5
Max Allow Head	2 1	,		3.0		0.0	3.0		0.0	3.1		3.4			3.4
Queue Clearan		, = ,		8.0			4.8			12.8		11.4			17.4
Green Extensio		(ge),s		0.3		0.0		0.1 0.0 0.96		0.0		1.1	L		1.1
Phase Call Prol	-			1.00						1.00					1.00
Max Out Proba	bility			0.00)		1.00	0.00				0.00
Movement Gro	oup Res	sults		EB		EB		WB			NB			SB	
Approach Move	-			L	Т	R	L	Т	R	L	Т	R	1	T	R
Assigned Move				5	2	12	1	6	16	7	4	14	3	8	18
Adjusted Flow F) veh/h		191	1260	121	92	2121		180	157		152	57	151
		ow Rate (<i>s</i>), veh/h/l	n	1810	1725	1598	1810	1712	_	1810	1753		1249	1900	1610
Queue Service				6.0	17.2	4.4	2.8	40.0	-	10.8	9.4		15.4	3.4	11.5
Cycle Queue C		- ,		6.0	17.2	4.4	2.8	40.0		10.8	9.4		15.4	3.4	11.5
Green Ratio (g				0.64	0.59	0.59	0.60	0.56	_	0.25	0.26		0.14	0.14	0.14
Capacity (c), v				220	3052	942	319	2889	_	382	460		233	270	229
Volume-to-Capa		itio (X)		0.869	0.413	0.128	0.288	0.73		0.471	0.341		0.652	0.211	0.659
· · · · ·		t/In (95 th percentile)	160.5	262.7	70.1	48.1	543.		208.8	181.7		215.7	75.3	209.5
	. ,	eh/In (95 th percenti		6.4	10.5	2.8	1.9	21.6	_	8.4	7.3		8.6	3.0	8.4
	. ,	RQ) (95 th percent	,	0.00	0.00	0.00	0.00	0.00		0.00	0.00		0.00	0.00	0.00
Uniform Delay ((d1), s	/veh		28.4	14.5	11.8	12.2	21.2	14.1	40.6	38.8		54.4	49.3	52.8
	cremental Delay (<i>d</i> ²), s/veh					0.3	0.2	1.7	0.5	0.3	0.2		1.2	0.1	1.2
	itial Queue Delay (d_3), s/veh					0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Control Delay (d), s/ve	eh		32.6	14.9	12.1	12.4	22.9	14.6	41.0	39.0		55.6	49.4	54.0
Level of Service	e (LOS)			С	В	В	В	С	В	D	D		Е	D	D
Approach Delay	, s/veh	/LOS		16.8	3	В	21.9)	С	40.1	1	D	53.9)	D
Intersection Del	lay, s/ve	eh / LOS				23	3.9						С		
Multimodal Re					EB			WB			NB			SB	
Pedestrian LOS				1.89		В	2.09		В	2.73		С	2.74		С
Bicycle LOS Sc	ore / LC	DS		1.35	5	Α	1.8′	1	В	1.04	1	А	1.08	3	A

Copyright © 2025 University of Florida, All Rights Reserved.

HCS™ Streets Version 2023

	HCS Two-Way	y Stop-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson I 25 SB
Agency/Co.	Lee	Jurisdiction	СОА
Date Performed	5/31/2024	East/West Street	Gibson Boulevard
Analysis Year	2036	North/South Street	I 25 SB
Time Analyzed	Horizon BG MD	Peak Hour Factor	0.96
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		
Lanos			


Vehicle Volumes and Adjustments

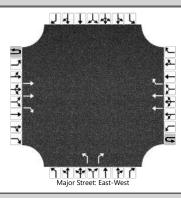
Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	1	0	1	2	0		0	0	1		0	0	1
Configuration			т	R		L	т					R				R
Volume (veh/h)			609	27	1	376	480					665				136
Percent Heavy Vehicles (%)					1	1						1				2
Proportion Time Blocked																
Percent Grade (%)						-					0			(0	
Right Turn Channelized		Ν	lo							Y	es		Yes			
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)					6.4	4.1						6.9				6.9
Critical Headway (sec)					6.42	4.12						6.92				6.93
Base Follow-Up Headway (sec)					2.5	2.2						3.3				3.3
Follow-Up Headway (sec)					2.51	2.21						3.31				3.32
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)						393						693				142
Capacity, c (veh/h)						0						682				751
v/c Ratio												1.02				0.19
95% Queue Length, Q ₉₅ (veh)												16.8				0.7
Control Delay (s/veh)												63.3				10.9
Level of Service (LOS)												F				В
Approach Delay (s/veh)		-								63	3.3			. 1().9	
Approach LOS	F B															

Copyright $\ensuremath{\mathbb{C}}$ 2025 University of Florida. All Rights Reserved.

HCSTM TWSC Version 2023 1 Gibson I25 SB Horizon Background MD.xtw

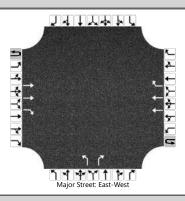
	Site Information						
AY	Intersection	Gibson I 25 SB					
Lee	Jurisdiction	COA					
5/31/2024	East/West Street	Gibson Boulevard					
2036	North/South Street	I 25 SB					
Horizon BG PM	Peak Hour Factor	0.95					
East-West	Analysis Time Period (hrs)	0.25					
Gibson In-N-Out	-	6					
	Lee 5/31/2024 2036 Horizon BG PM East-West	AY Intersection Lee Jurisdiction 5/31/2024 East/West Street 2036 North/South Street Horizon BG PM Peak Hour Factor East-West Analysis Time Period (hrs)					

Vehicle Volumes and Adjustments


Approach	T	Fasth	ound			West	oound			North	bound		Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	10	1	2	3	40	4	5	6		7	8	9		10	. 11	12	
Number of Lanes	0	0	2	1	0	1	2	0		0	0	1		0	0	1	
Configuration		Ű	T	R		L	T	0		-	Ű	R				R	
Volume (veh/h)			699	41	2	832	826					580				184	
Percent Heavy Vehicles (%)			033		0	0	020					0				3	
Proportion Time Blocked	-					Ŭ						, , , , , , , , , , , , , , , , , , ,					
Percent Grade (%)	-										0				0		
Right Turn Channelized		Ν	lo							Y	es			Y	es		
Median Type Storage				Undi	vided												
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)					6.4	4.1						6.9				6.9	
Critical Headway (sec)					6.40	4.10						6.90				6.96	
Base Follow-Up Headway (sec)					2.5	2.2						3.3				3.3	
Follow-Up Headway (sec)					2.50	2.20						3.30				3.33	
Delay, Queue Length, an	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)						878						611				194	
Capacity, c (veh/h)						767						635				567	
v/c Ratio						1.14						0.96				0.34	
95% Queue Length, Q ₉₅ (veh)						26.3						13.7				1.5	
Control Delay (s/veh)						101.0						52.3				14.6	
Level of Service (LOS)					F							F				В	
Approach Delay (s/veh)					50.8					52	2.3		14.6				
Approach LOS					F						F		В				

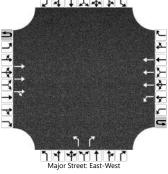
Copyright © 2025 University of Florida. All Rights Reserved.

HCSTM TWSC Version 2023 1 Gibson I25 SB Horizon Background PM.xtw


Generated: 1/6/2025 9:58:57 AM

	HCS Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson I 25 NB
Agency/Co.	Lee	Jurisdiction	СОА
Date Performed	5/31/2024	East/West Street	Gibson Boulevard
Analysis Year	2036	North/South Street	I 25 NB
Time Analyzed	Horizon BG MD	Peak Hour Factor	0.98
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		
Lanes			

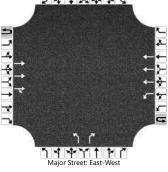
venicle volumes and Adj	ustine	nts																	
Approach		Eastb	ound			Westl	bound			North	bound			South	bound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R			
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12			
Number of Lanes	0	0	2	1	0	0	2	1		1	0	1		0	0	0			
Configuration			Т	R			Т	R		L		R							
Volume (veh/h)			1199	120			839	722		15		394							
Percent Heavy Vehicles (%)										1		1							
Proportion Time Blocked																			
Percent Grade (%)										(C								
Right Turn Channelized		No Yes								Y	es								
Median Type Storage		Undivided																	
Critical and Follow-up H	eadwa	ys																	
Base Critical Headway (sec)										7.5		6.9							
Critical Headway (sec)										7.52		6.92							
Base Follow-Up Headway (sec)										3.5		3.3							
Follow-Up Headway (sec)										3.51		3.31							
Delay, Queue Length, an	d Leve	l of Se	ervice											<u> </u>					
Flow Rate, v (veh/h)										15		402							
Capacity, c (veh/h)										66		439							
v/c Ratio										0.23		0.92							
95% Queue Length, Q ₉₅ (veh)										0.8		10.2							
Control Delay (s/veh)										75.9		55.4							
Level of Service (LOS)										F		F							
Approach Delay (s/veh)										56.2									
Approach LOS										F									


	HCS Two-Way	Stop-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson I 25 NB
Agency/Co.	Lee	Jurisdiction	СОА
Date Performed	5/31/2024	East/West Street	Gibson Boulevard
Analysis Year	2036	North/South Street	I 25 NB
Time Analyzed	Horizon BG PM	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		
Lanes			

Approach	1	Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	1	0	0	2	1		1	0	1		0	0	C
Configuration			Т	R			т	R		L		R				
Volume (veh/h)			1165	172			1604	1168		55		525				
Percent Heavy Vehicles (%)										0		0				
Proportion Time Blocked																
Percent Grade (%)										())					
Right Turn Channelized		Ν	lo			Y	es			Ye	es					
Median Type Storage				Undi	vided											
Critical and Follow-up He	eadwa	ys														
Base Critical Headway (sec)										7.5		6.9				
Critical Headway (sec)										7.50		6.90				
Base Follow-Up Headway (sec)										3.5		3.3				
Follow-Up Headway (sec)										3.50		3.30				
Delay, Queue Length, and	d Leve	l of Se	ervice	<u> </u>												
Flow Rate, v (veh/h)										58		553				
Capacity, c (veh/h)										32		440				
v/c Ratio										1.81		1.26				
95% Queue Length, Q ₉₅ (veh)										6.6		23.0				
Control Delay (s/veh)										653.1		159.5				
Level of Service (LOS)										F		F				
Approach Delay (s/veh)										20	6.3					
Approach LOS											F					

Copyright © 2025 University of Florida. All Rights Reserved.

	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson and Mulberry
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/21/2024	East/West Street	Gibson Boulevard
Analysis Year	2036	North/South Street	Mulberry Street
Time Analyzed	Horizon BG MD	Peak Hour Factor	0.99
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		
Lanes			

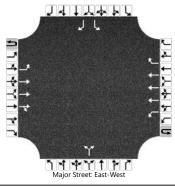

venicie volumes and Adj	ustine	1115														
Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	3	0	0	1	3	0		1	0	1		0	0	0
Configuration			Т	TR		L	Т			L		R				
Volume (veh/h)			1533	59	7	48	1511			46		58				
Percent Heavy Vehicles (%)					0	1				0		0				
Proportion Time Blocked																
Percent Grade (%)										. ())					
Right Turn Channelized										Ν	lo					
Median Type Storage				Left +	- ⊦ Thru								1			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)					5.6	5.3				6.4		7.1				
Critical Headway (sec)					5.60	5.32				5.70		7.10				
Base Follow-Up Headway (sec)					2.3	3.1				3.8		3.9				
Follow-Up Headway (sec)					2.30	3.11				3.80		3.90				
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)						56				46		59				
Capacity, c (veh/h)						206				88		282				
v/c Ratio						0.27				0.53		0.21				
95% Queue Length, Q ₉₅ (veh)						1.0				2.3		0.8				
Control Delay (s/veh)						28.7	6.9			85.1		21.0				
Level of Service (LOS)						D	A			F		С				
Approach Delay (s/veh)					7.7					49	9.4					
Approach LOS					A						E					

Copyright $\ensuremath{\mathbb{C}}$ 2025 University of Florida. All Rights Reserved.

HCSTM TWSC Version 2023 3 Gibson Mulberry Horizon Background MD.xtw

Generated: 1/6/2025 10:00:05 AM

HCS Two-Way Stop	-Control Report	
General InformationSite InformationAnalystAYIntersectionAgency/Co.LeeJurisdictionDate Performed5/21/2024East/West StreetAnalysis Year2036North/South StreetTime AnalyzedHorizon BG PMPeak Hour Factor		
AY	Intersection	Gibson and Mulberry
Lee	Jurisdiction	СОА
5/21/2024	East/West Street	Gibson Boulevard
2036	North/South Street	Mulberry Street
Horizon BG PM	Peak Hour Factor	0.95
East-West	Analysis Time Period (hrs)	0.25
Gibson In-N-Out		
	AY Lee 5/21/2024 2036 Horizon BG PM East-West Gibson In-N-Out	LeeJurisdiction5/21/2024East/West Street2036North/South StreetHorizon BG PMPeak Hour FactorEast-WestAnalysis Time Period (hrs)

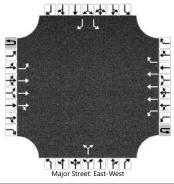


venicle volumes and Auj	ustine	iits														
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	3	0	0	1	3	0		1	0	1		0	0	0
Configuration			Т	TR		L	Т			L		R				
Volume (veh/h)			1603	83	5	35	2712			27		44				
Percent Heavy Vehicles (%)					0	0				0		0				
Proportion Time Blocked																
Percent Grade (%)		-									0					-
Right Turn Channelized										Ν	lo					
Median Type Storage				Left +	+ Thru								1			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)					5.6	5.3				6.4		7.1				
Critical Headway (sec)					5.60	5.30				5.70		7.10				
Base Follow-Up Headway (sec)					2.3	3.1				3.8		3.9				
Follow-Up Headway (sec)					2.30	3.10				3.80		3.90				
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)						42				28		46				
Capacity, c (veh/h)						173				60		250				
v/c Ratio						0.24				0.47		0.19				
95% Queue Length, Q ₉₅ (veh)						0.9				1.8		0.7				
Control Delay (s/veh)						32.3	7.6			109.1		22.7				
Level of Service (LOS)						D	A			F		С				
Approach Delay (s/veh)					8.0					. 55	5.5					-
Approach LOS					A						F					

Copyright $\ensuremath{\mathbb{C}}$ 2025 University of Florida. All Rights Reserved.

HCSTM TWSC Version 2023 3 Gibson Mulberry Horizon Background PM.xtw _

	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson and Alumni
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/21/2024	East/West Street	Gibson Boulevard
Analysis Year	2036	North/South Street	Alumni Drive
Time Analyzed	Horizon BG MD	Peak Hour Factor	0.97
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		
Lanes			


venicle volumes and Adj	ustine	1113															
Approach		Eastb	ound			West	oound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	1	3	0	0	1	3	1		0	1	0		1	0	1	
Configuration		L	Т	TR		L	Т	R			LR			L		R	
Volume (veh/h)	26	128	1397	56	3	44	1439	59		26		44		87		30	
Percent Heavy Vehicles (%)	0	0			0	0				0		0		0		0	
Proportion Time Blocked																	
Percent Grade (%)										. ())			. ()		
Right Turn Channelized			No											N	lo		
Median Type Storage				Left +	⊦ Thru				1								
Critical and Follow-up H	eadwa	dways															
Base Critical Headway (sec)	5.6	5.3			5.6	5.3				6.4		7.1		6.4		7.1	
Critical Headway (sec)	5.60	5.30			5.60	5.30				6.40		7.10		6.40		7.10	
Base Follow-Up Headway (sec)	2.3	3.1			2.3	3.1				3.8		3.9		3.8		3.9	
Follow-Up Headway (sec)	2.30	3.10			2.30	3.10				3.80		3.90		3.80		3.90	
Delay, Queue Length, an	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)		159				48					72			90		31	
Capacity, c (veh/h)		231				229					33			17		309	
v/c Ratio		0.69				0.21					2.17			5.21		0.10	
95% Queue Length, Q ₉₅ (veh)		4.4				0.8					8.2			11.9		0.3	
Control Delay (s/veh)		49.0				24.9					796.0			2340.6		17.9	
Level of Service (LOS)		E				С					F			F		С	
Approach Delay (s/veh)		. 4	.7		0.8					79	6.0		1745.0				
Approach LOS	A A						l	F		F							

Copyright © 2025 University of Florida. All Rights Reserved.

HCSTMI TWSC Version 2023 6 Gibson Alumni Horizon Background MD.xtw

Generated: 1/6/2025 10:00:42 AM

	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson and Alumni
Agency/Co.	Lee	Jurisdiction	СОА
Date Performed	5/21/2024	East/West Street	Gibson Boulevard
Analysis Year	2036	North/South Street	Alumni Drive
Time Analyzed	Horizon BG PM	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		
Lanes			

venicie volumes and Auj	ustine	1113																	
Approach	Eastbound Westbound									North	bound			South	bound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R			
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12			
Number of Lanes	0	1	3	0	0	1	3	1		0	1	0		1	0	1			
Configuration		L	Т	TR		L	Т	R			LR			L		R			
Volume (veh/h)	19	87	1507	32	5	41	2651	42		11		40		58		20			
Percent Heavy Vehicles (%)	0	0			0	0				0		3		0		0			
Proportion Time Blocked																			
Percent Grade (%))			. ()				
Right Turn Channelized		No												N	lo				
Median Type Storage		Left + Thru								1									
Critical and Follow-up H	eadwa	ys																	
Base Critical Headway (sec)	5.6	5.3			5.6	5.3				6.4		7.1		6.4		7.1			
Critical Headway (sec)	5.60	5.30			5.60	5.30				6.40		7.16		6.40		7.10			
Base Follow-Up Headway (sec)	2.3	3.1			2.3	3.1				3.8		3.9		3.8		3.9			
Follow-Up Headway (sec)	2.30	3.10			2.30	3.10				3.80		3.93		3.80		3.90			
Delay, Queue Length, an	d Leve	l of Se	ervice																
Flow Rate, v (veh/h)		112				48					54			61		21			
Capacity, c (veh/h)		53				203					0			7		114			
v/c Ratio		2.12				0.24								8.73		0.18			
95% Queue Length, Q ₉₅ (veh)		11.1				0.9								9.2		0.6			
Control Delay (s/veh)		685.9				28.2								4508.4		43.5			
Level of Service (LOS)		F				D								F		E			
Approach Delay (s/veh)			0.5							3363.6									
Approach LOS			F				Ą						F						

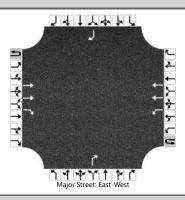
Copyright © 2025 University of Florida. All Rights Reserved.

HCSTM TWSC Version 2023 6 Gibson Alumni Horizon Background PM.xtw

Generated: 1/6/2025 10:00:59 AM

HCS Signalized Intersection Results Summary

		s Sigi	Idlize	u mu	ersect		esu	115 3	Sum	imary	,						
Concret Information				Intersection Information							T D	ا مهيله له ا	la L				
General Information													Í	ΊŤΓ			
Agency	0.0			·	E 10 4 10	004			ation,		1.000				2		
Analyst	OR				e 5/21/2				e	Other							
Jurisdiction	CABQ		Time F			DU RG IV				D · 1	1.00			9 9			
Urban Street	Gibson Boulevard		Analysis Year 2036 Analysis File Name 7 University-Gibson Horizon								1> 7:0						
Intersection	University and Gibs		File Na	ame		/ersity-C	bso	n Hoi	rizon I	Backgro	ound MI	J.xus	- 1	ጎዮ			
Project Description	Gibson In-N-Out Ho	orizon B	IG MD											<1	7 4		
Demand Information				EB			W	/B		1	NB			SB			
Approach Movement	Approach Movement			Т	R	L	T -	Г	R	L	Т	R	L	Т	R		
Demand (v), veh/h	Demand (<i>v</i>), veh/h			113	3 161	126	12	253	118	257	127	131	233	103	190		
			11	1									1				
Signal Information		2								<u>д</u>		sta					
Cycle, s 120.0	Reference Phase	2	-		'R	- 📑 '		S17	- M	78	-	1		3	Y ₄		
Offset, s 0	Reference Point	End	Green Yellow		1.7	56.5	8.		29.0	0.0			5	_	T		
Uncoordinated No	Simult. Gap E/W				0.0	4.5	3.		4.0	0.0			Y		VD		
Force Mode Fixed	Simult. Gap N/S	imult. Gap N/S On F				1.0	0.:	5	1.5	0.0		5	6	7	8		
Timer Results						WB	1	WE	BT	NBI		NBT	SBI		SBT		
Assigned Phase					EBT 2	1		6		7		4			8		
Case Number					3.0	1.1	-	3.0	_	1.0		4.0	<u> </u>		5.3		
Phase Duration, s					63.7	9.8		62	_	12.0		4.0 46.5			34.5		
Change Period, (Y+R	-) 0		11.5 3.5		5.5	3.5		5.		3.5		5.5			5.5		
Max Allow Headway (·		3.0		0.0	3.0		0.0		3.1	3.4				3.4		
Queue Clearance Time			7.8		0.0	6.3				10.5					27.5		
Green Extension Time			0.2		0.0	0.1		0	0.0 0.0		1.9				1.5		
Phase Call Probability	(=)		1.00		0.0	0.99		0.		1.00					1.00		
Max Out Probability			0.00			0.00				1.00		0.00			0.13		
Movement Group Re	sults			EB			WE	3			NB			SB	1		
Approach Movement			L	Т	R	L	Т		R	L	Т	R	L	Т	R		
Assigned Movement			5	2	12	1	6	_	16	7	4	14	3	8	18		
Adjusted Flow Rate (v			172	1133		126	125	_	118	257	258		233	103	190		
Adjusted Saturation FI		n	1810	1725	-	1810	171	_	610	1810	1741		1139	1900	1610		
Queue Service Time (- ,		5.8	17.3	6.9	4.3	20.		5.0	8.5	13.7		23.8	5.2	12.2		
Cycle Queue Clearance	æ Time (<i>g c</i>), s		5.8	17.3	6.9	4.3	20.		5.0	8.5	13.7		25.5	5.2	12.2		
Green Ratio (g/C)			0.54	0.48	0.48	0.52	0.4	_).47	0.33	0.34		0.24	0.24	0.24		
Capacity (<i>c</i>), veh/h			316	2510	_	319	241		758	449	595		319	459	389		
Volume-to-Capacity Ra Back of Queue (Q),			0.545	0.451	_	0.396	0.51		.156	0.573	0.434		0.730 287.1	0.224	0.489		
Back of Queue (Q), I Back of Queue (Q), v	· ·	,	102.8 4.1	274.1	116.3 4.6	76.2 3.0	317 12.	_	85 3.4	103.7 4.1	239.4 9.6		11.5	111.4 4.5	8.5		
			4.1	0.00	0.00	0.00	0.0		3.4).00	4.1 0.00	9.0		0.00	4.5	0.00		
Uniform Delay (<i>d</i> 1), s	eue Storage Ratio (<i>RQ</i>) (95 th percentile)			20.4	17.7	16.4	22.	_	18.1	34.2	30.5		45.0	36.5	39.1		
			17.0 0.5	0.6	0.6	0.3	0.8	_	0.4	34.Z	0.2		45.0 3.9	0.1	0.4		
Incremental Delay (<i>d</i> ₂), s/veh Initial Queue Delay (<i>d</i> ȝ), s/veh			0.0	0.0	0.0	0.3	0.0		0.4	0.0	0.2		0.0	0.1	0.4		
Control Delay (<i>d</i>), s/veh			17.5	21.0	18.3	16.7	23.	_	18.6	35.3	30.7		48.9	36.6	39.5		
Level of Service (LOS)			B	21.0 C	B	B	23. C		B	D	C		-+0.9 D	D	D		
· · · · · · · · · · · · · · · · · · ·	Approach Delay, s/veh / LOS			3	C	22.	<u> </u>	C		33.0		С	43.1		D		
	Intersection Delay, s/veh / LOS					5.6							43.1 D C				
	-					-							~				
Multimodal Results	Multimodal Results			EB		WB					NB	SB					
Pedestrian LOS Score	/LOS		1.91		В	2.10)	В	3	2.71		С	2.72	2	С		
Bicycle LOS Score / Lo	OS		1.29)	А	1.3	1	A	4	1.34		А	1.36	6	А		

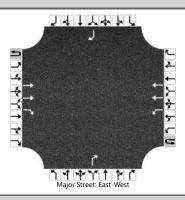

Copyright © 2025 University of Florida, All Rights Reserved.

HCS[™] Streets Version 2023

HCS Signalized Intersection Results Summary

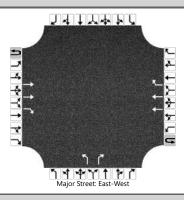
		HCS	5 Sigr	nalized	d Inte	ersect	ion R	esu	its Si	ımı	mary	'					
General Inform	nation								Intore	octi	on Inf	ormatio	'n		4	b L	
	lation								Durati			1.000			711		
Agency		OR		Analya	ia Date	E/01/	0004					Other				R 2.	
Analyst Jurisdiction		CABQ		Time F		e 5/21/2		024 Area Type n BG PM PHF			;	1.00			wie.		
) a wi a al	_	20			← ←			
Urban Street		Gibson Boulevard		Analysis Year 2036 Analysis Pe								1> 7:0				r i	
Intersection	4:	University and Gibs			File Name 7 University-Gibson Horizon Background PM.xus									_	11	1. 1	
Project Descrip	tion	Gibson In-N-Out Ho	FIZON B	GPM									<u>14147777</u>				
Demand Inform	nation				EB			N	/B			NB			SB		
Approach Move	Approach Movement				Т	R	L	-	Г І	R	L	T	R	L	Т	R	
Demand (v), v	emand(v), veh/h			212	1392	2 136	102	23	58 2	10	236	110	95	198	76	197	
	4!			Г		-					_	_					
Signal Informa				ا ها. ها ا											r†7		
Cycle, s	130.0	Reference Phase	2		Γ •	'R	- F 2 '		S47	R M			1		3	Y ₄	
Offset, s	0	Reference Point	End	Green		3.6	62.9	12		4.3	0.0			5		1	
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.0 0.5	3.0	4.5	3.		.0	0.0			V	\mathbf{N}	Φ	
Force Mode	Fixed	Simult. Gap N/S	mult. Gap N/S On R			0.5	1.0	0.	5 1	.5	0.0		5	6	7	8	
Timer Results						EBT	WB	I	WBT	· .	NBL		NBT	SBL		SBT	
Assigned Phase						2	1	-	6	÷	7	-	4		-	8	
Case Number	<u> </u>					3.0	1.1	-	3.0	+	1.0		4.0			5.3	
Phase Duration	1.5	s			,	75.5	9.1		68.4	T	15.6		45.4			29.8	
	nge Period, (Y+ R_c), s			16.2 3.5		5.5	3.5		5.5	+	3.5		5.5			5.5	
Max Allow Head	· ·	,		3.0		0.0		3.0 0.0		T	3.1		3.4			3.4	
Queue Clearan	2 ,	·		12.5	;			5.7			14.1	13.9				23.0	
Green Extensio		, _ ,		0.2		0.0	0.1		0.0	0.0 0.0						1.3	
Phase Call Pro				1.00	,		0.97	7			1.00) 1.00				1.00	
Max Out Proba	bility			0.00)		0.00				1.00	0.00				0.05	
Movement Gro		ulto			EB			W	5	-		NB			SB		
Approach Move	-	Suits		L	Т	R	L	T	R	÷	L	T	R	L	T	R	
Assigned Move				5	2	12	1	6	16		7	4	14	3	8	18	
Adjusted Flow I) veh/h		212	1392	136	102	235			236	205	14	198	76	197	
-		ow Rate (s), veh/h/l	n	1810	1725	1598	1810	171	_		1810	1754		1196	1900	1610	
Queue Service			1	10.5	22.1	5.6	3.7	57.			12.1	11.9		21.0	4.4	14.7	
Cycle Queue C		- ,		10.5	22.1	5.6	3.7	57.	_		12.1	11.9		21.0	4.4	14.7	
Green Ratio (g		e fille (g ;), s		0.60	0.54	0.54	0.53	0.4			0.30	0.31		0.19	0.19	0.19	
Capacity (c), v	· ·			239	2787	860	273	248			429	538		279	355	301	
Volume-to-Cap		itio (X)		0.885	0.499		0.374	0.94	_		0.550	0.381		0.710	0.214	0.655	
· · ·	-	t/In (95 th percentile)	301.7	331	92.3	66.7	827			253.6	218.9		268.2	95.7	252.6	
		eh/In (95 th percenti		12.1	13.2	3.7	2.7	32.			10.1	8.8		10.7	3.8	10.1	
	· /·	RQ) (95 th percent	,	0.00	0.00	0.00	0.00	0.0			0.00	0.00		0.00	0.00	0.00	
	niform Delay (d_1), s/veh			40.6	18.9	15.1	16.9	32.	0 19.	9	38.0	35.4		51.5	44.8	49.0	
Incremental De	Incremental Delay (<i>d</i> ²), s/veh			13.4	0.6	0.4	0.3	11.	9 0.9	9	0.9	0.2		2.6	0.1	0.9	
Initial Queue Delay (d ȝ), s/veh				0.0	0.0	0.0	0.0	0.0) 0.0)	0.0	0.0		0.0	0.0	0.0	
Control Delay (<i>d</i>), s/veh				54.0	19.6	15.5	17.2	44.	0 20.	8	38.9	35.5		54.1	44.9	49.9	
Level of Service (LOS)				D	В	В	В	D	С		D	D		D	D	D	
<u> </u>	Approach Delay, s/veh / LOS			23.5		С	41.1	1	D		37.3		D	50.8	3	D	
Intersection De	Intersection Delay, s/veh / LOS					3	5.9					D					
Mark								1.4.4	_			NID	0.0				
Multimodal Re		/1.02		4.00	EB	P	0.44	W		_	0.70	NB		_		SB	
Pedestrian LOS				1.90		B	2.10	_	B	-	2.72	_	C	2.73		C	
Bicycle LOS So	Jore / LC	10		1.44		A	1.96	5	В		1.22		A	1.26)	A	

	HCS Two-Way	Stop-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson I 25 SB
Agency/Co.	Lee	Jurisdiction	СОА
Date Performed	5/31/2024	East/West Street	Gibson Boulevard
Analysis Year	2036	North/South Street	I 25 SB
Time Analyzed	Horizon Total MD	Peak Hour Factor	0.96
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		
Lanos			


Vehicle Volumes and Adjustments

Approach	Eastbound Westbound										bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	2	1	0	1	2	0		0	0	1		0	0	1	
Configuration			Т	R		L	т					R				R	
Volume (veh/h)			608	27	1	372	480					704				136	
Percent Heavy Vehicles (%)					1	1						1				2	
Proportion Time Blocked																	
Percent Grade (%)		1							()			()			
Right Turn Channelized	No									Ye	es			Ye	es		
Median Type Storage	Undivided								· · · · · · · · · · · · · · · · · · ·								
Critical and Follow-up He	adwa	ys															
Base Critical Headway (sec)					6.4	4.1						6.9				6.9	
Critical Headway (sec)					6.42	4.12						6.92				6.93	
Base Follow-Up Headway (sec)					2.5	2.2						3.3				3.3	
Follow-Up Headway (sec)					2.51	2.21						3.31				3.32	
Delay, Queue Length, and	l Leve	l of Se	ervice														
Flow Rate, v (veh/h)						389						733				142	
Capacity, c (veh/h)						0						682				751	
v/c Ratio												1.08				0.19	
95% Queue Length, Q ₉₅ (veh)												20.1				0.7	
Control Delay (s/veh)												80.5				10.9	
Level of Service (LOS)												F				В	
Approach Delay (s/veh)										. 80).5		10.9				
Approach LOS										I	=		В				

Copyright $\ensuremath{\mathbb{C}}$ 2025 University of Florida. All Rights Reserved.


HCS 1 TWSC Version 2023 1 Gibson 125 SB Horizon TOTAL MD.xtw

	HCS Two-Way S	top-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson I 25 SB
Agency/Co.	Lee	Jurisdiction	СОА
Date Performed	5/31/2024	East/West Street	Gibson Boulevard
Analysis Year	2036	North/South Street	I 25 SB
Time Analyzed	Horizon Total PM	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		
Lanas	· · · ·		

Approach	Eastbound Westbound										bound			South	bound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R			
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12			
Number of Lanes	0	0	2	1	0	1	2	0		0	0	1		0	0	1			
Configuration			т	R		L	т					R				R			
Volume (veh/h)			697	41	2	832	823					634				184			
Percent Heavy Vehicles (%)					0	0						0				3			
Proportion Time Blocked																			
Percent Grade (%)											C			(0	-			
Right Turn Channelized		No									es			Y	es				
Median Type Storage		Undivided																	
Critical and Follow-up H	eadwa	ys																	
Base Critical Headway (sec)					6.4	4.1						6.9				6.9			
Critical Headway (sec)					6.40	4.10						6.90				6.96			
Base Follow-Up Headway (sec)					2.5	2.2						3.3				3.3			
Follow-Up Headway (sec)					2.50	2.20						3.30				3.33			
Delay, Queue Length, an	d Leve	l of Se	ervice		<u>.</u>									<u>.</u>					
Flow Rate, v (veh/h)						878						667				194			
Capacity, c (veh/h)						0						636				568			
v/c Ratio												1.05				0.34			
95% Queue Length, Q ₉₅ (veh)												17.9				1.5			
Control Delay (s/veh)												74.7				14.6			
Level of Service (LOS)												F				В			
Approach Delay (s/veh)										74	1.7		14.6						
Approach LOS											F		В						

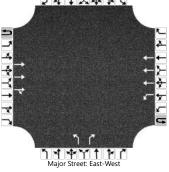
	HCS Two-Wa	ay Stop-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson I 25 NB
Agency/Co.	Lee	Jurisdiction	СОА
Date Performed	5/31/2024	East/West Street	Gibson Boulevard
Analysis Year	2036	North/South Street	I 25 NB
Time Analyzed	Horizon Total MD	Peak Hour Factor	0.98
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		
Lanes			

Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	1	0	0	2	1		1	0	1		0	0	0
Configuration			Т	R			т	R		L		R				
Volume (veh/h)			1193	120			835	713		18		390				
Percent Heavy Vehicles (%)										1		1				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized		Ν	lo			Y	es			Ye	es					
Median Type Storage				Undi	vided											
Critical and Follow-up He	eadwa	ys														
Base Critical Headway (sec)										7.5		6.9				
Critical Headway (sec)										7.52		6.92				
Base Follow-Up Headway (sec)										3.5		3.3				
Follow-Up Headway (sec)										3.51		3.31				
Delay, Queue Length, and	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)										18		398				
Capacity, c (veh/h)										66		441				
v/c Ratio										0.28		0.90				
95% Queue Length, Q ₉₅ (veh)										1.0		9.8				
Control Delay (s/veh)										78.7		52.8				
Level of Service (LOS)										F		F				
Approach Delay (s/veh)										54	1.0					
Approach LOS											=					

Copyright $\ensuremath{\mathbb{C}}$ 2025 University of Florida. All Rights Reserved.

HCSTM TWSC Version 2023 2 Gibson I25 NB Horizon TOTAL MD.xtw

	HCS Two-Wa	y Stop-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson I 25 NB
Agency/Co.	Lee	Jurisdiction	СОА
Date Performed	5/31/2024	East/West Street	Gibson Boulevard
Analysis Year	2036	North/South Street	I 25 NB
Time Analyzed	Horizon Total PM	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		
Lanes			

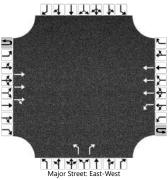


Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	1	0	0	2	1		1	0	1		0	0	0
Configuration			Т	R			т	R		L		R				
Volume (veh/h)			1160	172			1601	1159		55		522				
Percent Heavy Vehicles (%)										0		0				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized		Ν	lo			Ye	es			Ye	es					
Median Type Storage				Undi	vided											
Critical and Follow-up He	eadwa	ys														
Base Critical Headway (sec)										7.5		6.9				
Critical Headway (sec)										7.50		6.90				
Base Follow-Up Headway (sec)										3.5		3.3				
Follow-Up Headway (sec)										3.50		3.30				
Delay, Queue Length, and	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)	Γ									58		549				
Capacity, c (veh/h)										32		442				
v/c Ratio										1.79		1.24				
95% Queue Length, Q ₉₅ (veh)										6.5		22.6				
Control Delay (s/veh)										641.4		154.7				
Level of Service (LOS)										F		F				
Approach Delay (s/veh)										20	1.1					
Approach LOS										F	=					

Copyright $\ensuremath{\mathbb{C}}$ 2025 University of Florida. All Rights Reserved.

HCSTM TWSC Version 2023 2 Gibson I25 NB Horizon TOTAL PM.xtw

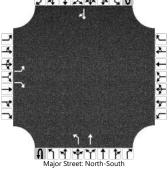
	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson and Mulberry
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/21/2024	East/West Street	Gibson Boulevard
Analysis Year	2036	North/South Street	Mulberry Street
Time Analyzed	Horizon Total MD	Peak Hour Factor	0.99
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		
Lanes			



venicie volumes and Adj	ustine	1115														
Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	3	0	0	1	3	0		1	0	1		0	0	0
Configuration			Т	TR		L	Т			L		R				
Volume (veh/h)			1522	59	7	49	1497			46		58				
Percent Heavy Vehicles (%)					0	1				0		0				
Proportion Time Blocked																
Percent Grade (%)										. ())					
Right Turn Channelized										Ν	lo					
Median Type Storage				Left +	- ⊦ Thru								1			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)					5.6	5.3				6.4		7.1				
Critical Headway (sec)					5.60	5.32				5.70		7.10				
Base Follow-Up Headway (sec)					2.3	3.1				3.8		3.9				
Follow-Up Headway (sec)					2.30	3.11				3.80		3.90				
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)						57				46		59				
Capacity, c (veh/h)						209				89		285				
v/c Ratio						0.27				0.52		0.21				
95% Queue Length, Q ₉₅ (veh)						1.1				2.3		0.8				
Control Delay (s/veh)						28.5	6.9			83.1		20.9				
Level of Service (LOS)						D	A			F		С				
Approach Delay (s/veh)						. 7	.6			48	3.4					
Approach LOS							4				E					

Copyright $\ensuremath{\mathbb{C}}$ 2025 University of Florida. All Rights Reserved.

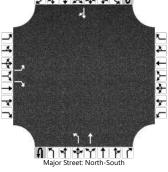
	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson and Mulberry
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/21/2024	East/West Street	Gibson Boulevard
Analysis Year	2036	North/South Street	Mulberry Street
Time Analyzed	Horizon Total PM	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		
Lanes			


Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	3	0	0	1	3	0		1	0	1		0	0	0
Configuration			Т	TR		L	Т			L		R				
Volume (veh/h)			1596	83	5	35	2700			27		45				
Percent Heavy Vehicles (%)					0	0				0		0				
Proportion Time Blocked																
Percent Grade (%)										())					
Right Turn Channelized										N	lo					
Median Type Storage				Left +	- Thru								1			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)					5.6	5.3				6.4		7.1				
Critical Headway (sec)					5.60	5.30				5.70		7.10				
Base Follow-Up Headway (sec)					2.3	3.1				3.8		3.9				
Follow-Up Headway (sec)					2.30	3.10				3.80		3.90				
Delay, Queue Length, an	d Leve	l of Se	ervice						<u> </u>							
Flow Rate, v (veh/h)						42				28		47				
Capacity, c (veh/h)						175				61		251				
v/c Ratio						0.24				0.46		0.19				
95% Queue Length, Q ₉₅ (veh)						0.9				1.8		0.7				
Control Delay (s/veh)						32.0	7.5			107.2		22.6				
Level of Service (LOS)						D	А			F		С				
Approach Delay (s/veh)						. 7	.9			- 54	1.4					
Approach LOS							4			I	F					

Copyright $\ensuremath{\mathbb{C}}$ 2025 University of Florida. All Rights Reserved.

HCSTM TWSC Version 2023 3 Gibson Mulberry Horizon TOTAL PM.xtw

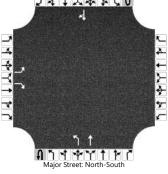
Generated: 1/6/2025 10:08:17 AM


	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Alumni Site DWY 1
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/31/2024	East/West Street	Site DWY 1
Analysis Year	2036	North/South Street	Alumni Drive
Time Analyzed	Horizon Total MD	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		
Lanes			
		UJA	

Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		1	0	1		0	0	0	0	1	1	0	0	0	1	0
Configuration		L		R						L	Т					TR
Volume (veh/h)		8		17						80	7				4	11
Percent Heavy Vehicles (%)	1	3		3						3						
Proportion Time Blocked																
Percent Grade (%)		()	•						•						
Right Turn Channelized		Ν	lo													
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys							-							
Base Critical Headway (sec)		7.1		6.2						4.1						
Critical Headway (sec)		6.43		6.23						4.13						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.53		3.33						2.23						
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)	Τ	9		18						87						
Capacity, c (veh/h)		751		1068						1595						
v/c Ratio		0.01		0.02						0.05						
95% Queue Length, Q ₉₅ (veh)		0.0		0.1						0.2						
Control Delay (s/veh)		9.8		8.4						7.4						
Level of Service (LOS)		Α		Α						Α						
Approach Delay (s/veh)		. 8	.9							- 6	.8					
Approach LOS			4								4					

HCSTM TWSC Version 2023 4 Alumni Site DWY 1 Horizon TOTAL MD.xtw

	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Alumni Site DWY 2
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/31/2024	East/West Street	Site DWY 2
Analysis Year	2036	North/South Street	Alumni Drive
Time Analyzed	Horizon Total PM	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		
Lanes			
		ULI	

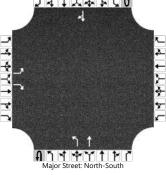


Approach		Eastb	ound			West	ound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		1	0	1		0	0	0	0	1	1	0	0	0	1	0
Configuration		L		R						L	т					TF
Volume (veh/h)		5		11						58	4				3	7
Percent Heavy Vehicles (%)		3		3						3						
Proportion Time Blocked																
Percent Grade (%)		. ()													
Right Turn Channelized		N	0													
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys							-							
Base Critical Headway (sec)		7.1		6.2						4.1						
Critical Headway (sec)		6.43		6.23						4.13						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.53		3.33						2.23						
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		5		12						63						
Capacity, c (veh/h)		820		1072						1602						
v/c Ratio		0.01		0.01						0.04						
95% Queue Length, Q ₉₅ (veh)		0.0		0.0						0.1						
Control Delay (s/veh)		9.4		8.4						7.3						
Level of Service (LOS)		А		А						Α						
Approach Delay (s/veh)		8	.7							- 6	.9					
Approach LOS		1	4							/	4					

Copyright $\ensuremath{\mathbb{C}}$ 2025 University of Florida. All Rights Reserved.

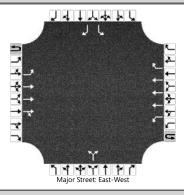
HCSTM TWSC Version 2023 4 Alumni Site DWY 1 Horizon TOTAL PM.xtw

	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Alumni Site DWY 3
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/31/2024	East/West Street	Site DWY 3
Analysis Year	2036	North/South Street	Alumni Drive
Time Analyzed	Horizon Total MD	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		
Lanes			
		U J J	



Approach		Eastb	ound			West	bound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		1	0	1		0	0	0	0	1	1	0	0	0	1	0	
Configuration		L		R						L	Т					TR	
Volume (veh/h)		14		101						50	73				17	4	
Percent Heavy Vehicles (%)		3		3						3							
Proportion Time Blocked																	
Percent Grade (%)		. ()														
Right Turn Channelized		Ν	lo														
Median Type Storage				Undi	vided												
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)		7.1		6.2						4.1							
Critical Headway (sec)		6.43		6.23						4.13							
Base Follow-Up Headway (sec)		3.5		3.3						2.2							
Follow-Up Headway (sec)		3.53		3.33						2.23							
Delay, Queue Length, an	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)		15		110						54							
Capacity, c (veh/h)		751		1054						1586							
v/c Ratio		0.02		0.10						0.03							
95% Queue Length, Q ₉₅ (veh)		0.1		0.3						0.1							
Control Delay (s/veh)		9.9		8.8						7.4							
Level of Service (LOS)		Α		Α						А							
Approach Delay (s/veh)		. 8	.9							3	.0						
Approach LOS			4							ŀ	4						

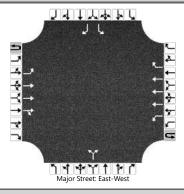
Copyright $\ensuremath{\mathbb{C}}$ 2025 University of Florida. All Rights Reserved.


HCSTM TWSC Version 2023 5 Alumni Site DWY 2 Horizon TOTAL MD.xtw

	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Alumni Site DWY 3
Agency/Co.	Lee	Jurisdiction	СОА
Date Performed	5/31/2024	East/West Street	Site DWY 3
Analysis Year	2036	North/South Street	Alumni Drive
Time Analyzed	Horizon Total PM	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		
Lanes			
		4.4	

Approach		Eastb	ound			West	ound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		1	0	1		0	0	0	0	1	1	0	0	0	1	0	
Configuration		L		R						L	Т					TR	
Volume (veh/h)		10		71						37	52				11	3	
Percent Heavy Vehicles (%)		3		3						3							
Proportion Time Blocked																	
Percent Grade (%)		. ()														
Right Turn Channelized		N	0														
Median Type Storage				Undi	vided												
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)		7.1		6.2						4.1							
Critical Headway (sec)		6.43		6.23						4.13							
Base Follow-Up Headway (sec)		3.5		3.3						2.2							
Follow-Up Headway (sec)		3.53		3.33						2.23							
Delay, Queue Length, an	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)		11		77						40							
Capacity, c (veh/h)		818		1064						1596							
v/c Ratio		0.01		0.07						0.03							
95% Queue Length, Q ₉₅ (veh)		0.0		0.2						0.1							
Control Delay (s/veh)		9.5		8.6						7.3							
Level of Service (LOS)		А		Α						А							
Approach Delay (s/veh)		8	.7							3	.0						
Approach LOS		ļ	4							/	4						

	HCS Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson and Alumni
Agency/Co.	Lee	Jurisdiction	СОА
Date Performed	5/21/2024	East/West Street	Gibson Boulevard
Analysis Year	2036	North/South Street	Alumni Drive
Time Analyzed	Horizon Total MD	Peak Hour Factor	0.97
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		
Lanes			



			ound		1					N La utila	ام م ر به ما			Cauth		
Approach							bound	_			bound	_		1	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	3	0	0	1	3	1		0	1	0		1	0	1
Configuration		L	Т	TR		L	Т	R			LR			L		R
Volume (veh/h)	26	117	1397	56	3	44	1400	83		26		44		76		112
Percent Heavy Vehicles (%)	0	0			0	0				0		0		0		0
Proportion Time Blocked																
Percent Grade (%)											0			()	
Right Turn Channelized						Ν	lo							N	lo	
Median Type Storage				Left +	- ⊦ Thru								1			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)	5.6	5.3			5.6	5.3				6.4		7.1		6.4		7.1
Critical Headway (sec)	5.60	5.30			5.60	5.30				6.40		7.10		6.40		7.10
Base Follow-Up Headway (sec)	2.3	3.1			2.3	3.1				3.8		3.9		3.8		3.9
Follow-Up Headway (sec)	2.30	3.10			2.30	3.10				3.80		3.90		3.80		3.90
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		147				48					72			78		115
Capacity, c (veh/h)		226				229					28			20		319
v/c Ratio		0.65				0.21					2.56			3.90		0.36
95% Queue Length, Q ₉₅ (veh)		4.0				0.8					8.6			10.2		1.6
Control Delay (s/veh)		46.4				24.9					1001.4			1694.7		22.6
Level of Service (LOS)		E				С					F			F		С
Approach Delay (s/veh)		. 4	.2			. 0	.8			100	01.4		698.5			
Approach LOS			4				4				F					

Copyright © 2025 University of Florida. All Rights Reserved.

HCS TM TWSC Version 2023 6 Gibson Alumni Horizon TOTAL MD.xtw

	HCS Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson and Alumni
Agency/Co.	Lee	Jurisdiction	СОА
Date Performed	5/21/2024	East/West Street	Gibson Boulevard
Analysis Year	2036	North/South Street	Alumni Drive
Time Analyzed	Horizon Total PM	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		
Lanes			

venicie volumes and Au													1			
Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	3	0	0	1	3	1		0	1	0		1	0	1
Configuration		L	Т	TR		L	Т	R			LR			L		R
Volume (veh/h)	19	80	1508	32	5	41	2623	59		11		40		53		76
Percent Heavy Vehicles (%)	0	0			0	0				0		3		0		0
Proportion Time Blocked																
Percent Grade (%)		-		-		-	-			()			()	-
Right Turn Channelized						Ν	10							N	0	
Median Type Storage				Left +	- ⊦ Thru								1			
Critical and Follow-up H	eadwa	ys							-							
Base Critical Headway (sec)	5.6	5.3			5.6	5.3				6.4		7.1		6.4		7.1
Critical Headway (sec)	5.60	5.30			5.60	5.30				6.40		7.16		6.40		7.10
Base Follow-Up Headway (sec)	2.3	3.1			2.3	3.1				3.8		3.9		3.8		3.9
Follow-Up Headway (sec)	2.30	3.10			2.30	3.10				3.80		3.93		3.80		3.90
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		104				48					54			56		80
Capacity, c (veh/h)		46				202					0			7		117
v/c Ratio		2.26				0.24								7.52		0.68
95% Queue Length, Q ₉₅ (veh)		10.9				0.9								8.5		3.6
Control Delay (s/veh)		766.4				28.3								3907.9		85.3
Level of Service (LOS)		F				D								F		F
Approach Delay (s/veh)		. 46	5.3			. 0	.5						1655.8			
Approach LOS			F				Ą									

Γ

		HCS	S Sigr	nalize	d Inte	ersect	ion R	esu	Its S	Sum	mary	,				
	4!								Inte				-		4 나 4 +	L.T.
General Inforn	hation								<u> </u>			ormatio		Í	ΊŤΓ	
Agency						E 10 4 10	004			ation,		1.000				
Analyst				-		e 5/21/2				а Туре -	e	Other				
Jurisdiction		CABQ		Time F		MD	on Full E	suild	PHF			1.00			W + E	
Urban Street		Gibson Boulevard		Analys	sis Yea	r 2036			1		Period	1> 7:0			5.6	
Intersection		University and Gibs		File Na	ame	7 Univ	/ersity-0	Sibso	n Hor	rizon ⁻	TOTAL	MD.xus		ň	4144	7 4
Project Descrip	tion	Gibson In-N-Out Ho	orizon To	otal MD												
Demand Inform	nation				EB			W	/B			NB			SB	
Approach Move	ement			L	Т	R	L	Τ-	Г	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			165	1128	3 161	126	12	39	122	211	127	131	233	103	189
				<u> -</u>	_	_				1 - 11 2						
Signal Informa			-	-	La.					etta						rta.
Cycle, s	120.0	Reference Phase	2		Γ.	R	- F 3 '		S17	- Tî	7				3	\mathbf{Y}_{4}
Offset, s	0	Reference Point	End	Green		1.5	56.7	8.	5	29.0	0.0			<u>~</u>		T
Uncoordinated	No	Simult. Gap E/W	On	Yellow		0.0	4.5	3.		4.0	0.0					47
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.5	0.0	1.0	0.:	5	1.5	0.0	_	5	6	7	8
Timer Results				EBL	_	EBT	WB	L	WE	BT	NBL	_	NBT	SBL	_	SBT
Assigned Phase	е			5		2	1		6	;	7		4			8
Case Number				1.1		3.0	1.1		3.0	0	1.0		4.0			5.3
Phase Duration	I, S			11.3	;	63.7	9.8		62.	.2	12.0) 4	46.5			34.5
Change Period	ange Period,(Y+R c), s			3.5		5.5	3.5		5.	5	3.5		5.5			5.5
Max Allow Hea	dway(/	<i>MAH</i>), s		3.0		0.0	3.0		0.0	0	3.1		3.4			3.4
Queue Clearan	ce Time	e (g s), s		7.6			6.3				10.5	5	15.7			27.5
Green Extensio	n Time	(ge), s		0.2		0.0	0.1		0.0	0	0.0		1.9			1.5
Phase Call Pro	bability			1.00)		0.99)			1.00)	1.00			1.00
Max Out Proba	bility			0.00)		0.00)			1.00) (0.00			0.13
Movement Gro		sulte			EB			W	2	-		NB			SB	
Approach Move		Juito			T	R	L	T	, 	R	1	T	R		Т	R
Assigned Move				5	2	12	1	6	+	16	7	4	14	3	8	18
Adjusted Flow I) veh/h		165	1128		126	123	_	122	211	258		233	103	189
-		ow Rate (s), veh/h/l	n	1810	1725	-	1810	171	_	610	1810	1741		1139	1900	1610
Queue Service				5.6	17.2	6.9	4.3	20.		5.2	8.5	13.7		23.8	5.2	12.1
Cycle Queue C		- /		5.6	17.2	6.9	4.3	20.		5.2	8.5	13.7		25.5	5.2	12.1
Green Ratio (g				0.54	0.49	0.49	0.53	0.4	7 0).47	0.33	0.34		0.24	0.24	0.24
Capacity (c), v	/eh/h			316	2511	775	320	242	8 7	761	449	594		319	459	389
Volume-to-Cap	acity Ra	atio (X)		0.522	0.449	0.208	0.394	0.51	0 0.	.160	0.470	0.434		0.730	0.224	0.486
	·	t/In (95 th percentile	,	98.5	272.4	116.1	75.5	312	_	37.4	37	239.4		287.1	111.4	212.6
	. ,	eh/In (95 th percenti	,	3.9	10.9	4.6	3.0	12.	_	3.5	1.5	9.6		11.5	4.5	8.5
		RQ) (95 th percent	tile)	0.00	0.00	0.00	0.00	0.0		0.00	0.00	0.00		0.00	0.00	0.00
Uniform Delay	, ,			16.8	20.3	17.7	16.3	22.	_	18.0	32.0	30.5		45.0	36.5	39.1
Incremental De				0.5	0.6	0.6	0.3	0.8	_	0.5	0.3	0.2		3.9	0.1	0.4
Initial Queue De	2 1	·		0.0	0.0	0.0	0.0	0.0	_	0.0	0.0	0.0		0.0	0.0	0.0
	ontrol Delay (d), s/veh			17.3	20.9	18.3	16.6	22.	/ 1	18.5	32.3	30.7		48.9	36.6	39.5
	evel of Service (LOS)			B	С	B	B	C		В	C	С		D	D	
	Approach Delay, s/veh / LOS			20.2		C	21.9	1	С	,	31.5		С	43.1		D
Intersection De	ntersection Delay, s/veh / LOS					25	5.2							С		
Multimodal Re	Aultimodal Results				EB			WE	3			NB			SB	
	Pedestrian LOS Score / LOS		1.91		В	2.10		B	3	2.71		С	2.72		С	
	ycle LOS Score / LOS			1.29		А	1.3 ⁻	_	A		1.26	_	А	1.35		А

Γ

		HCS	S Sigr	nalize	d Inte	ersect	ion R	esu	lts	Sum	mary	,				
0	42											c.		1	4444	
General Inforn	nation								<u> </u>		tion Info			-	JĮĻ	P 4
Agency										ration,		1.000				R
Analyst						e 5/21/2				еа Тур	e	Other				
Jurisdiction		CABQ		Time F	Period	Horizo PM	on Full E	Build	PHI	F		1.00		4 <u>14</u> 4		1 + + + + + + + + + + + + + + + + + + +
Urban Street		Gibson Boulevard		Analys	sis Yea	r 2036			Ana	alysis	Period	1> 7:0	00		ኻቱ	×
Intersection		University and Gibs	on	File Na	ame	7 Univ	/ersity-C	Gibso	n Ho	orizon [·]	TOTAL	PM.xus			14144	<u>۲</u>
Project Descrip	tion	Gibson In-N-Out Ho	orizon T	otal PM												
Demand Inform	nation				EB			V	/B			NB			SB	
Approach Move	ement			L	Т	R	L	-	Г	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			208	1392	2 135	102	23	47	213	235	110	95	198	75	198
					1		-			1						
Signal Informa	_									<u>a</u> Uh			~	-		-+-
Cycle, s	130.0	Reference Phase	2		1	Ŕ			5 67	5	2 7			€₂	3	Y
Offset, s	0	Reference Point	End	Green	5.6	3.2	63.3	12		24.3				<u>s</u>		
Uncoordinated	No	Simult. Gap E/W	On	Yellow		3.0	4.5	3.		4.0	0.0		~		5	Φ
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.5	0.5	1.0	0.	5	1.5	0.0		5	6	7	8
Timer Results				EBI		EBT	WB	1	\٨/	'BT	NBL		NBT	SBI		SBT
Assigned Phase	e			5	-	2	1	-	6		7	-	4		-	8
Case Number	•			1.1		3.0	1.1	-	3.		1.0		4.0			5.3
Phase Duration	. S		_	15.8	3	75.5	9.1	_	68	_	15.6	; .	45.4			29.8
	ange Period, (Y+R c), s			3.5	_	5.5	3.5	_		.5	3.5	_	5.5			5.5
	ange Period, (Y+R c), s ax Allow Headway (<i>MAH</i>), s			3.0		0.0	3.0	_	0.	_	3.1		3.4			3.4
Queue Clearan		,		12.1		0.0	5.7		0.		14.1		13.9			23.0
Green Extensio				0.2		0.0	0.1		0.	0	0.0		1.6			1.3
Phase Call Pro		(9 °), °		1.00		0.0	0.97	_			1.00		1.00			1.00
Max Out Proba				0.00			0.00		_	_	1.00		0.00			0.05
Movement Gro	-	sults			EB			W	3			NB			SB	
Approach Move	ement			L	Т	R	L	Т		R	L	Т	R	L	Т	R
Assigned Move	ment			5	2	12	1	6		16	7	4	14	3	8	18
Adjusted Flow I		<u>, </u>		208	1392		102	234	_	213	235	205		198	75	198
		ow Rate (<i>s</i>), veh/h/l	n	1810	1725	1598	1810	171		1610	1810	1754		1196	1900	1610
Queue Service		- /		10.1	22.1	5.5	3.7	56.		10.2	12.1	11.9		21.0	4.3	14.8
Cycle Queue C		e Time (g c), s		10.1	22.1	5.5	3.7	56.	_	10.2	12.1	11.9		21.0	4.3	14.8
Green Ratio (g	,			0.60	0.54	0.54	0.53	0.4		0.49	0.30	0.31		0.19	0.19	0.19
Capacity (c), v				236	2788	861	273	250		784	430	538		279	355	301
Volume-to-Cap	-	. ,		0.883	0.499		0.374	0.93	_).272	0.546	0.381		0.710	0.211	0.658
	· /	t/In (95 th percentile		294.3	331	91.7	66.2	804	_	174	252.4	218.9		268.2	94.3	253.8
	、 ,.	eh/In (95 th percenti	,	11.8	13.2	3.6	2.6	31.	_	7.0	10.1	8.8		10.7	3.8	10.2
		RQ) (95 th percent	tile)	0.00	0.00	0.00	0.00	0.0		0.00	0.00	0.00		0.00	0.00	0.00
Uniform Delay	, ,			40.0	18.9	15.1	16.8	31.	_	19.7	37.9	35.4		51.5	44.8	49.0
Incremental De		•		12.1	0.6	0.4	0.3	10.	_	0.9	0.8	0.2		2.6	0.1	0.9
Initial Queue D	2 1	·		0.0	0.0	0.0	0.0	0.0	_	0.0	0.0	0.0		0.0	0.0	0.0
	ontrol Delay (d), s/veh			52.1	19.6	15.5	17.1	41.	0 2	20.6	38.8	35.5		54.1	44.9	49.9
	evel of Service (LOS)			D	В	B	B			C	D	D		D	D	
	Approach Delay, s/veh / LOS			23.2		C	39.0	ו נ	L	2	37.3		D	50.9	1	D
Intersection De	ntersection Delay, s/veh / LOS					34	4.7							С		
Multimodal Re	Aultimodal Results				EB			W	3			NB			SB	
	Pedestrian LOS Score / LOS		1.90		В	2.10			3	2.72		С	2.73		С	
	cycle LOS Score / LOS			1.44		A	1.95	-		3	1.21	_	A	1.26		A
,																

		HCS	s Sigr	alize	a int	ersect	ION R	esu	Its	Sum	mary	,				
General Inforn	nation								Inte	orsoct	ion Inf	ormatic	20		4 사 4*	144
	ation									ration,	-	1.000		Ê	٦Ļ	
Agency				Analys	ia Dat	a E/01/0	0004			ea Type		Other		-1		R 2.
Analyst Jurisdiction		CABQ		Time F		e 5/21/2	ted Hor	izon	PH		;	1.00		``	w1	
						Full B	uild MD									
Urban Street		Gibson Boulevard		Analys						alysis I		1> 7:0			*	
Intersection		Gibson & Alumni		File Na			ted Gib	son A	lumr	ni Hori	zon TO	TAL ME).xus	1	* 1 *	7 4 7
Project Descrip	tion	Gibson In-N-Out (M	litigated) Horizo	n Full	Build M)									
Demand Inform	nation				EB			W	/B			NB			SE	3
Approach Move	ement			L	Т	R	L	Τ-	Т	R	L	Т	R	L	Т	R
Demand (v), v				143	139		47	14	00	83	26	0	44	76	<u> </u>	112
							i, i				<u> </u>	<u> </u>	<u> </u>			_
Signal Informa								닐┛	5				~	_	L	-+-
Cycle, s	120.0	Reference Phase	2		F '	٦Ŕ	- FE (RA7					€,	7	
Offset, s	0	Reference Point	End	Green	2.5	3.0	74.7	10).8	12.0	0.0	_		<u>Ř</u>		I
Uncoordinated	No	Simult. Gap E/W	On	Yellow		0.0	4.0	3.		3.0	0.0		~	7	5	$\mathbf{\Delta}$
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	0.0	1.0	1.	0	1.0	0.0		5	6		7 8
Timer Results				EBL		EBT	WB	1	W	/BT	NBL		NBT	SBL	_	SBT
Assigned Phase	е			5		2	1	-		6			4		-	8
Case Number				1.1		4.0	1.1		3.				12.0		+	9.0
Phase Duration	1, S			9.5		82.7	6.5			9.7			14.8			16.0
Change Period	ange Period, (Y+R c), s			4.0		5.0	4.0		5.	.0			4.0			4.0
Max Allow Hea	dway (/	MAH), s		3.0		0.0	3.0		0.	.0			3.2			3.4
Queue Clearan	ce Time	e (g s), s		5.3			3.1						6.7			10.1
Green Extensio	on Time	(ge),s		0.2		0.0	0.0		0.	.0			0.1			0.3
Phase Call Pro	bability			0.99)		0.79	9					0.90			1.00
Max Out Proba	bility			0.00)		0.00)					0.00			0.00
Movement Gro	un Dec				EB			W				NB			SB	, ,
Approach Move	-	suits		L	EB	R	L		5	R	L	Т	R	L	SB T	R
Assigned Move				5	2	12	1	6	+	16	7	4	14	3		18
Adjusted Flow I		x) yoh/h		143	2 975	478	47	140		83	1	70	14	76		112
	· · ·	ow Rate (s), veh/h/l	n	1810	1900	_	1810	171	_	1610		1679		1810		1610
Queue Service		· · · · ·		3.3	14.6		1.1	17.		2.5		4.7		4.7		8.1
Cycle Queue C		o ,.		3.3	14.6	14.6	1.1	17.		2.5		4.7		4.7		8.1
Green Ratio (g		· · · · · · (3 ·), -	_	0.68	0.65	0.65	0.64	0.6	_	0.62		0.09		0.10		0.10
Capacity (c), v	,			331	2459		287	319	_	1002		152		181		161
Volume-to-Cap		atio (X)		0.432	0.397		0.164	0.43		0.083		0.462		0.421		0.697
	-	t/In (95 th percentile	e)	51.8	235.5	5 239.2	18.3	249	.9 3	37.5		90.3		99		152.1
Back of Queue	(Q), v	eh/In (95 th percenti	ile)	2.1	9.4	9.5	0.7	9.9)	1.5		3.6		4.0		6.1
Queue Storage	Ratio (RQ) (95 th percent	tile)	0.23	0.00	0.00	0.10	0.0	0 (0.00		0.00		0.43		0.66
Uniform Delay	· /			8.9	10.0	10.0	8.7	11.	_	9.0		51.8		50.8		52.3
Incremental De				0.3	0.5	1.0	0.1	0.4	_	0.2		0.8		0.6		2.1
Initial Queue D		•		0.0	0.0	0.0	0.0	0.0		0.0		0.0		0.0		0.0
	ontrol Delay (<i>d</i>), s/veh			9.3	10.5	11.0	8.8	12.	_	9.2		52.6		51.3		54.3
	evel of Service (LOS)			A	В	B	A	B		A		D		D		D
	Approach Delay, s/veh / LOS			10.6	j	B	11.9	1	E	B	52.6)	D	53.1		D
Intersection De	ntersection Delay, s/veh / LOS					14	4.4							В		
Multimodal Re	/ultimodal Results				EB			W	B			NB			SB	3
	edestrian LOS Score / LOS		1.65		В	1.88			В	2.74		С	2.62		, C	
	cycle LOS Score / LOS			1.37		A	1.3			4	0.60	_	A		+	F
											0.00					

		HUS	s Sigr	alize		ersect	ION R	esu	Its a	Sum	mary	, 			_	
O	- 4!								1						4 나 4	1 5 1
General Inform	ation											ormatio		-	ŢĹ	and the second se
Agency				A	:- D-4		004			ation,		1.000		-1		R 2
Analyst		CARO				e 5/21/2			PH	а Туре –	;	Other				±
Jurisdiction		CABQ		Time F		Full B	ted Hor uild PM					1.00			w+t	↓ ↓ ↓
Urban Street		Gibson Boulevard		Analys						alysis F		1> 7:0			*	
Intersection		Gibson & Alumni		File Na		1	ted Gib	son A	lumr	ni Horiz	zon TO	TAL PN	l.xus	1	* 1 *	747
Project Descripti	ion	Gibson In-N-Out (M	litigated) Horizo	n Full	Build PN	1									
Demand Inform	nation				EB			V	∕B			NB			SE	}
Approach Mover	ment			L	Т	R	L	Τ-	т [R	L	Т	R	L	Т	R
Demand (v), ve	eh/h			99	1508	3 32	46	26	623	59	11	0	40	53		76
	•) <u>-</u>	1-	_				16	-					
Signal Informat	-				La.			<u> </u>	24				<u> </u>		L	r†a
	120.0	Reference Phase	2	-	Γ.	R			ra7				1		× .	
Offset, s	0	Reference Point	End	Green	2.4	1.8	77.1	9.	8	11.8	0.0			<u>K</u>		1
Uncoordinated	No	Simult. Gap E/W	On	Yellow	-	0.0	4.0	3.		3.0	0.0				5	\mathbf{N}
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	0.0	1.0	1.	0	1.0	0.0		5	6		8
Timer Results				EBL		EBT	WB	L	W	BT	NBL	-	NBT	SBL		SBT
Assigned Phase	;			5		2	1		6	3			4		\neg	8
Case Number				1.1		4.0	1.1		3.	0		-	12.0		\neg	9.0
Phase Duration,	hase Duration, s					83.9	6.4		82	.1			13.8		—	15.8
Change Period,	hange Period, (Y+R c), s					5.0	4.0		5.	0			4.0		\neg	4.0
	nange Period, (<i>Y+R c</i>), s lax Allow Headway (<i>MAH</i>), s					0.0	3.0		0.	0			3.3		\neg	3.4
Queue Clearanc		,		4.2			3.1						5.5		\neg	7.4
Green Extensior		· - /		0.1		0.0	0.0		0.	0			0.0		\neg	0.2
Phase Call Prob				0.96	;		0.78	3					0.82		\neg	0.99
Max Out Probab	oility			0.00)		0.00)					0.00			0.00
Manager of Ores								10/1	_	_					05	
Movement Grou	-	suits			EB T	R	<u> </u>	WI T	в	Р	-	NB T	D		SB T	R
Assigned Mover				5	2	12	L 1	6	-	R 16	L 7	4	R 14	3		18
Adjusted Flow R) voh/h		99	2 1030		46	262	22	59	/	4 51	14	53		76
-		ow Rate (s), veh/h/l	n	1810	1900	-	1810	171	_	610		1649		1810		1610
Queue Service				2.2	15.3	15.3	1.1	44.		1.6		3.5		3.3		5.4
Cycle Queue Cle				2.2	15.3	15.3	1.1	44.	_	1.6		3.5		3.3		5.4
Green Ratio (g/		c mile (g ;), 3		0.68	0.66	0.66	0.66	0.6	_	0.64		0.08		0.10		0.10
Capacity (c), ve	,			155	2499		272	330		035		135		179		159
Volume-to-Capa		tio (X)		0.637	0.412	_	0.169	0.79		.057		0.378		0.297		0.478
· ·	-	/In (95 th percentile)	82.7	240.9		16.6	555		24.3		65.7		68		1.7
		eh/In (95 th percentie	,	3.3	9.6	9.8	0.7	22.	_	1.0		2.6		2.7		0.1
	. ,	RQ) (95 th percent		0.36	0.00	0.00	0.09	0.0	_	0.00		0.00		0.30		0.01
Uniform Delay (,,,	,	26.2	9.6	9.6	8.1	15.		7.9		52.2		50.2		51.2
Incremental Dela				1.6	0.5	1.0	0.1	2.1		0.1		0.7		0.3		0.8
	• •			0.0	0.0	0.0	0.0	0.0	_	0.0		0.0		0.0		0.0
	itial Queue Delay (<i>d</i> ₃), s/veh ontrol Delay (<i>d</i>), s/veh			27.8	10.2	10.7	8.3	17.	_	8.1		52.9		50.6		52.0
	evel of Service (LOS)			C	B	B	A	B		A		D		D		D
	pproach Delay, s/veh / LOS			11.4		B	17.4		B		52.9		D	51.4		D
	ntersection Delay, s/veh / LOS						6.6							В		
Multimodal Res	lultimodal Results				EB			W	В			NB			SB	
	edestrian LOS Score / LOS		1.65	;	В	1.88	3	E	3	2.74		С	2.62		С	
Bicycle LOS Sco	ycle LOS Score / LOS			1.39		А	1.99	9	E	3	0.57		А			F

Appendix E: AASHTO Green Book Intersection Sight Distance Calculations

Scenario:	Right Turn from the Minor Road
Type of Vehicle:	Passenger Car
# Lanes Crossing:	1
Speed Limit (mph): Median?	45 No 12
Base Time Gap:	6.5
Additional Lanes to Cross:	0
Additional Time:	0
Final Time Gap:	6.5
SIGHT DISTANCE REQUIRED	429.98
SIGHT DISTANCE REQUIRED (Rounded)	430

$ISD = 1.47 (V_{major}) t_g$

t _z Values					
	CASE	Passenger Car	Single-Unit Truck	Combination Truck	
B1	Left Turn from the Minor Road	7.5	9.5	11.5	
B 2	Right Turn from the Minor Road	65	8.5	10.5	
B3	Crossing Maneuver from the Minor Road	0.5	0.5	10.5	
F	Left Turn from the Major Road	5.5	6.5	7.5	

CASE B1 - For a stopped vehicle to turn left onto a <u>2-lane highway</u> with <u>no median</u> and grades 3 percent or less

For left turns onto two-way highways with more than 2 lanes: +0.5 seconds for passenger cars +0.7 seconds for trucks for each additional lane, from the left, in excess of one, to be crossed by the turning vehicle.

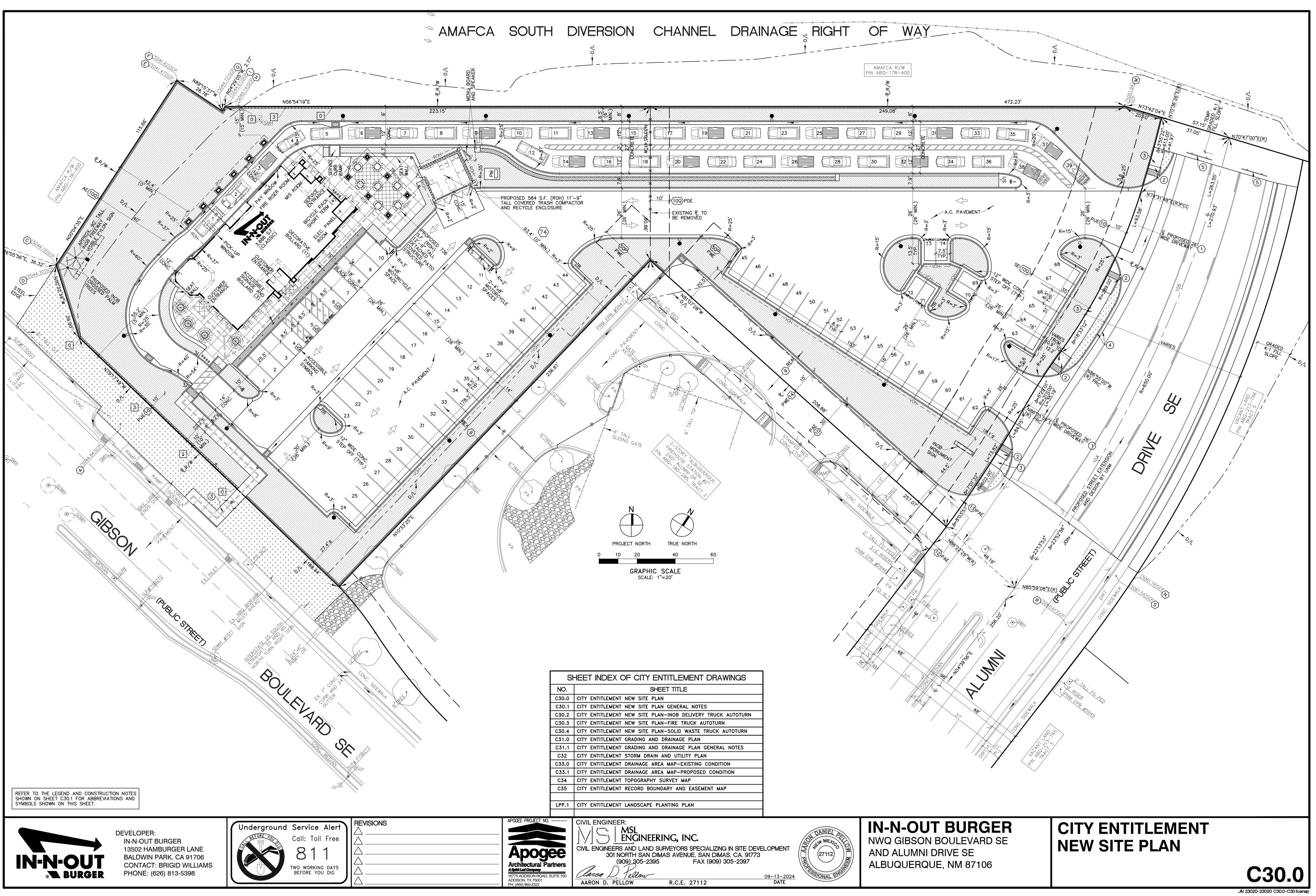
For minor road approach grades: +0.2 seconds for each percent grade if the approach grade is an upgrade that exceeds 3 percent.

CASE B2 + B3 - For a stopped vehicle to turn right onto or cross a <u>2-lane highway</u> with <u>no</u> median and grades 3 percent or less

For crossing a major road with more than 2 lanes: +0.5 seconds for passenger cars +0.7 seconds for trucks for each additional lane to be crossed and narrow medians that cannot store the design vehicle.

For minor road approach grades: +0.1 seconds for each percent grade if the approach grade is an upgrade that exceeds 3 percent.

CASE F - For a stopped vehicle to turn across <u>one lane of opposing traffic</u>


For left-turning vehicles that cross more than 1 opposing lane: +0.5 seconds for passenger cars +0.7 seconds for trucks

for each additional lane to be crossed.

Scenario:	Left Turn from the Minor Road
Type of Vehicle:	Passenger Car
# Lanes Crossing:	1
Speed Limit (mph):	30
Median?	Yes
Enter Median Width:	12
Base Time Gap:	7.5
Additional Lanes to Cross:	1
Additional Time:	0.5
Final Time Gap:	8
SIGHT DISTANCE REQUIRED SIGHT DISTANCE REQUIRED (Rounded)	352.80 355

Scenario:	Right Turn from the Minor Road
Type of Vehicle:	Passenger Car
# Lanes Crossing:	1
Speed Limit (mph):	30
Median?	Yes
Enter Median Width:	12
Base Time Gap:	6.5
Additional Lanes to Cross:	0
Additional Time:	0
Final Time Gap:	6.5
SIGHT DISTANCE REQUIRED SIGHT DISTANCE REQUIRED (Rounded)	286.65 290

Appendix F: Site Plan

