Traffic Impact Study (TIS) Gibson In-N-Out

Draft Report

October 2024

Prepared for:

In-N-Out Burger

Prepared By:

EXECUTIVE SUMMARY

The following contains a Traffic Impact Study (TIS) for an In-N-Out fast-food restaurant to be developed on Gibson Boulevard between Alumni Drive and the I-25 Interchange in Albuquerque, New Mexico. Lee Engineering has completed this report for In-N-Out Burger. All analyses and items contained herein conform to scoping requirements set forth in a scoping meeting held on April 29th, 2024, with In-N-Out corporation, the City of Albuquerque (CABQ), and the New Mexico Department of Transportation (NMDOT).

BACKGROUND

The proposed development is an In-N-Out Burger quick service restaurant on Gibson Boulevard between Alumni Drive and the I-25 Interchange.

The site, which is to comprise of a 3,886 square foot building with 74 parking spaces and a drive-through window, is anticipated to generate 145 ingress and 140 egress trips during the MD peak hour, and 105 ingress trips and 97 egress trips during the PM peak hour. The number of vehicle trips generated by the proposed development was based on average driveway traffic data collected from 12 In-N-Out Burger developments in California. Trip data from these 12 developments and trips based on the Institute of Transportation Engineers (ITE) Trip Generation Manual, land use code 934-Fast-Food Restaurant with Drive-Through can be found in Appendix C for comparison.

Site access is available according to current site plans through one site access driveway on Gibson Boulevard and two on Alumni Drive.

Study intersections include:

- 1) Gibson Boulevard and I-25 SB
- 2) Gibson Boulevard and I-25 NB
- 3) Gibson Boulevard and Mulberry Street
- 4) Alumni Drive and Site Driveway 1
- 5) Alumni Drive and Site Driveway 2
- 6) Gibson Boulevard and Alumni Drive
- 7) Gibson Boulevard and University Boulevard

For the purposes of this analysis, the development is assumed to reach full completion by 2026. The development is to be constructed in one phase.

Analysis scenarios for this study include:

- Existing 2024 Existing field-counted traffic volumes.
- Build-Out Year 2026 Background 2026 traffic volumes projected from the Existing traffic volumes via the application of a growth factor developed from the Mid-Region Council of Governments (MRCOG) Metropolitan Transportation Plan (MTP) CUBE/2 Regional Model, plus trips generated by adjacent developments.
- Build-Out Year 2026 Total 2026 background volumes plus trips generated by the proposed development.
- Horizon Year 2036 Background 2036 traffic volumes projected from the Existing traffic volumes via the application of a growth factor developed from the MRCOG Metropolitan Transportation Plan (MTP) CUBE/2 Regional Model, plus trips generated by adjacent developments.

• Horizon Year 2036 Total – 2036 background volumes plus trips generated by the proposed development.

Existing turning movement counts were collected on Thursday, May 16th, 2024, for the following study intersections:

- Gibson Boulevard and I-25 SB Interchange
- Gibson Boulevard and I-25 NB Interchange
- Gibson Boulevard and Mulberry Street
- Gibson Boulevard and Alumni Drive
- Gibson Boulevard and University Boulevard

These volumes were analyzed unaltered in the Existing scenario of the Level of Service and Queueing Analysis section. Site trips for the development site were generated based on trip survey data collected from 12 In-N-Out Burger developments in California. Proposed development-generated trips were used to analyze Build-Out Year and Horizon Year Total volumes.

SUMMARY OF TRAFFIC ANALYSIS AND RECOMMENDATIONS

The following presents a summary of the traffic analysis and recommendations included in this report.

ASSUMPTIONS

The following assumptions regarding new developments in the roadway network were made for the Build-Out Year scenarios based on the information discussed in the scoping meeting:

- Alumni Drive is assumed to be extended north of its current location to Avenida Caesar Chavez through a project designed and funded by the University of New Mexico. Site Driveways 1 and 2 will be constructed on the west side of the new segment of Alumni Drive. For this analysis, the full extension of Alumni Drive is assumed to be completed by Horizon Year 2036.
- The Gibson Boulevard and I-25 Interchange is currently being redesigned by NMDOT.
 Capacity and queuing issues at the interchange are assumed to be addressed in the future by this reconstruction project. Therefore, mitigations for the interchange are not provided in this analysis.

CONCLUSIONS

The capacity and queuing analysis showed that several study intersection movements operate at unacceptable levels of service under Existing and Background conditions.

Under Existing 2024 conditions, traffic operation is summarized as follows:

- At the stop-controlled intersection of Gibson Boulevard and I-25 NB Off-Ramp
 - NBL operates at LOS E and LOS F during the MD and PM peak hours, respectively.
 - NBR operates at LOS E during the PM peak hour.
- At the stop-controlled intersection of Gibson Boulevard and Mulberry Street
 - NBL operates at LOS E and LOS F during the MD and PM peak hours, respectively.
- At the stop-controlled intersection of Gibson Boulevard and Alumni Drive
 - SBL operates at LOS E and LOS F during the MD and PM peak hours, respectively.
- At the signalized intersection of Gibson Boulevard and University Boulevard
 - SBL operates at LOS E during the PM peak hour.
 - SBR operates at LOS E during the PM peak hour.

Under Background 2026 conditions, traffic operation is summarized as follows:

- At the stop-controlled intersection of Gibson Boulevard and I-25 SB Off-Ramp
 - NBR operates at LOS E during the MD peak hour.
- At the stop-controlled intersection of Gibson Boulevard and I-25 NB Off-Ramp
 - NBL operates at LOS E and LOS F during the MD and PM peak hours, respectively.
 - NBR operates at LOS F during the PM peak hour.
- At the stop-controlled intersection of Gibson Boulevard and Mulberry Street
 - o NBL operates at LOS E and LOS F during the MD and PM peak hours, respectively.
- At the stop-controlled intersection of Gibson Boulevard and Alumni Drive
 - NBL/R operates at LOS F during the MD and PM peak hours.
 - SBL operates at LOS F during the MD and PM peak hours.
 - EBL operates at LOS F during the PM peak hours.
- At the signalized intersection of Gibson Boulevard and University Boulevard
 - SBL operates at LOS E during the PM peak hour.

Under the Full-Build 2026 scenario, traffic operation is summarized as follows:

- At the stop-controlled intersection of Gibson Boulevard and I-25 SB Off-Ramp
 - o NBR operates at LOS E during the MD and PM peak hours.
- At the stop-controlled intersection of Gibson Boulevard and I-25 NB Off-Ramp
 - NBL operates at LOS F during the MD and PM peak hours.
 - NBR operates at LOS F during the PM peak hour.
- At the stop-controlled intersection of Gibson Boulevard and Mulberry Street
 - o NBL operates at LOS F during the MD and PM peak hours.
- At the stop-controlled intersection of Gibson Boulevard and Alumni Drive
 - NBL/R operates at LOS F during the MD peak hour.
 - o SBL operates at LOS F during the MD and PM peak hours.
 - EBL operates at LOS F PM peak hours.
- At the signalized intersection of Gibson Boulevard and University Boulevard
 - SBL operates at LOS E during the PM peak hour.
 - SBR operates at LOS E during the PM peak hour.

Detailed traffic operation results for Existing, Build Out Year 2026 Background, Build Out Year 2026 Full-Build, Horizon Year 2036 Background, and Horizon Year 2036 Full-Build scenarios can be found in the LOS, Capacity and Queuing section of the report.

SITE RECOMMENDATIONS

- Proposed Access Points and Locations:
 - Full access configuration, with right and left turns being permitted, is recommended for Site Driveways 1 and 2 on Alumni Drive, to provide adequate site circulation for ingress and egress Development trips.
 - An area bounded by the required sight distance of 355 feet for left-turning vehicle and 290 feet for right-turning vehicles should be cleared and maintained free of obstructions on either side of each site driveway.

OFF-SITE INTERSECTION RECOMMENDATIONS

• Alumni Drive and Gibson Boulevard

- A "Do Not Block Intersection" sign (R-10-7) should be installed on Alumni Drive for southbound traffic, between Site Driveway 2 and the fire station access driveway.
- Refreshed striping is recommended on Alumni Drive between Gibson Boulevard and the proposed Development.

TABLE OF CONTENTS

Executive Summary	i
Background	i
Summary of Traffic Analysis and Recommendations	ii
Assumptions	ii
Conclusions	ii
Site Recommendations	
Off-site Intersection Recommendations	iii
Table of Contents	v
List of Figures	vi
List of Tables	vi
List of Appendices	vii
Introduction	1
Background Information	
Project Location & Site Plan	1
Study Area, Area Land Use, and Streets Narrative Summary	
Study Area	3
Area Land Use	
Streets	4
Intersections	4
Bicycle Facilities	
Adjacent Developments	
Data Collection	
Field Data Collection	
Traffic Scenario Development	7
Traffic Counts, Growth Rates, Adjacent Site Trips and Trip Generations	7
Turning Movement Counts	7
Traffic Growth	8
Site Trip Generation, Distribution and Assignment	10
Traffic Volume Calculations	20
Site CONDITIONS and Site Analysis	25
Assumptions	25
Site Access Analysis and Justification	25
Site Circulation and Queueing Analysis	25
Auxiliary Lane Analysis	26

Site Driveways Sight Distance	27
Traffic Analysis	27
LOS, Capacity, and Queuing Analysis	28
Existing Year 2024 Conditions	29
Build-Out Year (2026) Background conditions	31
Build-Out Year (2026) Full-Build Conditions	33
Horizon Year (2036) Background Conditions	35
Horizon Year (2036) Full-Build Conditions	
Comparison of Background and Full-Build Scenario Results	
Intersection Capacity Mitigations	
Gibson Boulevard	
Crash Data Summary	
Conclusions and Recommendations	
Assumptions	
Conclusions	
Site Recommendations	
Off-site Intersection Recommendations	
LIET DE EIGUDES	
LIST OF FIGURES Figure 1: Site Plan	2
Figure 2: Vicinity Map	
Figure 3: Existing Traffic Counts	
Figure 4: Pass-by Trip Percentages	
Figure 5: Pass-by Trip Volumes	
Figure 6: Direct Trip Percentages	
Figure 7: Direct Trip Volumes	14
Figure 8: Horizon Year Pass-By Trip %	
Figure 9: Horizon Year Pass-By Trip Volumes	
Figure 10: Horizon Year Direct Trip %	
Figure 11: Horizon Year Direct Trip Volumes	
Figure 12: Build Out Year 2026 Background Volumes	
Figure 13: Build Out Year 2026 Full-Build Volumes	
Figure 14: Horizon Year 2036 Background Volumes	
rigure 15. norizon Year 2036 Full-Bulla Volumes	24
LIST OF TABLES Table 1: Intersection and Nativerk Beak Hours	_
Table 1: Intersection and Network Peak Hours	
Table 3: Proposed Development Trip Generation	
Table 4: Pass-by Trip Percentages – Build-Out Year 2026	

Table 5: Pass-By Trip Percentages - Horizon Year 2036	
Table 6: Access Spacing Requirements from CABQ DPM	
Table 7: Turn Lane Warrants – City of Albuquerque DPM Requirements	26
Table 8: Deceleration Lane Lengths	26
Table 9: Required Sight Distance Values	27
Table 10: LOS Criteria and Descriptions for Signalized Intersections	28
Table 11: LOS Criteria for Unsignalized Intersections	28
Table 12: HCM Results for Existing Year (2024) Conditions	30
Table 13: HCM Results for Build-Out Year (2026) Background Conditions	32
Table 14: HCM Results for Build-Out Year (2026) Full-Build Conditions	34
Table 15: HCM Results for Horizon Year (2036) Background Conditions	36
Table 16: HCM Results for Horizon Year (2036) Full-Build Condition	38
Table 17: Crash Summary	41

LIST OF APPENDICES

Appendix A: Scoping Meeting Notes
Appendix B: Turning Movement Counts

Appendix C: ITE Trip Generation and In-N-Out Trip Survey Data

Appendix D: HCM Analysis Output Sheets

Appendix E: AASHTO Green Book Intersection Sight Distance Calculations

INTRODUCTION

This report details the procedures and findings of a Traffic Impact Study (TIS) performed by Lee Engineering for In-N-Out Burger. This report and the analyses herein were performed for a quick service development to be constructed on Gibson Boulevard between Alumni Drive and the I-25 interchange in Albuquerque, New Mexico. This study examines the impacts of the proposed development on surrounding traffic conditions and discusses the potential impacts of trips generated by the development on the study intersections.

The scope of this report and the analyses performed were completed in agreement with the scoping requirements set forth by the City of Albuquerque (CoA) and the New Mexico Department of Transportation (NMDOT). Scoping meeting notes from the scoping meeting held on April 29th, 2024, are included in Appendix A. Analysis procedures, conclusions, and recommendations for this study were developed according to the *Highway Capacity Manual (HCM) 7th Edition* and the *Manual on Uniform Traffic Control Devices (MUTCD) 11th Edition*.

For the purposes of this analysis, the development is assumed to be completed in one phase and to reach full completion by 2026. The site plan displayed in Figure 1 shows that the proposed development is a travel center. Traffic generated by the site is anticipated to generate 145 ingress and 140 egress trips during the MD peak hour, and 105 ingress trips and 97 egress trips during the PM peak hour. Figure 2 shows the site plan for the development. Lee Engineering conducted a Level of Service and Queuing Analysis for the following MD and PM peak hour scenarios:

Traffic Analysis

- Existing 2024 Existing field-counted traffic volumes.
- Build-Out Year 2026 Background 2026 traffic volumes projected from the Existing traffic volumes via the application of a growth factor developed from the MRCOG Metropolitan Transportation Plan (MTP) CUBE/2 Regional Model, plus trips generated by adjacent developments.
- Build-Out Year 2026 Total 2026 background volumes plus trips generated by the proposed development.
- Horizon Year 2036 Background 2036 traffic volumes projected from the Existing traffic volumes via the application of a growth factor developed from the MRCOG Metropolitan Transportation Plan (MTP) CUBE/2 Regional Model, plus trips generated by adjacent developments.
- Horizon Year 2036 Total 2036 background volumes plus trips generated by the proposed development.

The Level of Service and Queuing Analysis Reports are presented in full in the Appendix.

BACKGROUND INFORMATION

PROJECT LOCATION & SITE PLAN

The In-N-Out Burger development will be located on Gibson Boulevard between Alumni Drive and the I-25 Interchange. Figure 1 shows the complete proposed site plan, and Figure 2 shows the site location, study intersections, and the surrounding area. Nearby intersections include the following:

- 1) Gibson Boulevard and I-25 SB
- 2) Gibson Boulevard and I-25 NB
- 3) Gibson Boulevard and Mulberry Street
- 4) Alumni Drive and Site Driveway 1

- 5) Alumni Drive and Site Driveway 2
- 6) Gibson Boulevard and Alumni Drive
- 7) Gibson Boulevard and University Boulevard

The proposed development would convert approximately 2.06 acres of land into an In-N-Out Burger development. For the purposes of this analysis, the development is anticipated to comprise a total of a 3,886 square foot building with 74 parking spaces and a drive-through window. Proposed access points include two driveways on Alumni Drive.

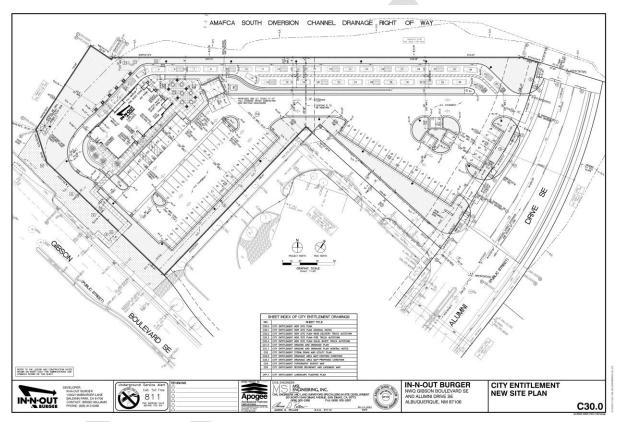


Figure 1: Site Plan

Figure 2: Vicinity Map

STUDY AREA LAND USE, AND STREETS NARRATIVE SUMMARY

The study area is defined as North of Gibson Boulevard, from the I-25 interchange to University Boulevard. The following intersections were identified for analysis during the scoping meeting:

- 1) Gibson Boulevard and I-25 SB
- 2) Gibson Boulevard and I-25 NB
- 3) Gibson Boulevard and Mulberry Street
- 4) Alumni Drive and Site Driveway 1
- 5) Alumni Drive and Site Driveway 2
- 6) Gibson Boulevard and Alumni Drive
- 7) Gibson Boulevard and University Boulevard

AREA LAND USE

As described, the development is to be located on the north side of Gibson Boulevard, and immediately west of Alumni Drive. Adjacent to and surrounding the project site are land uses consisting of the following:

- Undeveloped: The land immediately North and West of the site is currently undeveloped.
- Fire Station: The proposed development is neighboring Albuquerque Fire Station 2.
- Educational: Schools located within 2 miles of the proposed development include Lowell Elementary, East San Jose Elementary, John Marshall School, South Valley Preparatory, William W. Josephine Dorn Charter, Mission Achievement and Success Charter, and University of New Mexico.

- Residential: Several areas surrounding the development are Single-family detached housing, as well as University of New Mexico student housing developments.
- Commercial: Other fast-food developments in the vicinity of the proposed development include Subway, Burger King, Del Taco, Wienerschnitzel, Chick-Fil-A, and Blake's Lotabuger.

STREETS

The following details the characteristics and features of streets included in the study area:

Gibson Boulevard is a CoA-maintained, six-lane roadway with a raised median that runs east and west. The roadway is classified by MRCOG as a principal arterial. The posted speed limit on westbound Gibson Boulevard is 45 MPH east of the I-25 SB ramps, and 35 MPH west of the I-25 SB ramps. The posted speed limit on eastbound Gibson Boulevard is 35 MPH west of the proposed development and 45 MPH east of the development. There are bike lanes, curb and gutter, and sidewalks present on both sides of the roadway.

Alumni Drive is a CoA-maintained, two-lane roadway with a raised median that runs north and south. The roadway is classified by MRCOG as a local urban street. The posted speed limit is 30 MPH. There are bike lanes, curb and gutter, and sidewalks present on both sides of the roadway. The roadway ends approximately 320 feet north of Gibson Boulevard.

University Boulevard is a CoA-maintained roadway that runs north and south. North of Gibson Boulevard, the roadway is classified as a minor arterial, comprises four lanes divided by a raised median, and has the posted speed limit is 40 MPH. South of Gibson Boulevard, the roadway is classified as a local urban street, comprises two lanes, and has a posted speed limit is 25 MPH. Curb, gutter, and Sidewalks are present on both sides of the roadway. Bike lanes are present on both sides of the roadway north of Gibson Boulevard, and sharrow markings and bike route signing is present south of Gibson Boulevard.

Mulberry Street is a CoA-maintained, two-way, undivided roadway that runs north and south. The roadway is classified by MRCOG as a local urban street, and the posted speed limit is 25 MPH. Curb, gutter, and sidewalks are present on both sides of the roadway.

I-25 is an NMDOT-maintained interstate that runs north and south. At Gibson Boulevard and NB I-25, there are three ramps: an off-ramp with an advisory speed limit of 45 MPH that splits into two lanes, one to EB Gibson Boulevard and one to WB Gibson Boulevard, an on-ramp from EB Gibson to NB I-25, and a one-lane on-ramp from WB Gibson to NB I-25. At Gibson Boulevard and SB I-25, there are three ramps: a one-lane off-ramp from SB I-25 to EB Gibson Boulevard with an advisory speed limit of 25 MPH, a one-lane off-ramp from SB-I-25 to WB Gibson Boulevard with an advisory speed limit of 35 MPH, and an on-ramp to SB I-25 with one lane at the base of the ramp from EB Gibson Boulevard and one lane at the base of the ramp from WB Gibson Boulevard. The two lanes merge after entering the on-ramp.

INTERSECTIONS

The following details the traffic control and characteristics of the existing intersections in the study area:

Gibson Boulevard and I-25 SB is an interchange joining two interstate off-ramps, an interstate on-ramps, and a principal arterial. The north leg comprises the I-25 Southbound off-ramp to WB Gibson Boulevard, joining Gibson Boulevard without stop or yield control via an added lane. The south leg comprises the I-25 Southbound off-ramp to EB Gibson Boulevard, joining Gibson Boulevard without stop or yield control via an added lane. The east leg comprises two through lanes and a left-turn lane onto

the I-25 SB on-ramp. The west leg comprises two through lanes and a right-turn lane onto the I-25 SB on-ramp. No crosswalks are present.

Gibson Boulevard and I-25 NB is an interchange joining an interstate off-ramp, two interstate on-ramps, and a principal arterial. The south leg comprises the I-25 NB off-ramp to Gibson Boulevard, which splits into one left-turn lane and one right-turn lane. Stop control is present on the left-turn lane, while the right-turn lane joins Gibson Boulevard EB without stop or yield control via an added lane. The east leg comprises two through lanes and a right-turn lane onto an I-25 NB on-ramp. The west leg comprises two through lanes and a right-turn lane onto an I-25 NB on-ramp. No crosswalks are present.

Gibson Boulevard and Mulberry Street is a 3-legged, minor-street stop-controlled intersection. The south leg is stop-controlled and comprises a right-turn lane and a left-turn lane. The east leg comprises three through lanes and a left-turn lane. The west leg comprises two through lanes and a shared right-turn through lane. No crosswalks are present.

Gibson Boulevard and Alumni Drive a 4-legged, minor-street stop-controlled intersection. The north leg is stop-controlled and consists of a bike lane, a right-turn lane, and a left-turn lane. The south leg is a business access driveway with one lane, with left and right turns permitted. No stop sign is present on the south leg. The east leg comprises a left-turn lane, three through lanes, a bike lane, and a right-turn lane. The west leg comprises a left turn lane, two through lanes, a shared through/right-turn lane, and a bike lane. A crosswalk is present on the north leg of the intersection.

Gibson Boulevard and University Boulevard is a 4-legged, signalized intersection. The north leg comprises a left-turn lane, a through lane, a bike lane, and a right-turn lane. The south leg comprises a left-turn lane and a shared right-turn/through lane. The east leg comprises a left-turn lane, three through lanes, a bike lane, and a right-turn lane. The west leg comprises a left-turn lane, three through lanes, a bike lane, and a right-turn lane. Left-turn phasing at the south, east, and west legs is protected-permitted with five-section signal heads. Left-turn phasing at the north leg is protected only. Vehicle detection is present on each approach, and emergency vehicle preemption is present on Gibson Boulevard for each direction. Crosswalks, pedestrian pushbuttons, and pedestrian signal heads are present on each approach.

BICYCLE FACILITIES

Bicycle lanes are present within the study area on Gibson Boulevard, Alumni Drive, and University Boulevard. A paved multi-use trail is present on Gibson Boulevard, east of University Boulevard. South of Gibson Boulevard, University Boulevard is classified as a bike route with sharrow pavement markings and bike route signing present.

ADJACENT DEVELOPMENTS

Two adjacent developments are planned for construction near the study area, and site trips for these developments were included in the background traffic volumes for this analysis.

A Raising Cane's Restaurant is planned on the northeast corner of Gibson Boulevard and Alumni Drive, and the build-out year listed in the Traffic Impact Study is 2023. The infrastructure improvements required by the City for this development are as follows:

On Alumni Drive, SE Centerline:

- Removal of Curb and Gutter
- Removal of Concrete Sidewalk
- Removal of Concrete Median Pavement
- Removal and Replacement of Asphalt Pavement for Utility Trenching

- Removal of Sewer Manhole
- Removal of Sewer Line
- Sidewalk Flume (Per COA #2236)
- Standard Curb & Gutter (Per COA #2415A)
- Concrete Median Pavement (Per COA #2408)
- Public Concrete Sidewalk (Per COA #2430)
- Barrier Free Ramp (Per COA #2446)
- White Pavement Striping to Match Existing
- 1.5' Domestic Water Meter (Per ABCWUA #2363)
- 1.5" Domestic Water Service

At Proposed Sewer Easement North of the Subject Property:

 Relocated Sewer Line and Associated Appurtenances – to be fully designed with Work Order #W20230006

A commercial development owned by Prime Properties is planned on the southwest corner of Gibson Boulevard and Yale Boulevard, just east of the proposed In-N-Out Burger restaurant. The build-out year listed in the Traffic Impact Study for the commercial development is 2023.

An extension of Alumni Drive to University Boulevard, designed and funded by the University of New Mexico, is also planned for development. A build out year for this project is not yet available; however, the extension is assumed to be complete in Horizon Year 2036 for the purpose of this analysis.

DATA COLLECTION

The following section details the data collection method used in subsequent analyses of this report. The data discussed below was collected via a combination of field observations and machine/video recordings.

FIELD DATA COLLECTION

On-Street Parking

No dedicated on-street space is provided in the study area.

Pedestrians and Bicycles

Pedestrian and bicycle volumes were collected at all study intersections with turning movement counts (see Turning Movement Counts section below). Pedestrian and bicycle hourly volumes are provided in Appendix B.

Transit

According to the City of Albuquerque's ABQ Ride System Map (2023), no bus routes pass through the study area.

Signal Timings

The City of Albuquerque Traffic Engineering Division provided signal timing for the signalized intersection of Gibson Boulevard and University Boulevard. Signal timing sheets used in the capacity analyses are provided in Appendix C.

TRAFFIC SCENARIO DEVELOPMENT

The following sections detail the methods and calculations used to obtain traffic volumes for the existing 2026 and 2036 analysis scenarios. This process used the following tools as described below: Traffic Projections, Site Trip Generation, and Trip Distribution and Assignment. Figures at the end of this section show the resulting traffic volumes determined for the 2026 and 2036 analysis scenarios.

TRAFFIC COUNTS, GROWTH RATES, ADJACENT SITE TRIPS AND TRIP GENERATIONS TURNING MOVEMENT COUNTS

Turning movement counts (TMC) were collected for nine hours in three periods: 6:00 AM-9:00 AM, 11:00 AM-2:00 PM, and 3:30 PM-6:30 PM on Thursday, May 16th, 2024 for each of the study intersections. Turning Since the development will not operate during the AM hours, the Midday and PM peak hours were calculated and analyzed. Table 1 shows the observed peak hours for each intersection where traffic counts were collected and the peak hours for the entire study area (network peak). MD and PM peak-hour traffic volumes are shown in Figure 3. Complete turning movement counts can be found in Appendix B.

Table 1: Intersection and Network Peak Hours

Intersection	MD Peak Hour	PM Peak Hour
I-25 SB Ramps & Gibson Blvd	12:00 PM	3:30 PM
I-25 NB Ramps & Gibson Blvd	12:00 PM	3:30 PM
Gibson Blvd & Mulberry St	12:00 PM	3:30 PM
Gibson Blvd & Alumni Dr	12:00 PM	3:30 PM
Gibson Blvd & University Blvd	12:00 PM	3:30 PM
Network Peak Hours:	12:00 PM	3:30 PM

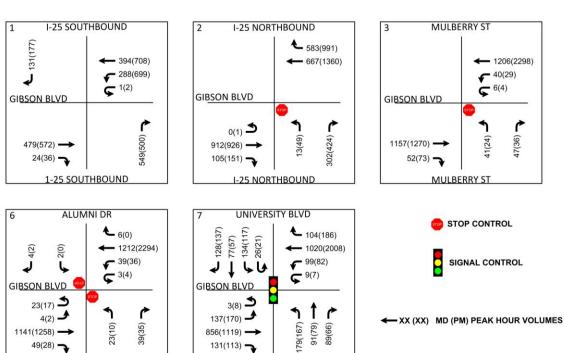


Figure 3: Existing Traffic Counts

TRAFFIC GROWTH

For the purposes of this analysis, the future year volumes were forecast from existing traffic volumes using values from 2016 and 2040 (updated) travel demand models provided by MRCOG. These models were then compared using AM and PM peak hour direction volumes (AMPH LOAD and PMPH LOAD) to calculate anticipated growth rates for individual roadways near the study area. Roadways calculated to have a yearly growth rate of less than 1% were analyzed with a 1% per year growth rate to facilitate a conservative analysis. Growth rates were then converted to growth factors for specific analysis scenarios. Values provided by MRCOG are reproduced verbatim in Table 2, in addition to the calculated growth rates used in the analysis. Growth rates were then applied to the 2024 existing volumes to forecast future volumes. Projected turning movement volumes were used along with adjacent developments' sitegenerated trips for the Build-Out Year 2026 Background scenario. 2026 Background volumes plus the proposed development's site-generated trips were used for the Build-Out Year 2026 Full-Build scenario.

Table 2: Yearly Growth Rates

	Table 2: Yearly Growth Rates									
Street	Segment Begin	Segment End	Direction	Period	MRCOG 2016 Model "Peak Hour Load"	MRCOG 2040 Model "Peak Hour Load"	Annual Growth Rate	Average Annual Growth	Growth Rate for Analysis	
	Node 3659	University	WB	AM PH	1270	1440	0.52%			
	11000 3033	Othiversity	***	PM PH	2184	1775	-0.86%			
	University	Node 3659	EB	AM PH	2133	2043	-0.18%			
75	·			PM PH	1389	1694	0.83%			
BIVC	University	Node 3652	WB	AM PH	1475	1730	0.67%			
Gibson Blvd				PM PH	2845	2798	-0.07%	1.13%	1.10%	
sqips	Node 3652	University	EB	AM PH	2645	2780	0.21%			
0				PM PH AM PH	1643 557	2140 1730	1.11% 4.84%			
	Node 3652	Node 3649	WB	PM PH	1786	2798	1.89%			
				AM PH	1729	2780	2.00%			
	Node 3649	Node 3652	EB	PM PH	1164	2140	2.57%			
				AM PH	407	752	2.59%			
-	Gibson	Node 3631	NB	PM PH	290	475	2.08%			
University Blvd	N 2624	Ciboon	CD.	AM PH	230	398	2.31%			
ity	Node 3631	Gibson	SB	PM PH	675	1132	2.18%	2.040/	2.80%	
ers	Nodo 2621	Sunshine	NB	AM PH	337	749	3.38%	2.84%		
Jniv	Node 3631	Sunstille	IND	PM PH	225	466	3.08%			
ر	Sunshine	Nodo 2621	Node 3631	SB	AM PH	123	371	4.71%		
	Julistille	Noue 3031	36	PM PH	644	1146	2.43%			
	Node 3720	Node 3688	NB	AM PH	3815	5287	1.37%			
	Noue 3720	Noue 3000	110	PM PH	3279	4746	1.55%			
ļ	Node 3688	Node 3648	NB	AM PH	2866	3879	1.27%			
Θ		1400C 3040		PM PH	2772	3868	1.40%	0.93%	1.00%	
I-25 North	Node 3648	Node 3615	NB	AM PH	3233	3879	0.76%			
<u> </u>				PM PH	3653	3868	0.24%			
	Node 3615	Node 3558	NB	AM PH	4185	4806	0.58%			
				PM PH	4741	5026	0.24%			
	Node 3568	Node 3618	SB	AM PH	4283	4238	-0.04%			
_				PM PH AM PH	4229	4392	-0.68%			
outh	Node 3618	Node 3650	SB	PM PH	3897 4027	3305 3602	-0.46%			
I-25 So				AM PH	2733	3305	0.79%	0.28%	0.30%	
1-2!	Node 3650	Node 3679	SB	PM PH	3170	3602	0.53%			
				AM PH	3071	3945	1.05%			
	Node3679	Node 3721	SB	PM PH	3961	4951	0.93%			
Alumni Dr				N/A					1.00%	
Mulberry St				N/A					1.00%	

Source: MRCOG 2016 and 2040 Models

SITE TRIP GENERATION, DISTRIBUTION AND ASSIGNMENT

Trip generation for the Proposed Development was taken from trip survey data for 12 In-N-Out Burger Restaurants. The average of the 12 developments' Mid-day and PM peak hour trips was used for this analysis. Pass-by Trip rates of 50% for the Mid-day peak hour and 55% for the PM peak hour taken from the ITE Trip Generation Manual for land use code 934-Fast-Food Restaurant with Drive-Through were used.

Trip data from 12 In-N-Out Burger restaurants show higher peak hour volumes than those based on the ITE Trip Generation Manual. Trip survey data and ITE Trip Generation data can be found in Appendix C for comparison. Trips generated by the proposed development are shown in the tables below. Site-generated trips were added to the Background traffic volumes to create the Total Build-Out and Horizon Year traffic volumes. Table 3 shows the trip generation volumes and percents.

Table 3: Proposed Development Trip Generation						
In-N-Out Burger Trip Generation						
Peak Hour INGRESS EGRESS						
DACC DV	MD	72	70			
PASS-BY	PM	57	53			
DIRECT	MD	73	70			
	PM	48	44			
TOTAL ¹	MD	145	140			
	PM	105	97			

Table 3: Proposed Development Trip Generation

Trip Distribution and Assignment – Build Out Year 2026

The proposed site-generated trip distribution was determined based on the analysis of existing intersection demand characteristics within the study area. These direct trips were routed within the roadway network to and from the Development based on the proportions of existing turning movement counts during the AM and PM peak hours. Figures 4 through 7 show the routing percentages and trips generated by the development. Pass-by trip percentages for Build-Out Year 2026 are also shown in Table 4.

Table 4. Pass-h	v Trin	Percentages:	– Build-Out Year	- 2026

Pass-by Trip Percentages					
From	То				
I-25 SB	I-25 SB	35%			
I-25 NB	I-25 NB	20%			
Gibson EB	Gibson EB	10%			
Gibson WB	University NB	5%			
Gibson WB	I-25 SB	5%			
Gibson WB	I-25 NB	5%			
University SB	I-25 SB	5%			
University SB	I-25 NB	10%			
University SB	University SB	5%			
	Total	100%			

¹ Average trips from data collected for 12 In-N-Out Burger developments, see Appendix C

-

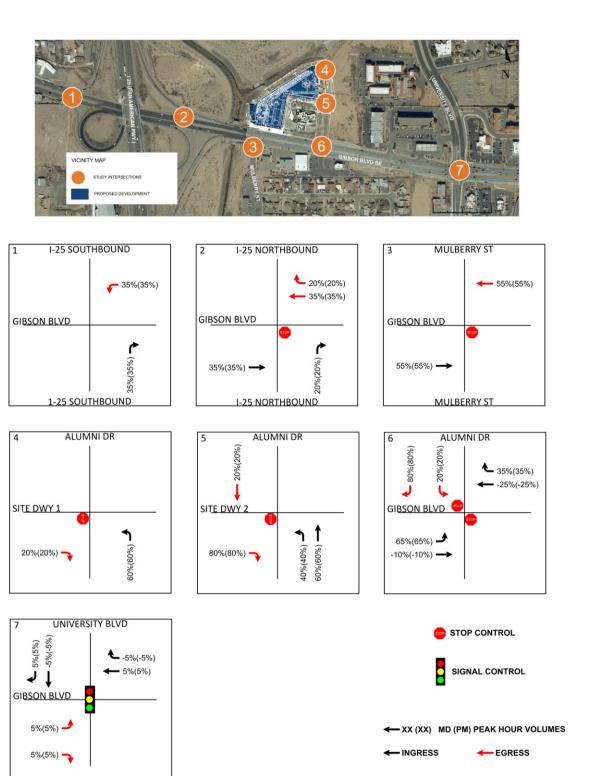


Figure 4: Pass-by Trip Percentages

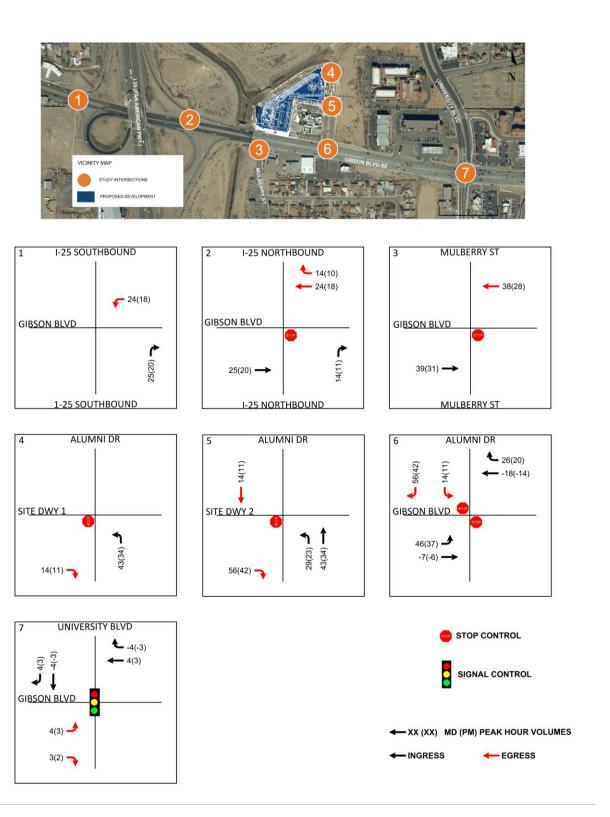


Figure 5: Pass-by Trip Volumes

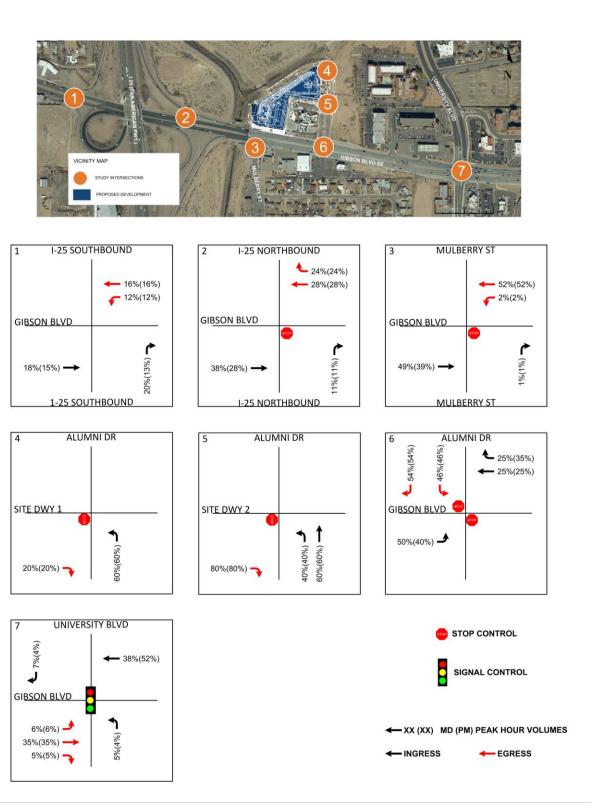


Figure 6: Direct Trip Percentages

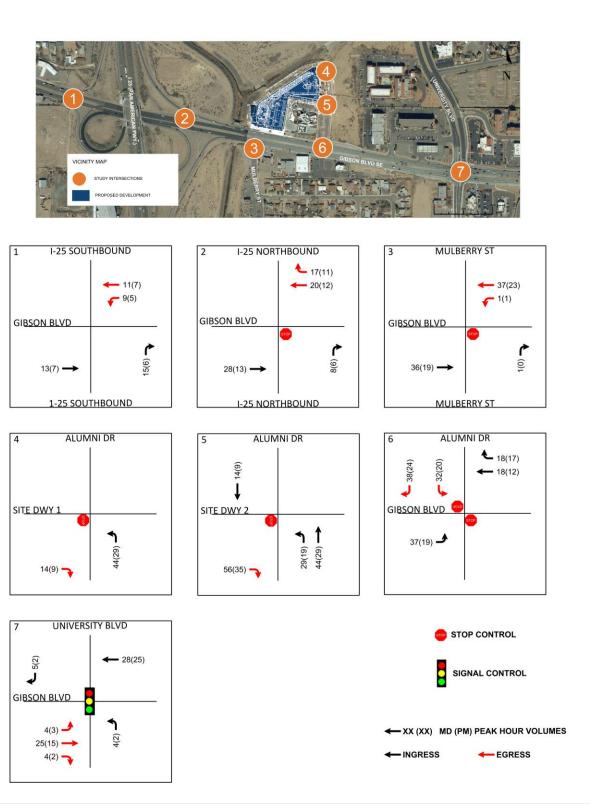


Figure 7: Direct Trip Volumes

Trip Distribution and Assignment – Horizon Year 2036

Since the extension of Alumni Drive is assumed to be completed in Horizon Year 2036, a second trip distribution was created for the Horizon Year. Figures 8 through 11 show the routing percentages and trips generated by the development. Pass-by trip percentages for Build-Out Year 2026 are also shown in Table 5. Direct and pass-by trips to and from the extended portion of Alumni Drive are approximated based on assumed future traffic patterns. Without existing volumes, routing percentages could not be calculated from existing traffic patterns.

Table 5: Pass-By Trip Percentages - Horizon Year 2036

Pass-by Trip Percentages - Horizon Year 2036						
From	То	Percentage				
I-25 SB	I-25 SB	30%				
I-25 NB	I-25 NB	15%				
Gibson EB	Gibson EB	10%				
Gibson EB	Alumni NB	5%				
Gibson WB	Gibson WB	10%				
Gibson WB	Alumni NB	5%				
Gibson WB	I-25 SB	5%				
Gibson WB	I-25 NB	5%				
University SB	University SB	5%				
University SB	I-25 SB	5%				
University SB	I-25 NB	5%				
	Total	100%				

Figure 8: Horizon Year Pass-By Trip %

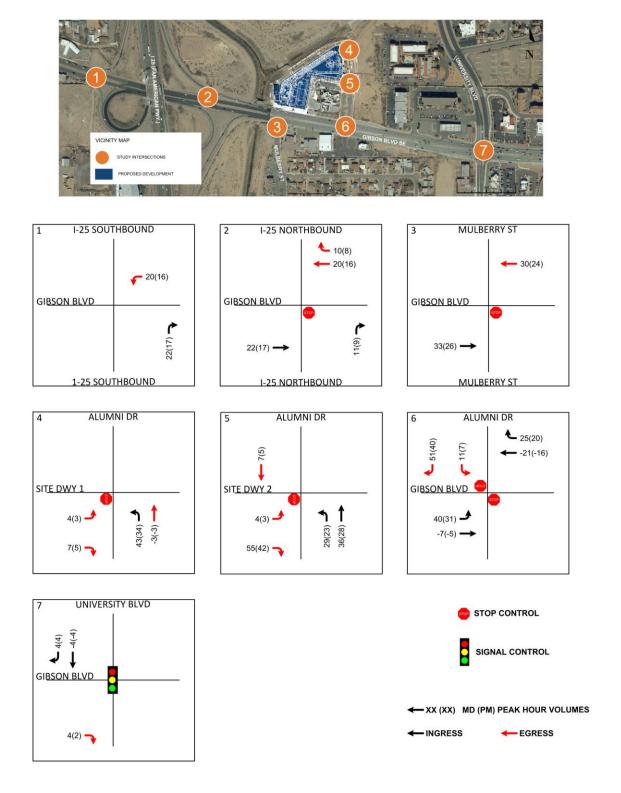


Figure 9: Horizon Year Pass-By Trip Volumes

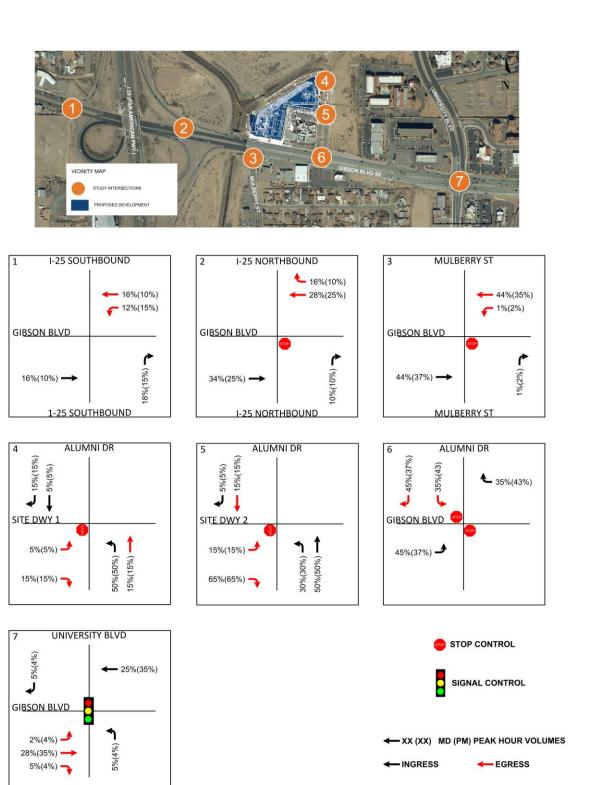


Figure 10: Horizon Year Direct Trip %

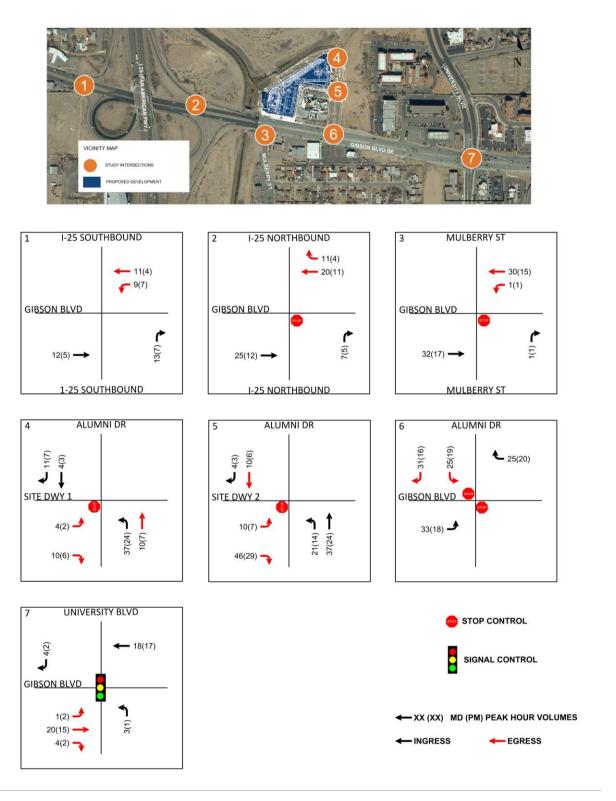


Figure 11: Horizon Year Direct Trip Volumes

TRAFFIC VOLUME CALCULATIONS

Traffic volumes used in the Build-Out Year and Horizon Year analyses were calculated as follows:

- Build-Out Year 2026 Background 2026 traffic volumes projected from the Existing traffic volumes via the application of a growth factor developed from the MRCOG Metropolitan Transportation Plan (MTP) CUBE/2 Regional Model, plus trips generated by the adjacent developments.
- Build-Out Year 2026 Total 2026 background volumes plus trips generated by the proposed development.
- Horizon Year 2036 Background 2036 traffic volumes projected from the Existing traffic volumes via the application of a growth factor developed from the MRCOG Metropolitan Transportation Plan (MTP) CUBE/2 Regional Model, plus trips generated by the adjacent developments.
- Horizon Year 2036 Total 2036 traffic volumes projected from the Existing traffic volumes via the application of a growth factor developed from the MRCOG Metropolitan Transportation Plan (MTP) CUBE/2 Regional Model, plus trips generated by the proposed development.

Figures 12 through 15 show the volumes for each Build-Out Year and Horizon Year scenario.

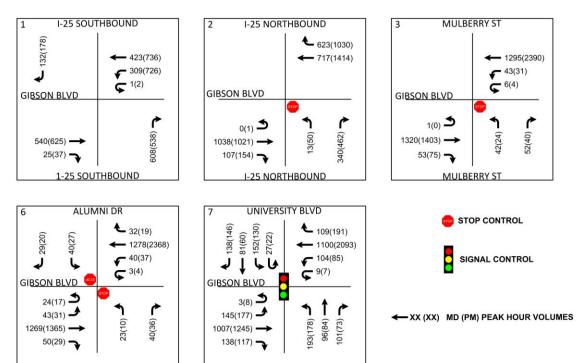


Figure 12: Build Out Year 2026 Background Volumes

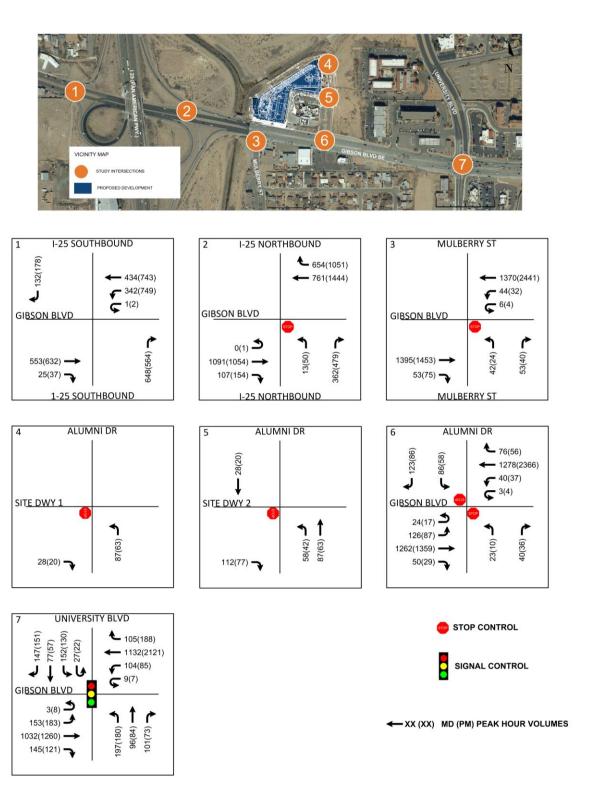
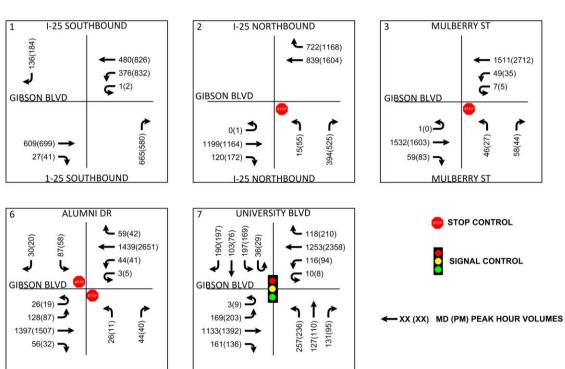
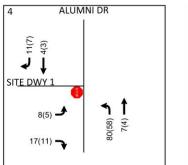
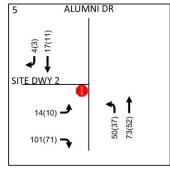
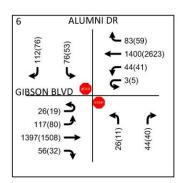
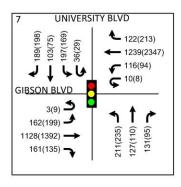


Figure 13: Build Out Year 2026 Full-Build Volumes


Figure 14: Horizon Year 2036 Background Volumes

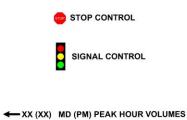


Figure 15: Horizon Year 2036 Full-Build Volumes

SITE CONDITIONS AND SITE ANALYSIS

ASSUMPTIONS

The following assumptions regarding new developments in the roadway network were made for the Build-Out Year scenarios based on the information discussed in the scoping meeting:

- Alumni Drive is assumed to be extended north of its current location through a project designed and funded by the University of New Mexico. Site Driveways 1 and 2 will be constructed on the west side of the new segment of Alumni Drive.
- The Gibson Boulevard and I-25 Interchange is currently being redesigned by NMDOT. Capacity and queuing issues at the interchange are assumed to be addressed in the future by this reconstruction project. Therefore, mitigations for the interchange are not provided in this analysis.

SITE ACCESS ANALYSIS AND JUSTIFICATION

Site access is to be provided via two driveways on Alumni Drive. CoA Development Process Manual (DPM) requirements were reviewed for the three access driveways. DPM Table 7.4.45 provides a minimum distance between commercial site access points and intersections, and DPM Table 7.4.46 provides the maximum number of commercial site access points per site. The results of this analysis are shown in Table 6.

City of Albuquerque Development Process Manual Recommended Access Spacing **DPM Table 7.4.45 Minimum** Distance **DPM Table 7.4.46** Design **Distance Between Commercial** Site Major Cross **Maximum Number of** from Site Speed **Site Access and Intersection Commercial Site** Access Street Street Access to (MPH) **Approach** Departure **Access Points Per Site** Intersection Distance **Distance** Gibson **Driveway** Alumni Dr Blvd 30 75 ft 75 ft 470 (Principal 1 (Local) Arterial) Gibson Driveway Alumni Dr Blvd 30 75 ft 75 ft 360 2 (Principal (Local) Arterial)

Table 6: Access Spacing Requirements from CABQ DPM

Based on the information above, both driveways on Alumni Drive meet COA DPM requirements.

SITE CIRCULATION AND QUEUEING ANALYSIS

In the current Development site plans, queuing space for up to 39 vehicles is provided between the entrance of the development on the east side of the parcel and the drive through window. The trip and queuing data provided for this report from other In-N-Out Burger restaurants shows that the max drivethrough queue length during a 15-minute period for any of the locations studied was 25 vehicles. Therefore, the left-turn lane shown in the current Development plans is adequate to accommodate anticipated site trips.

AUXILIARY LANE ANALYSIS

Since Alumni Drive is a CoA maintained local street, the CoA DPM was used to analyze the need for left-turn auxiliary turn lanes from Alumni Drive to Site Driveways 1 and 2 in the Build Out Year 2026 scenario. The need for right-turn auxiliary turn lanes from Alumni Drive to Site Driveways 1 and 2 in the Horizon Year were also analyzed, in anticipation of the extension of Alumni Drive. Table 7 provides the thresholds from Table 7.4.67 of the DPM and the warrant results at each driveway.

Table 7: Turn Lane Warrants – City of Albuquerque DPM Requirements

Location	Posted Speed Limit	Movement	Right Turning Volume MD (PM)	DPM Criteria - Turn Volume Per Hour	Turn Lane Warrant Result (DPM)
Site Driveway 1 & Alumni Dr	30 MPH	NBL	87 (63)	40	Required
Site Driveway 2 & Alumni Dr	30 MPH	NBL	58 (42)	40	Required
Site Driveway 1 & Alumni Dr	30 MPH	SBR	11 (7)	50	Not Required
Site Driveway 2 & Alumni Dr	30 MPH	SBR	4 (3)	50	Not Required

Deceleration Lane Lengths

Guidelines in the CoA DPM Chapter 7 state that:

- Where traffic is to be controlled by a traffic signal, the left turn lane should be of sufficient length to store the turning vehicles and clear the equivalent lane volume of all other traffic on the approach, where feasible.
- The total length of the turn lane and taper should accommodate storage requirements plus deceleration and taper. If this is not feasible, the lane should accommodate the 95th percentile queue length.

Table 8 displays the recommended deceleration lengths for each turn lane.

Table 8: Deceleration Lane Lengths

Location	Posted Speed Limit	Movement	Existing or Planned Auxiliary Lane Length	Recommended Auxiliary Lane Lengths Per CoA Guidelines
Site Driveway 1 & Alumni Dr	30 MPH	NBL	160 ft	150 - 150 Reverse Curve
Site Driveway 2 & Alumni Dr	30 MPH	NBL	160 ft	150 - 150 Reverse Curve

The NBL movement from Alumni Drive to Site Driveways 1 and 2 requires deceleration lengths shown in Table 8. The site plan for the proposed Development shows striping for a two-way left-turn lane (TWLTL) in the extended segment of Alumni Drive, and there is 35 feet between the beginning of the TWLTL and

Site Driveway 2. There is 160 feet between the beginning of the TWLTL and Site Driveway 1. The Full-Build 95th percentile queue length for the NBL movements at each driveway is less than one vehicle length and could be accommodated in the space provided in the current plans.

SITE DRIVEWAYS SIGHT DISTANCE

The following presents a narrative detailing the development's recommended intersection sight distance requirements. Intersection sight distance requirements were calculated using the 2018 AASHTO "Green Book" chapter 9.5. Two sight distance cases were used for this analysis:

- Case B1 A stopped vehicle turning left from a minor street approach onto a major road.
- Case B2 A stopped vehicle turning right from a minor street approach onto a major road.

The intersection sight distance for Case B2 at all access driveways was calculated based on the assumption that the design vehicle turns into the nearest traffic lane. A passenger vehicle was used as the design vehicle. The required sight distance values provided in Table 9 rounded up to the nearest 5-foot increment. Formulas, values, and calculations used in the sight distance analysis can be found in Appendix F.

Table 9.	Required	Sight	Distance	Values
Tubic J.	negunea	JIGIIL	DISCULLE	VUIUCS

Access Location	Posted Speed Limit (MPH)	Case	Required Sight Distance (FT)
Site Driveway 1 & Alumni Drive	30	B1	355
		B2	290
Site Driveway 2 and Alumni Drive	30	B1	355
		B2	290

Using the values shown above, all development driveways are recommended to adhere to the sight distance provisions detailed in the AASHTO "Green Book," and CABQ DPM Section 7-4(I)(5)(iii). An area bounded by the above sight distances with the decision point placed 14.5 feet back from the edge of the shoulder midway between the outbound driving lane should be maintained clear of any obstructions.

Since the section of Alumni Drive where Site Driveway's 1 and 2 are planned is not constructed yet, no measurements of existing sight distance could be collected. When this section of Alumni Drive is constructed, an area bounded by the above sight distance of 290 feet for right-turning vehicles should be kept clear of any obstructions. When Alumni Drive is extended beyond the northern barrier shown in the site plans, and left-turns can be made from Site Driveways 1 and 2, the required 355 feet of sight distance should be kept clear of any obstructions.

TRAFFIC ANALYSIS

Highway Capacity Software (HCS) was used to analyze each study intersection for Level of Service (LOS) and 95th percentile queueing conditions. HCS implements methods and procedures detailed by the Highway Capacity Manual (HCM). Detailed capacity output sheets showing all individual movements can be found in Appendix D.

LOS, CAPACITY, AND QUEUING ANALYSIS

Per the HCM, LOS is presented as a letter grade (A through F) based on the calculated average delay for an intersection or movement. Delay is calculated as a function of several variables, including signal phasing operations, cycle length, traffic volumes, and opposing traffic volumes, but it is a measurement of the average wait time a driver can expect when moving through an intersection. Factors such as total cycle time (for all movements), queueing restrictions, and vehicle volumes can affect measurements of delay, especially for lower-volume movements and side streets. Generally, these factors are only realized when delays reach or exceed LOS E thresholds. In such cases, a narrative is offered in subsequent sections specific to the individual movement in question.

Table 10 and Table 11, reproduced from the HCM, show delay thresholds and the associated Level of service assigned to delay ranges for signalized intersections and stop-controlled intersections, respectively. Generally, a LOS of D or better is considered an acceptable level of service.

Table 10: LOS Criteria and Descriptions for Signalized Intersection

Level of service	Average Control Delay (sec/vehicle)	General Description (Signalized Intersections)
Α	≤10	Free flow
В	>10 – 20	Stable flow (slight delays)
С	>20 – 35	Stable flow (acceptable delays)
D	>35 – 55	Approaching unstable flow (tolerable delay, occasionally wait through more than one signal cycle before proceeding)
E	>55 – 80	Unstable flow (intolerable delay)
F	>80	Forced flow (jammed)

Table 11: LOS Criteria for Unsignalized Intersections

 	- J
 vel of ervice	Average Control Delay (sec/vehicle)
А	≤10
В	>10 – 15
С	>15 – 25
D	>25 – 35
Е	>35 – 50
F	>50

Queueing is reported in feet for all intersections with queue lengths greater than one vehicle, with a base assumption of 25 feet queue length per vehicle. Queues are reported for queue measurements falling within the 95th percentile. It should be noted that 95th percentile queues are statistically expected to occur during only 5% of the peak hour's sign cycles. It is also noted that unreported average queueing at an intersection would statistically be much shorter than 95th-percentile queueing.

The volume-to-capacity (V/C) ratio is a performance measure that shows the ratio of traffic volume to the lane group capacity. A V/C ratio greater than 1.00 indicates that demand creates a residual queue for the analysis period.

For the purposes of this analysis, acceptable levels of service (LOS) are defined to be a LOS D or better. Based on procedures outlined in the HCM, intersection delay and level of service for stop-controlled intersections are reported as the delay and level of service for the worst-case movement at each intersection. For all other control types, they are taken for the whole intersection. Detailed output sheets can be found in Appendix D.

EXISTING YEAR 2024 CONDITIONS

Table 12 summarizes the intersection delay, level of service, and queueing under Existing Year 2024 conditions. The following conclusions are made from the Existing Conditions analysis:

Delay and LOS Results

At all other intersections where LOS results are present, all movements operate at acceptable LOS during the MD and PM peaks except:

- At the stop-controlled intersection of Gibson Boulevard and I-25 NB Off-Ramp
 - NBL operates at LOS E and LOS F during the MD and PM peak hours, respectively.
 - NBR operates at LOS E during the PM peak hour.
- At the stop-controlled intersection of Gibson Boulevard and Mulberry Street
 - NBL operates at LOS E and LOS F during the MD and PM peak hours, respectively.
- At the stop-controlled intersection of Gibson Boulevard and Alumni Drive
 - SBL operates at LOS E and LOS F during the MD and PM peak hours, respectively.
- At the signalized intersection of Gibson Boulevard and University Boulevard
 - SBL operates at LOS E during the PM peak hour.
 - SBR operates at LOS E during the PM peak hour.

Queuing Results

- At the signalized intersection of Gibson Boulevard and University Boulevard
 - The SBR lane is not expected to accommodate the 95th percentile queue lengths during the MD and PM peak hours.

Table 12: HCM Results for Existing Year (2024) Conditions

				To	able 12	: HCM Res	sults for Ex	isting	g Year (20	024) Cond	itions				
						Gibson Blv	d & I-25 SB R	amps	(Stop-Conti	rolled)					
	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS		Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
*	NBR	180.0	0.76	23.2	С			ak	NBR	172.5	0.75	23.9	С		
MD Peak	SBR	<1 Veh	0.17	10.4	В			PM Peak	SBR	32.5	0.30	13.2	В	İ	
₹	EBT							Δ	EBT					İ	
	EBR					23.2	С		EBR					23.9	С
	WBL	30.0	0.29	10.0	Α				WBL	197.5	0.77	20.2	С	İ	
	WBT								WBT					†	
	WDI					Gibson Bly	d & I-25 NB R	amne							
		95% Queue						аттрэ	(Stop Cont	95% Queue	_				
~	Movement	Length (ft/lane)	V/C	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS	¥	Movement	Length (ft/lane)	V/C	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
MD Peak	NBL	<1 Veh	0.11	37.0	E			PM Peak	NBL	95.0	0.83	178.0	F		
₽	NBR	87.5	0.56	19.7	С			Σ	NBR	217.5	0.84	37.8	E		
2	EBT					37.0	E	_	EBT					178.0	F
	EBR								EBR						
	WBT								WBT						
						Gibson Bl	vd & Mulber	ry St (Stop-Contro	olled)					
	Movement	95% Queue Length (ft/lane)	V/C	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS		Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
*	NBL	25.0	0.27	36.4	Е			ak	NBL	<1 Veh	0.25	50.9			
MD Peak	NBR	<1 Veh	0.13	15.9	С			PM Peak	NBR	<1 Veh	0.12	17.4	С		
₹	EBT					36.4	E	Δ	EBT	_		ļ		50.9	F
	EBR					36.4	-		EBR					30.9	
	WBL	<1 Veh	0.14	18.1	С				WBL	<1 Veh	0.13	20.9	С		
	WBT			2.4	Α				WBT			2.7	Α		
						Gibson B	lvd & Alumn	i Dr (S	top-Contro	lled)					
	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS		Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
	NBL/R	35.0	0.34	33.7	D				NBL/R	27.5	0.27	33.5	D		
	SBL	<1 Veh	0.02	47.9	Е				SBL	<1 Veh	0.00	282.2	F		
ea	SBR	<1 Veh	0.01	14.9	В			eak	SBR	<1 Veh	0.01	28.9	D		
MD Peak	EBL	<1 Veh	0.06	13.5	В			PM Peak	EBL	<1 Veh	0.13	33.0	D	İ	
Σ	EBT			/		47.9	E	_	EBT					282.2	F
	EBR								EBR					İ	
	WBL	<1 Veh	0.14	18.4	С				WBL	<1 Veh	0.15	20.6	С	Ī	
	WBT								WBT					İ	
	WBR			-2-					WBR					Ī	
						Gibson I	Blvd & Unive	rsity B	lvd (Signaliz	zed)					
	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS		Movement	95% Queue Length (ft/lane)	V/C	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
	NBL	23.1	0.52	40.0	D				NBL	198.7	0.46	42.1	D		
	NBT/R	194.3	0.41	37.5	D				NBT/R	170.0	0.33	40.1	D		
	SBL	209.0	0.65	50.5	D			J	SBL	200.4	0.63	56.4	E		
eal	SBT	92.9	0.26	45.0	D			Peak	SBT	76.6	0.23	50.9	D		
MD Peak	SBR	161.7	0.52	47.3	D			PIM P	SBR	195.4	0.66	55.1	Е		
Σ	EBL	61.5	0.34	10.2	В	20.0	В	_	EBL	150.1	0.79	26.3	С	21.9	С
	EBT	161.3	0.28	12.7	В				EBT	222.8	0.36	13.3	В		
	EBR	70.2	0.14	11.6	В				EBR	61.9	0.12	11.2	В		
	WBL	47.8	0.24	10.0	В				WBL	43.6	0.25	10.9	В		
	WBT	203.3	0.35	13.8	В				WBT	475.4	0.67	19.7	В		
	WBR	55.6	0.11	11.8	В		1		WBR	114.4	0.20	13.2	В		

BUILD-OUT YEAR (2026) BACKGROUND CONDITIONS

Table 13 summarizes the intersection delay, level of service, and queueing under Build-Out Year 2026 Background conditions. The following conclusions are made for the Build-Out Year Background analysis:

Delay and LOS Results

At all other intersections where LOS results are present, all movements operate at acceptable LOS during the MD and PM peaks except:

- At the stop-controlled intersection of Gibson Boulevard and I-25 SB Off-Ramp
 - o NBR operates at LOS E during the MD peak hour.
- At the stop-controlled intersection of Gibson Boulevard and I-25 NB Off-Ramp
 - NBL operates at LOS E and LOS F during the MD and PM peak hours, respectively.
 - o NBR operates at LOS F during the PM peak hour.
- At the stop-controlled intersection of Gibson Boulevard and Mulberry Street
 - NBL operates at LOS E and LOS F during the MD and PM peak hours, respectively.
- At the stop-controlled intersection of Gibson Boulevard and Alumni Drive
 - o NBL/R operates at LOS F during the MD and PM peak hours.
 - SBL operates at LOS F during the MD and PM peak hours.
 - EBL operates at LOS F during the PM peak hours.
- At the signalized intersection of Gibson Boulevard and University Boulevard
 - SBL operates at LOS E during the PM peak hour.

Queuing Results

Table 13: HCM Results for Build-Out Year (2026) Background Conditions

			To	able 13			Build-Out				d Cond	litions			
						Gibson Blvd	& I-25 SB R	amps	(Stop-Con	trolled)					
	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS		Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
*	NBR	275.0	0.88	35.2	Е			쑮	NBR	235.0	0.84	32.2	D		
MD Peak	SBR	<1 Veh	0.18	10.6	В			PM Peak	SBR	32.5	0.31	13.5	В		
Ξ	EBT					35.2	Е	4	EBT					32.2	D
	EBR					35.2	-		EBR					32.2	D
	WBL	37.5	0.34	10.7	В				WBL	275.0	0.86	28.7	D		
	WBT								WBT						
					(Gibson Blvd	& I-25 NB R	amps	(Stop-Con	trolled)					
	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS	¥	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
MD Peak	NBL	<1 Veh	0.14	48.0	E			Peak	NBL	115.0	1.06	278.2	F		
Ē	NBR	135.0	0.70	27.4	D			Σd	NBR	327.5	0.99	66.1	F		
_	EBT					48.0	E	_	EBT					278.2	F
	EBR								EBR						
	WBT								WBT						
						Gibson Blv	d & Mulber	ry St (Stop-Cont						
	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS		Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
a ×	NBL	35.0	0.35	49.1	Е			eak	NBL	27.5	0.30	64.2	F		
MD Peak	NBR	<1 Veh	0.16	17.8	С			PM Peak	NBR	<1 Veh	0.14	19.2	С		
Σ	EBT					49.1	Е	E	EBT					64.2	F
	EBR								EBR						
	WBL	<1 Veh	0.19	21.6	С				WBL	<1 Veh	0.17	24.4	С		
	WBT			3.6	Α	O'I DI	10.01	/	WBT			4.0	Α		
		050/ 0				Gibson Bi	vd & Alumn	Dr (S	top-contr						
	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS		Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
	NBL/R	60.0	0.52	61.4	F				NBL/R	62.5	0.55	88.7	F		
	SBL	65.0	0.61	119.7	F			J	SBL	115.0	2.93	1632.4	F		
eal	SBR	<1 Veh	0.09	16.2	С			Peak	SBR	<1 Veh	0.15	34.2	D		
MD Peak	EBL	<1 Veh	0.22	19.9	С			M	EBL	67.5	0.60	97.5	F		
_	EBT					119.7	F	_	EBT					1632.4	F
	EBR								EBR						
	WBL	<1 Veh	0.17	21.1	С				WBL	<1 Veh	0.18	23.2	С		
	WBT								WBT						
	WBR								WBR						
	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Gibson Bl Intersection Delay	vd & Univer	sity E	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
	NBL	37.0	0.52	38.9	D				NBL	207.0	0.47	40.9	D		
	NBT/R	206.0	0.42	36.1	D				NBT/R	182.0	0.34	39.0	D		
	SBL	228.0	0.67	49.4	D				SBL	216.0	0.65	55.6	E .		
*	SBT	96.0	0.25	43.1	D			Peak	SBT	79.0	0.22	49.5	D		
MD Peak	SBR	171.0	0.50	45.5	D			/ Pe	SBR	203.0	0.64	53.7	D		
Ξ	EBL	70.0	0.39	11.6	В	20.9	С	PM	EBL	155.0	0.86	30.2	С	23.4	С
	EBT	205.0	0.35	14.5	В	_5.5			EBT	259.0	0.41	14.8	В		_
	EBR	79.0	0.15	12.9	В	7			EBR	67.0	0.12	12.1	В		
	WBL	54.0	0.29	11.5	В				WBL	48.0	0.29	12.2	В		
	WBT	232.0	0.39	15.6	В				WBT	527.0	0.72	22.1	С		
	WBR	62.0	0.12	13.1	В				WBR	123.0	0.21	14.3	В		

BUILD-OUT YEAR (2026) FULL-BUILD CONDITIONS

Table 14 summarizes the intersection delay, level of service, and queueing under Build-Out Year 2026 Full-Build conditions. The following conclusions are made for the Build-Out Year Full-Build analysis:

Delay and LOS Results

At all other intersections where LOS results are present, all movements operate at acceptable LOS during the MD and PM peaks except:

- At the stop-controlled intersection of Gibson Boulevard and I-25 SB Off-Ramp
 - o NBR operates at LOS E during the MD and PM peak hours.
- At the stop-controlled intersection of Gibson Boulevard and I-25 NB Off-Ramp
 - o NBL operates at LOS F during the MD and PM peak hours.
 - NBR operates at LOS F during the PM peak hour.
- At the stop-controlled intersection of Gibson Boulevard and Mulberry Street
 - NBL operates at LOS F during the MD and PM peak hours.
- At the stop-controlled intersection of Gibson Boulevard and Alumni Drive
 - NB L/R operates at LOS F during the MD peak hour.
 - o SBL operates at LOS F during the MD and PM peak hours.
 - o EBL operates at LOS E during the MD peak hour and LOS F during the PM peak hour.
- At the signalized intersection of Gibson Boulevard and University Boulevard
 - SBL operates at LOS E during the PM peak hour.
 - SBR operates at LOS E during the PM peak hour.

Queuing Results

Table 14: HCM Results for Build-Out Year (2026) Full-Build Conditions

				Tuble 1	4. HCN		d & I-25 SB R			Full-Build	Conun	110113			
						GIDSON BIV	u & 1-25 36 K	amps	(Stop-Cont						
	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS		Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
ä	NBR	345.0	0.95	46.4	Е			¥	NBR	272.5	0.89	37.9	Е		
MD Peak	SBR	<1 Veh	0.18	10.6	В			PM Peak	SBR	32.5	0.31	13.6	В		
Ξ	EBT					46.4	E	5	EBT					37.9	E
	EBR					40.4	_		EBR					37.9	-
	WBL	47.5	0.40	11.6	В	1			WBL	322.5	0.91	34.3	D		
	WBT								WBT						
						Gibson Blv	d & I-25 NB R	amps	(Stop-Cont	rolled)					
	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS		Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
eak	NBL	<1 Veh	0.16	55.1	F			eak	NBL	122.5	1.16	326.4	F		
MD Peak	NBR	170.0	0.77	34.0	D			PM Peak	NBR	382.5	1.05	84.0			
Σ	EBT					55.1	F	_	EBT					326.4	F
	EBR					1			EBR					1	
	WBT								WBT						
						Gibson Bl	vd & Mulber	ry St (Stop-Contro	olled)					
	Movement	95% Queue Length (ft/lane)	V/C	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS		Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
풇	NBL	40.0	0.39	57.6	F			축	NBL	30.0	0.32	70.8	F		
MD Peak	NBR	<1 Veh	0.17	18.7	С]		PM Peak	NBR	<1 Veh	0.15	19.9	С		
Σ	EBT					57.6	F	≥ Δ	EBT					70.8	F
	EBR					37.0	,		EBR					70.8	
	WBL	<1 Veh	0.21	23.6	С]			WBL	<1 Veh	0.18	26.0	D		
	WBT			4.4	Α				WBT			4.6	Α		
						Gibson B	lvd & Alumn	i Dr (S	top-Contro	lled)					
	Movement	95% Queue Length (ft/lane)	V/C	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS		Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
	NBL/R	147.5	1.27	345.4	F				NBL/R						
ᆂ	SBL	257.5	2.72	1038.4	F	`		¥	SBL	210.0	3.94	1818.8	F		
MD Peak	SBR	40.0	0.36	21.0	С			PM Peak	SBR	<1 Veh	0.15	34.6	D		
€	EBL	87.5	0.59	37.1	E			Σ	EBL	242.5	1.67	463.2	F		
_	EBT				-	1038.4	F	_	EBT					1818.8	F
	EBR								EBR					1	
	WBL	<1 Veh	0.16	20.9	С				WBL	<1 Veh	0.18	23.1	С	1	
	WBT								WBT					1	
	WBR								WBR						
						Gibson E	Blvd & Unive	rsity B	lvd (Signali:						
	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS		Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
	NBL	54.0	0.58	42.4	D				NBL	213.4	0.50	43.0	D	1	
	NBT/R	211.5	0.45	38.4	D				NBT/R	186.7	0.37	40.9	D	1	
¥	SBL	200.7	0.63	50.7	D			~	SBL	191.3	0.62	56.6	Е		
Peâ	SBT	93.5	0.27	45.4	D			Pea	SBT	77.1	0.24	51.5	D	1	
MD Peak	SBR	189.5	0.61	48.7	D			PM Peak	SBR	214.5	0.75	57.1	E	22.5	
	EBL	67.0	0.40	10.5	В	20.1	С		EBL	158.9	0.85	29.7	С	22.3	С
	EBT	197.1	0.34	12.9	В				EBT	248.6	0.40	13.4	В		
	EBR	77.7	0.16	11.5	В	-			EBR	66.1	0.13	11.0	В	4	
	WBL	46.3	0.26	10.3	В	-			WBL	41.1	0.26	11.1	В	4	
	WBT	225.2	0.38	14.2	В				WBT	508.8	0.70	20.3	С	4	
	WBR	56.2	0.11	11.7	В	7	3 . 0 . etc . = =	24.6	WBR	114.2	0.20	13.0	В	L	
		0.000				Alumni	Dr & Site DW	Y 1 (S	op-Control						
MD Peak	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS	/ Peak	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
Σ	NBL	<1 Veh	0.08	8.4	Α	9.0	Α	Σ	NBL	<1 Veh	0.06	8.3	Α	9.0	Α
	EBR	<1 Veh	0.01	9.0	Α				EBR	<1 Veh	0.02	9.0	Α		
						Alumni	Dr & Site DW	Y 2 (S	op-Control						
<u> </u>	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS	يد	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
Sea	NBL	<1 Veh	0.02	7.4	Α			ea	NBL	<1 Veh	0.02	7.3	Α		
MD Peak	NBT]		PM Peak	NBT]	
2	SBT					10.1	Α	_	SBT					9.6	Α
	EBL	<1 Veh	0.00	10.1	Α]			EBL	<1 Veh	0.00	9.6	Α		
	EBR	<1 Veh	0.12	8.9	Α		İ		EBR	<1 Veh	0.08	8.7	Α	1	I

HORIZON YEAR (2036) BACKGROUND CONDITIONS

Table 15 summarizes the intersection delay, level of service, and queueing under Horizon Year 2036 Background conditions. The following conclusions are made for the Horizon Year analysis:

Delay and LOS Results

At all other intersections where LOS results are present, all movements operate at acceptable LOS during the MD and PM peaks except:

- At the stop-controlled intersection of Gibson Boulevard and I-25 SB Off-Ramp
 - o NBR operates at LOS E during the MD and PM peak hours.
 - WBL operates at LOS F during the PM peak hour.
- At the stop-controlled intersection of Gibson Boulevard and I-25 NB Off-Ramp
 - o NBL operates at LOS F during the MD and PM peak hours.
 - NBR operates at LOS E and LOS F during the MD and PM peak hours, respectively.
- At the stop-controlled intersection of Gibson Boulevard and Mulberry Street
 - NBL operates at LOS F during the MD and PM peak hours.
- At the stop-controlled intersection of Gibson Boulevard and Alumni Drive
 - O NBL/R operates at LOS F during the MD and PM peak hours.
 - o SBL operates at LOS F during the MD and PM peak hours.
 - SBR operates at LOS E during the PM peak hour.
 - o EBL operates at LOS F during the PM peak hour.

Queuing Results

Table 15: HCM Results for Horizon Year (2036) Background Conditions

										ickground	Contai	CIOIIS	_		
						Gibson Blv	d & I-25 SB R	amps	(Stop-Contr						
	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS		Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
ă	NBR	337.5	0.95	46.8	Е			sak	NBR	292.5	0.91	43.1	E		
MD Peak	SBR	<1 Veh	0.19	10.8	В			PM Peak	SBR	37.5	0.34	14.5	В		
Σ	EBT					46.8	Е	2	EBT					67.0	F
	EBR					40.8	_		EBR					07.0	
	WBL	50.0	0.41	12.0	В				WBL	512.5	1.05	67.0			
	WBT								WBT						
						Gibson Blv	d & I-25 NB R	amps	(Stop-Conti	olled)					
녿	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS	¥	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
MD Peak	NBL	<1 Veh	0.20	65.1	F			PM Peak	NBL	157.5	1.65	568.3	F		
₽	NBR	200.0	0.83	41.0	Е		_	Σ	NBR	505.0	1.18	130.9	F		_
_	EBT					65.1	F	_	EBT					568.3	F
	EBR								EBR						
	WBT								WBT						
		0.00/ 0					vd & Mulber	ry St (S	Stop-Contro						
	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS		Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
eak	NBL	50.0	0.47	70.8	F			Peak	NBL	42.5	0.43	97.0	F		
MD Peak	NBR	<1 Veh	0.19	19.9	С			ωW	NBR	<1 Veh	0.18	21.8	С		
Σ	EBT					70.8	F	_	EBT					97.0	F
	EBR						· ·		EBR WBL	<u> </u>					
	WBL WBT	<1 Veh	0.25	26.1	D				WBT	<1 Veh	0.22	30.0	D		
	WBI			5.7	Α	Cibaan B	lvd & Alumn	: D., /C.		I = -1\		6.5	Α		
		95% Queue				GIDSON B	iva & Alumin	ו עו נס	top-control	95% Queue					
	Movement	Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS		Movement	Length	V/C	Delay (s/veh)	LOS	Intersection	Intersection LOS
	NBL/R	100.0	0.77	117.7						(ft/lane)				Delay	
	SBL								NBL/R	155.0	1.76	643.4	F	Delay	
MD Peak	SBR	87.5	0.85	215.6	F			<u>~</u>	SBL		1.46		F F	Delay	
€		<1 Veh	0.10	215.6 17.7	F C			Peak	SBL SBR	155.0 97.5 <1 Veh	1.46 0.18	643.4 656.2 43.0	F E	Delay	
	EBL		0.10 0.27	215.6 17.7 23.6	F C			M Peak	SBL SBR EBL	155.0 97.5 <1 Veh 97.5	1.46 0.18 0.86	643.4 656.2 43.0 185.7	F E F	,	
	EBL EBT	<1 Veh 27.5 	0.10 0.27	215.6 17.7 23.6	F C C	215.6	F	PM Peak	SBL SBR EBL EBT	155.0 97.5 <1 Veh 97.5	1.46 0.18 0.86	643.4 656.2 43.0 185.7	F E F	656.2	F
~	EBL EBT EBR	<1 Veh 27.5 	0.10 0.27 	215.6 17.7 23.6 	F C C	215.6	F	PM Peak	SBL SBR EBL EBT EBR	155.0 97.5 <1 Veh 97.5	1.46 0.18 0.86	643.4 656.2 43.0 185.7	F E F	,	F
	EBL EBT EBR WBL	<1 Veh 27.5 <1 Veh	0.10 0.27 0.21	215.6 17.7 23.6 25.1	F C C	215.6	F	PM Peak	SBL SBR EBL EBT EBR WBL	155.0 97.5 <1 Veh 97.5 <1 Veh	1.46 0.18 0.86 0.24	643.4 656.2 43.0 185.7 28.5	F E F D	,	F
2	EBL EBT EBR WBL WBT	<1 Veh 27.5 <1 Veh	0.10 0.27 0.21	215.6 17.7 23.6 25.1	F C C C D	215.6	F	PM Peak	SBL SBR EBL EBT EBR WBL WBT	155.0 97.5 <1 Veh 97.5 <1 Veh	1.46 0.18 0.86 0.24	643.4 656.2 43.0 185.7 28.5	F E F D	,	F
-2	EBL EBT EBR WBL	<1 Veh 27.5 <1 Veh	0.10 0.27 0.21	215.6 17.7 23.6 25.1	F C C				SBL SBR EBL EBT EBR WBL WBT WBR	155.0 97.5 <1 Veh 97.5 <1 Veh	1.46 0.18 0.86 0.24	643.4 656.2 43.0 185.7 28.5	F E F D	,	F
	EBL EBT EBR WBL WBT	<1 Veh 27.5 <1 Veh 95% Queue Length	0.10 0.27 0.21	215.6 17.7 23.6 25.1	F C C C D		F Slvd & University Intersection LOS		SBL SBR EBL EBT EBR WBL WBT WBR	155.0 97.5 <1 Veh 97.5 <1 Veh ed) 95% Queue Length	1.46 0.18 0.86 0.24	643.4 656.2 43.0 185.7 28.5	F E F D	,	F Intersection
-	EBL EBT EBR WBL WBT WBR	<1 Veh 27.5 <1 Veh 95% Queue	0.10 0.27 0.21	215.6 17.7 23.6 25.1 Delay	F C C D	Gibson E	Blvd & Unive		SBL SBR EBL EBT EBR WBL WBT WBR Ivd (Signaliz	155.0 97.5 <1 Veh 97.5 <1 Veh ced) 95% Queue	1.46 0.18 0.86 0.24	643.4 656.2 43.0 185.7 28.5	F E F D	656.2	Intersection
	EBL EBT EBR WBL WBT WBR Movement	<1 Veh 27.5 <1 Veh 95% Queue Length (ft/lane) 98.6	0.10 0.27 0.21 V/C	215.6 17.7 23.6 25.1 Delay (s/veh)	C C D	Gibson E	Blvd & Unive		SBL SBR EBL EBT EBR WBL WBT WBR Ivd (Signaliz Movement NBL	155.0 97.5 <1 Veh 97.5 <1 Veh ced) 95% Queue Length (ft/lane)	1.46 0.18 0.86 0.24	643.4 656.2 43.0 185.7 28.5 Delay (s/veh)	F E F D LOS	656.2	Intersection
	EBL EBT EBR WBL WBT WBR	<1 Veh 27.5 <1 Veh 95% Queue Length (ft/lane)	0.10 0.27 0.21 v/c	215.6 17.7 23.6 25.1 Delay (s/veh) 35.2	E LOS	Gibson E	Blvd & Unive	rsity B	SBL SBR EBL EBT EBR WBL WBT WBR Vd (Signaliz	155.0 97.5 <1 Veh 97.5 <1 Veh ed) 95% Queue Length (ft/lane) 251.7	1.46 0.18 0.86 0.24 V/C	643.4 656.2 43.0 185.7 28.5 Delay (s/veh)	F E F D D LOS D	656.2	Intersection
	EBL EBT EBR WBL WBT WBR Movement NBL NBT/R	<1 Veh 27.5 <1 Veh 95% Queue Length (ft/lane) 98.6 239.4	0.10 0.27 0.21 V/C 0.57 0.43	215.6 17.7 23.6 25.1 Delay (s/veh) 35.2 30.7	E LOS D C	Gibson E	Blvd & Unive	rsity B	SBL SBR EBL EBT EBR WBL WBT WBR Ivd (Signaliz Movement NBL NBT/R	155.0 97.5 <1 Veh 97.5 <1 Veh ed) 95% Queue Length (ft/lane) 251.7 218.9	0.18 0.86 0.24 0.24 0.55 0.38	643.4 656.2 43.0 185.7 28.5 Delay (s/veh) 38.8 35.5	F E F D D LOS D D	656.2	Intersection
	EBL EBT EBR WBL WBT WBR Movement NBL NBT/R SBL	<1 Veh 27.5 <1 Veh 95% Queue Length (ft/lane) 98.6 239.4 287.1	0.10 0.27 0.21 v/c 0.57 0.43 0.73	215.6 17.7 23.6 25.1 Delay (s/veh) 35.2 30.7 48.9	E LOS D C D D	Gibson E	Blvd & Unive	rsity B	SBL SBR EBL EBT EBR WBL WBT WBR Vd (Signaliz Movement NBL NBT/R SBL	155.0 97.5 <1 Veh 97.5 <1 Veh ed) 95% Queue Length (ft/lane) 251.7 218.9 268.2	1.46 0.18 0.86 0.24 V/C 0.55 0.38 0.71	643.4 656.2 43.0 185.7 28.5 Delay (s/veh) 38.8 35.5 54.1	F E F D D D D D D	656.2	Intersection
MD Peak	EBL EBT EBR WBL WBT WBR Movement NBL NBT/R SBL SBT	<1 Veh 27.5 <1 Veh 95% Queue Length (ft/lane) 98.6 239.4 287.1 116.0	0.10 0.27 0.21 V/C 0.57 0.43 0.73 0.23	215.6 17.7 23.6 25.1 Delay (s/veh) 35.2 30.7 48.9 36.7	E LOS D C D D D	Gibson E	Blvd & Unive		SBL SBR EBL EBT EBR WBL WBT WBR Ivd (Signaliz Movement NBL NBT/R SBL SBT	155.0 97.5 <1 Veh 97.5 <1 Veh ed) 95% Queue Length (ft/lane) 251.7 218.9 268.2 99.6	1.46 0.18 0.86 0.24 V/C 0.55 0.38 0.71 0.22	643.4 656.2 43.0 185.7 28.5 Delay (s/veh) 38.8 35.5 54.1 45.0	F E F D D D D D D	656.2	Intersection
	EBL EBT EBR WBL WBT WBR Movement NBL NBT/R SBL SBT SBR	<1 Veh 27.5 <1 Veh 95% Queue Length (ft/lane) 98.6 239.4 287.1 116.0 204.6	0.10 0.27 0.21 V/C 0.57 0.43 0.73 0.23 0.47	215.6 17.7 23.6 25.1 Delay (s/veh) 35.2 30.7 48.9 36.7 39.2	ELOS D C C D D C D D D D D D D	Gibson E Intersection Delay	Blvd & University of the Blvd & University of	rsity B	SBL SBR EBL EBT EBR WBL WBT WBR Vd (Signaliz Movement NBL NBT/R SBL SBT SBR	155.0 97.5 <1 Veh 97.5 <1 Veh 255.7 218.9 268.2 99.6 246.8	1.46 0.18 0.86 0.24 V/C 0.55 0.38 0.71 0.22 0.64	643.4 656.2 43.0 185.7 28.5 5elay (s/veh) 38.8 35.5 54.1 45.0 49.7	E E F D D D D D D D	656.2 Intersection Delay	Intersection LOS
	EBL EBT EBR WBL WBT WBR Movement NBL NBT/R SBL SBT SBR EBL	<1 Veh 27.5 <1 Veh 95% Queue Length (ft/lane) 98.6 239.4 287.1 116.0 204.6 97.8	0.10 0.27 0.21 V/c 0.57 0.43 0.73 0.23 0.47 0.51	215.6 17.7 23.6 25.1 Delay (s/veh) 35.2 30.7 48.9 36.7 39.2	ELOS D C C D D D D D D D D D D	Gibson E Intersection Delay	Blvd & University of the Blvd & University of	rsity B	SBL SBR EBL EBT EBR WBL WBT WBR Vd (Signaliz Movement NBL NBT/R SBL SBT SBR EBL	155.0 97.5 <1 Veh 97.5 (1 Veh ed) 95% Queue Length (ft/lane) 251.7 218.9 268.2 99.6 246.8 290.7	1.46 0.18 0.86 0.24 V/C 0.55 0.38 0.71 0.22 0.64 0.88	643.4 656.2 43.0 185.7 28.5 Delay (s/veh) 38.8 35.5 54.1 45.0 49.7 50.8	E E F D D D D D D D D	656.2 Intersection Delay	Intersection LOS
	EBL EBT EBR WBL WBT WBR Movement NBL NBT/R SBL SBT SBR EBL EBT	<1 Veh 27.5 <1 Veh 95% Queue Length (ft/lane) 98.6 239.4 287.1 116.0 204.6 97.8 267.5	0.10 0.27 0.21 V/C 0.57 0.43 0.73 0.23 0.47 0.51	215.6 17.7 23.6 25.1 Delay (s/veh) 35.2 30.7 48.9 36.7 39.2 17.1 20.8	E C C C C C C C C C C C C C C C C C C C	Gibson E Intersection Delay	Blvd & University of the Blvd & University of	rsity B	SBL SBR EBL EBT EBR WBL WBT WBR Vd (Signaliz Movement NBL NBT/R SBL SBT SBR EBL EBT	155.0 97.5 <1 Veh 97.5 <1 Veh ed) 95% Queue Length (ft/lane) 251.7 218.9 268.2 99.6 246.8 290.7 327.6	1.46 0.18 0.86 0.24 0.55 0.38 0.71 0.22 0.64 0.88 0.49	643.4 656.2 43.0 185.7 28.5 50.8 38.8 35.5 54.1 45.0 49.7 50.8 19.5	F E F D D D D D D D B B	656.2 Intersection Delay	Intersection LOS
	EBL EBT EBR WBL WBT WBR Movement NBL NBT/R SBL SBT SBR EBL EBT EBR	<1 Veh 27.5 <1 Veh 95% Queue Length (ft/lane) 98.6 239.4 287.1 116.0 204.6 97.8 267.5 109.7	0.10 0.27 0.21 0.57 0.43 0.73 0.23 0.47 0.51 0.44 0.20	215.6 17.7 23.6 25.1 Delay (s/veh) 35.2 30.7 48.9 36.7 39.2 17.1 20.8 18.2	E C C C C C C C C C C C C C C C C C C C	Gibson E Intersection Delay	Blvd & University of the Blvd & University of	rsity B	SBL SBR EBL EBT EBR WBL WBT WBR Ivd (Signaliz Movement NBL NBT/R SBL SBT SBR EBL EBT EBR	155.0 97.5 <1 Veh 97.5 <1 Veh ed) 95% Queue Length (ft/lane) 251.7 218.9 268.2 99.6 246.8 290.7 327.6 88.7	1.46 0.18 0.86 0.24 0.55 0.38 0.71 0.22 0.64 0.88 0.49 0.15	643.4 656.2 43.0 185.7 28.5 Delay (s/veh) 38.8 35.5 54.1 45.0 49.7 50.8 19.5 15.4	F E F D D LOS D D D D D D D D D D B B B B	656.2 Intersection Delay	Intersection LOS

HORIZON YEAR (2036) FULL-BUILD CONDITIONS

Table 16 summarizes the intersection delay, level of service, and queueing under Horizon Year 2036 Full-Build conditions. Horizon Year 2036 Conditions were analyzed with existing signal timing. The following conclusions are made for the Horizon Year analysis:

Delay and LOS Results

At all intersections where LOS results are present, all movements operate at acceptable LOS during the MD and PM peaks except:

- At the stop-controlled intersection of Gibson Boulevard and I-25 SB Off-Ramp
 - O NBR operates at LOS F during the MD and PM peak hours.
- At the stop-controlled intersection of Gibson Boulevard and I-25 NB Off-Ramp
 - All movements operate at LOS F during the MD and PM peak hours.
- At the stop-controlled intersection of Gibson Boulevard and Mulberry Street
 - o NBL operates at LOS F during the MD and PM peak hours.
- At the stop-controlled intersection of Gibson Boulevard and Alumni Drive
 - o NBL/R operates at LOS F during the MD peak hour.
 - SBL operates at LOS F during the MD and PM peak hours.
 - SBR operates at LOS E during the PM peak hour.
 - o EBL operates at LOS E and LOS F during the MD and PM peak hours, respectively.

Queuing Results

Table 16: HCM Results for Horizon Year (2036) Full-Build Condition

				Tuble	10.110		for Horizoi				Conun	1011			
						Gibson Biv	d & I-25 SB R	amps	(Stop-Cont						
	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS		Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
품	NBR	502.5	1.08	80.5	F			¥	NBR	447.5	1.05	74.7	F		
MD Peak	SBR	<1 Veh	0.19	10.9	В	Ī		PM Peak	SBR	37.5	0.34	14.6	В		
Σ	EBT						_	Σ	EBT					1	_
	EBR					80.5	F		EBR					74.7	F
	WBL					İ			WBL						
	WBT					1			WBT					1	
						Gibson Blv	d & I-25 NB R	amps	(Stop-Cont	rolled)					
	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS		Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
eak	NBL	25.0	0.28	78.7	F			eak	NBL	162.5	1.79	641.4	F		
MD Peak	NBR	245.0	0.90	52.8		1		PM Peak	NBR	565.0	1.24	154.7			
Σ	EBT					78.7	F	_	EBT					641.4	F
	EBR								EBR						
	WBT								WBT						
						Gibson Bl	vd & Mulber	ry St (Stop-Contro	olled)					
	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS		Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
sak	NBL	57.5	0.52	83.2	F	ļ		ak	NBL	45.0	0.46	107.2	F		
MD Peak	NBR	<1 Veh	0.21	20.9	С			PM Peak	NBR	<1 Veh	0.19	22.6	С		
Ξ	EBT					83.2	F	5	EBT					107.2	F
	EBR								EBR						
	WBL	27.5	0.27	28.5	D				WBL	<1 Veh	0.24	32.0	D	1	
	WBT			6.9	Α	OII -			WBT			7.5	Α		
		070/ 0				Gibson B	lvd & Alumn	i Dr (S	top-Contro						
	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS		Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
	NBL/R	205.0	2.56	1001.4	F				NBL/R						
¥	SBL	297.5	3.90	1694.7	F			¥	SBL	230.0	8.23	4227.7	F		
MD Peak	SBR	<1 Veh	0.36	22.6	С			PM Peak	SBR	<1 Veh	0.18	42.4	E		
Σ	EBL	110.0	0.65	46.4	E	1004.7	F	Σ	EBL	277.5	1.94	603.9	F	4227.7	F
	EBT EBR					1694.7	F		EBT EBR					4227.7	F
	WBL	<1 Veh	0.21	24.9	С				WBL	<1 Veh	0.24	28.3	D	1	
	WBT		0.21			1			WBT		0.24			-	
	WBR								WBR					-	
	WBIT					Gibson F	Blvd & Unive	rcity R							
	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS	Jiey B	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
	NBL	37.0	0.47	32.3	С				NBL	252.4	0.55	38.8	D		
	NBT/R	239.4	0.43	30.7	С				NBT/R	218.9	0.38	35.5	D]	
~	SBL	287.1	0.73	48.9	D			_	SBL	268.2	0.71	54.1	D		
MD Peak	SBT	111.4	0.22	36.6	D			PM Peak	SBT	94.3	0.21	44.9	D	1	
₽	SBR	212.6	0.49	39.5	D			Σ	SBR	253.8	0.66	49.9	D		_
	EBL	98.5	0.52	17.3	В	25.2	С		EBL	294.3	0.88	52.0	D	35.2	D
	EBT	272.4	0.45	20.9	С				EBT	353.0	0.53	22.1	С	-	
	EBR	116.1	0.21	18.3	В				EBR	99.1	0.17	17.5	В		
	WBL WBT	75.5 312.1	0.39	16.6 22.7	B C				WBL	131.5	0.65	19.6	B D		
	WBR	312.1 87.4	0.51	18.5	В				WBR	804.9 174.0	0.94	40.6 20.6	В	1	
	WBR	07.4	0.10	16.5		Alumni	Dr & Site DW	V 1./C			0.27	20.6	В		
		95% Queue						1 1 (3	op-control	95% Queue					
MD Peak	Movement	Length (ft/lane)	V/C	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS	PM Peak	Movement	Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
Δ	NBL	<1 Veh	0.05	7.4	A			Σ	SBR	<1 Veh	0.04	7.3	A		
	EBL	<1 Veh	0.01	9.8	A	9.8	Α		EBT	<1 Veh	0.01	9.4	A	9.4	A
	EBR	<1 Veh	0.02	8.4	Α	A	D., 0 Ct DA	V 2 /6	WBT	<1 Veh	0.01	8.4	Α		
MD Peak	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Or & Site DW Intersection LOS	PM Peak	Movement	95% Queue Length (ft/lane)	v/c	Delay (s/veh)	LOS	Intersection Delay	Intersection LOS
Ð	NBL	<1 Veh	0.03	7.4	A			Σ	NBL	<1 Veh	0.03	7.3	A		
	EBL	<1 Veh	0.02	9.9	Α	9.9	Α	_		<1 Veh	0.01	9.5	Α	9.5	A
	EBR	<1 Veh	0.10	8.8	Α	1			EBR	<1 Veh	0.07	8.6	Α	1	İ

COMPARISON OF BACKGROUND AND FULL-BUILD SCENARIO RESULTS

Based on the results for Existing, Background and Full-Build results for the Build-Out and Horizon Years, capacity and queuing concerns are currently present at the study intersections and, except for the intersection of Gibson Boulevard and Alumni Drive, are not significantly impacted by the proposed Development. The following presents a summary of the differences between Background and Full-Build results for each analysis year.

In the Build-Out Year 2026 scenarios:

- At the intersection of Gibson Boulevard and I-25 SB, the NBR movement changes from LOS D under Background conditions to LOS E under Full-Build conditions. These results are present in the PM peak hour.
- At the intersection of Gibson Boulevard and I-25 NB, the NBL movement change from LOS
 E under Background conditions to LOS F under Full-Build conditions. These results are
 present in the MD peak hour.
- At the intersection of Gibson Boulevard and Mulberry Street, the NBL movement changes from LOS E under Background conditions to LOS F under Full-Build conditions. These results are present in the MD peak hour.
- At the intersection of Gibson Boulevard and Alumni Drive, the EBL movement changes from LOS C under Background conditions to LOS E under Full-Build conditions. These results are present in the MD peak hour.
- At the intersection of Gibson Boulevard and University Boulevard, the SBR movement changes from LOS D under Background conditions to LOS E under Full-Build conditions.
 These results are present in the PM peak hour.

In the Horizon Year 2036 scenarios:

- At the intersection of Gibson Boulevard and I-25 SB, the NBR movement changes from LOS E under Background conditions to LOS F under Full-Build conditions. These results are present in the MD and PM peak hours.
- At the intersection of Gibson Boulevard and I-25 NB, the NBR movement changes from LOS E under Background conditions to LOS F under Full-Build conditions. These results are present in the MD peak hour.
- At the intersection of Gibson Boulevard and Alumni Drive, the EBL movement changes from LOS C under Background conditions to LOS E under Full-Build conditions. These results are present in the MD peak hour.
- At the intersection of Gibson Boulevard and University Boulevard, the EBL movement changes from LOS C under Background conditions to LOS E under Full-Build conditions. These results are present in the MD peak hour.

INTERSECTION CAPACITY MITIGATIONS

GIBSON BOULEVARD

The Gibson Boulevard and I-25 interchange and the intersections of Gibson Boulevard and Mulberry Street, Gibson Boulevard and Alumni Drive, and Gibson Boulevard and University Boulevard experience capacity and queueing issues in the Existing and Build-Out Year 2026 Background scenarios.

The Gibson Boulevard and I-25 interchange is currently being redesigned by the NMDOT, and traffic operations are expected to improve when reconstruction is complete. Therefore, no mitigations for the interchange are provided in this report.

The minor street stop-controlled intersections Gibson Boulevard and Mulberry Street and Gibson Boulevard and Alumni Drive are too close to the interchange to be signalized. At Mulberry Street, capacity and queuing issues are only present on the stop-controlled approach and do not affect operations on Gibson Boulevard. Therefore, no mitigations are recommended in this report.

At Alumni Drive, in addition to the northbound and southbound movements, the eastbound left turn movement is expected to experience delays and queuing issues. These issues are present in the Background 2026 traffic scenario and are not triggered by the proposed development. When Alumni Drive is extended to Avenida Caesar Chavez, and traffic can travel to and from the north on Alumni Drive, delay and queuing at Alumni Drive and Gibson Boulevard is expected to decrease. The existing left-turn lane for the EBL movement at the intersection is sufficient to accommodate the 95th Percentile queue lengths in every scenario; therefore, the delay for this movement is not anticipated to affect operations for through traffic on Gibson Boulevard.

CRASH DATA SUMMARY

At the request of the NMDOT, a crash summary for the major intersections within the study area has been completed. The purpose of this analysis is to highlight trends and observations from summarized crash data. Crash data provided by the New Mexico Department of Transportation (NMDOT) for the years 2017 to 2021 is summarized in Table 17.

Table 17: Crash Summary

	Table 17: Crash Summary					
	Crash Summary	Gibson Blvd & I-25 NB	Gibson Blvd & I-25 SB	Gibson Blvd & Alumni Dr	Gibson Blvd & Mulberry St	Gibson Blvd & University Blvd
	Total Crashes	151	50	9	57	162
	2018	35	16	1	14	42
	2019	34	11	2	12	40
	2020	24	7	1	12	23
	2021	41	8	5	10	36
	2022	17	8	0	9	21
	Fixed Object - Barricade	1	1	0	0	1
	Fixed Object - Guard or Reflector Posts	1	0	0	0	0
	Fixed Object - Guard Rail	3	0	0	0	0
	Fixed Object - Light Standard (Light Pole)	3	1	0	0	0
	Fixed Object - Median Raised Or Curb	3	0	0	1	0
	Fixed Object - Roadway Divider - Concrete Jersey Bounce	0	1	0	0	0
	Fixed Object - Sign or Sign Post (Traffic)	0	1	0	0	0
	Fixed Object - Unknown/Not Stated	2	0	1	0	0
	Non-Collision - All Other/Not Stated	1	0	0	0	0
	Non-Collision - Vehicle Downhill Into Canyon/Ravine	1	0	0	0	0
	Other Object - All Other	0	0	0	0	1
	Other Object - Object Dropped From Vehicle - Furniture	0	1	0	0	0
	Other Object - Unknown/Not Stated	2	2	0	0	0
	Other Vehicle - Both Going Straight/Entering At Angle	9	6	0	5	11
e e	Other Vehicle - Both Turn Left/Entering At Angle	0	0	0	0	1
Crash Type	Other Vehicle - From Opposite Direction	18	4	0	8	18
- -	Other Vehicle - From Opposite Direction/Both Going Straight	1	0	0	0	2
ras	Other Vehicle - From Opposite Direction/One Left Turn	1	0	1	1	5
0	Other Vehicle - From Opposite Direction/One Right Turn	1	0	0	0	0
	Other Vehicle - From Same Direction/All Others	0	0	0	0	1
	Other Vehicle - From Same Direction/Both Going Straight	9	8	0	3	13
	Other Vehicle - From Same Direction/One Left Turn	0	0	0	1	0
	Other Vehicle - From Same Direction/One Right Turn	0	0	0	1	1
	Other Vehicle - From Same Direction/One Stopped	0	1	0	0	1
	Other Vehicle - From Same Direction/One Vehicle Spun On Roadway Before Being Hit	1	0	0	0	0
	Other Vehicle - From Same Direction/Rear End Collision	12	2	1	4	24
	Other Vehicle - From Same Direction/Sideswipe Collision	10	3	1	1	2
	Other Vehicle - From Same Direction/Vehicle Backing	1	0	0	0	1
	Other Vehicle - One Left Turn/Entering At Angle	2	0	0	1	7
	Other Vehicle - One Right Turn/Entering At Angle	0	0	0	2	0
	Other Vehicle - One Stopped/Entering At Angle	0	0	0	0	1
	Other Vehicle - One Vehicle/Making A U-Turn	0	0	0	1	0

	Lau vill vill w				1	
	Other Vehicle - Vehicle Wrong Way On Divided Hwy - Other	1	0	0	0	0
	Improper Entry	- 1	0	0	0	
	Overturn/Rollover - Left Side of Road	1	0	0	0	0
	Overturn/Rollover - Right Side of Road	1	0	0	0	0
	Pedestrian Collision - Vehicle Going Straight	0	0	0	0	2
	Pedestrian Collision - Vehicle Turning Right	0	0	0	0	1
	Rollover - Left Side of Road	1	0	0	0	0
	Rollover - On The Road	1	0	0	0	0
	Vehicle On Other Roadway - Not Stated	0	0	0	3	0
	Vehicle Struck Pedalcyclist At Angle	0	0	0	0	1
	%Other Vehicle - From Same Direction/Rear End Collision	8%	4%	11%	7%	15%
	%Other Vehicle - From Opposite Direction	12%	8%	0%	14%	11%
	%Other Vehicle - From Same Direction/Both Going Straight	6%	16%	0%	5%	8%
	Daylight	95	30	5	38	109
g ns	Dark-Lighted	29	12	3	7	28
tin _y	Dark-Not Lighted	6	2	0	2	2
gh _ī	Dusk/Dawn	0	0	0	0	0
Lighting Conditions	%Daylight	63%	60%	56%	67%	67%
	%Dark-Lighted	19%	24%	33%	12%	17%
	Fatal Crash (K)	.3	0	0	0	0
	Suspected Serious Injury (A)	4	1	1	1	6
	Suspected Minor Injury (B)	5	1	0	4	9
ity		20	8	3	13	35
/er	Complaint of Injury (C)			6	40	
Severity	Property Damage Only Crash (O)	120	41		-	113
	%Suspected Minor Injury	3%	2%	0%	7%	6%
	%Complaint of Injury	13%	16%	33%	23%	83%
	%Property Damage Only Crash	79%	82%	67%	70%	70%
Bike/Ped Involvemen t	Pedestrian Involved	1	0	0	0	3
e/P ver t	Pedalcycle Involved	0	0	0	0	1
3ike vol	%Pedestrian Involved	1%	0%	0%	0%	2%
_ = _	%Pedalcycle Involved	0%	0%	0%	0%	1%
	Avoid No Contact Other	4	1	0	0	1
	Avoid No Contact Vehicle	8	5	0	3	5
	Cell Phone	0	0	0	0	1
	Defective Steering	0	1	0	0	0
	Defective Tires	1	1	0	0	0
	Disregarded Traffic Signal	0	0	0	0	14
	Driver Inattention	76	25	6	25	95
5	Driverless Moving Vehicle	0	0	0	0	0
용	Drove Left Of Center	2	1	0	1	0
Fa	Excessive Speed	20	5	1	11	11
Su S	Failed To Yield For Emergency Vehicle	0	0	0	1	0
量	Failed To Yield For Police Vehicle	1	0	0	0	0
rib	Failed To Yield Right Of Way	17	1	1	15	26
Contributing Factors	Following Too Closely	23	10	1	5	22
S	High Speed Pursuit	0	0	0	1	0
	Improper Backing	0	0	0	0	3
	Improper Backing Improper Lane Change	13	6	1	8	7
	Improper Curte Change	5	0	0	2	6
	Inadequate Brakes	3	1	0	0	5
	Low Visibility Due To Smoke	0	0	0	0	0
	LOW VISIDILLY DUE TO SHIUNE					
	·	Е				12
	Made Improper Turn None	5 49	1 28	1 2	5 14	13 82

Other Improper Driving	18	7	0	2	9
Other Mechanical Defect	4	0	0	1	1
Other, No Driver Error	57	18	5	24	65
Passed Stop Sign	0	0	0	1	1
Pedestrian Error	0	0	0	0	2
Road Defect	2	0	0	0	1
Speed Too Fast For Conditions	7	4	0	1	4
Texting	0	0	0	0	1
Traffic Control Missing	0	0	0	0	0
Under The Influence Of Drugs	1	0	0	1	0
Under The Influence Of Alcohol	8	1	0	1	7
Vehicle Skidded Before Braking	2	0	0	1	1
Animal(S) In Roadway	0	1	0	0	0
Backup - Prior Crash	0	0	0	0	0
Backup - Prior Incident	0	0	0	0	0
Traffic Congestion	0	0	0	0	0
Coupling Device (Hitch, Chains)	0	0	0	0	0
Debris	1	0	0	0	0
Exhaust System	1	0	0	0	0
Low Visibility Due To Glare	0	0	0	0	0
Lights (Head, Signal, Tail)	0	0	0	1	0
Mirrors	0	0	0	0	0
Driver Distracted By Other Activity	2	1	1	0	3
Driver Distracted By Passenger	1	0	0	0	1
Obstruction In Road	3	0	0	1	0
Road Surface Conditions	6	4	0	0	1
Suspension	0	0	0	0	0
Driver Distracted By Talking On Hands-Free Device	0	0	0	0	0
Driver Distracted By Talking On Cell Phone	0	0	0	0	0
Other Visual Obstruction(S)	3	0	0	1	0
Weather Conditions	4	3	0	0	1
Wheels	0	2	0	0	0
Windows/Windshield	0	0	0	0	0
Wipers	0	0	0	0	0
	nattention 50%	50%	67%	44%	59%
	%None 32%	56%	22%	25%	51%
%Other, No D	river Error 38%	36%	56%	42%	40%

From the table, the following observations are made:

- For the intersection of Gibson Boulevard and I-25 Southbound:
 - O Within the years 2018 to 2022, 50 crashes were reported.
 - The most common crash types were Other Vehicle From Same Direction/ Both Going Straight and Other Vehicle - Both Going Straight/Entering At Angle.
 - 60% of reported crashes occurred during daylight hours and 24% occurred during Dark-Lighted conditions.
 - No fatal crashes were reported from 2018 to 2022.
 - o 2 Injury Crashes were reported; 41 crashes were classified as Property Damage Only.
 - o The most common contributing factor was Driver Inattention.
 - o No pedestrian-involved or bicyclist-involved crashes were reported from 2019 to 2021.
- For the intersection of Gibson Boulevard and I-25 Northbound

- Within the years 2018 to 2022, 151 crashes were reported.
- The most common crash types were Other Vehicle From Opposite Direction and Other Vehicle - From Same Direction/Rear End Collision.
- 63% of reported crashes occurred during daylight hours and 19% occurred during Dark-Lighted conditions.
- o 3 fatal crashes were reported from 2018 to 2022.
 - The reported fatal pedestrian-involved crash occurred on September 1st, 2022, at 2:00 AM. The crash was reported in clear, Dark Not-Lighted conditions. The contributing factor was listed as Other-None. The crash resulted in one pedestrian fatality.
 - The reported fatal crash occurred August 8th, 2020, at 1:00 AM. The crash was reported to be clear, Dark-Lighted conditions. The contributing factors were reported as Under the Influence of Alcohol and Drove Left of Center. The crash resulted in one fatality.
 - The reported fatal crash occurred January 1st, 2021, at 5:00 PM. The crash was reported in clear, Dusk conditions. The contributing factor was reported as Failed to Yield Right of Way. One fatality was reported.
- o 9 Injury crashes were reported.
- The most common contributing factors were Driver Inattention, None, and Other No Driver Error.
- o 1 fatal pedestrian-involved crash was reported (Described above).
- For the intersection of Gibson Boulevard and Alumni Drive:
 - Within the years 2018 to 2022, 9 crashes were reported.
 - The most common crash types were Other Vehicle From Same Direction/Rear End
 Collision and Other Vehicle From Opposite Direction/One Left Turn.
 - 56% of reported crashes occurred during daylight hours and 33% occurred during Dark-Lighted conditions.
 - No fatal crashes were reported from 2018 to 2022.
 - o 1 Injury crash was reported; 6 crashes were classified as Property Damage Only.
 - The most common contributing factors were Driver Inattention and No Driver Error.
 - No pedestrian-involved crashes were reported from 2018 to 2022.
- For the intersection of Gibson Boulevard and Mulberry Street:
 - o Within the years 2018 to 2022, 57 crashes were reported.
 - The most common crash types were Other Vehicle From Opposite Direction and Other Vehicle - Both Going Straight/Entering at Angle.
 - 67% of crashes at this intersection occurred during daylight hours and 12% occurred under Dark-Lighted conditions.
 - No fatal crashes were reported from 2018 to 2022.
 - o 17 injury crashes were reported; 40 crashes were classified as Property Damage Only.
 - The most common contributing factors were Driver Inattention and Other No Driver Error.
 - No pedestrian or bicyclist-involved crashes were reported from 2018 to 2022.

- For the intersection of Gibson Boulevard and University Boulevard:
 - Within the years 2018 to 2022, 162 crashes were reported.
 - The most common crash types were Other Vehicle From Same Direction/Rear End
 Collision and Other Vehicle From Opposite Direction.
 - 67% of crashes at this intersection occurred during daylight hours and 17% occurred under Dark-Lighted conditions.
 - No fatal crashes were reported from 2018 to 2022.
 - o 15 injury crashes were reported; 113 crashes were classified as Property Damage Only.
 - The most common contributing factors were Driver Inattention and Failed to Yield Right of Way.
 - o 3 pedestrian-involved crashes were reported.
 - One reported pedestrian-involved crash occurred on September 9th, 2018, at 5:00 PM. The crash was reported with clear, Daylight conditions. The contributing factor was listed as Other-None. Complaint of injury reported by pedestrian.
 - One reported pedestrian-involved crash occurred May 5th, 2020, at 10:00 AM.
 The crash was reported to be in clear, daylight conditions. The contributing factor was listed as Other-Mechanical Defect. No injuries were reported.
 - The reported pedestrian-involved crash occurred on November 11th, 2020, at 8:00 PM. The crash reportedly had clear, dark-lighted conditions. The contributing factor was Other-Improper Driving. Serious injury was reported for the pedestrian involved.
 - 1 bicyclist-involved crash was reported.
 - The reported bicyclist-involved crash occurred June 6th, 2019, at 9:00 PM. The crash was reported in clear, Dark-Lighted conditions. The contributing factor was listed as Disregarded Traffic Signal.

CONCLUSIONS AND RECOMMENDATIONS

The following presents a summary of the traffic analysis and recommendations included in this report.

ASSUMPTIONS

The following assumptions regarding new developments in the roadway network were made for the Build-Out Year scenarios based on the information discussed in the scoping meeting:

- Alumni Drive is assumed to be extended north of its current location to Avenida Caesar Chavez through a project designed and funded by the University of New Mexico. Site Driveways 1 and 2 will be constructed on the west side of the new segment of Alumni Drive. For this analysis, the full extension of Alumni Drive is assumed to be completed by Horizon Year 2036.
- The Gibson Boulevard and I-25 Interchange is currently being redesigned by NMDOT.
 Capacity and queuing issues at the interchange are assumed to be addressed in the future by this reconstruction project. Therefore, mitigations for the interchange are not provided in this analysis.

CONCLUSIONS

The capacity and queuing analysis showed that several study intersection movements operate at unacceptable levels of service under Existing and Background conditions.

Under Existing 2024 conditions, traffic operation is summarized as follows:

- At the stop-controlled intersection of Gibson Boulevard and I-25 NB Off-Ramp
 - NBL operates at LOS E and LOS F during the MD and PM peak hours, respectively.
 - NBR operates at LOS E during the PM peak hour.
- At the stop-controlled intersection of Gibson Boulevard and Mulberry Street
 - o NBL operates at LOS E and LOS F during the MD and PM peak hours, respectively.
- At the stop-controlled intersection of Gibson Boulevard and Alumni Drive
 - SBL operates at LOS E and LOS F during the MD and PM peak hours, respectively.
- At the signalized intersection of Gibson Boulevard and University Boulevard
 - o SBL operates at LOS E during the PM peak hour.
 - SBR operates at LOS E during the PM peak hour.

Under Background 2026 conditions, traffic operation is summarized as follows:

- At the stop-controlled intersection of Gibson Boulevard and I-25 SB Off-Ramp
 - NBR operates at LOS E during the MD peak hour.
- At the stop-controlled intersection of Gibson Boulevard and I-25 NB Off-Ramp
 - NBL operates at LOS E and LOS F during the MD and PM peak hours, respectively.
 - NBR operates at LOS F during the PM peak hour.
- At the stop-controlled intersection of Gibson Boulevard and Mulberry Street
 - NBL operates at LOS E and LOS F during the MD and PM peak hours, respectively.
- At the stop-controlled intersection of Gibson Boulevard and Alumni Drive
 - NBL/R operates at LOS F during the MD and PM peak hours.
 - SBL operates at LOS F during the MD and PM peak hours.
 - EBL operates at LOS F during the PM peak hours.
- At the signalized intersection of Gibson Boulevard and University Boulevard
 - SBL operates at LOS E during the PM peak hour.

Under the Full-Build 2026 scenario, traffic operation is summarized as follows:

- At the stop-controlled intersection of Gibson Boulevard and I-25 SB Off-Ramp
 - NBR operates at LOS E during the MD and PM peak hours.
- At the stop-controlled intersection of Gibson Boulevard and I-25 NB Off-Ramp
 - NBL operates at LOS F during the MD and PM peak hours.
 - NBR operates at LOS F during the PM peak hour.
- At the stop-controlled intersection of Gibson Boulevard and Mulberry Street
 - o NBL operates at LOS F during the MD and PM peak hours.
- At the stop-controlled intersection of Gibson Boulevard and Alumni Drive
 - NBL/R operates at LOS F during the MD peak hour.
 - SBL operates at LOS F during the MD and PM peak hours.
 - EBL operates at LOS F PM peak hours.
- At the signalized intersection of Gibson Boulevard and University Boulevard
 - o SBL operates at LOS E during the PM peak hour.
 - SBR operates at LOS E during the PM peak hour.

Detailed traffic operation results for Existing, Build Out Year 2026 Background, Build Out Year 2026 Full-Build, Horizon Year 2036 Background, and Horizon Year 2036 Full-Build scenarios can be found in the LOS, Capacity and Queuing section of the report. Mitigated 2026 and 2036 Full-Build scenario results are also provided.

SITE RECOMMENDATIONS

- Proposed Access Points and Locations:
 - Full access configuration, with right and left turns being permitted, is recommended for Site Driveways 1 and 2 on Alumni Drive, to provide adequate site circulation for ingress and egress Development trips.
 - An area bounded by the required sight distance of 355 feet for left-turning vehicle and 290 feet for right-turning vehicles should be cleared and maintained free of obstructions on either side of each site driveway.

OFF-SITE INTERSECTION RECOMMENDATIONS

- Alumni Drive and Gibson Boulevard
 - A "Do Not Block Intersection" sign (R-10-7) should be installed on Alumni Drive for southbound traffic, between Site Driveway 2 and the fire station access driveway.
 - Refreshed striping is recommended on Alumni Drive between Gibson Boulevard and the proposed Development.

Appendix A: Scoping Meeting Notes

Agenda for Traffic Study Scoping Meeting Gibson In-N-Out April 29, 2024

-Meeting Notes in Red-

Attendees:

Nancy Perea – NMDOT Margaret Haynes – NMDOT Matt Grush – CABQ

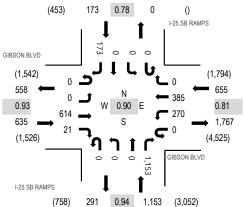
> Jonathon Kruse – Lee Engineering Abigail Yoerger – Lee Engineering

- 1. Introductions
- 2. Review of Site Plan
 - a. Site Plan & Land Uses
 - b. Access Review
- 3. Discussion of Scope for TIS
 - a. Study Intersections
 - i. Site Driveways
 - ii. Gibson & Alumni
 - iii. Gibson & University
 - iv. Gibson & Interchange
 - 1. Note: Interchange construction is horizon. Analyze as is today under buildout conditions and as 30% designed under horizon year conditions.
 - 2. Camera to gauge queueing from interchange.
 - v. Gibson & Mullberry
 - Interim fix for Mulberry = restrict access. Future access in NMDOT access plan is right in / right out / left in. NMDOT ROW Map.
 - b. Data Collection
 - i. Existing Study Intersections
 - ii. Extra camera to capture queues at interchange
 - c. Trip Generation, Pass By, & Internal Capture
 - i. Trip Generation Manual (11th Edition) Land Use
 - 1. ITE 934 Fast Food Restaurant with Drive-Through
 - 2. Check for comparable sites for trip generation.

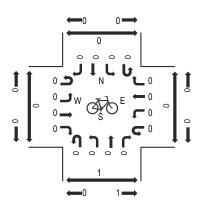
Use		Units		Weekda	y AM Pe	ak Hour			Weekda	y PM Pe	ak Hour	
Use		Ullits	Total	Enter	Exit	In	Out	Total	Enter	Exit	In	Out
ITE 934 -Fast-Food Restaurant with Drive-Through	3885	Sq. Ft.	197	52%	48%	102	95	198	51%	49%	101	97

- ii. Pass-by/Diverted trips. Full allowance.
- iii. No Internal Capture
- iv. Trips distributed based on existing traffic patterns
- d. Known Developments or Pending Improvements in Area
 - i. Gibson Interchange.
 - ii. Gibson & Yale Development: partially built. Matt to provide study.
 - iii. Raising Cane's at Gibson & Alumni (South Side). Matt to provide study.
- e. Build-out Year and Growth Rate
 - i. Build-Out Year (2026)
 - 1. Will look at Historic Traffic Volumes and calculate growth rate, if less than 1%, will assume 1% growth per year.
- f. Analysis scenarios
 - i. Existing Conditions
 - ii. Opening Year Background (No Build)
 - iii. Opening Year Buildout (Full Build)
 - iv. Opening Year Buildout Optimized (if needed)
 - 1. All scenarios with existing signal timings except opening year buildout optimized.
 - v. Horizon year 10 Years from opening (Background & Buildout).
- g. Required Analysis & Methodology
 - i. LOS Capacity and Queueing analysis based on HCM 6th Edition (HCS)
 - 1. Capacity & Queueing for network peak
 - 2. Mid-Day and PM Peak Hours
 - ii. No Arterial Analysis.
 - iii. Auxiliary Lane Analysis
 - iv. Sight Distance Analysis at Proposed Driveways
 - v. Safety (Crash) Summary
 - 1. 5 Years for Gibson & Alumni and study intersections
 - 2. Highlight bike & ped crashes in summary
 - vi. Weaving Analysis for Right-Out onto Gibson
 - vii. Right out access justification
- 4. Agency Input (Comments & Issues)
 - a. SB Queues on Alumni would likely support right out access onto Gibson.
- 5. Meeting Notes (distributed by Lee Engineering)

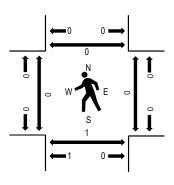
Appendix B: Turning Movement Counts



Location: 1 I-25 SB RAMPS & GIBSON BLVD AM


Date: Thursday, May 16, 2024 **Peak Hour:** 07:15 AM - 08:15 AM

Peak 15-Minutes: 07:45 AM - 08:00 AM

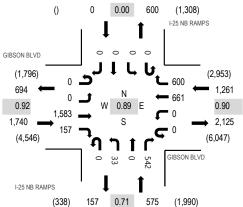


Peak Hour - Bicycles

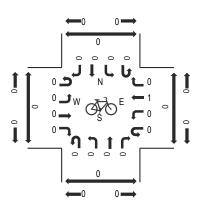
Peak Hour - Pedestrians

Note: Total study counts contained in parentheses.

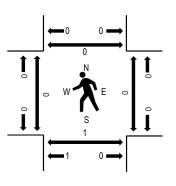
	G	IBSO	N BLVD		GI	BSON	BLVD		1-3	25 SB F	RAMPS		-	25 SB	RAMPS	3						
Interval		Eastb	ound			Westb	ound			Northb	ound			South	oound			Rolling	Ped	estrian	Crossin	gs
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru R	ight	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South N	Vorth
6:00 AM	0	0	72	4	0	46	24	0	0	0	0	181	0	0	0	21	348	1,936	0	0	0	0
6:15 AM	0	0	73	2	0	38	39	0	0	0	0	227	0	0	0	28	407	2,156	0	0	0	1
6:30 AM	0	0	104	6	0	66	62	0	0	0	0	291	0	0	0	67	596	2,357	0	0	0	0
6:45 AM	0	0	128	3	0	50	70	0	0	0	0	280	0	0	0	54	585	2,399	0	0	0	0
7:00 AM	0	0	117	4	0	59	65	0	0	0	0	290	0	0	0	33	568	2,540	0	0	0	0
7:15 AM	0	0	122	7	0	53	72	0	0	0	0	300	0	0	0	54	608	2,616	0	0	0	0
7:30 AM	0	0	163	5	0	72	81	0	0	0	0	266	0	0	0	51	638	2,566	0	0	0	0
7:45 AM	0	0	167	5	0	73	129	0	0	0	0	312	0	0	0	40	726	2,489	0	0	0	0
8:00 AM	0	0	162	4	0	72	103	0	0	0	0	275	0	0	0	28	644	2,349	0	0	1	0
8:15 AM	0	0	130	6	0	53	107	0	0	0	0	230	0	0	0	32	558		0	0	0	0
8:30 AM	0	0	112	3	0	57	157	0	0	0	0	213	0	0	0	19	561		0	0	0	0
8:45 AM	0	0	123	4	0	66	180	0	0	0	0	187	0	0	0	26	586		0	0	0	0
Count Total	0	0	1,473	53	0	705	1,089	0	0	0	0	3,052	0	0	0	453	6,825		0	0	1	1
Peak Hour	0	0	614	21	0	270	385	0	0	0	0	1,153	0	() (173	3 2,61	16	0	0	1	0



Location: 2 I-25 NB RAMPS & GIBSON BLVD AM


Date: Thursday, May 16, 2024 **Peak Hour:** 07:30 AM - 08:30 AM

Peak 15-Minutes: 07:45 AM - 08:00 AM

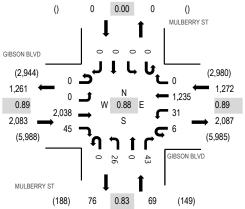

Peak Hour - Motorized Vehicles

Peak Hour - Bicycles

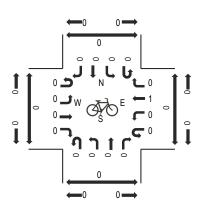
Peak Hour - Pedestrians

Note: Total study counts contained in parentheses.

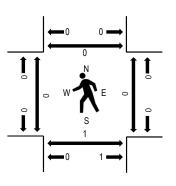
manno ocamico																						
	G	IBSON	N BLVD)	G	IBSON	BLVD		I-	25 NB F	RAMPS		I-	25 NB	RAMPS	S						
Interval		Eastb	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	lestriar	n Crossin	ngs
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South 1	North
6:00 AM	0	0	237	18	0	0	70	72	0	3	0	120	0	0	0	0	520	2,729	0	0	0	0
6:15 AM	0	0	281	17	0	0	74	84	0	2	0	138	0	0	0	0	596	2,956	0	0	0	0
6:30 AM	0	0	366	25	0	0	124	122	0	4	0	154	0	0	0	0	795	3,139	0	0	0	0
6:45 AM	0	0	383	30	0	0	118	122	0	3	0	162	0	0	0	0	818	3,202	0	0	0	0
7:00 AM	0	0	370	33	0	0	118	87	0	6	0	133	0	0	0	0	747	3,390	0	0	0	0
7:15 AM	0	0	373	34	0	0	122	119	0	1	0	130	0	0	0	0	779	3,505	0	0	0	0
7:30 AM	0	0	397	44	0	0	140	133	0	7	0	137	0	0	0	0	858	3,576	0	0	0	0
7:45 AM	0	0	432	45	0	0	196	154	0	12	0	167	0	0	0	0	1,006	3,559	0	0	0	0
8:00 AM	0	0	393	40	0	0	173	133	0	8	0	115	0	0	0	0	862	3,370	0	0	1	0
8:15 AM	0	0	361	28	0	0	152	180	0	6	0	123	0	0	0	0	850		0	0	0	0
8:30 AM	0	0	321	15	0	0	171	62	0	47	0	225	0	0	0	0	841		0	0	0	0
8:45 AM	0	0	294	9	0	0	187	40	0	52	0	235	0	0	0	0	817		0	0	0	0
Count Total	0	0	4,208	338	0	0	1,645	1,308	0	151	0	1,839	0	0	0	C	9,489		0	0	1	0
Peak Hour	0	0	1,583	157	0	0	661	600	0	33	0	542	0	() ()	0 3,57	76	0	0	1	0



Location: 3 MULBERRY ST & GIBSON BLVD AM


Date: Thursday, May 16, 2024 **Peak Hour:** 07:30 AM - 08:30 AM

Peak 15-Minutes: 07:45 AM - 08:00 AM

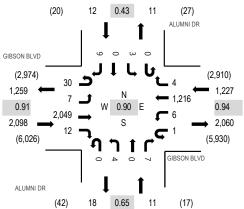


Peak Hour - Bicycles

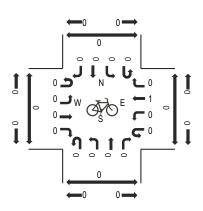
Peak Hour - Pedestrians

Note: Total study counts contained in parentheses.

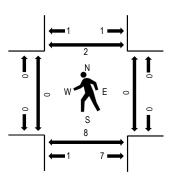
manno obanto				,,,,,,,,	_																	
	G	IBSO	N BLVD)	Gl	BSON	BLVD		N	IULBEF	RRY ST		N	IULBE	RRY S	Τ						
Interval		Eastb	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	destriar	n Crossin	ıgs
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru F	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South I	North
6:00 AM	0	0	350	7	1	3	139	0	0	3	0	2	0	0	0	0	505	2,660	0	0	0	0
6:15 AM	0	0	414	3	1	2	159	0	0	1	0	3	0	0	0	0	583	2,861	0	0	0	0
6:30 AM	0	0	508	12	0	7	236	0	0	2	0	6	0	0	0	0	771	3,047	0	0	0	0
6:45 AM	0	0	534	10	1	7	240	0	0	7	0	2	0	0	0	0	801	3,085	0	1	1	0
7:00 AM	0	0	488	9	2	0	200	0	0	2	0	5	0	0	0	0	706	3,252	0	0	0	0
7:15 AM	0	0	500	6	5	7	232	0	0	9	0	10	0	0	0	0	769	3,381	0	0	0	0
7:30 AM	0	0	507	11	3	3	268	0	0	5	0	12	0	0	0	0	809	3,424	0	0	1	0
7:45 AM	0	0	589	8	2	10	345	0	0	5	0	9	0	0	0	0	968	3,407	0	0	0	0
8:00 AM	0	0	496	14	0	10	298	0	0	6	0	11	0	0	0	0	835	3,205	0	0	0	0
8:15 AM	0	0	446	12	1	8	324	0	0	10	0	11	0	0	0	0	812		0	0	0	0
8:30 AM	0	0	529	10	1	9	225	0	0	6	0	12	0	0	0	0	792		0	0	0	0
8:45 AM	0	0	512	13	4	7	220	0	0	2	0	8	0	0	0	0	766		0	0	0	0
Count Total	0	0	5,873	115	21	73	2,886	0	0	58	0	91	0	0	0	0	9,117		0	1	2	0
Peak Hour	0	0	2,038	45	6	31	1,235	0	0	26	0	43	0	() () (3,42	24	0	0	1	0



Location: 4 ALUMNI DR & GIBSON BLVD AM


Date: Thursday, May 16, 2024 **Peak Hour:** 07:30 AM - 08:30 AM

Peak 15-Minutes: 07:45 AM - 08:00 AM

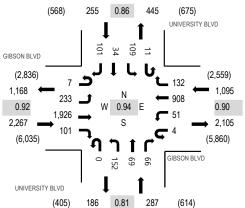


Peak Hour - Bicycles

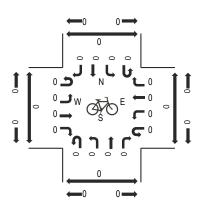
Peak Hour - Pedestrians

Note: Total study counts contained in parentheses.

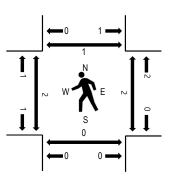
manno ocame			,		•																	
	G	IBSO	N BLVD)	Gl	BSON	BLVD			ALUMI	VI DR			ALUM	NI DR							
Interval		Easth	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	destriar	n Crossin	ngs
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru F	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South I	North
6:00 AM	0	0	340	1	0	1	140	0	0	0	0	0	0	0	0	0	482	2,589	0	0	0	0
6:15 AM	8	1	407	1	0	0	154	0	0	0	0	0	0	0	0	0	571	2,813	0	0	0	0
6:30 AM	4	1	511	1	0	0	247	1	0	0	0	0	0	0	0	0	765	2,994	0	0	4	0
6:45 AM	3	6	533	1	0	1	226	0	0	0	0	1	0	0	0	0	771	3,047	0	0	1	1
7:00 AM	7	3	495	0	0	0	199	0	0	0	0	1	0	0	0	1	706	3,201	0	0	0	1
7:15 AM	11	2	502	3	1	2	229	0	0	0	0	0	0	0	0	2	752	3,346	0	0	5	0
7:30 AM	8	2	519	3	0	0	277	0	0	0	0	2	0	1	0	6	818	3,348	0	0	4	0
7:45 AM	6	2	587	3	1	1	323	1	0	0	0	0	0	0	0	1	925	3,317	0	0	2	1
8:00 AM	11	2	503	4	0	3	321	2	0	3	0	1	0	1	0	0	851	3,183	0	0	2	0
8:15 AM	5	1	440	2	0	2	295	1	0	1	0	4	0	1	0	2	754		0	0	0	1
8:30 AM	5	0	532	3	0	3	242	0	0	0	0	0	0	2	0	0	787		0	0	3	0
8:45 AM	4	1	539	3	3	4	229	1	0	1	0	3	0	0	0	3	791		0	1	0	1
Count Total	72	21	5,908	25	5	17	2,882	6	0	5	0	12	0	5	0	15	8,973		0	1	21	5
Peak Hour	30	7	2,049	12	1	6	1,216	4	0	4		7	0	3	3 () (9 3,34	18	0	0	8	2



Location: 5 UNIVERSITY BLVD & GIBSON BLVD AM


Date: Thursday, May 16, 2024 **Peak Hour:** 07:30 AM - 08:30 AM

Peak 15-Minutes: 07:45 AM - 08:00 AM

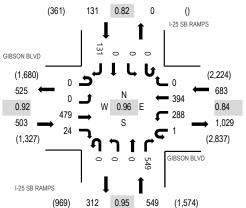


Peak Hour - Bicycles

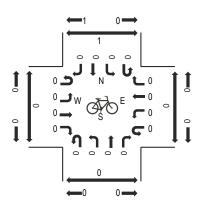
Peak Hour - Pedestrians

Note: Total study counts contained in parentheses.

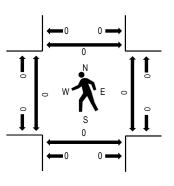
manno obanto		· · · - ·	<i>,</i>																			
	G	BIBSO	N BLVD)	Gl	IBSON	BLVD		UN	VERSI	TY BLV	D	UN	IVERS	ITY BL	VD						
Interval		Easth	oound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	lestriar	n Crossin	ngs
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru F	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South 1	North
6:00 AM	0	4	352	5	2	4	96	2	0	16	1	3	0	5	2	8	500	2,798	0	0	0	0
6:15 AM	0	7	409	17	1	4	119	2	0	27	1	13	1	13	4	12	630	3,097	0	1	1	0
6:30 AM	0	11	518	15	1	4	200	6	0	26	0	14	1	12	2	14	824	3,282	0	2	0	1
6:45 AM	1	16	527	17	3	4	179	2	0	28	8	15	1	17	6	20	844	3,431	0	0	0	1
7:00 AM	2	17	492	25	0	3	171	11	0	16	6	11	0	27	5	13	799	3,625	0	0	0	0
7:15 AM	0	25	482	18	1	7	177	13	0	33	3	7	0	24	7	18	815	3,862	2	0	1	2
7:30 AM	2	45	490	30	1	9	259	28	0	38	5	14	1	22	5	24	973	3,904	0	1	0	0
7:45 AM	3	79	528	20	1	10	201	33	0	49	17	23	3	36	8	27	1,038	3,659	0	1	0	1
8:00 AM	1	73	492	32	0	22	239	43	0	26	27	14	4	27	10	26	1,036	3,353	0	0	0	0
8:15 AM	1	36	416	19	2	10	209	28	0	39	20	15	3	24	11	24	857		2	0	0	0
8:30 AM	1	17	354	15	0	6	228	15	0	25	8	9	2	29	6	13	728		0	1	1	0
8:45 AM	1	22	377	21	1	13	177	12	0	30	15	12	1	24	9	17	732		0	0	0	0
Count Total	12	352	5,437	234	13	96	2,255	195	0	353	111	150	17	260	75	216	9,776		4	6	3	5
Peak Hour	7	233	1,926	101	4	51	908	132	0	152	69	66	11	109) 34	1 10°	1 3,90)4	2	2	0	1



Location: 1 I-25 SB RAMPS & GIBSON BLVD Noon


Date: Thursday, May 16, 2024 **Peak Hour:** 12:00 PM - 01:00 PM

Peak 15-Minutes: 12:45 PM - 01:00 PM

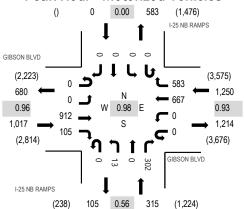

Peak Hour - Motorized Vehicles

Peak Hour - Bicycles

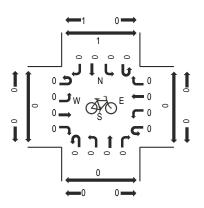
Peak Hour - Pedestrians

Note: Total study counts contained in parentheses.

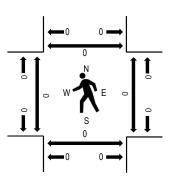
	G	IBSON	N BLVD		G	BSON	BLVD		1-3	25 SB F	RAMPS		-	25 SB	RAMPS	3						
Interval		Eastb	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	lestrian	Crossin	igs
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru R	light	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South I	North
11:00 AM	0	0	129	4	3	51	181	0	0	0	0	106	0	0	0	36	510	1,817	0	0	0	0
11:15 AM	0	0	99	7	1	60	145	0	0	0	0	131	0	0	0	26	469	1,763	0	0	0	0
11:30 AM	0	0	90	4	1	68	92	0	0	0	0	127	0	0	0	19	401	1,743	0	0	0	1
11:45 AM	0	0	99	6	0	86	97	0	0	0	0	123	0	0	0	26	437	1,819	0	0	0	0
12:00 PM	0	0	124	0	0	75	92	0	0	0	0	138	0	0	0	27	456	1,866	0	0	0	0
12:15 PM	0	0	102	9	1	73	99	0	0	0	0	132	0	0	0	33	449	1,860	0	0	0	0
12:30 PM	0	0	124	7	0	70	103	0	0	0	0	133	0	0	0	40	477	1,861	0	0	0	0
12:45 PM	0	0	129	8	0	70	100	0	0	0	0	146	0	0	0	31	484	1,842	0	0	0	0
1:00 PM	0	0	99	7	1	80	91	0	0	0	0	146	0	0	0	26	450	1,803	0	0	0	0
1:15 PM	0	0	78	5	1	96	111	0	0	0	0	128	0	0	0	31	450		0	0	0	0
1:30 PM	0	0	101	7	0	87	103	0	0	0	0	129	0	0	0	31	458		0	0	1	0
1:45 PM	0	0	81	8	0	81	105	0	0	0	0	135	0	0	0	35	445		0	0	0	0
Count Total	0	0	1,255	72	8	897	1,319	0	0	0	0	1,574	0	0	0	361	5,486		0	0	1	1
Peak Hour	0	0	479	24	1	288	394	0	0	0	0	549	0	() (13	1 1,86	66	0	0	0	0



Location: 2 I-25 NB RAMPS & GIBSON BLVD Noon


Date: Thursday, May 16, 2024 **Peak Hour:** 12:00 PM - 01:00 PM

Peak 15-Minutes: 12:30 PM - 12:45 PM

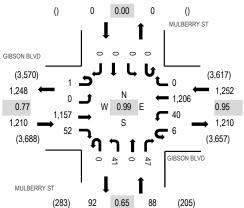


Peak Hour - Bicycles

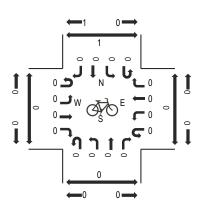
Peak Hour - Pedestrians

Note: Total study counts contained in parentheses.

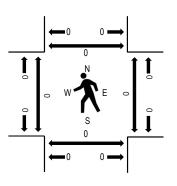
manno ocame					•																	
	G	IBSO	N BLVD)	G	IBSON	BLVD		I-	25 NB I	RAMPS		I-	25 NB	RAMPS	S						
Interval		Eastb	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	lestriar	n Crossin	ngs
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South 1	North
11:00 AM	0	0	218	10	0	0	182	25	0	51	0	236	0	0	0	0	722	2,550	0	0	0	0
11:15 AM	0	0	228	7	0	0	164	70	0	43	0	167	0	0	0	0	679	2,474	0	0	0	0
11:30 AM	1	0	202	16	0	0	161	101	0	3	0	65	0	0	0	0	549	2,424	0	0	0	0
11:45 AM	0	0	186	22	0	0	185	126	0	2	0	79	0	0	0	0	600	2,533	0	0	0	0
12:00 PM	0	0	238	27	0	0	157	137	0	6	0	81	0	0	0	0	646	2,582	0	0	0	0
12:15 PM	0	0	215	20	0	0	170	160	0	1	0	63	0	0	0	0	629	2,535	0	0	0	0
12:30 PM	0	0	227	25	0	0	170	156	0	3	0	77	0	0	0	0	658	2,528	0	0	0	0
12:45 PM	0	0	232	33	0	0	170	130	0	3	0	81	0	0	0	0	649	2,515	0	0	0	0
1:00 PM	0	0	228	26	0	0	174	114	0	1	0	56	0	0	0	0	599	2,481	0	0	0	0
1:15 PM	0	0	194	11	0	0	201	140	0	1	0	75	0	0	0	0	622		0	0	1	0
1:30 PM	0	0	208	18	0	0	192	160	0	5	0	62	0	0	0	0	645		0	0	0	0
1:45 PM	0	0	199	23	0	0	173	157	0	4	0	59	0	0	0	0	615		0	0	0	0
Count Total	1	0	2,575	238	0	0	2,099	1,476	0	123	0	1,101	0	0	0	C	7,613		0	0	1	0
Peak Hour	0	0	912	105	0	0	667	583	0	13	0	302	0	() ()	0 2,58	32	0	0	0	0



Location: 3 MULBERRY ST & GIBSON BLVD Noon


Date: Thursday, May 16, 2024 **Peak Hour:** 12:00 PM - 01:00 PM

Peak 15-Minutes: 12:30 PM - 12:45 PM

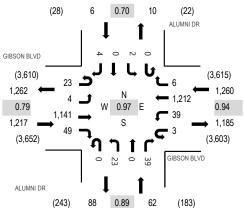

Peak Hour - Motorized Vehicles

Peak Hour - Bicycles

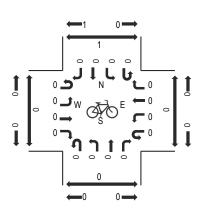
Peak Hour - Pedestrians

Note: Total study counts contained in parentheses.

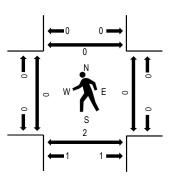
manno ocame			, u , u	,,,,,,,,	•																	
	G	IBSO	N BLVD)	G	IBSON	BLVD		N	IULBEF	RRY ST		Λ	IULBE	RRY S	Т						
Interval		Eastb	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	destriar	n Crossir	ngs
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru F	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South I	North
11:00 AM	4	0	437	8	3	14	199	0	0	3	0	5	0	0	0	0	673	2,486	0	0	0	0
11:15 AM	5	0	383	14	1	12	220	0	0	4	0	11	0	0	0	0	650	2,452	0	1	0	0
11:30 AM	0	0	256	15	2	14	257	0	0	8	0	9	0	0	0	0	561	2,437	0	0	0	0
11:45 AM	2	0	258	8	4	17	298	0	0	8	0	7	0	0	0	0	602	2,522	0	0	0	0
12:00 PM	0	0	299	17	2	14	284	0	0	9	0	14	0	0	0	0	639	2,550	0	0	0	0
12:15 PM	0	0	271	12	0	3	315	0	0	14	0	20	0	0	0	0	635	2,511	0	0	0	0
12:30 PM	0	0	289	11	4	10	320	0	0	6	0	6	0	0	0	0	646	2,503	0	0	0	0
12:45 PM	1	0	298	12	0	13	287	0	0	12	0	7	0	0	0	0	630	2,495	0	0	0	0
1:00 PM	0	0	274	14	3	8	284	0	0	7	0	10	0	0	0	0	600	2,474	0	0	0	0
1:15 PM	2	0	255	11	0	14	333	0	0	5	0	7	0	0	0	0	627		0	0	1	0
1:30 PM	0	0	262	12	0	5	340	0	0	9	0	10	0	0	0	0	638		0	0	0	0
1:45 PM	0	0	247	11	0	14	323	0	0	11	0	3	0	0	0	0	609		0	0	0	0
Count Total	14	0	3,529	145	19	138	3,460	0	0	96	0	109	0	0	0	C	7,510		0	1	1	0
Peak Hour	1	0	1,157	52	6	40	1,206	0	0	41	0	47	0	() (0	0 2,5	50	0	0	0	0



Location: 4 ALUMNI DR & GIBSON BLVD Noon


Date: Thursday, May 16, 2024 **Peak Hour:** 12:00 PM - 01:00 PM

Peak 15-Minutes: 12:00 PM - 12:15 PM

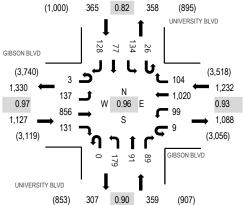

Peak Hour - Motorized Vehicles

Peak Hour - Bicycles

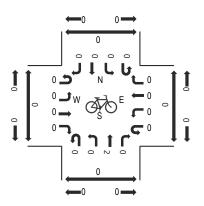
Peak Hour - Pedestrians

Note: Total study counts contained in parentheses.

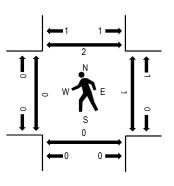
mamo odanto	14100	/ I I Z C	<i>,</i>		•																	
	G	IBSON	N BLVD		G	BSON	BLVD			ALUMN	NI DR			ALUM	NI DR							
Interval		Eastb	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	lestriar	Crossir	ıgs
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru F	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South I	North
11:00 AM	6	1	419	11	1	10	202	1	0	1	0	9	0	2	0	3	666	2,475	1	0	0	2
11:15 AM	6	1	385	15	0	10	221	1	0	2	0	11	0	0	0	3	655	2,462	0	0	0	0
11:30 AM	5	0	256	7	1	6	249	1	0	4	0	16	0	1	0	4	550	2,424	0	0	6	1
11:45 AM	4	0	249	17	0	8	310	1	0	3	0	11	0	1	0	0	604	2,525	0	0	0	0
12:00 PM	6	1	291	16	0	11	313	4	0	5	0	6	0	0	0	0	653	2,545	0	0	1	0
12:15 PM	8	1	274	6	0	10	297	1	0	10	0	9	0	0	0	1	617	2,476	0	0	0	0
12:30 PM	6	2	281	13	2	8	320	1	0	3	0	13	0	2	0	0	651	2,492	0	0	1	0
12:45 PM	3	0	295	14	1	10	282	0	0	5	0	11	0	0	0	3	624	2,468	0	0	0	0
1:00 PM	6	1	256	9	2	10	278	1	0	6	0	14	0	0	0	1	584	2,458	0	0	2	0
1:15 PM	5	0	244	11	1	8	347	0	0	5	0	11	0	0	0	1	633		0	0	2	0
1:30 PM	1	1	264	5	4	11	329	0	0	4	0	8	0	0	0	0	627		0	0	2	0
1:45 PM	2	1	241	6	1	11	329	1	0	7	0	9	1	1	0	4	614		0	0	0	0
Count Total	58	9	3,455	130	13	113	3,477	12	0	55	0	128	1	7	0	20	7,478		1	0	14	3
Peak Hour	23	4	1,141	49	3	39	1,212	6	0	23	0	39	0	2	2 () 4	2,54	l 5	0	0	2	0



Location: 5 UNIVERSITY BLVD & GIBSON BLVD Noon


Date: Thursday, May 16, 2024 **Peak Hour:** 12:00 PM - 01:00 PM

Peak 15-Minutes: 12:30 PM - 12:45 PM

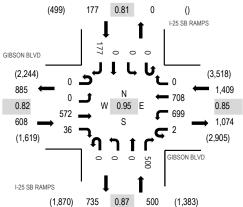

Peak Hour - Motorized Vehicles

Peak Hour - Bicycles

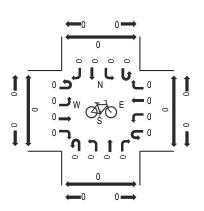
Peak Hour - Pedestrians

Note: Total study counts contained in parentheses.

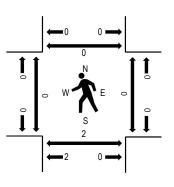
		G	IBSO	N BLVD		GI	BSON	BLVD		UN	VERSI	ΓΥ BLVI)	UN	IVERSI	TY BL\	/D						
	Interval		Eastb	ound			Westb	ound			Northbo	ound			Southb	ound			Rolling	Ped	lestrian	Crossin	gs
_	Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru F	Right	U-Turn	Left	Thru I	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South N	√orth
	11:00 AM	2	24	200	26	2	37	205	22	0	25	9	15	4	23	29	28	651	2,649	0	0	0	0
	11:15 AM	0	27	189	25	0	22	208	17	0	38	16	18	4	27	18	38	647	2,770	0	0	0	1
	11:30 AM	1	22	181	28	2	9	227	25	0	33	17	20	9	32	17	20	643	2,901	0	0	0	1
	11:45 AM	1	31	195	36	4	30	230	23	0	37	18	23	8	26	25	21	708	3,057	0	1	0	1
	12:00 PM	0	35	214	34	4	29	228	31	0	42	20	23	4	40	25	43	772	3,083	0	0	0	2
	12:15 PM	2	40	209	41	2	26	237	27	0	46	31	23	11	35	21	27	778	2,991	0	0	0	0
	12:30 PM	1	34	227	30	2	26	286	19	0	43	21	30	4	28	16	32	799	2,888	0	1	0	0
	12:45 PM	0	28	206	26	1	18	269	27	0	48	19	13	7	31	15	26	734	2,810	0	0	0	0
	1:00 PM	0	36	184	22	6	18	251	26	0	39	9	17	6	35	15	16	680	2,812	1	1	1	0
	1:15 PM	1	30	186	31	6	18	245	13	0	43	20	11	3	22	15	31	675		0	0	0	0
	1:30 PM	0	14	207	35	2	17	276	14	0	40	17	23	6	39	11	20	721		0	0	0	0
	1:45 PM	2	24	205	27	4	24	277	26	0	31	13	16	4	48	11	24	736		1	0	1	1
	Count Total	10	345	2,403	361	35	274	2,939	270	0	465	210	232	70	386	218	326	8,544		2	3	2	6
	Peak Hour	3	137	856	131	9	99	1,020	104	0	179	91	89	26	134	. 77	128	3,08	3	0	1	0	2



Location: 1 I-25 SB RAMPS & GIBSON BLVD PM


Date: Thursday, May 16, 2024 **Peak Hour:** 03:30 PM - 04:30 PM

Peak 15-Minutes: 03:45 PM - 04:00 PM

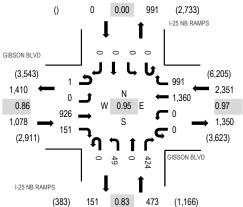

Peak Hour - Motorized Vehicles

Peak Hour - Bicycles

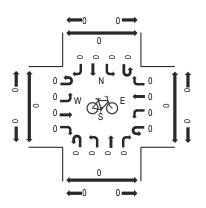
Peak Hour - Pedestrians

Note: Total study counts contained in parentheses.

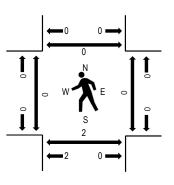
manno obanico																						
	G	IBSO	N BLVD		(SIBSON	BLVD		I-	25 SB F	RAMPS	6	I-	25 SB	RAMPS	3						
Interval		Easth	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	lestriar	n Crossir	ngs
Start Time	U-Turn	Left	Thru	Right	U-Turr	n Left	Thru Rig	ht	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South I	North
3:30 PM	0	0	174	12	0	154	188	0	0	0	0	144	0	0	0	26	698	2,694	0	0	0	0
3:45 PM	0	0	127	11	0	229	183	0	0	0	0	122	0	0	0	35	707	2,644	0	0	2	0
4:00 PM	0	0	164	6	1	157	170	0	0	0	0	124	0	0	0	54	676	2,531	0	0	0	0
4:15 PM	0	0	107	7	1	159	167	0	0	0	0	110	0	0	0	62	613	2,484	0	0	0	0
4:30 PM	0	0	140	13	0	159	168	0	0	0	0	122	0	0	0	46	648	2,433	0	0	0	0
4:45 PM	0	0	126	6	0	159	166	0	0	0	0	97	0	0	0	40	594	2,294	0	0	1	0
5:00 PM	0	0	133	9	1	160	162	0	0	0	0	122	0	0	0	42	629	2,195	0	0	0	0
5:15 PM	0	0	109	15	0	158	125	0	0	0	0	111	0	0	0	44	562	2,024	0	0	0	0
5:30 PM	0	0	134	6	0	116	103	0	0	0	0	112	0	0	0	38	509	1,892	0	0	0	0
5:45 PM	0	0	104	6	0	113	106	0	0	0	0	127	0	0	0	39	495		0	0	0	0
6:00 PM	0	0	102	4	0	100	111	0	0	0	0	99	0	0	0	42	458		0	0	0	0
6:15 PM	0	0	99	5	0	106	96	0	0	0	0	93	0	0	0	31	430		0	0	0	0
Count Total	0	0	1,519	100	3	1,770	1,745	0	0	0	0	1,383	0	0	0	499	7,019		0	0	3	0
Peak Hour	0	0	572	36	2	699	708	0	0	0	0	500	0	() () 17	7 2,69	94	0	0	2	0



Location: 2 I-25 NB RAMPS & GIBSON BLVD PM


Date: Thursday, May 16, 2024 **Peak Hour:** 03:30 PM - 04:30 PM

Peak 15-Minutes: 03:30 PM - 03:45 PM

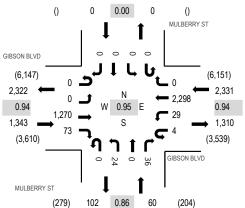


Peak Hour - Bicycles

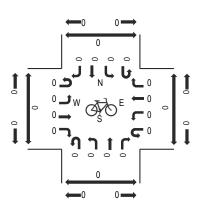
Peak Hour - Pedestrians

Note: Total study counts contained in parentheses.

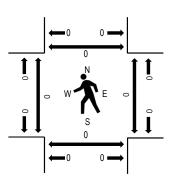
		G		N BLVD				BLVD		1-3	25 NB F			1-3		RAMPS	3						
	Interval		Eastb	ound			Westb	ound			Northb	ound			South	oound			Rolling	Ped	estriar	r Crossin	ıgs
	Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South N	Vorth
	3:30 PM	0	0	254	60	0	0	327	282	0	19	0	87	0	0	0	0	1,029	3,902	0	0	0	0
Ī	3:45 PM	1	0	230	22	0	0	378	231	0	16	0	126	0	0	0	0	1,004	3,774	0	0	2	0
	4:00 PM	0	0	244	44	0	0	332	250	0	8	0	94	0	0	0	0	972	3,659	0	0	0	0
	4:15 PM	0	0	198	25	0	0	323	228	0	6	0	117	0	0	0	0	897	3,620	0	0	0	0
	4:30 PM	0	0	221	36	0	0	331	227	0	2	0	84	0	0	0	0	901	3,580	0	0	0	0
	4:45 PM	0	0	186	36	0	0	319	258	0	6	0	84	0	0	0	0	889	3,479	0	0	0	0
	5:00 PM	0	0	230	32	0	0	313	264	0	5	0	89	0	0	0	0	933	3,330	0	0	0	0
	5:15 PM	0	0	197	22	0	0	288	242	0	2	0	106	0	0	0	0	857	3,055	0	0	0	0
	5:30 PM	0	0	210	43	0	0	223	246	0	0	0	78	0	0	0	0	800	2,800	0	0	0	0
	5:45 PM	0	0	206	24	0	0	224	187	0	3	0	96	0	0	0	0	740		0	0	0	0
	6:00 PM	0	0	174	16	0	0	217	180	0	2	0	69	0	0	0	0	658		0	0	0	0
	6:15 PM	0	0	177	23	0	0	197	138	0	1	0	66	0	0	0	0	602		0	0	0	0
	Count Total	1	0	2,527	383	0	0	3,472	2,733	0	70	0	1,096	0	0	0	0	10,282		0	0	2	0
	Peak Hour	1	0	926	151	0	0	1,360	991	0	49	0	424	0	() ()	3,90)2	0	0	2	0



Location: 3 MULBERRY ST & GIBSON BLVD PM


Date: Thursday, May 16, 2024 **Peak Hour:** 03:30 PM - 04:30 PM

Peak 15-Minutes: 03:45 PM - 04:00 PM

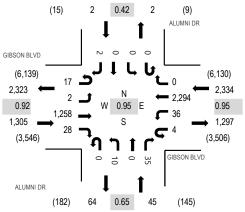

Peak Hour - Motorized Vehicles

Peak Hour - Bicycles

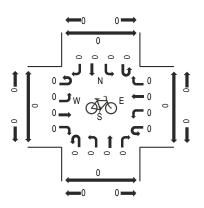
Peak Hour - Pedestrians

Note: Total study counts contained in parentheses.

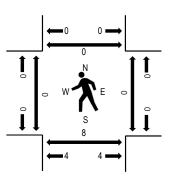
		G	IBSON	N BLVD)	G	IBSON	BLVD		M	IULBER	RRY ST	-	N	IULBEI	RRY S	Τ						
	Interval		Eastb	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	lestriar	n Crossii	ngs
	Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru Ri	ght	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South	North
	3:30 PM	0	0	301	27	1	10	609	0	0	5	0	9	0	0	0	0	962	3,734	0	0	0	0
	3:45 PM	0	0	343	15	1	2	598	0	0	7	0	14	0	0	0	0	980	3,641	0	0	0	0
	4:00 PM	0	0	330	17	2	3	556	0	0	4	0	9	0	0	0	0	921	3,510	0	0	0	0
	4:15 PM	0	0	296	14	0	14	535	0	0	8	0	4	0	0	0	0	871	3,516	0	0	0	0
	4:30 PM	0	0	291	16	1	8	536	0	0	6	0	11	0	0	0	0	869	3,482	0	0	0	0
	4:45 PM	0	0	250	14	1	7	565	0	0	4	0	8	0	0	0	0	849	3,376	0	0	0	0
	5:00 PM	0	0	298	21	1	6	579	0	0	8	0	14	0	0	0	0	927	3,247	0	0	0	0
	5:15 PM	0	0	282	18	0	3	520	0	0	6	0	8	0	0	0	0	837	2,983	0	0	0	0
	5:30 PM	1	0	274	11	0	5	451	0	0	11	0	10	0	0	0	0	763	2,749	0	0	0	0
	5:45 PM	1	0	279	15	0	13	392	0	0	11	0	9	0	0	0	0	720		0	0	0	0
	6:00 PM	1	0	232	15	2	12	378	0	0	13	0	10	0	0	0	0	663		0	0	0	0
	6:15 PM	0	0	241	7	0	6	334	0	0	8	0	7	0	0	0	0	603		0	0	0	0
	Count Total	3	0	3,417	190	9	89	6,053	0	0	91	0	113	0	0	0	(9,965		0	0	0	0
_	Peak Hour	0	0	1,270	73	4	29	2,298	0	0	24	0	36	0	() (0	0 3,73	34	0	0	0	0



Location: 4 ALUMNI DR & GIBSON BLVD PM


Date: Thursday, May 16, 2024 **Peak Hour:** 03:30 PM - 04:30 PM

Peak 15-Minutes: 03:45 PM - 04:00 PM


Peak Hour - Motorized Vehicles

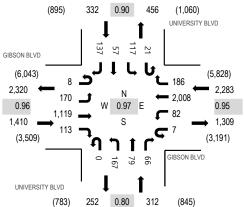
Peak Hour - Bicycles

Peak Hour - Pedestrians

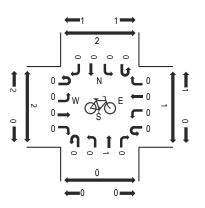
Note: Total study counts contained in parentheses.

Traffic Counts - Motorized Vehicles

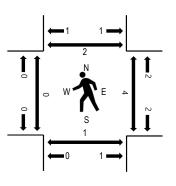
manno obanico																						
	G	IBSO1	N BLVD		G	IBSON	BLVD			ALUM	NI DR			ALUM	NI DR							
Interval		Eastb	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	lestriar	n Crossir	ngs
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru R	light	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South I	North
3:30 PM	8	0	310	4	0	5	606	0	0	4	0	11	0	0	0	0	948	3,686	0	0	6	0
3:45 PM	1	1	342	9	2	9	596	0	0	2	0	8	0	0	0	1	971	3,617	0	0	0	0
4:00 PM	4	0	320	7	1	6	550	0	0	2	0	8	0	0	0	1	899	3,512	0	0	1	0
4:15 PM	4	1	286	8	1	16	542	0	0	2	0	8	0	0	0	0	868	3,520	0	0	1	0
4:30 PM	9	0	286	10	1	10	537	0	0	8	0	15	0	0	0	3	879	3,472	0	0	1	0
4:45 PM	4	3	258	5	2	5	567	0	0	5	0	11	0	1	0	5	866	3,329	0	0	1	0
5:00 PM	5	1	295	10	2	9	575	0	0	2	0	8	0	0	0	0	907	3,170	0	0	0	0
5:15 PM	7	1	279	7	1	3	510	0	0	2	0	9	0	0	0	1	820	2,903	0	0	1	0
5:30 PM	10	1	267	2	1	8	438	0	0	4	0	5	0	0	0	0	736	2,678	0	0	1	0
5:45 PM	2	0	284	8	2	12	385	0	0	5	0	8	0	0	0	1	707		0	1	2	0
6:00 PM	5	1	230	9	0	3	382	0	0	2	0	7	0	0	0	1	640		0	0	0	0
6:15 PM	3	0	231	8	0	9	334	0	0	3	0	6	0	0	0	1	595		0	1	0	0
Count Total	62	9	3,388	87	13	95	6,022	0	0	41	0	104	0	1	0	14	9,836		0	2	14	0
Peak Hour	17	2	1,258	28	4	36	2,294	0	0	10	0	35	0	() () :	2 3,68	36	0	0	8	0



Location: 5 UNIVERSITY BLVD & GIBSON BLVD PM


Date: Thursday, May 16, 2024 **Peak Hour:** 03:30 PM - 04:30 PM

Peak 15-Minutes: 04:00 PM - 04:15 PM


Peak Hour - Motorized Vehicles

Peak Hour - Bicycles

Peak Hour - Pedestrians

Note: Total study counts contained in parentheses.

Traffic Counts - Motorized Vehicles

manno oou																							
		G	IBSO	N BLVD		G	IBSON	BLVD		UN	IVERSI	TY BLV	D	UN	IVERS	ITY BL	٧D						
Interval			Easth	oound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	lestriar	n Crossin	ıgs
Start Time	-	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South I	North
3:30 PM		2	34	252	25	2	20	516	27	0	56	18	24	7	28	13	37	1,061	4,337	0	3	1	1
3:45 PM		2	48	290	28	1	22	501	55	0	43	24	15	2	39	17	33	1,120	4,191	0	0	0	1
4:00 PM		3	43	294	28	3	27	515	53	0	33	19	13	8	30	14	40	1,123	4,054	0	1	0	0
4:15 PM		1	45	283	32	1	13	476	51	0	35	18	14	4	20	13	27	1,033	3,918	0	0	0	0
4:30 PM		1	28	204	26	2	14	468	44	0	37	15	11	1	22	15	27	915	3,762	0	0	0	0
4:45 PM		2	34	205	27	2	18	515	31	0	38	16	14	2	26	25	28	983	3,573	0	0	0	0
5:00 PM		0	27	212	42	0	14	518	20	0	41	19	13	5	27	12	37	987	3,398	0	0	0	0
5:15 PM		0	43	212	34	3	28	402	24	0	29	14	11	7	23	12	35	877	3,175	3	0	2	0
5:30 PM		1	29	187	37	3	17	316	15	0	40	17	12	9	14	7	22	726	2,978	0	0	2	0
5:45 PM		1	41	193	49	0	22	332	17	0	45	12	15	6	32	13	30	808		1	0	0	6
6:00 PM		2	25	190	25	5	19	346	20	0	40	11	16	3	29	8	25	764		0	0	0	0
6:15 PM		0	29	159	34	4	21	287	18	0	34	15	18	7	18	12	24	680		0	0	0	0
Count Total		15	426	2,681	387	26	235	5,192	375	0	471	198	176	61	308	161	365	11,077		4	4	5	8
Peak Hour		8	170	1,119	113	7	82	2,008	186	0	167	79	66	21	117	7 57	7 13	7 4,33	37	0	4	1	2

Appendix C: In N Out Trip Survey Data and ITE Trip Generation

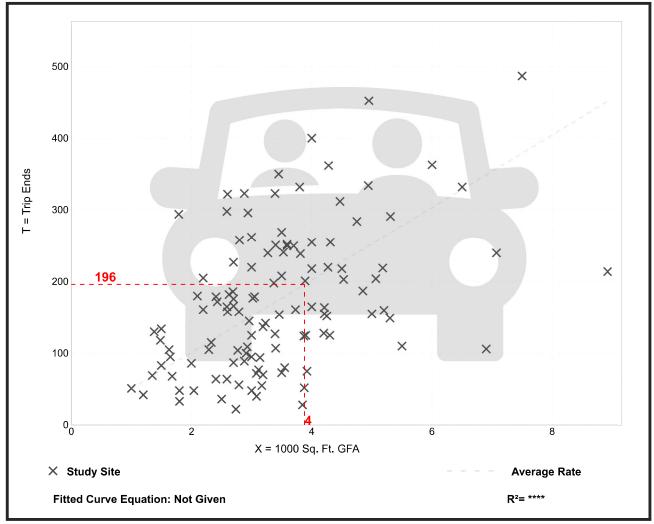
Fast-Food Restaurant with Drive-Through Window (934)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

AM Peak Hour of Generator

Setting/Location: General Urban/Suburban


Number of Studies: 118 Avg. 1000 Sq. Ft. GFA: 3

Directional Distribution: 52% entering, 48% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
50.57	7.28 - 164.25	25.99

Data Plot and Equation

Trip Gen Manual, 11th Edition

• Institute of Transportation Engineers

https://itetripgen.org/printGraph 1/1

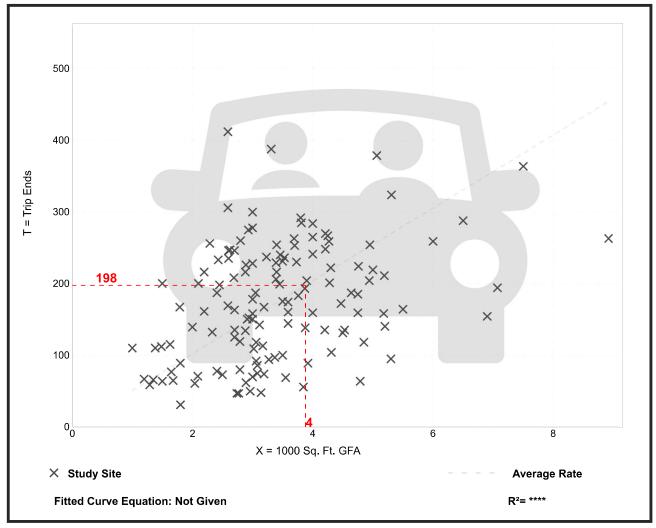
Fast-Food Restaurant with Drive-Through Window (934)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

PM Peak Hour of Generator

Setting/Location: General Urban/Suburban


Number of Studies: 135 Avg. 1000 Sq. Ft. GFA: 3

Directional Distribution: 51% entering, 49% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
50.94	13.36 - 159.07	24.91

Data Plot and Equation

Trip Gen Manual, 11th Edition

• Institute of Transportation Engineers

https://itetripgen.org/printGraph 1/1

Table A1
Weekday Drive Through Queue Survey Summary

	Peak Queue Observed within 15-Minute Increment										
Time	Corona	Highland	Indio	La Quinta	Long Beach	Los Angeles	Thousand Palms	Average	85th- %ile		
LUNCH											
11:00 AM	17	14	5	8	3	6	15	10	15		
11:15 AM	17	17	7	7	6	12	16	12	17		
11:30 AM	16	16	12	12	7	16	18	14	16		
11:45 AM	17	17	12	13	14	19	14	15	17		
12:00 PM	23	19	12	21	15	20	17	18	21		
12:15 PM	24	21	10	22	15	18	16	18	22		
12:30 PM	23	21	9	19	13	21	16	17	21		
12:45 PM	17	20	12	18	8	19	20	16	20		
1:00 PM	16	19	16	18	12	22	10	16	19		
1:15 PM	18	14	12	20	13	21	12	16	20		
1:30 PM	17	16	10	18	8	20	13	15	18		
1:45 PM	15	18	8	16	7	20	10	13	18		
2:00 PM	16	17	7	14	8	21	19	15	19		
DINNER											
4:00 PM	17	15	7	15	6	17	7	12	17		
4:15 PM	16	19	4	21	5	15	10	13	19		
4:30 PM	17	17	7	20	3	12	9	12	17		
4:45 PM	16	18	7	20	6	10	11	13	18		
5:00 PM	23	19	6	22	5	9	10	13	22		
5:15 PM	23	19	12	18	7	14	14	15	19		
5:30 PM	23	19	10	21	7	17	13	16	21		
5:45 PM	18	21	9	19	5	19	9	14	19		
6:00 PM	23	23	10	16	12	20	12	17	23		
6:15 PM	24	22	8	22	7	19	16	17	22		
6:30 PM	24	19	11	23	10	20	18	18	23		
6:45 PM	24	18	10	21	12	18	18	17	21		
7:00 PM	23	19	7	21	10	17	19	17	21		
7:15 PM	18	21	10	16	11	18	20	16	20		
7:30 PM	23	21	12	7	7	19	17	15	21		
7:45 PM	24	19	7	17	6	20	16	16	20		
8:00 PM	23	18	15	16	8	21	10	16	21		
8:15 PM	17	17	12	17	6	19	17	15	17		
8:30 PM	16	17	10	15	9	19	15	14	17		
PEAK	24	23	16	23	15	22	20	20	23		

Source: Queue observations at existing In-N-Out restaurants; see attachments.

Table A2 Weekend Drive Through Queue Survey Summary

	Peak Queue Observed within 15-Minute Increment										
Time	Corona	Highland	Indio	La Quinta	Long Beach	Los Angeles	Thousand Palms	Average	85th- %ile		
LUNCH											
11:00 AM	9	9	6	8	7	8	8	8	9		
11:15 AM	13	14	4	11	8	11	8	10	13		
11:30 AM	17	16	7	16	9	12	12	13	16		
11:45 AM	19	18	8	11	16	18	14	15	18		
12:00 PM	17	18	11	10	16	20	11	15	18		
12:15 PM	18	20	8	14	14	16	12	15	18		
12:30 PM	23	20	9	18	16	20	18	18	20		
12:45 PM	24	21	11	16	10	20	16	17	21		
1:00 PM	24	19	16	15	15	23	15	18	23		
1:15 PM	23	20	7	14	16	22	15	17	22		
1:30 PM	24	20	6	18	10	20	18	17	20		
1:45 PM	23	22	8	15	9	20	18	16	22		
2:00 PM	22	17	12	16	12	21	14	16	21		
DINNER											
4:00 PM	20	14	10	14	8	10	12	13	15		
4:15 PM	18	15	15	17	10	14	11	14	17		
4:30 PM	17	16	15	17	8	18	12	15	17		
4:45 PM	17	18	16	20	5	8	11	14	18		
5:00 PM	23	19	20	21	9	8	12	16	21		
5:15 PM	24	20	22	18	10	9	11	16	22		
5:30 PM	24	22	22	19	10	20	6	18	22		
5:45 PM	23	18	24	12	9	19	16	17	23		
6:00 PM	24	23	21	11	13	20	19	19	23		
6:15 PM	24	21	16	10	9	19	17	17	21		
6:30 PM	25	20	10	17	10	20	15	17	21		
6:45 PM	25	19	11	18	14	18	20	18	21		
7:00 PM	24	21	8	10	12	19	19	16	21		
7:15 PM	24	19	7	12	13	20	13	15	20		
7:30 PM	23	18	6	11	9	21	12	14	21		
7:45 PM	23	19	9	8	9	22	14	15	22		
8:00 PM	15	20	12	15	10	21	13	15	20		
8:15 PM	16	19	9	16	9	22	17	15	19		
8:30 PM	17	21	8	16	11	18	17	15	18		
PEAK	25	23	24	21	16	23	20	22	24		

Source: Queue observations at existing In-N-Out restaurants; see attachments.

Corona (2305 Compton Ave, Corona, CA 92881)

L				Corona In-N-Out				
	Saturday	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	
Time	12/2/2017	12/3/2017	12/4/2017	12/5/2017	12/6/2017	12/7/2017	12/8/2017	Peak
10:30-10:45	7	5	6	5	6	5	6	7
10:45-11:00 11:00-11:15	14 7	11 9	14 17	7	12	7	8	14 17
11:15-11:15	9	13	14	11 15	12 12	11	10 17	17
11:30-11:45	9	17	14	15	15	16	16	17
11:45-12:00	11	19	17	10	14	16	15	19
12:00-12:15	13	17	12	13	18	15	23	23
12:15-12:30	16	18	17	13	18	14	24	24
12:30-12:45	20	23	20	13	16	13	23	23
12:45-1:00	22	24	15	17	13	14	17	24
1:00-1:15	22	24	14	11	13	16	14	24
1:15-1:30	23	23	11	14	16	18	15	23
1:30-1:45	24	22	11	11	15	17	16	24
1:45-2:00	23	17	10	10	13	14	15	23
2:00-2:15	22	18	15	11	16	10	15	22
2:15-2:30	23	17	17	16	16	13	13	23
2:30-2:45	24	23	18	15	12	13	13	24
2:45-3:00	20	14	12	14	10	13	15	20
3:00-3:15	20	18	18	23	17	14	16	23
3:15-3:30	17	14	15	19	18	14	18	19
3:30-3:45	17	16	18	17	11	16	17	18
3:45-4:00	15	17	16	12	15	14	15	17
4:00-4:15	18	20	12	9	12	15	17	20
4:15-4:30	16	18	16	10	9	11	11	18
4:30-4:45	16	17	17	14	10	9	11	17
4:45-5:00	16	17	14	12	16	15	13	17
5:00-5:15	23	15	16	13	23	18	13	23
5:15-5:30	24	17	23	12	18	21	16	24
5:30-5:45 5:45-6:00	24	23 23	16 15	13 13	16 17	16 18	23 15	24
6:00-6:15	18	23	12	12	18	23	19	23
6:15-6:30	23	24	15	17	23	24	17	24
6:30-6:45	23	25	23	23	23	24	18	25
6:45-7:00	20	25	24	17	17	23	15	25
7:00-7:15	23	24	23	18	14	13	17	24
7:15-7:30	15	24	16	15	16	17	18	24
7:30-7:45	14	23	12	14	13	16	23	23
7:45-8:00	16	23	14	12	13	20	24	24
8:00-8:15	15	15	14	12	14	17	23	23
8:15-8:30	16	15	15	13	12	14	17	17
8:30-8:45	17	16	14	14	10	15	16	17
8:45-9:00	14	14	14	10	14	15	13	15
9:00-9:15	17	12	14	12	11	13	15	17
9:15-9:30	12	10	15	9	11	15	15	15
9:30-9:45	16	13	11	8	8	10	16	16
9:45-10:00	12	15	9	8	11	13	11	15
10:00-10:15	13	12	14	7	12	13	12	14
10:15-10:30	12	9	9	6	11	13	15	15
10:30-10:45 10:45-11:00	14 19	13 11	11 9	6 7		11 9	15 14	15 19
11:00-11:15	20	8	8	6	6	8	13	20
11:15-11:30	16	12	6	5	5	7	11	16
11:30-11:45	14	10	7	4	4	5	11	14
11:45-12:00	12	8	5	4	5	6	11	12
12:00-12:15	11	5	5	3	4	4	11	11
12:15-12:30	11	7	4	3	3	3	11	11
12:30-12:45	13	6	3	3	2	3	11	13
12:45-1:00	13	4	2	2	2	2	11	13
Day Peak	24	25	24	23	23	24	24	25

Highland (28009 Greenspot Rd, Highland, CA 92346)

			H	lighland In-N-Ou	it			
[Saturday	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	
Time	12/2/2017	12/3/2017	12/4/2017	12/5/2017	12/6/2017	12/7/2017	12/8/2017	Peak
10:30-10:45	4	6	6	5	4	4	6	6
10:45-11:00	5	7	8 11	7	6	7	11	11 14
11:00-11:15 11:15-11:30	14	11	17	10	9	10 14	14 15	17
11:30-11:45	12	16	15	14	15	14	16	16
11:45-12:00	13	18	14	14	14	14	17	18
12:00-12:15	16	18	18	17	14	18	19	19
12:15-12:30	20	20	17	17	15	18	21	21
12:30-12:45	20	20	16	19	15	17	21	21
12:45-1:00	21	19	13	18	11	18	20	21
1:00-1:15	18	19	14	17	7	18	19	19
1:15-1:30	20	19	11	13	10	14	14	20
1:30-1:45	20	18	14	13	10	13	16	20
1:45-2:00	22	17	14	18	3	13	18	22
2:00-2:15	17	15	13	15	14	16	17	17
2:15-2:30	17	17	18	16	15	19	18	19
2:30-2:45	14	18	14	13	14	16	15	18
2:45-3:00	17	15	15	12	13	18	15	18
3:00-3:15	16	16	18	14	12	16	18	18
3:15-3:30	18	19	18	12	13	14	18	19
3:30-3:45	14	19	17	10	17	19	19	19
3:45-4:00	12	16	18	11	16	18	17	18
4:00-4:15 4:15-4:30	14 15	14 14	15 13	14 16	14 12	15 16	13 19	15 19
4:15-4:30	14	16	15	14	15	14	17	17
4:45-5:00	15	18	18	15	14	17	16	18
5:00-5:15	15	19	15	14	13	19	15	19
5:15-5:30	18	20	13	13	17	19	19	20
5:30-5:45	22	19	16	19	16	18	19	22
5:45-6:00	17	18	20	19	18	21	20	21
6:00-6:15	23	21	20	18	20	21	23	23
6:15-6:30	19	21	19	17	13	19	22	22
6:30-6:45	19	20	19	17	16	18	17	20
6:45-7:00	19	19	18	15	14	17	18	19
7:00-7:15	21	17	16	14	13	16	19	21
7:15-7:30	19	18	15	15	15	21	20	21
7:30-7:45	17	18	12	16	12	19	21	21
7:45-8:00	15	19	15	17	17	19	19	19
8:00-8:15	18	20	18	13	18	14	18	20
8:15-8:30	19	17	13	16	16	14	17	19
8:30-8:45	21	15	13	13	17	12	17	21
8:45-9:00	19	14	12	13	19	14	15	19
9:00-9:15	20	16	11	14	18	15	18	20
9:15-9:30	20	16	14	15	16	19	17	20
9:30-9:45 9:45-10:00	18 17	17 16	15 12	12 11	14 12	18 16	16 16	18 17
10:00-10:15	20	13	10	10	13	15	14	20
10:15-10:30	19	12	9	10	15	14	14	19
10:30-10:45	18	12	8	8	14	11	14	18
10:45-11:00	18	13	7	7	10	11	14	18
11:00-11:15	15	15	8	7	11	10	11	15
11:15-11:30	17	16	7	8	9	9	12	17
11:30-11:45	19	12	6	6	7	8	10	19
11:45-12:00	16	9	5	5	8	9	9	16
12:00-12:15	16	8	5	6	6	7	8	16
12:15-12:30	15	7	4	4	5	5	7	15
12:30-12:45	9	5	3	3	3	4	3	9
12:45-1:00	8	4	2	2	2	2	5	8
Day Peak	23	21	20	19	20	21	23	23

Indio (82043 Highway 111, Indio, CA 92201)

MAX Queue Study In-N-Out, Rancho Mirage

 Location:
 82043 CA-111

 City:
 Indio

 Date:
 6/27/2019

Time	Oueue	Time	Queue
Time	Queue		Queue
11:00	4	16:00	7
11:05 11:10	5 5	16:05 16:10	7 6
11:15	7	16:15	4
11:20	4	16:20	3
11:25	6	16:25	3
11:30	6	16:30	1
11:35	11	16:35	5
11:40	12	16:40	7
11:45	11	16:45	4
11:50	12	16:50	6
11:55	9	16:55	7
12:00 12:05	11 10	17:00 17:05	5 5
12:10	12	17:05	6
12:15	10	17:15	7
12:20	9	17:20	12
12:25	8	17:25	12
12:30	9	17:30	10
12:35	7	17:35	10
12:40	7	17:40	10
12:45	7	17:45	5
12:50	9	17:50	6
12:55	12	17:55	9
13:00	14	18:00	9
13:05 13:10	16 14	18:05 18:10	10 9
13:15	12	18:15	6
13:20	11	18:20	3
13:25	7	18:25	8
13:30	6	18:30	7
13:35	9	18:35	10
13:40	10	18:40	11
13:45	8	18:45	9
13:50	8	18:50	10
13:55 14:00	7	18:55 19:00	7
14:05	5	19:05	6
14:10	7	19:10	6
14:15	7	19:15	9
14:20	8	19:20	8
14:25	7	19:25	10
14:30	5	19:30	12
14:35	9	19:35	11
14:40	5	19:40	8
14:45	4	19:45	7
14:50	4	19:50	7 6
14:55 15:00	6	19:55 20:00	9
15:05	9	20:05	15
15:10	10	20:10	13
15:15	8	20:15	12
15:20	8	20:20	12
15:25	8	20:25	10
15:30	7	20:30	9
15:35	4	20:35	8
15:40	5	20:40	10
15:45	6	20:45	8
15:50	8	20:50	9
15:55	10	20:55	8

Time	Queue	
21:00	7	
21:05	6	
21:10	8	
21:15	9	
21:20	8	
21:25	8	
21:30	11	
21:35	9	
21:40	12	
21:45	10	
21:50	10	
21:55	12	
22:00	11	
22:05	9	
22:10	8	
22:15	8	
22:20	7	
22:25	8	
22:30	6	
22:35	10	
22:40	7	
22:45	8	
22:50	9	
22:55	8	
	I	

1

l

l
1
ļ
l
l
l
<u> </u>
I

1

l

l
ļ
l

I
L
ļ
l
l
I
ļ
1

1
<u> </u>
ļ
1

l
<u> </u>

i

MAX Queue Study In-N-Out, Rancho Mirage

 Location:
 82043 CA-111

 City:
 Indio

 Date:
 6/22/2019

Time	Queue	Time	Queue
11:00	3	16:00	10
11:05	6	16:05	8
11:10	4	16:10	10
11:15	4	16:15	11
11:20	3	16:20	15
11:25	3	16:25	12
11:30	4	16:30	14
11:35	4	16:35	14
11:40	7	16:40	15
11:45	8	16:45	16
11:50	7	16:50	16
11:55	8	16:55	13
12:00	9	17:00	19
12:05	11	17:05	18
12:10	7	17:10	20
12:15	7	17:15	18
12:20	8	17:20	22
12:25	7	17:25	20
12:30	6	17:30	22
12:35	9	17:35	20
12:40	6	17:40	21
12:45	10	17:45	24
12:50	9	17:50	20
12:55	11	17:55	18
13:00	16	18:00	21
13:05	14	18:05	18
13:10	11	18:10	20
13:15	4	18:15	16
13:20	7	18:20	14
13:25	7	18:25	15
13:30 13:35	5 4	18:30 18:35	9 10
13:40 13:45	6 8	18:40 18:45	10 11
13:50	8	18:50	9
13:55	8	18:55	10
14:00	10	19:00	8
14:05	12	19:05	7
14:10	12	19:10	8
14:15	12	19:15	7
14:20	13	19:20	7
14:25	12	19:25	5
14:30	9	19:30	6
14:35	11	19:35	5
14:40	11	19:40	6
14:45	12	19:45	6
14:50	13	19:50	9
14:55	15	19:55	8
15:00	19	20:00	8
15:05	18	20:05	9
15:10	13	20:10	12
15:15	13	20:15	8
15:20	15	20:20	9
15:25	14	20:25	5
15:30	8	20:30	8
15:35	9	20:35	6
15:40	9	20:40	4
15:45	7	20:45	9
15:50	9	20:50	12
15:55	11	20:55	14

		•
Time	Queue	
21:00	15	
21:05	13	
21:10	13	
21:15	10	
21:20	12	
21:25 21:30	10 14	
	14	
21:35 21:40	15	
21:40	13	
21:45	11	
21:55	14	
22:00	13	
22:05	10	
22:10	12	
22:15	6	
22:20	11	
22:25	7	
22:30	3	
22:35	5	
22:40	6	
22:45	8	
22:50	9	
22:55	9	

1

l

l
1
ļ
l
l
l
<u> </u>
I

1

l

l
ļ
l

I
L
ļ
l
l
I
ļ
l

l
L
ļ
l

l
<u> </u>

i

La Quinta (78611 Highway 111, La Quinta, CA 92253)

MAX Queue Study In-N-Out, Rancho Mirage

Location: 78611 CA-111
City: La Quinta
Date: 6/27/2019

Time	Queue	Time	Queue
11:00	7	16:00	13
11:05	7	16:05	15
11:10	8	16:10	13
11:15	7	16:15	18
11:20	7	16:20	18
11:25	6	16:25	21
11:30	4	16:30	20
11:35	7	16:35	19
11:40	12	16:40	18
11:45	11	16:45	19
11:50	13	16:50	20
11:55	12	16:55	19
12:00	14	17:00	22
12:05	18	17:05	18
12:10	21	17:10	18
12:15	22	17:15	15
12:20	19	17:20	17
12:25	17	17:25	18
12:30	19	17:30	19
12:35	15	17:35	18
12:40	18	17:40	21
12:45	18	17:45	19
12:50	17	17:50	15
12:55	17	17:55	8
13:00	16	18:00	13
13:05	15	18:05	13
13:10	18	18:10	16
13:15	18	18:15	22
13:20	17	18:20	17
13:25	20	18:25	20
13:30	18	18:30	22
13:35	18	18:35	23
13:40	15	18:40	20
13:45	16	18:45	21
13:50	16	18:50	19
13:55	14	18:55	17
14:00	12	19:00	18
14:05	14 12	19:05	21 15
14:10 14:15	14	19:10 19:15	16
14:13	14	19:20	12
14:25	13	19:25	5
14:25	15	19:30	7
14:35	15	19:35	6
14:40	12	19:40	6
14:45	12	19:45	17
14:50	13	19:50	15
14:55	13	19:55	16
15:00	13	20:00	16
15:05	15	20:05	16
15:10	14	20:10	15
15:15	17	20:15	17
15:20	13	20:20	16
15:25	13	20:25	13
15:30	11	20:30	15
15:35	7	20:35	11
15:40	3	20:40	11
15:45	2	20:45	16
15:50	13	20:50	14
15:55	14	20:55	19
			-

Time	Queue	
21:00	17	
21:05	17	
21:10	19	
21:15	18	
21:20	14	
21:25	15	
21:30	15	
21:35	7	
21:40	9	
21:45	7	
21:50	16	
21:55	16	
22:00	13	
22:05	15	
22:10	17	
22:15	17	
22:20	13	
22:25	12	
22:30	12	
22:35	12	
22:40	7	
22:45	3	
22:50	5	
22:55	2	
22.55		

	1
	l
	I
	<u> </u>
	ļ
	l
	l
	l
	l
	1
	
	l
	
	L
	ļ
	I
	l
	l
	İ
	1
	
	l
	l
	
	l
	
	L
	ļ
	l
	
	I
	l
	1
	
	l
	l
	l
	İ
	ļ

MAX Queue Study In-N-Out, Rancho Mirage

 Location: 78611 CA-111
 Day: Saturday

 City: La Quinta
 Date: 6/22/2019

11:00	Time	Queue	Time	Queue
11:10 4 16:10 14 11:15 3 16:15 17 11:20 7 16:20 15 11:25 11 16:25 14 11:30 16 16:30 16 11:35 15 16:35 17 11:40 12 16:40 12 11:45 11 16:45 11 11:50 11 16:50 14 11:55 9 16:55 20 12:00 6 17:00 18 12:05 9 17:05 21 12:10 10 17:10 18 12:25 9 17:05 21 12:10 10 17:10 18 12:25 14 17:25 15 12:20 14 17:25 15 12:25 14 17:25 15 12:30 17 17:30 19 12:35 18	11:00	6	16:00	13
11:15 3 16:15 17 11:20 7 16:20 15 11:25 11 16:25 14 11:30 16 16:30 16 11:35 15 16:35 17 11:40 12 16:40 12 11:45 11 16:45 11 11:50 11 16:50 14 11:55 9 16:55 20 12:00 6 17:00 18 12:05 9 17:05 21 12:10 10 17:10 18 12:15 12 17:15 18 12:20 14 17:25 15 12:30 17 17:30 19 12:35 18 17:35 15 12:40 14 17:40 12 12:45 15 17:45 12 12:50 14 17:50 11 12:55 16 17:55 10 13:00 15 18:00 8 13:05 14 18:05 11 13:10 12 18:10 8 13:15 14 18:15 9 13:25 11 18:25 10 13:30 16 18:30 9 13:35 16 18:35 17 13:40 18 18:40 16 13:45 14 18:45 18 13:55 15 18:55 16 13:40 18 18:40 16 13:45 14 18:50 18 13:55 15 18:55 16 13:40 18 18:40 16 13:45 14 18:45 18 13:50 14 18:50 18 13:51 15 18:55 16 14:40 16 19:00 8 14:45 15 19:45 8 14:50 12 19:50 7 14:15 11 19:15 8 14:20 8 19:25 12 14:30 19 19:30 11 14:35 18 19:35 10 14:40 17 19:40 9 14:45 15 19:45 8 14:50 15 20:05 11 15:10 15 20:05 15 15:00 10 20:00 5 15:00 10 2	11:05	8	16:05	12
11:20 7 16:20 15 11:25 11 16:25 14 11:30 16 16:30 16 11:35 15 16:35 17 11:40 12 16:40 12 11:40 12 16:45 11 11:45 11 16:50 14 11:50 11 16:50 14 11:55 9 16:55 20 12:00 6 17:00 18 12:05 9 17:05 21 12:10 10 17:10 18 12:15 12 17:15 18 12:20 14 17:20 16 12:25 14 17:25 15 12:30 17 17:30 19 12:35 18 17:35 15 12:40 14 17:40 12 12:45 15 17:45 12 12:45 15	11:10	4	16:10	14
11:25 11 16:25 14 11:30 16 16:30 16 11:35 15 16:35 17 11:40 12 16:40 12 11:45 11 16:45 11 11:50 11 16:50 14 11:55 9 16:55 20 12:00 6 17:00 18 12:05 9 17:05 21 12:10 10 17:10 18 12:05 9 17:05 21 12:10 10 17:10 18 12:25 14 17:20 16 12:25 14 17:25 15 12:20 14 17:20 16 12:25 14 17:30 19 12:35 18 17:33 19 12:35 18 17:35 15 12:40 14 17:40 12 12:45 15	11:15	3	16:15	17
11:30 16 16:30 16 11:35 15 16:35 17 11:40 12 16:40 12 11:45 11 16:45 11 11:50 11 16:50 14 11:55 9 16:55 20 12:00 6 17:00 18 12:05 9 17:05 21 12:10 10 17:10 18 12:15 12 17:15 18 12:20 14 17:20 16 12:25 14 17:25 15 12:30 17 17:30 19 12:35 18 17:35 15 12:40 14 17:40 12 12:45 15 17:45 12 12:45 15 17:45 12 12:50 14 17:50 11 12:55 16 17:55 10 13:00 15	11:20	7	16:20	15
11:35 15 16:35 17 11:40 12 16:40 12 11:45 11 16:45 11 11:50 11 16:50 14 11:55 9 16:55 20 12:00 6 17:00 18 12:05 9 17:05 21 12:10 10 17:10 18 12:15 12 17:15 18 12:20 14 17:20 16 12:25 14 17:25 15 12:30 17 17:30 19 12:35 18 17:35 15 12:30 17 17:30 19 12:35 18 17:35 15 12:40 14 17:40 12 12:45 15 17:45 12 12:50 14 17:50 11 12:55 16 17:55 10 13:00 15	11:25	11	16:25	14
11:40 12 16:40 12 11:45 11 16:45 11 11:50 11 16:50 14 11:55 9 16:55 20 12:00 6 17:00 18 12:05 9 17:05 21 12:10 10 17:10 18 12:15 12 17:15 18 12:20 14 17:20 16 12:25 14 17:25 15 12:30 17 17:30 19 12:35 18 17:35 15 12:40 14 17:40 12 12:45 15 17:45 12 12:45 15 17:45 12 12:50 14 17:50 11 12:55 16 17:55 10 13:00 15 18:00 8 13:10 12 18:10 8 13:15 14	11:30	16	16:30	16
11:45 11 16:45 11 11:50 11 16:50 14 11:55 9 16:55 20 12:00 6 17:00 18 12:05 9 17:05 21 12:10 10 17:10 18 12:15 12 17:15 18 12:20 14 17:20 16 12:25 14 17:25 15 12:30 17 17:30 19 12:35 18 17:35 15 12:40 14 17:40 12 12:45 15 17:45 12 12:45 15 17:45 12 12:45 15 17:45 12 12:40 14 17:50 11 12:45 15 17:45 12 12:45 15 17:45 12 12:45 15 17:55 10 13:30 15	11:35	15	16:35	17
11:50 11 16:50 14 11:55 9 16:55 20 12:00 6 17:00 18 12:05 9 17:05 21 12:10 10 17:10 18 12:15 12 17:15 18 12:20 14 17:20 16 12:25 14 17:25 15 12:30 17 17:30 19 12:35 18 17:35 15 12:40 14 17:40 12 12:45 15 17:45 12 12:50 14 17:50 11 12:45 15 17:45 12 12:50 14 17:50 11 12:55 16 17:55 10 13:00 15 18:00 8 13:05 14 18:05 11 13:10 12 18:10 8 13:15 14	11:40	12	16:40	12
11:55 9 16:55 20 12:00 6 17:00 18 12:05 9 17:05 21 12:10 10 17:10 18 12:15 12 17:15 18 12:20 14 17:20 16 12:25 14 17:25 15 12:30 17 17:30 19 12:35 18 17:35 15 12:40 14 17:40 12 12:45 15 17:45 12 12:45 15 17:45 12 12:50 14 17:50 11 12:55 16 17:55 10 13:00 15 18:00 8 13:05 14 18:05 11 13:10 12 18:10 8 13:15 14 18:15 9 13:20 13 18:20 10 13:35 16	11:45	11	16:45	11
12:00 6 17:00 18 12:05 9 17:05 21 12:10 10 17:10 18 12:15 12 17:15 18 12:20 14 17:20 16 12:25 14 17:25 15 12:30 17 17:30 19 12:35 18 17:35 15 12:40 14 17:40 12 12:45 15 17:45 12 12:45 15 17:45 12 12:45 15 17:45 12 12:45 15 17:45 12 12:45 16 17:55 10 13:00 15 18:00 8 13:05 14 18:05 11 13:10 12 18:10 8 13:15 14 18:15 9 13:20 13 18:20 10 13:35 16	11:50	11	16:50	14
12:05 9 17:05 21 12:10 10 17:10 18 12:15 12 17:15 18 12:20 14 17:20 16 12:25 14 17:25 15 12:30 17 17:30 19 12:35 18 17:35 15 12:40 14 17:40 12 12:45 15 17:45 12 12:45 15 17:45 12 12:50 14 17:50 11 12:55 16 17:55 10 13:00 15 18:00 8 13:05 14 18:05 11 13:10 12 18:10 8 13:10 12 18:10 8 13:15 14 18:15 9 13:20 13 18:20 10 13:35 16 18:35 17 13:40 18	11:55	9	16:55	20
12:10 10 17:10 18 12:15 12 17:15 18 12:20 14 17:20 16 12:25 14 17:25 15 12:30 17 17:30 19 12:35 18 17:35 15 12:40 14 17:40 12 12:45 15 17:45 12 12:45 15 17:45 12 12:45 15 17:45 12 12:45 15 17:45 12 12:45 15 17:45 12 12:45 15 17:45 12 12:45 15 17:45 12 12:45 15 17:45 12 12:45 16 17:55 10 13:30 16 18:00 8 13:10 12 18:10 8 13:15 14 18:15 9 13:20 13	12:00	6	17:00	18
12:15 12 17:15 18 12:20 14 17:20 16 12:25 14 17:25 15 12:30 17 17:30 19 12:35 18 17:35 15 12:40 14 17:40 12 12:45 15 17:45 12 12:50 14 17:50 11 12:55 16 17:55 10 13:00 15 18:00 8 13:05 14 18:05 11 13:10 12 18:10 8 13:15 14 18:15 9 13:20 13 18:20 10 13:25 11 18:25 10 13:30 16 18:30 9 13:35 16 18:35 17 13:40 18 18:40 16 13:40 18 18:40 16 13:45 14	12:05	9	17:05	21
12:20 14 17:20 16 12:25 14 17:25 15 12:30 17 17:30 19 12:35 18 17:35 15 12:40 14 17:40 12 12:45 15 17:45 12 12:45 15 17:45 12 12:50 14 17:50 11 12:55 16 17:55 10 13:00 15 18:00 8 13:05 14 18:05 11 13:10 12 18:10 8 13:15 14 18:15 9 13:20 13 18:20 10 13:25 11 18:25 10 13:30 16 18:30 9 13:35 16 18:35 17 13:40 18 18:40 16 13:45 14 18:45 18 13:50 14	12:10	10	17:10	18
12:25 14 17:25 15 12:30 17 17:30 19 12:35 18 17:35 15 12:40 14 17:40 12 12:45 15 17:45 12 12:50 14 17:50 11 12:55 16 17:55 10 13:00 15 18:00 8 13:05 14 18:05 11 13:10 12 18:10 8 13:15 14 18:15 9 13:20 13 18:20 10 13:25 11 18:25 10 13:30 16 18:30 9 13:35 16 18:30 9 13:35 16 18:35 17 13:40 18 18:40 16 13:45 14 18:45 18 13:50 14 18:45 18 13:55 15	12:15	12	17:15	18
12:30 17 17:30 19 12:35 18 17:35 15 12:40 14 17:40 12 12:45 15 17:45 12 12:50 14 17:50 11 12:55 16 17:55 10 13:00 15 18:00 8 13:05 14 18:05 11 13:10 12 18:10 8 13:15 14 18:15 9 13:20 13 18:20 10 13:25 11 18:25 10 13:25 11 18:25 10 13:30 16 18:30 9 13:35 16 18:35 17 13:40 18 18:40 16 13:45 14 18:45 18 13:45 14 18:45 18 13:55 15 18:55 16 14:00 16	12:20	14	17:20	16
12:35 18 17:35 15 12:40 14 17:40 12 12:45 15 17:45 12 12:50 14 17:50 11 12:55 16 17:55 10 13:00 15 18:00 8 13:05 14 18:05 11 13:10 12 18:10 8 13:15 14 18:15 9 13:20 13 18:20 10 13:25 11 18:25 10 13:30 16 18:30 9 13:35 16 18:35 17 13:40 18 18:40 16 13:45 14 18:45 18 13:45 14 18:50 18 13:55 15 18:55 16 14:00 16 19:00 8 14:05 13 19:05 10 14:10 10	12:25	14	17:25	15
12:40 14 17:40 12 12:45 15 17:45 12 12:50 14 17:50 11 12:55 16 17:55 10 13:00 15 18:00 8 13:05 14 18:05 11 13:10 12 18:10 8 13:15 14 18:15 9 13:20 13 18:20 10 13:25 11 18:25 10 13:30 16 18:30 9 13:35 16 18:35 17 13:40 18 18:40 16 13:45 14 18:55 16 13:45 14 18:55 16 14:45 18 18:45 18 13:50 14 18:55 16 14:00 16 19:00 8 14:05 13 19:05 10 14:10 10	12:30	17	17:30	19
12:45 15 17:45 12 12:50 14 17:50 11 12:55 16 17:55 10 13:00 15 18:00 8 13:05 14 18:05 11 13:10 12 18:10 8 13:15 14 18:15 9 13:20 13 18:20 10 13:25 11 18:25 10 13:30 16 18:30 9 13:35 16 18:35 17 13:40 18 18:40 16 13:45 14 18:45 18 13:45 14 18:55 16 13:45 14 18:55 16 14:45 18 18:55 16 14:00 16 19:00 8 14:05 13 19:05 10 14:10 10 19:10 7 14:15 11	12:35	18	17:35	15
12:50 14 17:50 11 12:55 16 17:55 10 13:00 15 18:00 8 13:05 14 18:05 11 13:10 12 18:10 8 13:15 14 18:15 9 13:20 13 18:20 10 13:25 11 18:25 10 13:30 16 18:30 9 13:35 16 18:35 17 13:40 18 18:40 16 13:45 14 18:50 18 13:45 14 18:50 18 13:45 14 18:50 18 13:55 15 18:50 18 13:55 15 18:50 18 14:00 16 19:00 8 14:05 13 19:05 10 14:15 11 19:15 8 14:20 8	12:40	14	17:40	
12:55 16 17:55 10 13:00 15 18:00 8 13:05 14 18:05 11 13:10 12 18:10 8 13:15 14 18:15 9 13:20 13 18:20 10 13:25 11 18:25 10 13:30 16 18:30 9 13:35 16 18:35 17 13:40 18 18:40 16 13:45 14 18:45 18 13:45 14 18:50 18 13:45 14 18:50 18 13:45 14 18:50 18 13:55 15 18:55 16 14:20 18 19:00 8 14:05 13 19:05 10 14:10 10 19:10 7 14:15 11 19:15 8 14:20 8	12:45	15	17:45	12
13:00 15 18:00 8 13:05 14 18:05 11 13:10 12 18:10 8 13:15 14 18:15 9 13:20 13 18:20 10 13:25 11 18:25 10 13:30 16 18:30 9 13:35 16 18:35 17 13:40 18 18:40 16 13:45 14 18:45 18 13:50 14 18:50 18 13:55 15 18:55 16 14:00 16 19:00 8 14:00 16 19:00 8 14:10 10 19:10 7 14:15 11 19:15 8 14:20 8 19:20 9 14:25 13 19:25 12 14:30 19 19:30 11 14:35 18	12:50	14	17:50	11
13:05 14 18:05 11 13:10 12 18:10 8 13:15 14 18:15 9 13:20 13 18:20 10 13:25 11 18:25 10 13:30 16 18:30 9 13:35 16 18:35 17 13:40 18 18:40 16 13:45 14 18:45 18 13:50 14 18:50 18 13:55 15 18:55 16 14:00 16 19:00 8 14:00 16 19:00 8 14:00 10 19:10 7 14:15 11 19:15 8 14:20 8 19:20 9 14:25 13 19:25 12 14:30 19 19:30 11 14:35 18 19:35 10 14:40 17	12:55	16	17:55	10
13:10 12 18:10 8 13:15 14 18:15 9 13:20 13 18:20 10 13:25 11 18:25 10 13:30 16 18:30 9 13:35 16 18:35 17 13:40 18 18:40 16 13:45 14 18:45 18 13:45 14 18:50 18 13:50 14 18:50 18 13:55 15 18:55 16 14:00 16 19:00 8 14:00 16 19:00 8 14:00 16 19:00 8 14:00 10 19:10 7 14:15 11 19:10 7 14:10 10 19:10 7 14:15 11 19:15 8 14:20 8 19:20 9 14:25 13 <	13:00	15	18:00	8
13:15 14 18:15 9 13:20 13 18:20 10 13:25 11 18:25 10 13:30 16 18:30 9 13:35 16 18:35 17 13:40 18 18:40 16 13:45 14 18:45 18 13:50 14 18:50 18 13:55 15 18:55 16 14:00 16 19:00 8 14:05 13 19:00 10 14:05 13 19:00 10 14:10 10 19:10 7 14:15 11 19:15 8 14:20 8 19:20 9 14:25 13 19:25 12 14:30 19 19:30 11 14:35 18 19:35 10 14:40 17 19:40 9 14:45 15	13:05	14	18:05	11
13:20 13 18:20 10 13:25 11 18:25 10 13:30 16 18:30 9 13:35 16 18:35 17 13:40 18 18:40 16 13:45 14 18:45 18 13:50 14 18:50 18 13:55 15 18:55 16 14:00 16 19:00 8 14:05 13 19:05 10 14:10 10 19:10 7 14:15 11 19:15 8 14:20 8 19:20 9 14:25 13 19:25 12 14:30 19 19:30 11 14:35 18 19:35 10 14:40 17 19:40 9 14:45 15 19:45 8 14:55 9 19:50 7 14:45 15	13:10	12	18:10	8
13:25 11 18:25 10 13:30 16 18:30 9 13:35 16 18:35 17 13:40 18 18:40 16 13:45 14 18:45 18 13:50 14 18:50 18 13:55 15 18:55 16 14:00 16 19:00 8 14:05 13 19:05 10 14:10 10 19:10 7 14:15 11 19:15 8 14:20 8 19:20 9 14:25 13 19:25 12 14:30 19 19:30 11 14:35 18 19:35 10 14:40 17 19:40 9 14:45 15 19:45 8 14:50 12 19:50 7 14:55 9 19:55 6 15:05 15	13:15	14	18:15	9
13:30 16 18:30 9 13:35 16 18:35 17 13:40 18 18:40 16 13:45 14 18:45 18 13:50 14 18:50 18 13:55 15 18:55 16 14:00 16 19:00 8 14:05 13 19:05 10 14:10 10 19:10 7 14:15 11 19:15 8 14:20 8 19:20 9 14:25 13 19:25 12 14:30 19 19:30 11 14:35 18 19:35 10 14:40 17 19:40 9 14:45 15 19:45 8 14:50 12 19:50 7 14:55 9 19:55 6 15:00 10 20:00 5 15:05 15 <	13:20	13	18:20	10
13:35 16 18:35 17 13:40 18 18:40 16 13:45 14 18:45 18 13:50 14 18:50 18 13:55 15 18:55 16 14:00 16 19:00 8 14:05 13 19:05 10 14:10 10 19:10 7 14:15 11 19:15 8 14:20 8 19:20 9 14:25 13 19:25 12 14:30 19 19:30 11 14:35 18 19:35 10 14:40 17 19:40 9 14:45 15 19:45 8 14:55 9 19:50 7 14:55 9 19:50 7 14:55 9 19:55 6 15:00 10 20:00 5 15:05 15 <td< th=""><th>13:25</th><th>11</th><th>18:25</th><th>10</th></td<>	13:25	11	18:25	10
13:40 18 18:40 16 13:45 14 18:45 18 13:50 14 18:50 18 13:55 15 18:55 16 14:00 16 19:00 8 14:05 13 19:05 10 14:10 10 19:10 7 14:15 11 19:15 8 14:20 8 19:20 9 14:25 13 19:25 12 14:30 19 19:30 11 14:35 18 19:35 10 14:40 17 19:40 9 14:45 15 19:45 8 14:50 12 19:50 7 14:55 9 19:55 6 15:00 10 20:00 5 15:05 15 20:05 11 15:10 15 20:10 15 15:15 11	13:30	16	18:30	9
13:45 14 18:45 18 13:50 14 18:50 18 13:55 15 18:55 16 14:00 16 19:00 8 14:05 13 19:05 10 14:10 10 19:10 7 14:15 11 19:15 8 14:20 8 19:20 9 14:25 13 19:25 12 14:30 19 19:30 11 14:35 18 19:35 10 14:40 17 19:40 9 14:45 15 19:45 8 14:50 12 19:50 7 14:55 9 19:55 6 15:00 10 20:00 5 15:00 10 20:00 5 15:15 11 20:15 10 15:25 7 20:25 16 15:30 4 <td< th=""><th>13:35</th><th>16</th><th>18:35</th><th>17</th></td<>	13:35	16	18:35	17
13:50 14 18:50 18 13:55 15 18:55 16 14:00 16 19:00 8 14:05 13 19:05 10 14:10 10 19:10 7 14:15 11 19:15 8 14:20 8 19:20 9 14:25 13 19:25 12 14:30 19 19:30 11 14:35 18 19:35 10 14:40 17 19:40 9 14:45 15 19:45 8 14:50 12 19:50 7 14:55 9 19:55 6 15:00 10 20:00 5 15:05 15 20:05 11 15:10 15 20:10 15 15:15 11 20:15 10 15:20 8 20:20 15 15:25 7 <t< th=""><th>13:40</th><th>18</th><th>18:40</th><th>16</th></t<>	13:40	18	18:40	16
13:55 15 18:55 16 14:00 16 19:00 8 14:05 13 19:05 10 14:10 10 19:10 7 14:15 11 19:15 8 14:20 8 19:20 9 14:25 13 19:25 12 14:30 19 19:30 11 14:35 18 19:35 10 14:40 17 19:40 9 14:45 15 19:45 8 14:50 12 19:50 7 14:55 9 19:55 6 15:00 10 20:00 5 15:05 15 20:05 11 15:10 15 20:10 15 15:15 11 20:15 10 15:20 8 20:20 15 15:25 7 20:25 16 15:30 4 <th< th=""><th>13:45</th><th>14</th><th>18:45</th><th>18</th></th<>	13:45	14	18:45	18
14:00 16 19:00 8 14:05 13 19:05 10 14:10 10 19:10 7 14:15 11 19:15 8 14:20 8 19:20 9 14:25 13 19:25 12 14:30 19 19:30 11 14:35 18 19:35 10 14:40 17 19:40 9 14:45 15 19:45 8 14:50 12 19:50 7 14:55 9 19:55 6 15:00 10 20:00 5 15:05 15 20:05 11 15:10 15 20:10 15 15:15 11 20:15 10 15:20 8 20:20 15 15:25 7 20:25 16 15:30 4 20:30 16 15:35 2	13:50	14	18:50	18
14:05 13 19:05 10 14:10 10 19:10 7 14:15 11 19:15 8 14:20 8 19:20 9 14:25 13 19:25 12 14:30 19 19:30 11 14:35 18 19:35 10 14:40 17 19:40 9 14:45 15 19:45 8 14:50 12 19:50 7 14:55 9 19:55 6 15:00 10 20:00 5 15:05 15 20:05 11 15:10 15 20:10 15 15:15 11 20:15 10 15:20 8 20:20 15 15:25 7 20:25 16 15:35 2 20:35 15 15:40 8 20:40 8 15:45 10	13:55	15	18:55	16
14:10 10 19:10 7 14:15 11 19:15 8 14:20 8 19:20 9 14:25 13 19:25 12 14:30 19 19:30 11 14:35 18 19:35 10 14:40 17 19:40 9 14:45 15 19:45 8 14:50 12 19:50 7 14:55 9 19:55 6 15:00 10 20:00 5 15:05 15 20:05 11 15:10 15 20:10 15 15:15 11 20:15 10 15:20 8 20:20 15 15:25 7 20:25 16 15:30 4 20:30 16 15:35 2 20:35 15 15:40 8 20:40 8 15:45 10 2	14:00	16	19:00	8
14:15 11 19:15 8 14:20 8 19:20 9 14:25 13 19:25 12 14:30 19 19:30 11 14:35 18 19:35 10 14:40 17 19:40 9 14:45 15 19:45 8 14:50 12 19:50 7 14:55 9 19:55 6 15:00 10 20:00 5 15:05 15 20:05 11 15:10 15 20:10 15 15:15 11 20:15 10 15:20 8 20:20 15 15:25 7 20:25 16 15:30 4 20:30 16 15:35 2 20:35 15 15:40 8 20:40 8 15:45 10 20:45 9	14:05	13	19:05	10
14:20 8 19:20 9 14:25 13 19:25 12 14:30 19 19:30 11 14:35 18 19:35 10 14:40 17 19:40 9 14:45 15 19:45 8 14:50 12 19:50 7 14:55 9 19:55 6 15:00 10 20:00 5 15:05 15 20:05 11 15:10 15 20:10 15 15:15 11 20:15 10 15:20 8 20:20 15 15:25 7 20:25 16 15:30 4 20:30 16 15:35 2 20:35 15 15:40 8 20:40 8 15:45 10 20:45 9	14:10	10	19:10	7
14:25 13 19:25 12 14:30 19 19:30 11 14:35 18 19:35 10 14:40 17 19:40 9 14:45 15 19:45 8 14:50 12 19:50 7 14:55 9 19:55 6 15:00 10 20:00 5 15:05 15 20:05 11 15:10 15 20:10 15 15:15 11 20:15 10 15:20 8 20:20 15 15:25 7 20:25 16 15:30 4 20:30 16 15:35 2 20:35 15 15:40 8 20:40 8 15:45 10 20:45 9	14:15	11	19:15	8
14:30 19 19:30 11 14:35 18 19:35 10 14:40 17 19:40 9 14:45 15 19:45 8 14:50 12 19:50 7 14:55 9 19:55 6 15:00 10 20:00 5 15:05 15 20:05 11 15:10 15 20:10 15 15:15 11 20:15 10 15:20 8 20:20 15 15:25 7 20:25 16 15:30 4 20:30 16 15:35 2 20:35 15 15:40 8 20:40 8 15:45 10 20:45 9	14:20	8	19:20	9
14:35 18 19:35 10 14:40 17 19:40 9 14:45 15 19:45 8 14:50 12 19:50 7 14:55 9 19:55 6 15:00 10 20:00 5 15:05 15 20:05 11 15:10 15 20:10 15 15:15 11 20:15 10 15:20 8 20:20 15 15:25 7 20:25 16 15:30 4 20:30 16 15:35 2 20:35 15 15:40 8 20:40 8 15:45 10 20:45 9	14:25	13	19:25	12
14:40 17 19:40 9 14:45 15 19:45 8 14:50 12 19:50 7 14:55 9 19:55 6 15:00 10 20:00 5 15:05 15 20:05 11 15:10 15 20:10 15 15:15 11 20:15 10 15:20 8 20:20 15 15:25 7 20:25 16 15:30 4 20:30 16 15:35 2 20:35 15 15:40 8 20:40 8 15:45 10 20:45 9	14:30	19	19:30	11
14:45 15 19:45 8 14:50 12 19:50 7 14:55 9 19:55 6 15:00 10 20:00 5 15:05 15 20:05 11 15:10 15 20:10 15 15:15 11 20:15 10 15:20 8 20:20 15 15:25 7 20:25 16 15:30 4 20:30 16 15:35 2 20:35 15 15:40 8 20:40 8 15:45 10 20:45 9	14:35	18	19:35	10
14:50 12 19:50 7 14:55 9 19:55 6 15:00 10 20:00 5 15:05 15 20:05 11 15:10 15 20:10 15 15:15 11 20:15 10 15:20 8 20:20 15 15:25 7 20:25 16 15:30 4 20:30 16 15:35 2 20:35 15 15:40 8 20:40 8 15:45 10 20:45 9	14:40	17	19:40	9
14:55 9 19:55 6 15:00 10 20:00 5 15:05 15 20:05 11 15:10 15 20:10 15 15:15 11 20:15 10 15:20 8 20:20 15 15:25 7 20:25 16 15:30 4 20:30 16 15:35 2 20:35 15 15:40 8 20:40 8 15:45 10 20:45 9	14:45	15	19:45	8
15:00 10 20:00 5 15:05 15 20:05 11 15:10 15 20:10 15 15:15 11 20:15 10 15:20 8 20:20 15 15:25 7 20:25 16 15:30 4 20:30 16 15:35 2 20:35 15 15:40 8 20:40 8 15:45 10 20:45 9	14:50	12	19:50	7
15:05 15 20:05 11 15:10 15 20:10 15 15:15 11 20:15 10 15:20 8 20:20 15 15:25 7 20:25 16 15:30 4 20:30 16 15:35 2 20:35 15 15:40 8 20:40 8 15:45 10 20:45 9	14:55	9	19:55	6
15:10 15 20:10 15 15:15 11 20:15 10 15:20 8 20:20 15 15:25 7 20:25 16 15:30 4 20:30 16 15:35 2 20:35 15 15:40 8 20:40 8 15:45 10 20:45 9	15:00	10	20:00	5
15:15 11 20:15 10 15:20 8 20:20 15 15:25 7 20:25 16 15:30 4 20:30 16 15:35 2 20:35 15 15:40 8 20:40 8 15:45 10 20:45 9	15:05	15	20:05	11
15:15 11 20:15 10 15:20 8 20:20 15 15:25 7 20:25 16 15:30 4 20:30 16 15:35 2 20:35 15 15:40 8 20:40 8 15:45 10 20:45 9	15:10	15	20:10	15
15:20 8 20:20 15 15:25 7 20:25 16 15:30 4 20:30 16 15:35 2 20:35 15 15:40 8 20:40 8 15:45 10 20:45 9				
15:25 7 20:25 16 15:30 4 20:30 16 15:35 2 20:35 15 15:40 8 20:40 8 15:45 10 20:45 9	15:20	8		15
15:30 4 20:30 16 15:35 2 20:35 15 15:40 8 20:40 8 15:45 10 20:45 9				
15:35 2 20:35 15 15:40 8 20:40 8 15:45 10 20:45 9				
15:40 8 20:40 8 15:45 10 20:45 9				
15:45 10 20:45 9				
20:30 0 20:30 15	15:50	8	20:50	15
15:55 8 20:55 12				

Time	Queue	
21:00	12	
21:05	5	
21:10	5	
21:15	7	
21:20	20	
21:25	20	
21:30	16	
21:35	17	
21:40	14	
21:45	11	
21:50	10	
21:55	12	
22:00	14	
22:05	14	
22:10	13	
22:15	14	
22:20	15	
22:25	16	
22:30	12	
22:35	9	
22:40	7	
22:45	7	
22:50	8	
22:55	11	

Long Beach (6391 E Pacific Coast Highway, Long Beach, CA 90803)

DOCOD 12:00 31 25 12:15 30 15 15 15 15 15 15 15 1	AM Period IN OUT	MAXIMUM QUEUE PM Period	IN	OUT	MAXIMUM QUEU
00:00	00:00	12:00	31	25	15
00.45	00:15	12:15	30	15	15
01:00 01:15 01:30 01:30 13:16 13:15 32 27 01:46 13:45 13:45 13:45 13:45 13:45 13:45 13:45 13:45 13:45 13:45 13:45 13:45 13:45 13:45 14:45 14:45 14:45 15:45 15:45 16:45	00:30	12:30	52	50	13
01-15 01-15 01-30 01-30 01-30 01-35 01-45 11-40 02-10 02-10 02-115 14-10 02-20 02-15 14-30 02-20 03-16 03-30 03-15 03-30 03-15 03-30 03-15 03-30 03-45 15-30 03-45 15-30 03-45 15-30 03-45 15-30 03-45 15-30 03-45 15-30 03-45 15-30 03-45 15-30 03-45 15-30 03-45 15-30 03-45 15-30 03-45 15-30 03-45 15-30 03-45 15-30 03-45 15-30 03-45 15-30 15-30 03-45 15-30 15-30 03-45 15-30	00:45	12:45	25 138	29 119	8
01-15 01-15 01-30 01-30 01-30 01-35 01-45 11-40 02-10 02-10 02-115 14-10 02-20 02-15 14-30 02-20 03-16 03-30 03-15 03-30 03-15 03-30 03-15 03-30 03-45 15-30 03-45 15-30 03-45 15-30 03-45 15-30 03-45 15-30 03-45 15-30 03-45 15-30 03-45 15-30 03-45 15-30 03-45 15-30 03-45 15-30 03-45 15-30 03-45 15-30 03-45 15-30 03-45 15-30 03-45 15-30 15-30 03-45 15-30 15-30 03-45 15-30	01:00	13:00	29	29	12
0145 13-45 X 79	01:15			27	13
0145	01:30	13:30	18	23	8
02:15 02:30 14:30 02:45 14:48 03:00 03:15 03:30 03:45 15:30 03:45 04:00 16:00 16:00 16:01 17:00 16:30 17:00 19:04 14:05 16:30 17:00 19:04 14:05 16:30 17:05 17:15 18:00 17:05 18:00 07:00 07:00 07:00 07:00 07:00 07:15 09:15 09:45 09:00 08:00 08:00 09:15 09:00 09:00	01:45	13:45	X 79		7
02:15 02:30 14:30 02:45 14:48 03:00 03:15 03:30 03:45 15:30 03:45 04:00 16:00 16:00 16:01 17:00 16:30 17:00 19:04 14:05 16:30 17:00 19:04 14:05 16:30 17:05 17:15 18:00 17:05 18:00 07:00 07:00 07:00 07:00 07:00 07:15 09:15 09:45 09:00 08:00 08:00 09:15 09:00 09:00	02:00	14:00			8
02:20 02:25 03:00 03:15 03:00 03:15 03:30 03:35 03:30 03:45 04:40 04:00 04:15 16:15 16:15 12 17 04:30 16:30 14 14 04:45 16:30 17:00 19 14 05:15 17:15 20 19 05:30 17:70 19 14 06:30 17:70 19 18:00 17:70 19 19 10 06:30 18:00 17:70 19 19 06:30 18:00 17:70 19 19 06:30 18:00 17:70 19 19 06:30 18:00 17:70 19 19 06:30 18:00 17:70 19 19 06:30 18:00 17 06:30 18:00 17 06:30 18:00 17 06:30 18:00 17 06:30 18:00 17 06:30 18:00 17 06:30 18:00 17 06:30 18:00 17 06:30 18:00 17 06:30 18:00 17 06:30 18:00 17 06:30 18:00 17 18:00 17 18:00 17 18:00 17 18:00 17 18:00 17 18:00 17 18:00 17 18:00 17 18:00 17 18:00 17 18:00 17 18:00 17 18:00					7
03:00 03:15 03:15 03:30 03:45 15:45 04:00 04:00 16:00 16:00 16:15 16:15 12:17 04:30 04:45 16:45 16:30 14 14 14 04:45 16:45 16:58 10 60 05:15 17:15 20 19 05:30 17:30 18:30 17:45 11 06:45 18:30 18:30 18:30 18:45					8
03:15 03:30 03:45 15:46 04:00 16:00 16:00 16:30 14:15 04:30 16:30 14:41 14 04:45 16:45 16:45 16:45 16:45 16:45 16:45 16:45 16:45 16:45 17:16 18:15 18:	02:45	14:45			6
03:15 03:30 03:45 15:46 04:00 16:00 16:00 16:30 14:15 04:30 16:30 14:41 14 04:45 16:45 16:45 16:45 16:45 16:45 16:45 16:45 16:45 16:45 17:16 18:15 18:	03:00	15:00			6
03:30 15:35 04:00 16:00 16 19 04:15 16:15 12 17 04:30 16:30 14 14 04:45 16:45 16 58 10 60 05:00 17:00 19 14 05:15 17:15 20 19 05:30 17:30 19 19 05:45 17:45 11 69 21 73 06:00 18:00 17 20 06:15 18:15 X X 06:30 18:30 X X 06:45 18:45 X 17 X 20 07:00 19:00 07:15 19:15 07:30 19:30 0 07:45 19:45 0 08:05 20:00 0 08:15 20:15 0 08:30 20:30 0 09:15 21:15 0 09:00 21:00 0 09:15 21:15 0 09:45 21:45 1 10:00 22:00 10:15 5 22:15 10:30 8					5
03:45 15:45 04:00 16:00 16 19 04:15 16:15 12 17 04:30 16:30 14 14 04:45 16:45 16:58 10 60 05:00 17:00 19 14 14 44					4
04:15 16:15 12 17 04:30 16:30 14 14 04:45 16:45 16 58 10 60 05:00 17:00 19 14 05:15 17:15 20 19 05:30 17:30 19 19 05:45 17:45 11 69 21 73 06:00 18:00 17 20 06:15 18:15 X X 06:30 18:30 X X 06:45 18:45 X 17 X 07:00 19:00 07:15 19:15 07:30 19:30 0 0 07:45 19:45 0 0 08:00 20:00 0 0 08:15 20:15 0 0 08:30 20:30 0 0 09:00 21:00 0 0 09:15 21:15 0 0 09:30 21:30 0 0 0					5
04:15 16:15 12 17 04:30 16:30 14 14 04:45 16:48 16 58 10 60 05:00 17:00 19 14 05:15 17:15 20 19 05:30 17:30 19 19 05:45 17:45 11 69 21 73 06:00 18:00 17 20 06:15 18:15 X X 06:30 18:30 X X 06:45 18:45 X 17 X 07:00 19:00 07:15 19:15 07:30 0 07:45 </td <td>04:00</td> <td>16:00</td> <td>16</td> <td>19</td> <td>6</td>	04:00	16:00	16	19	6
04:30 16:30 14 14 04:45 16:45 16 58 10 60 05:00 17:00 19 14 19 19 19 19 19 19 19 19 19 19 19 15 17 18 11 69 21 73 73 18 <					5
04:45 16:45 16 58 10 60 05:00 17:00 19 14 05:15 17:15 20 19 05:30 17:30 19 19 05:45 17:45 11 69 21 73 06:00 18:00 17 20 06:15 18:15 X X 06:30 18:30 X X 06:45 18:45 X 17 X 20 07:00 19:00 <t< td=""><td></td><td></td><td></td><td></td><td>3</td></t<>					3
05:00 17:00 19 14 05:15 17:15 20 19 05:30 17:30 19 19 05:45 17:45 11 69 21 73 06:00 18:00 17 20 06:15 18:15 X X 06:30 18:30 X X 06:45 18:45 X 17 X 20 07:00 19:00 0 0 0 0 0 0 0 0 0 0 0 19:15 0 <td></td> <td></td> <td></td> <td></td> <td>6</td>					6
05:15 17:15 20 19 05:30 17:30 19 19 05:45 17:45 11 69 21 73 06:00 18:00 17 20 06:15 18:15 X X 06:30 18:30 X X 06:45 18:45 X 17 X 20 07:00 19:00 07:15 19:15 0 07:30 19:30 0 07:45 19:45 0 08:00 20:00 0 08:15 20:15 0 08:30 20:30 0 09:45 21:15 0 09:30 21:30 0 09:45 21:45 0 10:00 22:00 0 10:15 5 22:15 10:30 8 22:30 10:45 7 22:45					5
05:30 17:30 19 19 05:45 17:45 11 69 21 73 06:00 18:00 17 20 06:15 18:15 X X 06:30 18:30 X X 06:45 18:45 X 17 X 20 07:00 19:00 0 0 0 0 0 07:15 19:15 0 <td></td> <td></td> <td></td> <td></td> <td>7</td>					7
05:45 17:45 11 69 21 73 06:00 18:00 17 20 06:15 18:15 X X 06:30 18:30 X X 06:45 18:45 X 17 X 20 07:00 19:00 0					7
06:15 18:15 X X 06:30 18:30 X X 06:45 18:45 X 17 X 20 07:00 19:00 19:00 19:15 19:15 19:45					5
06:15 18:15 X X 06:30 18:30 X X 06:45 18:45 X 17 X 20 07:00 19:00 19:00 19:15 19:15 19:45	06:00	18:00	17	20	12
06:45 18:45 X 17 X 20 07:00 19:00 07:15 19:15 19:30 07:30 19:30 19:45 08:00 20:00 20:00 08:15 20:15 20:30 08:30 20:30 20:45 09:00 21:00 09:15 09:30 21:30 09:45 10:00 22:00 10:15 5 22:15 10:30 8 22:30 10:45 7 22:45					7
07:00 19:00 07:15 19:15 07:30 19:30 07:45 19:45 08:00 20:00 08:15 20:15 08:30 20:30 08:45 20:45 09:00 21:00 09:15 21:15 09:30 21:30 09:45 21:45 10:00 22:00 10:15 5 22:15 10:30 8 22:30 10:45 7 22:45	06:30	18:30	Χ	X	10
07:15 19:15 07:30 19:30 07:45 19:45 08:00 20:00 08:15 20:15 08:30 20:30 08:45 20:45 09:00 21:00 09:15 21:15 09:30 21:30 09:45 21:45 10:00 22:00 10:15 5 22:15 10:30 8 22:30 10:45 7 22:45	06:45	18:45	X 17	X 20	12
07:15 19:15 07:30 19:30 07:45 19:45 08:00 20:00 08:15 20:15 08:30 20:30 08:45 20:45 09:00 21:00 09:15 21:15 09:30 21:30 09:45 21:45 10:00 22:00 10:15 5 22:15 10:30 8 22:30 10:45 7 22:45	07:00	19:00			10
07:45 19:45 08:00 20:00 08:15 20:15 08:30 20:30 08:45 20:45 09:00 21:00 09:15 21:15 09:30 21:30 09:45 21:45 10:00 22:00 10:15 5 22:15 10:30 8 22:30 10:45 7 22:45					11
08:00 20:00 08:15 20:15 08:30 20:30 08:45 20:45 09:00 21:00 09:15 21:15 09:30 21:30 09:45 21:45 10:00 22:00 10:15 5 22:15 10:30 8 22:30 10:45 7 22:45	07:30	19:30			7
08:15 20:15 08:30 20:30 08:45 20:45 09:00 21:00 09:15 21:15 09:30 21:30 09:45 21:45 10:00 22:00 10:15 5 22:15 10:30 8 22:30 10:45 7 22:45	07:45	19:45			6
08:15 20:15 08:30 20:30 08:45 20:45 09:00 21:00 09:15 21:15 09:30 21:30 09:45 21:45 10:00 22:00 10:15 5 22:15 10:30 8 22:30 10:45 7 22:45	08:00	20:00			8
08:45 20:45 09:00 21:00 09:15 21:15 09:30 21:30 09:45 21:45 10:00 22:00 10:15 5 22:15 10:30 8 22:30 10:45 7 22:45					6
09:00 21:00 09:15 21:15 09:30 21:30 09:45 21:45 10:00 22:00 10:15 5 22:15 10:30 8 22:30 10:45 7 22:45	08:30	20:30			9
09:15 21:15 09:30 21:30 09:45 21:45 10:00 22:00 10:15 5 22:15 10:30 8 22:30 10:45 7 22:45	08:45	20:45			10
09:15 21:15 09:30 21:30 09:45 21:45 10:00 22:00 10:15 5 22:15 10:30 8 22:30 10:45 7 22:45	09:00	21:00			12
09:30 21:30 09:45 21:45 10:00 22:00 10:15 5 22:15 10:30 8 22:30 10:45 7 22:45					16
10:00 22:00 10:15 5 22:15 10:30 8 22:30 10:45 7 22:45	09:30	21:30			14
10:15 5 22:15 10:30 8 22:30 10:45 7 22:45	09:45				15
10:15 5 22:15 10:30 8 22:30 10:45 7 22:45	10:00	22:00			14
10:30 8 22:30 10:45 7 22:45					13
10:45 7 22:45					12
11:00 3 23:00					12
	11:00	3 23:00			11
11:15 6 23:15					13
11:30 19 25 7 23:30					9
<u>11:45 </u>					8
Total Vol. 40 52 361 351			361	351	

Daily Total

IN 401

OUT 361

PACIFIC TRAFFIC & TRANSIT DATA SERVICES

Saturday, May 19,2012 CITY: Long Beach PROJECT: In N Out Burger

AM Period IN OUT	MAXIMUM QUEUE	PM Period	IN		OUT		MAXIMUM QUEUE
00:00		12:00	17		17		16
00:15		12:15	34		20		14
00:30		12:30	22		30		16
00:45		12:45	32	105	37	104	10
01:00		13:00	33		27		15
01:15		13:15	29		23		16
01:30		13:30	29		33		10
01:45		13:45	Χ	91	Χ	83	9
02:00		14:00					12
02:15		14:15					13
02:30		14:30					9
02:45		14:45					8
03:00		15:00					9
03:15		15:15					9
03:30		15:30					6
03:45		15:45					9
04:00		16:00	21		25		8
04:15		16:15	22		16		10
04:30		16:30	21		25		8
04:45		16:45	24	88	24	90	5
05:00		17:00	19		19		9
05:15		17:15	19		21		10
05:30		17:30	28		25		10
05:45		17:45	18	84	19	84	9
06:00		18:00	23		18		13
06:15		18:15					9
06:30		18:30					10
06:45		18:45	Χ	23	Χ	18	14
07:00		19:00					12
07:15		19:15					13
07:30		19:30					9
07:45		19:45					9
08:00		20:00					10
08:15		20:15					9
08:30		20:30					11
08:45		20:45					12
09:00		21:00					13
09:15		21:15					17
09:30		21:30					15
09:45		21:45					10
10:00		22:00					12
10:15	4	22:15					14
10:30	7	22:30					13
10:45	9	22:45					11
11:00	7	23:00					9
11:15	8	23:00					10
11:30 25 16	9	23:30					8
	16	23:45					6
27 02 10 04	10	20.70					Ü

Daily Total	
IN	443
OUT	391

PACIFIC TRAFFIC & TRANSIT DATA SERVICES

Los Angeles (9149 S Sepulveda Blvd, Los Angeles, CA 90045) Wednesday, May 16th, 2012

CITY: Los Angeles

PROJECT:

In-N-Out Burger

AM Period IN		OUT		MAXIMUM QUEUE PM Period IN OUT	MAXIMUM QUEUE
00:00				12:00 39 35	20
00:15				12:15 48 36	18
00:30				12:30 52 37	21
00:45				12:45 57 196 41 149	19
01:00				13:00 39 45	22
01:15				13:15 36 46	21
01:30				13:30 35 41	20
01:45				13:45 X 110 X 132	20
02:00				14:00	21
02:15				14:15	21
02:30				14:30	22
02:45				14:45	21
03:00				15:00	18
03:15				15:15	17
03:30				15:30	16
03:45				15:45	18
04:00				16:00 31 24	17
04:00				16:15 18 18	17
04:13				16:30 27 28	12
04:30				16:45 33 109 22 92	10
05:00				17:00 34 30	9
05:15				17:15 25 33	14
05:30 05:45				17:30 36 23 17:45 32 127 25 111	17 19
06:00				18:00 30 36	20
06:15				18:15	19
06:30				18:30	20
06:45				18:45	18
07:00				19:00	17
07:15				19:15	18
07:30				19:30	19
07:45				19:45	20
08:00				20:00	21
08:15				20:15	19
08:30				20:30	19
08:45				20:45	20
09:00				21:00	18
09:15				21:15	19
09:30				21:30	20
09:45				21:45	19
10:00				0 22:00	21
10:15				2 22:15	17
10:30				5 22:30	16
10:45				6 22:45	14
11:00				6 23:00	16
11:15				12 23:15	17
11:30 28		32		16 23:30	15
11:45 31	59	29	61	120 19 23:45	13
Total Vol.	59		61	542 484	

Daily Totals
IN OUT
601 545

PACIFIC TRAFFIC & TRANSIT DATA SERVICES

05/19/12	CITY: Los Angele	s				PROJECT:	In-N-Out Burger
AM Period IN OUT	MAXIMUM QUEUE	PM Period	IN		OUT		MAXIMUM QUE
00:00		12:00	49		38		20
00:15		12:15	49		41		16
00:30		12:30	51		43		20
00:45		12:45	66	215	57	179	20
01:00		13:00	53		49		23
01:15		13:15	54		51		22
01:30		13:30	49		54		20
01:45		13:45	Χ	156	Χ	154	20
02:00		14:00					21
02:15		14:15					26
02:30		14:30					22
02:45		14:45					21
03:00		15:00					18
03:15		15:15					17
03:30		15:30					17
03:45		15:45					9
04:00		16:00	28		24		10
04:15		16:15	37		20		14
04:30		16:30	38		25		18
04:45		16:45	25	128	34	103	
05:00		17:00	15		26		8
05:15		17:15	28		30		9
05:30		17:30	43		24		20
05:45		17:45	33	119	33	113	19
06:00		18:00	35		38		20
06:15		18:15	Χ		Χ		19
06:30		18:30	Χ		Χ		20
06:45		18:45	Χ	35	Χ	38	18
07:00		19:00					19
07:15		19:15					20
07:30		19:30					21
07:45		19:45					22
08:00		20:00					21
08:15		20:15					22
08:30		20:30					18
08:45		20:45					17
09:00		21:00					16
09:15		21:15					19
09:30		21:30					18
09:45		21:45					20
10:00		22:00					19
10:15	3	22:15					18
10:30	4	22:30					19
10:45	6	22:45					18
11:00	8	23:00					21
11:15	11	23:15					17
11:30 31 46	12	23:30					16
11:45 42 73 35 81	18	23:45					14

Daily IN	Totals OUT	
726	668	

Thousand Palms (72265 Varner Rd, Thousand Palms, CA 92276)

MAX Queue Study In-N-Out, Rancho Mirage

Location:72265 Varner RoadDay:ThursdayCity:Thousand PalmsDate:6/27/2019

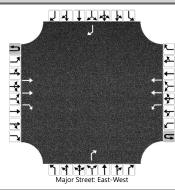
Time	Queue	Time	Queue
11:00	12	16:00	7
11:05	14	16:05	6
11:10	15	16:10	4
11:15	15	16:15	9
11:20	16	16:20	8
11:25	14	16:25	10
11:30	18	16:30	9
11:35	17	16:35	7
11:40	17	16:40	5
11:45	13	16:45	10
11:50	12	16:50	11
11:55	14	16:55	10
12:00	17	17:00	10
12:05	15	17:05	9
12:10	14	17:10	10
12:15	13	17:15	14
12:20	16	17:20	11
12:25	15	17:25	12
12:30	14	17:30	11
12:35	14	17:35	13
12:40	16	17:40	12
12:45	18	17:45	9
12:50	20	17:50	6
12:55	15	17:55	7
13:00		18:00	11
	10		
13:05	9	18:05	12
13:10	9	18:10	11
13:15	12	18:15	12
13:20	9	18:20	16
13:25	8	18:25	12
13:30	11	18:30	17
13:35	12	18:35	18
13:40	13	18:40	16
13:45	10	18:45	15
13:50	7	18:50	18
13:55	10	18:55	15
14:00	14	19:00	16
14:05	13	19:05	18
14:10	19	19:10	19
14:15	21	19:15	20
14:20	18	19:20	17
14:25	17	19:25	
14:25	17	19:25	17
			17
14:35	14	19:35	14
14:40	6	19:40	15
14:45	7	19:45	16
14:50	9	19:50	16
14:55	12	19:55	12
15:00	12	20:00	10
15:05	13	20:05	6
15:10	7	20:10	6
15:15	8	20:15	12
15:20	10	20:20	13
15:25	9	20:25	17
15:30	11	20:30	15
15:35	13	20:35	13
15:40	14	20:40	15
15:45	13	20:45	11
15:50	11	20:50	8
15:55	9	20:55	9

Time	Queue	
21:00	10	
21:05	12	
21:10	14	
21:15 21:20	12 15	
21:25	18	
21:30	18	
21:35	17	
21:40	16	
21:45	16	
21:50	19	
21:55	18	
22:00	19	
22:05	18	
22:10	19	
22:15	17	
22:20 22:25	20 17	
22:25	19	
22:35	18	
22:40	19	
22:45	17	
22:50	14	
22:55	10	

	1
	l
	I
	<u> </u>
	ļ
	l
	l
	l
	l
	1
	
	l
	
	L
	ļ
	I
	l
	l
	İ
	1
	
	l
	l
	
	l
	
	L
	ļ
	l
	
	I
	l
	1
	
	l
	l
	l
	İ

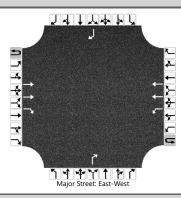
MAX Queue Study In-N-Out, Rancho Mirage

Location:72265 Varner RoadDay:SaturdayCity:Thousand PalmsDate:6/22/2019

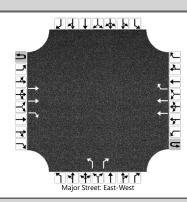

11:00 6 16:00 12 11:05 6 16:05 7 11:10 8 16:10 7 11:15 7 16:15 6 11:20 8 16:20 7 11:25 7 16:25 11 11:30 10 16:30 12 11:35 9 16:35 9 11:40 12 16:40 12 11:45 12 16:45 11 11:50 11 16:50 10 11:55 14 16:55 11 12:00 9 17:00 12 12:05 9 17:05 12 12:10 11 17:10 11 12:25 9 17:15 11 12:20 11 17:20 8 12:25 12 17:30 2 12:35 12 17:35 3 12:40 18 17:	
11:10 8 16:10 7 11:15 7 16:15 6 11:20 8 16:20 7 11:25 7 16:25 11 11:30 10 16:30 12 11:35 9 16:35 9 11:40 12 16:40 12 11:45 12 16:45 11 11:50 11 16:50 10 11:55 14 16:55 11 12:00 9 17:00 12 12:05 9 17:05 12 12:10 11 17:10 11 12:15 9 17:15 11 12:20 11 17:20 8 12:25 12 17:25 5 12:30 12 17:33 2 12:35 12 17:35 3 12:40 18 17:40 6 12:45 14 17	
11:15 7 16:15 6 11:20 8 16:20 7 11:25 7 16:25 11 11:30 10 16:30 12 11:35 9 16:35 9 11:40 12 16:40 12 11:45 12 16:45 11 11:50 11 16:50 10 11:55 14 16:55 11 12:00 9 17:00 12 12:05 9 17:05 12 12:10 11 17:10 11 12:15 9 17:15 11 12:20 11 17:20 8 12:25 12 17:25 5 12:30 12 17:30 2 12:35 12 17:35 3 12:40 18 17:40 6 12:45 14 17:45 10 12:50 15	
11:20 8 16:20 7 11:25 7 16:25 11 11:30 10 16:30 12 11:35 9 16:35 9 11:40 12 16:40 12 11:45 12 16:45 11 11:50 11 16:50 10 11:55 14 16:55 11 12:00 9 17:00 12 12:05 9 17:05 12 12:10 11 17:10 11 12:15 9 17:15 11 12:20 11 17:20 8 12:25 12 17:25 5 12:30 12 17:30 2 12:35 12 17:35 3 12:40 18 17:40 6 12:45 14 17:45 10 12:50 15 17:50 16 12:55 16 <t< th=""><th></th></t<>	
11:25 7 16:25 11 11:30 10 16:30 12 11:35 9 16:35 9 11:40 12 16:40 12 11:45 12 16:45 11 11:50 11 16:50 10 11:55 14 16:55 11 12:00 9 17:00 12 12:05 9 17:05 12 12:10 11 17:10 11 12:15 9 17:15 11 12:20 11 17:20 8 12:25 12 17:25 5 12:30 12 17:30 2 12:35 12 17:35 3 12:40 18 17:40 6 12:45 14 17:45 10 12:50 15 17:50 16 12:55 16 17:55 16 13:00 15	
11:30 10 16:30 12 11:35 9 16:35 9 11:40 12 16:40 12 11:45 12 16:45 11 11:50 11 16:50 10 11:55 14 16:55 11 12:00 9 17:00 12 12:05 9 17:05 12 12:10 11 17:10 11 12:15 9 17:15 11 12:20 11 17:20 8 12:25 12 17:25 5 12:30 12 17:30 2 12:35 12 17:35 3 12:40 18 17:40 6 12:45 14 17:45 10 12:50 15 17:50 16 12:55 16 17:55 16 13:00 15 18:00 19 13:05 13	
11:35 9 16:35 9 11:40 12 16:40 12 11:45 12 16:45 11 11:50 11 16:50 10 11:55 14 16:55 11 12:00 9 17:00 12 12:05 9 17:05 12 12:10 11 17:10 11 12:15 9 17:15 11 12:20 11 17:20 8 12:25 12 17:25 5 12:30 12 17:30 2 12:35 12 17:35 3 12:40 18 17:40 6 12:45 14 17:45 10 12:50 15 17:50 16 12:55 16 17:55 16 13:00 15 18:00 19 13:05 13 18:05 16	
11:40 12 16:40 12 11:45 12 16:45 11 11:50 11 16:50 10 11:55 14 16:55 11 12:00 9 17:00 12 12:05 9 17:05 12 12:10 11 17:10 11 12:15 9 17:15 11 12:20 11 17:20 8 12:25 12 17:25 5 12:30 12 17:30 2 12:35 12 17:35 3 12:40 18 17:40 6 12:45 14 17:45 10 12:50 15 17:50 16 12:55 16 17:55 16 13:00 15 18:00 19 13:05 13 18:05 16	
11:45 12 16:45 11 11:50 11 16:50 10 11:55 14 16:55 11 12:00 9 17:00 12 12:05 9 17:05 12 12:10 11 17:10 11 12:15 9 17:15 11 12:20 11 17:20 8 12:25 12 17:25 5 12:30 12 17:30 2 12:35 12 17:35 3 12:40 18 17:40 6 12:45 14 17:45 10 12:50 15 17:50 16 12:55 16 17:55 16 13:00 15 18:00 19 13:05 13 18:05 16	
11:50 11 16:50 10 11:55 14 16:55 11 12:00 9 17:00 12 12:05 9 17:05 12 12:10 11 17:10 11 12:15 9 17:15 11 12:20 11 17:20 8 12:25 12 17:25 5 12:30 12 17:30 2 12:35 12 17:35 3 12:40 18 17:40 6 12:45 14 17:45 10 12:50 15 17:50 16 12:55 16 17:55 16 13:00 15 18:00 19 13:05 13 18:05 16	
11:55 14 16:55 11 12:00 9 17:00 12 12:05 9 17:05 12 12:10 11 17:10 11 12:15 9 17:15 11 12:20 11 17:20 8 12:25 12 17:25 5 12:30 12 17:30 2 12:35 12 17:35 3 12:40 18 17:40 6 12:45 14 17:45 10 12:50 15 17:50 16 12:55 16 17:55 16 13:00 15 18:00 19 13:05 13 18:05 16	
12:00 9 17:00 12 12:05 9 17:05 12 12:10 11 17:10 11 12:15 9 17:15 11 12:20 11 17:20 8 12:25 12 17:25 5 12:30 12 17:30 2 12:35 12 17:35 3 12:40 18 17:40 6 12:45 14 17:45 10 12:50 15 17:50 16 12:55 16 17:55 16 13:00 15 18:00 19 13:05 13 18:05 16	
12:05 9 17:05 12 12:10 11 17:10 11 12:15 9 17:15 11 12:20 11 17:20 8 12:25 12 17:25 5 12:30 12 17:30 2 12:35 12 17:35 3 12:40 18 17:40 6 12:45 14 17:45 10 12:50 15 17:50 16 12:55 16 17:55 16 13:00 15 18:00 19 13:05 13 18:05 16	
12:10 11 17:10 11 12:15 9 17:15 11 12:20 11 17:20 8 12:25 12 17:25 5 12:30 12 17:30 2 12:35 12 17:35 3 12:40 18 17:40 6 12:45 14 17:45 10 12:50 15 17:50 16 12:55 16 17:55 16 13:00 15 18:00 19 13:05 13 18:05 16	
12:15 9 17:15 11 12:20 11 17:20 8 12:25 12 17:25 5 12:30 12 17:30 2 12:35 12 17:35 3 12:40 18 17:40 6 12:45 14 17:45 10 12:50 15 17:50 16 12:55 16 17:55 16 13:00 15 18:00 19 13:05 13 18:05 16	
12:20 11 17:20 8 12:25 12 17:25 5 12:30 12 17:30 2 12:35 12 17:35 3 12:40 18 17:40 6 12:45 14 17:45 10 12:50 15 17:50 16 12:55 16 17:55 16 13:00 15 18:00 19 13:05 13 18:05 16	
12:25 12 17:25 5 12:30 12 17:30 2 12:35 12 17:35 3 12:40 18 17:40 6 12:45 14 17:45 10 12:50 15 17:50 16 12:55 16 17:55 16 13:00 15 18:00 19 13:05 13 18:05 16	
12:30 12 17:30 2 12:35 12 17:35 3 12:40 18 17:40 6 12:45 14 17:45 10 12:50 15 17:50 16 12:55 16 17:55 16 13:00 15 18:00 19 13:05 13 18:05 16	
12:35 12 17:35 3 12:40 18 17:40 6 12:45 14 17:45 10 12:50 15 17:50 16 12:55 16 17:55 16 13:00 15 18:00 19 13:05 13 18:05 16	
12:40 18 17:40 6 12:45 14 17:45 10 12:50 15 17:50 16 12:55 16 17:55 16 13:00 15 18:00 19 13:05 13 18:05 16	
12:45 14 17:45 10 12:50 15 17:50 16 12:55 16 17:55 16 13:00 15 18:00 19 13:05 13 18:05 16	
12:50 15 17:50 16 12:55 16 17:55 16 13:00 15 18:00 19 13:05 13 18:05 16	
12:55 16 17:55 16 13:00 15 18:00 19 13:05 13 18:05 16	
13:00 15 18:00 19 13:05 13 18:05 16	
13:05 13 18:05 16	
13:10 15 18:10 12	
13:15 15 18:15 11	
13:20 13 18:20 13	
13:25 14 18:25 17	
13:30 17 18:30 14	
13:35 18 18:35 15	
13:40 17 18:40 15	
13:45 15 18:45 15	
13:50 17 18:50 18	
13:55 18 18:55 20	
14:00 14 19:00 19	
14:05 14 19:05 15	
14:10 14 19:10 16	
14:15 10 19:15 13	
14:20 14 19:20 12	
14:25 16 19:25 11	
14:30 18 19:30 12	
14:35 16 19:35 12	
14:40 17 19:40 12	
14:45 15 19:45 12	
14:50 14 19:50 14	
14:55 15 19:55 10	
15:00 15 20:00 10	
15:05 15 20:05 10	
15:10 11 20:10 13	
15:15 16 20:15 13	
15:20 17 20:20 17	
15:25 16 20:25 15	
15:30 15 20:30 12	
15:35 13 20:35 16	
15:40 15 20:40 17	
15:45 11 20:45 19	
15:50 14 20:50 17	
15:55 14 20:55 16	

Time	Queue	
21:00	12	
21:05	11	
21:10	9	
21:15	13	
21:20	14	
21:25	15	
21:30	13	
21:35 21:40	16 18	
21:40	15	
21:45	16	
21:55	14	
22:00	8	
22:05	12	
22:10	16	
22:15	19	
22:20	20	
22:25	14	
22:30	16	
22:35	14	
22:40	11	
22:45	9	
22:50	6	
22:55	10	
	1	i l

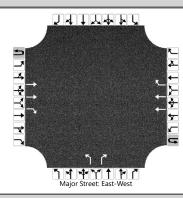
	1
	l
	I
	<u> </u>
	ļ
	l
	l
	l
	l
	1
	
	l
	
	L
	ļ
	I
	l
	l
	İ
	1
	
	l
	l
	
	l
	
	L
	ļ
	l
	
	I
	l
	1
	
	l
	l
	l
	İ


Appendix D: HCM Analysis Output Sheets

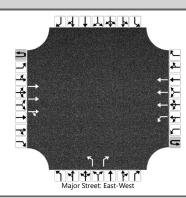
HCS Two-Way Stop-Control Report										
General Information		Site Information								
Analyst	AY	Intersection	Gibson I 25 SB							
Agency/Co.	Lee	Jurisdiction	COA							
Date Performed	5/31/2024	East/West Street	Gibson Boulevard							
Analysis Year	2024	North/South Street	I 25 SB							
Time Analyzed	Existing MD	Peak Hour Factor	0.96							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							
Project Description	Gibson In-N-Out									


Approach		Eastk	oound			Westl	oound		Northbound				Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	1	0	1	2	0		0	0	1		0	0	1
Configuration			Т	R		L	Т					R				R
Volume (veh/h)			479	24	1	288	394					549				131
Percent Heavy Vehicles (%)					1	1						1				2
Proportion Time Blocked																
Percent Grade (%)									0				0			
Right Turn Channelized		١	10							Y	es			Υ	es	
Median Type Storage		Undivided														
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)					6.4	4.1						6.9				6.9
Critical Headway (sec)					6.42	4.12						6.92				6.93
Base Follow-Up Headway (sec)					2.5	2.2						3.3				3.3
Follow-Up Headway (sec)					2.51	2.21						3.31				3.32
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	T					301						572				136
Capacity, c (veh/h)						1027						753				802
v/c Ratio						0.29						0.76				0.17
95% Queue Length, Q ₉₅ (veh)						1.2						7.2				0.6
95% Queue Length, Q ₉₅ (ft)						30.2						181.4				15.2
Control Delay (s/veh)						10.0						23.2				10.4
Level of Service (LOS)						Α						С				В
Approach Delay (s/veh)						4	.2		23.2				10.4			
Approach LOS						,	4			(С				В	

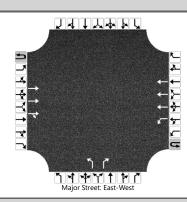
HCS Two-Way Stop-Control Report										
General Information		Site Information								
Analyst	AY	Intersection	Gibson I 25 SB							
Agency/Co.	Lee	Jurisdiction	COA							
Date Performed	5/31/2024	East/West Street	Gibson Boulevard							
Analysis Year	2024	North/South Street	I 25 SB							
Time Analyzed	Existing PM	Peak Hour Factor	0.95							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							
Project Description	Gibson In-N-Out									


Vehicle Volumes and Adj	justme	nts														
Approach		Eastk	oound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	1	0	1	2	0		0	0	1		0	0	1
Configuration			Т	R		L	Т					R				R
Volume (veh/h)			572	36	0	699	708					500				177
Percent Heavy Vehicles (%)					0	0						0				3
Proportion Time Blocked																
Percent Grade (%)									0				0			
Right Turn Channelized		١	10							Y	es			Y	es	
Median Type Storage		Undivided														
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)						4.1						6.9				6.9
Critical Headway (sec)						4.10						6.90				6.96
Base Follow-Up Headway (sec)						2.2						3.3				3.3
Follow-Up Headway (sec)						2.20						3.30				3.33
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)						736						526				186
Capacity, c (veh/h)						954						701				622
v/c Ratio						0.77						0.75				0.30
95% Queue Length, Q ₉₅ (veh)						7.9						6.9				1.3
95% Queue Length, Q ₉₅ (ft)						197.5						172.5				33.3
Control Delay (s/veh)						20.2						23.9				13.2
Level of Service (LOS)						С						С				В
Approach Delay (s/veh)						10).1			23	3.9			13	3.2	
Approach LOS						I	3			(<u> </u>				В	

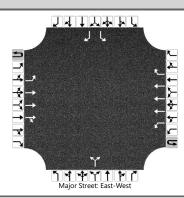
	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson I 25 NB
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/31/2024	East/West Street	Gibson Boulevard
Analysis Year	2024	North/South Street	I 25 NB
Time Analyzed	Existing MD	Peak Hour Factor	0.98
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		


Vehicle Volumes and Adj	justme	nts														
Approach		Eastk	oound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	1	0	0	2	1		1	0	1		0	0	0
Configuration			Т	R			Т	R		L		R				
Volume (veh/h)			912	105			667	583		13		302				
Percent Heavy Vehicles (%)										1		1				
Proportion Time Blocked																
Percent Grade (%)										. ()					
Right Turn Channelized		١	10			Υ	es			Y	es					
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)										7.5		6.9				
Critical Headway (sec)										7.52		6.92				
Base Follow-Up Headway (sec)										3.5		3.3				
Follow-Up Headway (sec)										3.51		3.31				
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	Т									13		308				
Capacity, c (veh/h)										126		547				
v/c Ratio										0.11		0.56				
95% Queue Length, Q ₉₅ (veh)										0.3		3.5				
95% Queue Length, Q ₉₅ (ft)										7.6		88.1				
Control Delay (s/veh)										37.0		19.7				
Level of Service (LOS)										E		С				
Approach Delay (s/veh)										20).5					
Approach LOS										(<u> </u>					

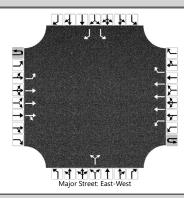
	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson I 25 NB
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/31/2024	East/West Street	Gibson Boulevard
Analysis Year	2024	North/South Street	I 25 NB
Time Analyzed	Existing PM	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		


Vehicle Volumes and Adj	justme	nts														
Approach	T	Eastk	oound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	1	0	0	2	1		1	0	1		0	0	0
Configuration			Т	R			Т	R		L		R				
Volume (veh/h)			926	151			1360	991		49		424				
Percent Heavy Vehicles (%)										0		0				
Proportion Time Blocked																
Percent Grade (%)										. ()					
Right Turn Channelized		١	10			Υ	es			Y	es					
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)	T									7.5		6.9				
Critical Headway (sec)										7.50		6.90				
Base Follow-Up Headway (sec)										3.5		3.3				
Follow-Up Headway (sec)										3.50		3.30				
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	Т									52		446				
Capacity, c (veh/h)										62		532				
v/c Ratio										0.83		0.84				
95% Queue Length, Q ₉₅ (veh)										3.8		8.7				
95% Queue Length, Q ₉₅ (ft)										95.0		217.5				
Control Delay (s/veh)										178.0		37.8				
Level of Service (LOS)										F		E				
Approach Delay (s/veh)										52	2.4					
Approach LOS											F					

	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson and Mulberry
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/21/2024	East/West Street	Gibson Boulevard
Analysis Year	2024	North/South Street	Mulberry Street
Time Analyzed	Existing MD	Peak Hour Factor	0.99
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		


Approach		Eastb	ound			Westk	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	3	0	0	1	3	0		1	0	1		0	0	0
Configuration			Т	TR		L	Т			L		R				
Volume (veh/h)			1157	52	6	40	1206			41		47				
Percent Heavy Vehicles (%)					0	1				0		0				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized										N	О					
Median Type Storage				Left -	- Thru								1			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)					5.6	5.3				6.4		7.1				
Critical Headway (sec)					5.60	5.32				5.70		7.10				
Base Follow-Up Headway (sec)					2.3	3.1				3.8		3.9				
Follow-Up Headway (sec)					2.30	3.11				3.80		3.90				
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)	Т					46				41		47				
Capacity, c (veh/h)						321				155		378				
v/c Ratio						0.14				0.27		0.13				
95% Queue Length, Q ₉₅ (veh)						0.5				1.0		0.4				
95% Queue Length, Q ₉₅ (ft)						12.6				25.0		10.0				
Control Delay (s/veh)						18.1	2.4			36.4		15.9				
Level of Service (LOS)						С	А			Е		С				
Approach Delay (s/veh)						2	.9			25	5.5				•	
Approach LOS						P	4			[)					

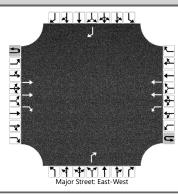
	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson and Mulberry
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/21/2024	East/West Street	Gibson Boulevard
Analysis Year	2024	North/South Street	Mulberry Street
Time Analyzed	Existing PM	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		


Vehicle Volumes and Adj	ustme	nts														
Approach		Eastk	oound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	3	0	0	1	3	0		1	0	1		0	0	0
Configuration			Т	TR		L	Т			L		R				
Volume (veh/h)			1270	73	4	29	2298			24		36				
Percent Heavy Vehicles (%)					0	0				0		0				
Proportion Time Blocked																
Percent Grade (%)										. ()					
Right Turn Channelized										Ν	lo					
Median Type Storage				Left -	- Thru								1			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)					5.6	5.3				6.4		7.1				
Critical Headway (sec)					5.60	5.30				5.70		7.10				
Base Follow-Up Headway (sec)					2.3	3.1				3.8		3.9				
Follow-Up Headway (sec)					2.30	3.10				3.80		3.90				
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)						35				25		38				
Capacity, c (veh/h)						261				103		328				
v/c Ratio						0.13				0.25		0.12				
95% Queue Length, Q ₉₅ (veh)						0.5				0.9		0.4				
95% Queue Length, Q ₉₅ (ft)						12.5				22.5		10.0				
Control Delay (s/veh)						20.9	2.7			50.9		17.4				
Level of Service (LOS)						С	А			F		С				
Approach Delay (s/veh)						3	.0			30).8					
Approach LOS							Α			[)					

	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson and Alumni
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/21/2024	East/West Street	Gibson Boulevard
Analysis Year	2024	North/South Street	Alumni Drive
Time Analyzed	Existing MD	Peak Hour Factor	0.97
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		

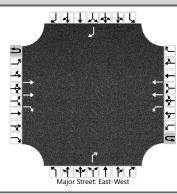
Approach	Т	Fasth	ound			Westl	oound			North	hound			South	bound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	T	R		
	+	1		3	4U	4	5	6	0	7	8	9	U	_	-			
Priority	10		2	<u> </u>				_		<u> </u>		_		10	11	12		
Number of Lanes	0	1	3	0	0	1	3	1		0	1	0		1	0	1		
Configuration	\bot	L	T	TR		L	Т	R			LR			L		R		
Volume (veh/h)	23	4	1141	49	3	39	1212	6		23		39		2		4		
Percent Heavy Vehicles (%)	0	0			0	0				0		0		0		0		
Proportion Time Blocked																		
Percent Grade (%)										()			(0			
Right Turn Channelized						Ν	lo							N	lo			
Median Type Storage				Left +	+ Thru								1					
Critical and Follow-up H	eadwa	ys																
Base Critical Headway (sec)	5.6	5.3			5.6	5.3				6.4		7.1		6.4		7.1		
Critical Headway (sec)	5.60	5.30			5.60	5.30				6.40		7.10		6.40		7.10		
Base Follow-Up Headway (sec)	2.3	3.1			2.3	3.1				3.8		3.9		3.8		3.9		
Follow-Up Headway (sec)	2.30	3.10			2.30	3.10				3.80		3.90		3.80		3.90		
Delay, Queue Length, an	d Leve	l of Se	ervice															
Flow Rate, v (veh/h)		28				43					64			2		4		
Capacity, c (veh/h)		450				311					188			86		369		
v/c Ratio		0.06				0.14					0.34			0.02		0.01		
95% Queue Length, Q ₉₅ (veh)		0.2				0.5					1.4			0.1		0.0		
95% Queue Length, Q ₉₅ (ft)		5.0				12.5					35.0			2.5		0.0		
Control Delay (s/veh)		13.5				18.4					33.7			47.9		14.9		
Level of Service (LOS)		В				С					D			Е		В		
Approach Delay (s/veh)		0	.3			0	.6			33	3.7			25.9				
Approach LOS	1		Α				4			[)							

	HCS Two-Way Sto	o-Control Report								
General Information		Site Information								
Analyst	AY	Intersection	Gibson and Alumni							
Agency/Co.	Lee	Jurisdiction	COA							
Date Performed	5/21/2024	East/West Street	Gibson Boulevard							
Analysis Year	2024	North/South Street	Alumni Drive							
Time Analyzed	Existing PM	Peak Hour Factor	0.95							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							
Project Description	Gibson In-N-Out									

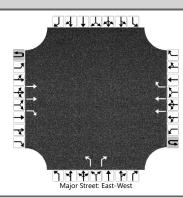


Vehicle Volumes and Ad	justme	nts														
Approach	T	Eastb	oound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	3	0	0	1	3	1		0	1	0		1	0	1
Configuration		L	Т	TR		L	Т	R			LR			L		R
Volume (veh/h)	17	2	1258	28	4	36	2294	0		10		35		0		2
Percent Heavy Vehicles (%)	0	0			0	0				0		3		0		0
Proportion Time Blocked																
Percent Grade (%)										()				0	
Right Turn Channelized						Ν	10							N	lo	
Median Type Storage				Left -	- Thru								1			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)	5.6	5.3			5.6	5.3				6.4		7.1		6.4		7.1
Critical Headway (sec)	5.60	5.30			5.60	5.30				6.40		7.16		6.40		7.10
Base Follow-Up Headway (sec)	2.3	3.1			2.3	3.1				3.8		3.9		3.8		3.9
Follow-Up Headway (sec)	2.30	3.10			2.30	3.10				3.80		3.93		3.80		3.90
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)		20				42					47			0		2
Capacity, c (veh/h)		149				273					173			13		153
v/c Ratio		0.13				0.15					0.27			0.00		0.01
95% Queue Length, Q ₉₅ (veh)		0.5				0.5					1.1			0.0		0.0
95% Queue Length, Q ₉₅ (ft)		12.5				12.5					28.0					0.0
Control Delay (s/veh)		33.0				20.6					33.5			282.2		28.9
Level of Service (LOS)		D				С					D			F		D
Approach Delay (s/veh)		0).5	•		0	.4			33	3.5	•				
Approach LOS			A			,	Ą			[)				D	

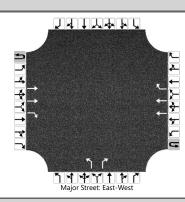
HCS Signalized Intersection Results Summary 11f Sameter Intersection Information **General Information** Duration, h 1.000 Agency Analyst Analysis Date 5/21/2024 Area Type Other PHF Jurisdiction CABQ Time Period Existing MD 1.00 **Urban Street** Gibson Boulevard Analysis Year 2024 **Analysis Period** 1> 7:00 University and Gibson File Name 5 University-Gibson Existing MD.xus Intersection **Project Description** Gibson In-N-Out Existing MD WB **Demand Information** EB NB SB Approach Movement R L R L R L R 108 1020 104 89 Demand (v), veh/h 140 856 131 179 91 160 77 128 **Signal Information** Cycle, s 120.0 Reference Phase 2 R/Y Offset, s 0 Reference Point End 0.0 Green 4.9 1.0 69.1 8.5 18.4 Uncoordinated No Simult. Gap E/W On Yellow 3.0 0.0 4.5 3.0 0.0 4.0 Force Mode Fixed Simult. Gap N/S On Red 0.5 0.0 1.0 0.5 1.5 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 5 2 6 4 8 1 7 Case Number 1.1 3.0 1.1 3.0 1.0 4.0 5.3 Phase Duration, s 9.4 75.6 8.4 74.6 12.0 35.9 23.9 5.5 5.5 5.5 5.5 Change Period, (Y+Rc), s 3.5 3.5 3.5 Max Allow Headway (MAH), s 3.0 0.0 3.0 0.0 3.1 3.4 3.4 Queue Clearance Time (g_s), s 5.8 4.9 10.5 12.3 17.3 Green Extension Time (g_e), s 0.2 0.0 0.2 0.0 0.0 1.2 1.2 Phase Call Probability 0.99 0.97 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Max Out Probability 1.00 SB **Movement Group Results** EΒ WB NB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 5 2 12 1 6 16 7 4 14 3 8 18 Adjusted Flow Rate (v), veh/h 140 856 131 108 1020 104 179 180 160 77 128 Adjusted Saturation Flow Rate (s), veh/h/ln 1810 1725 1598 1810 1712 1610 1810 1745 1223 1900 1610 3.8 2.9 12.6 3.5 8.5 10.3 15.3 4.3 8.8 Queue Service Time (g_s), s 9.9 4.5 Cycle Queue Clearance Time (q c), s 3.8 9.9 4.5 2.9 12.6 3.5 8.5 10.3 15.3 4.3 8.8 0.58 Green Ratio (g/C) 0.63 0.58 0.62 0.58 0.58 0.24 0.25 0.15 0.15 0.15 414 Capacity (c), veh/h 3025 934 452 2958 927 347 443 248 292 247 Volume-to-Capacity Ratio (X) 0.338 0.283 0.140 0.239 0.345 0.112 0.516 0.407 0.645 0.264 0.517 Back of Queue (Q), ft/ln (95 th percentile) 62 161 70 48 203 56 23 194 209 93 162 Back of Queue (Q), veh/ln (95 th percentile) 2.5 6.5 2.8 1.9 8.1 2.2 0.9 7.8 8.4 3.7 6.5 Queue Storage Ratio (RQ) (95 th percentile) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 49.4 Uniform Delay (d 1), s/veh 10.0 12.4 11.3 9.9 13.5 11.5 39.4 37.3 44.8 46.7 Incremental Delay (d 2), s/veh 0.2 0.2 0.3 0.1 0.3 0.2 0.6 0.2 1.1 0.2 0.6 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 10.2 12.7 11.6 10.0 13.8 11.8 40.0 37.5 50.5 45.0 47.3 Level of Service (LOS) В В В В В В D D D D D 12.2 В 13.3 В 38.7 48.2 Approach Delay, s/veh / LOS D D Intersection Delay, s/veh / LOS 20.0 В **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 1.89 В 2.08 В 2.72 2.73 С С Bicycle LOS Score / LOS 1.11 Α 1.17 Α 1.08 Α 1.09 Α


HCS Signalized Intersection Results Summary lif Tanatar Intersection Information **General Information** Duration, h 1.000 Agency Analyst Analysis Date 5/21/2024 Area Type Other PHF Jurisdiction CABQ Time Period Existing PM 1.00 **Urban Street** Gibson Boulevard Analysis Year 2024 **Analysis Period** 1> 7:00 University and Gibson File Name 5 University-Gibson Existing PM.xus Intersection **Project Description** Gibson In-N-Out Existing PM WB **Demand Information** EB NB SB Approach Movement R L R L R L R 2008 66 Demand (v), veh/h 178 1119 113 89 186 167 79 138 57 137 **Signal Information** Cycle, s 130.0 Reference Phase 2 Offset, s 0 Reference Point End 0.0 Green 4.5 2.8 75.9 12.0 16.9 Uncoordinated No Simult. Gap E/W On Yellow 3.0 0.0 4.5 0.0 3.0 4.0 Force Mode Fixed Simult. Gap N/S On Red 0.5 0.0 1.0 0.5 1.5 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 5 2 6 4 8 1 7 Case Number 1.1 3.0 1.1 3.0 1.0 4.0 5.3 Phase Duration, s 10.7 84.1 8.0 81.4 15.5 37.9 22.4 5.5 5.5 3.5 5.5 5.5 Change Period, (Y+Rc), s 3.5 3.5 Max Allow Headway (MAH), s 3.0 0.0 3.0 0.0 3.1 3.3 3.3 Queue Clearance Time (g s), s 7.0 4.6 12.1 10.8 15.9 Green Extension Time (g_e), s 0.3 0.0 0.1 0.0 0.0 1.0 1.0 Phase Call Probability 1.00 0.96 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Max Out Probability 1.00 SB **Movement Group Results** EΒ **WB** NB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 5 2 12 1 6 16 7 4 14 3 8 18 Adjusted Flow Rate (v), veh/h 178 1119 113 89 2008 186 167 145 138 57 137 Adjusted Saturation Flow Rate (s), veh/h/ln 1810 1725 1598 1810 1610 1756 1263 1900 1610 1712 1810 5.0 14.2 3.9 2.6 7.1 8.8 3.5 10.5 Queue Service Time (g_s), s 34.8 10.1 13.9 Cycle Queue Clearance Time (q c), s 5.0 14.2 3.9 2.6 34.8 7.1 10.1 8.8 13.9 3.5 10.5 Green Ratio (g/C) 0.65 0.60 0.60 0.62 0.58 0.58 0.24 0.25 0.13 0.13 0.13 Capacity (c), veh/h 225 3130 966 363 2996 940 364 438 219 246 209 Volume-to-Capacity Ratio (X) 0.792 0.358 0.117 0.245 0.670 0.198 0.459 0.331 0.630 0.231 0.656 Back of Queue (Q), ft/ln (95 th percentile) 150 223 62 44 475 114 199 170 200 77 195 Back of Queue (Q), veh/ln (95 th percentile) 6.0 8.9 2.5 1.7 18.9 4.6 7.9 6.8 8.0 3.1 7.8 Queue Storage Ratio (RQ) (95 th percentile) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 39.9 Uniform Delay (d 1), s/veh 23.8 13.0 10.9 10.8 18.5 12.7 41.7 55.3 50.8 53.8 Incremental Delay (d 2), s/veh 2.4 0.3 0.2 0.1 1.2 0.5 0.3 0.2 1.1 0.2 1.3 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 26.3 13.3 11.2 10.9 19.7 13.2 42.1 40.1 56.4 50.9 55.1 Level of Service (LOS) С В В В В В D D Ε D Ε 14.8 В 18.9 В 41.2 54.9 Approach Delay, s/veh / LOS D D Intersection Delay, s/veh / LOS 21.9 С **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 1.89 В 2.09 В 2.73 2.74 С С Bicycle LOS Score / LOS 1.26 Α 1.74 1.00 Α 1.04 Α

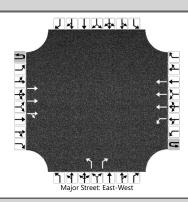
	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson I 25 SB
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/31/2024	East/West Street	Gibson Boulevard
Analysis Year	2026	North/South Street	I 25 SB
Time Analyzed	2026 Background MD	Peak Hour Factor	0.96
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		


Approach		Eastb	ound			Westk	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	T	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	1	0	1	2	0		0	0	1		0	0	1
Configuration			Т	R		L	Т					R				R
Volume (veh/h)			540	25	1	309	423					608				132
Percent Heavy Vehicles (%)					1	1						1				2
Proportion Time Blocked																
Percent Grade (%))			(0	
Right Turn Channelized		N	10							Y	es			Y	es	
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)					6.4	4.1						6.9				6.9
Critical Headway (sec)					6.42	4.12						6.92				6.93
Base Follow-Up Headway (sec)					2.5	2.2						3.3				3.3
Follow-Up Headway (sec)					2.51	2.21						3.31				3.32
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)						323						633				138
Capacity, c (veh/h)						953						719				785
v/c Ratio						0.34						0.88				0.18
95% Queue Length, Q ₉₅ (veh)						1.5						11.0				0.6
95% Queue Length, Q ₉₅ (ft)						37.8						277.2				15.2
Control Delay (s/veh)						10.7						35.2				10.6
Level of Service (LOS)						В						Е				В
Approach Delay (s/veh)							.5	35.2				10.6				
Approach LOS	A						4		E					В		

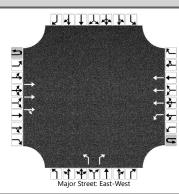
	HCS Two-Way Stop	Stop-Control Report								
General Information		Site Information								
Analyst	AY	Intersection	Gibson I 25 SB							
Agency/Co.	Lee	Jurisdiction	COA							
Date Performed	5/31/2024	East/West Street	Gibson Boulevard							
Analysis Year	2026	North/South Street	I 25 SB							
Time Analyzed	Background PM	Peak Hour Factor	0.95							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							
Project Description	Gibson In-N-Out									


Vehicle Volumes and Ad	justme	nts														
Approach	T	Eastk	oound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	1	0	1	2	0		0	0	1		0	0	1
Configuration			Т	R		L	Т					R				R
Volume (veh/h)			625	37	2	726	736					538				178
Percent Heavy Vehicles (%)					0	0						0				3
Proportion Time Blocked																
Percent Grade (%)											0				0	
Right Turn Channelized		١	10							Y	es			Y	es	
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)	T				6.4	4.1						6.9				6.9
Critical Headway (sec)					6.40	4.10						6.90				6.96
Base Follow-Up Headway (sec)					2.5	2.2						3.3				3.3
Follow-Up Headway (sec)					2.50	2.20						3.30				3.33
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	Т					766						566				187
Capacity, c (veh/h)						886						673				608
v/c Ratio						0.86						0.84				0.31
95% Queue Length, Q ₉₅ (veh)						11.0						9.4				1.3
95% Queue Length, Q ₉₅ (ft)						275.0						235.0				33.3
Control Delay (s/veh)						28.7						32.2				13.5
Level of Service (LOS)						D						D				В
Approach Delay (s/veh)						14	1.3			37	2.2			13	3.5	
Approach LOS						ı	В)				В	

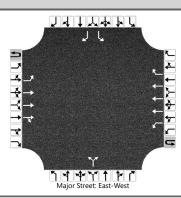
	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson I 25 NB
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/31/2024	East/West Street	Gibson Boulevard
Analysis Year	2026	North/South Street	I 25 NB
Time Analyzed	Background MD	Peak Hour Factor	0.98
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		


Vehicle Volumes and Ad	justme	nts														
Approach		Eastk	oound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	1	0	0	2	1		1	0	1		0	0	0
Configuration			Т	R			Т	R		L		R				
Volume (veh/h)			1038	107			717	623		13		340				
Percent Heavy Vehicles (%)										1		1				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized		١	10			Υ	es			Y	es					
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)	T									7.5		6.9				
Critical Headway (sec)										7.52		6.92				
Base Follow-Up Headway (sec)										3.5		3.3				
Follow-Up Headway (sec)										3.51		3.31				
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	Т									13		347				
Capacity, c (veh/h)										97		497				
v/c Ratio										0.14		0.70				
95% Queue Length, Q ₉₅ (veh)										0.5		5.4				
95% Queue Length, Q ₉₅ (ft)										12.6		136.0				
Control Delay (s/veh)										48.0		27.4				
Level of Service (LOS)										E		D				
Approach Delay (s/veh)					Ì					28	3.1					
Approach LOS										[)					

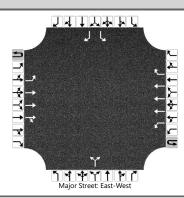
	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson I 25 NB
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/31/2024	East/West Street	Gibson Boulevard
Analysis Year	2026	North/South Street	I 25 NB
Time Analyzed	Background PM	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		


Vehicle Volumes and Adj	justme	nts														
Approach	Т	Eastk	oound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	1	0	0	2	1		1	0	1		0	0	0
Configuration			Т	R			Т	R		L		R				
Volume (veh/h)			1021	154			1414	1030		50		462				
Percent Heavy Vehicles (%)										0		0				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized		١	No			Υ	es			Ye	es					
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)										7.5		6.9				
Critical Headway (sec)										7.50		6.90				
Base Follow-Up Headway (sec)										3.5		3.3				
Follow-Up Headway (sec)										3.50		3.30				
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	Т									53		486				
Capacity, c (veh/h)										50		493				
v/c Ratio										1.06		0.99				
95% Queue Length, Q ₉₅ (veh)										4.6		13.1				
95% Queue Length, Q ₉₅ (ft)										115.0		327.5				
Control Delay (s/veh)										278.2		66.1				
Level of Service (LOS)										F		F				
Approach Delay (s/veh)										86	5.8					
Approach LOS											=					

	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson and Mulberry
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/21/2024	East/West Street	Gibson Boulevard
Analysis Year	2026	North/South Street	Mulberry Street
Time Analyzed	BO Background MD	Peak Hour Factor	0.99
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		


Vehicle Volumes and Adj	justme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	3	0	0	1	3	0		1	0	1		0	0	0
Configuration			Т	TR		L	Т			L		R				
Volume (veh/h)			1320	53	6	43	1295			42		52				
Percent Heavy Vehicles (%)					0	1				0		0				
Proportion Time Blocked																
Percent Grade (%)										. ()					
Right Turn Channelized										Ν	lo					
Median Type Storage				Left -	+ Thru								1			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)					5.6	5.3				6.4		7.1				
Critical Headway (sec)					5.60	5.32				5.70		7.10				
Base Follow-Up Headway (sec)					2.3	3.1				3.8		3.9				
Follow-Up Headway (sec)					2.30	3.11				3.80		3.90				
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)						49				42		53				
Capacity, c (veh/h)						265				123		334				
v/c Ratio						0.19				0.35		0.16				
95% Queue Length, Q ₉₅ (veh)						0.7				1.4		0.6				
95% Queue Length, Q ₉₅ (ft)						17.6				35.0		15.0				
Control Delay (s/veh)			Ì			21.6	3.6		Ì	49.1		17.8		Ì		
Level of Service (LOS)						С	А			E		С				
Approach Delay (s/veh)						4	.3			31	1.8					
Approach LOS							Α			[)					

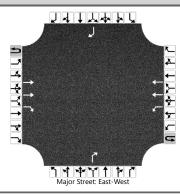
	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson and Mulberry
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/21/2024	East/West Street	Gibson Boulevard
Analysis Year	2026	North/South Street	Mulberry Street
Time Analyzed	BO Background PM	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		


Approach		Eastk	oound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	3	0	0	1	3	0		1	0	1		0	0	0
Configuration			Т	TR		L	Т			L		R				
Volume (veh/h)			1403	75	4	31	2390			24		40				
Percent Heavy Vehicles (%)					0	0				0		0				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized										Ν	lo					
Median Type Storage				Left -	- Thru								1			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)					5.6	5.3				6.4		7.1				
Critical Headway (sec)					5.60	5.30				5.70		7.10				
Base Follow-Up Headway (sec)					2.3	3.1				3.8		3.9				
Follow-Up Headway (sec)					2.30	3.10				3.80		3.90				
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)						37				25		42				
Capacity, c (veh/h)						222				85		295				
v/c Ratio						0.17				0.30		0.14				
95% Queue Length, Q ₉₅ (veh)						0.6				1.1		0.5				
95% Queue Length, Q ₉₅ (ft)						15.0				27.5		12.5				
Control Delay (s/veh)						24.4	4.0			64.2		19.2				
Level of Service (LOS)						С	Α			F		С				
Approach Delay (s/veh)		-	-	-		4	.2	-		36	5.1	-			-	
Approach LOS						,	4				Ε					

	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson and Alumni
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/21/2024	East/West Street	Gibson Boulevard
Analysis Year	2026	North/South Street	Alumni Drive
Time Analyzed	Background MD	Peak Hour Factor	0.97
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		

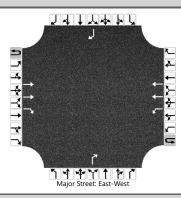
Vehicle Volumes and Adj	iistme	nts														
Approach			ound			Westl	oound			North	bound			South	bound	
Movement	U	L	T	R	U	L	Т	R	U	L	Т	R	U	L	T	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	3	0	0	1	3	1		0	1	0		1	0	1
Configuration	+	L	T	TR		L	T	R		<u> </u>	LR			L		R
Volume (veh/h)	24	43	1269	50	3	40	1278	32		23		40		40		29
Percent Heavy Vehicles (%)	0	0			0	0				0		0		0		0
Proportion Time Blocked																
Percent Grade (%)											<u> </u>				<u>1 </u>	
Right Turn Channelized		No											No			
Median Type Storage		Left + Thru 1														
Critical and Follow-up H	eadwa															
Base Critical Headway (sec)	5.6	5.3			5.6	5.3				6.4		7.1		6.4		7.1
Critical Headway (sec)	5.60	5.30			5.60	5.30				6.40		7.10		6.40		7.10
Base Follow-Up Headway (sec)	2.3	3.1			2.3	3.1				3.8		3.9		3.8		3.9
Follow-Up Headway (sec)	2.30	3.10			2.30	3.10				3.80		3.90		3.80		3.90
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)	T	69				44					65			41		30
Capacity, c (veh/h)		310				268					125			68		350
v/c Ratio		0.22				0.17					0.52			0.61		0.09
95% Queue Length, Q ₉₅ (veh)		0.8				0.6					2.4			2.6		0.3
95% Queue Length, Q ₉₅ (ft)		20.0				15.0					60.0			65.0		7.5
Control Delay (s/veh)		19.9				21.1					61.4			119.7		16.2
Level of Service (LOS)		С				С					F			F		С
Approach Delay (s/veh)		1	.0	-		0	.7	•		61	1.4	-		76	5.2	
Approach LOS	A A F F															

	HCS Two-Way Sto	p-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson and Alumni
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/21/2024	East/West Street	Gibson Boulevard
Analysis Year	2026	North/South Street	Alumni Drive
Time Analyzed	Background PM	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		

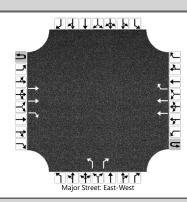


Approach	Т	Facth	ound		Ι	Westk	agund			North	bound			South	bound	
Approach								_				_				
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	3	0	0	1	3	1		0	1	0		1	0	1
Configuration		L	Т	TR		L	Т	R			LR			L		R
Volume (veh/h)	17	31	1365	29	4	37	2368	19		10		36		27		20
Percent Heavy Vehicles (%)	0	0			0	0				0		3		0		0
Proportion Time Blocked																
Percent Grade (%)													0			
Right Turn Channelized		No										No				
Median Type Storage		Left + Thru 1														
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)	5.6	5.3			5.6	5.3				6.4		7.1		6.4		7.1
Critical Headway (sec)	5.60	5.30			5.60	5.30				6.40		7.16		6.40		7.10
Base Follow-Up Headway (sec)	2.3	3.1			2.3	3.1				3.8		3.9		3.8		3.9
Follow-Up Headway (sec)	2.30	3.10			2.30	3.10				3.80		3.93		3.80		3.90
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		51				43					48			28		21
Capacity, c (veh/h)		84				240					87			10		144
v/c Ratio		0.60				0.18					0.55			2.93		0.15
95% Queue Length, Q ₉₅ (veh)		2.7				0.6					2.5			4.6		0.5
95% Queue Length, Q ₉₅ (ft)		67.5				15.0					63.6			115.0		12.5
Control Delay (s/veh)		97.5				23.2					88.7			1632.4		34.2
Level of Service (LOS)		F			С			F					F		D	
Approach Delay (s/veh)		3	.2			0	.4			88	3.7			95	2.3	
Approach LOS		A A F F														

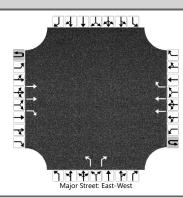
HCS Signalized Intersection Results Summary 11f Sameter Intersection Information **General Information** Duration, h 1.000 Agency Analyst Analysis Date 5/21/2024 Area Type Other PHF Jurisdiction CABQ Time Period Background MD 1.00 **Urban Street** Gibson Boulevard Analysis Year 2026 **Analysis Period** 1> 7:00 University and Gibson File Name 5 University-Gibson BO Background MD.xus Intersection **Project Description** Gibson In-N-Out BO Background MD WB **Demand Information** EB NB SB Approach Movement R L R L R L R 1100 109 Demand (v), veh/h 148 1007 138 113 193 96 101 179 81 138 **Signal Information** Cycle, s 120.0 Reference Phase 2 RAY Offset, s 0 Reference Point End Green 5.2 0.0 1.1 66.5 8.5 20.6 Uncoordinated No Simult. Gap E/W On Yellow 3.0 4.5 3.0 0.0 0.0 4.0 Force Mode Fixed Simult. Gap N/S On Red 0.5 0.0 1.0 0.5 1.5 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 5 2 6 4 8 1 7 Case Number 1.1 3.0 1.1 3.0 1.0 4.0 5.3 Phase Duration, s 9.9 73.1 8.7 72.0 12.0 38.1 26.1 5.5 5.5 5.5 Change Period, (Y+Rc), s 3.5 3.5 3.5 5.5 Max Allow Headway (MAH), s 3.0 0.0 3.0 0.0 3.1 3.4 3.4 Queue Clearance Time (g_s), s 6.2 5.2 10.5 13.2 19.3 Green Extension Time (g_e), s 0.2 0.0 0.2 0.0 0.0 1.3 1.3 Phase Call Probability 0.99 0.98 1.00 1.00 1.00 0.00 0.00 0.00 Max Out Probability 0.00 1.00 SB **Movement Group Results** EΒ **WB** NB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 5 2 12 1 6 16 7 4 14 3 8 18 Adjusted Flow Rate (v), veh/h 148 1007 138 113 1100 109 193 197 179 81 138 1810 1598 1810 1712 1610 1810 1739 1204 1900 1610 Adjusted Saturation Flow Rate (s), veh/h/ln 1725 4.2 12.6 3.2 14.6 3.9 8.5 11.2 17.3 4.4 9.3 Queue Service Time (g_s), s 5.0 Cycle Queue Clearance Time (q c), s 4.2 12.6 5.0 3.2 14.6 3.9 8.5 11.2 17.3 4.4 9.3 0.55 0.27 0.17 Green Ratio (g/C) 0.61 0.56 0.56 0.60 0.55 0.26 0.17 0.17 Capacity (c), veh/h 381 2917 900 390 2846 892 369 473 267 326 277 Volume-to-Capacity Ratio (X) 0.388 0.345 0.153 0.290 0.387 0.122 0.523 0.417 0.671 0.248 0.499 Back of Queue (Q), ft/ln (95 th percentile) 70 205 79 54 232 62 37 206 228 96 171 Back of Queue (Q), veh/ln (95 th percentile) 2.8 8.2 3.1 2.2 9.2 2.5 1.5 8.2 9.1 3.8 6.8 Queue Storage Ratio (RQ) (95 th percentile) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Uniform Delay (d 1), s/veh 11.3 14.2 12.5 11.3 15.2 12.8 38.2 35.9 48.3 43.0 45.0 Incremental Delay (d 2), s/veh 0.2 0.3 0.4 0.2 0.4 0.3 0.7 0.2 1.1 0.1 0.5 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 11.6 14.5 12.9 11.5 15.6 13.1 38.9 36.1 49.4 43.1 45.5 Level of Service (LOS) В В В В В В D D D D D 14.0 В 15.0 В 37.5 46.8 Approach Delay, s/veh / LOS D D Intersection Delay, s/veh / LOS 20.9 С **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 1.90 В 2.09 В 2.72 2.73 С С Bicycle LOS Score / LOS 1.20 Α 1.21 Α 1.13 Α 1.14 Α


HCS Signalized Intersection Results Summary lif Tanatar Intersection Information **General Information** Duration, h 1.000 Agency Analyst Analysis Date 5/21/2024 Area Type Other PHF Jurisdiction CABQ Time Period Background PM 1.00 **Urban Street** Gibson Boulevard Analysis Year 2026 **Analysis Period** 1> 7:00 University and Gibson File Name 5 University-Gibson BO Background PM.xus Intersection **Project Description** Gibson In-N-Out BO Background PM WB **Demand Information** EB NB SB Approach Movement R L R L R L R Demand (v), veh/h 185 1245 117 92 2093 191 178 84 73 152 60 146 **Signal Information** Cycle, s 130.0 Reference Phase 2 Offset, s 0 Reference Point End 18.5 0.0 Green 4.7 2.9 73.8 12.1 Uncoordinated No Simult. Gap E/W On Yellow 3.0 0.0 4.5 3.0 0.0 4.0 Force Mode Fixed Simult. Gap N/S On Red 0.5 0.0 1.0 0.5 1.5 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 5 2 6 4 8 1 7 Case Number 1.1 3.0 1.1 3.0 1.0 4.0 5.3 Phase Duration, s 11.1 82.2 8.2 79.3 15.6 39.6 24.0 5.5 5.5 3.5 5.5 5.5 Change Period, (Y+Rc), s 3.5 3.5 Max Allow Headway (MAH), s 3.0 0.0 3.0 0.0 3.1 3.4 3.4 Queue Clearance Time (g s), s 7.4 4.8 12.6 11.4 17.4 Green Extension Time (g_e), s 0.3 0.0 0.1 0.0 0.0 1.1 1.1 Phase Call Probability 1.00 0.96 1.00 1.00 1.00 0.00 0.00 0.00 Max Out Probability 0.00 1.00 SB **Movement Group Results** EΒ **WB** NB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 5 2 12 1 6 16 7 4 14 3 8 18 185 1245 117 92 2093 191 178 157 152 60 146 Adjusted Flow Rate (v), veh/h 1810 1725 1598 1810 1610 1810 1753 1249 1900 1610 Adjusted Saturation Flow Rate (s), veh/h/ln 1712 5.4 16.9 4.2 2.8 38.7 7.6 3.6 11.1 Queue Service Time (g_s), s 10.6 9.4 15.4 7.6 Cycle Queue Clearance Time (q c), s 5.4 16.9 4.2 2.8 38.7 10.6 9.4 15.4 3.6 11.1 0.59 Green Ratio (g/C) 0.64 0.59 0.60 0.57 0.57 0.25 0.26 0.14 0.14 0.14 Capacity (c), veh/h 216 3054 943 322 2914 914 380 460 233 270 229 Volume-to-Capacity Ratio (X) 0.858 0.408 0.124 0.285 0.718 0.209 0.469 0.341 0.652 0.222 0.637 Back of Queue (Q), ft/ln (95 th percentile) 155 259 67 48 527 123 207 182 216 79 203 Back of Queue (Q), veh/ln (95 th percentile) 6.2 10.3 2.7 1.9 20.9 4.9 8.3 7.3 8.6 3.2 8.1 Queue Storage Ratio (RQ) (95 th percentile) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 38.9 54.4 Uniform Delay (d 1), s/veh 26.2 14.4 11.8 12.0 20.5 13.8 40.6 49.4 52.6 Incremental Delay (d 2), s/veh 4.0 0.4 0.3 0.2 1.6 0.5 0.3 0.2 1.2 0.2 1.1 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 30.2 14.8 12.1 12.2 22.1 14.3 40.9 39.0 55.6 49.5 53.7 Level of Service (LOS) С В В В С В D D Ε D D 16.4 В 21.1 С 40.0 Approach Delay, s/veh / LOS D 53.8 D Intersection Delay, s/veh / LOS 23.4 С **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 1.89 В 2.09 В 2.73 2.74 С С Bicycle LOS Score / LOS 1.34 Α 1.79 1.04 Α 1.08 Α

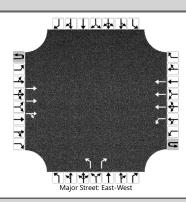
	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson I 25 SB
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/31/2024	East/West Street	Gibson Boulevard
Analysis Year	2026	North/South Street	I 25 SB
Time Analyzed	Full Build MD	Peak Hour Factor	0.96
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		


Approach	T	Eastk	ound			Westk	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	1	0	1	2	0		0	0	1		0	0	1
Configuration			Т	R		L	Т					R				R
Volume (veh/h)			554	25	1	344	435					650				132
Percent Heavy Vehicles (%)					1	1						1				2
Proportion Time Blocked																
Percent Grade (%))			(0	
Right Turn Channelized		N	10							Y	es			Y	es	
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)					6.4	4.1						6.9				6.9
Critical Headway (sec)					6.42	4.12						6.92				6.93
Base Follow-Up Headway (sec)					2.5	2.2						3.3				3.3
Follow-Up Headway (sec)					2.51	2.21						3.31				3.32
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	Т					359						677				138
Capacity, c (veh/h)						895						711				777
v/c Ratio						0.40						0.95				0.18
95% Queue Length, Q ₉₅ (veh)						2.0						13.9				0.6
95% Queue Length, Q ₉₅ (ft)						50.4						350.3				15.2
Control Delay (s/veh)						11.7						47.1				10.6
Level of Service (LOS)					В			E							В	
Approach Delay (s/veh)				•		5	.2		47.1				10.6			
Approach LOS		A E											В			

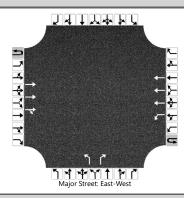
	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson I 25 SB
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/31/2024	East/West Street	Gibson Boulevard
Analysis Year	2026	North/South Street	I 25 SB
Time Analyzed	Full Build PM	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		


Vehicle Volumes and Adj	justme	nts														
Approach	T	Eastk	oound			Westk	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	1	0	1	2	0		0	0	1		0	0	1
Configuration			Т	R		L	Т					R				R
Volume (veh/h)			634	37	2	759	746					572				178
Percent Heavy Vehicles (%)					0	0						0				3
Proportion Time Blocked																
Percent Grade (%))				0	
Right Turn Channelized		١	10							Y	es			Υ	'es	
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)					6.4	4.1						6.9				6.9
Critical Headway (sec)					6.40	4.10						6.90				6.96
Base Follow-Up Headway (sec)					2.5	2.2						3.3				3.3
Follow-Up Headway (sec)					2.50	2.20						3.30				3.33
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	Т					801						602				187
Capacity, c (veh/h)						866						668				603
v/c Ratio						0.93						0.90				0.31
95% Queue Length, Q ₉₅ (veh)						13.8						11.5				1.3
95% Queue Length, Q ₉₅ (ft)						345.0						287.5				33.3
Control Delay (s/veh)						37.2						40.0				13.6
Level of Service (LOS)						E						E				В
Approach Delay (s/veh)						18	3.8		40.0				13.6			
Approach LOS						(<u> </u>				E E				В	

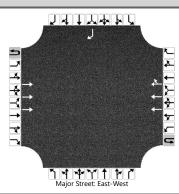
	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson I 25 NB
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/31/2024	East/West Street	Gibson Boulevard
Analysis Year	2026	North/South Street	I 25 NB
Time Analyzed	Full Build MD	Peak Hour Factor	0.98
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		


Vehicle Volumes and Adj	justme	nts														
Approach	T	Eastk	oound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	1	0	0	2	1		1	0	1		0	0	0
Configuration			Т	R			Т	R		L		R				
Volume (veh/h)			1094	107			764	656		13		363				
Percent Heavy Vehicles (%)										1		1				
Proportion Time Blocked																
Percent Grade (%)										. ()					
Right Turn Channelized		١	No.			Υ	es			Y	es					
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)	T									7.5		6.9				
Critical Headway (sec)										7.52		6.92				
Base Follow-Up Headway (sec)										3.5		3.3				
Follow-Up Headway (sec)										3.51		3.31				
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	Т									13		370				
Capacity, c (veh/h)										84		476				
v/c Ratio										0.16		0.78				
95% Queue Length, Q ₉₅ (veh)										0.5		6.9				
95% Queue Length, Q ₉₅ (ft)										12.6		173.7				
Control Delay (s/veh)										55.6		34.4				
Level of Service (LOS)										F		D				
Approach Delay (s/veh)										35	5.1					
Approach LOS											<u> </u>					

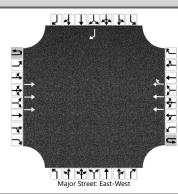
	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson I 25 NB
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/31/2024	East/West Street	Gibson Boulevard
Analysis Year	2026	North/South Street	I 25 NB
Time Analyzed	Full Build PM	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		


Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	1	0	0	2	1		1	0	1		0	0	0
Configuration			Т	R			Т	R		L		R				
Volume (veh/h)			1064	154			1457	1059		50		484				
Percent Heavy Vehicles (%)										0		0				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized		N	10			Y	es			Ye	es					
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)										7.5		6.9				
Critical Headway (sec)	Т									7.50		6.90				
Base Follow-Up Headway (sec)	Т									3.5		3.3				
Follow-Up Headway (sec)	Т									3.50		3.30				
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	T									53		509				
Capacity, c (veh/h)										44		477				
v/c Ratio										1.19		1.07				
95% Queue Length, Q ₉₅ (veh)										5.0		16.0				
95% Queue Length, Q ₉₅ (ft)										125.0		400.0				
Control Delay (s/veh)										344.5		90.1				
Level of Service (LOS)										F		F				
Approach Delay (s/veh)									114.0							
Approach LOS											=					

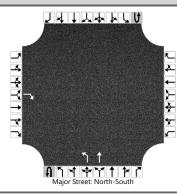
	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson and Mulberry
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/21/2024	East/West Street	Gibson Boulevard
Analysis Year	2026	North/South Street	Mulberry Street
Time Analyzed	Full Build MD	Peak Hour Factor	0.99
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		


Vehicle Volumes and Adj	ustme	nts														
Approach		Eastk	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	3	0	0	1	3	0		1	0	1		0	0	0
Configuration			Т	TR		L	Т			L		R				
Volume (veh/h)			1400	53	6	45	1375			42		53				
Percent Heavy Vehicles (%)					0	1				0		0				
Proportion Time Blocked																
Percent Grade (%)										. ()					
Right Turn Channelized										Ν	lo					
Median Type Storage				Left +	- Thru								1			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)					5.6	5.3				6.4		7.1				
Critical Headway (sec)					5.60	5.32				5.70		7.10				
Base Follow-Up Headway (sec)					2.3	3.1				3.8		3.9				
Follow-Up Headway (sec)					2.30	3.11				3.80		3.90				
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)						52				42		54				
Capacity, c (veh/h)						242				109		314				
v/c Ratio						0.21				0.39		0.17				
95% Queue Length, Q ₉₅ (veh)						0.8				1.6		0.6				
95% Queue Length, Q ₉₅ (ft)						20.1				40.0		15.0				
Control Delay (s/veh)						23.9	4.6			58.0		18.8				
Level of Service (LOS)						С	А			F		С				
Approach Delay (s/veh)						5	.2			36	5.1					
Approach LOS							Α				E E					

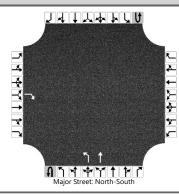
	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson and Mulberry
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/21/2024	East/West Street	Gibson Boulevard
Analysis Year	2026	North/South Street	Mulberry Street
Time Analyzed	Full Build PM	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		


Vehicle Volumes and Adj	justme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	3	0	0	1	3	0		1	0	1		0	0	0
Configuration			Т	TR		L	Т			L		R				
Volume (veh/h)			1468	75	4	32	2461			24		41				
Percent Heavy Vehicles (%)					0	0				0		0				
Proportion Time Blocked																
Percent Grade (%)										. ()					
Right Turn Channelized										Ν	lo					
Median Type Storage				Left -	+ Thru								1			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)					5.6	5.3				6.4		7.1				
Critical Headway (sec)					5.60	5.30				5.70		7.10				
Base Follow-Up Headway (sec)					2.3	3.1				3.8		3.9				
Follow-Up Headway (sec)					2.30	3.10				3.80		3.90				
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)						38				25		43				
Capacity, c (veh/h)						205				77		280				
v/c Ratio						0.18				0.33		0.15				
95% Queue Length, Q ₉₅ (veh)						0.7				1.2		0.5				
95% Queue Length, Q ₉₅ (ft)						17.5				30.0		12.5				
Control Delay (s/veh)						26.5	4.8			72.9		20.2				
Level of Service (LOS)						D	А			F		С				
Approach Delay (s/veh)						5	.1			39	9.7					
Approach LOS							Α				E					

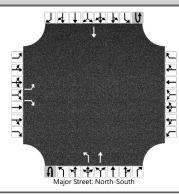
	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson Site DWY 1
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/31/2024	East/West Street	Gibson Boulevard
Analysis Year	2026	North/South Street	Site DWY 1
Time Analyzed	Full Build MD	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		


Approach		Eastk	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	3	0	0	0	3	0		0	0	0		0	0	1
Configuration			Т				Т	TR								R
Volume (veh/h)			1460				1335	0								101
Percent Heavy Vehicles (%)																2
Proportion Time Blocked																
Percent Grade (%)														(0	
Right Turn Channelized														Y	es	
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)																7.1
Critical Headway (sec)																7.13
Base Follow-Up Headway (sec)																3.9
Follow-Up Headway (sec)																3.92
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	Т															110
Capacity, c (veh/h)																316
v/c Ratio																0.35
95% Queue Length, Q ₉₅ (veh)																1.5
95% Queue Length, Q ₉₅ (ft)																38.0
Control Delay (s/veh)																22.4
Level of Service (LOS)																С
Approach Delay (s/veh)														22	2.4	
Approach LOS	С									C						

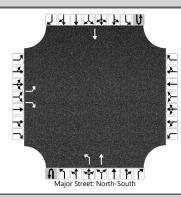
	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson Site DWY 1
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/31/2024	East/West Street	Gibson Boulevard
Analysis Year	2026	North/South Street	Site DWY 1
Time Analyzed	Full Build PM	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		


Approach		Eastb	oound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	3	0	0	0	3	0		0	0	0		0	0	1
Configuration			Т				Т	TR								R
Volume (veh/h)			1513				2397	0								90
Percent Heavy Vehicles (%)																2
Proportion Time Blocked																
Percent Grade (%)														(0	
Right Turn Channelized														Ν	lo	
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)																7.1
Critical Headway (sec)																7.13
Base Follow-Up Headway (sec)																3.9
Follow-Up Headway (sec)																3.92
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	Т															98
Capacity, c (veh/h)																130
v/c Ratio																0.75
95% Queue Length, Q ₉₅ (veh)																4.4
95% Queue Length, Q ₉₅ (ft)																111.
Control Delay (s/veh)																88.6
Level of Service (LOS)																F
Approach Delay (s/veh)									88.6							
Approach LOS	_				1										F	

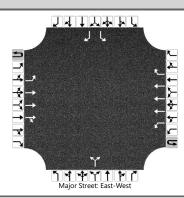
	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Alumni Site DWY 2
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/31/2024	East/West Street	Site DWY 2
Analysis Year	2026	North/South Street	Alumni Drive
Time Analyzed	Full Build MD	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		


Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	1		0	0	0	0	1	1	0	0	0	0	0
Configuration				R						L	Т					
Volume (veh/h)				12						66	0					
Percent Heavy Vehicles (%)				3						3						
Proportion Time Blocked																
Percent Grade (%)			0													
Right Turn Channelized		Ν	lo													
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)				7.1						5.3						
Critical Headway (sec)				7.13						5.33						
Base Follow-Up Headway (sec)				3.9						3.1						
Follow-Up Headway (sec)				3.93						3.13						
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	T			13						72						
Capacity, c (veh/h)				917						1151						
v/c Ratio				0.01						0.06						
95% Queue Length, Q ₉₅ (veh)				0.0						0.2						
95% Queue Length, Q ₉₅ (ft)				0.0						5.1						
Control Delay (s/veh)				9.0						8.3						
Level of Service (LOS)				Α						А						
Approach Delay (s/veh)		9	.0	•						8	.3	•			•	
Approach LOS		,	Ą							A	4					

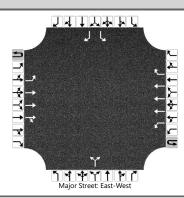
	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Alumni Site DWY 2
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/31/2024	East/West Street	Site DWY 2
Analysis Year	2026	North/South Street	Alumni Drive
Time Analyzed	Full Build PM	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		


Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	1		0	0	0	0	1	1	0	0	0	0	0
Configuration				R						L	Т					
Volume (veh/h)				10						51	0					
Percent Heavy Vehicles (%)				3						3						
Proportion Time Blocked																
Percent Grade (%))													
Right Turn Channelized		N	lo													
Median Type Storage				Undi	vided											
Critical and Follow-up H	leadwa	ys														
Base Critical Headway (sec)				7.1						5.3						
Critical Headway (sec)				7.13						5.33						
Base Follow-Up Headway (sec)				3.9						3.1						
Follow-Up Headway (sec)				3.93						3.13						
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)				11						55						
Capacity, c (veh/h)				917						1151						
v/c Ratio				0.01						0.05						
95% Queue Length, Q ₉₅ (veh)				0.0						0.2						
95% Queue Length, Q ₉₅ (ft)				0.0						5.1						
Control Delay (s/veh)				9.0						8.3						
Level of Service (LOS)				А						А						
Approach Delay (s/veh)		9	.0							8	.3	•			•	
Approach LOS			4							-	4					

	HCS Two-Way Stop	-Control Report								
General Information		Site Information								
Analyst	AY	Intersection	Alumni Site DWY 3							
Agency/Co.	Lee	Jurisdiction	COA							
Date Performed	5/31/2024	East/West Street	Site DWY 3							
Analysis Year	2026	North/South Street	Alumni Drive							
Time Analyzed	Full Build MD	Peak Hour Factor	0.92							
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25							
Project Description	Gibson In-N-Out									


Approach	T	Eastb	ound			Westl	oound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		1	0	1		0	0	0	0	1	1	0	0	0	1	0	
Configuration		L		R						L	Т				Т		
Volume (veh/h)		0		38						89	66				4		
Percent Heavy Vehicles (%)		3		3						3							
Proportion Time Blocked																	
Percent Grade (%)		. (0														
Right Turn Channelized		Ν	lo														
Median Type Storage				Undi	vided												
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)		7.1		6.2						4.1							
Critical Headway (sec)		6.43		6.23						4.13							
Base Follow-Up Headway (sec)		3.5		3.3						2.2							
Follow-Up Headway (sec)		3.53		3.33						2.23							
Delay, Queue Length, an	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)	T	0		41						97							
Capacity, c (veh/h)		674		1076						1611							
v/c Ratio		0.00		0.04						0.06							
95% Queue Length, Q ₉₅ (veh)		0.0		0.1						0.2							
95% Queue Length, Q ₉₅ (ft)				2.6						5.1							
Control Delay (s/veh)		10.3		8.5						7.4							
Level of Service (LOS)		В		А						А							
Approach Delay (s/veh)		8	.5							4	.2						
Approach LOS		A								A							

	HCS Two-Way Stop	pp-Control Report							
General Information		Site Information							
Analyst	AY	Intersection	Alumni Site DWY 3						
Agency/Co.	Lee	Jurisdiction	COA						
Date Performed	5/31/2024	East/West Street	Site DWY 3						
Analysis Year	2026	North/South Street	Alumni Drive						
Time Analyzed	Full Build PM	Peak Hour Factor	0.92						
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25						
Project Description	Gibson In-N-Out								

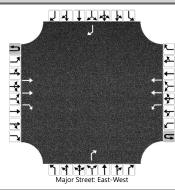

Vehicle Volumes and Ad	justme	nts														
Approach	Т	Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		1	0	1		0	0	0	0	1	1	0	0	0	1	0
Configuration		L		R						L	T				Т	
Volume (veh/h)		0		33						86	51				10	
Percent Heavy Vehicles (%)		3		3						3						
Proportion Time Blocked																
Percent Grade (%)			0													
Right Turn Channelized		N	lo													
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)	T	7.1		6.2						4.1						
Critical Headway (sec)		6.43		6.23						4.13						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.53		3.33						2.23						
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)	Т	0		36						93						
Capacity, c (veh/h)		690		1067						1602						
v/c Ratio		0.00		0.03						0.06						
95% Queue Length, Q ₉₅ (veh)		0.0		0.1						0.2						
95% Queue Length, Q ₉₅ (ft)				2.6						5.1						
Control Delay (s/veh)		10.2		8.5						7.4						
Level of Service (LOS)		В		А						А						
Approach Delay (s/veh)		8	.5							4	.6					
Approach LOS			Ą								Α					

	HCS Two-Way Stop	p-Control Report						
General Information		Site Information						
Analyst	AY	Intersection	Gibson and Alumni					
Agency/Co.	Lee	Jurisdiction	COA					
Date Performed	5/21/2024	East/West Street	Gibson Boulevard					
Analysis Year	2026	North/South Street	Alumni Drive					
Time Analyzed	Full Build PM	Peak Hour Factor	0.95					
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25					
Project Description	Gibson In-N-Out							

Vehicle Volumes and Ad	T					\A/a a+h			Ι	N I a set la	la a al			C =	la a al			
Approach			ound			Westk				North				Southl				
Movement	U	L	Т	R	U	L	T	R	U	L	T	R	U	L	T	R		
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12		
Number of Lanes	0	1	3	0	0	1	3	1		0	1	0		1	0	1		
Configuration		L	Т	TR		L	Т	R			LR			L		R		
Volume (veh/h)	17	105	1357	29	4	37	2349	82		10		36		70		20		
Percent Heavy Vehicles (%)	0	0			0	0				0		3		0		0		
Proportion Time Blocked																		
Percent Grade (%)										()			()			
Right Turn Channelized						Ν	lo							N	О			
Median Type Storage		Left + Thru									1							
Critical and Follow-up H	eadwa	ys																
Base Critical Headway (sec)	5.6	5.3			5.6	5.3				6.4		7.1		6.4		7.1		
Critical Headway (sec)	5.60	5.30			5.60	5.30				6.40		7.16		6.40		7.10		
Base Follow-Up Headway (sec)	2.3	3.1			2.3	3.1				3.8		3.9		3.8		3.9		
Follow-Up Headway (sec)	2.30	3.10			2.30	3.10				3.80		3.93		3.80		3.90		
Delay, Queue Length, an	d Leve	l of S	ervice															
Flow Rate, v (veh/h)		128				43					48			74		21		
Capacity, c (veh/h)		72				242					0			16		146		
v/c Ratio		1.79				0.18								4.55		0.14		
95% Queue Length, Q ₉₅ (veh)		11.3				0.6								10.0		0.5		
95% Queue Length, Q ₉₅ (ft)		282.5				15.0								250.0		12.5		
Control Delay (s/veh)		503.1				23.0								2070.6		33.7		
Level of Service (LOS)		F				С								F		D		
Approach Delay (s/veh)		40).7			0	.4											
Approach LOS		40.7 0.4 1618.0 F										=						

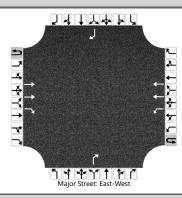
	HCS Two-Way Stop	p-Control Report							
General Information		Site Information							
Analyst	AY	Intersection	Gibson and Alumni						
Agency/Co.	Lee	Jurisdiction	COA						
Date Performed	5/21/2024	East/West Street	Gibson Boulevard						
Analysis Year	2026	North/South Street	Alumni Drive						
Time Analyzed	Full Build MD	Peak Hour Factor	0.97						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description	Gibson In-N-Out								

Vehicle Volumes and Adj	ustme	nts														
Approach	T	Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	3	0	0	1	3	1		0	1	0		1	0	1
Configuration		L	Т	TR		L	Т	R			LR			L		R
Volume (veh/h)	24	132	1261	50	3	40	1259	97		23		40		90		29
Percent Heavy Vehicles (%)	0	0			0	0				0		0		0		0
Proportion Time Blocked																
Percent Grade (%))			. ()	
Right Turn Channelized						Ν	lo							N	lo	
Median Type Storage				Left -	- Thru								1			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)	5.6	5.3			5.6	5.3				6.4		7.1		6.4		7.1
Critical Headway (sec)	5.60	5.30			5.60	5.30				6.40		7.10		6.40		7.10
Base Follow-Up Headway (sec)	2.3	3.1			2.3	3.1				3.8		3.9		3.8		3.9
Follow-Up Headway (sec)	2.30	3.10			2.30	3.10				3.80		3.90		3.80		3.90
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	T	161				44					65			93		30
Capacity, c (veh/h)		272				271					59			32		356
v/c Ratio		0.59				0.16					1.10			2.86		0.08
95% Queue Length, Q ₉₅ (veh)		3.5				0.6					5.3			10.8		0.3
95% Queue Length, Q ₉₅ (ft)		87.5				15.0					132.5			270.0		7.5
Control Delay (s/veh)		35.8				20.9					264.0			1098.4		16.0
Level of Service (LOS)		E				С					F			F		С
Approach Delay (s/veh)		. 3	.8			0	.6			26	4.0	•				
Approach LOS		,	Ą			,	4				F				F	

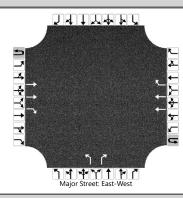

HCS Signalized Intersection Results Summary Intersection Information ياطلطه له لي **General Information** Duration, h 1.000 Agency Analyst Analysis Date 5/21/2024 Area Type Other PHF Jurisdiction CABQ Time Period Mitigated MD 1.00 **Urban Street** Gibson Boulevard Analysis Year 2026 Analysis Period 1> 7:00 Gibson & Alumni File Name Mitigated Gibson Alumni BO TOTAL MD.xus Intersection **Project Description** Gibson In-N-Out (Mitigated) BO Full Build MD WB **Demand Information** EB NB SB Approach Movement R L R L R R 40 Demand (v), veh/h 156 1261 50 43 1259 97 23 0 90 29 **Signal Information** Cycle, s 120.0 Reference Phase 2 Offset, s 0 Reference Point End Green 2.3 0.0 3.4 74.9 10.5 11.8 Uncoordinated No Simult. Gap E/W On Yellow 3.0 0.0 4.0 3.0 0.0 3.0 Force Mode Fixed Simult. Gap N/S On Red 1.0 0.0 1.0 1.0 1.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL **SBT Assigned Phase** 5 2 6 4 8 1 Case Number 1.1 4.0 1.1 3.0 12.0 9.0 Phase Duration, s 9.8 83.4 6.3 79.9 14.5 15.8 4.0 5.0 4.0 5.0 4.0 4.0 Change Period, (Y+Rc), s Max Allow Headway (MAH), s 3.0 0.0 3.0 0.0 3.2 3.3 Queue Clearance Time (g_s), s 5.6 3.0 6.3 7.7 Green Extension Time (g_e), s 0.2 0.0 0.0 0.0 0.1 0.2 Phase Call Probability 0.99 0.76 0.88 0.98 0.00 0.00 0.00 0.00 Max Out Probability **Movement Group Results** EΒ **WB** NB SB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 5 2 12 1 6 16 7 4 14 3 18 Adjusted Flow Rate (v), veh/h 156 880 431 43 1259 97 63 90 29 1810 1900 1861 1810 1712 1610 1678 1810 1610 Adjusted Saturation Flow Rate (s), veh/h/ln 3.6 12.6 12.6 1.0 14.6 2.9 4.3 5.7 2.0 Queue Service Time (g_s), s Cycle Queue Clearance Time (g c), s 3.6 12.6 12.6 1.0 14.6 2.9 4.3 5.7 2.0 Green Ratio (g/C) 0.68 0.65 0.65 0.64 0.62 0.62 0.09 0.10 0.10 Capacity (c), veh/h 372 2481 1215 322 3206 1005 147 178 158 Volume-to-Capacity Ratio (X) 0.419 0.355 0.355 0.134 0.393 0.096 0.428 0.507 0.184 Back of Queue (Q), ft/ln (95 th percentile) 54 208 211 17 221 44 81 119 37 Back of Queue (Q), veh/ln (95 th percentile) 2.2 8.3 8.4 0.7 8.8 1.8 3.2 4.7 1.5 Queue Storage Ratio (RQ) (95 th percentile) 0.24 0.00 0.00 0.09 0.00 0.00 0.00 0.52 0.16 51.4 49.7 Uniform Delay (d 1), s/veh 8.2 9.4 9.4 8.4 11.2 9.0 51.9 0.2 Incremental Delay (d 2), s/veh 0.3 0.4 8.0 0.1 0.4 0.2 0.7 8.0 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.8 Control Delay (d), s/veh 8.5 10.2 8.4 11.6 9.2 52.6 52.2 49.9 Level of Service (LOS) Α Α В Α В Α D D D 9.8 11.3 В 52.6 Approach Delay, s/veh / LOS Α D 51.6 D Intersection Delay, s/veh / LOS 13.0 В **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 1.65 В 1.88 В 2.74 2.62 С С Bicycle LOS Score / LOS 1.29 Α 1.26 Α 0.59 Α

HCS Signalized Intersection Results Summary Intersection Information ياطلطه له لي **General Information** Duration, h 1.000 Agency Analyst Analysis Date 5/21/2024 Area Type Other PHF Jurisdiction CABQ Time Period Full Build PM 1.00 **Urban Street** Gibson Boulevard Analysis Year 2026 **Analysis Period** 1> 7:00 Gibson & Alumni File Name Mitigated Gibson Alumni BO TOTAL PM.xus Intersection **Project Description** Gibson In-N-Out (Mitigated) BO Full Build PM WB **Demand Information** EB NB SB Approach Movement R L R R R 82 36 Demand (v), veh/h 122 1357 29 41 2349 10 0 70 20 **Signal Information** Cycle, s 120.0 Reference Phase 2 Offset, s 0 Reference Point End Green 2.2 2.6 0.0 77.4 9.4 11.4 Uncoordinated No Simult. Gap E/W On Yellow 3.0 0.0 4.0 3.0 3.0 0.0 Force Mode Fixed Simult. Gap N/S On Red 1.0 0.0 1.0 1.0 1.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 5 2 6 4 8 1 Case Number 1.1 4.0 1.1 3.0 12.0 9.0 Phase Duration, s 8.8 85.0 6.2 82.4 13.4 15.4 4.0 5.0 4.0 5.0 4.0 4.0 Change Period, (Y+Rc), s Max Allow Headway (MAH), s 3.0 0.0 3.0 0.0 3.3 3.3 Queue Clearance Time (g s), s 4.7 2.9 5.2 6.4 Green Extension Time (g_e), s 0.2 0.0 0.0 0.0 0.0 0.1 Phase Call Probability 0.98 0.75 0.78 0.95 0.00 0.00 0.00 0.00 Max Out Probability **Movement Group Results** EΒ **WB** NB SB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 5 2 12 1 6 16 7 4 14 3 18 Adjusted Flow Rate (v), veh/h 122 927 459 41 2349 82 46 70 20 1810 1900 1879 1810 1712 1610 1650 1810 1610 Adjusted Saturation Flow Rate (s), veh/h/ln 2.7 12.9 0.9 35.9 2.3 3.2 4.4 1.4 Queue Service Time (g_s), s 12.9 2.3 Cycle Queue Clearance Time (q c), s 2.7 12.9 12.9 0.9 35.9 3.2 4.4 1.4 0.64 Green Ratio (g/C) 0.69 0.67 0.67 0.66 0.64 0.08 0.10 0.10 Capacity (c), veh/h 186 2532 1252 309 3312 1039 129 172 153 Volume-to-Capacity Ratio (X) 0.657 0.366 0.366 0.133 0.709 0.079 0.356 0.407 0.131 Back of Queue (Q), ft/ln (95 th percentile) 103 210 214 15 458 34 59 91 25 Back of Queue (Q), veh/ln (95 th percentile) 4.1 8.4 8.5 0.6 18.2 1.4 2.4 3.7 1.0 Queue Storage Ratio (RQ) (95 th percentile) 0.45 0.00 0.00 0.08 0.00 0.00 0.00 0.40 0.11 52.4 49.8 Uniform Delay (d 1), s/veh 22.4 8.8 8.8 7.7 13.9 8.0 51.1 0.1 Incremental Delay (d 2), s/veh 1.5 0.4 8.0 0.1 1.3 0.1 0.6 0.6 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 23.9 9.3 9.7 7.7 15.3 8.1 53.0 51.7 49.9 Level of Service (LOS) С Α Α Α В Α D D D 10.6 В 14.9 В 53.0 Approach Delay, s/veh / LOS D 51.3 D Intersection Delay, s/veh / LOS 14.5 В **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 1.65 В В 2.74 2.62 1.88 С С Bicycle LOS Score / LOS 1.32 Α 1.85 0.56 Α

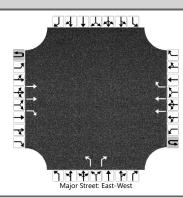
HCS Signalized Intersection Results Summary 11f Sameter Intersection Information **General Information** Duration, h 1.000 Agency Analyst Analysis Date 5/21/2024 Area Type Other PHF Jurisdiction CABQ Time Period Full Build MD 1.00 **Urban Street** Gibson Boulevard Analysis Year 2026 **Analysis Period** 1> 7:00 University and Gibson File Name 8 University-Gibson BO TOTAL MD.xus Intersection **Project Description** Gibson In-N-Out BO Total MD WB **Demand Information** EB NB SB Approach Movement R L R L R L R 105 147 Demand (v), veh/h 156 1033 146 113 1133 197 96 101 179 77 **Signal Information** Cycle, s 120.0 Reference Phase 2 RAS Offset, s 0 Reference Point End 0.0 Green 5.3 1.4 66.2 8.5 20.6 Uncoordinated No Simult. Gap E/W On Yellow 3.0 0.0 4.5 3.0 0.0 4.0 Force Mode Fixed Simult. Gap N/S On Red 0.5 0.0 1.0 0.5 1.5 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 5 2 6 4 8 1 7 Case Number 1.1 3.0 1.1 3.0 1.0 4.0 5.3 Phase Duration, s 10.2 73.1 8.8 71.7 12.0 38.1 26.1 5.5 5.5 3.5 5.5 Change Period, (Y+Rc), s 3.5 3.5 5.5 Max Allow Headway (MAH), s 3.0 0.0 3.0 0.0 3.1 3.4 3.4 Queue Clearance Time (g s), s 6.4 5.2 10.5 13.2 19.3 Green Extension Time (g_e), s 0.2 0.0 0.2 0.0 0.0 1.4 1.3 Phase Call Probability 0.99 0.98 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Max Out Probability 1.00 SB **Movement Group Results** EΒ **WB** NB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 5 2 12 1 6 16 7 4 14 3 8 18 Adjusted Flow Rate (v), veh/h 156 1033 146 113 1133 105 197 197 179 77 147 Adjusted Saturation Flow Rate (s), veh/h/ln 1810 1725 1598 1810 1712 1610 1810 1739 1204 1900 1610 4.4 13.1 3.2 15.2 3.8 8.5 11.2 17.3 4.2 10.0 Queue Service Time (g_s), s 5.3 Cycle Queue Clearance Time (q c), s 4.4 13.1 5.3 3.2 15.2 3.8 8.5 11.2 17.3 4.2 10.0 0.27 0.17 Green Ratio (g/C) 0.61 0.56 0.56 0.60 0.55 0.55 0.26 0.17 0.17 Capacity (c), veh/h 375 2916 900 382 2833 888 372 473 267 327 277 Volume-to-Capacity Ratio (X) 0.416 0.354 0.162 0.296 0.400 0.118 0.529 0.416 0.670 0.236 0.531 Back of Queue (Q), ft/ln (95 th percentile) 74 210 84 54 240 60 42 206 228 91 184 Back of Queue (Q), veh/ln (95 th percentile) 3.0 8.4 3.3 2.2 9.5 2.4 1.7 8.2 9.1 3.6 7.3 Queue Storage Ratio (RQ) (95 th percentile) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 35.9 Uniform Delay (d 1), s/veh 11.5 14.3 12.6 11.4 15.5 12.9 38.4 48.3 42.9 45.3 Incremental Delay (d 2), s/veh 0.3 0.3 0.4 0.2 0.4 0.3 0.7 0.2 1.1 0.1 0.6 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 11.8 14.6 13.0 11.6 15.9 13.2 39.1 36.1 49.4 43.0 45.9 Level of Service (LOS) В В В В В В D D D D D 14.1 В 15.3 В 37.6 46.9 Approach Delay, s/veh / LOS D D Intersection Delay, s/veh / LOS 21.0 С **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 1.90 В 2.09 В 2.72 2.73 С С Bicycle LOS Score / LOS 1.22 Α 1.23 Α 1.14 Α 1.15 Α


HCS Signalized Intersection Results Summary 11f Sameter Intersection Information **General Information** Duration, h 1.000 Agency Analyst Analysis Date 5/21/2024 Area Type Other PHF Jurisdiction CABQ Time Period Full Build PM 1.00 **Urban Street** Gibson Boulevard Analysis Year 2026 Analysis Period 1> 7:00 University and Gibson File Name 8 University-Gibson BO TOTAL PM.xus Intersection **Project Description** Gibson In-N-Out BO Total PM WB **Demand Information** EB NB SB Approach Movement R L R L R L R Demand (v), veh/h 192 1266 124 92 2129 187 180 84 73 152 56 152 **Signal Information** Cycle, s 130.0 Reference Phase 2 Offset, s 0 Reference Point End 18.5 0.0 Green 4.7 0.2 73.0 12.1 Uncoordinated No Simult. Gap E/W On Yellow 3.0 3.0 4.5 3.0 0.0 4.0 Force Mode Fixed Simult. Gap N/S On Red 0.5 0.5 1.0 0.5 1.5 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 5 2 6 4 8 1 7 Case Number 1.1 3.0 1.1 3.0 1.0 4.0 5.3 Phase Duration, s 11.9 82.2 8.2 78.5 15.6 39.6 24.0 3.5 5.5 5.5 3.5 5.5 5.5 Change Period, (Y+Rc), s 3.5 Max Allow Headway (MAH), s 3.0 0.0 3.0 0.0 3.1 3.4 3.4 Queue Clearance Time (g s), s 8.1 4.8 12.8 11.4 17.4 Green Extension Time (g_e), s 0.3 0.0 0.1 0.0 0.0 1.1 1.1 Phase Call Probability 1.00 0.96 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Max Out Probability 1.00 SB **Movement Group Results** EΒ WB NB Approach Movement L Т R L Т R L Т R L Т R 12 **Assigned Movement** 5 2 1 6 16 7 4 14 3 8 18 192 1266 124 92 2129 187 180 157 152 56 152 Adjusted Flow Rate (v), veh/h Adjusted Saturation Flow Rate (s), veh/h/ln 1810 1725 1598 1810 1610 1810 1753 1249 1900 1610 1712 6.1 17.3 2.8 40.4 7.5 15.4 3.4 11.6 Queue Service Time (g_s), s 4.5 10.8 9.4 7.5 Cycle Queue Clearance Time (q c), s 6.1 17.3 4.5 2.8 40.4 10.8 9.4 15.4 3.4 11.6 0.59 Green Ratio (g/C) 0.64 0.59 0.60 0.56 0.56 0.25 0.26 0.14 0.14 0.14 Capacity (c), veh/h 221 3052 942 318 2883 904 383 460 233 270 229 Volume-to-Capacity Ratio (X) 0.870 0.415 0.132 0.290 0.739 0.207 0.470 0.341 0.652 0.207 0.663 Back of Queue (Q), ft/ln (95 th percentile) 161 264 72 48 549 123 209 182 216 74 211 Back of Queue (Q), veh/ln (95 th percentile) 6.4 10.6 2.9 1.9 21.8 4.9 8.4 7.3 8.6 3.0 8.4 Queue Storage Ratio (RQ) (95 th percentile) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 54.4 Uniform Delay (d 1), s/veh 28.9 14.5 11.9 12.3 21.4 14.2 40.6 38.8 49.3 52.8 Incremental Delay (d 2), s/veh 4.3 0.4 0.3 0.2 1.8 0.5 0.3 0.2 1.2 0.1 1.2 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 33.2 14.9 12.2 12.4 23.1 14.7 41.0 39.0 55.6 49.4 54.0 Level of Service (LOS) С В В В С В D D Ε D D 16.9 В 22.1 С 40.1 54.0 Approach Delay, s/veh / LOS D D Intersection Delay, s/veh / LOS 24.1 С **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 1.89 В 2.09 В 2.73 2.74 С С Bicycle LOS Score / LOS 1.36 Α 1.81 1.04 Α 1.08 Α

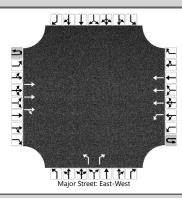
	HCS Two-Way Stop	op-Control Report								
General Information		Site Information								
Analyst	AY	Intersection	Gibson I 25 SB							
Agency/Co.	Lee	Jurisdiction	COA							
Date Performed	5/31/2024	East/West Street	Gibson Boulevard							
Analysis Year	2036	North/South Street	I 25 SB							
Time Analyzed	Horizon BG MD	Peak Hour Factor	0.96							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							
Project Description	Gibson In-N-Out									


Approach		Facth	ound			Westk	ound			Morth	bound		Southbound			
··-		1		_				_				_				
Movement	U	L	Т	R	U	L	T	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	1	0	1	2	0		0	0	1		0	0	1
Configuration			Т	R		L	Т					R				R
Volume (veh/h)			596	27	1	343	469					625				136
Percent Heavy Vehicles (%)					1	1						1				2
Proportion Time Blocked																
Percent Grade (%)										()			(0	
Right Turn Channelized		١	lo							Y	es			Y	es	
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)					6.4	4.1						6.9				6.9
Critical Headway (sec)					6.42	4.12						6.92				6.93
Base Follow-Up Headway (sec)					2.5	2.2						3.3				3.3
Follow-Up Headway (sec)					2.51	2.21						3.31				3.32
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)						358						651				142
Capacity, c (veh/h)						867						688				757
v/c Ratio						0.41						0.95				0.19
95% Queue Length, Q ₉₅ (veh)						2.0						13.5				0.7
95% Queue Length, Q ₉₅ (ft)						50.4						340.2				17.7
Control Delay (s/veh)						12.0						46.8				10.8
Level of Service (LOS)						В						Е				В
Approach Delay (s/veh)					5.1				46.8				10.8			
Approach LOS					A			E				В				

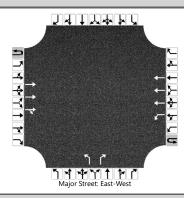
	HCS Two-Way Stop	op-Control Report							
General Information		Site Information							
Analyst	AY	Intersection	Gibson I 25 SB						
Agency/Co.	Lee	Jurisdiction	COA						
Date Performed	5/31/2024	East/West Street	Gibson Boulevard						
Analysis Year	2036	North/South Street	I 25 SB						
Time Analyzed	Horizon BG PM	Peak Hour Factor	0.95						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description	Gibson In-N-Out								


Vehicle Volumes and Adj	ustme	nts																
Approach		Eastk	oound			Westl	oound			North	bound			South	bound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R		
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12		
Number of Lanes	0	0	2	1	0	1	2	0		0	0	1		0	0	1		
Configuration			Т	R		L	Т					R				R		
Volume (veh/h)			692	41	2	809	819					554				184		
Percent Heavy Vehicles (%)					0	0						0				3		
Proportion Time Blocked																		
Percent Grade (%))			. (0			
Right Turn Channelized		N	10							Y	es			Y	es			
Median Type Storage				Undi	vided													
Critical and Follow-up H	eadwa	ys																
Base Critical Headway (sec)					6.4	4.1						6.9				6.9		
Critical Headway (sec)					6.40	4.10						6.90				6.96		
Base Follow-Up Headway (sec)					2.5	2.2						3.3				3.3		
Follow-Up Headway (sec)					2.50	2.20						3.30				3.33		
Delay, Queue Length, an	d Leve	l of S	ervice															
Flow Rate, v (veh/h)	T					854						583				194		
Capacity, c (veh/h)						815						638				570		
v/c Ratio						1.05						0.91				0.34		
95% Queue Length, Q ₉₅ (veh)						20.5						11.7				1.5		
95% Queue Length, Q ₉₅ (ft)						512.5						292.5				38.4		
Control Delay (s/veh)						67.0						43.1				14.5		
Level of Service (LOS)						F						Е				В		
Approach Delay (s/veh)						33	3.3			43	3.1			14.5				
Approach LOS							F				E E				В			

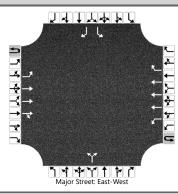
	HCS Two-Way Stop-Control Report													
General Information		Site Information												
Analyst	AY	Intersection	Gibson I 25 NB											
Agency/Co.	Lee	Jurisdiction	COA											
Date Performed	5/31/2024	East/West Street	Gibson Boulevard											
Analysis Year	2036	North/South Street	I 25 NB											
Time Analyzed	Horizon BG MD	Peak Hour Factor	0.98											
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25											
Project Description	Gibson In-N-Out													


Vehicle Volumes and Ad	justme	nts														
Approach	T	Eastl	oound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	1	0	0	2	1		1	0	1		0	0	0
Configuration			Т	R			Т	R		L		R				
Volume (veh/h)			1146	120			795	692		15		372				
Percent Heavy Vehicles (%)										1		1				
Proportion Time Blocked																
Percent Grade (%))					
Right Turn Channelized		١	10			Υ	es			Y	es					
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)	T									7.5		6.9				
Critical Headway (sec)										7.52		6.92				
Base Follow-Up Headway (sec)										3.5		3.3				
Follow-Up Headway (sec)										3.51		3.31				
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	Т									15		380				
Capacity, c (veh/h)										75		457				
v/c Ratio										0.20		0.83				
95% Queue Length, Q ₉₅ (veh)										0.7		8.0				
95% Queue Length, Q ₉₅ (ft)										17.6		201.4				
Control Delay (s/veh)										65.1		41.0				
Level of Service (LOS)										F		E				
Approach Delay (s/veh)										4	1.9					
Approach LOS											E E					

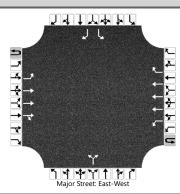
	HCS Two-Way Stop-Control Report													
General Information		Site Information												
Analyst	AY	Intersection	Gibson I 25 NB											
Agency/Co.	Lee	Jurisdiction	COA											
Date Performed	5/31/2024	East/West Street	Gibson Boulevard											
Analysis Year	2036	North/South Street	I 25 NB											
Time Analyzed	Horizon BG PM	Peak Hour Factor	0.95											
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25											
Project Description	Gibson In-N-Out													


Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	1	0	0	2	1		1	0	1		0	0	0
Configuration			Т	R			Т	R		L		R				
Volume (veh/h)			1131	172			1574	1147		55		508				
Percent Heavy Vehicles (%)										0		0				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized		N	10			Y	es			Ye	es					
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)										7.5		6.9				
Critical Headway (sec)										7.50		6.90				
Base Follow-Up Headway (sec)										3.5		3.3				
Follow-Up Headway (sec)										3.50		3.30				
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	T									58		535				
Capacity, c (veh/h)										35		452				
v/c Ratio										1.65		1.18				
95% Queue Length, Q ₉₅ (veh)										6.3		20.2				
95% Queue Length, Q ₉₅ (ft)										157.5		505.0				
Control Delay (s/veh)										568.3		130.9				
Level of Service (LOS)										F		F				
Approach Delay (s/veh)									173.6							
Approach LOS											=					

	HCS Two-Way Stop-Control Report													
General Information		Site Information												
Analyst	AY	Intersection	Gibson and Mulberry											
Agency/Co.	Lee	Jurisdiction	COA											
Date Performed	5/21/2024	East/West Street	Gibson Boulevard											
Analysis Year	2036	North/South Street	Mulberry Street											
Time Analyzed	Horizon BG MD	Peak Hour Factor	0.99											
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25											
Project Description	Gibson In-N-Out													


Vehicle Volumes and Adj	justme	nts														
Approach		Eastk	oound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	3	0	0	1	3	0		1	0	1		0	0	0
Configuration			Т	TR		L	Т			L		R				
Volume (veh/h)			1457	59	7	48	1437			46		57				
Percent Heavy Vehicles (%)					0	1				0		0				
Proportion Time Blocked																
Percent Grade (%))					
Right Turn Channelized										N	lo					
Median Type Storage				Left -	+ Thru								1			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)					5.6	5.3				6.4		7.1				
Critical Headway (sec)					5.60	5.32				5.70		7.10				
Base Follow-Up Headway (sec)					2.3	3.1				3.8		3.9				
Follow-Up Headway (sec)					2.30	3.11				3.80		3.90				
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)						56				46		58				
Capacity, c (veh/h)						225				98		299				
v/c Ratio						0.25				0.47		0.19				
95% Queue Length, Q ₉₅ (veh)						0.9				2.0		0.7				
95% Queue Length, Q ₉₅ (ft)						22.7				50.0		17.5				
Control Delay (s/veh)						26.1	5.7			70.8		19.9				
Level of Service (LOS)						D	А			F		С				
Approach Delay (s/veh)	6.5						42.6									
Approach LOS							Α				E					

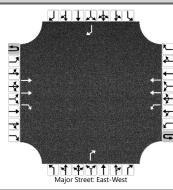
	HCS Two-Way Stop-Control Report													
General Information		Site Information												
Analyst	AY	Intersection	Gibson and Mulberry											
Agency/Co.	Lee	Jurisdiction	COA											
Date Performed	5/21/2024	East/West Street	Gibson Boulevard											
Analysis Year	2036	North/South Street	Mulberry Street											
Time Analyzed	Horizon BG PM	Peak Hour Factor	0.95											
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25											
Project Description	Gibson In-N-Out													


Vehicle Volumes and Adj	ustme	nts														
Approach		Eastk	oound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	3	0	0	1	3	0		1	0	1		0	0	0
Configuration			Т	TR		L	Т			L		R				
Volume (veh/h)			1553	83	5	34	2661			27		44				
Percent Heavy Vehicles (%)					0	0				0		0				
Proportion Time Blocked																
Percent Grade (%)										. ()					
Right Turn Channelized										Ν	lo					
Median Type Storage				Left -	- Thru								1			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)					5.6	5.3				6.4		7.1				
Critical Headway (sec)					5.60	5.30				5.70		7.10				
Base Follow-Up Headway (sec)					2.3	3.1				3.8		3.9				
Follow-Up Headway (sec)					2.30	3.10				3.80		3.90				
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	T					41				28		46				
Capacity, c (veh/h)						184				65		260				
v/c Ratio						0.22				0.43		0.18				
95% Queue Length, Q ₉₅ (veh)						0.8				1.7		0.6				
95% Queue Length, Q ₉₅ (ft)						20.0				42.5		15.0				
Control Delay (s/veh)						30.0	6.5			97.0		21.8				
Level of Service (LOS)						D	А			F		С				
Approach Delay (s/veh)	6.9						50.4									
Approach LOS							Α				F					

	HCS Two-Way Stop-Control Report													
General Information		Site Information												
Analyst	AY	Intersection	Gibson and Alumni											
Agency/Co.	Lee	Jurisdiction	COA											
Date Performed	5/21/2024	East/West Street	Gibson Boulevard											
Analysis Year	2036	North/South Street	Alumni Drive											
Time Analyzed	Horizon BG MD	Peak Hour Factor	0.97											
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25											
Project Description	Gibson In-N-Out													

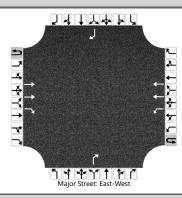
Vehicle Volumes and Adj	ustme	nts														
Approach	Τ		ound		l	Westl	oound		l	North	bound		l	South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	3	0	0	1	3	1		0	1	0		1	0	1
Configuration		L	Т	TR		L	Т	R			LR			L		R
Volume (veh/h)	26	44	1404	56	3	44	1421	33		26		44		40		30
Percent Heavy Vehicles (%)	0	0			0	0				0		0		0		0
Proportion Time Blocked																
Percent Grade (%))			. ()	
Right Turn Channelized						N	lo							N	lo	
Median Type Storage				Left -	- Thru								1			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)	5.6	5.3			5.6	5.3				6.4		7.1		6.4		7.1
Critical Headway (sec)	5.60	5.30			5.60	5.30				6.40		7.10		6.40		7.10
Base Follow-Up Headway (sec)	2.3	3.1			2.3	3.1				3.8		3.9		3.8		3.9
Follow-Up Headway (sec)	2.30	3.10			2.30	3.10				3.80		3.90		3.80		3.90
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)	Т	72				48					72			41		31
Capacity, c (veh/h)		265				227					94			49		314
v/c Ratio		0.27				0.21					0.77			0.85		0.10
95% Queue Length, Q ₉₅ (veh)		1.1				0.8					4.0			3.5		0.3
95% Queue Length, Q ₉₅ (ft)		27.5				20.0					100.0			87.5		7.5
Control Delay (s/veh)		23.6				25.1					117.7			215.6		17.7
Level of Service (LOS)		С				D					F			F		С
Approach Delay (s/veh)		1	.1	-	0.8			117.7				130.8				
Approach LOS		,	Ą			,	Δ.				F				F	

	HCS Two-Way Stop	op-Control Report								
General Information		Site Information								
Analyst	AY	Intersection	Gibson and Alumni							
Agency/Co.	Lee	Jurisdiction	COA							
Date Performed	5/21/2024	East/West Street	Gibson Boulevard							
Analysis Year	2036	North/South Street	Alumni Drive							
Time Analyzed	Horizon BG PM	Peak Hour Factor	0.95							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							
Project Description	Gibson In-N-Out									

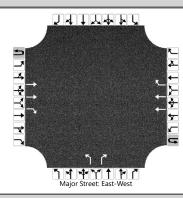


Approach		Eastb	ound			Westl	oound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	1	3	0	0	1	3	1		0	1	0		1	0	1	
Configuration		L	Т	TR		L	Т	R			LR			L		R	
Volume (veh/h)	19	31	1513	32	5	41	2639	19		11		40		27		20	
Percent Heavy Vehicles (%)	0	0			0	0				0		3		0		0	
Proportion Time Blocked																	
Percent Grade (%)									0				0				
Right Turn Channelized						Ν	lo							N	lo		
Median Type Storage				Left +	- Thru								1				
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)	5.6	5.3			5.6	5.3				6.4		7.1		6.4		7.1	
Critical Headway (sec)	5.60	5.30			5.60	5.30				6.40		7.16		6.40		7.10	
Base Follow-Up Headway (sec)	2.3	3.1			2.3	3.1				3.8		3.9		3.8		3.9	
Follow-Up Headway (sec)	2.30	3.10			2.30	3.10				3.80		3.93		3.80		3.90	
Delay, Queue Length, an	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)	T	53				48					54			28		21	
Capacity, c (veh/h)		61				201					31			19		115	
v/c Ratio		0.86				0.24					1.76			1.46		0.18	
95% Queue Length, Q ₉₅ (veh)		3.9				0.9					6.2			3.9		0.6	
95% Queue Length, Q ₉₅ (ft)		97.5				22.5					157.8			97.5		15.0	
Control Delay (s/veh)		185.7				28.5					643.4			656.2		43.0	
Level of Service (LOS)		F				D					F			F		Е	
Approach Delay (s/veh)		5	.8	-		0	.5	-		64	3.4	·		39	395.3		
	A A F F																

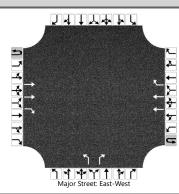
HCS Signalized Intersection Results Summary 11f Sameter Intersection Information **General Information** Duration, h 1.000 Agency Analyst Analysis Date 5/21/2024 Area Type Other PHF Jurisdiction CABQ Time Period Horizon BG MD 1.00 **Urban Street** Gibson Boulevard Analysis Year 2036 **Analysis Period** 1> 7:00 University and Gibson File Name 5 University-Gibson Horizon Background MD.xus Intersection **Project Description** Gibson In-N-Out Horizon BG MD **Demand Information** EB **WB** NB SB Approach Movement R L R L R L R Demand (v), veh/h 164 1108 153 126 1221 122 253 127 131 233 107 181 **Signal Information** Cycle, s 120.0 Reference Phase 2 RAY Offset, s 0 Reference Point End 0.0 Green 6.3 1.4 56.8 8.5 29.0 Uncoordinated No Simult. Gap E/W On Yellow 3.0 0.0 4.5 3.0 0.0 4.0 Force Mode Fixed Simult. Gap N/S On Red 0.5 0.0 1.0 0.5 1.5 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 5 2 6 4 8 1 7 Case Number 1.1 3.0 1.1 3.0 1.0 4.0 5.3 Phase Duration, s 11.2 63.7 9.8 62.3 12.0 46.5 34.5 5.5 5.5 5.5 Change Period, (Y+Rc), s 3.5 5.5 3.5 3.5 Max Allow Headway (MAH), s 3.0 0.0 3.0 0.0 3.1 3.4 3.4 Queue Clearance Time (g s), s 7.5 6.3 10.5 15.7 27.5 Green Extension Time (g_e), s 0.2 0.0 0.1 0.0 0.0 1.9 1.5 Phase Call Probability 1.00 0.99 1.00 1.00 1.00 0.00 0.00 Max Out Probability 0.00 1.00 0.13 SB **Movement Group Results** EΒ **WB** NB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 5 2 12 1 6 16 7 4 14 3 8 18 164 1108 153 126 1221 122 253 258 233 107 181 Adjusted Flow Rate (v), veh/h 1810 1725 1598 1810 1810 1741 1139 1900 1610 Adjusted Saturation Flow Rate (s), veh/h/ln 1712 1610 5.5 16.8 4.3 19.7 5.2 13.7 23.8 5.4 11.5 Queue Service Time (g_s), s 6.5 8.5 5.2 Cycle Queue Clearance Time (q c), s 5.5 16.8 6.5 4.3 19.7 8.5 13.7 25.5 5.4 11.5 0.24 Green Ratio (g/C) 0.54 0.49 0.49 0.53 0.47 0.47 0.33 0.34 0.24 0.24 Capacity (c), veh/h 320 2511 775 324 2430 762 445 594 319 459 389 Volume-to-Capacity Ratio (X) 0.513 0.441 0.197 0.388 0.502 0.160 0.568 0.434 0.730 0.233 0.466 Back of Queue (Q), ft/ln (95 th percentile) 98 268 110 76 307 87 99 239 287 116 205 Back of Queue (Q), veh/ln (95 th percentile) 3.9 10.7 4.4 3.0 12.2 3.5 3.9 9.6 11.5 4.6 8.2 Queue Storage Ratio (RQ) (95 th percentile) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 45.0 Uniform Delay (d 1), s/veh 16.6 20.2 17.6 16.2 21.8 18.0 34.1 30.6 36.6 38.9 Incremental Delay (d 2), s/veh 0.5 0.6 0.6 0.3 0.7 0.5 1.1 0.2 3.9 0.1 0.3 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 17.1 20.8 18.2 16.5 22.6 18.5 35.2 30.7 48.9 36.7 39.2 Level of Service (LOS) В С В В С В D С D D D 20.1 С 21.7 С 32.9 С 43.0 Approach Delay, s/veh / LOS D Intersection Delay, s/veh / LOS 25.4 С **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 1.91 В 2.10 В 2.71 2.72 С С Bicycle LOS Score / LOS 1.27 Α 1.30 Α 1.33 Α 1.35 Α


HCS Signalized Intersection Results Summary 11f Sameter Intersection Information **General Information** Duration, h 1.000 Agency Analyst Analysis Date 5/21/2024 Area Type Other PHF Jurisdiction CABQ Time Period Horizon BG PM 1.00 **Urban Street** Gibson Boulevard Analysis Year 2036 **Analysis Period** 1> 7:00 University and Gibson File Name 5 University-Gibson Horizon Background PM.xus Intersection **Project Description** Gibson In-N-Out Horizon BG PM **Demand Information** EB **WB** NB SB Approach Movement R L R L R L R 213 95 Demand (v), veh/h 206 1377 131 102 2330 234 110 198 79 192 **Signal Information** Cycle, s 130.0 Reference Phase 2 Offset, s 0 Reference Point End 0.0 Green 5.6 3.0 63.6 12.1 24.3 Uncoordinated No Simult. Gap E/W On Yellow 3.0 3.0 4.5 3.0 0.0 4.0 Force Mode Fixed Simult. Gap N/S On Red 0.5 0.5 1.0 0.5 1.5 0.0 **Timer Results EBL EBT WBL** WBT NBL **NBT** SBL SBT **Assigned Phase** 5 2 6 4 8 1 7 Case Number 1.1 3.0 1.1 3.0 1.0 4.0 5.3 Phase Duration, s 15.6 75.5 9.1 69.1 15.6 45.4 29.8 3.5 5.5 3.5 5.5 5.5 Change Period, (Y+Rc), s 3.5 5.5 Max Allow Headway (MAH), s 3.0 0.0 3.0 0.0 3.1 3.4 3.4 Queue Clearance Time (g s), s 11.8 5.6 14.1 13.9 23.0 Green Extension Time (g_e), s 0.2 0.0 0.1 0.0 0.0 1.6 1.3 Phase Call Probability 1.00 0.97 1.00 1.00 1.00 0.00 0.00 0.00 0.05 Max Out Probability 1.00 SB **Movement Group Results** EΒ WB NB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 5 2 12 1 6 16 7 4 14 3 8 18 206 1377 131 102 2330 213 234 205 198 79 192 Adjusted Flow Rate (v), veh/h 1810 1598 1810 1754 1196 1900 1610 Adjusted Saturation Flow Rate (s), veh/h/ln 1725 1712 1610 1810 9.8 21.7 3.6 55.2 11.9 21.0 4.6 14.3 Queue Service Time (g_s), s 5.4 10.1 12.1 21.0 Cycle Queue Clearance Time (q c), s 9.8 21.7 5.4 3.6 55.2 10.1 12.1 11.9 4.6 14.3 0.54 Green Ratio (g/C) 0.60 0.54 0.53 0.49 0.49 0.30 0.31 0.19 0.19 0.19 Capacity (c), veh/h 234 2789 861 276 2510 787 427 538 279 355 301 Volume-to-Capacity Ratio (X) 0.882 0.494 0.152 0.370 0.928 0.271 0.548 0.381 0.711 0.223 0.639 Back of Queue (Q), ft/ln (95 th percentile) 291 328 89 66 784 173 252 219 268 100 247 Back of Queue (Q), veh/ln (95 th percentile) 11.6 13.1 3.5 2.6 31.1 6.9 10.1 8.8 10.7 4.0 9.9 Queue Storage Ratio (RQ) (95 th percentile) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Uniform Delay (d 1), s/veh 39.5 18.8 15.1 16.6 31.1 19.6 37.9 35.4 51.5 44.9 48.8 Incremental Delay (d 2), s/veh 11.3 0.6 0.4 0.3 8.7 8.0 0.9 0.2 2.6 0.1 8.0 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 50.8 19.5 15.4 16.9 39.8 20.4 38.8 35.5 54.1 45.0 49.7 Level of Service (LOS) D В В В D С D D D D D 22.9 С 37.3 D 37.3 50.7 Approach Delay, s/veh / LOS D D Intersection Delay, s/veh / LOS 33.8 С **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 1.90 В 2.10 В 2.72 2.73 С С Bicycle LOS Score / LOS 1.43 Α 1.94 1.21 Α 1.26 Α

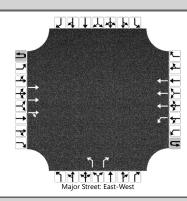
	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson I 25 SB
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/31/2024	East/West Street	Gibson Boulevard
Analysis Year	2036	North/South Street	I 25 SB
Time Analyzed	Horizon Total MD	Peak Hour Factor	0.96
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		


Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	1	0	1	2	0		0	0	1		0	0	1
Configuration			Т	R		L	Т					R				R
Volume (veh/h)			610	27	1	378	481					667				136
Percent Heavy Vehicles (%)					1	1						1				2
Proportion Time Blocked																
Percent Grade (%)											0				0	
Right Turn Channelized		N	lo							Y	es			Y	es	
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)					6.4	4.1						6.9				6.9
Critical Headway (sec)					6.42	4.12						6.92				6.93
Base Follow-Up Headway (sec)					2.5	2.2						3.3				3.3
Follow-Up Headway (sec)					2.51	2.21						3.31				3.32
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)	T					395						695				142
Capacity, c (veh/h)						0						681				750
v/c Ratio												1.02				0.19
95% Queue Length, Q ₉₅ (veh)												17.0				0.7
95% Queue Length, Q ₉₅ (ft)												428.4				17.7
Control Delay (s/veh)												64.3				10.9
Level of Service (LOS)												F				В
Approach Delay (s/veh)									64.3				10.9			
Approach LOS								F				В				

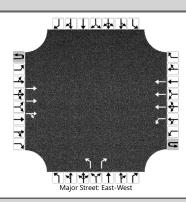
	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson I 25 SB
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/31/2024	East/West Street	Gibson Boulevard
Analysis Year	2036	North/South Street	I 25 SB
Time Analyzed	Horizon Total PM	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		


Vehicle Volumes and Adj	justme	nts														
Approach		Eastk	oound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	1	0	1	2	0		0	0	1		0	0	1
Configuration			Т	R		L	Т					R				R
Volume (veh/h)			701	41	2	842	829					588				184
Percent Heavy Vehicles (%)					0	0						0				3
Proportion Time Blocked																
Percent Grade (%))				0	
Right Turn Channelized		N	No O							Y	es			Y	es	
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)					6.4	4.1						6.9				6.9
Critical Headway (sec)					6.40	4.10						6.90				6.96
Base Follow-Up Headway (sec)					2.5	2.2						3.3				3.3
Follow-Up Headway (sec)					2.50	2.20						3.30				3.33
Delay, Queue Length, an	d Leve	l of S	ervice	•												
Flow Rate, v (veh/h)						888						619				194
Capacity, c (veh/h)						724						634				565
v/c Ratio						1.23						0.98				0.34
95% Queue Length, Q ₉₅ (veh)						31.3						14.3				1.5
95% Queue Length, Q ₉₅ (ft)						782.5						357.5				38.4
Control Delay (s/veh)						134.6						55.6				14.7
Level of Service (LOS)						F						F				В
Approach Delay (s/veh)						67	7.9			5!	5.6		14.7			
Approach LOS							F				F		В			

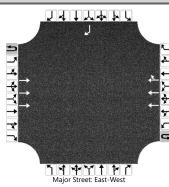
	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson I 25 NB
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/31/2024	East/West Street	Gibson Boulevard
Analysis Year	2036	North/South Street	I 25 NB
Time Analyzed	Horizon Total MD	Peak Hour Factor	0.98
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		


Vehicle Volumes and Adj	justme	nts														
Approach	T	Eastk	oound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	1	0	0	2	1		1	0	1		0	0	0
Configuration			Т	R			Т	R		L		R				
Volume (veh/h)			1202	120			842	725		15		395				
Percent Heavy Vehicles (%)										1		1				
Proportion Time Blocked																
Percent Grade (%)										. ()					
Right Turn Channelized		١	10			Υ	es			Y	es					
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)	T									7.5		6.9				
Critical Headway (sec)										7.52		6.92				
Base Follow-Up Headway (sec)										3.5		3.3				
Follow-Up Headway (sec)										3.51		3.31				
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	Т									15		403				
Capacity, c (veh/h)										65		438				
v/c Ratio										0.24		0.92				
95% Queue Length, Q ₉₅ (veh)										0.8		10.3				
95% Queue Length, Q ₉₅ (ft)										20.2		259.4				
Control Delay (s/veh)										76.7		56.3				
Level of Service (LOS)										F		F				
Approach Delay (s/veh)										57	7.1					
Approach LOS											=					

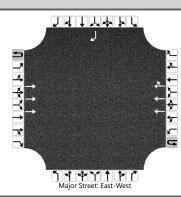
	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson I 25 NB
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/31/2024	East/West Street	Gibson Boulevard
Analysis Year	2036	North/South Street	I 25 NB
Time Analyzed	Horizon Total PM	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		


	Eastk	oound			Westl	oound			North	bound			South	bound	
U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
0	0	2	1	0	0	2	1		1	0	1		0	0	0
		Т	R			Т	R		L		R				
		1174	172			1617	1176		55		530				
									0		0				
									()					
	١	10			Y	es			Ye	es					
			Undi	vided											
eadwa	ys														
									7.5		6.9				
									7.50		6.90				
									3.5		3.3				
									3.50		3.30				
d Leve	l of S	ervice													
T									58		558				
									31		437				
									1.86		1.28				
									6.6		23.9				
									165.0		597.5				
									681.8		168.0				
									F		F				
						216.3									
									21	0.5					
	U 1U 0	Easth U L 1U 1 0 0	Eastbound U	Eastbound	U	U L T R U L 1U 1 2 3 4U 4 0 0 2 1 0 0 T R 1174 172 No Y Undivided eadways	Eastbound Westbound U	U L T R U L T R 1U 1 2 3 4U 4 5 6 0 0 0 2 1 0 0 2 1 T R T R 1174 172 1617 1176 No Yes Undivided	Eastbound Westbound	U L T R U L T	U L T R U L T R U L T R U L T R U L T R U L T R U L T R R U L T R R U L T R R U L T R R U L R R R U R R R R R R R R R R R R	U	Eastbound Westbound Northbound U	Eastbound Westbound Northbound South	U L T R U L T R U L T R U L T R U L T R U L T R U L T T R U L T T R U L T T R U L T T R U L T T R U L T T R U L T T R U L T T R U L T T R U L T T R U L T T R U L T T R U L T T R U L T T R U L T T R U L T T R U L T T R U L T T R U L T R U

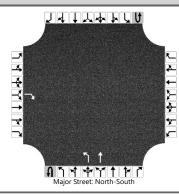
	HCS Two-Way Stop	top-Control Report								
General Information		Site Information								
Analyst	AY	Intersection	Gibson and Mulberry							
Agency/Co.	Lee	Jurisdiction	COA							
Date Performed	5/21/2024	East/West Street	Gibson Boulevard							
Analysis Year	2036	North/South Street	Mulberry Street							
Time Analyzed	Horizon Total MD	Peak Hour Factor	0.99							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							
Project Description	Gibson In-N-Out									


Vehicle Volumes and Adj	justme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	3	0	0	1	3	0		1	0	1		0	0	0
Configuration			Т	TR		L	Т			L		R				
Volume (veh/h)			1537	59	7	50	1517			46		58				
Percent Heavy Vehicles (%)					0	1				0		0				
Proportion Time Blocked																
Percent Grade (%)										. ()					
Right Turn Channelized										Ν	lo					
Median Type Storage				Left -	- Thru								1			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)					5.6	5.3				6.4		7.1				
Critical Headway (sec)					5.60	5.32				5.70		7.10				
Base Follow-Up Headway (sec)					2.3	3.1				3.8		3.9				
Follow-Up Headway (sec)					2.30	3.11				3.80		3.90				
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)						58				46		59				
Capacity, c (veh/h)						205				87		282				
v/c Ratio						0.28				0.54		0.21				
95% Queue Length, Q ₉₅ (veh)						1.1				2.4		0.8				
95% Queue Length, Q ₉₅ (ft)						27.7				60.0		20.0				
Control Delay (s/veh)						29.2	7.3			86.7		21.1				
Level of Service (LOS)						D	Α			F		С				
Approach Delay (s/veh)						. 8	.1			50).1					
Approach LOS							Α				F					

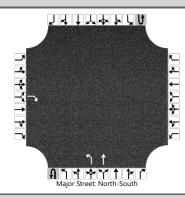
	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson and Mulberry
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/21/2024	East/West Street	Gibson Boulevard
Analysis Year	2036	North/South Street	Mulberry Street
Time Analyzed	Horizon Total PM	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		


Vehicle Volumes and Adj	ustme	nts														
Approach		Eastk	oound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	3	0	0	1	3	0		1	0	1		0	0	0
Configuration			Т	TR		L	Т			L		R				
Volume (veh/h)			1618	83	5	35	2732			27		45				
Percent Heavy Vehicles (%)					0	0				0		0				
Proportion Time Blocked																
Percent Grade (%))					
Right Turn Channelized										N	lo					
Median Type Storage				Left -	- Thru								1			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)					5.6	5.3				6.4		7.1				
Critical Headway (sec)					5.60	5.30				5.70		7.10				
Base Follow-Up Headway (sec)					2.3	3.1				3.8		3.9				
Follow-Up Headway (sec)					2.30	3.10				3.80		3.90				
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	T					42				28		47				
Capacity, c (veh/h)						170				59		247				
v/c Ratio						0.25				0.48		0.19				
95% Queue Length, Q ₉₅ (veh)						0.9				1.9		0.7				
95% Queue Length, Q ₉₅ (ft)						22.5				47.5		17.5				
Control Delay (s/veh)						33.0	7.9			113.0		23.0				
Level of Service (LOS)						D	А			F		С				
Approach Delay (s/veh)						. 8	.3			56	5.8					
Approach LOS							Α				F					

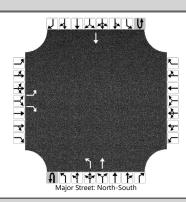
	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson Site DWY 1
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/31/2024	East/West Street	Gibson Boulevard
Analysis Year	2036	North/South Street	Site DWY 1
Time Analyzed	Horizon Total MD	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		


					iviaj	OI Street. Lt	ist west									
Vehicle Volumes and Ad	justme	nts														
Approach	T	Eastl	oound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	3	0	0	0	3	0		0	0	0		0	0	1
Configuration			Т				Т	TR								R
Volume (veh/h)			1602				1484	0								101
Percent Heavy Vehicles (%)																2
Proportion Time Blocked																
Percent Grade (%)															0	
Right Turn Channelized														Y	'es	
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)																7.1
Critical Headway (sec)																7.13
Base Follow-Up Headway (sec)																3.9
Follow-Up Headway (sec)																3.92
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)																110
Capacity, c (veh/h)																279
v/c Ratio																0.39
95% Queue Length, Q ₉₅ (veh)																1.8
95% Queue Length, Q ₉₅ (ft)																45.6
Control Delay (s/veh)																26.0
Level of Service (LOS)																D
Approach Delay (s/veh)													26.0			
Approach LOS															D	

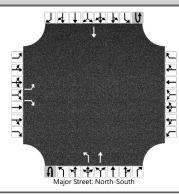
	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson Site DWY 1
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/31/2024	East/West Street	Gibson Boulevard
Analysis Year	2036	North/South Street	Site DWY 1
Time Analyzed	Horizon Total PM	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		


Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	3	0	0	0	3	0		0	0	0		0	0	1
Configuration			Т				Т	TR								R
Volume (veh/h)			1667				2671	0								90
Percent Heavy Vehicles (%)																2
Proportion Time Blocked																
Percent Grade (%)														(0	
Right Turn Channelized														Ν	lo	
Median Type Storage				Undi	vided											
Critical and Follow-up H	leadwa	ys														
Base Critical Headway (sec)																7.1
Critical Headway (sec)																7.13
Base Follow-Up Headway (sec)																3.9
Follow-Up Headway (sec)																3.92
Delay, Queue Length, ar	nd Leve	l of S	ervice													
Flow Rate, v (veh/h)																98
Capacity, c (veh/h)																103
v/c Ratio																0.95
95% Queue Length, Q ₉₅ (veh)																5.7
95% Queue Length, Q ₉₅ (ft)																144.
Control Delay (s/veh)																151.
Level of Service (LOS)																F
Approach Delay (s/veh)													151.4			
Approach LOS												F				

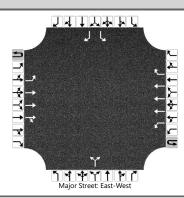
	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Alumni Site DWY 2
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/31/2024	East/West Street	Site DWY 2
Analysis Year	2036	North/South Street	Alumni Drive
Time Analyzed	Horizon Total MD	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		


Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	1		0	0	0	0	1	1	0	0	0	0	0
Configuration				R						L	Т					
Volume (veh/h)				10						51	0					
Percent Heavy Vehicles (%)				3						3						
Proportion Time Blocked																
Percent Grade (%))													
Right Turn Channelized		N	lo													
Median Type Storage				Undi	vided											
Critical and Follow-up H	leadwa	ys														
Base Critical Headway (sec)				7.1						5.3						
Critical Headway (sec)				7.13						5.33						
Base Follow-Up Headway (sec)				3.9						3.1						
Follow-Up Headway (sec)				3.93						3.13						
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)				11						55						
Capacity, c (veh/h)				917						1151						
v/c Ratio				0.01						0.05						
95% Queue Length, Q ₉₅ (veh)				0.0						0.2						
95% Queue Length, Q ₉₅ (ft)				0.0						5.1						
Control Delay (s/veh)				9.0						8.3						
Level of Service (LOS)				А						А						
Approach Delay (s/veh)	9.0								8.3				•			
Approach LOS			4							-	4					

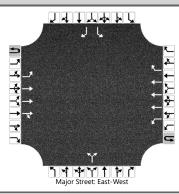
	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Alumni Site DWY 2
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/31/2024	East/West Street	Site DWY 2
Analysis Year	2036	North/South Street	Alumni Drive
Time Analyzed	Horizon Total MD	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		


Vehicle Volumes and Ad	justme	nts														
Approach	T	Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	1		0	0	0	0	1	1	0	0	0	0	0
Configuration				R						L	T					
Volume (veh/h)				12						66	0					
Percent Heavy Vehicles (%)				3						3						
Proportion Time Blocked																
Percent Grade (%)			0													
Right Turn Channelized		N	10													
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)				7.1						5.3						
Critical Headway (sec)				7.13						5.33						
Base Follow-Up Headway (sec)				3.9						3.1						
Follow-Up Headway (sec)				3.93						3.13						
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	Т			13						72						
Capacity, c (veh/h)				917						1151						
v/c Ratio				0.01						0.06						
95% Queue Length, Q ₉₅ (veh)				0.0						0.2						
95% Queue Length, Q ₉₅ (ft)				0.0						5.1						
Control Delay (s/veh)				9.0						8.3						
Level of Service (LOS)				А						А						
Approach Delay (s/veh)		9	.0							8	.3					
Approach LOS			A								Α					

	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Alumni Site DWY 3
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/31/2024	East/West Street	Site DWY 3
Analysis Year	2036	North/South Street	Alumni Drive
Time Analyzed	Horizon Total MD	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		


Vehicle Volumes and Adj	justme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		1	0	1		0	0	0	0	1	1	0	0	0	1	0
Configuration		L		R						L	Т				Т	
Volume (veh/h)		0		38						89	66				4	
Percent Heavy Vehicles (%)		3		3						3						
Proportion Time Blocked																
Percent Grade (%)		(0													
Right Turn Channelized		N	10													
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		7.1		6.2						4.1						
Critical Headway (sec)		6.43		6.23						4.13						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.53		3.33						2.23						
Delay, Queue Length, an	d Leve	l of S	ervice	•												
Flow Rate, v (veh/h)		0		41						97						
Capacity, c (veh/h)		674		1076						1611						
v/c Ratio		0.00		0.04						0.06						
95% Queue Length, Q ₉₅ (veh)		0.0		0.1						0.2						
95% Queue Length, Q ₉₅ (ft)				2.6						5.1						
Control Delay (s/veh)		10.3		8.5						7.4						
Level of Service (LOS)		В		А						А						
Approach Delay (s/veh)		. 8	5.5							4	.2					
Approach LOS			A							,	4					

	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Alumni Site DWY 3
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/31/2024	East/West Street	Site DWY 3
Analysis Year	2036	North/South Street	Alumni Drive
Time Analyzed	Horizon Total MD	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		


Approach	T	Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		1	0	1		0	0	0	0	1	1	0	0	0	1	0
Configuration		L		R						L	Т				Т	
Volume (veh/h)		0		33						86	51				10	
Percent Heavy Vehicles (%)		3		3						3						
Proportion Time Blocked																
Percent Grade (%)		. (0													
Right Turn Channelized		Ν	lo													
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		7.1		6.2						4.1						
Critical Headway (sec)		6.43		6.23						4.13						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.53		3.33						2.23						
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)	T	0		36						93						
Capacity, c (veh/h)		690		1067						1602						
v/c Ratio		0.00		0.03						0.06						
95% Queue Length, Q ₉₅ (veh)		0.0		0.1						0.2						
95% Queue Length, Q ₉₅ (ft)				2.6						5.1						
Control Delay (s/veh)		10.2		8.5						7.4						
Level of Service (LOS)		В		А						Α						
Approach Delay (s/veh)		8	.5							4	.6					
Approach LOS		,	Ą							A	4					

	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson and Alumni
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/21/2024	East/West Street	Gibson Boulevard
Analysis Year	2036	North/South Street	Alumni Drive
Time Analyzed	Horizon Total MD	Peak Hour Factor	0.97
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		

Approach	т —	Factb	ound		Ι	Westk	a a und		Г	North	bound			South	hound		
								_				_					
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	1	3	0	0	1	3	1		0	1	0		1	0	1	
Configuration		L	Т	TR		L	Т	R			LR			L		R	
Volume (veh/h)	26	133	1396	56	3	44	1402	98		26		44		90		30	
Percent Heavy Vehicles (%)	0	0			0	0				0		0		0		0	
Proportion Time Blocked																	
Percent Grade (%)										()			()		
Right Turn Channelized						Ν	lo							N	Ю		
Median Type Storage				Left +	- Thru								1				
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)	5.6	5.3			5.6	5.3				6.4		7.1		6.4		7.1	
Critical Headway (sec)	5.60	5.30			5.60	5.30				6.40		7.10		6.40		7.10	
Base Follow-Up Headway (sec)	2.3	3.1			2.3	3.1				3.8		3.9		3.8		3.9	
Follow-Up Headway (sec)	2.30	3.10			2.30	3.10				3.80		3.90		3.80		3.90	
Delay, Queue Length, an	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)		164				48					72			93		31	
Capacity, c (veh/h)		231				229					31			14		318	
v/c Ratio		0.71				0.21					2.36			6.83		0.10	
95% Queue Length, Q ₉₅ (veh)		4.7				0.8					8.4			12.6		0.3	
95% Queue Length, Q ₉₅ (ft)		117.5				20.0					210.0			315.0		7.5	
Control Delay (s/veh)		51.4				24.9					893.9			3171.9		17.5	
Level of Service (LOS)		F				С					F			F		С	
Approach Delay (s/veh)		5	.1			0	.8			89	3.9		2383.3				
Approach LOS	1		Α				4				 F			F			

	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	AY	Intersection	Gibson and Alumni
Agency/Co.	Lee	Jurisdiction	COA
Date Performed	5/21/2024	East/West Street	Gibson Boulevard
Analysis Year	2036	North/South Street	Alumni Drive
Time Analyzed	Horizon Total PM	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Gibson In-N-Out		

Vehicle Volumes and Adj	ustme	nts															
Approach	Т	Eastb	ound			Westl	oound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	1	3	0	0	1	3	1		0	1	0		1	0	1	
Configuration		L	Т	TR		L	Т	R			LR			L		R	
Volume (veh/h)	19	105	1505	32	5	41	2620	82		11		40		70		20	
Percent Heavy Vehicles (%)	0	0			0	0				0		3		0		0	
Proportion Time Blocked																	
Percent Grade (%)										())		
Right Turn Channelized						Ν	lo							Ν	lo		
Median Type Storage				Left -	- Thru								1				
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)	5.6	5.3			5.6	5.3				6.4		7.1		6.4		7.1	
Critical Headway (sec)	5.60	5.30			5.60	5.30				6.40		7.16		6.40		7.10	
Base Follow-Up Headway (sec)	2.3	3.1			2.3	3.1				3.8		3.9		3.8		3.9	
Follow-Up Headway (sec)	2.30	3.10			2.30	3.10				3.80		3.93		3.80		3.90	
Delay, Queue Length, an	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)	T	131				48					54			74		21	
Capacity, c (veh/h)		51				203					0			7		117	
v/c Ratio		2.54				0.24								9.86		0.18	
95% Queue Length, Q ₉₅ (veh)		13.5				0.9								10.8		0.6	
95% Queue Length, Q ₉₅ (ft)		337.5				22.5								270.0		15.0	
Control Delay (s/veh)		868.2				28.2								4953.6		42.3	
Level of Service (LOS)		F				D								F		Е	
Approach Delay (s/veh)		64	4.8			0	.5					•	3862.2				
Approach LOS			F			,	4							F			

		НС	S Sigr	nalize	d Inte	ersect	ion R	esu	Its Sı	umı	mary					
														,		
General Inform	nation								Inters	ecti	on Info	rmatic	on		111 14741	\$ L
Agency				-N		Vi-			Durati	ion, ł	า	1.000				R_
Analyst				Analys	sis Date	e 5/21/2	2024		Area -	Туре		Other		<i>≛_</i> ≯		%— ∆. 4— }.
Jurisdiction		CABQ		Time F	Period	Horizo MD	on Full E	Build	PHF			1.00		→ → → → →	w∳E	← ∳ ← ← √
Urban Street		Gibson Boulevard		Analys	is Yea	r 2036			Analy	sis P	eriod	1> 7:0	00		5 L	r e
Intersection		University and Gibs	on	File Na	ame	8 Univ	ersity-C	Sibso	n Horiz	on T	OTAL N	MD.xus	;		14147	†* (*
Project Descrip	tion	Gibson In-N-Out Ho	orizon T	otal MD		,										
Demand Inform	nation				EB			V	/B			NB			SB	
Approach Move	ement			L	Т	R	L	Τ-	Γ	R	L	Т	R	L	T	R
Demand (v), v	eh/h			172	1134	161	126	12	54 1	18	257	127	131	233	103	190
Signal Informa	tion				r	F	-			П	7					
Signal Informa		Reference Phase	2	1	La			Ħ	ed ed	117				7		κtα
Cycle, s	120.0		-	ł	Γ.		- F3 '	'	7 17	FIY			1	♀ ₂	3	4
Offset, s	0	Reference Point	End	Green		1.7	56.5	8.		9.0	0.0			حد		1
Uncoordinated	No	Simult. Gap E/W	On	Yellow	-	0.0	4.5	3.		.0	0.0		7	7	1	小
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.5	0.0	1.0	0.	b 1	.5	0.0		5	6	7	8
Timer Results				EBI	- T	EBT	WB	L	WBT	Т	NBL		NBT	SBI		SBT
Assigned Phase	e			5		2	1		6	\neg	7		4			8
Case Number				1.1		3.0	1.1		3.0	_	1.0		4.0			5.3
Phase Duration	ı. S			11.5	5	63.7	9.8	$\overline{}$	62.0	7	12.0		46.5			34.5
Change Period,		c). S		3.5	_	5.5	3.5	_	5.5	_	3.5		5.5			5.5
Max Allow Head		*		3.0		0.0	3.0	_	0.0	7	3.1		3.4			3.4
Queue Clearan		·		7.8	_	0.0	6.3	\rightarrow	0.0	7	10.5		15.7			27.5
Green Extensio	n Time	(g e), s		0.2		0.0	0.1		0.0		0.0		1.9			1.5
Phase Call Prol	bability	,		1.00)		0.99	9		7	1.00		1.00			1.00
Max Out Proba	bility			0.00)		0.00)		ユ	1.00		0.00			0.13
Movement Gro	oup Res	sults			EB			WI	3	┪		NB			SB	
Approach Move				L	Т	R	L	Т	R		L	Т	R	L	Т	R
Assigned Move				5	2	12	1	6	16	_	7	4	14	3	8	18
Adjusted Flow F) veh/h		172	1134	161	126	125	_	_	257	258		233	103	190
		ow Rate (s), veh/h/l	n	1810	1725	1598	1810	171	_	_	1810	1741		1139	1900	1610
Queue Service			-	5.8	17.3	6.9	4.3	20.		_	8.5	13.7		23.8	5.2	12.2
Cycle Queue C		• /-		5.8	17.3	6.9	4.3	20.		-	8.5	13.7		25.5	5.2	12.2
Green Ratio (g		(30),0		0.54	0.48	0.48	0.52	0.4	_	_	0.33	0.34		0.24	0.24	0.24
Capacity (c), v				316	2510	775	318	241	_	_	449	595		319	459	389
Volume-to-Capa		tio (X)		0.545		_	0.396	0.51	_	_		0.434		0.730	0.224	0.489
		t/In (95 th percentile	<u>.)</u>	103	275	116	76	318	_	_	104	239		287	111	213
	, ,	eh/In (95 th percent		4.1	11.0	4.6	3.0	12.	_	_	4.1	9.6		11.5	4.5	8.5
		RQ) (95 th percen		0.00	0.00	0.00	0.00	0.0	_	_	0.00	0.00		0.00	0.00	0.00
Uniform Delay (17.0	20.4	17.7	16.4	22.	2 18.	.1	34.2	30.5		45.0	36.5	39.1
Incremental De	lay (d 2), s/veh		0.5	0.6	0.6	0.3	0.8	3 0.4	4	1.2	0.2		3.9	0.1	0.4
Initial Queue De	elay (d	з), s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0		0.0	0.0	0.0
Control Delay (17.5	21.0	18.3	16.7	23.	0 18.	.6	35.3	30.7		48.9	36.6	39.5
Level of Service				В	С	В	В	С	В		D	С		D	D	D
Approach Delay		/LOS		20.3	3	С	22.2		С	T	33.0	_	С	43.1		D
Intersection De	lay, s/ve	h / LOS				2	5.6			\Box				С		
M. Id								147				NID.			0.5	
Multimodal Re		// 00		4.04	EB		0.44	WI		-	0.74	NB		0.70	SB	
Pedestrian LOS				1.91	_	В	2.10	_	В	-	2.71		С	2.72		C
Bicycle LOS Sc	ore / LC	15		1.29)	Α	1.3		Α		1.34		Α	1.36)	Α

Generated: 6/21/2024 1:17:27 PM

CABQ Gibson Boulevard University and Gibso Gibson In-N-Out Hor Reference Phase Reference Point Simult. Gap E/W Simult. Gap N/S		Time F Analys File Na	Period sis Year	PM 2036	on Full E	Gibson W		, h be Period	1.000 Other 1.00	00		↓↓↓ N ² E N ² E NATION SB T	
Gibson Boulevard University and Gibso Gibson In-N-Out Hor Reference Phase Reference Point Simult. Gap E/W	z End	Analys File Na otal PM	Period sis Year ame EB T	Horizo PM 2036 8 Univ	versity-G	Gibson W	Duration Area Tyl PHF Analysis Horizon	, h pe Period TOTAL I	1.000 Other 1.00 1> 7:0 PM.xus	00		J↓ L ** ⁷ / ₅ E ************************************	
Gibson Boulevard University and Gibso Gibson In-N-Out Hor Reference Phase Reference Point Simult. Gap E/W	z End	Analys File Na otal PM	Period sis Year ame EB T	Horizo PM 2036 8 Univ	versity-G	Gibson W	Area Tyl PHF Analysis Horizon	Period TOTAL I	Other 1.00 1> 7:0 PM.xus	00		**************************************	
Gibson Boulevard University and Gibso Gibson In-N-Out Hor Reference Phase Reference Point Simult. Gap E/W	z End	Analys File Na otal PM	Period sis Year ame EB T	Horizo PM 2036 8 Univ	versity-G	Gibson W	PHF Analysis Horizon	Period TOTAL I	1.00 1> 7:0 PM.xus	00		_	
Gibson Boulevard University and Gibso Gibson In-N-Out Hor Reference Phase Reference Point Simult. Gap E/W	z End	Analys File Na otal PM	is Year ame EB	PM 2036 8 Univ	ersity-G	Gibson W	Analysis n Horizon	TOTAL I	1> 7:0 PM.xus			_	
University and Gibso Gibson In-N-Out Hor Reference Phase Reference Point Simult. Gap E/W	z End	File Na otal PM L	EB T	8 Univ	L	W	n Horizon	TOTAL I	PM.xus			_	
Reference Phase Reference Point Simult. Gap E/W	z End	otal PM	EB T	R	L	W	/B		NB			_	* (*
Reference Phase Reference Point Simult. Gap E/W	z End	L	Т			7		L	_	P		_	
Reference Point Simult. Gap E/W	End	L 213	Т			7		L	_	P	I	_	
Reference Point Simult. Gap E/W	End	L 213	_				Γ R	L	Т	P	1	T	
Reference Point Simult. Gap E/W	End	213	1398	138	102			_	1 .	1 17	II -	1 '	R
Reference Point Simult. Gap E/W	End					23	66 209	236	110	95	198	75	198
Reference Point Simult. Gap E/W	End				T	, [
Reference Point Simult. Gap E/W	End	-		-1-2			- J.			_	д		KŤ2
Simult. Gap E/W			-	= 3	 13	. .	TAT T	17"		1	2	3	4
	On	Green		3.7	62.8	12					5		\mathbf{L}
Simult. Gap N/S	$\overline{}$	Yellow	-	3.0	4.5	3.0		0.0		^	Y	7.	CTZ
	On	Red	0.5	0.5	1.0	0.5	5 1.5	0.0		5	6	7	8
		EBL	.	EBT	WB	L	WBT	NBL		NBT	SBI		SBT
		5		2	1		6	7		4			8
		1.1		3.0	1.1		3.0	1.0		4.0			5.3
		16.3	.	75.5	9.1	\neg	68.3	15.6		45.4		\neg	29.8
). s					3.5					5.5			5.5
,.		3.0				_	0.0		_				3.4
(g s), s		12.6	,		_			14.1	_				23.0
g e), s		0.2		0.0	0.1		0.0	0.0		1.6			1.3
		1.00			0.97	·		1.00		1.00			1.00
		0.00)		0.00)		1.00		0.00			0.05
ults			EB			WE	3		NB			SB	
		L	Т	R	L	Т	R	L	Т	R	L	Т	R
		5	2		1	_	_	7	4		3	8	18
veh/h		_				_					198	_	198
						_					_		1610
			_									_	14.8
<u>, ,</u>						_	_						14.8
····· (g							_						0.19
						_	_						301
in (X)			_										0.658
			_			_						_	254
· · · · · · · · · · · · · · · · · · ·	e)					_	_						10.2
· · · · · · · · · · · · · · · · · · ·	_	0.00	0.00	0.00	0.00	_		0.00	0.00		0.00	0.00	0.00
veh		40.8	19.0	15.2	17.0	_	_	38.0	35.4		51.5	44.8	49.0
), s/veh		13.8	0.6	0.4	0.3	13.0	0.9	0.9	0.2		2.6	0.1	0.9
), s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
h		54.6	19.6	15.6	17.3	45.3	3 20.8	38.9	35.5		54.1	44.9	49.9
		D	В	В	В	D	С	D	D		D	D	D
LOS		23.6		С	42.3		D			D	50.9	,	D
n / LOS				36	6.5						D		
						14.			NID			0.0	
1.00		4.00		_	0.11			0.70			0.70		
						_							C A
1) (i l l l l l l l l l l l l l l l l l l	ge), s Ilts , veh/h v Rate (s), veh/h/ln s), s Time (gc), s Io (X) n (95 th percentile) n/ln (95 th percentile) RQ) (95 th percentile veh , s/veh), s/veh h	AH), s ((g s), s (g s	1.1 16.3 1, s AH), s (g s), s 12.6 g e), s 1.00 0.00 Ilts L 5 , veh/h 213 v Rate (s), veh/h/ln s), s 10.6 Time (g c), s 10.6 0.60 240 0 (X) 0 (85 th percentile) 10.886 n (95 th percentile) 11.2 12.2 13.0 13.8 13.8 10.6 13.8 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6	1.1	1.1 3.0 16.3 75.5 75.5 3.5 5.5 AH	1.1	1.1 3.0 1.1 16.3 75.5 9.1 16.3 75.5 9.1 16.3 75.5 9.1 16.3 75.5 9.1 16.3 75.5 3.5 3.5 3.5 3.5 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0	1.1 3.0 1.1 3.0 1.1 3.0 1.68.3 75.5 9.1 68.3 68.3 68.5 6.5 3.5 5.5 6.5	1.1 3.0 1.1 3.0 1.0	1.1 3.0 1.1 3.0 1.0	1.1 3.0 1.1 3.0 1.0 4.0	1.1	1.1 3.0 1.1 3.0 1.0 4.0

Generated: 6/21/2024 1:18:24 PM

Urban Street Gib. Intersection Gib. Project Description Gib. Demand Information Approach Movement Demand (v), veh/h Signal Information Cycle, s 120.0 Rei Offset, s 0 Rei Uncoordinated No Sin	mult. Gap E/W		Analys Time F Analys File Na	eis Date Period sis Year ame on Full E EB T 1396	5/21/2 Mitiga Full B 2036 Mitiga Build ME	024 ted Hori uild MD ted Gibs	zon	Inter: Dura Area PHF Analy Jumni	rsectio ition, h Type ysis Pe	n Info	1.000	10	L 90	SB T	R 30
Agency Analyst Jurisdiction CAB Urban Street Intersection Project Description Cib. Demand Information Approach Movement Demand (v), veh/h Signal Information Cycle, s Offset, s Offset, s One Uncoordinated No Force Mode Fixed Sin Timer Results Assigned Phase Case Number Phase Duration, s	eference Phase eference Point Emult. Gap E/W	2 End On	Time F Analys File Na Horizo L 159 Green Yellow Red	Period sis Year ame on Full E EB T 1396	Mitiga Full B 2036 Mitiga Build ME R 56	ted Horiuild MD ted Gibs ted 47 47 44.5	W 14 14 10 3.0	Dura Area PHF Analy Jumni //B	tion, h Type ysis Pe Horizo	eriod on TO1 L 26	1.000 Other 1.00 1> 7:0 TAL MD	00 0.xus		↓↓ ^N ^N ^N ^N ^N ^N ^N ^N	R
Agency Analyst Jurisdiction CAB Urban Street Intersection Project Description Cib. Demand Information Approach Movement Demand (v), veh/h Signal Information Cycle, s Offset, s Offset, s One Uncoordinated No Force Mode Fixed Sin Timer Results Assigned Phase Case Number Phase Duration, s	eference Phase eference Point Emult. Gap E/W	2 End On	Time F Analys File Na Horizo L 159 Green Yellow Red	Period sis Year ame on Full E EB T 1396	Mitiga Full B 2036 Mitiga Build ME R 56	ted Horiuild MD ted Gibs ted 47 47 44.5	W 14 14 10 3.0	Dura Area PHF Analy Jumni //B	tion, h Type ysis Pe Horizo	eriod on TO1 L 26	1.000 Other 1.00 1> 7:0 TAL MD	00 0.xus		↓↓ ^N ^N ^N ^N ^N ^N ^N ^N	R
Analyst Jurisdiction CAB Urban Street Intersection Project Description Cib. Demand Information Approach Movement Demand (v), veh/h Signal Information Cycle, s 120.0 Reformed No Singer Singer Phase Case Number Phase Duration, s	eference Phase eference Point Emult. Gap E/W	2 End On	Time F Analys File Na Horizo L 159 Green Yellow Red	Period sis Year ame on Full E EB T 1396	Mitiga Full B 2036 Mitiga Build ME R 56	ted Horiuild MD ted Gibs ted 47 47 44.5	W 14 14 10 3.0	Area PHF Analy Jumni /B CO2	Type ysis Pe Horizo R 98	eriod Dn TO1 L 26	Other 1.00 1> 7:0 AL MD NB T).xus	_	**************************************	
Jurisdiction Urban Street Intersection Project Description Gib Demand Information Approach Movement Demand (v), veh/h Signal Information Cycle, s 120.0 Rei Offset, s 0 Rei Uncoordinated No Sin Force Mode Fixed Sin Timer Results Assigned Phase Case Number Phase Duration, s	eference Phase eference Point Emult. Gap E/W	2 End On	Time F Analys File Na Horizo L 159 Green Yellow Red	Period sis Year ame on Full E EB T 1396	Mitiga Full B 2036 Mitiga Build ME R 56	ted Horiuild MD ted Gibs ted 47 47 44.5	W 14 14 10 3.0	PHF Analy Jumni /B C 02	ysis Pe Horizo	L 26	1.00 1> 7:0 FAL MD NB T).xus	_	_	
Urban Street Gib Intersection Gib Project Description Gib Demand Information Approach Movement Demand (v), veh/h Signal Information Cycle, s 120.0 Ref Offset, s 0 Ref Uncoordinated No Sin Force Mode Fixed Sin Timer Results Assigned Phase Case Number Phase Duration, s	eference Phase eference Point Emult. Gap E/W	2 End On	Analys File Na) Horizo L 159 Green Yellow Red	EB T 1396	Full B 2036 Mitiga Build ME R 56	ted Gibs L 47 74.5 4.0	W 14 14 10 3.0	Analy lumni /B	ysis Pe Horizo R 98	L 26	1> 7:0 TAL MD NB).xus	_	_	
Intersection Gib. Project Description Gib. Demand Information Approach Movement Demand (v), veh/h Signal Information Cycle, s 120.0 Ref Offset, s 0 Ref Uncoordinated No Sin Force Mode Fixed Sin Timer Results Assigned Phase Case Number Phase Duration, s	eference Phase eference Point mult. Gap E/W	2 End On	File Na) Horizo L 159 Green Yellow Red	EB T 1396	Mitiga Build ME R 56	1 L 47 74.5 4.0	W 14 14 10 3.0	/B F O2	Horizo	L 26	NB).xus	_	_	
Project Description Demand Information Approach Movement Demand (v), veh/h Signal Information Cycle, s 120.0 Ref Offset, s 0 Ref Uncoordinated No Sin Force Mode Fixed Sin Timer Results Assigned Phase Case Number Phase Duration, s	eference Phase eference Point Emult. Gap E/W	2 End On	L 159 Green Yellow Red	EB T 1396	R 56	1 L 47 74.5 4.0	W 14 14 10 3.0	/В Г 02	R 98	L 26	NB T	R	_	_	
Demand Information Approach Movement Demand (v), veh/h Signal Information Cycle, s 120.0 Rei Offset, s 0 Rei Uncoordinated No Sin Force Mode Fixed Sin Timer Results Assigned Phase Case Number Phase Duration, s	eference Phase eference Point Emult. Gap E/W	2 End On	L 159 Green Yellow Red	EB T 1396	R 56	74.5	10 3.0	02 02	98	26	Т	_	_	_	
Approach Movement Demand (v), veh/h Signal Information Cycle, s	eference Point E	End On	Green Yellow Red	T 1396 2.5 3.0 1.0	3.4 0.0	74.5 4.0	10 3.0	02 02	98	26	Т	_	_	_	
Approach Movement Demand (v), veh/h Signal Information Cycle, s 120.0 Rei Offset, s 0 Rei Uncoordinated No Sin Force Mode Fixed Sin Timer Results Assigned Phase Case Number Phase Duration, s	eference Point E	End On	Green Yellow Red	T 1396 2.5 3.0 1.0	3.4 0.0	74.5 4.0	10 3.0	02 02	98	26	Т	_	_	_	
Demand (v), veh/h Signal Information Cycle, s	eference Point E	End On	Green Yellow Red	2.5 3.0 1.0	3.4 0.0	74.5 4.0	10 3.0	02	98	26		_	_	L L	
Signal Information Cycle, s 120.0 Re Offset, s 0 Re Uncoordinated No Sin Force Mode Fixed Sin Timer Results Assigned Phase Case Number Phase Duration, s	eference Point E	End On	Green Yellow Red	2.5 3.0 1.0	3.4 0.0	74.5 4.0	10	_ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				1	♦	ļ	₩
Cycle, s 120.0 Re Offset, s 0 Re Uncoordinated No Sin Force Mode Fixed Sin Timer Results Assigned Phase Case Number Phase Duration, s	eference Point E	End On	Yellow Red	3.0	0.0	4.0	3.0	S 17	11 0	0.0	~		Q	<u>ς</u>	
Cycle, s 120.0 Re Offset, s 0 Re Uncoordinated No Sin Force Mode Fixed Sin Timer Results Assigned Phase Case Number Phase Duration, s	eference Point E	End On	Yellow Red	3.0	0.0	4.0	3.0	.8	11 0	0.0			€ ,	/	学
Uncoordinated No Sin Force Mode Fixed Sin Timer Results Assigned Phase Case Number Phase Duration, s	mult. Gap E/W	On	Yellow Red	3.0	0.0	4.0	3.0	.8	11 0	0.0		1	2		
Uncoordinated No Sin Force Mode Fixed Sin Timer Results Assigned Phase Case Number Phase Duration, s	mult. Gap E/W	On	Yellow Red	3.0	0.0	4.0	3.0	'⊪ ö.⊓		TO U				3	4
Force Mode Fixed Sin Timer Results Assigned Phase Case Number Phase Duration, s			Red	1.0					3.0	0.0		7	→	ζ	人
Timer Results Assigned Phase Case Number Phase Duration, s			EBL				1.0		1.0	0.0		5	6	7	8
Assigned Phase Case Number Phase Duration, s			EBL												
Case Number Phase Duration, s				-	EBT	WBI	-	WB ⁻	Т	NBL		NBT	SBL		SBT
Phase Duration, s			5		2	1		6				4			8
·			1.1		4.0	1.1		3.0				12.0			9.0
Change Period, (Y+Rc), s			9.9		82.9	6.5		79.5	5			14.8			15.8
. , , , , , , , , , , , , , , , , , , ,	S		4.0		5.0	4.0		5.0				4.0			4.0
Max Allow Headway (MAH	Н), s		3.0		0.0	3.0		0.0				3.2			3.3
Queue Clearance Time (g	/ s), S		5.7			3.1						6.7			7.7
Green Extension Time (g $_{ m e}$	e), S		0.2		0.0	0.0		0.0				0.1			0.2
Phase Call Probability			1.00)		0.79					(0.90			0.98
Max Out Probability		_	0.00)		0.00			_		(0.00			0.00
Movement Group Results	 S	_		EB			WE	3	$\overline{}$		NB			SB	
Approach Movement		\neg	L	Т	R	L	Т	_	R	L	Т	R	L	Т	R
Assigned Movement			5	2	12	1	6	_	16	7	4	14	3		18
Adjusted Flow Rate (v), ve	veh/h	-	159	975	477	47	140	_	98		70		90		30
Adjusted Saturation Flow R			1810	1900	1861	1810	171	_	310		1679		1810		1610
Queue Service Time (g s),			3.7	14.5	14.5	1.1	17.	_	.9		4.7		5.7		2.1
Cycle Queue Clearance Tir			3.7	14.5	14.5	1.1	17.	_	.9		4.7		5.7		2.1
Green Ratio (g/C)			0.68	0.65	0.65	0.64	0.62	_	62		0.09		0.10		0.10
Capacity (c), veh/h			336	2466	1207	288	318	8 10	000		152		178		158
Volume-to-Capacity Ratio ((X)		0.474	0.395	0.395	0.163	0.44	_	098		0.462		0.507		0.190
Back of Queue (Q), ft/ln ((95 th percentile)		57	234	238	18	252	2 4	15		90		119		38
Back of Queue (Q), veh/ln	n (95 th percentile)		2.3	9.4	9.4	0.7	10.0	0 1	.8		3.6		4.7		1.5
Queue Storage Ratio (RQ) (95 th percentile)	0.25	0.00	0.00	0.10	0.00	0.0	.00		0.00		0.52		0.17
Uniform Delay (d 1), s/veh	h		9.1	10.0	10.0	8.7	11.9	9 9	.2		51.8		51.4		49.7
Incremental Delay (d 2), s/			0.4	0.5	1.0	0.1	0.4	0	.2		0.8		0.8		0.2
Initial Queue Delay (d 3), s	s/veh		0.0	0.0	0.0	0.0	0.0	_	.0		0.0		0.0		0.0
Control Delay (d), s/veh			9.5	10.4	10.9	8.8	12.3	3 9	.4		52.6		52.2		49.9
Level of Service (LOS)			Α	В	В	Α	В	1	A		D		D		D
Approach Delay, s/veh / LO			10.5	5	В	12.0		В		52.6		D	51.6		D
Intersection Delay, s/veh / L	LOS				13	3.5							В		
Multimodal Results				EB			WE	3			NB			SB	
Pedestrian LOS Score / LO	OS		1.65		В	1.88		В	\dashv	2.74		С	2.62		С
Bicycle LOS Score / LOS			1.37	_	A	1.34	_	A		0.60		A	2.02		F

Generated: 6/21/2024 1:20:26 PM

		HCS	Sigr	alize	d Inte	ersect	ion R	esu	lts	Sum	mary					
														,		
General Inforn	nation	-							Int	tersect	on Info	_	n	لي	474	Ja ly
Agency									Du	uration,	h	1.000			* *	P.
Analyst				Analys	is Date	5/21/2	2024		Are	еа Туре)	Other		_A		K &_
Jurisdiction		CABQ		Time F	Period		ted Hor uild PM		PH	НF		1.00		**************************************	w ↑ E s	← ←
Urban Street		Gibson Boulevard		Analys	is Yea	2036			An	nalysis F	Period	1> 7:0	00			<u></u>
Intersection		Gibson & Alumni		File Na	ame	Mitiga	ted Gib	son A	lum	nni Horiz	zon TO	TAL PM	1.xus	1	4 1 4 4	* t+ (*
Project Descrip	tion	Gibson In-N-Out (M	litigated) Horizo	n Full I	Build PN	1									
Demand Inform	mation				EB		7	۱۸	/B			NB			SB	
Approach Move				L	T	R	L		T	R	L	T	R	L	T	R
Demand (v), v				124	1505		46	_	520	82	11	0	40	70	<u> </u>	20
Demand (v), v	CHI/H			124	1000	52	70	20	20	UZ	- ' '		1 40	70		20
Signal Informa	ation				T		T	J	Ţ		T				П	
Cycle, s	120.0	Reference Phase	2	1	ب « <u>ا</u>	┪		7	RAS			K	<u> </u>	4	/	V
Offset, s	0	Reference Point	End			3	70.0			"			1	2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Green		2.4	76.9	9.		11.4	0.0	_	,	Ş −	K	人
Force Mode	Fixed	Simult. Gap N/S	On	Yellow Red	1.0	0.0	1.0	3. 1.		3.0	0.0		5	6	7	8
1 orce mode	TIXCU	Olindit. Oap 14/0	OII	rtcu	1.0	0.0	1.0	1		1.0	10.0					
Timer Results				EBL	-	EBT	WB	L	V	VBT	NBL		NBT	SBL	.	SBT
Assigned Phase	е			5		2	1			6			4			8
Case Number				1.1		4.0	1.1		3	3.0			12.0			9.0
Phase Duration	1, S			8.9		84.4	6.4		8	1.9			13.8			15.4
Change Period	, (Y+R	c), S		4.0		5.0	4.0		5	5.0			4.0			4.0
Max Allow Head	dway (<i>I</i>	<i>MAH</i>), s		3.0		0.0	3.0		0	0.0			3.3			3.3
Queue Clearan	ce Time	e (g s), S		4.8			3.1						5.5			6.4
Green Extension	n Time	(g e), s		0.2		0.0	0.0		0	0.0			0.0			0.1
Phase Call Pro	bability			0.98	3		0.78	3					0.82			0.95
Max Out Proba	bility			0.00)		0.00)					0.00			0.00
Movement Gro	oup Res	sults			EB			WI	B			NB			SB	
Approach Move				L	Т	R	L	Т	_	R	L	Т	R	L	Т	R
Assigned Move				5	2	12	1	6	_	16	7	4	14	3	•	18
Adjusted Flow I) voh/h		124	1028	509	46	262	\rightarrow	82	-	51	17	70		20
		ow Rate (s), veh/h/l	n	1810	1900	1879	1810	171	_	1610		1649		1810		1610
Queue Service		· · · · · ·	••	2.8	15.1	15.1	1.1	44.	-	2.3		3.5		4.4		1.4
Cycle Queue C				2.8	15.1	15.1	1.1	44.	_	2.3		3.5		4.4		1.4
Green Ratio (g		- ····· (g · /, 0		0.69	0.66	0.66	0.66	0.6	_	0.64		0.08		0.10		0.10
Capacity (c), v				165	2513	1242	275	329	\rightarrow	1032		135		172		153
Volume-to-Cap		itio (X)		0.751	0.409	0.409	0.167	0.79	_	0.079		0.378		0.407		0.131
		t/ln(95 th percentile)	105	238	244	17	558	\rightarrow	34		66		91		25
		eh/In (95 th percent		4.2	9.5	9.7	0.7	22.	\rightarrow	1.4		2.6		3.7		1.0
	<u> </u>	RQ) (95 th percent		0.46	0.00	0.00	0.09	0.0	_	0.00		0.00		0.40		0.11
Uniform Delay		, , , , , , , , , , , , , , , , , , , ,		27.2	9.4	9.4	8.1	15.	_	8.2		52.2		51.1		49.8
Incremental De	, ,			2.6	0.5	1.0	0.1	2.1	_	0.2		0.7		0.6		0.1
Initial Queue De		,		0.0	0.0	0.0	0.0	0.0	_	0.0		0.0		0.0		0.0
Control Delay (29.9	9.9	10.4	8.2	17.	9	8.3		52.9		51.7		49.9
Level of Service	e (LOS)			С	Α	В	Α	В		Α		D		D		D
Approach Delay	y, s/veh	/ LOS		11.6		В	17.5	5		В	52.9		D	51.3		D
Intersection De	lay, s/ve	h / LOS				16	5.4							В		
Multimadal Da	oults				ED			\^//	D			NID			CD.	
Multimodal Re Pedestrian LOS		/1.08		1.65	EB	D	1.88	WI		B	2.74	NB	С	2.60	SB	С
				1.65	-	В	_	_		В	2.74	_		2.62		
Bicycle LOS So	ore / LC	<i>J</i> o		1.40		Α	2.00)		В	0.57		Α			F

Generated: 6/21/2024 1:19:43 PM

Appendix E: AASHTO Green Book Intersection Sight Distance Calculations

Scenario:	Right Turn from the Minor Road
Type of Vehicle:	Passenger Car
# Lanes Crossing:	1
Speed Limit (mph):	45
Median?	No
	12
Base Time Gap:	6.5
Additional Lanes to Cross:	0
Additional Time:	0
Final Time Gap:	6.5
SIGHT DISTANCE REQUIRED	429.98
SIGHT DISTANCE REQUIRED (Rounded)	430

TOTAL	4 4-	/TT	4
181)=	4/	(V_{major})	Т_
1.02	*	(major)	.6

t _g Values				
	CASE	Passenger Car	Single-Unit Truck	Combination Truck
B1	Left Turn from the Minor Road	7.5	9.5	11.5
B2 B3	Right Turn from the Minor Road Crossing Maneuver from the Minor Road	6.5	8.5	10.5
F	Left Turn from the Major Road	5.5	6.5	7.5

CASE B1 - For a stopped vehicle to turn left onto a 2-lane highway with $\underline{no\ median}$ and grades 3 percent or less

For left turns onto two-way highways with more than 2 lanes:
+0.5 seconds for passenger cars
+0.7 seconds for trucks
for each additional lane, from the left, in excess of one, to be crossed by the turning vehicle.

For minor road approach grades: +0.2 seconds for each percent grade if the approach grade is an upgrade that exceeds 3 percent.

CASE B2 + B3 - For a stopped vehicle to turn right onto or cross a <u>2-lane highway</u> with <u>no median</u> and <u>grades 3 percent or less</u>

For crossing a major road with more than 2 lanes:
+0.5 seconds for passenger cars
+0.7 seconds for trucks
for each additional lane to be crossed and narrow medians that cannot store the design vehicle.

For minor road approach grades: +0.1 seconds for each percent grade

if the approach grade is an upgrade that exceeds 3 percent.

$\overline{\text{CASE F-For a stopped vehicle to turn across}} \, \underline{\text{one lane of opposing traffic}}$

For left-turning vehicles that cross more than 1 opposing lane: +0.5 seconds for passenger cars +0.7 seconds for trucks

for each additional lane to be crossed.

Scenario:	Left Turn from the Minor Road		
Type of Vehicle:	Passenger Car		
# Lanes Crossing:	1		
Speed Limit (mph):	30		
Median?	Yes		
Enter Median Width:	12		
Base Time Gap:	7.5		
Additional Lanes to Cross:	1		
Additional Time:	0.5		
Final Time Gap:	8		
SIGHT DISTANCE REQUIRED	352.80		
SIGHT DISTANCE REQUIRED (Rounded)	355		

Scenario:	Right Turn from the Minor Road		
Type of Vehicle:	Passenger Car		
# Lanes Crossing:	1		
Speed Limit (mph):	30		
Median?	Yes		
Enter Median Width:	12		
Base Time Gap:	6.5		
Additional Lanes to Cross:	0		
Additional Time:	0		
Final Time Gap:	6.5		
SIGHT DISTANCE REQUIRED	286.65		
SIGHT DISTANCE REQUIRED (Rounded)	290		